SemaDeclCXX.cpp revision 8cfb7a39caa44797522773cf417ad9c1a6ffbc6f
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_iterator I = Node->child_begin(),
67         E = Node->child_end(); I != E; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isBlockVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                            MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check that the default argument is well-formed
181  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
182  if (DefaultArgChecker.Visit(DefaultArg)) {
183    Param->setInvalidDecl();
184    return;
185  }
186
187  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
188}
189
190/// ActOnParamUnparsedDefaultArgument - We've seen a default
191/// argument for a function parameter, but we can't parse it yet
192/// because we're inside a class definition. Note that this default
193/// argument will be parsed later.
194void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
195                                             SourceLocation EqualLoc,
196                                             SourceLocation ArgLoc) {
197  if (!param)
198    return;
199
200  ParmVarDecl *Param = cast<ParmVarDecl>(param);
201  if (Param)
202    Param->setUnparsedDefaultArg();
203
204  UnparsedDefaultArgLocs[Param] = ArgLoc;
205}
206
207/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
208/// the default argument for the parameter param failed.
209void Sema::ActOnParamDefaultArgumentError(Decl *param) {
210  if (!param)
211    return;
212
213  ParmVarDecl *Param = cast<ParmVarDecl>(param);
214
215  Param->setInvalidDecl();
216
217  UnparsedDefaultArgLocs.erase(Param);
218}
219
220/// CheckExtraCXXDefaultArguments - Check for any extra default
221/// arguments in the declarator, which is not a function declaration
222/// or definition and therefore is not permitted to have default
223/// arguments. This routine should be invoked for every declarator
224/// that is not a function declaration or definition.
225void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
226  // C++ [dcl.fct.default]p3
227  //   A default argument expression shall be specified only in the
228  //   parameter-declaration-clause of a function declaration or in a
229  //   template-parameter (14.1). It shall not be specified for a
230  //   parameter pack. If it is specified in a
231  //   parameter-declaration-clause, it shall not occur within a
232  //   declarator or abstract-declarator of a parameter-declaration.
233  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
234    DeclaratorChunk &chunk = D.getTypeObject(i);
235    if (chunk.Kind == DeclaratorChunk::Function) {
236      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
237        ParmVarDecl *Param =
238          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
239        if (Param->hasUnparsedDefaultArg()) {
240          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
241          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
242            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
243          delete Toks;
244          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
245        } else if (Param->getDefaultArg()) {
246          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
247            << Param->getDefaultArg()->getSourceRange();
248          Param->setDefaultArg(0);
249        }
250      }
251    }
252  }
253}
254
255// MergeCXXFunctionDecl - Merge two declarations of the same C++
256// function, once we already know that they have the same
257// type. Subroutine of MergeFunctionDecl. Returns true if there was an
258// error, false otherwise.
259bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
260  bool Invalid = false;
261
262  // C++ [dcl.fct.default]p4:
263  //   For non-template functions, default arguments can be added in
264  //   later declarations of a function in the same
265  //   scope. Declarations in different scopes have completely
266  //   distinct sets of default arguments. That is, declarations in
267  //   inner scopes do not acquire default arguments from
268  //   declarations in outer scopes, and vice versa. In a given
269  //   function declaration, all parameters subsequent to a
270  //   parameter with a default argument shall have default
271  //   arguments supplied in this or previous declarations. A
272  //   default argument shall not be redefined by a later
273  //   declaration (not even to the same value).
274  //
275  // C++ [dcl.fct.default]p6:
276  //   Except for member functions of class templates, the default arguments
277  //   in a member function definition that appears outside of the class
278  //   definition are added to the set of default arguments provided by the
279  //   member function declaration in the class definition.
280  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
281    ParmVarDecl *OldParam = Old->getParamDecl(p);
282    ParmVarDecl *NewParam = New->getParamDecl(p);
283
284    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
285      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
286      // hint here. Alternatively, we could walk the type-source information
287      // for NewParam to find the last source location in the type... but it
288      // isn't worth the effort right now. This is the kind of test case that
289      // is hard to get right:
290
291      //   int f(int);
292      //   void g(int (*fp)(int) = f);
293      //   void g(int (*fp)(int) = &f);
294      Diag(NewParam->getLocation(),
295           diag::err_param_default_argument_redefinition)
296        << NewParam->getDefaultArgRange();
297
298      // Look for the function declaration where the default argument was
299      // actually written, which may be a declaration prior to Old.
300      for (FunctionDecl *Older = Old->getPreviousDeclaration();
301           Older; Older = Older->getPreviousDeclaration()) {
302        if (!Older->getParamDecl(p)->hasDefaultArg())
303          break;
304
305        OldParam = Older->getParamDecl(p);
306      }
307
308      Diag(OldParam->getLocation(), diag::note_previous_definition)
309        << OldParam->getDefaultArgRange();
310      Invalid = true;
311    } else if (OldParam->hasDefaultArg()) {
312      // Merge the old default argument into the new parameter.
313      // It's important to use getInit() here;  getDefaultArg()
314      // strips off any top-level CXXExprWithTemporaries.
315      NewParam->setHasInheritedDefaultArg();
316      if (OldParam->hasUninstantiatedDefaultArg())
317        NewParam->setUninstantiatedDefaultArg(
318                                      OldParam->getUninstantiatedDefaultArg());
319      else
320        NewParam->setDefaultArg(OldParam->getInit());
321    } else if (NewParam->hasDefaultArg()) {
322      if (New->getDescribedFunctionTemplate()) {
323        // Paragraph 4, quoted above, only applies to non-template functions.
324        Diag(NewParam->getLocation(),
325             diag::err_param_default_argument_template_redecl)
326          << NewParam->getDefaultArgRange();
327        Diag(Old->getLocation(), diag::note_template_prev_declaration)
328          << false;
329      } else if (New->getTemplateSpecializationKind()
330                   != TSK_ImplicitInstantiation &&
331                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
332        // C++ [temp.expr.spec]p21:
333        //   Default function arguments shall not be specified in a declaration
334        //   or a definition for one of the following explicit specializations:
335        //     - the explicit specialization of a function template;
336        //     - the explicit specialization of a member function template;
337        //     - the explicit specialization of a member function of a class
338        //       template where the class template specialization to which the
339        //       member function specialization belongs is implicitly
340        //       instantiated.
341        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
342          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
343          << New->getDeclName()
344          << NewParam->getDefaultArgRange();
345      } else if (New->getDeclContext()->isDependentContext()) {
346        // C++ [dcl.fct.default]p6 (DR217):
347        //   Default arguments for a member function of a class template shall
348        //   be specified on the initial declaration of the member function
349        //   within the class template.
350        //
351        // Reading the tea leaves a bit in DR217 and its reference to DR205
352        // leads me to the conclusion that one cannot add default function
353        // arguments for an out-of-line definition of a member function of a
354        // dependent type.
355        int WhichKind = 2;
356        if (CXXRecordDecl *Record
357              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
358          if (Record->getDescribedClassTemplate())
359            WhichKind = 0;
360          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
361            WhichKind = 1;
362          else
363            WhichKind = 2;
364        }
365
366        Diag(NewParam->getLocation(),
367             diag::err_param_default_argument_member_template_redecl)
368          << WhichKind
369          << NewParam->getDefaultArgRange();
370      }
371    }
372  }
373
374  if (CheckEquivalentExceptionSpec(Old, New))
375    Invalid = true;
376
377  return Invalid;
378}
379
380/// CheckCXXDefaultArguments - Verify that the default arguments for a
381/// function declaration are well-formed according to C++
382/// [dcl.fct.default].
383void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
384  unsigned NumParams = FD->getNumParams();
385  unsigned p;
386
387  // Find first parameter with a default argument
388  for (p = 0; p < NumParams; ++p) {
389    ParmVarDecl *Param = FD->getParamDecl(p);
390    if (Param->hasDefaultArg())
391      break;
392  }
393
394  // C++ [dcl.fct.default]p4:
395  //   In a given function declaration, all parameters
396  //   subsequent to a parameter with a default argument shall
397  //   have default arguments supplied in this or previous
398  //   declarations. A default argument shall not be redefined
399  //   by a later declaration (not even to the same value).
400  unsigned LastMissingDefaultArg = 0;
401  for (; p < NumParams; ++p) {
402    ParmVarDecl *Param = FD->getParamDecl(p);
403    if (!Param->hasDefaultArg()) {
404      if (Param->isInvalidDecl())
405        /* We already complained about this parameter. */;
406      else if (Param->getIdentifier())
407        Diag(Param->getLocation(),
408             diag::err_param_default_argument_missing_name)
409          << Param->getIdentifier();
410      else
411        Diag(Param->getLocation(),
412             diag::err_param_default_argument_missing);
413
414      LastMissingDefaultArg = p;
415    }
416  }
417
418  if (LastMissingDefaultArg > 0) {
419    // Some default arguments were missing. Clear out all of the
420    // default arguments up to (and including) the last missing
421    // default argument, so that we leave the function parameters
422    // in a semantically valid state.
423    for (p = 0; p <= LastMissingDefaultArg; ++p) {
424      ParmVarDecl *Param = FD->getParamDecl(p);
425      if (Param->hasDefaultArg()) {
426        Param->setDefaultArg(0);
427      }
428    }
429  }
430}
431
432/// isCurrentClassName - Determine whether the identifier II is the
433/// name of the class type currently being defined. In the case of
434/// nested classes, this will only return true if II is the name of
435/// the innermost class.
436bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
437                              const CXXScopeSpec *SS) {
438  assert(getLangOptions().CPlusPlus && "No class names in C!");
439
440  CXXRecordDecl *CurDecl;
441  if (SS && SS->isSet() && !SS->isInvalid()) {
442    DeclContext *DC = computeDeclContext(*SS, true);
443    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
444  } else
445    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
446
447  if (CurDecl && CurDecl->getIdentifier())
448    return &II == CurDecl->getIdentifier();
449  else
450    return false;
451}
452
453/// \brief Check the validity of a C++ base class specifier.
454///
455/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
456/// and returns NULL otherwise.
457CXXBaseSpecifier *
458Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
459                         SourceRange SpecifierRange,
460                         bool Virtual, AccessSpecifier Access,
461                         TypeSourceInfo *TInfo) {
462  QualType BaseType = TInfo->getType();
463
464  // C++ [class.union]p1:
465  //   A union shall not have base classes.
466  if (Class->isUnion()) {
467    Diag(Class->getLocation(), diag::err_base_clause_on_union)
468      << SpecifierRange;
469    return 0;
470  }
471
472  if (BaseType->isDependentType())
473    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
474                                          Class->getTagKind() == TTK_Class,
475                                          Access, TInfo);
476
477  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
478
479  // Base specifiers must be record types.
480  if (!BaseType->isRecordType()) {
481    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
482    return 0;
483  }
484
485  // C++ [class.union]p1:
486  //   A union shall not be used as a base class.
487  if (BaseType->isUnionType()) {
488    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
489    return 0;
490  }
491
492  // C++ [class.derived]p2:
493  //   The class-name in a base-specifier shall not be an incompletely
494  //   defined class.
495  if (RequireCompleteType(BaseLoc, BaseType,
496                          PDiag(diag::err_incomplete_base_class)
497                            << SpecifierRange)) {
498    Class->setInvalidDecl();
499    return 0;
500  }
501
502  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
503  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
504  assert(BaseDecl && "Record type has no declaration");
505  BaseDecl = BaseDecl->getDefinition();
506  assert(BaseDecl && "Base type is not incomplete, but has no definition");
507  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
508  assert(CXXBaseDecl && "Base type is not a C++ type");
509
510  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
511  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
512    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
513    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
514      << BaseType;
515    return 0;
516  }
517
518  if (BaseDecl->isInvalidDecl())
519    Class->setInvalidDecl();
520
521  // Create the base specifier.
522  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
523                                        Class->getTagKind() == TTK_Class,
524                                        Access, TInfo);
525}
526
527/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
528/// one entry in the base class list of a class specifier, for
529/// example:
530///    class foo : public bar, virtual private baz {
531/// 'public bar' and 'virtual private baz' are each base-specifiers.
532BaseResult
533Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
534                         bool Virtual, AccessSpecifier Access,
535                         ParsedType basetype, SourceLocation BaseLoc) {
536  if (!classdecl)
537    return true;
538
539  AdjustDeclIfTemplate(classdecl);
540  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
541  if (!Class)
542    return true;
543
544  TypeSourceInfo *TInfo = 0;
545  GetTypeFromParser(basetype, &TInfo);
546  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
547                                                      Virtual, Access, TInfo))
548    return BaseSpec;
549
550  return true;
551}
552
553/// \brief Performs the actual work of attaching the given base class
554/// specifiers to a C++ class.
555bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
556                                unsigned NumBases) {
557 if (NumBases == 0)
558    return false;
559
560  // Used to keep track of which base types we have already seen, so
561  // that we can properly diagnose redundant direct base types. Note
562  // that the key is always the unqualified canonical type of the base
563  // class.
564  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
565
566  // Copy non-redundant base specifiers into permanent storage.
567  unsigned NumGoodBases = 0;
568  bool Invalid = false;
569  for (unsigned idx = 0; idx < NumBases; ++idx) {
570    QualType NewBaseType
571      = Context.getCanonicalType(Bases[idx]->getType());
572    NewBaseType = NewBaseType.getLocalUnqualifiedType();
573    if (!Class->hasObjectMember()) {
574      if (const RecordType *FDTTy =
575            NewBaseType.getTypePtr()->getAs<RecordType>())
576        if (FDTTy->getDecl()->hasObjectMember())
577          Class->setHasObjectMember(true);
578    }
579
580    if (KnownBaseTypes[NewBaseType]) {
581      // C++ [class.mi]p3:
582      //   A class shall not be specified as a direct base class of a
583      //   derived class more than once.
584      Diag(Bases[idx]->getSourceRange().getBegin(),
585           diag::err_duplicate_base_class)
586        << KnownBaseTypes[NewBaseType]->getType()
587        << Bases[idx]->getSourceRange();
588
589      // Delete the duplicate base class specifier; we're going to
590      // overwrite its pointer later.
591      Context.Deallocate(Bases[idx]);
592
593      Invalid = true;
594    } else {
595      // Okay, add this new base class.
596      KnownBaseTypes[NewBaseType] = Bases[idx];
597      Bases[NumGoodBases++] = Bases[idx];
598    }
599  }
600
601  // Attach the remaining base class specifiers to the derived class.
602  Class->setBases(Bases, NumGoodBases);
603
604  // Delete the remaining (good) base class specifiers, since their
605  // data has been copied into the CXXRecordDecl.
606  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
607    Context.Deallocate(Bases[idx]);
608
609  return Invalid;
610}
611
612/// ActOnBaseSpecifiers - Attach the given base specifiers to the
613/// class, after checking whether there are any duplicate base
614/// classes.
615void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
616                               unsigned NumBases) {
617  if (!ClassDecl || !Bases || !NumBases)
618    return;
619
620  AdjustDeclIfTemplate(ClassDecl);
621  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
622                       (CXXBaseSpecifier**)(Bases), NumBases);
623}
624
625static CXXRecordDecl *GetClassForType(QualType T) {
626  if (const RecordType *RT = T->getAs<RecordType>())
627    return cast<CXXRecordDecl>(RT->getDecl());
628  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
629    return ICT->getDecl();
630  else
631    return 0;
632}
633
634/// \brief Determine whether the type \p Derived is a C++ class that is
635/// derived from the type \p Base.
636bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
637  if (!getLangOptions().CPlusPlus)
638    return false;
639
640  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
641  if (!DerivedRD)
642    return false;
643
644  CXXRecordDecl *BaseRD = GetClassForType(Base);
645  if (!BaseRD)
646    return false;
647
648  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
649  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
650}
651
652/// \brief Determine whether the type \p Derived is a C++ class that is
653/// derived from the type \p Base.
654bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
655  if (!getLangOptions().CPlusPlus)
656    return false;
657
658  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
659  if (!DerivedRD)
660    return false;
661
662  CXXRecordDecl *BaseRD = GetClassForType(Base);
663  if (!BaseRD)
664    return false;
665
666  return DerivedRD->isDerivedFrom(BaseRD, Paths);
667}
668
669void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
670                              CXXCastPath &BasePathArray) {
671  assert(BasePathArray.empty() && "Base path array must be empty!");
672  assert(Paths.isRecordingPaths() && "Must record paths!");
673
674  const CXXBasePath &Path = Paths.front();
675
676  // We first go backward and check if we have a virtual base.
677  // FIXME: It would be better if CXXBasePath had the base specifier for
678  // the nearest virtual base.
679  unsigned Start = 0;
680  for (unsigned I = Path.size(); I != 0; --I) {
681    if (Path[I - 1].Base->isVirtual()) {
682      Start = I - 1;
683      break;
684    }
685  }
686
687  // Now add all bases.
688  for (unsigned I = Start, E = Path.size(); I != E; ++I)
689    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
690}
691
692/// \brief Determine whether the given base path includes a virtual
693/// base class.
694bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
695  for (CXXCastPath::const_iterator B = BasePath.begin(),
696                                BEnd = BasePath.end();
697       B != BEnd; ++B)
698    if ((*B)->isVirtual())
699      return true;
700
701  return false;
702}
703
704/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
705/// conversion (where Derived and Base are class types) is
706/// well-formed, meaning that the conversion is unambiguous (and
707/// that all of the base classes are accessible). Returns true
708/// and emits a diagnostic if the code is ill-formed, returns false
709/// otherwise. Loc is the location where this routine should point to
710/// if there is an error, and Range is the source range to highlight
711/// if there is an error.
712bool
713Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
714                                   unsigned InaccessibleBaseID,
715                                   unsigned AmbigiousBaseConvID,
716                                   SourceLocation Loc, SourceRange Range,
717                                   DeclarationName Name,
718                                   CXXCastPath *BasePath) {
719  // First, determine whether the path from Derived to Base is
720  // ambiguous. This is slightly more expensive than checking whether
721  // the Derived to Base conversion exists, because here we need to
722  // explore multiple paths to determine if there is an ambiguity.
723  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
724                     /*DetectVirtual=*/false);
725  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
726  assert(DerivationOkay &&
727         "Can only be used with a derived-to-base conversion");
728  (void)DerivationOkay;
729
730  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
731    if (InaccessibleBaseID) {
732      // Check that the base class can be accessed.
733      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
734                                   InaccessibleBaseID)) {
735        case AR_inaccessible:
736          return true;
737        case AR_accessible:
738        case AR_dependent:
739        case AR_delayed:
740          break;
741      }
742    }
743
744    // Build a base path if necessary.
745    if (BasePath)
746      BuildBasePathArray(Paths, *BasePath);
747    return false;
748  }
749
750  // We know that the derived-to-base conversion is ambiguous, and
751  // we're going to produce a diagnostic. Perform the derived-to-base
752  // search just one more time to compute all of the possible paths so
753  // that we can print them out. This is more expensive than any of
754  // the previous derived-to-base checks we've done, but at this point
755  // performance isn't as much of an issue.
756  Paths.clear();
757  Paths.setRecordingPaths(true);
758  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
759  assert(StillOkay && "Can only be used with a derived-to-base conversion");
760  (void)StillOkay;
761
762  // Build up a textual representation of the ambiguous paths, e.g.,
763  // D -> B -> A, that will be used to illustrate the ambiguous
764  // conversions in the diagnostic. We only print one of the paths
765  // to each base class subobject.
766  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
767
768  Diag(Loc, AmbigiousBaseConvID)
769  << Derived << Base << PathDisplayStr << Range << Name;
770  return true;
771}
772
773bool
774Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
775                                   SourceLocation Loc, SourceRange Range,
776                                   CXXCastPath *BasePath,
777                                   bool IgnoreAccess) {
778  return CheckDerivedToBaseConversion(Derived, Base,
779                                      IgnoreAccess ? 0
780                                       : diag::err_upcast_to_inaccessible_base,
781                                      diag::err_ambiguous_derived_to_base_conv,
782                                      Loc, Range, DeclarationName(),
783                                      BasePath);
784}
785
786
787/// @brief Builds a string representing ambiguous paths from a
788/// specific derived class to different subobjects of the same base
789/// class.
790///
791/// This function builds a string that can be used in error messages
792/// to show the different paths that one can take through the
793/// inheritance hierarchy to go from the derived class to different
794/// subobjects of a base class. The result looks something like this:
795/// @code
796/// struct D -> struct B -> struct A
797/// struct D -> struct C -> struct A
798/// @endcode
799std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
800  std::string PathDisplayStr;
801  std::set<unsigned> DisplayedPaths;
802  for (CXXBasePaths::paths_iterator Path = Paths.begin();
803       Path != Paths.end(); ++Path) {
804    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
805      // We haven't displayed a path to this particular base
806      // class subobject yet.
807      PathDisplayStr += "\n    ";
808      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
809      for (CXXBasePath::const_iterator Element = Path->begin();
810           Element != Path->end(); ++Element)
811        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
812    }
813  }
814
815  return PathDisplayStr;
816}
817
818//===----------------------------------------------------------------------===//
819// C++ class member Handling
820//===----------------------------------------------------------------------===//
821
822/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
823Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
824                                 SourceLocation ASLoc,
825                                 SourceLocation ColonLoc) {
826  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
827  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
828                                                  ASLoc, ColonLoc);
829  CurContext->addHiddenDecl(ASDecl);
830  return ASDecl;
831}
832
833/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
834/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
835/// bitfield width if there is one and 'InitExpr' specifies the initializer if
836/// any.
837Decl *
838Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
839                               MultiTemplateParamsArg TemplateParameterLists,
840                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
841                               bool Deleted) {
842  const DeclSpec &DS = D.getDeclSpec();
843  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
844  DeclarationName Name = NameInfo.getName();
845  SourceLocation Loc = NameInfo.getLoc();
846  Expr *BitWidth = static_cast<Expr*>(BW);
847  Expr *Init = static_cast<Expr*>(InitExpr);
848
849  assert(isa<CXXRecordDecl>(CurContext));
850  assert(!DS.isFriendSpecified());
851
852  bool isFunc = false;
853  if (D.isFunctionDeclarator())
854    isFunc = true;
855  else if (D.getNumTypeObjects() == 0 &&
856           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
857    QualType TDType = GetTypeFromParser(DS.getRepAsType());
858    isFunc = TDType->isFunctionType();
859  }
860
861  // C++ 9.2p6: A member shall not be declared to have automatic storage
862  // duration (auto, register) or with the extern storage-class-specifier.
863  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
864  // data members and cannot be applied to names declared const or static,
865  // and cannot be applied to reference members.
866  switch (DS.getStorageClassSpec()) {
867    case DeclSpec::SCS_unspecified:
868    case DeclSpec::SCS_typedef:
869    case DeclSpec::SCS_static:
870      // FALL THROUGH.
