SemaDeclCXX.cpp revision 87595e46ccd61c9b7c08074c2c64b66b5c0fc694
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic, the new one is, too.
387  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
392    Class->setPolymorphic(true);
393
394  // C++ [dcl.init.aggr]p1:
395  //   An aggregate is [...] a class with [...] no base classes [...].
396  Class->setAggregate(false);
397  Class->setPOD(false);
398
399  if (Virtual) {
400    // C++ [class.ctor]p5:
401    //   A constructor is trivial if its class has no virtual base classes.
402    Class->setHasTrivialConstructor(false);
403
404    // C++ [class.copy]p6:
405    //   A copy constructor is trivial if its class has no virtual base classes.
406    Class->setHasTrivialCopyConstructor(false);
407
408    // C++ [class.copy]p11:
409    //   A copy assignment operator is trivial if its class has no virtual
410    //   base classes.
411    Class->setHasTrivialCopyAssignment(false);
412  } else {
413    // C++ [class.ctor]p5:
414    //   A constructor is trivial if all the direct base classes of its
415    //   class have trivial constructors.
416    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
417      Class->setHasTrivialConstructor(false);
418
419    // C++ [class.copy]p6:
420    //   A copy constructor is trivial if all the direct base classes of its
421    //   class have trivial copy constructors.
422    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
423      Class->setHasTrivialCopyConstructor(false);
424
425    // C++ [class.copy]p11:
426    //   A copy assignment operator is trivial if all the direct base classes
427    //   of its class have trivial copy assignment operators.
428    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
429      Class->setHasTrivialCopyAssignment(false);
430  }
431
432  // C++ [class.ctor]p3:
433  //   A destructor is trivial if all the direct base classes of its class
434  //   have trivial destructors.
435  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
436    Class->setHasTrivialDestructor(false);
437
438  // Create the base specifier.
439  // FIXME: Allocate via ASTContext?
440  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
441                              Class->getTagKind() == RecordDecl::TK_class,
442                              Access, BaseType);
443}
444
445/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
446/// one entry in the base class list of a class specifier, for
447/// example:
448///    class foo : public bar, virtual private baz {
449/// 'public bar' and 'virtual private baz' are each base-specifiers.
450Sema::BaseResult
451Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
452                         bool Virtual, AccessSpecifier Access,
453                         TypeTy *basetype, SourceLocation BaseLoc) {
454  if (!classdecl)
455    return true;
456
457  AdjustDeclIfTemplate(classdecl);
458  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
459  QualType BaseType = QualType::getFromOpaquePtr(basetype);
460  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
461                                                      Virtual, Access,
462                                                      BaseType, BaseLoc))
463    return BaseSpec;
464
465  return true;
466}
467
468/// \brief Performs the actual work of attaching the given base class
469/// specifiers to a C++ class.
470bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
471                                unsigned NumBases) {
472 if (NumBases == 0)
473    return false;
474
475  // Used to keep track of which base types we have already seen, so
476  // that we can properly diagnose redundant direct base types. Note
477  // that the key is always the unqualified canonical type of the base
478  // class.
479  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
480
481  // Copy non-redundant base specifiers into permanent storage.
482  unsigned NumGoodBases = 0;
483  bool Invalid = false;
484  for (unsigned idx = 0; idx < NumBases; ++idx) {
485    QualType NewBaseType
486      = Context.getCanonicalType(Bases[idx]->getType());
487    NewBaseType = NewBaseType.getUnqualifiedType();
488
489    if (KnownBaseTypes[NewBaseType]) {
490      // C++ [class.mi]p3:
491      //   A class shall not be specified as a direct base class of a
492      //   derived class more than once.
493      Diag(Bases[idx]->getSourceRange().getBegin(),
494           diag::err_duplicate_base_class)
495        << KnownBaseTypes[NewBaseType]->getType()
496        << Bases[idx]->getSourceRange();
497
498      // Delete the duplicate base class specifier; we're going to
499      // overwrite its pointer later.
500      Context.Deallocate(Bases[idx]);
501
502      Invalid = true;
503    } else {
504      // Okay, add this new base class.
505      KnownBaseTypes[NewBaseType] = Bases[idx];
506      Bases[NumGoodBases++] = Bases[idx];
507    }
508  }
509
510  // Attach the remaining base class specifiers to the derived class.
511  Class->setBases(Context, Bases, NumGoodBases);
512
513  // Delete the remaining (good) base class specifiers, since their
514  // data has been copied into the CXXRecordDecl.
515  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
516    Context.Deallocate(Bases[idx]);
517
518  return Invalid;
519}
520
521/// ActOnBaseSpecifiers - Attach the given base specifiers to the
522/// class, after checking whether there are any duplicate base
523/// classes.
524void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
525                               unsigned NumBases) {
526  if (!ClassDecl || !Bases || !NumBases)
527    return;
528
529  AdjustDeclIfTemplate(ClassDecl);
530  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
531                       (CXXBaseSpecifier**)(Bases), NumBases);
532}
533
534//===----------------------------------------------------------------------===//
535// C++ class member Handling
536//===----------------------------------------------------------------------===//
537
538/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
539/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
540/// bitfield width if there is one and 'InitExpr' specifies the initializer if
541/// any.
542Sema::DeclPtrTy
543Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
544                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
545  const DeclSpec &DS = D.getDeclSpec();
546  DeclarationName Name = GetNameForDeclarator(D);
547  Expr *BitWidth = static_cast<Expr*>(BW);
548  Expr *Init = static_cast<Expr*>(InitExpr);
549  SourceLocation Loc = D.getIdentifierLoc();
550
551  bool isFunc = D.isFunctionDeclarator();
552
553  // C++ 9.2p6: A member shall not be declared to have automatic storage
554  // duration (auto, register) or with the extern storage-class-specifier.
555  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
556  // data members and cannot be applied to names declared const or static,
557  // and cannot be applied to reference members.
558  switch (DS.getStorageClassSpec()) {
559    case DeclSpec::SCS_unspecified:
560    case DeclSpec::SCS_typedef:
561    case DeclSpec::SCS_static:
562      // FALL THROUGH.
563      break;
564    case DeclSpec::SCS_mutable:
565      if (isFunc) {
566        if (DS.getStorageClassSpecLoc().isValid())
567          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
568        else
569          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
570
571        // FIXME: It would be nicer if the keyword was ignored only for this
572        // declarator. Otherwise we could get follow-up errors.
573        D.getMutableDeclSpec().ClearStorageClassSpecs();
574      } else {
575        QualType T = GetTypeForDeclarator(D, S);
576        diag::kind err = static_cast<diag::kind>(0);
577        if (T->isReferenceType())
578          err = diag::err_mutable_reference;
579        else if (T.isConstQualified())
580          err = diag::err_mutable_const;
581        if (err != 0) {
582          if (DS.getStorageClassSpecLoc().isValid())
583            Diag(DS.getStorageClassSpecLoc(), err);
584          else
585            Diag(DS.getThreadSpecLoc(), err);
586          // FIXME: It would be nicer if the keyword was ignored only for this
587          // declarator. Otherwise we could get follow-up errors.
588          D.getMutableDeclSpec().ClearStorageClassSpecs();
589        }
590      }
591      break;
592    default:
593      if (DS.getStorageClassSpecLoc().isValid())
594        Diag(DS.getStorageClassSpecLoc(),
595             diag::err_storageclass_invalid_for_member);
596      else
597        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
598      D.getMutableDeclSpec().ClearStorageClassSpecs();
599  }
600
601  if (!isFunc &&
602      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
603      D.getNumTypeObjects() == 0) {
604    // Check also for this case:
605    //
606    // typedef int f();
607    // f a;
608    //
609    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
610    isFunc = TDType->isFunctionType();
611  }
612
613  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
614                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
615                      !isFunc);
616
617  Decl *Member;
618  if (isInstField) {
619    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
620                         AS);
621    assert(Member && "HandleField never returns null");
622  } else {
623    Member = ActOnDeclarator(S, D).getAs<Decl>();
624    if (!Member) {
625      if (BitWidth) DeleteExpr(BitWidth);
626      return DeclPtrTy();
627    }
628
629    // Non-instance-fields can't have a bitfield.
630    if (BitWidth) {
631      if (Member->isInvalidDecl()) {
632        // don't emit another diagnostic.
633      } else if (isa<VarDecl>(Member)) {
634        // C++ 9.6p3: A bit-field shall not be a static member.
635        // "static member 'A' cannot be a bit-field"
636        Diag(Loc, diag::err_static_not_bitfield)
637          << Name << BitWidth->getSourceRange();
638      } else if (isa<TypedefDecl>(Member)) {
639        // "typedef member 'x' cannot be a bit-field"
640        Diag(Loc, diag::err_typedef_not_bitfield)
641          << Name << BitWidth->getSourceRange();
642      } else {
643        // A function typedef ("typedef int f(); f a;").
644        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
645        Diag(Loc, diag::err_not_integral_type_bitfield)
646          << Name << cast<ValueDecl>(Member)->getType()
647          << BitWidth->getSourceRange();
648      }
649
650      DeleteExpr(BitWidth);
651      BitWidth = 0;
652      Member->setInvalidDecl();
653    }
654
655    Member->setAccess(AS);
656  }
657
658  assert((Name || isInstField) && "No identifier for non-field ?");
659
660  if (Init)
661    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
662  if (Deleted) // FIXME: Source location is not very good.
663    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
664
665  if (isInstField) {
666    FieldCollector->Add(cast<FieldDecl>(Member));
667    return DeclPtrTy();
668  }
669  return DeclPtrTy::make(Member);
670}
671
672/// ActOnMemInitializer - Handle a C++ member initializer.
673Sema::MemInitResult
674Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
675                          Scope *S,
676                          const CXXScopeSpec &SS,
677                          IdentifierInfo *MemberOrBase,
678                          TypeTy *TemplateTypeTy,
679                          SourceLocation IdLoc,
680                          SourceLocation LParenLoc,
681                          ExprTy **Args, unsigned NumArgs,
682                          SourceLocation *CommaLocs,
683                          SourceLocation RParenLoc) {
684  if (!ConstructorD)
685    return true;
686
687  CXXConstructorDecl *Constructor
688    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
689  if (!Constructor) {
690    // The user wrote a constructor initializer on a function that is
691    // not a C++ constructor. Ignore the error for now, because we may
692    // have more member initializers coming; we'll diagnose it just
693    // once in ActOnMemInitializers.
694    return true;
695  }
696
697  CXXRecordDecl *ClassDecl = Constructor->getParent();
698
699  // C++ [class.base.init]p2:
700  //   Names in a mem-initializer-id are looked up in the scope of the
701  //   constructor’s class and, if not found in that scope, are looked
702  //   up in the scope containing the constructor’s
703  //   definition. [Note: if the constructor’s class contains a member
704  //   with the same name as a direct or virtual base class of the
705  //   class, a mem-initializer-id naming the member or base class and
706  //   composed of a single identifier refers to the class member. A
707  //   mem-initializer-id for the hidden base class may be specified
708  //   using a qualified name. ]
709  if (!SS.getScopeRep() && !TemplateTypeTy) {
710    // Look for a member, first.
711    FieldDecl *Member = 0;
712    DeclContext::lookup_result Result
713      = ClassDecl->lookup(MemberOrBase);
714    if (Result.first != Result.second)
715      Member = dyn_cast<FieldDecl>(*Result.first);
716
717    // FIXME: Handle members of an anonymous union.
718
719    if (Member) {
720      CXXConstructorDecl *C = 0;
721      QualType FieldType = Member->getType();
722      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
723        FieldType = Array->getElementType();
724      if (!FieldType->isDependentType() && FieldType->getAsRecordType())
725        C = PerformInitializationByConstructor(
726              FieldType, (Expr **)Args, NumArgs, IdLoc,
727              SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
728      // FIXME: Perform direct initialization of the member.
729      return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
730                                                      NumArgs, C, IdLoc);
731    }
732  }
733  // It didn't name a member, so see if it names a class.
734  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
735                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
736  if (!BaseTy)
737    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
738      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
739
740  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
741  if (!BaseType->isRecordType() && !BaseType->isDependentType())
742    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
743      << BaseType << SourceRange(IdLoc, RParenLoc);
744
745  // C++ [class.base.init]p2:
746  //   [...] Unless the mem-initializer-id names a nonstatic data
747  //   member of the constructor’s class or a direct or virtual base
748  //   of that class, the mem-initializer is ill-formed. A
749  //   mem-initializer-list can initialize a base class using any
750  //   name that denotes that base class type.
751
752  // First, check for a direct base class.