871      break;
872    case DeclSpec::SCS_mutable:
873      if (isFunc) {
874        if (DS.getStorageClassSpecLoc().isValid())
875          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
876        else
877          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
878
879        // FIXME: It would be nicer if the keyword was ignored only for this
880        // declarator. Otherwise we could get follow-up errors.
881        D.getMutableDeclSpec().ClearStorageClassSpecs();
882      }
883      break;
884    default:
885      if (DS.getStorageClassSpecLoc().isValid())
886        Diag(DS.getStorageClassSpecLoc(),
887             diag::err_storageclass_invalid_for_member);
888      else
889        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
890      D.getMutableDeclSpec().ClearStorageClassSpecs();
891  }
892
893  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
894                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
895                      !isFunc);
896
897  Decl *Member;
898  if (isInstField) {
899    // FIXME: Check for template parameters!
900    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
901                         AS);
902    assert(Member && "HandleField never returns null");
903  } else {
904    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
905    if (!Member) {
906      return 0;
907    }
908
909    // Non-instance-fields can't have a bitfield.
910    if (BitWidth) {
911      if (Member->isInvalidDecl()) {
912        // don't emit another diagnostic.
913      } else if (isa<VarDecl>(Member)) {
914        // C++ 9.6p3: A bit-field shall not be a static member.
915        // "static member 'A' cannot be a bit-field"
916        Diag(Loc, diag::err_static_not_bitfield)
917          << Name << BitWidth->getSourceRange();
918      } else if (isa<TypedefDecl>(Member)) {
919        // "typedef member 'x' cannot be a bit-field"
920        Diag(Loc, diag::err_typedef_not_bitfield)
921          << Name << BitWidth->getSourceRange();
922      } else {
923        // A function typedef ("typedef int f(); f a;").
924        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
925        Diag(Loc, diag::err_not_integral_type_bitfield)
926          << Name << cast<ValueDecl>(Member)->getType()
927          << BitWidth->getSourceRange();
928      }
929
930      BitWidth = 0;
931      Member->setInvalidDecl();
932    }
933
934    Member->setAccess(AS);
935
936    // If we have declared a member function template, set the access of the
937    // templated declaration as well.
938    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
939      FunTmpl->getTemplatedDecl()->setAccess(AS);
940  }
941
942  assert((Name || isInstField) && "No identifier for non-field ?");
943
944  if (Init)
945    AddInitializerToDecl(Member, Init, false);
946  if (Deleted) // FIXME: Source location is not very good.
947    SetDeclDeleted(Member, D.getSourceRange().getBegin());
948
949  if (isInstField) {
950    FieldCollector->Add(cast<FieldDecl>(Member));
951    return 0;
952  }
953  return Member;
954}
955
956/// \brief Find the direct and/or virtual base specifiers that
957/// correspond to the given base type, for use in base initialization
958/// within a constructor.
959static bool FindBaseInitializer(Sema &SemaRef,
960                                CXXRecordDecl *ClassDecl,
961                                QualType BaseType,
962                                const CXXBaseSpecifier *&DirectBaseSpec,
963                                const CXXBaseSpecifier *&VirtualBaseSpec) {
964  // First, check for a direct base class.
965  DirectBaseSpec = 0;
966  for (CXXRecordDecl::base_class_const_iterator Base
967         = ClassDecl->bases_begin();
968       Base != ClassDecl->bases_end(); ++Base) {
969    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
970      // We found a direct base of this type. That's what we're
971      // initializing.
972      DirectBaseSpec = &*Base;
973      break;
974    }
975  }
976
977  // Check for a virtual base class.
978  // FIXME: We might be able to short-circuit this if we know in advance that
979  // there are no virtual bases.
980  VirtualBaseSpec = 0;
981  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
982    // We haven't found a base yet; search the class hierarchy for a
983    // virtual base class.
984    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
985                       /*DetectVirtual=*/false);
986    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
987                              BaseType, Paths)) {
988      for (CXXBasePaths::paths_iterator Path = Paths.begin();
989           Path != Paths.end(); ++Path) {
990        if (Path->back().Base->isVirtual()) {
991          VirtualBaseSpec = Path->back().Base;
992          break;
993        }
994      }
995    }
996  }
997
998  return DirectBaseSpec || VirtualBaseSpec;
999}
1000
1001/// ActOnMemInitializer - Handle a C++ member initializer.
1002MemInitResult
1003Sema::ActOnMemInitializer(Decl *ConstructorD,
1004                          Scope *S,
1005                          CXXScopeSpec &SS,
1006                          IdentifierInfo *MemberOrBase,
1007                          ParsedType TemplateTypeTy,
1008                          SourceLocation IdLoc,
1009                          SourceLocation LParenLoc,
1010                          ExprTy **Args, unsigned NumArgs,
1011                          SourceLocation RParenLoc) {
1012  if (!ConstructorD)
1013    return true;
1014
1015  AdjustDeclIfTemplate(ConstructorD);
1016
1017  CXXConstructorDecl *Constructor
1018    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1019  if (!Constructor) {
1020    // The user wrote a constructor initializer on a function that is
1021    // not a C++ constructor. Ignore the error for now, because we may
1022    // have more member initializers coming; we'll diagnose it just
1023    // once in ActOnMemInitializers.
1024    return true;
1025  }
1026
1027  CXXRecordDecl *ClassDecl = Constructor->getParent();
1028
1029  // C++ [class.base.init]p2:
1030  //   Names in a mem-initializer-id are looked up in the scope of the
1031  //   constructor’s class and, if not found in that scope, are looked
1032  //   up in the scope containing the constructor’s
1033  //   definition. [Note: if the constructor’s class contains a member
1034  //   with the same name as a direct or virtual base class of the
1035  //   class, a mem-initializer-id naming the member or base class and
1036  //   composed of a single identifier refers to the class member. A
1037  //   mem-initializer-id for the hidden base class may be specified
1038  //   using a qualified name. ]
1039  if (!SS.getScopeRep() && !TemplateTypeTy) {
1040    // Look for a member, first.
1041    FieldDecl *Member = 0;
1042    DeclContext::lookup_result Result
1043      = ClassDecl->lookup(MemberOrBase);
1044    if (Result.first != Result.second)
1045      Member = dyn_cast<FieldDecl>(*Result.first);
1046
1047    // FIXME: Handle members of an anonymous union.
1048
1049    if (Member)
1050      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1051                                    LParenLoc, RParenLoc);
1052  }
1053  // It didn't name a member, so see if it names a class.
1054  QualType BaseType;
1055  TypeSourceInfo *TInfo = 0;
1056
1057  if (TemplateTypeTy) {
1058    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1059  } else {
1060    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1061    LookupParsedName(R, S, &SS);
1062
1063    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1064    if (!TyD) {
1065      if (R.isAmbiguous()) return true;
1066
1067      // We don't want access-control diagnostics here.
1068      R.suppressDiagnostics();
1069
1070      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1071        bool NotUnknownSpecialization = false;
1072        DeclContext *DC = computeDeclContext(SS, false);
1073        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1074          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1075
1076        if (!NotUnknownSpecialization) {
1077          // When the scope specifier can refer to a member of an unknown
1078          // specialization, we take it as a type name.
1079          BaseType = CheckTypenameType(ETK_None,
1080                                       (NestedNameSpecifier *)SS.getScopeRep(),
1081                                       *MemberOrBase, SourceLocation(),
1082                                       SS.getRange(), IdLoc);
1083          if (BaseType.isNull())
1084            return true;
1085
1086          R.clear();
1087          R.setLookupName(MemberOrBase);
1088        }
1089      }
1090
1091      // If no results were found, try to correct typos.
1092      if (R.empty() && BaseType.isNull() &&
1093          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1094          R.isSingleResult()) {
1095        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1096          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1097            // We have found a non-static data member with a similar
1098            // name to what was typed; complain and initialize that
1099            // member.
1100            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1101              << MemberOrBase << true << R.getLookupName()
1102              << FixItHint::CreateReplacement(R.getNameLoc(),
1103                                              R.getLookupName().getAsString());
1104            Diag(Member->getLocation(), diag::note_previous_decl)
1105              << Member->getDeclName();
1106
1107            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1108                                          LParenLoc, RParenLoc);
1109          }
1110        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1111          const CXXBaseSpecifier *DirectBaseSpec;
1112          const CXXBaseSpecifier *VirtualBaseSpec;
1113          if (FindBaseInitializer(*this, ClassDecl,
1114                                  Context.getTypeDeclType(Type),
1115                                  DirectBaseSpec, VirtualBaseSpec)) {
1116            // We have found a direct or virtual base class with a
1117            // similar name to what was typed; complain and initialize
1118            // that base class.
1119            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1120              << MemberOrBase << false << R.getLookupName()
1121              << FixItHint::CreateReplacement(R.getNameLoc(),
1122                                              R.getLookupName().getAsString());
1123
1124            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1125                                                             : VirtualBaseSpec;
1126            Diag(BaseSpec->getSourceRange().getBegin(),
1127                 diag::note_base_class_specified_here)
1128              << BaseSpec->getType()
1129              << BaseSpec->getSourceRange();
1130
1131            TyD = Type;
1132          }
1133        }
1134      }
1135
1136      if (!TyD && BaseType.isNull()) {
1137        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1138          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1139        return true;
1140      }
1141    }
1142
1143    if (BaseType.isNull()) {
1144      BaseType = Context.getTypeDeclType(TyD);
1145      if (SS.isSet()) {
1146        NestedNameSpecifier *Qualifier =
1147          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1148
1149        // FIXME: preserve source range information
1150        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1151      }
1152    }
1153  }
1154
1155  if (!TInfo)
1156    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1157
1158  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1159                              LParenLoc, RParenLoc, ClassDecl);
1160}
1161
1162/// Checks an initializer expression for use of uninitialized fields, such as
1163/// containing the field that is being initialized. Returns true if there is an
1164/// uninitialized field was used an updates the SourceLocation parameter; false
1165/// otherwise.
1166static bool InitExprContainsUninitializedFields(const Stmt *S,
1167                                                const FieldDecl *LhsField,
1168                                                SourceLocation *L) {
1169  if (isa<CallExpr>(S)) {
1170    // Do not descend into function calls or constructors, as the use
1171    // of an uninitialized field may be valid. One would have to inspect
1172    // the contents of the function/ctor to determine if it is safe or not.
1173    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1174    // may be safe, depending on what the function/ctor does.
1175    return false;
1176  }
1177  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1178    const NamedDecl *RhsField = ME->getMemberDecl();
1179
1180    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1181      // The member expression points to a static data member.
1182      assert(VD->isStaticDataMember() &&
1183             "Member points to non-static data member!");
1184      (void)VD;
1185      return false;
1186    }
1187
1188    if (isa<EnumConstantDecl>(RhsField)) {
1189      // The member expression points to an enum.
1190      return false;
1191    }
1192
1193    if (RhsField == LhsField) {
1194      // Initializing a field with itself. Throw a warning.
1195      // But wait; there are exceptions!
1196      // Exception #1:  The field may not belong to this record.
1197      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1198      const Expr *base = ME->getBase();
1199      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1200        // Even though the field matches, it does not belong to this record.
1201        return false;
1202      }
1203      // None of the exceptions triggered; return true to indicate an
1204      // uninitialized field was used.
1205      *L = ME->getMemberLoc();
1206      return true;
1207    }
1208  } else if (isa<SizeOfAlignOfExpr>(S)) {
1209    // sizeof/alignof doesn't reference contents, do not warn.
1210    return false;
1211  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1212    // address-of doesn't reference contents (the pointer may be dereferenced
1213    // in the same expression but it would be rare; and weird).
1214    if (UOE->getOpcode() == UO_AddrOf)
1215      return false;
1216  }
1217  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1218       it != e; ++it) {
1219    if (!*it) {
1220      // An expression such as 'member(arg ?: "")' may trigger this.
1221      continue;
1222    }
1223    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1224      return true;
1225  }
1226  return false;
1227}
1228
1229MemInitResult
1230Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1231                             unsigned NumArgs, SourceLocation IdLoc,
1232                             SourceLocation LParenLoc,
1233                             SourceLocation RParenLoc) {
1234  // Diagnose value-uses of fields to initialize themselves, e.g.
1235  //   foo(foo)
1236  // where foo is not also a parameter to the constructor.
1237  // TODO: implement -Wuninitialized and fold this into that framework.
1238  for (unsigned i = 0; i < NumArgs; ++i) {
1239    SourceLocation L;
1240    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1241      // FIXME: Return true in the case when other fields are used before being
1242      // uninitialized. For example, let this field be the i'th field. When
1243      // initializing the i'th field, throw a warning if any of the >= i'th
1244      // fields are used, as they are not yet initialized.
1245      // Right now we are only handling the case where the i'th field uses
1246      // itself in its initializer.
1247      Diag(L, diag::warn_field_is_uninit);
1248    }
1249  }
1250
1251  bool HasDependentArg = false;
1252  for (unsigned i = 0; i < NumArgs; i++)
1253    HasDependentArg |= Args[i]->isTypeDependent();
1254
1255  if (Member->getType()->isDependentType() || HasDependentArg) {
1256    // Can't check initialization for a member of dependent type or when
1257    // any of the arguments are type-dependent expressions.
1258    Expr *Init
1259      = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1260                                    RParenLoc);
1261
1262    // Erase any temporaries within this evaluation context; we're not
1263    // going to track them in the AST, since we'll be rebuilding the
1264    // ASTs during template instantiation.
1265    ExprTemporaries.erase(
1266              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1267                          ExprTemporaries.end());
1268
1269    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1270                                                    LParenLoc,
1271                                                    Init,
1272                                                    RParenLoc);
1273
1274  }
1275
1276  if (Member->isInvalidDecl())
1277    return true;
1278
1279  // Initialize the member.
1280  InitializedEntity MemberEntity =
1281    InitializedEntity::InitializeMember(Member, 0);
1282  InitializationKind Kind =
1283    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1284
1285  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1286
1287  ExprResult MemberInit =
1288    InitSeq.Perform(*this, MemberEntity, Kind,
1289                    MultiExprArg(*this, Args, NumArgs), 0);
1290  if (MemberInit.isInvalid())
1291    return true;
1292
1293  CheckImplicitConversions(MemberInit.get(), LParenLoc);
1294
1295  // C++0x [class.base.init]p7:
1296  //   The initialization of each base and member constitutes a
1297  //   full-expression.
1298  MemberInit = MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1299  if (MemberInit.isInvalid())
1300    return true;
1301
1302  // If we are in a dependent context, template instantiation will
1303  // perform this type-checking again. Just save the arguments that we
1304  // received in a ParenListExpr.
1305  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1306  // of the information that we have about the member
1307  // initializer. However, deconstructing the ASTs is a dicey process,
1308  // and this approach is far more likely to get the corner cases right.
1309  if (CurContext->isDependentContext()) {
1310    // Bump the reference count of all of the arguments.
1311    for (unsigned I = 0; I != NumArgs; ++I)
1312      Args[I]->Retain();
1313
1314    Expr *Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1315                                             RParenLoc);
1316    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1317                                                    LParenLoc,
1318                                                    Init,
1319                                                    RParenLoc);
1320  }
1321
1322  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1323                                                  LParenLoc,
1324                                                  MemberInit.get(),
1325                                                  RParenLoc);
1326}
1327
1328MemInitResult
1329Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1330                           Expr **Args, unsigned NumArgs,
1331                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1332                           CXXRecordDecl *ClassDecl) {
1333  bool HasDependentArg = false;
1334  for (unsigned i = 0; i < NumArgs; i++)
1335    HasDependentArg |= Args[i]->isTypeDependent();
1336
1337  SourceLocation BaseLoc
1338    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1339
1340  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1341    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1342             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1343
1344  // C++ [class.base.init]p2:
1345  //   [...] Unless the mem-initializer-id names a nonstatic data
1346  //   member of the constructor’s class or a direct or virtual base
1347  //   of that class, the mem-initializer is ill-formed. A
1348  //   mem-initializer-list can initialize a base class using any
1349  //   name that denotes that base class type.
1350  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1351
1352  // Check for direct and virtual base classes.
1353  const CXXBaseSpecifier *DirectBaseSpec = 0;
1354  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1355  if (!Dependent) {
1356    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1357                        VirtualBaseSpec);
1358
1359    // C++ [base.class.init]p2:
1360    // Unless the mem-initializer-id names a nonstatic data member of the
1361    // constructor's class or a direct or virtual base of that class, the
1362    // mem-initializer is ill-formed.
1363    if (!DirectBaseSpec && !VirtualBaseSpec) {
1364      // If the class has any dependent bases, then it's possible that
1365      // one of those types will resolve to the same type as
1366      // BaseType. Therefore, just treat this as a dependent base
1367      // class initialization.  FIXME: Should we try to check the
1368      // initialization anyway? It seems odd.
1369      if (ClassDecl->hasAnyDependentBases())
1370        Dependent = true;
1371      else
1372        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1373          << BaseType << Context.getTypeDeclType(ClassDecl)
1374          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1375    }
1376  }
1377
1378  if (Dependent) {
1379    // Can't check initialization for a base of dependent type or when
1380    // any of the arguments are type-dependent expressions.
1381    ExprResult BaseInit
1382      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1383                                          RParenLoc));
1384
1385    // Erase any temporaries within this evaluation context; we're not
1386    // going to track them in the AST, since we'll be rebuilding the
1387    // ASTs during template instantiation.
1388    ExprTemporaries.erase(
1389              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1390                          ExprTemporaries.end());
1391
1392    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1393                                                    /*IsVirtual=*/false,
1394                                                    LParenLoc,
1395                                                    BaseInit.takeAs<Expr>(),
1396                                                    RParenLoc);
1397  }
1398
1399  // C++ [base.class.init]p2:
1400  //   If a mem-initializer-id is ambiguous because it designates both
1401  //   a direct non-virtual base class and an inherited virtual base
1402  //   class, the mem-initializer is ill-formed.
1403  if (DirectBaseSpec && VirtualBaseSpec)
1404    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1405      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1406
1407  CXXBaseSpecifier *BaseSpec
1408    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1409  if (!BaseSpec)
1410    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1411
1412  // Initialize the base.
1413  InitializedEntity BaseEntity =
1414    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1415  InitializationKind Kind =
1416    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1417
1418  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1419
1420  ExprResult BaseInit =
1421    InitSeq.Perform(*this, BaseEntity, Kind,
1422                    MultiExprArg(*this, Args, NumArgs), 0);
1423  if (BaseInit.isInvalid())
1424    return true;
1425
1426  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1427
1428  // C++0x [class.base.init]p7:
1429  //   The initialization of each base and member constitutes a
1430  //   full-expression.
1431  BaseInit = MaybeCreateCXXExprWithTemporaries(BaseInit.get());
1432  if (BaseInit.isInvalid())
1433    return true;
1434
1435  // If we are in a dependent context, template instantiation will
1436  // perform this type-checking again. Just save the arguments that we
1437  // received in a ParenListExpr.
1438  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1439  // of the information that we have about the base
1440  // initializer. However, deconstructing the ASTs is a dicey process,
1441  // and this approach is far more likely to get the corner cases right.
1442  if (CurContext->isDependentContext()) {
1443    // Bump the reference count of all of the arguments.
1444    for (unsigned I = 0; I != NumArgs; ++I)
1445      Args[I]->Retain();
1446
1447    ExprResult Init
1448      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1449                                          RParenLoc));
1450    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1451                                                    BaseSpec->isVirtual(),
1452                                                    LParenLoc,
1453                                                    Init.takeAs<Expr>(),
1454                                                    RParenLoc);
1455  }
1456
1457  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1458                                                  BaseSpec->isVirtual(),
1459                                                  LParenLoc,
1460                                                  BaseInit.takeAs<Expr>(),
1461                                                  RParenLoc);
1462}
1463
1464/// ImplicitInitializerKind - How an implicit base or member initializer should
1465/// initialize its base or member.
1466enum ImplicitInitializerKind {
1467  IIK_Default,
1468  IIK_Copy,
1469  IIK_Move
1470};
1471
1472static bool
1473BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1474                             ImplicitInitializerKind ImplicitInitKind,
1475                             CXXBaseSpecifier *BaseSpec,
1476                             bool IsInheritedVirtualBase,
1477                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1478  InitializedEntity InitEntity
1479    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1480                                        IsInheritedVirtualBase);
1481
1482  ExprResult BaseInit;
1483
1484  switch (ImplicitInitKind) {
1485  case IIK_Default: {
1486    InitializationKind InitKind
1487      = InitializationKind::CreateDefault(Constructor->getLocation());
1488    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1489    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1490                               MultiExprArg(SemaRef, 0, 0));
1491    break;
1492  }
1493
1494  case IIK_Copy: {
1495    ParmVarDecl *Param = Constructor->getParamDecl(0);
1496    QualType ParamType = Param->getType().getNonReferenceType();
1497
1498    Expr *CopyCtorArg =
1499      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1500                          Constructor->getLocation(), ParamType, 0);
1501
1502    // Cast to the base class to avoid ambiguities.
1503    QualType ArgTy =
1504      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1505                                       ParamType.getQualifiers());
1506
1507    CXXCastPath BasePath;
1508    BasePath.push_back(BaseSpec);
1509    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1510                              CK_UncheckedDerivedToBase,
1511                              VK_LValue, &BasePath);
1512
1513    InitializationKind InitKind
1514      = InitializationKind::CreateDirect(Constructor->getLocation(),
1515                                         SourceLocation(), SourceLocation());
1516    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1517                                   &CopyCtorArg, 1);
1518    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1519                               MultiExprArg(&CopyCtorArg, 1));
1520    break;
1521  }
1522
1523  case IIK_Move:
1524    assert(false && "Unhandled initializer kind!");
1525  }
1526
1527  if (BaseInit.isInvalid())
1528    return true;
1529
1530  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(BaseInit.get());
1531  if (BaseInit.isInvalid())
1532    return true;
1533
1534  CXXBaseInit =
1535    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1536               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1537                                                        SourceLocation()),
1538                                             BaseSpec->isVirtual(),
1539                                             SourceLocation(),
1540                                             BaseInit.takeAs<Expr>(),
1541                                             SourceLocation());
1542
1543  return false;
1544}
1545
1546static bool
1547BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1548                               ImplicitInitializerKind ImplicitInitKind,
1549                               FieldDecl *Field,
1550                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1551  if (Field->isInvalidDecl())
1552    return true;
1553
1554  SourceLocation Loc = Constructor->getLocation();
1555
1556  if (ImplicitInitKind == IIK_Copy) {
1557    ParmVarDecl *Param = Constructor->getParamDecl(0);
1558    QualType ParamType = Param->getType().getNonReferenceType();
1559
1560    Expr *MemberExprBase =
1561      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1562                          Loc, ParamType, 0);
1563
1564    // Build a reference to this field within the parameter.
1565    CXXScopeSpec SS;
1566    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1567                              Sema::LookupMemberName);
1568    MemberLookup.addDecl(Field, AS_public);
1569    MemberLookup.resolveKind();
1570    ExprResult CopyCtorArg
1571      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1572                                         ParamType, Loc,
1573                                         /*IsArrow=*/false,
1574                                         SS,
1575                                         /*FirstQualifierInScope=*/0,
1576                                         MemberLookup,
1577                                         /*TemplateArgs=*/0);
1578    if (CopyCtorArg.isInvalid())
1579      return true;
1580
1581    // When the field we are copying is an array, create index variables for
1582    // each dimension of the array. We use these index variables to subscript
1583    // the source array, and other clients (e.g., CodeGen) will perform the
1584    // necessary iteration with these index variables.
1585    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1586    QualType BaseType = Field->getType();
1587    QualType SizeType = SemaRef.Context.getSizeType();
1588    while (const ConstantArrayType *Array
1589                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1590      // Create the iteration variable for this array index.
1591      IdentifierInfo *IterationVarName = 0;
1592      {
1593        llvm::SmallString<8> Str;
1594        llvm::raw_svector_ostream OS(Str);
1595        OS << "__i" << IndexVariables.size();
1596        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1597      }
1598      VarDecl *IterationVar
1599        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1600                          IterationVarName, SizeType,
1601                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1602                          SC_None, SC_None);
1603      IndexVariables.push_back(IterationVar);
1604
1605      // Create a reference to the iteration variable.
1606      ExprResult IterationVarRef
1607        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1608      assert(!IterationVarRef.isInvalid() &&
1609             "Reference to invented variable cannot fail!");
1610
1611      // Subscript the array with this iteration variable.
1612      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1613                                                            Loc,
1614                                                        IterationVarRef.take(),
1615                                                            Loc);
1616      if (CopyCtorArg.isInvalid())
1617        return true;
1618
1619      BaseType = Array->getElementType();
1620    }
1621
1622    // Construct the entity that we will be initializing. For an array, this
1623    // will be first element in the array, which may require several levels
1624    // of array-subscript entities.
1625    llvm::SmallVector<InitializedEntity, 4> Entities;
1626    Entities.reserve(1 + IndexVariables.size());
1627    Entities.push_back(InitializedEntity::InitializeMember(Field));
1628    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1629      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1630                                                              0,
1631                                                              Entities.back()));
1632
1633    // Direct-initialize to use the copy constructor.
1634    InitializationKind InitKind =
1635      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1636
1637    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1638    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1639                                   &CopyCtorArgE, 1);
1640
1641    ExprResult MemberInit
1642      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1643                        MultiExprArg(&CopyCtorArgE, 1));
1644    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1645    if (MemberInit.isInvalid())
1646      return true;
1647
1648    CXXMemberInit
1649      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1650                                           MemberInit.takeAs<Expr>(), Loc,
1651                                           IndexVariables.data(),
1652                                           IndexVariables.size());
1653    return false;
1654  }
1655
1656  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1657
1658  QualType FieldBaseElementType =
1659    SemaRef.Context.getBaseElementType(Field->getType());
1660
1661  if (FieldBaseElementType->isRecordType()) {
1662    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1663    InitializationKind InitKind =
1664      InitializationKind::CreateDefault(Loc);
1665
1666    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1667    ExprResult MemberInit =
1668      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1669    if (MemberInit.isInvalid())
1670      return true;
1671
1672    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1673    if (MemberInit.isInvalid())
1674      return true;
1675
1676    CXXMemberInit =
1677      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1678                                                       Field, Loc, Loc,
1679                                                       MemberInit.get(),
1680                                                       Loc);
1681    return false;
1682  }
1683
1684  if (FieldBaseElementType->isReferenceType()) {
1685    SemaRef.Diag(Constructor->getLocation(),
1686                 diag::err_uninitialized_member_in_ctor)
1687    << (int)Constructor->isImplicit()
1688    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1689    << 0 << Field->getDeclName();
1690    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1691    return true;
1692  }
1693
1694  if (FieldBaseElementType.isConstQualified()) {
1695    SemaRef.Diag(Constructor->getLocation(),
1696                 diag::err_uninitialized_member_in_ctor)
1697    << (int)Constructor->isImplicit()
1698    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1699    << 1 << Field->getDeclName();
1700    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1701    return true;
1702  }
1703
1704  // Nothing to initialize.
1705  CXXMemberInit = 0;
1706  return false;
1707}
1708
1709namespace {
1710struct BaseAndFieldInfo {
1711  Sema &S;
1712  CXXConstructorDecl *Ctor;
1713  bool AnyErrorsInInits;
1714  ImplicitInitializerKind IIK;
1715  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1716  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1717
1718  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1719    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1720    // FIXME: Handle implicit move constructors.
1721    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1722      IIK = IIK_Copy;
1723    else
1724      IIK = IIK_Default;
1725  }
1726};
1727}
1728
1729static void RecordFieldInitializer(BaseAndFieldInfo &Info,
1730                                   FieldDecl *Top, FieldDecl *Field,
1731                                   CXXBaseOrMemberInitializer *Init) {
1732  // If the member doesn't need to be initialized, Init will still be null.
1733  if (!Init)
1734    return;
1735
1736  Info.AllToInit.push_back(Init);
1737  if (Field != Top) {
1738    Init->setMember(Top);
1739    Init->setAnonUnionMember(Field);
1740  }
1741}
1742
1743static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1744                                    FieldDecl *Top, FieldDecl *Field) {
1745
1746  // Overwhelmingly common case: we have a direct initializer for this field.
1747  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1748    RecordFieldInitializer(Info, Top, Field, Init);
1749    return false;
1750  }
1751
1752  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1753    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1754    assert(FieldClassType && "anonymous struct/union without record type");
1755    CXXRecordDecl *FieldClassDecl
1756      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1757
1758    // Even though union members never have non-trivial default
1759    // constructions in C++03, we still build member initializers for aggregate
1760    // record types which can be union members, and C++0x allows non-trivial
1761    // default constructors for union members, so we ensure that only one
1762    // member is initialized for these.
1763    if (FieldClassDecl->isUnion()) {
1764      // First check for an explicit initializer for one field.
1765      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1766           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1767        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1768          RecordFieldInitializer(Info, Top, *FA, Init);
1769
1770          // Once we've initialized a field of an anonymous union, the union
1771          // field in the class is also initialized, so exit immediately.
1772          return false;
1773        } else if ((*FA)->isAnonymousStructOrUnion()) {
1774          if (CollectFieldInitializer(Info, Top, *FA))
1775            return true;
1776        }
1777      }
1778
1779      // Fallthrough and construct a default initializer for the union as
1780      // a whole, which can call its default constructor if such a thing exists
1781      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1782      // behavior going forward with C++0x, when anonymous unions there are
1783      // finalized, we should revisit this.
1784    } else {
1785      // For structs, we simply descend through to initialize all members where
1786      // necessary.
1787      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1788           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1789        if (CollectFieldInitializer(Info, Top, *FA))
1790          return true;
1791      }
1792    }
1793  }
1794
1795  // Don't try to build an implicit initializer if there were semantic
1796  // errors in any of the initializers (and therefore we might be
1797  // missing some that the user actually wrote).
1798  if (Info.AnyErrorsInInits)
1799    return false;
1800
1801  CXXBaseOrMemberInitializer *Init = 0;
1802  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1803    return true;
1804
1805  RecordFieldInitializer(Info, Top, Field, Init);
1806  return false;
1807}
1808
1809bool
1810Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1811                                  CXXBaseOrMemberInitializer **Initializers,
1812                                  unsigned NumInitializers,
1813                                  bool AnyErrors) {
1814  if (Constructor->getDeclContext()->isDependentContext()) {
1815    // Just store the initializers as written, they will be checked during
1816    // instantiation.
1817    if (NumInitializers > 0) {
1818      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1819      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1820        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1821      memcpy(baseOrMemberInitializers, Initializers,
1822             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1823      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1824    }
1825
1826    return false;
1827  }
1828
1829  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1830
1831  // We need to build the initializer AST according to order of construction
1832  // and not what user specified in the Initializers list.
1833  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1834  if (!ClassDecl)
1835    return true;
1836
1837  bool HadError = false;
1838
1839  for (unsigned i = 0; i < NumInitializers; i++) {
1840    CXXBaseOrMemberInitializer *Member = Initializers[i];
1841
1842    if (Member->isBaseInitializer())
1843      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1844    else
1845      Info.AllBaseFields[Member->getMember()] = Member;
1846  }
1847
1848  // Keep track of the direct virtual bases.
1849  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1850  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1851       E = ClassDecl->bases_end(); I != E; ++I) {
1852    if (I->isVirtual())
1853      DirectVBases.insert(I);
1854  }
1855
1856  // Push virtual bases before others.
1857  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1858       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1859
1860    if (CXXBaseOrMemberInitializer *Value
1861        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1862      Info.AllToInit.push_back(Value);
1863    } else if (!AnyErrors) {
1864      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1865      CXXBaseOrMemberInitializer *CXXBaseInit;
1866      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1867                                       VBase, IsInheritedVirtualBase,
1868                                       CXXBaseInit)) {
1869        HadError = true;
1870        continue;
1871      }
1872
1873      Info.AllToInit.push_back(CXXBaseInit);
1874    }
1875  }
1876
1877  // Non-virtual bases.
1878  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1879       E = ClassDecl->bases_end(); Base != E; ++Base) {
1880    // Virtuals are in the virtual base list and already constructed.
1881    if (Base->isVirtual())
1882      continue;
1883
1884    if (CXXBaseOrMemberInitializer *Value
1885          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1886      Info.AllToInit.push_back(Value);
1887    } else if (!AnyErrors) {
1888      CXXBaseOrMemberInitializer *CXXBaseInit;
1889      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1890                                       Base, /*IsInheritedVirtualBase=*/false,
1891                                       CXXBaseInit)) {
1892        HadError = true;
1893        continue;
1894      }
1895
1896      Info.AllToInit.push_back(CXXBaseInit);
1897    }
1898  }
1899
1900  // Fields.
1901  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1902       E = ClassDecl->field_end(); Field != E; ++Field) {
1903    if ((*Field)->getType()->isIncompleteArrayType()) {
1904      assert(ClassDecl->hasFlexibleArrayMember() &&
1905             "Incomplete array type is not valid");
1906      continue;
1907    }
1908    if (CollectFieldInitializer(Info, *Field, *Field))
1909      HadError = true;
1910  }
1911
1912  NumInitializers = Info.AllToInit.size();
1913  if (NumInitializers > 0) {
1914    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1915    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1916      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1917    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1918           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1919    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1920
1921    // Constructors implicitly reference the base and member
1922    // destructors.
1923    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1924                                           Constructor->getParent());
1925  }
1926
1927  return HadError;
1928}
1929
1930static void *GetKeyForTopLevelField(FieldDecl *Field) {
1931  // For anonymous unions, use the class declaration as the key.
1932  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1933    if (RT->getDecl()->isAnonymousStructOrUnion())
1934      return static_cast<void *>(RT->getDecl());
1935  }
1936  return static_cast<void *>(Field);
1937}
1938
1939static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1940  return Context.getCanonicalType(BaseType).getTypePtr();
1941}
1942
1943static void *GetKeyForMember(ASTContext &Context,
1944                             CXXBaseOrMemberInitializer *Member,
1945                             bool MemberMaybeAnon = false) {
1946  if (!Member->isMemberInitializer())
1947    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1948
1949  // For fields injected into the class via declaration of an anonymous union,
1950  // use its anonymous union class declaration as the unique key.
1951  FieldDecl *Field = Member->getMember();
1952
1953  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1954  // data member of the class. Data member used in the initializer list is
1955  // in AnonUnionMember field.
1956  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1957    Field = Member->getAnonUnionMember();
1958
1959  // If the field is a member of an anonymous struct or union, our key
1960  // is the anonymous record decl that's a direct child of the class.
1961  RecordDecl *RD = Field->getParent();
1962  if (RD->isAnonymousStructOrUnion()) {
1963    while (true) {
1964      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1965      if (Parent->isAnonymousStructOrUnion())
1966        RD = Parent;
1967      else
1968        break;
1969    }
1970
1971    return static_cast<void *>(RD);
1972  }
1973
1974  return static_cast<void *>(Field);
1975}
1976
1977static void
1978DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1979                                  const CXXConstructorDecl *Constructor,
1980                                  CXXBaseOrMemberInitializer **Inits,
1981                                  unsigned NumInits) {
1982  if (Constructor->getDeclContext()->isDependentContext())
1983    return;
1984
1985  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1986        == Diagnostic::Ignored)
1987    return;
1988
1989  // Build the list of bases and members in the order that they'll
1990  // actually be initialized.  The explicit initializers should be in
1991  // this same order but may be missing things.
1992  llvm::SmallVector<const void*, 32> IdealInitKeys;
1993
1994  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1995
1996  // 1. Virtual bases.
1997  for (CXXRecordDecl::base_class_const_iterator VBase =
1998       ClassDecl->vbases_begin(),
1999       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2000    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2001
2002  // 2. Non-virtual bases.
2003  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2004       E = ClassDecl->bases_end(); Base != E; ++Base) {
2005    if (Base->isVirtual())
2006      continue;
2007    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2008  }
2009
2010  // 3. Direct fields.
2011  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2012       E = ClassDecl->field_end(); Field != E; ++Field)
2013    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2014
2015  unsigned NumIdealInits = IdealInitKeys.size();
2016  unsigned IdealIndex = 0;
2017
2018  CXXBaseOrMemberInitializer *PrevInit = 0;
2019  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2020    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2021    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2022
2023    // Scan forward to try to find this initializer in the idealized
2024    // initializers list.
2025    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2026      if (InitKey == IdealInitKeys[IdealIndex])
2027        break;
2028
2029    // If we didn't find this initializer, it must be because we
2030    // scanned past it on a previous iteration.  That can only
2031    // happen if we're out of order;  emit a warning.
2032    if (IdealIndex == NumIdealInits && PrevInit) {
2033      Sema::SemaDiagnosticBuilder D =
2034        SemaRef.Diag(PrevInit->getSourceLocation(),
2035                     diag::warn_initializer_out_of_order);
2036
2037      if (PrevInit->isMemberInitializer())
2038        D << 0 << PrevInit->getMember()->getDeclName();
2039      else
2040        D << 1 << PrevInit->getBaseClassInfo()->getType();
2041
2042      if (Init->isMemberInitializer())
2043        D << 0 << Init->getMember()->getDeclName();
2044      else
2045        D << 1 << Init->getBaseClassInfo()->getType();
2046
2047      // Move back to the initializer's location in the ideal list.
2048      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2049        if (InitKey == IdealInitKeys[IdealIndex])
2050          break;
2051
2052      assert(IdealIndex != NumIdealInits &&
2053             "initializer not found in initializer list");
2054    }
2055
2056    PrevInit = Init;
2057  }
2058}
2059
2060namespace {
2061bool CheckRedundantInit(Sema &S,
2062                        CXXBaseOrMemberInitializer *Init,
2063                        CXXBaseOrMemberInitializer *&PrevInit) {
2064  if (!PrevInit) {
2065    PrevInit = Init;
2066    return false;
2067  }
2068
2069  if (FieldDecl *Field = Init->getMember())
2070    S.Diag(Init->getSourceLocation(),
2071           diag::err_multiple_mem_initialization)
2072      << Field->getDeclName()
2073      << Init->getSourceRange();
2074  else {
2075    Type *BaseClass = Init->getBaseClass();
2076    assert(BaseClass && "neither field nor base");
2077    S.Diag(Init->getSourceLocation(),
2078           diag::err_multiple_base_initialization)
2079      << QualType(BaseClass, 0)
2080      << Init->getSourceRange();
2081  }
2082  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2083    << 0 << PrevInit->getSourceRange();
2084
2085  return true;
2086}
2087
2088typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2089typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2090
2091bool CheckRedundantUnionInit(Sema &S,
2092                             CXXBaseOrMemberInitializer *Init,
2093                             RedundantUnionMap &Unions) {
2094  FieldDecl *Field = Init->getMember();
2095  RecordDecl *Parent = Field->getParent();
2096  if (!Parent->isAnonymousStructOrUnion())
2097    return false;
2098
2099  NamedDecl *Child = Field;
2100  do {
2101    if (Parent->isUnion()) {
2102      UnionEntry &En = Unions[Parent];
2103      if (En.first && En.first != Child) {
2104        S.Diag(Init->getSourceLocation(),
2105               diag::err_multiple_mem_union_initialization)
2106          << Field->getDeclName()
2107          << Init->getSourceRange();
2108        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2109          << 0 << En.second->getSourceRange();
2110        return true;
2111      } else if (!En.first) {
2112        En.first = Child;
2113        En.second = Init;
2114      }
2115    }
2116
2117    Child = Parent;
2118    Parent = cast<RecordDecl>(Parent->getDeclContext());
2119  } while (Parent->isAnonymousStructOrUnion());
2120
2121  return false;
2122}
2123}
2124
2125/// ActOnMemInitializers - Handle the member initializers for a constructor.
2126void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2127                                SourceLocation ColonLoc,
2128                                MemInitTy **meminits, unsigned NumMemInits,
2129                                bool AnyErrors) {
2130  if (!ConstructorDecl)
2131    return;
2132
2133  AdjustDeclIfTemplate(ConstructorDecl);
2134
2135  CXXConstructorDecl *Constructor
2136    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2137
2138  if (!Constructor) {
2139    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2140    return;
2141  }
2142
2143  CXXBaseOrMemberInitializer **MemInits =
2144    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2145
2146  // Mapping for the duplicate initializers check.
2147  // For member initializers, this is keyed with a FieldDecl*.
2148  // For base initializers, this is keyed with a Type*.
2149  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2150
2151  // Mapping for the inconsistent anonymous-union initializers check.
2152  RedundantUnionMap MemberUnions;
2153
2154  bool HadError = false;
2155  for (unsigned i = 0; i < NumMemInits; i++) {
2156    CXXBaseOrMemberInitializer *Init = MemInits[i];
2157
2158    // Set the source order index.
2159    Init->setSourceOrder(i);
2160
2161    if (Init->isMemberInitializer()) {
2162      FieldDecl *Field = Init->getMember();
2163      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2164          CheckRedundantUnionInit(*this, Init, MemberUnions))
2165        HadError = true;
2166    } else {
2167      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2168      if (CheckRedundantInit(*this, Init, Members[Key]))
2169        HadError = true;
2170    }
2171  }
2172
2173  if (HadError)
2174    return;
2175
2176  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2177
2178  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2179}
2180
2181void
2182Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2183                                             CXXRecordDecl *ClassDecl) {
2184  // Ignore dependent contexts.
2185  if (ClassDecl->isDependentContext())
2186    return;
2187
2188  // FIXME: all the access-control diagnostics are positioned on the
2189  // field/base declaration.  That's probably good; that said, the
2190  // user might reasonably want to know why the destructor is being
2191  // emitted, and we currently don't say.
2192
2193  // Non-static data members.
2194  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2195       E = ClassDecl->field_end(); I != E; ++I) {
2196    FieldDecl *Field = *I;
2197    if (Field->isInvalidDecl())
2198      continue;
2199    QualType FieldType = Context.getBaseElementType(Field->getType());
2200
2201    const RecordType* RT = FieldType->getAs<RecordType>();
2202    if (!RT)
2203      continue;
2204
2205    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2206    if (FieldClassDecl->hasTrivialDestructor())
2207      continue;
2208
2209    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2210    CheckDestructorAccess(Field->getLocation(), Dtor,
2211                          PDiag(diag::err_access_dtor_field)
2212                            << Field->getDeclName()
2213                            << FieldType);
2214
2215    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2216  }
2217
2218  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2219
2220  // Bases.
2221  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2222       E = ClassDecl->bases_end(); Base != E; ++Base) {
2223    // Bases are always records in a well-formed non-dependent class.
2224    const RecordType *RT = Base->getType()->getAs<RecordType>();
2225
2226    // Remember direct virtual bases.
2227    if (Base->isVirtual())
2228      DirectVirtualBases.insert(RT);
2229
2230    // Ignore trivial destructors.
2231    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2232    if (BaseClassDecl->hasTrivialDestructor())
2233      continue;
2234
2235    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2236
2237    // FIXME: caret should be on the start of the class name
2238    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2239                          PDiag(diag::err_access_dtor_base)
2240                            << Base->getType()
2241                            << Base->getSourceRange());
2242
2243    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2244  }
2245
2246  // Virtual bases.
2247  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2248       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2249
2250    // Bases are always records in a well-formed non-dependent class.
2251    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2252
2253    // Ignore direct virtual bases.
2254    if (DirectVirtualBases.count(RT))
2255      continue;
2256
2257    // Ignore trivial destructors.
2258    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2259    if (BaseClassDecl->hasTrivialDestructor())
2260      continue;
2261
2262    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2263    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2264                          PDiag(diag::err_access_dtor_vbase)
2265                            << VBase->getType());
2266
2267    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2268  }
2269}
2270
2271void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2272  if (!CDtorDecl)
2273    return;
2274
2275  if (CXXConstructorDecl *Constructor
2276      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2277    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2278}
2279
2280bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2281                                  unsigned DiagID, AbstractDiagSelID SelID) {
2282  if (SelID == -1)
2283    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2284  else
2285    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2286}
2287
2288bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2289                                  const PartialDiagnostic &PD) {
2290  if (!getLangOptions().CPlusPlus)
2291    return false;
2292
2293  if (const ArrayType *AT = Context.getAsArrayType(T))
2294    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2295
2296  if (const PointerType *PT = T->getAs<PointerType>()) {
2297    // Find the innermost pointer type.
2298    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2299      PT = T;
2300
2301    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2302      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2303  }
2304
2305  const RecordType *RT = T->getAs<RecordType>();
2306  if (!RT)
2307    return false;
2308
2309  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2310
2311  // We can't answer whether something is abstract until it has a
2312  // definition.  If it's currently being defined, we'll walk back
2313  // over all the declarations when we have a full definition.
2314  const CXXRecordDecl *Def = RD->getDefinition();
2315  if (!Def || Def->isBeingDefined())
2316    return false;
2317
2318  if (!RD->isAbstract())
2319    return false;
2320
2321  Diag(Loc, PD) << RD->getDeclName();
2322  DiagnoseAbstractType(RD);
2323
2324  return true;
2325}
2326
2327void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2328  // Check if we've already emitted the list of pure virtual functions
2329  // for this class.
2330  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2331    return;
2332
2333  CXXFinalOverriderMap FinalOverriders;
2334  RD->getFinalOverriders(FinalOverriders);
2335
2336  // Keep a set of seen pure methods so we won't diagnose the same method
2337  // more than once.