753  const CXXBaseSpecifier *DirectBaseSpec = 0;
754  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
755       Base != ClassDecl->bases_end(); ++Base) {
756    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
757        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
758      // We found a direct base of this type. That's what we're
759      // initializing.
760      DirectBaseSpec = &*Base;
761      break;
762    }
763  }
764
765  // Check for a virtual base class.
766  // FIXME: We might be able to short-circuit this if we know in advance that
767  // there are no virtual bases.
768  const CXXBaseSpecifier *VirtualBaseSpec = 0;
769  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
770    // We haven't found a base yet; search the class hierarchy for a
771    // virtual base class.
772    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
773                    /*DetectVirtual=*/false);
774    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
775      for (BasePaths::paths_iterator Path = Paths.begin();
776           Path != Paths.end(); ++Path) {
777        if (Path->back().Base->isVirtual()) {
778          VirtualBaseSpec = Path->back().Base;
779          break;
780        }
781      }
782    }
783  }
784
785  // C++ [base.class.init]p2:
786  //   If a mem-initializer-id is ambiguous because it designates both
787  //   a direct non-virtual base class and an inherited virtual base
788  //   class, the mem-initializer is ill-formed.
789  if (DirectBaseSpec && VirtualBaseSpec)
790    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
791      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
792  // C++ [base.class.init]p2:
793  // Unless the mem-initializer-id names a nonstatic data membeer of the
794  // constructor's class ot a direst or virtual base of that class, the
795  // mem-initializer is ill-formed.
796  if (!DirectBaseSpec && !VirtualBaseSpec)
797    return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
798    << BaseType << ClassDecl->getNameAsCString()
799    << SourceRange(IdLoc, RParenLoc);
800  DeclarationName Name
801    = Context.DeclarationNames.getCXXConstructorName(
802        Context.getCanonicalType(BaseType));
803  CXXConstructorDecl *C = 0;
804  if (!BaseType->isDependentType())
805    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs, IdLoc,
806                                       SourceRange(IdLoc, RParenLoc), Name,
807                                       IK_Direct);
808
809  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
810                                                  NumArgs, C, IdLoc);
811}
812
813void
814Sema::BuildBaseOrMemberInitializers(ASTContext &C,
815                                 CXXConstructorDecl *Constructor,
816                                 CXXBaseOrMemberInitializer **Initializers,
817                                 unsigned NumInitializers
818                                 ) {
819  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
820  llvm::SmallVector<FieldDecl *, 4>Members;
821
822  Constructor->setBaseOrMemberInitializers(C,
823                                           Initializers, NumInitializers,
824                                           Bases, Members);
825  for (unsigned int i = 0; i < Bases.size(); i++)
826    Diag(Bases[i]->getSourceRange().getBegin(),
827         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
828  for (unsigned int i = 0; i < Members.size(); i++)
829    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
830          << 1 << Members[i]->getType();
831}
832
833static void *GetKeyForTopLevelField(FieldDecl *Field) {
834  // For anonymous unions, use the class declaration as the key.
835  if (const RecordType *RT = Field->getType()->getAsRecordType()) {
836    if (RT->getDecl()->isAnonymousStructOrUnion())
837      return static_cast<void *>(RT->getDecl());
838  }
839  return static_cast<void *>(Field);
840}
841
842static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member) {
843  // For fields injected into the class via declaration of an anonymous union,
844  // use its anonymous union class declaration as the unique key.
845  if (FieldDecl *Field = Member->getMember()) {
846    if (Field->getDeclContext()->isRecord()) {
847      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
848      if (RD->isAnonymousStructOrUnion())
849        return static_cast<void *>(RD);
850    }
851    return static_cast<void *>(Field);
852  }
853  return static_cast<RecordType *>(Member->getBaseClass());
854}
855
856void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
857                                SourceLocation ColonLoc,
858                                MemInitTy **MemInits, unsigned NumMemInits) {
859  if (!ConstructorDecl)
860    return;
861
862  CXXConstructorDecl *Constructor
863    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
864
865  if (!Constructor) {
866    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
867    return;
868  }
869  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
870  bool err = false;
871  for (unsigned i = 0; i < NumMemInits; i++) {
872    CXXBaseOrMemberInitializer *Member =
873      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
874    void *KeyToMember = GetKeyForMember(Member);
875    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
876    if (!PrevMember) {
877      PrevMember = Member;
878      continue;
879    }
880    if (FieldDecl *Field = Member->getMember())
881      Diag(Member->getSourceLocation(),
882           diag::error_multiple_mem_initialization)
883      << Field->getNameAsString();
884    else {
885      Type *BaseClass = Member->getBaseClass();
886      assert(BaseClass && "ActOnMemInitializers - neither field or base");
887      Diag(Member->getSourceLocation(),
888           diag::error_multiple_base_initialization)
889        << BaseClass->getDesugaredType(true);
890    }
891    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
892      << 0;
893    err = true;
894  }
895  if (!err)
896    BuildBaseOrMemberInitializers(Context, Constructor,
897                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
898                      NumMemInits);
899
900  if (!err && (Diags.getDiagnosticLevel(diag::warn_base_initialized)
901               != Diagnostic::Ignored ||
902               Diags.getDiagnosticLevel(diag::warn_field_initialized)
903               != Diagnostic::Ignored)) {
904    // Also issue warning if order of ctor-initializer list does not match order
905    // of 1) base class declarations and 2) order of non-static data members.
906    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
907
908    CXXRecordDecl *ClassDecl
909      = cast<CXXRecordDecl>(Constructor->getDeclContext());
910    // Push virtual bases before others.
911    for (CXXRecordDecl::base_class_iterator VBase =
912         ClassDecl->vbases_begin(),
913         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
914      AllBaseOrMembers.push_back(VBase->getType()->getAsRecordType());
915
916    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
917         E = ClassDecl->bases_end(); Base != E; ++Base) {
918      // Virtuals are alread in the virtual base list and are constructed
919      // first.
920      if (Base->isVirtual())
921        continue;
922      AllBaseOrMembers.push_back(Base->getType()->getAsRecordType());
923    }
924
925    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
926         E = ClassDecl->field_end(); Field != E; ++Field)
927      AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
928
929    int Last = AllBaseOrMembers.size();
930    int curIndex = 0;
931    CXXBaseOrMemberInitializer *PrevMember = 0;
932    for (unsigned i = 0; i < NumMemInits; i++) {
933      CXXBaseOrMemberInitializer *Member =
934        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
935      void *MemberInCtorList = GetKeyForMember(Member);
936
937      for (; curIndex < Last; curIndex++)
938        if (MemberInCtorList == AllBaseOrMembers[curIndex])
939          break;
940      if (curIndex == Last) {
941        assert(PrevMember && "Member not in member list?!");
942        // Initializer as specified in ctor-initializer list is out of order.
943        // Issue a warning diagnostic.
944        if (PrevMember->isBaseInitializer()) {
945          // Diagnostics is for an initialized base class.
946          Type *BaseClass = PrevMember->getBaseClass();
947          Diag(PrevMember->getSourceLocation(),
948               diag::warn_base_initialized)
949                << BaseClass->getDesugaredType(true);
950        }
951        else {
952          FieldDecl *Field = PrevMember->getMember();
953          Diag(PrevMember->getSourceLocation(),
954               diag::warn_field_initialized)
955            << Field->getNameAsString();
956        }
957        // Also the note!
958        if (FieldDecl *Field = Member->getMember())
959          Diag(Member->getSourceLocation(),
960               diag::note_fieldorbase_initialized_here) << 0
961            << Field->getNameAsString();
962        else {
963          Type *BaseClass = Member->getBaseClass();
964          Diag(Member->getSourceLocation(),
965               diag::note_fieldorbase_initialized_here) << 1
966            << BaseClass->getDesugaredType(true);
967        }
968        for (curIndex = 0; curIndex < Last; curIndex++)
969          if (MemberInCtorList == AllBaseOrMembers[curIndex])
970            break;
971      }
972      PrevMember = Member;
973    }
974  }
975}
976
977void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
978  if (!CDtorDecl)
979    return;
980
981  if (CXXConstructorDecl *Constructor
982      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
983    BuildBaseOrMemberInitializers(Context,
984                                     Constructor,
985                                     (CXXBaseOrMemberInitializer **)0, 0);
986}
987
988namespace {
989  /// PureVirtualMethodCollector - traverses a class and its superclasses
990  /// and determines if it has any pure virtual methods.
991  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
992    ASTContext &Context;
993
994  public:
995    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
996
997  private:
998    MethodList Methods;
999
1000    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1001
1002  public:
1003    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1004      : Context(Ctx) {
1005
1006      MethodList List;
1007      Collect(RD, List);
1008
1009      // Copy the temporary list to methods, and make sure to ignore any
1010      // null entries.
1011      for (size_t i = 0, e = List.size(); i != e; ++i) {
1012        if (List[i])
1013          Methods.push_back(List[i]);
1014      }
1015    }
1016
1017    bool empty() const { return Methods.empty(); }
1018
1019    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1020    MethodList::const_iterator methods_end() { return Methods.end(); }
1021  };
1022
1023  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1024                                           MethodList& Methods) {
1025    // First, collect the pure virtual methods for the base classes.
1026    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1027         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1028      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
1029        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1030        if (BaseDecl && BaseDecl->isAbstract())
1031          Collect(BaseDecl, Methods);
1032      }
1033    }
1034
1035    // Next, zero out any pure virtual methods that this class overrides.
1036    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1037
1038    MethodSetTy OverriddenMethods;
1039    size_t MethodsSize = Methods.size();
1040
1041    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1042         i != e; ++i) {
1043      // Traverse the record, looking for methods.
1044      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1045        // If the method is pure virtual, add it to the methods vector.
1046        if (MD->isPure()) {
1047          Methods.push_back(MD);
1048          continue;
1049        }
1050
1051        // Otherwise, record all the overridden methods in our set.
1052        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1053             E = MD->end_overridden_methods(); I != E; ++I) {
1054          // Keep track of the overridden methods.
1055          OverriddenMethods.insert(*I);
1056        }
1057      }
1058    }
1059
1060    // Now go through the methods and zero out all the ones we know are
1061    // overridden.
1062    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1063      if (OverriddenMethods.count(Methods[i]))
1064        Methods[i] = 0;
1065    }
1066
1067  }
1068}
1069
1070bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1071                                  unsigned DiagID, AbstractDiagSelID SelID,
1072                                  const CXXRecordDecl *CurrentRD) {
1073
1074  if (!getLangOptions().CPlusPlus)
1075    return false;
1076
1077  if (const ArrayType *AT = Context.getAsArrayType(T))
1078    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1079                                  CurrentRD);
1080
1081  if (const PointerType *PT = T->getAsPointerType()) {
1082    // Find the innermost pointer type.
1083    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
1084      PT = T;
1085
1086    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1087      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1088                                    CurrentRD);
1089  }
1090
1091  const RecordType *RT = T->getAsRecordType();
1092  if (!RT)
1093    return false;
1094
1095  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1096  if (!RD)
1097    return false;
1098
1099  if (CurrentRD && CurrentRD != RD)
1100    return false;
1101
1102  if (!RD->isAbstract())
1103    return false;
1104
1105  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1106
1107  // Check if we've already emitted the list of pure virtual functions for this
1108  // class.
1109  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1110    return true;
1111
1112  PureVirtualMethodCollector Collector(Context, RD);
1113
1114  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1115       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1116    const CXXMethodDecl *MD = *I;
1117
1118    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1119      MD->getDeclName();
1120  }
1121
1122  if (!PureVirtualClassDiagSet)
1123    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1124  PureVirtualClassDiagSet->insert(RD);
1125
1126  return true;
1127}
1128
1129namespace {
1130  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1131    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1132    Sema &SemaRef;
1133    CXXRecordDecl *AbstractClass;
1134
1135    bool VisitDeclContext(const DeclContext *DC) {
1136      bool Invalid = false;
1137
1138      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1139           E = DC->decls_end(); I != E; ++I)
1140        Invalid |= Visit(*I);
1141
1142      return Invalid;
1143    }
1144
1145  public:
1146    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1147      : SemaRef(SemaRef), AbstractClass(ac) {
1148        Visit(SemaRef.Context.getTranslationUnitDecl());
1149    }
1150
1151    bool VisitFunctionDecl(const FunctionDecl *FD) {
1152      if (FD->isThisDeclarationADefinition()) {
1153        // No need to do the check if we're in a definition, because it requires
1154        // that the return/param types are complete.
1155        // because that requires
1156        return VisitDeclContext(FD);
1157      }
1158
1159      // Check the return type.