2338  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2339
2340  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2341                                   MEnd = FinalOverriders.end();
2342       M != MEnd;
2343       ++M) {
2344    for (OverridingMethods::iterator SO = M->second.begin(),
2345                                  SOEnd = M->second.end();
2346         SO != SOEnd; ++SO) {
2347      // C++ [class.abstract]p4:
2348      //   A class is abstract if it contains or inherits at least one
2349      //   pure virtual function for which the final overrider is pure
2350      //   virtual.
2351
2352      //
2353      if (SO->second.size() != 1)
2354        continue;
2355
2356      if (!SO->second.front().Method->isPure())
2357        continue;
2358
2359      if (!SeenPureMethods.insert(SO->second.front().Method))
2360        continue;
2361
2362      Diag(SO->second.front().Method->getLocation(),
2363           diag::note_pure_virtual_function)
2364        << SO->second.front().Method->getDeclName();
2365    }
2366  }
2367
2368  if (!PureVirtualClassDiagSet)
2369    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2370  PureVirtualClassDiagSet->insert(RD);
2371}
2372
2373namespace {
2374struct AbstractUsageInfo {
2375  Sema &S;
2376  CXXRecordDecl *Record;
2377  CanQualType AbstractType;
2378  bool Invalid;
2379
2380  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2381    : S(S), Record(Record),
2382      AbstractType(S.Context.getCanonicalType(
2383                   S.Context.getTypeDeclType(Record))),
2384      Invalid(false) {}
2385
2386  void DiagnoseAbstractType() {
2387    if (Invalid) return;
2388    S.DiagnoseAbstractType(Record);
2389    Invalid = true;
2390  }
2391
2392  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2393};
2394
2395struct CheckAbstractUsage {
2396  AbstractUsageInfo &Info;
2397  const NamedDecl *Ctx;
2398
2399  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2400    : Info(Info), Ctx(Ctx) {}
2401
2402  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2403    switch (TL.getTypeLocClass()) {
2404#define ABSTRACT_TYPELOC(CLASS, PARENT)
2405#define TYPELOC(CLASS, PARENT) \
2406    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2407#include "clang/AST/TypeLocNodes.def"
2408    }
2409  }
2410
2411  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2412    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2413    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2414      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2415      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2416    }
2417  }
2418
2419  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2420    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2421  }
2422
2423  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2424    // Visit the type parameters from a permissive context.
2425    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2426      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2427      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2428        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2429          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2430      // TODO: other template argument types?
2431    }
2432  }
2433
2434  // Visit pointee types from a permissive context.
2435#define CheckPolymorphic(Type) \
2436  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2437    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2438  }
2439  CheckPolymorphic(PointerTypeLoc)
2440  CheckPolymorphic(ReferenceTypeLoc)
2441  CheckPolymorphic(MemberPointerTypeLoc)
2442  CheckPolymorphic(BlockPointerTypeLoc)
2443
2444  /// Handle all the types we haven't given a more specific
2445  /// implementation for above.
2446  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2447    // Every other kind of type that we haven't called out already
2448    // that has an inner type is either (1) sugar or (2) contains that
2449    // inner type in some way as a subobject.
2450    if (TypeLoc Next = TL.getNextTypeLoc())
2451      return Visit(Next, Sel);
2452
2453    // If there's no inner type and we're in a permissive context,
2454    // don't diagnose.
2455    if (Sel == Sema::AbstractNone) return;
2456
2457    // Check whether the type matches the abstract type.
2458    QualType T = TL.getType();
2459    if (T->isArrayType()) {
2460      Sel = Sema::AbstractArrayType;
2461      T = Info.S.Context.getBaseElementType(T);
2462    }
2463    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2464    if (CT != Info.AbstractType) return;
2465
2466    // It matched; do some magic.
2467    if (Sel == Sema::AbstractArrayType) {
2468      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2469        << T << TL.getSourceRange();
2470    } else {
2471      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2472        << Sel << T << TL.getSourceRange();
2473    }
2474    Info.DiagnoseAbstractType();
2475  }
2476};
2477
2478void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2479                                  Sema::AbstractDiagSelID Sel) {
2480  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2481}
2482
2483}
2484
2485/// Check for invalid uses of an abstract type in a method declaration.
2486static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2487                                    CXXMethodDecl *MD) {
2488  // No need to do the check on definitions, which require that
2489  // the return/param types be complete.
2490  if (MD->isThisDeclarationADefinition())
2491    return;
2492
2493  // For safety's sake, just ignore it if we don't have type source
2494  // information.  This should never happen for non-implicit methods,
2495  // but...
2496  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2497    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2498}
2499
2500/// Check for invalid uses of an abstract type within a class definition.
2501static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2502                                    CXXRecordDecl *RD) {
2503  for (CXXRecordDecl::decl_iterator
2504         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2505    Decl *D = *I;
2506    if (D->isImplicit()) continue;
2507
2508    // Methods and method templates.
2509    if (isa<CXXMethodDecl>(D)) {
2510      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2511    } else if (isa<FunctionTemplateDecl>(D)) {
2512      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2513      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2514
2515    // Fields and static variables.
2516    } else if (isa<FieldDecl>(D)) {
2517      FieldDecl *FD = cast<FieldDecl>(D);
2518      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2519        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2520    } else if (isa<VarDecl>(D)) {
2521      VarDecl *VD = cast<VarDecl>(D);
2522      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2523        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2524
2525    // Nested classes and class templates.
2526    } else if (isa<CXXRecordDecl>(D)) {
2527      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2528    } else if (isa<ClassTemplateDecl>(D)) {
2529      CheckAbstractClassUsage(Info,
2530                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2531    }
2532  }
2533}
2534
2535/// \brief Perform semantic checks on a class definition that has been
2536/// completing, introducing implicitly-declared members, checking for
2537/// abstract types, etc.
2538void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2539  if (!Record)
2540    return;
2541
2542  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2543    AbstractUsageInfo Info(*this, Record);
2544    CheckAbstractClassUsage(Info, Record);
2545  }
2546
2547  // If this is not an aggregate type and has no user-declared constructor,
2548  // complain about any non-static data members of reference or const scalar
2549  // type, since they will never get initializers.
2550  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2551      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2552    bool Complained = false;
2553    for (RecordDecl::field_iterator F = Record->field_begin(),
2554                                 FEnd = Record->field_end();
2555         F != FEnd; ++F) {
2556      if (F->getType()->isReferenceType() ||
2557          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2558        if (!Complained) {
2559          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2560            << Record->getTagKind() << Record;
2561          Complained = true;
2562        }
2563
2564        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2565          << F->getType()->isReferenceType()
2566          << F->getDeclName();
2567      }
2568    }
2569  }
2570
2571  if (Record->isDynamicClass())
2572    DynamicClasses.push_back(Record);
2573}
2574
2575void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2576                                             Decl *TagDecl,
2577                                             SourceLocation LBrac,
2578                                             SourceLocation RBrac,
2579                                             AttributeList *AttrList) {
2580  if (!TagDecl)
2581    return;
2582
2583  AdjustDeclIfTemplate(TagDecl);
2584
2585  ActOnFields(S, RLoc, TagDecl,
2586              // strict aliasing violation!
2587              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2588              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2589
2590  CheckCompletedCXXClass(
2591                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2592}
2593
2594namespace {
2595  /// \brief Helper class that collects exception specifications for
2596  /// implicitly-declared special member functions.
2597  class ImplicitExceptionSpecification {
2598    ASTContext &Context;
2599    bool AllowsAllExceptions;
2600    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2601    llvm::SmallVector<QualType, 4> Exceptions;
2602
2603  public:
2604    explicit ImplicitExceptionSpecification(ASTContext &Context)
2605      : Context(Context), AllowsAllExceptions(false) { }
2606
2607    /// \brief Whether the special member function should have any
2608    /// exception specification at all.
2609    bool hasExceptionSpecification() const {
2610      return !AllowsAllExceptions;
2611    }
2612
2613    /// \brief Whether the special member function should have a
2614    /// throw(...) exception specification (a Microsoft extension).
2615    bool hasAnyExceptionSpecification() const {
2616      return false;
2617    }
2618
2619    /// \brief The number of exceptions in the exception specification.
2620    unsigned size() const { return Exceptions.size(); }
2621
2622    /// \brief The set of exceptions in the exception specification.
2623    const QualType *data() const { return Exceptions.data(); }
2624
2625    /// \brief Note that
2626    void CalledDecl(CXXMethodDecl *Method) {
2627      // If we already know that we allow all exceptions, do nothing.
2628      if (AllowsAllExceptions || !Method)
2629        return;
2630
2631      const FunctionProtoType *Proto
2632        = Method->getType()->getAs<FunctionProtoType>();
2633
2634      // If this function can throw any exceptions, make a note of that.
2635      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2636        AllowsAllExceptions = true;
2637        ExceptionsSeen.clear();
2638        Exceptions.clear();
2639        return;
2640      }
2641
2642      // Record the exceptions in this function's exception specification.
2643      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2644                                              EEnd = Proto->exception_end();
2645           E != EEnd; ++E)
2646        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2647          Exceptions.push_back(*E);
2648    }
2649  };
2650}
2651
2652
2653/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2654/// special functions, such as the default constructor, copy
2655/// constructor, or destructor, to the given C++ class (C++
2656/// [special]p1).  This routine can only be executed just before the
2657/// definition of the class is complete.
2658void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2659  if (!ClassDecl->hasUserDeclaredConstructor())
2660    ++ASTContext::NumImplicitDefaultConstructors;
2661
2662  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2663    ++ASTContext::NumImplicitCopyConstructors;
2664
2665  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2666    ++ASTContext::NumImplicitCopyAssignmentOperators;
2667
2668    // If we have a dynamic class, then the copy assignment operator may be
2669    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2670    // it shows up in the right place in the vtable and that we diagnose
2671    // problems with the implicit exception specification.
2672    if (ClassDecl->isDynamicClass())
2673      DeclareImplicitCopyAssignment(ClassDecl);
2674  }
2675
2676  if (!ClassDecl->hasUserDeclaredDestructor()) {
2677    ++ASTContext::NumImplicitDestructors;
2678
2679    // If we have a dynamic class, then the destructor may be virtual, so we
2680    // have to declare the destructor immediately. This ensures that, e.g., it
2681    // shows up in the right place in the vtable and that we diagnose problems
2682    // with the implicit exception specification.
2683    if (ClassDecl->isDynamicClass())
2684      DeclareImplicitDestructor(ClassDecl);
2685  }
2686}
2687
2688void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
2689  if (!D)
2690    return;
2691
2692  TemplateParameterList *Params = 0;
2693  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2694    Params = Template->getTemplateParameters();
2695  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2696           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2697    Params = PartialSpec->getTemplateParameters();
2698  else
2699    return;
2700
2701  for (TemplateParameterList::iterator Param = Params->begin(),
2702                                    ParamEnd = Params->end();
2703       Param != ParamEnd; ++Param) {
2704    NamedDecl *Named = cast<NamedDecl>(*Param);
2705    if (Named->getDeclName()) {
2706      S->AddDecl(Named);
2707      IdResolver.AddDecl(Named);
2708    }
2709  }
2710}
2711
2712void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2713  if (!RecordD) return;
2714  AdjustDeclIfTemplate(RecordD);
2715  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
2716  PushDeclContext(S, Record);
2717}
2718
2719void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2720  if (!RecordD) return;
2721  PopDeclContext();
2722}
2723
2724/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2725/// parsing a top-level (non-nested) C++ class, and we are now
2726/// parsing those parts of the given Method declaration that could
2727/// not be parsed earlier (C++ [class.mem]p2), such as default
2728/// arguments. This action should enter the scope of the given
2729/// Method declaration as if we had just parsed the qualified method
2730/// name. However, it should not bring the parameters into scope;
2731/// that will be performed by ActOnDelayedCXXMethodParameter.
2732void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2733}
2734
2735/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2736/// C++ method declaration. We're (re-)introducing the given
2737/// function parameter into scope for use in parsing later parts of
2738/// the method declaration. For example, we could see an
2739/// ActOnParamDefaultArgument event for this parameter.
2740void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
2741  if (!ParamD)
2742    return;
2743
2744  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
2745
2746  // If this parameter has an unparsed default argument, clear it out
2747  // to make way for the parsed default argument.
2748  if (Param->hasUnparsedDefaultArg())
2749    Param->setDefaultArg(0);
2750
2751  S->AddDecl(Param);
2752  if (Param->getDeclName())
2753    IdResolver.AddDecl(Param);
2754}
2755
2756/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2757/// processing the delayed method declaration for Method. The method
2758/// declaration is now considered finished. There may be a separate
2759/// ActOnStartOfFunctionDef action later (not necessarily
2760/// immediately!) for this method, if it was also defined inside the
2761/// class body.
2762void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2763  if (!MethodD)
2764    return;
2765
2766  AdjustDeclIfTemplate(MethodD);
2767
2768  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
2769
2770  // Now that we have our default arguments, check the constructor
2771  // again. It could produce additional diagnostics or affect whether
2772  // the class has implicitly-declared destructors, among other
2773  // things.
2774  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2775    CheckConstructor(Constructor);
2776
2777  // Check the default arguments, which we may have added.
2778  if (!Method->isInvalidDecl())
2779    CheckCXXDefaultArguments(Method);
2780}
2781
2782/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2783/// the well-formedness of the constructor declarator @p D with type @p
2784/// R. If there are any errors in the declarator, this routine will
2785/// emit diagnostics and set the invalid bit to true.  In any case, the type
2786/// will be updated to reflect a well-formed type for the constructor and
2787/// returned.
2788QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2789                                          StorageClass &SC) {
2790  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2791
2792  // C++ [class.ctor]p3:
2793  //   A constructor shall not be virtual (10.3) or static (9.4). A
2794  //   constructor can be invoked for a const, volatile or const
2795  //   volatile object. A constructor shall not be declared const,
2796  //   volatile, or const volatile (9.3.2).
2797  if (isVirtual) {
2798    if (!D.isInvalidType())
2799      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2800        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2801        << SourceRange(D.getIdentifierLoc());
2802    D.setInvalidType();
2803  }
2804  if (SC == SC_Static) {
2805    if (!D.isInvalidType())
2806      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2807        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2808        << SourceRange(D.getIdentifierLoc());
2809    D.setInvalidType();
2810    SC = SC_None;
2811  }
2812
2813  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2814  if (FTI.TypeQuals != 0) {
2815    if (FTI.TypeQuals & Qualifiers::Const)
2816      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2817        << "const" << SourceRange(D.getIdentifierLoc());
2818    if (FTI.TypeQuals & Qualifiers::Volatile)
2819      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2820        << "volatile" << SourceRange(D.getIdentifierLoc());
2821    if (FTI.TypeQuals & Qualifiers::Restrict)
2822      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2823        << "restrict" << SourceRange(D.getIdentifierLoc());
2824  }
2825
2826  // Rebuild the function type "R" without any type qualifiers (in
2827  // case any of the errors above fired) and with "void" as the
2828  // return type, since constructors don't have return types.
2829  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2830  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2831                                 Proto->getNumArgs(),
2832                                 Proto->isVariadic(), 0,
2833                                 Proto->hasExceptionSpec(),
2834                                 Proto->hasAnyExceptionSpec(),
2835                                 Proto->getNumExceptions(),
2836                                 Proto->exception_begin(),
2837                                 Proto->getExtInfo());
2838}
2839
2840/// CheckConstructor - Checks a fully-formed constructor for
2841/// well-formedness, issuing any diagnostics required. Returns true if
2842/// the constructor declarator is invalid.
2843void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2844  CXXRecordDecl *ClassDecl
2845    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2846  if (!ClassDecl)
2847    return Constructor->setInvalidDecl();
2848
2849  // C++ [class.copy]p3:
2850  //   A declaration of a constructor for a class X is ill-formed if
2851  //   its first parameter is of type (optionally cv-qualified) X and
2852  //   either there are no other parameters or else all other
2853  //   parameters have default arguments.
2854  if (!Constructor->isInvalidDecl() &&
2855      ((Constructor->getNumParams() == 1) ||
2856       (Constructor->getNumParams() > 1 &&
2857        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2858      Constructor->getTemplateSpecializationKind()
2859                                              != TSK_ImplicitInstantiation) {
2860    QualType ParamType = Constructor->getParamDecl(0)->getType();
2861    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2862    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2863      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2864      const char *ConstRef
2865        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2866                                                        : " const &";
2867      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2868        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2869
2870      // FIXME: Rather that making the constructor invalid, we should endeavor
2871      // to fix the type.
2872      Constructor->setInvalidDecl();
2873    }
2874  }
2875}
2876
2877/// CheckDestructor - Checks a fully-formed destructor definition for
2878/// well-formedness, issuing any diagnostics required.  Returns true
2879/// on error.
2880bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2881  CXXRecordDecl *RD = Destructor->getParent();
2882
2883  if (Destructor->isVirtual()) {
2884    SourceLocation Loc;
2885
2886    if (!Destructor->isImplicit())
2887      Loc = Destructor->getLocation();
2888    else
2889      Loc = RD->getLocation();
2890
2891    // If we have a virtual destructor, look up the deallocation function
2892    FunctionDecl *OperatorDelete = 0;
2893    DeclarationName Name =
2894    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2895    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2896      return true;
2897
2898    MarkDeclarationReferenced(Loc, OperatorDelete);
2899
2900    Destructor->setOperatorDelete(OperatorDelete);
2901  }
2902
2903  return false;
2904}
2905
2906static inline bool
2907FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2908  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2909          FTI.ArgInfo[0].Param &&
2910          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
2911}
2912
2913/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2914/// the well-formednes of the destructor declarator @p D with type @p
2915/// R. If there are any errors in the declarator, this routine will
2916/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2917/// will be updated to reflect a well-formed type for the destructor and
2918/// returned.
2919QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
2920                                         StorageClass& SC) {
2921  // C++ [class.dtor]p1:
2922  //   [...] A typedef-name that names a class is a class-name
2923  //   (7.1.3); however, a typedef-name that names a class shall not
2924  //   be used as the identifier in the declarator for a destructor
2925  //   declaration.
2926  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2927  if (isa<TypedefType>(DeclaratorType))
2928    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2929      << DeclaratorType;
2930
2931  // C++ [class.dtor]p2:
2932  //   A destructor is used to destroy objects of its class type. A
2933  //   destructor takes no parameters, and no return type can be
2934  //   specified for it (not even void). The address of a destructor
2935  //   shall not be taken. A destructor shall not be static. A
2936  //   destructor can be invoked for a const, volatile or const
2937  //   volatile object. A destructor shall not be declared const,
2938  //   volatile or const volatile (9.3.2).
2939  if (SC == SC_Static) {
2940    if (!D.isInvalidType())
2941      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2942        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2943        << SourceRange(D.getIdentifierLoc())
2944        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2945
2946    SC = SC_None;
2947  }
2948  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2949    // Destructors don't have return types, but the parser will
2950    // happily parse something like:
2951    //
2952    //   class X {
2953    //     float ~X();
2954    //   };
2955    //
2956    // The return type will be eliminated later.
2957    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2958      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2959      << SourceRange(D.getIdentifierLoc());
2960  }
2961
2962  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2963  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2964    if (FTI.TypeQuals & Qualifiers::Const)
2965      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2966        << "const" << SourceRange(D.getIdentifierLoc());
2967    if (FTI.TypeQuals & Qualifiers::Volatile)
2968      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2969        << "volatile" << SourceRange(D.getIdentifierLoc());
2970    if (FTI.TypeQuals & Qualifiers::Restrict)
2971      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2972        << "restrict" << SourceRange(D.getIdentifierLoc());
2973    D.setInvalidType();
2974  }
2975
2976  // Make sure we don't have any parameters.
2977  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2978    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2979
2980    // Delete the parameters.
2981    FTI.freeArgs();
2982    D.setInvalidType();
2983  }
2984
2985  // Make sure the destructor isn't variadic.
2986  if (FTI.isVariadic) {
2987    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2988    D.setInvalidType();
2989  }
2990
2991  // Rebuild the function type "R" without any type qualifiers or
2992  // parameters (in case any of the errors above fired) and with
2993  // "void" as the return type, since destructors don't have return
2994  // types.
2995  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2996  if (!Proto)
2997    return QualType();
2998
2999  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3000                                 Proto->hasExceptionSpec(),
3001                                 Proto->hasAnyExceptionSpec(),
3002                                 Proto->getNumExceptions(),
3003                                 Proto->exception_begin(),
3004                                 Proto->getExtInfo());
3005}
3006
3007/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3008/// well-formednes of the conversion function declarator @p D with
3009/// type @p R. If there are any errors in the declarator, this routine
3010/// will emit diagnostics and return true. Otherwise, it will return
3011/// false. Either way, the type @p R will be updated to reflect a
3012/// well-formed type for the conversion operator.
3013void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3014                                     StorageClass& SC) {
3015  // C++ [class.conv.fct]p1:
3016  //   Neither parameter types nor return type can be specified. The
3017  //   type of a conversion function (8.3.5) is "function taking no
3018  //   parameter returning conversion-type-id."
3019  if (SC == SC_Static) {
3020    if (!D.isInvalidType())
3021      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3022        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3023        << SourceRange(D.getIdentifierLoc());
3024    D.setInvalidType();
3025    SC = SC_None;
3026  }
3027
3028  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3029
3030  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3031    // Conversion functions don't have return types, but the parser will
3032    // happily parse something like:
3033    //
3034    //   class X {
3035    //     float operator bool();
3036    //   };
3037    //
3038    // The return type will be changed later anyway.
3039    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3040      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3041      << SourceRange(D.getIdentifierLoc());
3042    D.setInvalidType();
3043  }
3044
3045  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3046
3047  // Make sure we don't have any parameters.
3048  if (Proto->getNumArgs() > 0) {
3049    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3050
3051    // Delete the parameters.
3052    D.getTypeObject(0).Fun.freeArgs();
3053    D.setInvalidType();
3054  } else if (Proto->isVariadic()) {
3055    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3056    D.setInvalidType();
3057  }
3058
3059  // Diagnose "&operator bool()" and other such nonsense.  This
3060  // is actually a gcc extension which we don't support.
3061  if (Proto->getResultType() != ConvType) {
3062    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3063      << Proto->getResultType();
3064    D.setInvalidType();
3065    ConvType = Proto->getResultType();
3066  }
3067
3068  // C++ [class.conv.fct]p4:
3069  //   The conversion-type-id shall not represent a function type nor
3070  //   an array type.
3071  if (ConvType->isArrayType()) {
3072    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3073    ConvType = Context.getPointerType(ConvType);
3074    D.setInvalidType();
3075  } else if (ConvType->isFunctionType()) {
3076    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3077    ConvType = Context.getPointerType(ConvType);
3078    D.setInvalidType();
3079  }
3080
3081  // Rebuild the function type "R" without any parameters (in case any
3082  // of the errors above fired) and with the conversion type as the
3083  // return type.
3084  if (D.isInvalidType()) {
3085    R = Context.getFunctionType(ConvType, 0, 0, false,
3086                                Proto->getTypeQuals(),
3087                                Proto->hasExceptionSpec(),
3088                                Proto->hasAnyExceptionSpec(),
3089                                Proto->getNumExceptions(),
3090                                Proto->exception_begin(),
3091                                Proto->getExtInfo());
3092  }
3093
3094  // C++0x explicit conversion operators.
3095  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3096    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3097         diag::warn_explicit_conversion_functions)
3098      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3099}
3100
3101/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3102/// the declaration of the given C++ conversion function. This routine
3103/// is responsible for recording the conversion function in the C++
3104/// class, if possible.
3105Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3106  assert(Conversion && "Expected to receive a conversion function declaration");
3107
3108  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3109
3110  // Make sure we aren't redeclaring the conversion function.
3111  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3112
3113  // C++ [class.conv.fct]p1:
3114  //   [...] A conversion function is never used to convert a
3115  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3116  //   same object type (or a reference to it), to a (possibly
3117  //   cv-qualified) base class of that type (or a reference to it),
3118  //   or to (possibly cv-qualified) void.
3119  // FIXME: Suppress this warning if the conversion function ends up being a
3120  // virtual function that overrides a virtual function in a base class.
3121  QualType ClassType
3122    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3123  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3124    ConvType = ConvTypeRef->getPointeeType();
3125  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3126      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3127    /* Suppress diagnostics for instantiations. */;
3128  else if (ConvType->isRecordType()) {
3129    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3130    if (ConvType == ClassType)
3131      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3132        << ClassType;
3133    else if (IsDerivedFrom(ClassType, ConvType))
3134      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3135        <<  ClassType << ConvType;
3136  } else if (ConvType->isVoidType()) {
3137    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3138      << ClassType << ConvType;
3139  }
3140
3141  if (FunctionTemplateDecl *ConversionTemplate
3142                                = Conversion->getDescribedFunctionTemplate())
3143    return ConversionTemplate;
3144
3145  return Conversion;
3146}
3147
3148//===----------------------------------------------------------------------===//
3149// Namespace Handling
3150//===----------------------------------------------------------------------===//
3151
3152
3153
3154/// ActOnStartNamespaceDef - This is called at the start of a namespace
3155/// definition.
3156Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3157                                   SourceLocation InlineLoc,
3158                                   SourceLocation IdentLoc,
3159                                   IdentifierInfo *II,
3160                                   SourceLocation LBrace,
3161                                   AttributeList *AttrList) {
3162  // anonymous namespace starts at its left brace
3163  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3164    (II ? IdentLoc : LBrace) , II);
3165  Namespc->setLBracLoc(LBrace);
3166  Namespc->setInline(InlineLoc.isValid());
3167
3168  Scope *DeclRegionScope = NamespcScope->getParent();
3169
3170  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3171
3172  if (const VisibilityAttr *attr = Namespc->getAttr<VisibilityAttr>())
3173    PushVisibilityAttr(attr);
3174
3175  if (II) {
3176    // C++ [namespace.def]p2:
3177    // The identifier in an original-namespace-definition shall not have been
3178    // previously defined in the declarative region in which the
3179    // original-namespace-definition appears. The identifier in an
3180    // original-namespace-definition is the name of the namespace. Subsequently
3181    // in that declarative region, it is treated as an original-namespace-name.
3182
3183    NamedDecl *PrevDecl
3184      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3185                         ForRedeclaration);
3186
3187    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3188      // This is an extended namespace definition.
3189      if (Namespc->isInline() != OrigNS->isInline()) {
3190        // inline-ness must match
3191        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3192          << Namespc->isInline();
3193        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3194        Namespc->setInvalidDecl();
3195        // Recover by ignoring the new namespace's inline status.
3196        Namespc->setInline(OrigNS->isInline());
3197      }
3198
3199      // Attach this namespace decl to the chain of extended namespace
3200      // definitions.
3201      OrigNS->setNextNamespace(Namespc);
3202      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3203
3204      // Remove the previous declaration from the scope.
3205      if (DeclRegionScope->isDeclScope(OrigNS)) {
3206        IdResolver.RemoveDecl(OrigNS);
3207        DeclRegionScope->RemoveDecl(OrigNS);
3208      }
3209    } else if (PrevDecl) {
3210      // This is an invalid name redefinition.
3211      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3212       << Namespc->getDeclName();
3213      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3214      Namespc->setInvalidDecl();
3215      // Continue on to push Namespc as current DeclContext and return it.
3216    } else if (II->isStr("std") &&
3217               CurContext->getRedeclContext()->isTranslationUnit()) {
3218      // This is the first "real" definition of the namespace "std", so update
3219      // our cache of the "std" namespace to point at this definition.
3220      if (NamespaceDecl *StdNS = getStdNamespace()) {
3221        // We had already defined a dummy namespace "std". Link this new
3222        // namespace definition to the dummy namespace "std".
3223        StdNS->setNextNamespace(Namespc);
3224        StdNS->setLocation(IdentLoc);
3225        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3226      }
3227
3228      // Make our StdNamespace cache point at the first real definition of the
3229      // "std" namespace.
3230      StdNamespace = Namespc;
3231    }
3232
3233    PushOnScopeChains(Namespc, DeclRegionScope);
3234  } else {
3235    // Anonymous namespaces.
3236    assert(Namespc->isAnonymousNamespace());
3237
3238    // Link the anonymous namespace into its parent.
3239    NamespaceDecl *PrevDecl;
3240    DeclContext *Parent = CurContext->getRedeclContext();
3241    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3242      PrevDecl = TU->getAnonymousNamespace();
3243      TU->setAnonymousNamespace(Namespc);
3244    } else {
3245      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3246      PrevDecl = ND->getAnonymousNamespace();
3247      ND->setAnonymousNamespace(Namespc);
3248    }
3249
3250    // Link the anonymous namespace with its previous declaration.
3251    if (PrevDecl) {
3252      assert(PrevDecl->isAnonymousNamespace());
3253      assert(!PrevDecl->getNextNamespace());
3254      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3255      PrevDecl->setNextNamespace(Namespc);
3256
3257      if (Namespc->isInline() != PrevDecl->isInline()) {
3258        // inline-ness must match
3259        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3260          << Namespc->isInline();
3261        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3262        Namespc->setInvalidDecl();
3263        // Recover by ignoring the new namespace's inline status.
3264        Namespc->setInline(PrevDecl->isInline());
3265      }
3266    }
3267
3268    CurContext->addDecl(Namespc);
3269
3270    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3271    //   behaves as if it were replaced by
3272    //     namespace unique { /* empty body */ }
3273    //     using namespace unique;
3274    //     namespace unique { namespace-body }
3275    //   where all occurrences of 'unique' in a translation unit are
3276    //   replaced by the same identifier and this identifier differs
3277    //   from all other identifiers in the entire program.
3278
3279    // We just create the namespace with an empty name and then add an
3280    // implicit using declaration, just like the standard suggests.
3281    //
3282    // CodeGen enforces the "universally unique" aspect by giving all
3283    // declarations semantically contained within an anonymous
3284    // namespace internal linkage.
3285
3286    if (!PrevDecl) {
3287      UsingDirectiveDecl* UD
3288        = UsingDirectiveDecl::Create(Context, CurContext,
3289                                     /* 'using' */ LBrace,
3290                                     /* 'namespace' */ SourceLocation(),
3291                                     /* qualifier */ SourceRange(),
3292                                     /* NNS */ NULL,
3293                                     /* identifier */ SourceLocation(),
3294                                     Namespc,
3295                                     /* Ancestor */ CurContext);
3296      UD->setImplicit();
3297      CurContext->addDecl(UD);
3298    }
3299  }
3300
3301  // Although we could have an invalid decl (i.e. the namespace name is a
3302  // redefinition), push it as current DeclContext and try to continue parsing.
3303  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3304  // for the namespace has the declarations that showed up in that particular
3305  // namespace definition.
3306  PushDeclContext(NamespcScope, Namespc);
3307  return Namespc;
3308}
3309
3310/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3311/// is a namespace alias, returns the namespace it points to.
3312static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3313  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3314    return AD->getNamespace();
3315  return dyn_cast_or_null<NamespaceDecl>(D);
3316}
3317
3318/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3319/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3320void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3321  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3322  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3323  Namespc->setRBracLoc(RBrace);
3324  PopDeclContext();
3325  if (Namespc->hasAttr<VisibilityAttr>())
3326    PopPragmaVisibility();
3327}
3328
3329CXXRecordDecl *Sema::getStdBadAlloc() const {
3330  return cast_or_null<CXXRecordDecl>(
3331                                  StdBadAlloc.get(Context.getExternalSource()));
3332}
3333
3334NamespaceDecl *Sema::getStdNamespace() const {
3335  return cast_or_null<NamespaceDecl>(
3336                                 StdNamespace.get(Context.getExternalSource()));
3337}
3338
3339/// \brief Retrieve the special "std" namespace, which may require us to
3340/// implicitly define the namespace.
3341NamespaceDecl *Sema::getOrCreateStdNamespace() {
3342  if (!StdNamespace) {
3343    // The "std" namespace has not yet been defined, so build one implicitly.
3344    StdNamespace = NamespaceDecl::Create(Context,
3345                                         Context.getTranslationUnitDecl(),
3346                                         SourceLocation(),
3347                                         &PP.getIdentifierTable().get("std"));
3348    getStdNamespace()->setImplicit(true);
3349  }
3350
3351  return getStdNamespace();
3352}
3353
3354Decl *Sema::ActOnUsingDirective(Scope *S,
3355                                          SourceLocation UsingLoc,
3356                                          SourceLocation NamespcLoc,
3357                                          CXXScopeSpec &SS,
3358                                          SourceLocation IdentLoc,
3359                                          IdentifierInfo *NamespcName,
3360                                          AttributeList *AttrList) {
3361  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3362  assert(NamespcName && "Invalid NamespcName.");
3363  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3364  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3365
3366  UsingDirectiveDecl *UDir = 0;
3367  NestedNameSpecifier *Qualifier = 0;
3368  if (SS.isSet())
3369    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3370
3371  // Lookup namespace name.
3372  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3373  LookupParsedName(R, S, &SS);
3374  if (R.isAmbiguous())
3375    return 0;
3376
3377  if (R.empty()) {
3378    // Allow "using namespace std;" or "using namespace ::std;" even if
3379    // "std" hasn't been defined yet, for GCC compatibility.
3380    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3381        NamespcName->isStr("std")) {
3382      Diag(IdentLoc, diag::ext_using_undefined_std);
3383      R.addDecl(getOrCreateStdNamespace());
3384      R.resolveKind();
3385    }
3386    // Otherwise, attempt typo correction.
3387    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3388                                                       CTC_NoKeywords, 0)) {
3389      if (R.getAsSingle<NamespaceDecl>() ||
3390          R.getAsSingle<NamespaceAliasDecl>()) {
3391        if (DeclContext *DC = computeDeclContext(SS, false))
3392          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3393            << NamespcName << DC << Corrected << SS.getRange()
3394            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3395        else
3396          Diag(IdentLoc, diag::err_using_directive_suggest)
3397            << NamespcName << Corrected
3398            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3399        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3400          << Corrected;
3401
3402        NamespcName = Corrected.getAsIdentifierInfo();
3403      } else {
3404        R.clear();
3405        R.setLookupName(NamespcName);
3406      }
3407    }
3408  }
3409
3410  if (!R.empty()) {
3411    NamedDecl *Named = R.getFoundDecl();
3412    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3413        && "expected namespace decl");
3414    // C++ [namespace.udir]p1:
3415    //   A using-directive specifies that the names in the nominated
3416    //   namespace can be used in the scope in which the
3417    //   using-directive appears after the using-directive. During
3418    //   unqualified name lookup (3.4.1), the names appear as if they
3419    //   were declared in the nearest enclosing namespace which
3420    //   contains both the using-directive and the nominated
3421    //   namespace. [Note: in this context, "contains" means "contains
3422    //   directly or indirectly". ]
3423
3424    // Find enclosing context containing both using-directive and
3425    // nominated namespace.
3426    NamespaceDecl *NS = getNamespaceDecl(Named);
3427    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3428    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3429      CommonAncestor = CommonAncestor->getParent();
3430
3431    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3432                                      SS.getRange(),
3433                                      (NestedNameSpecifier *)SS.getScopeRep(),
3434                                      IdentLoc, Named, CommonAncestor);
3435    PushUsingDirective(S, UDir);
3436  } else {
3437    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3438  }
3439
3440  // FIXME: We ignore attributes for now.
3441  delete AttrList;
3442  return UDir;
3443}
3444
3445void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3446  // If scope has associated entity, then using directive is at namespace
3447  // or translation unit scope. We add UsingDirectiveDecls, into
3448  // it's lookup structure.
3449  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3450    Ctx->addDecl(UDir);
3451  else
3452    // Otherwise it is block-sope. using-directives will affect lookup
3453    // only to the end of scope.
3454    S->PushUsingDirective(UDir);
3455}
3456
3457
3458Decl *Sema::ActOnUsingDeclaration(Scope *S,
3459                                            AccessSpecifier AS,
3460                                            bool HasUsingKeyword,
3461                                            SourceLocation UsingLoc,
3462                                            CXXScopeSpec &SS,
3463                                            UnqualifiedId &Name,
3464                                            AttributeList *AttrList,
3465                                            bool IsTypeName,
3466                                            SourceLocation TypenameLoc) {
3467  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3468
3469  switch (Name.getKind()) {
3470  case UnqualifiedId::IK_Identifier:
3471  case UnqualifiedId::IK_OperatorFunctionId:
3472  case UnqualifiedId::IK_LiteralOperatorId:
3473  case UnqualifiedId::IK_ConversionFunctionId:
3474    break;
3475
3476  case UnqualifiedId::IK_ConstructorName:
3477  case UnqualifiedId::IK_ConstructorTemplateId:
3478    // C++0x inherited constructors.
3479    if (getLangOptions().CPlusPlus0x) break;
3480
3481    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3482      << SS.getRange();
3483    return 0;
3484
3485  case UnqualifiedId::IK_DestructorName:
3486    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3487      << SS.getRange();
3488    return 0;
3489
3490  case UnqualifiedId::IK_TemplateId:
3491    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3492      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3493    return 0;
3494  }
3495
3496  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3497  DeclarationName TargetName = TargetNameInfo.getName();
3498  if (!TargetName)
3499    return 0;
3500
3501  // Warn about using declarations.
3502  // TODO: store that the declaration was written without 'using' and
3503  // talk about access decls instead of using decls in the
3504  // diagnostics.
3505  if (!HasUsingKeyword) {
3506    UsingLoc = Name.getSourceRange().getBegin();
3507
3508    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3509      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3510  }
3511
3512  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3513                                        TargetNameInfo, AttrList,
3514                                        /* IsInstantiation */ false,
3515                                        IsTypeName, TypenameLoc);
3516  if (UD)
3517    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3518
3519  return UD;
3520}
3521
3522/// \brief Determine whether a using declaration considers the given
3523/// declarations as "equivalent", e.g., if they are redeclarations of
3524/// the same entity or are both typedefs of the same type.
3525static bool
3526IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3527                         bool &SuppressRedeclaration) {
3528  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3529    SuppressRedeclaration = false;
3530    return true;
3531  }
3532
3533  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3534    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3535      SuppressRedeclaration = true;
3536      return Context.hasSameType(TD1->getUnderlyingType(),
3537                                 TD2->getUnderlyingType());
3538    }
3539
3540  return false;
3541}
3542
3543
3544/// Determines whether to create a using shadow decl for a particular
3545/// decl, given the set of decls existing prior to this using lookup.
3546bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3547                                const LookupResult &Previous) {
3548  // Diagnose finding a decl which is not from a base class of the
3549  // current class.  We do this now because there are cases where this
3550  // function will silently decide not to build a shadow decl, which
3551  // will pre-empt further diagnostics.
3552  //
3553  // We don't need to do this in C++0x because we do the check once on
3554  // the qualifier.
3555  //
3556  // FIXME: diagnose the following if we care enough:
3557  //   struct A { int foo; };
3558  //   struct B : A { using A::foo; };
3559  //   template <class T> struct C : A {};
3560  //   template <class T> struct D : C<T> { using B::foo; } // <---
3561  // This is invalid (during instantiation) in C++03 because B::foo
3562  // resolves to the using decl in B, which is not a base class of D<T>.
3563  // We can't diagnose it immediately because C<T> is an unknown
3564  // specialization.  The UsingShadowDecl in D<T> then points directly
3565  // to A::foo, which will look well-formed when we instantiate.
3566  // The right solution is to not collapse the shadow-decl chain.
3567  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3568    DeclContext *OrigDC = Orig->getDeclContext();
3569
3570    // Handle enums and anonymous structs.
3571    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3572    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3573    while (OrigRec->isAnonymousStructOrUnion())
3574      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3575
3576    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3577      if (OrigDC == CurContext) {
3578        Diag(Using->getLocation(),
3579             diag::err_using_decl_nested_name_specifier_is_current_class)
3580          << Using->getNestedNameRange();
3581        Diag(Orig->getLocation(), diag::note_using_decl_target);
3582        return true;
3583      }
3584
3585      Diag(Using->getNestedNameRange().getBegin(),
3586           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3587        << Using->getTargetNestedNameDecl()
3588        << cast<CXXRecordDecl>(CurContext)
3589        << Using->getNestedNameRange();
3590      Diag(Orig->getLocation(), diag::note_using_decl_target);
3591      return true;
3592    }
3593  }
3594
3595  if (Previous.empty()) return false;
3596
3597  NamedDecl *Target = Orig;
3598  if (isa<UsingShadowDecl>(Target))
3599    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3600
3601  // If the target happens to be one of the previous declarations, we
3602  // don't have a conflict.
3603  //
3604  // FIXME: but we might be increasing its access, in which case we
3605  // should redeclare it.
3606  NamedDecl *NonTag = 0, *Tag = 0;
3607  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3608         I != E; ++I) {
3609    NamedDecl *D = (*I)->getUnderlyingDecl();
3610    bool Result;
3611    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3612      return Result;
3613
3614    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3615  }
3616
3617  if (Target->isFunctionOrFunctionTemplate()) {
3618    FunctionDecl *FD;
3619    if (isa<FunctionTemplateDecl>(Target))
3620      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3621    else
3622      FD = cast<FunctionDecl>(Target);
3623
3624    NamedDecl *OldDecl = 0;
3625    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3626    case Ovl_Overload:
3627      return false;
3628
3629    case Ovl_NonFunction:
3630      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3631      break;
3632
3633    // We found a decl with the exact signature.
3634    case Ovl_Match:
3635      // If we're in a record, we want to hide the target, so we
3636      // return true (without a diagnostic) to tell the caller not to
3637      // build a shadow decl.
3638      if (CurContext->isRecord())
3639        return true;
3640
3641      // If we're not in a record, this is an error.
3642      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3643      break;
3644    }
3645
3646    Diag(Target->getLocation(), diag::note_using_decl_target);
3647    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3648    return true;
3649  }
3650
3651  // Target is not a function.
3652
3653  if (isa<TagDecl>(Target)) {
3654    // No conflict between a tag and a non-tag.
3655    if (!Tag) return false;
3656
3657    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3658    Diag(Target->getLocation(), diag::note_using_decl_target);
3659    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3660    return true;
3661  }
3662
3663  // No conflict between a tag and a non-tag.
3664  if (!NonTag) return false;
3665
3666  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3667  Diag(Target->getLocation(), diag::note_using_decl_target);
3668  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3669  return true;
3670}
3671
3672/// Builds a shadow declaration corresponding to a 'using' declaration.
3673UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3674                                            UsingDecl *UD,
3675                                            NamedDecl *Orig) {
3676
3677  // If we resolved to another shadow declaration, just coalesce them.
3678  NamedDecl *Target = Orig;
3679  if (isa<UsingShadowDecl>(Target)) {
3680    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3681    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3682  }
3683
3684  UsingShadowDecl *Shadow
3685    = UsingShadowDecl::Create(Context, CurContext,
3686                              UD->getLocation(), UD, Target);
3687  UD->addShadowDecl(Shadow);
3688
3689  Shadow->setAccess(UD->getAccess());
3690  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3691    Shadow->setInvalidDecl();
3692
3693  if (S)
3694    PushOnScopeChains(Shadow, S);
3695  else
3696    CurContext->addDecl(Shadow);
3697
3698
3699  return Shadow;
3700}
3701
3702/// Hides a using shadow declaration.  This is required by the current
3703/// using-decl implementation when a resolvable using declaration in a
3704/// class is followed by a declaration which would hide or override
3705/// one or more of the using decl's targets; for example:
3706///
3707///   struct Base { void foo(int); };
3708///   struct Derived : Base {
3709///     using Base::foo;
3710///     void foo(int);
3711///   };
3712///
3713/// The governing language is C++03 [namespace.udecl]p12:
3714///
3715///   When a using-declaration brings names from a base class into a
3716///   derived class scope, member functions in the derived class
3717///   override and/or hide member functions with the same name and
3718///   parameter types in a base class (rather than conflicting).
3719///
3720/// There are two ways to implement this:
3721///   (1) optimistically create shadow decls when they're not hidden
3722///       by existing declarations, or
3723///   (2) don't create any shadow decls (or at least don't make them
3724///       visible) until we've fully parsed/instantiated the class.
3725/// The problem with (1) is that we might have to retroactively remove
3726/// a shadow decl, which requires several O(n) operations because the
3727/// decl structures are (very reasonably) not designed for removal.
3728/// (2) avoids this but is very fiddly and phase-dependent.
3729void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3730  if (Shadow->getDeclName().getNameKind() ==
3731        DeclarationName::CXXConversionFunctionName)
3732    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3733
3734  // Remove it from the DeclContext...
3735  Shadow->getDeclContext()->removeDecl(Shadow);
3736
3737  // ...and the scope, if applicable...
3738  if (S) {
3739    S->RemoveDecl(Shadow);
3740    IdResolver.RemoveDecl(Shadow);
3741  }
3742
3743  // ...and the using decl.
3744  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3745
3746  // TODO: complain somehow if Shadow was used.  It shouldn't
3747  // be possible for this to happen, because...?
3748}
3749
3750/// Builds a using declaration.
3751///
3752/// \param IsInstantiation - Whether this call arises from an
3753///   instantiation of an unresolved using declaration.  We treat
3754///   the lookup differently for these declarations.
3755NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3756                                       SourceLocation UsingLoc,
3757                                       CXXScopeSpec &SS,
3758                                       const DeclarationNameInfo &NameInfo,
3759                                       AttributeList *AttrList,
3760                                       bool IsInstantiation,
3761                                       bool IsTypeName,
3762                                       SourceLocation TypenameLoc) {
3763  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3764  SourceLocation IdentLoc = NameInfo.getLoc();
3765  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3766
3767  // FIXME: We ignore attributes for now.