1160      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1161      bool Invalid =
1162        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1163                                       diag::err_abstract_type_in_decl,
1164                                       Sema::AbstractReturnType,
1165                                       AbstractClass);
1166
1167      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1168           E = FD->param_end(); I != E; ++I) {
1169        const ParmVarDecl *VD = *I;
1170        Invalid |=
1171          SemaRef.RequireNonAbstractType(VD->getLocation(),
1172                                         VD->getOriginalType(),
1173                                         diag::err_abstract_type_in_decl,
1174                                         Sema::AbstractParamType,
1175                                         AbstractClass);
1176      }
1177
1178      return Invalid;
1179    }
1180
1181    bool VisitDecl(const Decl* D) {
1182      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1183        return VisitDeclContext(DC);
1184
1185      return false;
1186    }
1187  };
1188}
1189
1190void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1191                                             DeclPtrTy TagDecl,
1192                                             SourceLocation LBrac,
1193                                             SourceLocation RBrac) {
1194  if (!TagDecl)
1195    return;
1196
1197  AdjustDeclIfTemplate(TagDecl);
1198  ActOnFields(S, RLoc, TagDecl,
1199              (DeclPtrTy*)FieldCollector->getCurFields(),
1200              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1201
1202  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1203  if (!RD->isAbstract()) {
1204    // Collect all the pure virtual methods and see if this is an abstract
1205    // class after all.
1206    PureVirtualMethodCollector Collector(Context, RD);
1207    if (!Collector.empty())
1208      RD->setAbstract(true);
1209  }
1210
1211  if (RD->isAbstract())
1212    AbstractClassUsageDiagnoser(*this, RD);
1213
1214  if (!RD->isDependentType())
1215    AddImplicitlyDeclaredMembersToClass(RD);
1216}
1217
1218/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1219/// special functions, such as the default constructor, copy
1220/// constructor, or destructor, to the given C++ class (C++
1221/// [special]p1).  This routine can only be executed just before the
1222/// definition of the class is complete.
1223void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1224  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1225  ClassType = Context.getCanonicalType(ClassType);
1226
1227  // FIXME: Implicit declarations have exception specifications, which are
1228  // the union of the specifications of the implicitly called functions.
1229
1230  if (!ClassDecl->hasUserDeclaredConstructor()) {
1231    // C++ [class.ctor]p5:
1232    //   A default constructor for a class X is a constructor of class X
1233    //   that can be called without an argument. If there is no
1234    //   user-declared constructor for class X, a default constructor is
1235    //   implicitly declared. An implicitly-declared default constructor
1236    //   is an inline public member of its class.
1237    DeclarationName Name
1238      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1239    CXXConstructorDecl *DefaultCon =
1240      CXXConstructorDecl::Create(Context, ClassDecl,
1241                                 ClassDecl->getLocation(), Name,
1242                                 Context.getFunctionType(Context.VoidTy,
1243                                                         0, 0, false, 0),
1244                                 /*isExplicit=*/false,
1245                                 /*isInline=*/true,
1246                                 /*isImplicitlyDeclared=*/true);
1247    DefaultCon->setAccess(AS_public);
1248    DefaultCon->setImplicit();
1249    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1250    ClassDecl->addDecl(DefaultCon);
1251  }
1252
1253  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1254    // C++ [class.copy]p4:
1255    //   If the class definition does not explicitly declare a copy
1256    //   constructor, one is declared implicitly.
1257
1258    // C++ [class.copy]p5:
1259    //   The implicitly-declared copy constructor for a class X will
1260    //   have the form
1261    //
1262    //       X::X(const X&)
1263    //
1264    //   if
1265    bool HasConstCopyConstructor = true;
1266
1267    //     -- each direct or virtual base class B of X has a copy
1268    //        constructor whose first parameter is of type const B& or
1269    //        const volatile B&, and
1270    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1271         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1272      const CXXRecordDecl *BaseClassDecl
1273        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1274      HasConstCopyConstructor
1275        = BaseClassDecl->hasConstCopyConstructor(Context);
1276    }
1277
1278    //     -- for all the nonstatic data members of X that are of a
1279    //        class type M (or array thereof), each such class type
1280    //        has a copy constructor whose first parameter is of type
1281    //        const M& or const volatile M&.
1282    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1283         HasConstCopyConstructor && Field != ClassDecl->field_end();
1284         ++Field) {
1285      QualType FieldType = (*Field)->getType();
1286      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1287        FieldType = Array->getElementType();
1288      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1289        const CXXRecordDecl *FieldClassDecl
1290          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1291        HasConstCopyConstructor
1292          = FieldClassDecl->hasConstCopyConstructor(Context);
1293      }
1294    }
1295
1296    //   Otherwise, the implicitly declared copy constructor will have
1297    //   the form
1298    //
1299    //       X::X(X&)
1300    QualType ArgType = ClassType;
1301    if (HasConstCopyConstructor)
1302      ArgType = ArgType.withConst();
1303    ArgType = Context.getLValueReferenceType(ArgType);
1304
1305    //   An implicitly-declared copy constructor is an inline public
1306    //   member of its class.
1307    DeclarationName Name
1308      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1309    CXXConstructorDecl *CopyConstructor
1310      = CXXConstructorDecl::Create(Context, ClassDecl,
1311                                   ClassDecl->getLocation(), Name,
1312                                   Context.getFunctionType(Context.VoidTy,
1313                                                           &ArgType, 1,
1314                                                           false, 0),
1315                                   /*isExplicit=*/false,
1316                                   /*isInline=*/true,
1317                                   /*isImplicitlyDeclared=*/true);
1318    CopyConstructor->setAccess(AS_public);
1319    CopyConstructor->setImplicit();
1320    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1321
1322    // Add the parameter to the constructor.
1323    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1324                                                 ClassDecl->getLocation(),
1325                                                 /*IdentifierInfo=*/0,
1326                                                 ArgType, VarDecl::None, 0);
1327    CopyConstructor->setParams(Context, &FromParam, 1);
1328    ClassDecl->addDecl(CopyConstructor);
1329  }
1330
1331  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1332    // Note: The following rules are largely analoguous to the copy
1333    // constructor rules. Note that virtual bases are not taken into account
1334    // for determining the argument type of the operator. Note also that
1335    // operators taking an object instead of a reference are allowed.
1336    //
1337    // C++ [class.copy]p10:
1338    //   If the class definition does not explicitly declare a copy
1339    //   assignment operator, one is declared implicitly.
1340    //   The implicitly-defined copy assignment operator for a class X
1341    //   will have the form
1342    //
1343    //       X& X::operator=(const X&)
1344    //
1345    //   if
1346    bool HasConstCopyAssignment = true;
1347
1348    //       -- each direct base class B of X has a copy assignment operator
1349    //          whose parameter is of type const B&, const volatile B& or B,
1350    //          and
1351    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1352         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1353      const CXXRecordDecl *BaseClassDecl
1354        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1355      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1356    }
1357
1358    //       -- for all the nonstatic data members of X that are of a class
1359    //          type M (or array thereof), each such class type has a copy
1360    //          assignment operator whose parameter is of type const M&,
1361    //          const volatile M& or M.
1362    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1363         HasConstCopyAssignment && Field != ClassDecl->field_end();
1364         ++Field) {
1365      QualType FieldType = (*Field)->getType();
1366      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1367        FieldType = Array->getElementType();
1368      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1369        const CXXRecordDecl *FieldClassDecl
1370          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1371        HasConstCopyAssignment
1372          = FieldClassDecl->hasConstCopyAssignment(Context);
1373      }
1374    }
1375
1376    //   Otherwise, the implicitly declared copy assignment operator will
1377    //   have the form
1378    //
1379    //       X& X::operator=(X&)
1380    QualType ArgType = ClassType;
1381    QualType RetType = Context.getLValueReferenceType(ArgType);
1382    if (HasConstCopyAssignment)
1383      ArgType = ArgType.withConst();
1384    ArgType = Context.getLValueReferenceType(ArgType);
1385
1386    //   An implicitly-declared copy assignment operator is an inline public
1387    //   member of its class.
1388    DeclarationName Name =
1389      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1390    CXXMethodDecl *CopyAssignment =
1391      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1392                            Context.getFunctionType(RetType, &ArgType, 1,
1393                                                    false, 0),
1394                            /*isStatic=*/false, /*isInline=*/true);
1395    CopyAssignment->setAccess(AS_public);
1396    CopyAssignment->setImplicit();
1397    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1398
1399    // Add the parameter to the operator.
1400    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1401                                                 ClassDecl->getLocation(),
1402                                                 /*IdentifierInfo=*/0,
1403                                                 ArgType, VarDecl::None, 0);
1404    CopyAssignment->setParams(Context, &FromParam, 1);
1405
1406    // Don't call addedAssignmentOperator. There is no way to distinguish an
1407    // implicit from an explicit assignment operator.
1408    ClassDecl->addDecl(CopyAssignment);
1409  }
1410
1411  if (!ClassDecl->hasUserDeclaredDestructor()) {
1412    // C++ [class.dtor]p2:
1413    //   If a class has no user-declared destructor, a destructor is
1414    //   declared implicitly. An implicitly-declared destructor is an
1415    //   inline public member of its class.
1416    DeclarationName Name
1417      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1418    CXXDestructorDecl *Destructor
1419      = CXXDestructorDecl::Create(Context, ClassDecl,
1420                                  ClassDecl->getLocation(), Name,
1421                                  Context.getFunctionType(Context.VoidTy,
1422                                                          0, 0, false, 0),
1423                                  /*isInline=*/true,
1424                                  /*isImplicitlyDeclared=*/true);
1425    Destructor->setAccess(AS_public);
1426    Destructor->setImplicit();
1427    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1428    ClassDecl->addDecl(Destructor);
1429  }
1430}
1431
1432void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1433  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1434  if (!Template)
1435    return;
1436
1437  TemplateParameterList *Params = Template->getTemplateParameters();
1438  for (TemplateParameterList::iterator Param = Params->begin(),
1439                                    ParamEnd = Params->end();
1440       Param != ParamEnd; ++Param) {
1441    NamedDecl *Named = cast<NamedDecl>(*Param);
1442    if (Named->getDeclName()) {
1443      S->AddDecl(DeclPtrTy::make(Named));
1444      IdResolver.AddDecl(Named);
1445    }
1446  }
1447}
1448
1449/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1450/// parsing a top-level (non-nested) C++ class, and we are now
1451/// parsing those parts of the given Method declaration that could
1452/// not be parsed earlier (C++ [class.mem]p2), such as default
1453/// arguments. This action should enter the scope of the given
1454/// Method declaration as if we had just parsed the qualified method
1455/// name. However, it should not bring the parameters into scope;
1456/// that will be performed by ActOnDelayedCXXMethodParameter.
1457void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1458  if (!MethodD)
1459    return;
1460
1461  CXXScopeSpec SS;
1462  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1463  QualType ClassTy
1464    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1465  SS.setScopeRep(
1466    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1467  ActOnCXXEnterDeclaratorScope(S, SS);
1468}
1469
1470/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1471/// C++ method declaration. We're (re-)introducing the given
1472/// function parameter into scope for use in parsing later parts of
1473/// the method declaration. For example, we could see an
1474/// ActOnParamDefaultArgument event for this parameter.
1475void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1476  if (!ParamD)
1477    return;
1478
1479  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1480
1481  // If this parameter has an unparsed default argument, clear it out
1482  // to make way for the parsed default argument.
1483  if (Param->hasUnparsedDefaultArg())
1484    Param->setDefaultArg(0);
1485
1486  S->AddDecl(DeclPtrTy::make(Param));
1487  if (Param->getDeclName())
1488    IdResolver.AddDecl(Param);
1489}
1490
1491/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1492/// processing the delayed method declaration for Method. The method
1493/// declaration is now considered finished. There may be a separate
1494/// ActOnStartOfFunctionDef action later (not necessarily
1495/// immediately!) for this method, if it was also defined inside the
1496/// class body.
1497void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1498  if (!MethodD)
1499    return;
1500
1501  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1502  CXXScopeSpec SS;
1503  QualType ClassTy
1504    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1505  SS.setScopeRep(
1506    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1507  ActOnCXXExitDeclaratorScope(S, SS);
1508
1509  // Now that we have our default arguments, check the constructor
1510  // again. It could produce additional diagnostics or affect whether
1511  // the class has implicitly-declared destructors, among other
1512  // things.
1513  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1514    CheckConstructor(Constructor);
1515
1516  // Check the default arguments, which we may have added.
1517  if (!Method->isInvalidDecl())
1518    CheckCXXDefaultArguments(Method);
1519}
1520
1521/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1522/// the well-formedness of the constructor declarator @p D with type @p
1523/// R. If there are any errors in the declarator, this routine will
1524/// emit diagnostics and set the invalid bit to true.  In any case, the type
1525/// will be updated to reflect a well-formed type for the constructor and
1526/// returned.