3768  delete AttrList;
3769
3770  if (SS.isEmpty()) {
3771    Diag(IdentLoc, diag::err_using_requires_qualname);
3772    return 0;
3773  }
3774
3775  // Do the redeclaration lookup in the current scope.
3776  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
3777                        ForRedeclaration);
3778  Previous.setHideTags(false);
3779  if (S) {
3780    LookupName(Previous, S);
3781
3782    // It is really dumb that we have to do this.
3783    LookupResult::Filter F = Previous.makeFilter();
3784    while (F.hasNext()) {
3785      NamedDecl *D = F.next();
3786      if (!isDeclInScope(D, CurContext, S))
3787        F.erase();
3788    }
3789    F.done();
3790  } else {
3791    assert(IsInstantiation && "no scope in non-instantiation");
3792    assert(CurContext->isRecord() && "scope not record in instantiation");
3793    LookupQualifiedName(Previous, CurContext);
3794  }
3795
3796  NestedNameSpecifier *NNS =
3797    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3798
3799  // Check for invalid redeclarations.
3800  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3801    return 0;
3802
3803  // Check for bad qualifiers.
3804  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3805    return 0;
3806
3807  DeclContext *LookupContext = computeDeclContext(SS);
3808  NamedDecl *D;
3809  if (!LookupContext) {
3810    if (IsTypeName) {
3811      // FIXME: not all declaration name kinds are legal here
3812      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3813                                              UsingLoc, TypenameLoc,
3814                                              SS.getRange(), NNS,
3815                                              IdentLoc, NameInfo.getName());
3816    } else {
3817      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3818                                           UsingLoc, SS.getRange(),
3819                                           NNS, NameInfo);
3820    }
3821  } else {
3822    D = UsingDecl::Create(Context, CurContext,
3823                          SS.getRange(), UsingLoc, NNS, NameInfo,
3824                          IsTypeName);
3825  }
3826  D->setAccess(AS);
3827  CurContext->addDecl(D);
3828
3829  if (!LookupContext) return D;
3830  UsingDecl *UD = cast<UsingDecl>(D);
3831
3832  if (RequireCompleteDeclContext(SS, LookupContext)) {
3833    UD->setInvalidDecl();
3834    return UD;
3835  }
3836
3837  // Look up the target name.
3838
3839  LookupResult R(*this, NameInfo, LookupOrdinaryName);
3840
3841  // Unlike most lookups, we don't always want to hide tag
3842  // declarations: tag names are visible through the using declaration
3843  // even if hidden by ordinary names, *except* in a dependent context
3844  // where it's important for the sanity of two-phase lookup.
3845  if (!IsInstantiation)
3846    R.setHideTags(false);
3847
3848  LookupQualifiedName(R, LookupContext);
3849
3850  if (R.empty()) {
3851    Diag(IdentLoc, diag::err_no_member)
3852      << NameInfo.getName() << LookupContext << SS.getRange();
3853    UD->setInvalidDecl();
3854    return UD;
3855  }
3856
3857  if (R.isAmbiguous()) {
3858    UD->setInvalidDecl();
3859    return UD;
3860  }
3861
3862  if (IsTypeName) {
3863    // If we asked for a typename and got a non-type decl, error out.
3864    if (!R.getAsSingle<TypeDecl>()) {
3865      Diag(IdentLoc, diag::err_using_typename_non_type);
3866      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3867        Diag((*I)->getUnderlyingDecl()->getLocation(),
3868             diag::note_using_decl_target);
3869      UD->setInvalidDecl();
3870      return UD;
3871    }
3872  } else {
3873    // If we asked for a non-typename and we got a type, error out,
3874    // but only if this is an instantiation of an unresolved using
3875    // decl.  Otherwise just silently find the type name.
3876    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3877      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3878      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3879      UD->setInvalidDecl();
3880      return UD;
3881    }
3882  }
3883
3884  // C++0x N2914 [namespace.udecl]p6:
3885  // A using-declaration shall not name a namespace.
3886  if (R.getAsSingle<NamespaceDecl>()) {
3887    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3888      << SS.getRange();
3889    UD->setInvalidDecl();
3890    return UD;
3891  }
3892
3893  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3894    if (!CheckUsingShadowDecl(UD, *I, Previous))
3895      BuildUsingShadowDecl(S, UD, *I);
3896  }
3897
3898  return UD;
3899}
3900
3901/// Checks that the given using declaration is not an invalid
3902/// redeclaration.  Note that this is checking only for the using decl
3903/// itself, not for any ill-formedness among the UsingShadowDecls.
3904bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3905                                       bool isTypeName,
3906                                       const CXXScopeSpec &SS,
3907                                       SourceLocation NameLoc,
3908                                       const LookupResult &Prev) {
3909  // C++03 [namespace.udecl]p8:
3910  // C++0x [namespace.udecl]p10:
3911  //   A using-declaration is a declaration and can therefore be used
3912  //   repeatedly where (and only where) multiple declarations are
3913  //   allowed.
3914  //
3915  // That's in non-member contexts.
3916  if (!CurContext->getRedeclContext()->isRecord())
3917    return false;
3918
3919  NestedNameSpecifier *Qual
3920    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3921
3922  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3923    NamedDecl *D = *I;
3924
3925    bool DTypename;
3926    NestedNameSpecifier *DQual;
3927    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3928      DTypename = UD->isTypeName();
3929      DQual = UD->getTargetNestedNameDecl();
3930    } else if (UnresolvedUsingValueDecl *UD
3931                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3932      DTypename = false;
3933      DQual = UD->getTargetNestedNameSpecifier();
3934    } else if (UnresolvedUsingTypenameDecl *UD
3935                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3936      DTypename = true;
3937      DQual = UD->getTargetNestedNameSpecifier();
3938    } else continue;
3939
3940    // using decls differ if one says 'typename' and the other doesn't.
3941    // FIXME: non-dependent using decls?
3942    if (isTypeName != DTypename) continue;
3943
3944    // using decls differ if they name different scopes (but note that
3945    // template instantiation can cause this check to trigger when it
3946    // didn't before instantiation).
3947    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3948        Context.getCanonicalNestedNameSpecifier(DQual))
3949      continue;
3950
3951    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3952    Diag(D->getLocation(), diag::note_using_decl) << 1;
3953    return true;
3954  }
3955
3956  return false;
3957}
3958
3959
3960/// Checks that the given nested-name qualifier used in a using decl
3961/// in the current context is appropriately related to the current
3962/// scope.  If an error is found, diagnoses it and returns true.
3963bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3964                                   const CXXScopeSpec &SS,
3965                                   SourceLocation NameLoc) {
3966  DeclContext *NamedContext = computeDeclContext(SS);
3967
3968  if (!CurContext->isRecord()) {
3969    // C++03 [namespace.udecl]p3:
3970    // C++0x [namespace.udecl]p8:
3971    //   A using-declaration for a class member shall be a member-declaration.
3972
3973    // If we weren't able to compute a valid scope, it must be a
3974    // dependent class scope.
3975    if (!NamedContext || NamedContext->isRecord()) {
3976      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3977        << SS.getRange();
3978      return true;
3979    }
3980
3981    // Otherwise, everything is known to be fine.
3982    return false;
3983  }
3984
3985  // The current scope is a record.
3986
3987  // If the named context is dependent, we can't decide much.
3988  if (!NamedContext) {
3989    // FIXME: in C++0x, we can diagnose if we can prove that the
3990    // nested-name-specifier does not refer to a base class, which is
3991    // still possible in some cases.
3992
3993    // Otherwise we have to conservatively report that things might be
3994    // okay.
3995    return false;
3996  }
3997
3998  if (!NamedContext->isRecord()) {
3999    // Ideally this would point at the last name in the specifier,
4000    // but we don't have that level of source info.
4001    Diag(SS.getRange().getBegin(),
4002         diag::err_using_decl_nested_name_specifier_is_not_class)
4003      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4004    return true;
4005  }
4006
4007  if (getLangOptions().CPlusPlus0x) {
4008    // C++0x [namespace.udecl]p3:
4009    //   In a using-declaration used as a member-declaration, the
4010    //   nested-name-specifier shall name a base class of the class
4011    //   being defined.
4012
4013    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4014                                 cast<CXXRecordDecl>(NamedContext))) {
4015      if (CurContext == NamedContext) {
4016        Diag(NameLoc,
4017             diag::err_using_decl_nested_name_specifier_is_current_class)
4018          << SS.getRange();
4019        return true;
4020      }
4021
4022      Diag(SS.getRange().getBegin(),
4023           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4024        << (NestedNameSpecifier*) SS.getScopeRep()
4025        << cast<CXXRecordDecl>(CurContext)
4026        << SS.getRange();
4027      return true;
4028    }
4029
4030    return false;
4031  }
4032
4033  // C++03 [namespace.udecl]p4:
4034  //   A using-declaration used as a member-declaration shall refer
4035  //   to a member of a base class of the class being defined [etc.].
4036
4037  // Salient point: SS doesn't have to name a base class as long as
4038  // lookup only finds members from base classes.  Therefore we can
4039  // diagnose here only if we can prove that that can't happen,
4040  // i.e. if the class hierarchies provably don't intersect.
4041
4042  // TODO: it would be nice if "definitely valid" results were cached
4043  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4044  // need to be repeated.
4045
4046  struct UserData {
4047    llvm::DenseSet<const CXXRecordDecl*> Bases;
4048
4049    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4050      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4051      Data->Bases.insert(Base);
4052      return true;
4053    }
4054
4055    bool hasDependentBases(const CXXRecordDecl *Class) {
4056      return !Class->forallBases(collect, this);
4057    }
4058
4059    /// Returns true if the base is dependent or is one of the
4060    /// accumulated base classes.
4061    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4062      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4063      return !Data->Bases.count(Base);
4064    }
4065
4066    bool mightShareBases(const CXXRecordDecl *Class) {
4067      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4068    }
4069  };
4070
4071  UserData Data;
4072
4073  // Returns false if we find a dependent base.
4074  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4075    return false;
4076
4077  // Returns false if the class has a dependent base or if it or one
4078  // of its bases is present in the base set of the current context.
4079  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4080    return false;
4081
4082  Diag(SS.getRange().getBegin(),
4083       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4084    << (NestedNameSpecifier*) SS.getScopeRep()
4085    << cast<CXXRecordDecl>(CurContext)
4086    << SS.getRange();
4087
4088  return true;
4089}
4090
4091Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4092                                             SourceLocation NamespaceLoc,
4093                                             SourceLocation AliasLoc,
4094                                             IdentifierInfo *Alias,
4095                                             CXXScopeSpec &SS,
4096                                             SourceLocation IdentLoc,
4097                                             IdentifierInfo *Ident) {
4098
4099  // Lookup the namespace name.
4100  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4101  LookupParsedName(R, S, &SS);
4102
4103  // Check if we have a previous declaration with the same name.
4104  NamedDecl *PrevDecl
4105    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4106                       ForRedeclaration);
4107  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4108    PrevDecl = 0;
4109
4110  if (PrevDecl) {
4111    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4112      // We already have an alias with the same name that points to the same
4113      // namespace, so don't create a new one.
4114      // FIXME: At some point, we'll want to create the (redundant)
4115      // declaration to maintain better source information.
4116      if (!R.isAmbiguous() && !R.empty() &&
4117          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4118        return 0;
4119    }
4120
4121    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4122      diag::err_redefinition_different_kind;
4123    Diag(AliasLoc, DiagID) << Alias;
4124    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4125    return 0;
4126  }
4127
4128  if (R.isAmbiguous())
4129    return 0;
4130
4131  if (R.empty()) {
4132    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4133                                                CTC_NoKeywords, 0)) {
4134      if (R.getAsSingle<NamespaceDecl>() ||
4135          R.getAsSingle<NamespaceAliasDecl>()) {
4136        if (DeclContext *DC = computeDeclContext(SS, false))
4137          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4138            << Ident << DC << Corrected << SS.getRange()
4139            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4140        else
4141          Diag(IdentLoc, diag::err_using_directive_suggest)
4142            << Ident << Corrected
4143            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4144
4145        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4146          << Corrected;
4147
4148        Ident = Corrected.getAsIdentifierInfo();
4149      } else {
4150        R.clear();
4151        R.setLookupName(Ident);
4152      }
4153    }
4154
4155    if (R.empty()) {
4156      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4157      return 0;
4158    }
4159  }
4160
4161  NamespaceAliasDecl *AliasDecl =
4162    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4163                               Alias, SS.getRange(),
4164                               (NestedNameSpecifier *)SS.getScopeRep(),
4165                               IdentLoc, R.getFoundDecl());
4166
4167  PushOnScopeChains(AliasDecl, S);
4168  return AliasDecl;
4169}
4170
4171namespace {
4172  /// \brief Scoped object used to handle the state changes required in Sema
4173  /// to implicitly define the body of a C++ member function;
4174  class ImplicitlyDefinedFunctionScope {
4175    Sema &S;
4176    DeclContext *PreviousContext;
4177
4178  public:
4179    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4180      : S(S), PreviousContext(S.CurContext)
4181    {
4182      S.CurContext = Method;
4183      S.PushFunctionScope();
4184      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4185    }
4186
4187    ~ImplicitlyDefinedFunctionScope() {
4188      S.PopExpressionEvaluationContext();
4189      S.PopFunctionOrBlockScope();
4190      S.CurContext = PreviousContext;
4191    }
4192  };
4193}
4194
4195static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4196                                                       CXXRecordDecl *D) {
4197  ASTContext &Context = Self.Context;
4198  QualType ClassType = Context.getTypeDeclType(D);
4199  DeclarationName ConstructorName
4200    = Context.DeclarationNames.getCXXConstructorName(
4201                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4202
4203  DeclContext::lookup_const_iterator Con, ConEnd;
4204  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4205       Con != ConEnd; ++Con) {
4206    // FIXME: In C++0x, a constructor template can be a default constructor.
4207    if (isa<FunctionTemplateDecl>(*Con))
4208      continue;
4209
4210    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4211    if (Constructor->isDefaultConstructor())
4212      return Constructor;
4213  }
4214  return 0;
4215}
4216
4217CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4218                                                     CXXRecordDecl *ClassDecl) {
4219  // C++ [class.ctor]p5:
4220  //   A default constructor for a class X is a constructor of class X
4221  //   that can be called without an argument. If there is no
4222  //   user-declared constructor for class X, a default constructor is
4223  //   implicitly declared. An implicitly-declared default constructor
4224  //   is an inline public member of its class.
4225  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4226         "Should not build implicit default constructor!");
4227
4228  // C++ [except.spec]p14:
4229  //   An implicitly declared special member function (Clause 12) shall have an
4230  //   exception-specification. [...]
4231  ImplicitExceptionSpecification ExceptSpec(Context);
4232
4233  // Direct base-class destructors.
4234  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4235                                       BEnd = ClassDecl->bases_end();
4236       B != BEnd; ++B) {
4237    if (B->isVirtual()) // Handled below.
4238      continue;
4239
4240    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4241      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4242      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4243        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4244      else if (CXXConstructorDecl *Constructor
4245                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4246        ExceptSpec.CalledDecl(Constructor);
4247    }
4248  }
4249
4250  // Virtual base-class destructors.
4251  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4252                                       BEnd = ClassDecl->vbases_end();
4253       B != BEnd; ++B) {
4254    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4255      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4256      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4257        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4258      else if (CXXConstructorDecl *Constructor
4259                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4260        ExceptSpec.CalledDecl(Constructor);
4261    }
4262  }
4263
4264  // Field destructors.
4265  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4266                               FEnd = ClassDecl->field_end();
4267       F != FEnd; ++F) {
4268    if (const RecordType *RecordTy
4269              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4270      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4271      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4272        ExceptSpec.CalledDecl(
4273                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4274      else if (CXXConstructorDecl *Constructor
4275                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4276        ExceptSpec.CalledDecl(Constructor);
4277    }
4278  }
4279
4280
4281  // Create the actual constructor declaration.
4282  CanQualType ClassType
4283    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4284  DeclarationName Name
4285    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4286  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4287  CXXConstructorDecl *DefaultCon
4288    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4289                                 Context.getFunctionType(Context.VoidTy,
4290                                                         0, 0, false, 0,
4291                                       ExceptSpec.hasExceptionSpecification(),
4292                                     ExceptSpec.hasAnyExceptionSpecification(),
4293                                                         ExceptSpec.size(),
4294                                                         ExceptSpec.data(),
4295                                                       FunctionType::ExtInfo()),
4296                                 /*TInfo=*/0,
4297                                 /*isExplicit=*/false,
4298                                 /*isInline=*/true,
4299                                 /*isImplicitlyDeclared=*/true);
4300  DefaultCon->setAccess(AS_public);
4301  DefaultCon->setImplicit();
4302  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4303
4304  // Note that we have declared this constructor.
4305  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4306
4307  if (Scope *S = getScopeForContext(ClassDecl))
4308    PushOnScopeChains(DefaultCon, S, false);
4309  ClassDecl->addDecl(DefaultCon);
4310
4311  return DefaultCon;
4312}
4313
4314void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4315                                            CXXConstructorDecl *Constructor) {
4316  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4317          !Constructor->isUsed(false)) &&
4318    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4319
4320  CXXRecordDecl *ClassDecl = Constructor->getParent();
4321  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4322
4323  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4324  ErrorTrap Trap(*this);
4325  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4326      Trap.hasErrorOccurred()) {
4327    Diag(CurrentLocation, diag::note_member_synthesized_at)
4328      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4329    Constructor->setInvalidDecl();
4330    return;
4331  }
4332
4333  SourceLocation Loc = Constructor->getLocation();
4334  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4335
4336  Constructor->setUsed();
4337  MarkVTableUsed(CurrentLocation, ClassDecl);
4338}
4339
4340CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4341  // C++ [class.dtor]p2:
4342  //   If a class has no user-declared destructor, a destructor is
4343  //   declared implicitly. An implicitly-declared destructor is an
4344  //   inline public member of its class.
4345
4346  // C++ [except.spec]p14:
4347  //   An implicitly declared special member function (Clause 12) shall have
4348  //   an exception-specification.
4349  ImplicitExceptionSpecification ExceptSpec(Context);
4350
4351  // Direct base-class destructors.
4352  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4353                                       BEnd = ClassDecl->bases_end();
4354       B != BEnd; ++B) {
4355    if (B->isVirtual()) // Handled below.
4356      continue;
4357
4358    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4359      ExceptSpec.CalledDecl(
4360                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4361  }
4362
4363  // Virtual base-class destructors.
4364  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4365                                       BEnd = ClassDecl->vbases_end();
4366       B != BEnd; ++B) {
4367    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4368      ExceptSpec.CalledDecl(
4369                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4370  }
4371
4372  // Field destructors.
4373  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4374                               FEnd = ClassDecl->field_end();
4375       F != FEnd; ++F) {
4376    if (const RecordType *RecordTy
4377        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4378      ExceptSpec.CalledDecl(
4379                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4380  }
4381
4382  // Create the actual destructor declaration.
4383  QualType Ty = Context.getFunctionType(Context.VoidTy,
4384                                        0, 0, false, 0,
4385                                        ExceptSpec.hasExceptionSpecification(),
4386                                    ExceptSpec.hasAnyExceptionSpecification(),
4387                                        ExceptSpec.size(),
4388                                        ExceptSpec.data(),
4389                                        FunctionType::ExtInfo());
4390
4391  CanQualType ClassType
4392    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4393  DeclarationName Name
4394    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4395  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4396  CXXDestructorDecl *Destructor
4397    = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty,
4398                                /*isInline=*/true,
4399                                /*isImplicitlyDeclared=*/true);
4400  Destructor->setAccess(AS_public);
4401  Destructor->setImplicit();
4402  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4403
4404  // Note that we have declared this destructor.
4405  ++ASTContext::NumImplicitDestructorsDeclared;
4406
4407  // Introduce this destructor into its scope.
4408  if (Scope *S = getScopeForContext(ClassDecl))
4409    PushOnScopeChains(Destructor, S, false);
4410  ClassDecl->addDecl(Destructor);
4411
4412  // This could be uniqued if it ever proves significant.
4413  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4414
4415  AddOverriddenMethods(ClassDecl, Destructor);
4416
4417  return Destructor;
4418}
4419
4420void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4421                                    CXXDestructorDecl *Destructor) {
4422  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4423         "DefineImplicitDestructor - call it for implicit default dtor");
4424  CXXRecordDecl *ClassDecl = Destructor->getParent();
4425  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4426
4427  if (Destructor->isInvalidDecl())
4428    return;
4429
4430  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4431
4432  ErrorTrap Trap(*this);
4433  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4434                                         Destructor->getParent());
4435
4436  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4437    Diag(CurrentLocation, diag::note_member_synthesized_at)
4438      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4439
4440    Destructor->setInvalidDecl();
4441    return;
4442  }
4443
4444  SourceLocation Loc = Destructor->getLocation();
4445  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4446
4447  Destructor->setUsed();
4448  MarkVTableUsed(CurrentLocation, ClassDecl);
4449}
4450
4451/// \brief Builds a statement that copies the given entity from \p From to
4452/// \c To.
4453///
4454/// This routine is used to copy the members of a class with an
4455/// implicitly-declared copy assignment operator. When the entities being
4456/// copied are arrays, this routine builds for loops to copy them.
4457///
4458/// \param S The Sema object used for type-checking.
4459///
4460/// \param Loc The location where the implicit copy is being generated.
4461///
4462/// \param T The type of the expressions being copied. Both expressions must
4463/// have this type.
4464///
4465/// \param To The expression we are copying to.
4466///
4467/// \param From The expression we are copying from.
4468///
4469/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4470/// Otherwise, it's a non-static member subobject.
4471///
4472/// \param Depth Internal parameter recording the depth of the recursion.
4473///
4474/// \returns A statement or a loop that copies the expressions.
4475static StmtResult
4476BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4477                      Expr *To, Expr *From,
4478                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4479  // C++0x [class.copy]p30:
4480  //   Each subobject is assigned in the manner appropriate to its type:
4481  //
4482  //     - if the subobject is of class type, the copy assignment operator
4483  //       for the class is used (as if by explicit qualification; that is,
4484  //       ignoring any possible virtual overriding functions in more derived
4485  //       classes);
4486  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4487    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4488
4489    // Look for operator=.
4490    DeclarationName Name
4491      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4492    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4493    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4494
4495    // Filter out any result that isn't a copy-assignment operator.
4496    LookupResult::Filter F = OpLookup.makeFilter();
4497    while (F.hasNext()) {
4498      NamedDecl *D = F.next();
4499      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4500        if (Method->isCopyAssignmentOperator())
4501          continue;
4502
4503      F.erase();
4504    }
4505    F.done();
4506
4507    // Suppress the protected check (C++ [class.protected]) for each of the
4508    // assignment operators we found. This strange dance is required when
4509    // we're assigning via a base classes's copy-assignment operator. To
4510    // ensure that we're getting the right base class subobject (without
4511    // ambiguities), we need to cast "this" to that subobject type; to
4512    // ensure that we don't go through the virtual call mechanism, we need
4513    // to qualify the operator= name with the base class (see below). However,
4514    // this means that if the base class has a protected copy assignment
4515    // operator, the protected member access check will fail. So, we
4516    // rewrite "protected" access to "public" access in this case, since we
4517    // know by construction that we're calling from a derived class.
4518    if (CopyingBaseSubobject) {
4519      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4520           L != LEnd; ++L) {
4521        if (L.getAccess() == AS_protected)
4522          L.setAccess(AS_public);
4523      }
4524    }
4525
4526    // Create the nested-name-specifier that will be used to qualify the
4527    // reference to operator=; this is required to suppress the virtual
4528    // call mechanism.
4529    CXXScopeSpec SS;
4530    SS.setRange(Loc);
4531    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4532                                               T.getTypePtr()));
4533
4534    // Create the reference to operator=.
4535    ExprResult OpEqualRef
4536      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
4537                                   /*FirstQualifierInScope=*/0, OpLookup,
4538                                   /*TemplateArgs=*/0,
4539                                   /*SuppressQualifierCheck=*/true);
4540    if (OpEqualRef.isInvalid())
4541      return StmtError();
4542
4543    // Build the call to the assignment operator.
4544
4545    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4546                                                  OpEqualRef.takeAs<Expr>(),
4547                                                  Loc, &From, 1, Loc);
4548    if (Call.isInvalid())
4549      return StmtError();
4550
4551    return S.Owned(Call.takeAs<Stmt>());
4552  }
4553
4554  //     - if the subobject is of scalar type, the built-in assignment
4555  //       operator is used.
4556  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4557  if (!ArrayTy) {
4558    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
4559    if (Assignment.isInvalid())
4560      return StmtError();
4561
4562    return S.Owned(Assignment.takeAs<Stmt>());
4563  }
4564
4565  //     - if the subobject is an array, each element is assigned, in the
4566  //       manner appropriate to the element type;
4567
4568  // Construct a loop over the array bounds, e.g.,
4569  //
4570  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4571  //
4572  // that will copy each of the array elements.
4573  QualType SizeType = S.Context.getSizeType();
4574
4575  // Create the iteration variable.
4576  IdentifierInfo *IterationVarName = 0;
4577  {
4578    llvm::SmallString<8> Str;
4579    llvm::raw_svector_ostream OS(Str);
4580    OS << "__i" << Depth;
4581    IterationVarName = &S.Context.Idents.get(OS.str());
4582  }
4583  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4584                                          IterationVarName, SizeType,
4585                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4586                                          SC_None, SC_None);
4587
4588  // Initialize the iteration variable to zero.
4589  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4590  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
4591
4592  // Create a reference to the iteration variable; we'll use this several
4593  // times throughout.
4594  Expr *IterationVarRef
4595    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4596  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4597
4598  // Create the DeclStmt that holds the iteration variable.
4599  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4600
4601  // Create the comparison against the array bound.
4602  llvm::APInt Upper = ArrayTy->getSize();
4603  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4604  Expr *Comparison
4605    = new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4606                           IntegerLiteral::Create(S.Context,
4607                                                  Upper, SizeType, Loc),
4608                                                  BO_NE, S.Context.BoolTy, Loc);
4609
4610  // Create the pre-increment of the iteration variable.
4611  Expr *Increment
4612    = new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4613                                    UO_PreInc,
4614                                    SizeType, Loc);
4615
4616  // Subscript the "from" and "to" expressions with the iteration variable.
4617  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
4618                                                         IterationVarRef, Loc));
4619  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
4620                                                       IterationVarRef, Loc));
4621
4622  // Build the copy for an individual element of the array.
4623  StmtResult Copy = BuildSingleCopyAssign(S, Loc,
4624                                                ArrayTy->getElementType(),
4625                                                To, From,
4626                                                CopyingBaseSubobject, Depth+1);
4627  if (Copy.isInvalid())
4628    return StmtError();
4629
4630  // Construct the loop that copies all elements of this array.
4631  return S.ActOnForStmt(Loc, Loc, InitStmt,
4632                        S.MakeFullExpr(Comparison),
4633                        0, S.MakeFullExpr(Increment),
4634                        Loc, Copy.take());
4635}
4636
4637/// \brief Determine whether the given class has a copy assignment operator
4638/// that accepts a const-qualified argument.
4639static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4640  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4641
4642  if (!Class->hasDeclaredCopyAssignment())
4643    S.DeclareImplicitCopyAssignment(Class);
4644
4645  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4646  DeclarationName OpName
4647    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4648
4649  DeclContext::lookup_const_iterator Op, OpEnd;
4650  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4651    // C++ [class.copy]p9:
4652    //   A user-declared copy assignment operator is a non-static non-template
4653    //   member function of class X with exactly one parameter of type X, X&,
4654    //   const X&, volatile X& or const volatile X&.
4655    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4656    if (!Method)
4657      continue;
4658
4659    if (Method->isStatic())
4660      continue;
4661    if (Method->getPrimaryTemplate())
4662      continue;
4663    const FunctionProtoType *FnType =
4664    Method->getType()->getAs<FunctionProtoType>();
4665    assert(FnType && "Overloaded operator has no prototype.");
4666    // Don't assert on this; an invalid decl might have been left in the AST.
4667    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4668      continue;
4669    bool AcceptsConst = true;
4670    QualType ArgType = FnType->getArgType(0);
4671    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4672      ArgType = Ref->getPointeeType();
4673      // Is it a non-const lvalue reference?
4674      if (!ArgType.isConstQualified())
4675        AcceptsConst = false;
4676    }
4677    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4678      continue;
4679
4680    // We have a single argument of type cv X or cv X&, i.e. we've found the
4681    // copy assignment operator. Return whether it accepts const arguments.
4682    return AcceptsConst;
4683  }
4684  assert(Class->isInvalidDecl() &&
4685         "No copy assignment operator declared in valid code.");
4686  return false;
4687}
4688
4689CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4690  // Note: The following rules are largely analoguous to the copy
4691  // constructor rules. Note that virtual bases are not taken into account
4692  // for determining the argument type of the operator. Note also that
4693  // operators taking an object instead of a reference are allowed.
4694
4695
4696  // C++ [class.copy]p10:
4697  //   If the class definition does not explicitly declare a copy
4698  //   assignment operator, one is declared implicitly.
4699  //   The implicitly-defined copy assignment operator for a class X
4700  //   will have the form
4701  //
4702  //       X& X::operator=(const X&)
4703  //
4704  //   if
4705  bool HasConstCopyAssignment = true;
4706
4707  //       -- each direct base class B of X has a copy assignment operator
4708  //          whose parameter is of type const B&, const volatile B& or B,
4709  //          and
4710  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4711                                       BaseEnd = ClassDecl->bases_end();
4712       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4713    assert(!Base->getType()->isDependentType() &&
4714           "Cannot generate implicit members for class with dependent bases.");
4715    const CXXRecordDecl *BaseClassDecl
4716      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4717    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4718  }
4719
4720  //       -- for all the nonstatic data members of X that are of a class
4721  //          type M (or array thereof), each such class type has a copy
4722  //          assignment operator whose parameter is of type const M&,
4723  //          const volatile M& or M.
4724  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4725                                  FieldEnd = ClassDecl->field_end();
4726       HasConstCopyAssignment && Field != FieldEnd;
4727       ++Field) {
4728    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4729    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4730      const CXXRecordDecl *FieldClassDecl
4731        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4732      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4733    }
4734  }
4735
4736  //   Otherwise, the implicitly declared copy assignment operator will
4737  //   have the form
4738  //
4739  //       X& X::operator=(X&)
4740  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4741  QualType RetType = Context.getLValueReferenceType(ArgType);
4742  if (HasConstCopyAssignment)
4743    ArgType = ArgType.withConst();
4744  ArgType = Context.getLValueReferenceType(ArgType);
4745
4746  // C++ [except.spec]p14:
4747  //   An implicitly declared special member function (Clause 12) shall have an
4748  //   exception-specification. [...]
4749  ImplicitExceptionSpecification ExceptSpec(Context);
4750  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4751                                       BaseEnd = ClassDecl->bases_end();
4752       Base != BaseEnd; ++Base) {
4753    CXXRecordDecl *BaseClassDecl
4754      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4755
4756    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4757      DeclareImplicitCopyAssignment(BaseClassDecl);
4758
4759    if (CXXMethodDecl *CopyAssign
4760           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4761      ExceptSpec.CalledDecl(CopyAssign);
4762  }
4763  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4764                                  FieldEnd = ClassDecl->field_end();
4765       Field != FieldEnd;
4766       ++Field) {
4767    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4768    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4769      CXXRecordDecl *FieldClassDecl
4770        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4771
4772      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4773        DeclareImplicitCopyAssignment(FieldClassDecl);
4774
4775      if (CXXMethodDecl *CopyAssign
4776            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4777        ExceptSpec.CalledDecl(CopyAssign);
4778    }
4779  }
4780
4781  //   An implicitly-declared copy assignment operator is an inline public
4782  //   member of its class.
4783  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4784  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4785  CXXMethodDecl *CopyAssignment
4786    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
4787                            Context.getFunctionType(RetType, &ArgType, 1,
4788                                                    false, 0,
4789                                         ExceptSpec.hasExceptionSpecification(),
4790                                      ExceptSpec.hasAnyExceptionSpecification(),
4791                                                    ExceptSpec.size(),
4792                                                    ExceptSpec.data(),
4793                                                    FunctionType::ExtInfo()),
4794                            /*TInfo=*/0, /*isStatic=*/false,
4795                            /*StorageClassAsWritten=*/SC_None,
4796                            /*isInline=*/true);
4797  CopyAssignment->setAccess(AS_public);
4798  CopyAssignment->setImplicit();
4799  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4800
4801  // Add the parameter to the operator.
4802  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4803                                               ClassDecl->getLocation(),
4804                                               /*Id=*/0,
4805                                               ArgType, /*TInfo=*/0,
4806                                               SC_None,
4807                                               SC_None, 0);
4808  CopyAssignment->setParams(&FromParam, 1);
4809
4810  // Note that we have added this copy-assignment operator.
4811  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4812
4813  if (Scope *S = getScopeForContext(ClassDecl))
4814    PushOnScopeChains(CopyAssignment, S, false);
4815  ClassDecl->addDecl(CopyAssignment);
4816
4817  AddOverriddenMethods(ClassDecl, CopyAssignment);
4818  return CopyAssignment;
4819}
4820
4821void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4822                                        CXXMethodDecl *CopyAssignOperator) {
4823  assert((CopyAssignOperator->isImplicit() &&
4824          CopyAssignOperator->isOverloadedOperator() &&
4825          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4826          !CopyAssignOperator->isUsed(false)) &&
4827         "DefineImplicitCopyAssignment called for wrong function");
4828
4829  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4830
4831  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4832    CopyAssignOperator->setInvalidDecl();
4833    return;
4834  }
4835
4836  CopyAssignOperator->setUsed();
4837
4838  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4839  ErrorTrap Trap(*this);
4840
4841  // C++0x [class.copy]p30:
4842  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4843  //   for a non-union class X performs memberwise copy assignment of its
4844  //   subobjects. The direct base classes of X are assigned first, in the
4845  //   order of their declaration in the base-specifier-list, and then the
4846  //   immediate non-static data members of X are assigned, in the order in
4847  //   which they were declared in the class definition.
4848
4849  // The statements that form the synthesized function body.
4850  ASTOwningVector<Stmt*> Statements(*this);
4851
4852  // The parameter for the "other" object, which we are copying from.
4853  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4854  Qualifiers OtherQuals = Other->getType().getQualifiers();
4855  QualType OtherRefType = Other->getType();
4856  if (const LValueReferenceType *OtherRef
4857                                = OtherRefType->getAs<LValueReferenceType>()) {
4858    OtherRefType = OtherRef->getPointeeType();
4859    OtherQuals = OtherRefType.getQualifiers();
4860  }
4861
4862  // Our location for everything implicitly-generated.
4863  SourceLocation Loc = CopyAssignOperator->getLocation();
4864
4865  // Construct a reference to the "other" object. We'll be using this
4866  // throughout the generated ASTs.
4867  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4868  assert(OtherRef && "Reference to parameter cannot fail!");
4869
4870  // Construct the "this" pointer. We'll be using this throughout the generated
4871  // ASTs.
4872  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4873  assert(This && "Reference to this cannot fail!");
4874
4875  // Assign base classes.
4876  bool Invalid = false;
4877  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4878       E = ClassDecl->bases_end(); Base != E; ++Base) {
4879    // Form the assignment:
4880    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4881    QualType BaseType = Base->getType().getUnqualifiedType();
4882    CXXRecordDecl *BaseClassDecl = 0;
4883    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4884      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4885    else {
4886      Invalid = true;
4887      continue;
4888    }
4889
4890    CXXCastPath BasePath;
4891    BasePath.push_back(Base);
4892
4893    // Construct the "from" expression, which is an implicit cast to the
4894    // appropriately-qualified base type.
4895    Expr *From = OtherRef->Retain();
4896    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4897                      CK_UncheckedDerivedToBase,
4898                      VK_LValue, &BasePath);
4899
4900    // Dereference "this".
4901    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
4902
4903    // Implicitly cast "this" to the appropriately-qualified base type.
4904    Expr *ToE = To.takeAs<Expr>();
4905    ImpCastExprToType(ToE,
4906                      Context.getCVRQualifiedType(BaseType,
4907                                      CopyAssignOperator->getTypeQualifiers()),
4908                      CK_UncheckedDerivedToBase,
4909                      VK_LValue, &BasePath);
4910    To = Owned(ToE);
4911
4912    // Build the copy.
4913    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4914                                            To.get(), From,
4915                                            /*CopyingBaseSubobject=*/true);
4916    if (Copy.isInvalid()) {
4917      Diag(CurrentLocation, diag::note_member_synthesized_at)
4918        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4919      CopyAssignOperator->setInvalidDecl();
4920      return;
4921    }
4922
4923    // Success! Record the copy.
4924    Statements.push_back(Copy.takeAs<Expr>());
4925  }
4926
4927  // \brief Reference to the __builtin_memcpy function.
4928  Expr *BuiltinMemCpyRef = 0;
4929  // \brief Reference to the __builtin_objc_memmove_collectable function.
4930  Expr *CollectableMemCpyRef = 0;
4931
4932  // Assign non-static members.
4933  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4934                                  FieldEnd = ClassDecl->field_end();
4935       Field != FieldEnd; ++Field) {
4936    // Check for members of reference type; we can't copy those.
4937    if (Field->getType()->isReferenceType()) {
4938      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4939        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4940      Diag(Field->getLocation(), diag::note_declared_at);
4941      Diag(CurrentLocation, diag::note_member_synthesized_at)
4942        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4943      Invalid = true;
4944      continue;
4945    }
4946
4947    // Check for members of const-qualified, non-class type.
4948    QualType BaseType = Context.getBaseElementType(Field->getType());
4949    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4950      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4951        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4952      Diag(Field->getLocation(), diag::note_declared_at);
4953      Diag(CurrentLocation, diag::note_member_synthesized_at)
4954        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4955      Invalid = true;
4956      continue;
4957    }
4958
4959    QualType FieldType = Field->getType().getNonReferenceType();
4960    if (FieldType->isIncompleteArrayType()) {
4961      assert(ClassDecl->hasFlexibleArrayMember() &&
4962             "Incomplete array type is not valid");
4963      continue;
4964    }
4965
4966    // Build references to the field in the object we're copying from and to.
4967    CXXScopeSpec SS; // Intentionally empty
4968    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4969                              LookupMemberName);
4970    MemberLookup.addDecl(*Field);
4971    MemberLookup.resolveKind();
4972    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
4973                                                     Loc, /*IsArrow=*/false,
4974                                                     SS, 0, MemberLookup, 0);
4975    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
4976                                                   Loc, /*IsArrow=*/true,
4977                                                   SS, 0, MemberLookup, 0);
4978    assert(!From.isInvalid() && "Implicit field reference cannot fail");
4979    assert(!To.isInvalid() && "Implicit field reference cannot fail");
4980
4981    // If the field should be copied with __builtin_memcpy rather than via
4982    // explicit assignments, do so. This optimization only applies for arrays
4983    // of scalars and arrays of class type with trivial copy-assignment
4984    // operators.
4985    if (FieldType->isArrayType() &&
4986        (!BaseType->isRecordType() ||
4987         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
4988           ->hasTrivialCopyAssignment())) {
4989      // Compute the size of the memory buffer to be copied.
4990      QualType SizeType = Context.getSizeType();
4991      llvm::APInt Size(Context.getTypeSize(SizeType),
4992                       Context.getTypeSizeInChars(BaseType).getQuantity());
4993      for (const ConstantArrayType *Array
4994              = Context.getAsConstantArrayType(FieldType);
4995           Array;
4996           Array = Context.getAsConstantArrayType(Array->getElementType())) {
4997        llvm::APInt ArraySize = Array->getSize();
4998        ArraySize.zextOrTrunc(Size.getBitWidth());
4999        Size *= ArraySize;
5000      }
5001
5002      // Take the address of the field references for "from" and "to".
5003      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5004      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5005
5006      bool NeedsCollectableMemCpy =
5007          (BaseType->isRecordType() &&
5008           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5009
5010      if (NeedsCollectableMemCpy) {
5011        if (!CollectableMemCpyRef) {
5012          // Create a reference to the __builtin_objc_memmove_collectable function.
5013          LookupResult R(*this,
5014                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5015                         Loc, LookupOrdinaryName);
5016          LookupName(R, TUScope, true);
5017
5018          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5019          if (!CollectableMemCpy) {
5020            // Something went horribly wrong earlier, and we will have
5021            // complained about it.
5022            Invalid = true;
5023            continue;
5024          }
5025
5026          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5027                                                  CollectableMemCpy->getType(),
5028                                                  Loc, 0).takeAs<Expr>();
5029          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5030        }
5031      }
5032      // Create a reference to the __builtin_memcpy builtin function.
5033      else if (!BuiltinMemCpyRef) {
5034        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5035                       LookupOrdinaryName);
5036        LookupName(R, TUScope, true);
5037
5038        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5039        if (!BuiltinMemCpy) {
5040          // Something went horribly wrong earlier, and we will have complained
5041          // about it.
5042          Invalid = true;
5043          continue;
5044        }
5045
5046        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5047                                            BuiltinMemCpy->getType(),
5048                                            Loc, 0).takeAs<Expr>();
5049        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5050      }
5051
5052      ASTOwningVector<Expr*> CallArgs(*this);
5053      CallArgs.push_back(To.takeAs<Expr>());
5054      CallArgs.push_back(From.takeAs<Expr>());
5055      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5056      ExprResult Call = ExprError();
5057      if (NeedsCollectableMemCpy)
5058        Call = ActOnCallExpr(/*Scope=*/0,
5059                             CollectableMemCpyRef,
5060                             Loc, move_arg(CallArgs),
5061                             Loc);
5062      else
5063        Call = ActOnCallExpr(/*Scope=*/0,
5064                             BuiltinMemCpyRef,
5065                             Loc, move_arg(CallArgs),
5066                             Loc);
5067
5068      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5069      Statements.push_back(Call.takeAs<Expr>());
5070      continue;
5071    }
5072
5073    // Build the copy of this field.
5074    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5075                                                  To.get(), From.get(),
5076                                              /*CopyingBaseSubobject=*/false);
5077    if (Copy.isInvalid()) {
5078      Diag(CurrentLocation, diag::note_member_synthesized_at)
5079        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5080      CopyAssignOperator->setInvalidDecl();
5081      return;
5082    }
5083
5084    // Success! Record the copy.
5085    Statements.push_back(Copy.takeAs<Stmt>());
5086  }
5087
5088  if (!Invalid) {
5089    // Add a "return *this;"
5090    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5091
5092    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5093    if (Return.isInvalid())
5094      Invalid = true;
5095    else {
5096      Statements.push_back(Return.takeAs<Stmt>());
5097
5098      if (Trap.hasErrorOccurred()) {
5099        Diag(CurrentLocation, diag::note_member_synthesized_at)
5100          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5101        Invalid = true;
5102      }
5103    }
5104  }
5105
5106  if (Invalid) {
5107    CopyAssignOperator->setInvalidDecl();
5108    return;
5109  }
5110
5111  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5112                                            /*isStmtExpr=*/false);
5113  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5114  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5115}
5116
5117CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5118                                                    CXXRecordDecl *ClassDecl) {
5119  // C++ [class.copy]p4:
5120  //   If the class definition does not explicitly declare a copy
5121  //   constructor, one is declared implicitly.
5122
5123  // C++ [class.copy]p5:
5124  //   The implicitly-declared copy constructor for a class X will
5125  //   have the form
5126  //
5127  //       X::X(const X&)
5128  //
5129  //   if
5130  bool HasConstCopyConstructor = true;
5131
5132  //     -- each direct or virtual base class B of X has a copy
5133  //        constructor whose first parameter is of type const B& or
5134  //        const volatile B&, and
5135  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5136                                       BaseEnd = ClassDecl->bases_end();
5137       HasConstCopyConstructor && Base != BaseEnd;
5138       ++Base) {
5139    // Virtual bases are handled below.
5140    if (Base->isVirtual())
5141      continue;
5142
5143    CXXRecordDecl *BaseClassDecl
5144      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5145    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5146      DeclareImplicitCopyConstructor(BaseClassDecl);
5147
5148    HasConstCopyConstructor
5149      = BaseClassDecl->hasConstCopyConstructor(Context);
5150  }
5151
5152  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5153                                       BaseEnd = ClassDecl->vbases_end();
5154       HasConstCopyConstructor && Base != BaseEnd;
5155       ++Base) {
5156    CXXRecordDecl *BaseClassDecl
5157      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5158    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5159      DeclareImplicitCopyConstructor(BaseClassDecl);
5160
5161    HasConstCopyConstructor
5162      = BaseClassDecl->hasConstCopyConstructor(Context);
5163  }
5164
5165  //     -- for all the nonstatic data members of X that are of a
5166  //        class type M (or array thereof), each such class type
5167  //        has a copy constructor whose first parameter is of type
5168  //        const M& or const volatile M&.
5169  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5170                                  FieldEnd = ClassDecl->field_end();
5171       HasConstCopyConstructor && Field != FieldEnd;
5172       ++Field) {
5173    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5174    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5175      CXXRecordDecl *FieldClassDecl
5176        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5177      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5178        DeclareImplicitCopyConstructor(FieldClassDecl);
5179
5180      HasConstCopyConstructor
5181        = FieldClassDecl->hasConstCopyConstructor(Context);
5182    }
5183  }
5184
5185  //   Otherwise, the implicitly declared copy constructor will have
5186  //   the form
5187  //
5188  //       X::X(X&)
5189  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5190  QualType ArgType = ClassType;
5191  if (HasConstCopyConstructor)
5192    ArgType = ArgType.withConst();
5193  ArgType = Context.getLValueReferenceType(ArgType);
5194
5195  // C++ [except.spec]p14:
5196  //   An implicitly declared special member function (Clause 12) shall have an
5197  //   exception-specification. [...]