1527QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1528                                          FunctionDecl::StorageClass &SC) {
1529  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1530
1531  // C++ [class.ctor]p3:
1532  //   A constructor shall not be virtual (10.3) or static (9.4). A
1533  //   constructor can be invoked for a const, volatile or const
1534  //   volatile object. A constructor shall not be declared const,
1535  //   volatile, or const volatile (9.3.2).
1536  if (isVirtual) {
1537    if (!D.isInvalidType())
1538      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1539        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1540        << SourceRange(D.getIdentifierLoc());
1541    D.setInvalidType();
1542  }
1543  if (SC == FunctionDecl::Static) {
1544    if (!D.isInvalidType())
1545      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1546        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1547        << SourceRange(D.getIdentifierLoc());
1548    D.setInvalidType();
1549    SC = FunctionDecl::None;
1550  }
1551
1552  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1553  if (FTI.TypeQuals != 0) {
1554    if (FTI.TypeQuals & QualType::Const)
1555      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1556        << "const" << SourceRange(D.getIdentifierLoc());
1557    if (FTI.TypeQuals & QualType::Volatile)
1558      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1559        << "volatile" << SourceRange(D.getIdentifierLoc());
1560    if (FTI.TypeQuals & QualType::Restrict)
1561      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1562        << "restrict" << SourceRange(D.getIdentifierLoc());
1563  }
1564
1565  // Rebuild the function type "R" without any type qualifiers (in
1566  // case any of the errors above fired) and with "void" as the
1567  // return type, since constructors don't have return types. We
1568  // *always* have to do this, because GetTypeForDeclarator will
1569  // put in a result type of "int" when none was specified.
1570  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1571  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1572                                 Proto->getNumArgs(),
1573                                 Proto->isVariadic(), 0);
1574}
1575
1576/// CheckConstructor - Checks a fully-formed constructor for
1577/// well-formedness, issuing any diagnostics required. Returns true if
1578/// the constructor declarator is invalid.
1579void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1580  CXXRecordDecl *ClassDecl
1581    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1582  if (!ClassDecl)
1583    return Constructor->setInvalidDecl();
1584
1585  // C++ [class.copy]p3:
1586  //   A declaration of a constructor for a class X is ill-formed if
1587  //   its first parameter is of type (optionally cv-qualified) X and
1588  //   either there are no other parameters or else all other
1589  //   parameters have default arguments.
1590  if (!Constructor->isInvalidDecl() &&
1591      ((Constructor->getNumParams() == 1) ||
1592       (Constructor->getNumParams() > 1 &&
1593        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1594    QualType ParamType = Constructor->getParamDecl(0)->getType();
1595    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1596    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1597      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1598      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1599        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1600      Constructor->setInvalidDecl();
1601    }
1602  }
1603
1604  // Notify the class that we've added a constructor.
1605  ClassDecl->addedConstructor(Context, Constructor);
1606}
1607
1608static inline bool
1609FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1610  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1611          FTI.ArgInfo[0].Param &&
1612          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1613}
1614
1615/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1616/// the well-formednes of the destructor declarator @p D with type @p
1617/// R. If there are any errors in the declarator, this routine will
1618/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1619/// will be updated to reflect a well-formed type for the destructor and
1620/// returned.
1621QualType Sema::CheckDestructorDeclarator(Declarator &D,
1622                                         FunctionDecl::StorageClass& SC) {
1623  // C++ [class.dtor]p1:
1624  //   [...] A typedef-name that names a class is a class-name
1625  //   (7.1.3); however, a typedef-name that names a class shall not
1626  //   be used as the identifier in the declarator for a destructor
1627  //   declaration.
1628  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1629  if (isa<TypedefType>(DeclaratorType)) {
1630    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1631      << DeclaratorType;
1632    D.setInvalidType();
1633  }
1634
1635  // C++ [class.dtor]p2:
1636  //   A destructor is used to destroy objects of its class type. A
1637  //   destructor takes no parameters, and no return type can be
1638  //   specified for it (not even void). The address of a destructor
1639  //   shall not be taken. A destructor shall not be static. A
1640  //   destructor can be invoked for a const, volatile or const
1641  //   volatile object. A destructor shall not be declared const,
1642  //   volatile or const volatile (9.3.2).
1643  if (SC == FunctionDecl::Static) {
1644    if (!D.isInvalidType())
1645      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1646        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1647        << SourceRange(D.getIdentifierLoc());
1648    SC = FunctionDecl::None;
1649    D.setInvalidType();
1650  }
1651  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1652    // Destructors don't have return types, but the parser will
1653    // happily parse something like:
1654    //
1655    //   class X {
1656    //     float ~X();
1657    //   };
1658    //
1659    // The return type will be eliminated later.
1660    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1661      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1662      << SourceRange(D.getIdentifierLoc());
1663  }
1664
1665  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1666  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1667    if (FTI.TypeQuals & QualType::Const)
1668      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1669        << "const" << SourceRange(D.getIdentifierLoc());
1670    if (FTI.TypeQuals & QualType::Volatile)
1671      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1672        << "volatile" << SourceRange(D.getIdentifierLoc());
1673    if (FTI.TypeQuals & QualType::Restrict)
1674      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1675        << "restrict" << SourceRange(D.getIdentifierLoc());
1676    D.setInvalidType();
1677  }
1678
1679  // Make sure we don't have any parameters.
1680  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1681    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1682
1683    // Delete the parameters.
1684    FTI.freeArgs();
1685    D.setInvalidType();
1686  }
1687
1688  // Make sure the destructor isn't variadic.
1689  if (FTI.isVariadic) {
1690    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1691    D.setInvalidType();
1692  }
1693
1694  // Rebuild the function type "R" without any type qualifiers or
1695  // parameters (in case any of the errors above fired) and with
1696  // "void" as the return type, since destructors don't have return
1697  // types. We *always* have to do this, because GetTypeForDeclarator
1698  // will put in a result type of "int" when none was specified.
1699  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1700}
1701
1702/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1703/// well-formednes of the conversion function declarator @p D with
1704/// type @p R. If there are any errors in the declarator, this routine
1705/// will emit diagnostics and return true. Otherwise, it will return
1706/// false. Either way, the type @p R will be updated to reflect a
1707/// well-formed type for the conversion operator.
1708void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1709                                     FunctionDecl::StorageClass& SC) {
1710  // C++ [class.conv.fct]p1:
1711  //   Neither parameter types nor return type can be specified. The
1712  //   type of a conversion function (8.3.5) is “function taking no
1713  //   parameter returning conversion-type-id.”
1714  if (SC == FunctionDecl::Static) {
1715    if (!D.isInvalidType())
1716      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1717        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1718        << SourceRange(D.getIdentifierLoc());
1719    D.setInvalidType();
1720    SC = FunctionDecl::None;
1721  }
1722  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1723    // Conversion functions don't have return types, but the parser will
1724    // happily parse something like:
1725    //
1726    //   class X {
1727    //     float operator bool();
1728    //   };
1729    //
1730    // The return type will be changed later anyway.
1731    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1732      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1733      << SourceRange(D.getIdentifierLoc());
1734  }
1735
1736  // Make sure we don't have any parameters.
1737  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1738    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1739
1740    // Delete the parameters.
1741    D.getTypeObject(0).Fun.freeArgs();
1742    D.setInvalidType();
1743  }
1744
1745  // Make sure the conversion function isn't variadic.
1746  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1747    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1748    D.setInvalidType();
1749  }
1750
1751  // C++ [class.conv.fct]p4:
1752  //   The conversion-type-id shall not represent a function type nor
1753  //   an array type.
1754  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1755  if (ConvType->isArrayType()) {
1756    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1757    ConvType = Context.getPointerType(ConvType);
1758    D.setInvalidType();
1759  } else if (ConvType->isFunctionType()) {
1760    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1761    ConvType = Context.getPointerType(ConvType);
1762    D.setInvalidType();
1763  }
1764
1765  // Rebuild the function type "R" without any parameters (in case any
1766  // of the errors above fired) and with the conversion type as the
1767  // return type.
1768  R = Context.getFunctionType(ConvType, 0, 0, false,
1769                              R->getAsFunctionProtoType()->getTypeQuals());
1770
1771  // C++0x explicit conversion operators.
1772  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1773    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1774         diag::warn_explicit_conversion_functions)
1775      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1776}
1777
1778/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1779/// the declaration of the given C++ conversion function. This routine
1780/// is responsible for recording the conversion function in the C++
1781/// class, if possible.
1782Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1783  assert(Conversion && "Expected to receive a conversion function declaration");
1784
1785  // Set the lexical context of this conversion function
1786  Conversion->setLexicalDeclContext(CurContext);
1787
1788  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1789
1790  // Make sure we aren't redeclaring the conversion function.
1791  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1792
1793  // C++ [class.conv.fct]p1:
1794  //   [...] A conversion function is never used to convert a
1795  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1796  //   same object type (or a reference to it), to a (possibly
1797  //   cv-qualified) base class of that type (or a reference to it),
1798  //   or to (possibly cv-qualified) void.
1799  // FIXME: Suppress this warning if the conversion function ends up being a
1800  // virtual function that overrides a virtual function in a base class.
1801  QualType ClassType
1802    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1803  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1804    ConvType = ConvTypeRef->getPointeeType();
1805  if (ConvType->isRecordType()) {
1806    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1807    if (ConvType == ClassType)
1808      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1809        << ClassType;
1810    else if (IsDerivedFrom(ClassType, ConvType))
1811      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1812        <<  ClassType << ConvType;
1813  } else if (ConvType->isVoidType()) {
1814    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1815      << ClassType << ConvType;
1816  }
1817
1818  if (Conversion->getPreviousDeclaration()) {
1819    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1820    for (OverloadedFunctionDecl::function_iterator
1821           Conv = Conversions->function_begin(),
1822           ConvEnd = Conversions->function_end();
1823         Conv != ConvEnd; ++Conv) {
1824      if (*Conv
1825            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1826        *Conv = Conversion;
1827        return DeclPtrTy::make(Conversion);
1828      }
1829    }
1830    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1831  } else
1832    ClassDecl->addConversionFunction(Context, Conversion);
1833
1834  return DeclPtrTy::make(Conversion);
1835}
1836
1837//===----------------------------------------------------------------------===//
1838// Namespace Handling
1839//===----------------------------------------------------------------------===//
1840
1841/// ActOnStartNamespaceDef - This is called at the start of a namespace
1842/// definition.
1843Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1844                                             SourceLocation IdentLoc,
1845                                             IdentifierInfo *II,
1846                                             SourceLocation LBrace) {
1847  NamespaceDecl *Namespc =
1848      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1849  Namespc->setLBracLoc(LBrace);
1850
1851  Scope *DeclRegionScope = NamespcScope->getParent();
1852
1853  if (II) {
1854    // C++ [namespace.def]p2:
1855    // The identifier in an original-namespace-definition shall not have been
1856    // previously defined in the declarative region in which the
1857    // original-namespace-definition appears. The identifier in an
1858    // original-namespace-definition is the name of the namespace. Subsequently
1859    // in that declarative region, it is treated as an original-namespace-name.
1860
1861    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1862                                     true);
1863
1864    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1865      // This is an extended namespace definition.
1866      // Attach this namespace decl to the chain of extended namespace
1867      // definitions.
1868      OrigNS->setNextNamespace(Namespc);
1869      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1870
1871      // Remove the previous declaration from the scope.
1872      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1873        IdResolver.RemoveDecl(OrigNS);
1874        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1875      }
1876    } else if (PrevDecl) {
1877      // This is an invalid name redefinition.
1878      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1879       << Namespc->getDeclName();
1880      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1881      Namespc->setInvalidDecl();
1882      // Continue on to push Namespc as current DeclContext and return it.
1883    }
1884
1885    PushOnScopeChains(Namespc, DeclRegionScope);
1886  } else {
1887    // FIXME: Handle anonymous namespaces
1888  }
1889
1890  // Although we could have an invalid decl (i.e. the namespace name is a
1891  // redefinition), push it as current DeclContext and try to continue parsing.
1892  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1893  // for the namespace has the declarations that showed up in that particular
1894  // namespace definition.
1895  PushDeclContext(NamespcScope, Namespc);
1896  return DeclPtrTy::make(Namespc);
1897}
1898
1899/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1900/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1901void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1902  Decl *Dcl = D.getAs<Decl>();
1903  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1904  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1905  Namespc->setRBracLoc(RBrace);
1906  PopDeclContext();
1907}
1908
1909Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1910                                          SourceLocation UsingLoc,
1911                                          SourceLocation NamespcLoc,
1912                                          const CXXScopeSpec &SS,
1913                                          SourceLocation IdentLoc,
1914                                          IdentifierInfo *NamespcName,
1915                                          AttributeList *AttrList) {
1916  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1917  assert(NamespcName && "Invalid NamespcName.");
1918  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1919  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1920
1921  UsingDirectiveDecl *UDir = 0;
1922
1923  // Lookup namespace name.
1924  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1925                                    LookupNamespaceName, false);
1926  if (R.isAmbiguous()) {
1927    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1928    return DeclPtrTy();
1929  }
1930  if (NamedDecl *NS = R) {
1931    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1932    // C++ [namespace.udir]p1:
1933    //   A using-directive specifies that the names in the nominated
1934    //   namespace can be used in the scope in which the
1935    //   using-directive appears after the using-directive. During
1936    //   unqualified name lookup (3.4.1), the names appear as if they
1937    //   were declared in the nearest enclosing namespace which
1938    //   contains both the using-directive and the nominated
1939    //   namespace. [Note: in this context, “contains” means “contains
1940    //   directly or indirectly”. ]
1941
1942    // Find enclosing context containing both using-directive and
1943    // nominated namespace.
1944    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1945    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1946      CommonAncestor = CommonAncestor->getParent();
1947
1948    UDir = UsingDirectiveDecl::Create(Context,
1949                                      CurContext, UsingLoc,
1950                                      NamespcLoc,
1951                                      SS.getRange(),
1952                                      (NestedNameSpecifier *)SS.getScopeRep(),
1953                                      IdentLoc,
1954                                      cast<NamespaceDecl>(NS),
1955                                      CommonAncestor);
1956    PushUsingDirective(S, UDir);
1957  } else {
1958    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1959  }
1960
1961  // FIXME: We ignore attributes for now.
1962  delete AttrList;
1963  return DeclPtrTy::make(UDir);
1964}
1965
1966void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1967  // If scope has associated entity, then using directive is at namespace
1968  // or translation unit scope. We add UsingDirectiveDecls, into
1969  // it's lookup structure.
1970  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1971    Ctx->addDecl(UDir);
1972  else
1973    // Otherwise it is block-sope. using-directives will affect lookup
1974    // only to the end of scope.
1975    S->PushUsingDirective(DeclPtrTy::make(UDir));
1976}
1977
1978
1979Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1980                                          SourceLocation UsingLoc,
1981                                          const CXXScopeSpec &SS,
1982                                          SourceLocation IdentLoc,
1983                                          IdentifierInfo *TargetName,
1984                                          OverloadedOperatorKind Op,
1985                                          AttributeList *AttrList,
1986                                          bool IsTypeName) {
1987  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1988  assert((TargetName || Op) && "Invalid TargetName.");
1989  assert(IdentLoc.isValid() && "Invalid TargetName location.");
1990  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1991
1992  UsingDecl *UsingAlias = 0;
1993
1994  DeclarationName Name;
1995  if (TargetName)
1996    Name = TargetName;
1997  else
1998    Name = Context.DeclarationNames.getCXXOperatorName(Op);
1999
2000  // Lookup target name.
2001  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
2002
2003  if (NamedDecl *NS = R) {
2004    if (IsTypeName && !isa<TypeDecl>(NS)) {
2005      Diag(IdentLoc, diag::err_using_typename_non_type);
2006    }
2007    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2008        NS->getLocation(), UsingLoc, NS,
2009        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
2010        IsTypeName);
2011    PushOnScopeChains(UsingAlias, S);
2012  } else {
2013    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
2014  }
2015
2016  // FIXME: We ignore attributes for now.
2017  delete AttrList;
2018  return DeclPtrTy::make(UsingAlias);
2019}
2020
2021/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2022/// is a namespace alias, returns the namespace it points to.
2023static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2024  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2025    return AD->getNamespace();
2026  return dyn_cast_or_null<NamespaceDecl>(D);
2027}
2028
2029Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2030                                             SourceLocation NamespaceLoc,
2031                                             SourceLocation AliasLoc,
2032                                             IdentifierInfo *Alias,
2033                                             const CXXScopeSpec &SS,
2034                                             SourceLocation IdentLoc,
2035                                             IdentifierInfo *Ident) {
2036
2037  // Lookup the namespace name.
2038  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2039
2040  // Check if we have a previous declaration with the same name.
2041  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2042    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2043      // We already have an alias with the same name that points to the same
2044      // namespace, so don't create a new one.
2045      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2046        return DeclPtrTy();
2047    }
2048
2049    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2050      diag::err_redefinition_different_kind;
2051    Diag(AliasLoc, DiagID) << Alias;
2052    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2053    return DeclPtrTy();
2054  }
2055
2056  if (R.isAmbiguous()) {
2057    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2058    return DeclPtrTy();
2059  }
2060
2061  if (!R) {
2062    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2063    return DeclPtrTy();
2064  }
2065
2066  NamespaceAliasDecl *AliasDecl =
2067    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2068                               Alias, SS.getRange(),
2069                               (NestedNameSpecifier *)SS.getScopeRep(),
2070                               IdentLoc, R);
2071
2072  CurContext->addDecl(AliasDecl);
2073  return DeclPtrTy::make(AliasDecl);
2074}
2075
2076void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2077                                            CXXConstructorDecl *Constructor) {
2078  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2079          !Constructor->isUsed()) &&
2080    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2081
2082  CXXRecordDecl *ClassDecl
2083    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2084  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2085  // Before the implicitly-declared default constructor for a class is
2086  // implicitly defined, all the implicitly-declared default constructors
2087  // for its base class and its non-static data members shall have been
2088  // implicitly defined.
2089  bool err = false;
2090  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2091       E = ClassDecl->bases_end(); Base != E; ++Base) {
2092    CXXRecordDecl *BaseClassDecl
2093      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2094    if (!BaseClassDecl->hasTrivialConstructor()) {
2095      if (CXXConstructorDecl *BaseCtor =
2096            BaseClassDecl->getDefaultConstructor(Context))
2097        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2098      else {
2099        Diag(CurrentLocation, diag::err_defining_default_ctor)
2100          << Context.getTagDeclType(ClassDecl) << 1
2101          << Context.getTagDeclType(BaseClassDecl);
2102        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2103              << Context.getTagDeclType(BaseClassDecl);
2104        err = true;
2105      }
2106    }
2107  }
2108  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2109       E = ClassDecl->field_end(); Field != E; ++Field) {
2110    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2111    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2112      FieldType = Array->getElementType();
2113    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2114      CXXRecordDecl *FieldClassDecl
2115        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2116      if (!FieldClassDecl->hasTrivialConstructor()) {
2117        if (CXXConstructorDecl *FieldCtor =
2118            FieldClassDecl->getDefaultConstructor(Context))
2119          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2120        else {
2121          Diag(CurrentLocation, diag::err_defining_default_ctor)
2122          << Context.getTagDeclType(ClassDecl) << 0 <<
2123              Context.getTagDeclType(FieldClassDecl);
2124          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2125          << Context.getTagDeclType(FieldClassDecl);
2126          err = true;
2127        }
2128      }
2129    }
2130    else if (FieldType->isReferenceType()) {
2131      Diag(CurrentLocation, diag::err_unintialized_member)
2132        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2133      Diag((*Field)->getLocation(), diag::note_declared_at);
2134      err = true;
2135    }
2136    else if (FieldType.isConstQualified()) {
2137      Diag(CurrentLocation, diag::err_unintialized_member)
2138        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2139       Diag((*Field)->getLocation(), diag::note_declared_at);
2140      err = true;
2141    }
2142  }
2143  if (!err)
2144    Constructor->setUsed();
2145  else
2146    Constructor->setInvalidDecl();
2147}
2148
2149void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2150                                            CXXDestructorDecl *Destructor) {
2151  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2152         "DefineImplicitDestructor - call it for implicit default dtor");
2153
2154  CXXRecordDecl *ClassDecl
2155  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2156  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2157  // C++ [class.dtor] p5
2158  // Before the implicitly-declared default destructor for a class is
2159  // implicitly defined, all the implicitly-declared default destructors
2160  // for its base class and its non-static data members shall have been
2161  // implicitly defined.
2162  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2163       E = ClassDecl->bases_end(); Base != E; ++Base) {
2164    CXXRecordDecl *BaseClassDecl
2165      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2166    if (!BaseClassDecl->hasTrivialDestructor()) {
2167      if (CXXDestructorDecl *BaseDtor =
2168          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2169        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2170      else
2171        assert(false &&
2172               "DefineImplicitDestructor - missing dtor in a base class");
2173    }
2174  }
2175
2176  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2177       E = ClassDecl->field_end(); Field != E; ++Field) {
2178    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2179    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2180      FieldType = Array->getElementType();
2181    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2182      CXXRecordDecl *FieldClassDecl
2183        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2184      if (!FieldClassDecl->hasTrivialDestructor()) {
2185        if (CXXDestructorDecl *FieldDtor =
2186            const_cast<CXXDestructorDecl*>(
2187                                        FieldClassDecl->getDestructor(Context)))
2188          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2189        else
2190          assert(false &&
2191          "DefineImplicitDestructor - missing dtor in class of a data member");
2192      }
2193    }
2194  }
2195  Destructor->setUsed();
2196}
2197
2198void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2199                                          CXXMethodDecl *MethodDecl) {
2200  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2201          MethodDecl->getOverloadedOperator() == OO_Equal &&
2202          !MethodDecl->isUsed()) &&
2203         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2204
2205  CXXRecordDecl *ClassDecl
2206    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2207
2208  // C++[class.copy] p12
2209  // Before the implicitly-declared copy assignment operator for a class is
2210  // implicitly defined, all implicitly-declared copy assignment operators
2211  // for its direct base classes and its nonstatic data members shall have
2212  // been implicitly defined.
2213  bool err = false;
2214  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2215       E = ClassDecl->bases_end(); Base != E; ++Base) {
2216    CXXRecordDecl *BaseClassDecl
2217      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2218    if (CXXMethodDecl *BaseAssignOpMethod =
2219          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2220      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2221  }
2222  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2223       E = ClassDecl->field_end(); Field != E; ++Field) {
2224    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2225    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2226      FieldType = Array->getElementType();
2227    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2228      CXXRecordDecl *FieldClassDecl
2229        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2230      if (CXXMethodDecl *FieldAssignOpMethod =
2231          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2232        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2233    }
2234    else if (FieldType->isReferenceType()) {
2235      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2236      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2237      Diag(Field->getLocation(), diag::note_declared_at);
2238      Diag(CurrentLocation, diag::note_first_required_here);
2239      err = true;
2240    }
2241    else if (FieldType.isConstQualified()) {
2242      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2243      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2244      Diag(Field->getLocation(), diag::note_declared_at);
2245      Diag(CurrentLocation, diag::note_first_required_here);
2246      err = true;
2247    }
2248  }
2249  if (!err)
2250    MethodDecl->setUsed();
2251}
2252
2253CXXMethodDecl *
2254Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2255                              CXXRecordDecl *ClassDecl) {
2256  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2257  QualType RHSType(LHSType);
2258  // If class's assignment operator argument is const/volatile qualified,
2259  // look for operator = (const/volatile B&). Otherwise, look for
2260  // operator = (B&).
2261  if (ParmDecl->getType().isConstQualified())
2262    RHSType.addConst();
2263  if (ParmDecl->getType().isVolatileQualified())
2264    RHSType.addVolatile();
2265  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2266                                                          LHSType,
2267                                                          SourceLocation()));
2268  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2269                                                          RHSType,
2270                                                          SourceLocation()));
2271  Expr *Args[2] = { &*LHS, &*RHS };
2272  OverloadCandidateSet CandidateSet;
2273  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2274                              CandidateSet);
2275  OverloadCandidateSet::iterator Best;
2276  if (BestViableFunction(CandidateSet,
2277                         ClassDecl->getLocation(), Best) == OR_Success)
2278    return cast<CXXMethodDecl>(Best->Function);
2279  assert(false &&
2280         "getAssignOperatorMethod - copy assignment operator method not found");
2281  return 0;
2282}
2283
2284void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2285                                   CXXConstructorDecl *CopyConstructor,
2286                                   unsigned TypeQuals) {
2287  assert((CopyConstructor->isImplicit() &&
2288          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2289          !CopyConstructor->isUsed()) &&
2290         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2291
2292  CXXRecordDecl *ClassDecl
2293    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2294  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2295  // C++ [class.copy] p209
2296  // Before the implicitly-declared copy constructor for a class is
2297  // implicitly defined, all the implicitly-declared copy constructors
2298  // for its base class and its non-static data members shall have been
2299  // implicitly defined.
2300  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2301       Base != ClassDecl->bases_end(); ++Base) {
2302    CXXRecordDecl *BaseClassDecl
2303      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2304    if (CXXConstructorDecl *BaseCopyCtor =
2305        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2306      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2307  }
2308  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2309                                  FieldEnd = ClassDecl->field_end();
2310       Field != FieldEnd; ++Field) {
2311    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2312    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2313      FieldType = Array->getElementType();
2314    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2315      CXXRecordDecl *FieldClassDecl
2316        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2317      if (CXXConstructorDecl *FieldCopyCtor =
2318          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2319        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2320    }
2321  }
2322  CopyConstructor->setUsed();
2323}
2324
2325void Sema::InitializeVarWithConstructor(VarDecl *VD,
2326                                        CXXConstructorDecl *Constructor,
2327                                        QualType DeclInitType,
2328                                        Expr **Exprs, unsigned NumExprs) {
2329  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2330                                        false, Exprs, NumExprs);
2331  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2332  VD->setInit(Context, Temp);
2333}
2334
2335void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2336{
2337  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2338                                  DeclInitType->getAsRecordType()->getDecl());
2339  if (!ClassDecl->hasTrivialDestructor())
2340    if (CXXDestructorDecl *Destructor =
2341        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2342      MarkDeclarationReferenced(Loc, Destructor);
2343}
2344
2345/// AddCXXDirectInitializerToDecl - This action is called immediately after
2346/// ActOnDeclarator, when a C++ direct initializer is present.
2347/// e.g: "int x(1);"
2348void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2349                                         SourceLocation LParenLoc,
2350                                         MultiExprArg Exprs,
2351                                         SourceLocation *CommaLocs,
2352                                         SourceLocation RParenLoc) {
2353  unsigned NumExprs = Exprs.size();
2354  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2355  Decl *RealDecl = Dcl.getAs<Decl>();
2356
2357  // If there is no declaration, there was an error parsing it.  Just ignore
2358  // the initializer.
2359  if (RealDecl == 0)
2360    return;
2361
2362  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2363  if (!VDecl) {
2364    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2365    RealDecl->setInvalidDecl();
2366    return;
2367  }
2368
2369  // FIXME: Need to handle dependent types and expressions here.
2370
2371  // We will treat direct-initialization as a copy-initialization:
2372  //    int x(1);  -as-> int x = 1;
2373  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2374  //
2375  // Clients that want to distinguish between the two forms, can check for
2376  // direct initializer using VarDecl::hasCXXDirectInitializer().
2377  // A major benefit is that clients that don't particularly care about which
2378  // exactly form was it (like the CodeGen) can handle both cases without
2379  // special case code.
2380
2381  // C++ 8.5p11:
2382  // The form of initialization (using parentheses or '=') is generally
2383  // insignificant, but does matter when the entity being initialized has a
2384  // class type.
2385  QualType DeclInitType = VDecl->getType();
2386  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2387    DeclInitType = Array->getElementType();
2388
2389  // FIXME: This isn't the right place to complete the type.
2390  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2391                          diag::err_typecheck_decl_incomplete_type)) {
2392    VDecl->setInvalidDecl();
2393    return;
2394  }
2395
2396  if (VDecl->getType()->isRecordType()) {
2397    CXXConstructorDecl *Constructor
2398      = PerformInitializationByConstructor(DeclInitType,
2399                                           (Expr **)Exprs.get(), NumExprs,
2400                                           VDecl->getLocation(),
2401                                           SourceRange(VDecl->getLocation(),
2402                                                       RParenLoc),
2403                                           VDecl->getDeclName(),
2404                                           IK_Direct);
2405    if (!Constructor)
2406      RealDecl->setInvalidDecl();
2407    else {
2408      VDecl->setCXXDirectInitializer(true);
2409      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2410                                   (Expr**)Exprs.release(), NumExprs);
2411      // FIXME. Must do all that is needed to destroy the object
2412      // on scope exit. For now, just mark the destructor as used.
2413      MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2414    }
2415    return;
2416  }
2417
2418  if (NumExprs > 1) {
2419    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2420      << SourceRange(VDecl->getLocation(), RParenLoc);
2421    RealDecl->setInvalidDecl();
2422    return;
2423  }
2424
2425  // Let clients know that initialization was done with a direct initializer.
2426  VDecl->setCXXDirectInitializer(true);
2427
2428  assert(NumExprs == 1 && "Expected 1 expression");
2429  // Set the init expression, handles conversions.
2430  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2431                       /*DirectInit=*/true);
2432}
2433
2434/// PerformInitializationByConstructor - Perform initialization by
2435/// constructor (C++ [dcl.init]p14), which may occur as part of
2436/// direct-initialization or copy-initialization. We are initializing
2437/// an object of type @p ClassType with the given arguments @p
2438/// Args. @p Loc is the location in the source code where the
2439/// initializer occurs (e.g., a declaration, member initializer,
2440/// functional cast, etc.) while @p Range covers the whole
2441/// initialization. @p InitEntity is the entity being initialized,
2442/// which may by the name of a declaration or a type. @p Kind is the
2443/// kind of initialization we're performing, which affects whether
2444/// explicit constructors will be considered. When successful, returns
2445/// the constructor that will be used to perform the initialization;
2446/// when the initialization fails, emits a diagnostic and returns
2447/// null.
2448CXXConstructorDecl *
2449Sema::PerformInitializationByConstructor(QualType ClassType,
2450                                         Expr **Args, unsigned NumArgs,
2451                                         SourceLocation Loc, SourceRange Range,
2452                                         DeclarationName InitEntity,
2453                                         InitializationKind Kind) {
2454  const RecordType *ClassRec = ClassType->getAsRecordType();
2455  assert(ClassRec && "Can only initialize a class type here");
2456
2457  // C++ [dcl.init]p14:
2458  //
2459  //   If the initialization is direct-initialization, or if it is
2460  //   copy-initialization where the cv-unqualified version of the
2461  //   source type is the same class as, or a derived class of, the
2462  //   class of the destination, constructors are considered. The
2463  //   applicable constructors are enumerated (13.3.1.3), and the
2464  //   best one is chosen through overload resolution (13.3). The
2465  //   constructor so selected is called to initialize the object,
2466  //   with the initializer expression(s) as its argument(s). If no
2467  //   constructor applies, or the overload resolution is ambiguous,
2468  //   the initialization is ill-formed.
2469  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2470  OverloadCandidateSet CandidateSet;
2471
2472  // Add constructors to the overload set.
2473  DeclarationName ConstructorName
2474    = Context.DeclarationNames.getCXXConstructorName(
2475                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2476  DeclContext::lookup_const_iterator Con, ConEnd;
2477  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2478       Con != ConEnd; ++Con) {
2479    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2480    if ((Kind == IK_Direct) ||
2481        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2482        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2483      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2484  }
2485
2486  // FIXME: When we decide not to synthesize the implicitly-declared
2487  // constructors, we'll need to make them appear here.
2488
2489  OverloadCandidateSet::iterator Best;
2490  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2491  case OR_Success:
2492    // We found a constructor. Return it.
2493    return cast<CXXConstructorDecl>(Best->Function);
2494
2495  case OR_No_Viable_Function:
2496    if (InitEntity)
2497      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2498        << InitEntity << Range;
2499    else
2500      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2501        << ClassType << Range;
2502    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2503    return 0;
2504
2505  case OR_Ambiguous:
2506    if (InitEntity)
2507      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2508    else
2509      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2510    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2511    return 0;
2512
2513  case OR_Deleted:
2514    if (InitEntity)
2515      Diag(Loc, diag::err_ovl_deleted_init)
2516        << Best->Function->isDeleted()
2517        << InitEntity << Range;
2518    else
2519      Diag(Loc, diag::err_ovl_deleted_init)
2520        << Best->Function->isDeleted()
2521        << InitEntity << Range;
2522    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2523    return 0;
2524  }
2525
2526  return 0;
2527}
2528
2529/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2530/// determine whether they are reference-related,
2531/// reference-compatible, reference-compatible with added
2532/// qualification, or incompatible, for use in C++ initialization by
2533/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2534/// type, and the first type (T1) is the pointee type of the reference
2535/// type being initialized.
2536Sema::ReferenceCompareResult
2537Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2538                                   bool& DerivedToBase) {
2539  assert(!T1->isReferenceType() &&
2540    "T1 must be the pointee type of the reference type");
2541  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2542
2543  T1 = Context.getCanonicalType(T1);
2544  T2 = Context.getCanonicalType(T2);
2545  QualType UnqualT1 = T1.getUnqualifiedType();
2546  QualType UnqualT2 = T2.getUnqualifiedType();
2547
2548  // C++ [dcl.init.ref]p4:
2549  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2550  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2551  //   T1 is a base class of T2.
2552  if (UnqualT1 == UnqualT2)
2553    DerivedToBase = false;
2554  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2555    DerivedToBase = true;
2556  else
2557    return Ref_Incompatible;
2558
2559  // At this point, we know that T1 and T2 are reference-related (at
2560  // least).
2561
2562  // C++ [dcl.init.ref]p4:
2563  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2564  //   reference-related to T2 and cv1 is the same cv-qualification
2565  //   as, or greater cv-qualification than, cv2. For purposes of
2566  //   overload resolution, cases for which cv1 is greater
2567  //   cv-qualification than cv2 are identified as
2568  //   reference-compatible with added qualification (see 13.3.3.2).
2569  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2570    return Ref_Compatible;
2571  else if (T1.isMoreQualifiedThan(T2))
2572    return Ref_Compatible_With_Added_Qualification;
2573  else
2574    return Ref_Related;
2575}
2576
2577/// CheckReferenceInit - Check the initialization of a reference
2578/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2579/// the initializer (either a simple initializer or an initializer
2580/// list), and DeclType is the type of the declaration. When ICS is
2581/// non-null, this routine will compute the implicit conversion
2582/// sequence according to C++ [over.ics.ref] and will not produce any
2583/// diagnostics; when ICS is null, it will emit diagnostics when any
2584/// errors are found. Either way, a return value of true indicates
2585/// that there was a failure, a return value of false indicates that
2586/// the reference initialization succeeded.
2587///
2588/// When @p SuppressUserConversions, user-defined conversions are
2589/// suppressed.
2590/// When @p AllowExplicit, we also permit explicit user-defined
2591/// conversion functions.
2592/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2593bool
2594Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2595                         ImplicitConversionSequence *ICS,
2596                         bool SuppressUserConversions,
2597                         bool AllowExplicit, bool ForceRValue) {
2598  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2599
2600  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2601  QualType T2 = Init->getType();
2602
2603  // If the initializer is the address of an overloaded function, try
2604  // to resolve the overloaded function. If all goes well, T2 is the
2605  // type of the resulting function.
2606  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2607    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2608                                                          ICS != 0);
2609    if (Fn) {
2610      // Since we're performing this reference-initialization for
2611      // real, update the initializer with the resulting function.
2612      if (!ICS) {
2613        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2614          return true;
2615
2616        FixOverloadedFunctionReference(Init, Fn);
2617      }
2618
2619      T2 = Fn->getType();
2620    }
2621  }
2622
2623  // Compute some basic properties of the types and the initializer.
2624  bool isRValRef = DeclType->isRValueReferenceType();
2625  bool DerivedToBase = false;
2626  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2627                                                  Init->isLvalue(Context);
2628  ReferenceCompareResult RefRelationship
2629    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2630
2631  // Most paths end in a failed conversion.
2632  if (ICS)
2633    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2634
2635  // C++ [dcl.init.ref]p5:
2636  //   A reference to type “cv1 T1” is initialized by an expression
2637  //   of type “cv2 T2” as follows:
2638
2639  //     -- If the initializer expression
2640
2641  // Rvalue references cannot bind to lvalues (N2812).
2642  // There is absolutely no situation where they can. In particular, note that
2643  // this is ill-formed, even if B has a user-defined conversion to A&&:
2644  //   B b;
2645  //   A&& r = b;
2646  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2647    if (!ICS)
2648      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2649        << Init->getSourceRange();
2650    return true;
2651  }
2652
2653  bool BindsDirectly = false;
2654  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2655  //          reference-compatible with “cv2 T2,” or
2656  //
2657  // Note that the bit-field check is skipped if we are just computing
2658  // the implicit conversion sequence (C++ [over.best.ics]p2).
2659  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2660      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2661    BindsDirectly = true;
2662
2663    if (ICS) {
2664      // C++ [over.ics.ref]p1:
2665      //   When a parameter of reference type binds directly (8.5.3)
2666      //   to an argument expression, the implicit conversion sequence
2667      //   is the identity conversion, unless the argument expression
2668      //   has a type that is a derived class of the parameter type,
2669      //   in which case the implicit conversion sequence is a
2670      //   derived-to-base Conversion (13.3.3.1).
2671      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2672      ICS->Standard.First = ICK_Identity;
2673      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2674      ICS->Standard.Third = ICK_Identity;
2675      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2676      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2677      ICS->Standard.ReferenceBinding = true;
2678      ICS->Standard.DirectBinding = true;
2679      ICS->Standard.RRefBinding = false;
2680      ICS->Standard.CopyConstructor = 0;
2681
2682      // Nothing more to do: the inaccessibility/ambiguity check for
2683      // derived-to-base conversions is suppressed when we're
2684      // computing the implicit conversion sequence (C++
2685      // [over.best.ics]p2).
2686      return false;
2687    } else {
2688      // Perform the conversion.
2689      // FIXME: Binding to a subobject of the lvalue is going to require more
2690      // AST annotation than this.
2691      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2692    }
2693  }
2694
2695  //       -- has a class type (i.e., T2 is a class type) and can be
2696  //          implicitly converted to an lvalue of type “cv3 T3,”
2697  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2698  //          92) (this conversion is selected by enumerating the
2699  //          applicable conversion functions (13.3.1.6) and choosing
2700  //          the best one through overload resolution (13.3)),
2701  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2702    // FIXME: Look for conversions in base classes!
2703    CXXRecordDecl *T2RecordDecl
2704      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2705
2706    OverloadCandidateSet CandidateSet;
2707    OverloadedFunctionDecl *Conversions
2708      = T2RecordDecl->getConversionFunctions();
2709    for (OverloadedFunctionDecl::function_iterator Func
2710           = Conversions->function_begin();
2711         Func != Conversions->function_end(); ++Func) {
2712      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2713
2714      // If the conversion function doesn't return a reference type,
2715      // it can't be considered for this conversion.
2716      if (Conv->getConversionType()->isLValueReferenceType() &&
2717          (AllowExplicit || !Conv->isExplicit()))
2718        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2719    }
2720
2721    OverloadCandidateSet::iterator Best;
2722    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2723    case OR_Success:
2724      // This is a direct binding.
2725      BindsDirectly = true;
2726
2727      if (ICS) {
2728        // C++ [over.ics.ref]p1:
2729        //
2730        //   [...] If the parameter binds directly to the result of
2731        //   applying a conversion function to the argument
2732        //   expression, the implicit conversion sequence is a
2733        //   user-defined conversion sequence (13.3.3.1.2), with the
2734        //   second standard conversion sequence either an identity
2735        //   conversion or, if the conversion function returns an
2736        //   entity of a type that is a derived class of the parameter
2737        //   type, a derived-to-base Conversion.
2738        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2739        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2740        ICS->UserDefined.After = Best->FinalConversion;
2741        ICS->UserDefined.ConversionFunction = Best->Function;
2742        assert(ICS->UserDefined.After.ReferenceBinding &&
2743               ICS->UserDefined.After.DirectBinding &&
2744               "Expected a direct reference binding!");
2745        return false;
2746      } else {
2747        // Perform the conversion.
2748        // FIXME: Binding to a subobject of the lvalue is going to require more
2749        // AST annotation than this.
2750        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2751      }
2752      break;
2753
2754    case OR_Ambiguous:
2755      assert(false && "Ambiguous reference binding conversions not implemented.");
2756      return true;
2757
2758    case OR_No_Viable_Function:
2759    case OR_Deleted:
2760      // There was no suitable conversion, or we found a deleted
2761      // conversion; continue with other checks.
2762      break;
2763    }
2764  }
2765
2766  if (BindsDirectly) {
2767    // C++ [dcl.init.ref]p4:
2768    //   [...] In all cases where the reference-related or
2769    //   reference-compatible relationship of two types is used to
2770    //   establish the validity of a reference binding, and T1 is a
2771    //   base class of T2, a program that necessitates such a binding
2772    //   is ill-formed if T1 is an inaccessible (clause 11) or
2773    //   ambiguous (10.2) base class of T2.
2774    //
2775    // Note that we only check this condition when we're allowed to
2776    // complain about errors, because we should not be checking for
2777    // ambiguity (or inaccessibility) unless the reference binding
2778    // actually happens.
2779    if (DerivedToBase)
2780      return CheckDerivedToBaseConversion(T2, T1,
2781                                          Init->getSourceRange().getBegin(),
2782                                          Init->getSourceRange());
2783    else
2784      return false;
2785  }
2786
2787  //     -- Otherwise, the reference shall be to a non-volatile const
2788  //        type (i.e., cv1 shall be const), or the reference shall be an
2789  //        rvalue reference and the initializer expression shall be an rvalue.
2790  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2791    if (!ICS)
2792      Diag(Init->getSourceRange().getBegin(),
2793           diag::err_not_reference_to_const_init)
2794        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2795        << T2 << Init->getSourceRange();
2796    return true;
2797  }
2798
2799  //       -- If the initializer expression is an rvalue, with T2 a
2800  //          class type, and “cv1 T1” is reference-compatible with
2801  //          “cv2 T2,” the reference is bound in one of the
2802  //          following ways (the choice is implementation-defined):
2803  //
2804  //          -- The reference is bound to the object represented by
2805  //             the rvalue (see 3.10) or to a sub-object within that
2806  //             object.
2807  //
2808  //          -- A temporary of type “cv1 T2” [sic] is created, and
2809  //             a constructor is called to copy the entire rvalue
2810  //             object into the temporary. The reference is bound to
2811  //             the temporary or to a sub-object within the
2812  //             temporary.
2813  //
2814  //          The constructor that would be used to make the copy
2815  //          shall be callable whether or not the copy is actually
2816  //          done.
2817  //
2818  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2819  // freedom, so we will always take the first option and never build
2820  // a temporary in this case. FIXME: We will, however, have to check
2821  // for the presence of a copy constructor in C++98/03 mode.
2822  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2823      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2824    if (ICS) {
2825      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2826      ICS->Standard.First = ICK_Identity;
2827      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2828      ICS->Standard.Third = ICK_Identity;
2829      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2830      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2831      ICS->Standard.ReferenceBinding = true;
2832      ICS->Standard.DirectBinding = false;
2833      ICS->Standard.RRefBinding = isRValRef;
2834      ICS->Standard.CopyConstructor = 0;
2835    } else {
2836      // FIXME: Binding to a subobject of the rvalue is going to require more
2837      // AST annotation than this.
2838      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2839    }
2840    return false;
2841  }
2842
2843  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2844  //          initialized from the initializer expression using the
2845  //          rules for a non-reference copy initialization (8.5). The
2846  //          reference is then bound to the temporary. If T1 is
2847  //          reference-related to T2, cv1 must be the same
2848  //          cv-qualification as, or greater cv-qualification than,
2849  //          cv2; otherwise, the program is ill-formed.
2850  if (RefRelationship == Ref_Related) {
2851    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2852    // we would be reference-compatible or reference-compatible with
2853    // added qualification. But that wasn't the case, so the reference
2854    // initialization fails.
2855    if (!ICS)
2856      Diag(Init->getSourceRange().getBegin(),
2857           diag::err_reference_init_drops_quals)
2858        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2859        << T2 << Init->getSourceRange();
2860    return true;
2861  }
2862
2863  // If at least one of the types is a class type, the types are not
2864  // related, and we aren't allowed any user conversions, the
2865  // reference binding fails. This case is important for breaking
2866  // recursion, since TryImplicitConversion below will attempt to
2867  // create a temporary through the use of a copy constructor.
2868  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2869      (T1->isRecordType() || T2->isRecordType())) {
2870    if (!ICS)
2871      Diag(Init->getSourceRange().getBegin(),
2872           diag::err_typecheck_convert_incompatible)
2873        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2874    return true;
2875  }
2876
2877  // Actually try to convert the initializer to T1.
2878  if (ICS) {
2879    // C++ [over.ics.ref]p2:
2880    //
2881    //   When a parameter of reference type is not bound directly to
2882    //   an argument expression, the conversion sequence is the one
2883    //   required to convert the argument expression to the
2884    //   underlying type of the reference according to
2885    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2886    //   to copy-initializing a temporary of the underlying type with
2887    //   the argument expression. Any difference in top-level
2888    //   cv-qualification is subsumed by the initialization itself
2889    //   and does not constitute a conversion.
2890    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2891    // Of course, that's still a reference binding.
2892    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2893      ICS->Standard.ReferenceBinding = true;
2894      ICS->Standard.RRefBinding = isRValRef;
2895    } else if(ICS->ConversionKind ==
2896              ImplicitConversionSequence::UserDefinedConversion) {
2897      ICS->UserDefined.After.ReferenceBinding = true;
2898      ICS->UserDefined.After.RRefBinding = isRValRef;
2899    }
2900    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2901  } else {
2902    return PerformImplicitConversion(Init, T1, "initializing");
2903  }
2904}
2905
2906/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2907/// of this overloaded operator is well-formed. If so, returns false;
2908/// otherwise, emits appropriate diagnostics and returns true.
2909bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2910  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2911         "Expected an overloaded operator declaration");
2912
2913  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2914
2915  // C++ [over.oper]p5:
2916  //   The allocation and deallocation functions, operator new,
2917  //   operator new[], operator delete and operator delete[], are
2918  //   described completely in 3.7.3. The attributes and restrictions
2919  //   found in the rest of this subclause do not apply to them unless
2920  //   explicitly stated in 3.7.3.
2921  // FIXME: Write a separate routine for checking this. For now, just allow it.
2922  if (Op == OO_New || Op == OO_Array_New ||
2923      Op == OO_Delete || Op == OO_Array_Delete)
2924    return false;
2925
2926  // C++ [over.oper]p6:
2927  //   An operator function shall either be a non-static member
2928  //   function or be a non-member function and have at least one
2929  //   parameter whose type is a class, a reference to a class, an
2930  //   enumeration, or a reference to an enumeration.
2931  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2932    if (MethodDecl->isStatic())
2933      return Diag(FnDecl->getLocation(),
2934                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2935  } else {
2936    bool ClassOrEnumParam = false;
2937    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2938                                   ParamEnd = FnDecl->param_end();
2939         Param != ParamEnd; ++Param) {
2940      QualType ParamType = (*Param)->getType().getNonReferenceType();
2941      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2942          ParamType->isEnumeralType()) {
2943        ClassOrEnumParam = true;
2944        break;
2945      }
2946    }
2947
2948    if (!ClassOrEnumParam)
2949      return Diag(FnDecl->getLocation(),
2950                  diag::err_operator_overload_needs_class_or_enum)
2951        << FnDecl->getDeclName();
2952  }
2953
2954  // C++ [over.oper]p8:
2955  //   An operator function cannot have default arguments (8.3.6),
2956  //   except where explicitly stated below.
2957  //
2958  // Only the function-call operator allows default arguments
2959  // (C++ [over.call]p1).
2960  if (Op != OO_Call) {
2961    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2962         Param != FnDecl->param_end(); ++Param) {
2963      if ((*Param)->hasUnparsedDefaultArg())
2964        return Diag((*Param)->getLocation(),
2965                    diag::err_operator_overload_default_arg)
2966          << FnDecl->getDeclName();
2967      else if (Expr *DefArg = (*Param)->getDefaultArg())
2968        return Diag((*Param)->getLocation(),
2969                    diag::err_operator_overload_default_arg)
2970          << FnDecl->getDeclName() << DefArg->getSourceRange();
2971    }
2972  }
2973
2974  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2975    { false, false, false }
2976#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2977    , { Unary, Binary, MemberOnly }
2978#include "clang/Basic/OperatorKinds.def"
2979  };
2980
2981  bool CanBeUnaryOperator = OperatorUses[Op][0];
2982  bool CanBeBinaryOperator = OperatorUses[Op][1];
2983  bool MustBeMemberOperator = OperatorUses[Op][2];
2984
2985  // C++ [over.oper]p8:
2986  //   [...] Operator functions cannot have more or fewer parameters
2987  //   than the number required for the corresponding operator, as
2988  //   described in the rest of this subclause.
2989  unsigned NumParams = FnDecl->getNumParams()
2990                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2991  if (Op != OO_Call &&
2992      ((NumParams == 1 && !CanBeUnaryOperator) ||
2993       (NumParams == 2 && !CanBeBinaryOperator) ||
2994       (NumParams < 1) || (NumParams > 2))) {
2995    // We have the wrong number of parameters.
2996    unsigned ErrorKind;
2997    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2998      ErrorKind = 2;  // 2 -> unary or binary.
2999    } else if (CanBeUnaryOperator) {
3000      ErrorKind = 0;  // 0 -> unary
3001    } else {
3002      assert(CanBeBinaryOperator &&
3003             "All non-call overloaded operators are unary or binary!");
3004      ErrorKind = 1;  // 1 -> binary
3005    }
3006
3007    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3008      << FnDecl->getDeclName() << NumParams << ErrorKind;
3009  }
3010
3011  // Overloaded operators other than operator() cannot be variadic.
3012  if (Op != OO_Call &&
3013      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3014    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3015      << FnDecl->getDeclName();
3016  }
3017
3018  // Some operators must be non-static member functions.
3019  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3020    return Diag(FnDecl->getLocation(),
3021                diag::err_operator_overload_must_be_member)
3022      << FnDecl->getDeclName();
3023  }
3024
3025  // C++ [over.inc]p1:
3026  //   The user-defined function called operator++ implements the
3027  //   prefix and postfix ++ operator. If this function is a member
3028  //   function with no parameters, or a non-member function with one
3029  //   parameter of class or enumeration type, it defines the prefix
3030  //   increment operator ++ for objects of that type. If the function
3031  //   is a member function with one parameter (which shall be of type
3032  //   int) or a non-member function with two parameters (the second
3033  //   of which shall be of type int), it defines the postfix
3034  //   increment operator ++ for objects of that type.
3035  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3036    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3037    bool ParamIsInt = false;
3038    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3039      ParamIsInt = BT->getKind() == BuiltinType::Int;
3040
3041    if (!ParamIsInt)
3042      return Diag(LastParam->getLocation(),
3043                  diag::err_operator_overload_post_incdec_must_be_int)
3044        << LastParam->getType() << (Op == OO_MinusMinus);
3045  }
3046
3047  // Notify the class if it got an assignment operator.
3048  if (Op == OO_Equal) {
3049    // Would have returned earlier otherwise.
3050    assert(isa<CXXMethodDecl>(FnDecl) &&
3051      "Overloaded = not member, but not filtered.");
3052    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3053    Method->getParent()->addedAssignmentOperator(Context, Method);
3054  }
3055
3056  return false;
3057}
3058
3059/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3060/// linkage specification, including the language and (if present)
3061/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3062/// the location of the language string literal, which is provided
3063/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3064/// the '{' brace. Otherwise, this linkage specification does not
3065/// have any braces.
3066Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3067                                                     SourceLocation ExternLoc,
3068                                                     SourceLocation LangLoc,
3069                                                     const char *Lang,
3070                                                     unsigned StrSize,
3071                                                     SourceLocation LBraceLoc) {
3072  LinkageSpecDecl::LanguageIDs Language;
3073  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3074    Language = LinkageSpecDecl::lang_c;
3075  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3076    Language = LinkageSpecDecl::lang_cxx;
3077  else {
3078    Diag(LangLoc, diag::err_bad_language);
3079    return DeclPtrTy();
3080  }
3081
3082  // FIXME: Add all the various semantics of linkage specifications
3083
3084  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3085                                               LangLoc, Language,
3086                                               LBraceLoc.isValid());
3087  CurContext->addDecl(D);
3088  PushDeclContext(S, D);
3089  return DeclPtrTy::make(D);
3090}
3091
3092/// ActOnFinishLinkageSpecification - Completely the definition of
3093/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3094/// valid, it's the position of the closing '}' brace in a linkage
3095/// specification that uses braces.
3096Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3097                                                      DeclPtrTy LinkageSpec,
3098                                                      SourceLocation RBraceLoc) {
3099  if (LinkageSpec)
3100    PopDeclContext();
3101  return LinkageSpec;
3102}
3103
3104/// \brief Perform semantic analysis for the variable declaration that
3105/// occurs within a C++ catch clause, returning the newly-created
3106/// variable.
3107VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3108                                         IdentifierInfo *Name,
3109                                         SourceLocation Loc,
3110                                         SourceRange Range) {
3111  bool Invalid = false;
3112
3113  // Arrays and functions decay.
3114  if (ExDeclType->isArrayType())
3115    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3116  else if (ExDeclType->isFunctionType())
3117    ExDeclType = Context.getPointerType(ExDeclType);
3118
3119  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3120  // The exception-declaration shall not denote a pointer or reference to an
3121  // incomplete type, other than [cv] void*.
3122  // N2844 forbids rvalue references.
3123  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3124    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3125    Invalid = true;
3126  }
3127
3128  QualType BaseType = ExDeclType;
3129  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3130  unsigned DK = diag::err_catch_incomplete;
3131  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
3132    BaseType = Ptr->getPointeeType();
3133    Mode = 1;
3134    DK = diag::err_catch_incomplete_ptr;
3135  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
3136    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3137    BaseType = Ref->getPointeeType();
3138    Mode = 2;
3139    DK = diag::err_catch_incomplete_ref;
3140  }
3141  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3142      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3143    Invalid = true;
3144
3145  if (!Invalid && !ExDeclType->isDependentType() &&
3146      RequireNonAbstractType(Loc, ExDeclType,
3147                             diag::err_abstract_type_in_decl,
3148                             AbstractVariableType))
3149    Invalid = true;
3150
3151  // FIXME: Need to test for ability to copy-construct and destroy the
3152  // exception variable.
3153
3154  // FIXME: Need to check for abstract classes.
3155
3156  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3157                                    Name, ExDeclType, VarDecl::None,
3158                                    Range.getBegin());
3159
3160  if (Invalid)
3161    ExDecl->setInvalidDecl();
3162
3163  return ExDecl;
3164}
3165
3166/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3167/// handler.
3168Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3169  QualType ExDeclType = GetTypeForDeclarator(D, S);
3170
3171  bool Invalid = D.isInvalidType();
3172  IdentifierInfo *II = D.getIdentifier();
3173  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3174    // The scope should be freshly made just for us. There is just no way
3175    // it contains any previous declaration.
3176    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3177    if (PrevDecl->isTemplateParameter()) {
3178      // Maybe we will complain about the shadowed template parameter.
3179      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3180    }
3181  }
3182
3183  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3184    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3185      << D.getCXXScopeSpec().getRange();
3186    Invalid = true;
3187  }
3188
3189  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3190                                              D.getIdentifier(),
3191                                              D.getIdentifierLoc(),
3192                                            D.getDeclSpec().getSourceRange());
3193
3194  if (Invalid)
3195    ExDecl->setInvalidDecl();
3196
3197  // Add the exception declaration into this scope.
3198  if (II)
3199    PushOnScopeChains(ExDecl, S);
3200  else
3201    CurContext->addDecl(ExDecl);
3202
3203  ProcessDeclAttributes(S, ExDecl, D);
3204  return DeclPtrTy::make(ExDecl);
3205}
3206
3207Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3208                                                   ExprArg assertexpr,
3209                                                   ExprArg assertmessageexpr) {
3210  Expr *AssertExpr = (Expr *)assertexpr.get();
3211  StringLiteral *AssertMessage =
3212    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3213
3214  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3215    llvm::APSInt Value(32);
3216    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3217      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3218        AssertExpr->getSourceRange();
3219      return DeclPtrTy();
3220    }
3221
3222    if (Value == 0) {
3223      std::string str(AssertMessage->getStrData(),
3224                      AssertMessage->getByteLength());
3225      Diag(AssertLoc, diag::err_static_assert_failed)
3226        << str << AssertExpr->getSourceRange();
3227    }
3228  }
3229
3230  assertexpr.release();
3231  assertmessageexpr.release();
3232  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3233                                        AssertExpr, AssertMessage);
3234
3235  CurContext->addDecl(Decl);
3236  return DeclPtrTy::make(Decl);
3237}
3238
3239bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3240  if (!(S->getFlags() & Scope::ClassScope)) {
3241    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3242    return true;
3243  }
3244
3245  return false;
3246}
3247
3248void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3249  Decl *Dcl = dcl.getAs<Decl>();
3250  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3251  if (!Fn) {
3252    Diag(DelLoc, diag::err_deleted_non_function);
3253    return;
3254  }
3255  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3256    Diag(DelLoc, diag::err_deleted_decl_not_first);
3257    Diag(Prev->getLocation(), diag::note_previous_declaration);
3258    // If the declaration wasn't the first, we delete the function anyway for
3259    // recovery.
3260  }
3261  Fn->setDeleted();
3262}
3263
3264static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3265  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3266       ++CI) {
3267    Stmt *SubStmt = *CI;
3268    if (!SubStmt)
3269      continue;
3270    if (isa<ReturnStmt>(SubStmt))
3271      Self.Diag(SubStmt->getSourceRange().getBegin(),
3272           diag::err_return_in_constructor_handler);
3273    if (!isa<Expr>(SubStmt))
3274      SearchForReturnInStmt(Self, SubStmt);
3275  }
3276}
3277
3278void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3279  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3280    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3281    SearchForReturnInStmt(*this, Handler);
3282  }
3283}
3284
3285bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3286                                             const CXXMethodDecl *Old) {
3287  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3288  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3289
3290  QualType CNewTy = Context.getCanonicalType(NewTy);
3291  QualType COldTy = Context.getCanonicalType(OldTy);
3292
3293  if (CNewTy == COldTy &&
3294      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3295    return false;
3296
3297  // Check if the return types are covariant
3298  QualType NewClassTy, OldClassTy;
3299
3300  /// Both types must be pointers or references to classes.
3301  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3302    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3303      NewClassTy = NewPT->getPointeeType();
3304      OldClassTy = OldPT->getPointeeType();
3305    }
3306  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3307    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3308      NewClassTy = NewRT->getPointeeType();
3309      OldClassTy = OldRT->getPointeeType();
3310    }
3311  }
3312
3313  // The return types aren't either both pointers or references to a class type.
3314  if (NewClassTy.isNull()) {
3315    Diag(New->getLocation(),
3316         diag::err_different_return_type_for_overriding_virtual_function)
3317      << New->getDeclName() << NewTy << OldTy;
3318    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3319
3320    return true;
3321  }
3322
3323  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3324    // Check if the new class derives from the old class.
3325    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3326      Diag(New->getLocation(),
3327           diag::err_covariant_return_not_derived)
3328      << New->getDeclName() << NewTy << OldTy;
3329      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3330      return true;
3331    }
3332
3333    // Check if we the conversion from derived to base is valid.
3334    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3335                      diag::err_covariant_return_inaccessible_base,
3336                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3337                      // FIXME: Should this point to the return type?
3338                      New->getLocation(), SourceRange(), New->getDeclName())) {
3339      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3340      return true;
3341    }
3342  }
3343
3344  // The qualifiers of the return types must be the same.
3345  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3346    Diag(New->getLocation(),
3347         diag::err_covariant_return_type_different_qualifications)
3348    << New->getDeclName() << NewTy << OldTy;
3349    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3350    return true;
3351  };
3352
3353
3354  // The new class type must have the same or less qualifiers as the old type.
3355  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3356    Diag(New->getLocation(),
3357         diag::err_covariant_return_type_class_type_more_qualified)
3358    << New->getDeclName() << NewTy << OldTy;
3359    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3360    return true;
3361  };
3362
3363  return false;
3364}
3365
3366bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3367                                                const CXXMethodDecl *Old)
3368{
3369  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3370                                  diag::note_overridden_virtual_function,
3371                                  Old->getType()->getAsFunctionProtoType(),
3372                                  Old->getLocation(),
3373                                  New->getType()->getAsFunctionProtoType(),
3374                                  New->getLocation());
3375}
3376
3377/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3378/// initializer for the declaration 'Dcl'.
3379/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3380/// static data member of class X, names should be looked up in the scope of
3381/// class X.
3382void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3383  Decl *D = Dcl.getAs<Decl>();
3384  // If there is no declaration, there was an error parsing it.
3385  if (D == 0)
3386    return;
3387
3388  // Check whether it is a declaration with a nested name specifier like
3389  // int foo::bar;
3390  if (!D->isOutOfLine())
3391    return;
3392
3393  // C++ [basic.lookup.unqual]p13
3394  //
3395  // A name used in the definition of a static data member of class X
3396  // (after the qualified-id of the static member) is looked up as if the name
3397  // was used in a member function of X.
3398
3399  // Change current context into the context of the initializing declaration.
3400  EnterDeclaratorContext(S, D->getDeclContext());
3401}
3402
3403/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3404/// initializer for the declaration 'Dcl'.
3405void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3406  Decl *D = Dcl.getAs<Decl>();
3407  // If there is no declaration, there was an error parsing it.
3408  if (D == 0)
3409    return;
3410
3411  // Check whether it is a declaration with a nested name specifier like
3412  // int foo::bar;
3413  if (!D->isOutOfLine())
3414    return;
3415
3416  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3417  ExitDeclaratorContext(S);
3418}
3419