5198  ImplicitExceptionSpecification ExceptSpec(Context);
5199  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5200  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5201                                       BaseEnd = ClassDecl->bases_end();
5202       Base != BaseEnd;
5203       ++Base) {
5204    // Virtual bases are handled below.
5205    if (Base->isVirtual())
5206      continue;
5207
5208    CXXRecordDecl *BaseClassDecl
5209      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5210    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5211      DeclareImplicitCopyConstructor(BaseClassDecl);
5212
5213    if (CXXConstructorDecl *CopyConstructor
5214                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5215      ExceptSpec.CalledDecl(CopyConstructor);
5216  }
5217  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5218                                       BaseEnd = ClassDecl->vbases_end();
5219       Base != BaseEnd;
5220       ++Base) {
5221    CXXRecordDecl *BaseClassDecl
5222      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5223    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5224      DeclareImplicitCopyConstructor(BaseClassDecl);
5225
5226    if (CXXConstructorDecl *CopyConstructor
5227                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5228      ExceptSpec.CalledDecl(CopyConstructor);
5229  }
5230  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5231                                  FieldEnd = ClassDecl->field_end();
5232       Field != FieldEnd;
5233       ++Field) {
5234    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5235    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5236      CXXRecordDecl *FieldClassDecl
5237        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5238      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5239        DeclareImplicitCopyConstructor(FieldClassDecl);
5240
5241      if (CXXConstructorDecl *CopyConstructor
5242                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5243        ExceptSpec.CalledDecl(CopyConstructor);
5244    }
5245  }
5246
5247  //   An implicitly-declared copy constructor is an inline public
5248  //   member of its class.
5249  DeclarationName Name
5250    = Context.DeclarationNames.getCXXConstructorName(
5251                                           Context.getCanonicalType(ClassType));
5252  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5253  CXXConstructorDecl *CopyConstructor
5254    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5255                                 Context.getFunctionType(Context.VoidTy,
5256                                                         &ArgType, 1,
5257                                                         false, 0,
5258                                         ExceptSpec.hasExceptionSpecification(),
5259                                      ExceptSpec.hasAnyExceptionSpecification(),
5260                                                         ExceptSpec.size(),
5261                                                         ExceptSpec.data(),
5262                                                       FunctionType::ExtInfo()),
5263                                 /*TInfo=*/0,
5264                                 /*isExplicit=*/false,
5265                                 /*isInline=*/true,
5266                                 /*isImplicitlyDeclared=*/true);
5267  CopyConstructor->setAccess(AS_public);
5268  CopyConstructor->setImplicit();
5269  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5270
5271  // Note that we have declared this constructor.
5272  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5273
5274  // Add the parameter to the constructor.
5275  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5276                                               ClassDecl->getLocation(),
5277                                               /*IdentifierInfo=*/0,
5278                                               ArgType, /*TInfo=*/0,
5279                                               SC_None,
5280                                               SC_None, 0);
5281  CopyConstructor->setParams(&FromParam, 1);
5282  if (Scope *S = getScopeForContext(ClassDecl))
5283    PushOnScopeChains(CopyConstructor, S, false);
5284  ClassDecl->addDecl(CopyConstructor);
5285
5286  return CopyConstructor;
5287}
5288
5289void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5290                                   CXXConstructorDecl *CopyConstructor,
5291                                   unsigned TypeQuals) {
5292  assert((CopyConstructor->isImplicit() &&
5293          CopyConstructor->isCopyConstructor(TypeQuals) &&
5294          !CopyConstructor->isUsed(false)) &&
5295         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5296
5297  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5298  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5299
5300  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5301  ErrorTrap Trap(*this);
5302
5303  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5304      Trap.hasErrorOccurred()) {
5305    Diag(CurrentLocation, diag::note_member_synthesized_at)
5306      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5307    CopyConstructor->setInvalidDecl();
5308  }  else {
5309    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5310                                               CopyConstructor->getLocation(),
5311                                               MultiStmtArg(*this, 0, 0),
5312                                               /*isStmtExpr=*/false)
5313                                                              .takeAs<Stmt>());
5314  }
5315
5316  CopyConstructor->setUsed();
5317}
5318
5319ExprResult
5320Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5321                            CXXConstructorDecl *Constructor,
5322                            MultiExprArg ExprArgs,
5323                            bool RequiresZeroInit,
5324                            unsigned ConstructKind) {
5325  bool Elidable = false;
5326
5327  // C++0x [class.copy]p34:
5328  //   When certain criteria are met, an implementation is allowed to
5329  //   omit the copy/move construction of a class object, even if the
5330  //   copy/move constructor and/or destructor for the object have
5331  //   side effects. [...]
5332  //     - when a temporary class object that has not been bound to a
5333  //       reference (12.2) would be copied/moved to a class object
5334  //       with the same cv-unqualified type, the copy/move operation
5335  //       can be omitted by constructing the temporary object
5336  //       directly into the target of the omitted copy/move
5337  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5338      Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5339    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5340    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5341  }
5342
5343  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5344                               Elidable, move(ExprArgs), RequiresZeroInit,
5345                               ConstructKind);
5346}
5347
5348/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5349/// including handling of its default argument expressions.
5350ExprResult
5351Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5352                            CXXConstructorDecl *Constructor, bool Elidable,
5353                            MultiExprArg ExprArgs,
5354                            bool RequiresZeroInit,
5355                            unsigned ConstructKind) {
5356  unsigned NumExprs = ExprArgs.size();
5357  Expr **Exprs = (Expr **)ExprArgs.release();
5358
5359  MarkDeclarationReferenced(ConstructLoc, Constructor);
5360  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5361                                        Constructor, Elidable, Exprs, NumExprs,
5362                                        RequiresZeroInit,
5363              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind)));
5364}
5365
5366bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5367                                        CXXConstructorDecl *Constructor,
5368                                        MultiExprArg Exprs) {
5369  ExprResult TempResult =
5370    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5371                          move(Exprs), false, CXXConstructExpr::CK_Complete);
5372  if (TempResult.isInvalid())
5373    return true;
5374
5375  Expr *Temp = TempResult.takeAs<Expr>();
5376  CheckImplicitConversions(Temp, VD->getLocation());
5377  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5378  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
5379  VD->setInit(Temp);
5380
5381  return false;
5382}
5383
5384void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5385  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5386  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5387      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5388    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5389    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5390    CheckDestructorAccess(VD->getLocation(), Destructor,
5391                          PDiag(diag::err_access_dtor_var)
5392                            << VD->getDeclName()
5393                            << VD->getType());
5394
5395    // TODO: this should be re-enabled for static locals by !CXAAtExit
5396    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5397      Diag(VD->getLocation(), diag::warn_global_destructor);
5398  }
5399}
5400
5401/// AddCXXDirectInitializerToDecl - This action is called immediately after
5402/// ActOnDeclarator, when a C++ direct initializer is present.
5403/// e.g: "int x(1);"
5404void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5405                                         SourceLocation LParenLoc,
5406                                         MultiExprArg Exprs,
5407                                         SourceLocation RParenLoc) {
5408  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5409
5410  // If there is no declaration, there was an error parsing it.  Just ignore
5411  // the initializer.
5412  if (RealDecl == 0)
5413    return;
5414
5415  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5416  if (!VDecl) {
5417    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5418    RealDecl->setInvalidDecl();
5419    return;
5420  }
5421
5422  // We will represent direct-initialization similarly to copy-initialization:
5423  //    int x(1);  -as-> int x = 1;
5424  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5425  //
5426  // Clients that want to distinguish between the two forms, can check for
5427  // direct initializer using VarDecl::hasCXXDirectInitializer().
5428  // A major benefit is that clients that don't particularly care about which
5429  // exactly form was it (like the CodeGen) can handle both cases without
5430  // special case code.
5431
5432  // C++ 8.5p11:
5433  // The form of initialization (using parentheses or '=') is generally
5434  // insignificant, but does matter when the entity being initialized has a
5435  // class type.
5436
5437  if (!VDecl->getType()->isDependentType() &&
5438      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5439                          diag::err_typecheck_decl_incomplete_type)) {
5440    VDecl->setInvalidDecl();
5441    return;
5442  }
5443
5444  // The variable can not have an abstract class type.
5445  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5446                             diag::err_abstract_type_in_decl,
5447                             AbstractVariableType))
5448    VDecl->setInvalidDecl();
5449
5450  const VarDecl *Def;
5451  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5452    Diag(VDecl->getLocation(), diag::err_redefinition)
5453    << VDecl->getDeclName();
5454    Diag(Def->getLocation(), diag::note_previous_definition);
5455    VDecl->setInvalidDecl();
5456    return;
5457  }
5458
5459  // C++ [class.static.data]p4
5460  //   If a static data member is of const integral or const
5461  //   enumeration type, its declaration in the class definition can
5462  //   specify a constant-initializer which shall be an integral
5463  //   constant expression (5.19). In that case, the member can appear
5464  //   in integral constant expressions. The member shall still be
5465  //   defined in a namespace scope if it is used in the program and the
5466  //   namespace scope definition shall not contain an initializer.
5467  //
5468  // We already performed a redefinition check above, but for static
5469  // data members we also need to check whether there was an in-class
5470  // declaration with an initializer.
5471  const VarDecl* PrevInit = 0;
5472  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5473    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5474    Diag(PrevInit->getLocation(), diag::note_previous_definition);
5475    return;
5476  }
5477
5478  // If either the declaration has a dependent type or if any of the
5479  // expressions is type-dependent, we represent the initialization
5480  // via a ParenListExpr for later use during template instantiation.
5481  if (VDecl->getType()->isDependentType() ||
5482      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5483    // Let clients know that initialization was done with a direct initializer.
5484    VDecl->setCXXDirectInitializer(true);
5485
5486    // Store the initialization expressions as a ParenListExpr.
5487    unsigned NumExprs = Exprs.size();
5488    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5489                                               (Expr **)Exprs.release(),
5490                                               NumExprs, RParenLoc));
5491    return;
5492  }
5493
5494  // Capture the variable that is being initialized and the style of
5495  // initialization.
5496  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5497
5498  // FIXME: Poor source location information.
5499  InitializationKind Kind
5500    = InitializationKind::CreateDirect(VDecl->getLocation(),
5501                                       LParenLoc, RParenLoc);
5502
5503  InitializationSequence InitSeq(*this, Entity, Kind,
5504                                 Exprs.get(), Exprs.size());
5505  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5506  if (Result.isInvalid()) {
5507    VDecl->setInvalidDecl();
5508    return;
5509  }
5510
5511  CheckImplicitConversions(Result.get(), LParenLoc);
5512
5513  Result = MaybeCreateCXXExprWithTemporaries(Result.get());
5514  VDecl->setInit(Result.takeAs<Expr>());
5515  VDecl->setCXXDirectInitializer(true);
5516
5517    if (!VDecl->isInvalidDecl() &&
5518        !VDecl->getDeclContext()->isDependentContext() &&
5519        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
5520        !VDecl->getInit()->isConstantInitializer(Context,
5521                                        VDecl->getType()->isReferenceType()))
5522      Diag(VDecl->getLocation(), diag::warn_global_constructor)
5523        << VDecl->getInit()->getSourceRange();
5524
5525  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5526    FinalizeVarWithDestructor(VDecl, Record);
5527}
5528
5529/// \brief Given a constructor and the set of arguments provided for the
5530/// constructor, convert the arguments and add any required default arguments
5531/// to form a proper call to this constructor.
5532///
5533/// \returns true if an error occurred, false otherwise.
5534bool
5535Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5536                              MultiExprArg ArgsPtr,
5537                              SourceLocation Loc,
5538                              ASTOwningVector<Expr*> &ConvertedArgs) {
5539  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5540  unsigned NumArgs = ArgsPtr.size();
5541  Expr **Args = (Expr **)ArgsPtr.get();
5542
5543  const FunctionProtoType *Proto
5544    = Constructor->getType()->getAs<FunctionProtoType>();
5545  assert(Proto && "Constructor without a prototype?");
5546  unsigned NumArgsInProto = Proto->getNumArgs();
5547
5548  // If too few arguments are available, we'll fill in the rest with defaults.
5549  if (NumArgs < NumArgsInProto)
5550    ConvertedArgs.reserve(NumArgsInProto);
5551  else
5552    ConvertedArgs.reserve(NumArgs);
5553
5554  VariadicCallType CallType =
5555    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5556  llvm::SmallVector<Expr *, 8> AllArgs;
5557  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5558                                        Proto, 0, Args, NumArgs, AllArgs,
5559                                        CallType);
5560  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5561    ConvertedArgs.push_back(AllArgs[i]);
5562  return Invalid;
5563}
5564
5565static inline bool
5566CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5567                                       const FunctionDecl *FnDecl) {
5568  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
5569  if (isa<NamespaceDecl>(DC)) {
5570    return SemaRef.Diag(FnDecl->getLocation(),
5571                        diag::err_operator_new_delete_declared_in_namespace)
5572      << FnDecl->getDeclName();
5573  }
5574
5575  if (isa<TranslationUnitDecl>(DC) &&
5576      FnDecl->getStorageClass() == SC_Static) {
5577    return SemaRef.Diag(FnDecl->getLocation(),
5578                        diag::err_operator_new_delete_declared_static)
5579      << FnDecl->getDeclName();
5580  }
5581
5582  return false;
5583}
5584
5585static inline bool
5586CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5587                            CanQualType ExpectedResultType,
5588                            CanQualType ExpectedFirstParamType,
5589                            unsigned DependentParamTypeDiag,
5590                            unsigned InvalidParamTypeDiag) {
5591  QualType ResultType =
5592    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5593
5594  // Check that the result type is not dependent.
5595  if (ResultType->isDependentType())
5596    return SemaRef.Diag(FnDecl->getLocation(),
5597                        diag::err_operator_new_delete_dependent_result_type)
5598    << FnDecl->getDeclName() << ExpectedResultType;
5599
5600  // Check that the result type is what we expect.
5601  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5602    return SemaRef.Diag(FnDecl->getLocation(),
5603                        diag::err_operator_new_delete_invalid_result_type)
5604    << FnDecl->getDeclName() << ExpectedResultType;
5605
5606  // A function template must have at least 2 parameters.
5607  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5608    return SemaRef.Diag(FnDecl->getLocation(),
5609                      diag::err_operator_new_delete_template_too_few_parameters)
5610        << FnDecl->getDeclName();
5611
5612  // The function decl must have at least 1 parameter.
5613  if (FnDecl->getNumParams() == 0)
5614    return SemaRef.Diag(FnDecl->getLocation(),
5615                        diag::err_operator_new_delete_too_few_parameters)
5616      << FnDecl->getDeclName();
5617
5618  // Check the the first parameter type is not dependent.
5619  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5620  if (FirstParamType->isDependentType())
5621    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5622      << FnDecl->getDeclName() << ExpectedFirstParamType;
5623
5624  // Check that the first parameter type is what we expect.
5625  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5626      ExpectedFirstParamType)
5627    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5628    << FnDecl->getDeclName() << ExpectedFirstParamType;
5629
5630  return false;
5631}
5632
5633static bool
5634CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5635  // C++ [basic.stc.dynamic.allocation]p1:
5636  //   A program is ill-formed if an allocation function is declared in a
5637  //   namespace scope other than global scope or declared static in global
5638  //   scope.
5639  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5640    return true;
5641
5642  CanQualType SizeTy =
5643    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5644
5645  // C++ [basic.stc.dynamic.allocation]p1:
5646  //  The return type shall be void*. The first parameter shall have type
5647  //  std::size_t.
5648  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5649                                  SizeTy,
5650                                  diag::err_operator_new_dependent_param_type,
5651                                  diag::err_operator_new_param_type))
5652    return true;
5653
5654  // C++ [basic.stc.dynamic.allocation]p1:
5655  //  The first parameter shall not have an associated default argument.
5656  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5657    return SemaRef.Diag(FnDecl->getLocation(),
5658                        diag::err_operator_new_default_arg)
5659      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5660
5661  return false;
5662}
5663
5664static bool
5665CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5666  // C++ [basic.stc.dynamic.deallocation]p1:
5667  //   A program is ill-formed if deallocation functions are declared in a
5668  //   namespace scope other than global scope or declared static in global
5669  //   scope.
5670  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5671    return true;
5672
5673  // C++ [basic.stc.dynamic.deallocation]p2:
5674  //   Each deallocation function shall return void and its first parameter
5675  //   shall be void*.
5676  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5677                                  SemaRef.Context.VoidPtrTy,
5678                                 diag::err_operator_delete_dependent_param_type,
5679                                 diag::err_operator_delete_param_type))
5680    return true;
5681
5682  return false;
5683}
5684
5685/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5686/// of this overloaded operator is well-formed. If so, returns false;
5687/// otherwise, emits appropriate diagnostics and returns true.
5688bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5689  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5690         "Expected an overloaded operator declaration");
5691
5692  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5693
5694  // C++ [over.oper]p5:
5695  //   The allocation and deallocation functions, operator new,
5696  //   operator new[], operator delete and operator delete[], are
5697  //   described completely in 3.7.3. The attributes and restrictions
5698  //   found in the rest of this subclause do not apply to them unless
5699  //   explicitly stated in 3.7.3.
5700  if (Op == OO_Delete || Op == OO_Array_Delete)
5701    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5702
5703  if (Op == OO_New || Op == OO_Array_New)
5704    return CheckOperatorNewDeclaration(*this, FnDecl);
5705
5706  // C++ [over.oper]p6:
5707  //   An operator function shall either be a non-static member
5708  //   function or be a non-member function and have at least one
5709  //   parameter whose type is a class, a reference to a class, an
5710  //   enumeration, or a reference to an enumeration.
5711  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5712    if (MethodDecl->isStatic())
5713      return Diag(FnDecl->getLocation(),
5714                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5715  } else {
5716    bool ClassOrEnumParam = false;
5717    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5718                                   ParamEnd = FnDecl->param_end();
5719         Param != ParamEnd; ++Param) {
5720      QualType ParamType = (*Param)->getType().getNonReferenceType();
5721      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5722          ParamType->isEnumeralType()) {
5723        ClassOrEnumParam = true;
5724        break;
5725      }
5726    }
5727
5728    if (!ClassOrEnumParam)
5729      return Diag(FnDecl->getLocation(),
5730                  diag::err_operator_overload_needs_class_or_enum)
5731        << FnDecl->getDeclName();
5732  }
5733
5734  // C++ [over.oper]p8:
5735  //   An operator function cannot have default arguments (8.3.6),
5736  //   except where explicitly stated below.
5737  //
5738  // Only the function-call operator allows default arguments
5739  // (C++ [over.call]p1).
5740  if (Op != OO_Call) {
5741    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5742         Param != FnDecl->param_end(); ++Param) {
5743      if ((*Param)->hasDefaultArg())
5744        return Diag((*Param)->getLocation(),
5745                    diag::err_operator_overload_default_arg)
5746          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5747    }
5748  }
5749
5750  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5751    { false, false, false }
5752#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5753    , { Unary, Binary, MemberOnly }
5754#include "clang/Basic/OperatorKinds.def"
5755  };
5756
5757  bool CanBeUnaryOperator = OperatorUses[Op][0];
5758  bool CanBeBinaryOperator = OperatorUses[Op][1];
5759  bool MustBeMemberOperator = OperatorUses[Op][2];
5760
5761  // C++ [over.oper]p8:
5762  //   [...] Operator functions cannot have more or fewer parameters
5763  //   than the number required for the corresponding operator, as
5764  //   described in the rest of this subclause.
5765  unsigned NumParams = FnDecl->getNumParams()
5766                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5767  if (Op != OO_Call &&
5768      ((NumParams == 1 && !CanBeUnaryOperator) ||
5769       (NumParams == 2 && !CanBeBinaryOperator) ||
5770       (NumParams < 1) || (NumParams > 2))) {
5771    // We have the wrong number of parameters.
5772    unsigned ErrorKind;
5773    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5774      ErrorKind = 2;  // 2 -> unary or binary.
5775    } else if (CanBeUnaryOperator) {
5776      ErrorKind = 0;  // 0 -> unary
5777    } else {
5778      assert(CanBeBinaryOperator &&
5779             "All non-call overloaded operators are unary or binary!");
5780      ErrorKind = 1;  // 1 -> binary
5781    }
5782
5783    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5784      << FnDecl->getDeclName() << NumParams << ErrorKind;
5785  }
5786
5787  // Overloaded operators other than operator() cannot be variadic.
5788  if (Op != OO_Call &&
5789      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5790    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5791      << FnDecl->getDeclName();
5792  }
5793
5794  // Some operators must be non-static member functions.
5795  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5796    return Diag(FnDecl->getLocation(),
5797                diag::err_operator_overload_must_be_member)
5798      << FnDecl->getDeclName();
5799  }
5800
5801  // C++ [over.inc]p1:
5802  //   The user-defined function called operator++ implements the
5803  //   prefix and postfix ++ operator. If this function is a member
5804  //   function with no parameters, or a non-member function with one
5805  //   parameter of class or enumeration type, it defines the prefix
5806  //   increment operator ++ for objects of that type. If the function
5807  //   is a member function with one parameter (which shall be of type
5808  //   int) or a non-member function with two parameters (the second
5809  //   of which shall be of type int), it defines the postfix
5810  //   increment operator ++ for objects of that type.
5811  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5812    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5813    bool ParamIsInt = false;
5814    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5815      ParamIsInt = BT->getKind() == BuiltinType::Int;
5816
5817    if (!ParamIsInt)
5818      return Diag(LastParam->getLocation(),
5819                  diag::err_operator_overload_post_incdec_must_be_int)
5820        << LastParam->getType() << (Op == OO_MinusMinus);
5821  }
5822
5823  return false;
5824}
5825
5826/// CheckLiteralOperatorDeclaration - Check whether the declaration
5827/// of this literal operator function is well-formed. If so, returns
5828/// false; otherwise, emits appropriate diagnostics and returns true.
5829bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5830  DeclContext *DC = FnDecl->getDeclContext();
5831  Decl::Kind Kind = DC->getDeclKind();
5832  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5833      Kind != Decl::LinkageSpec) {
5834    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5835      << FnDecl->getDeclName();
5836    return true;
5837  }
5838
5839  bool Valid = false;
5840
5841  // template <char...> type operator "" name() is the only valid template
5842  // signature, and the only valid signature with no parameters.
5843  if (FnDecl->param_size() == 0) {
5844    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5845      // Must have only one template parameter
5846      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5847      if (Params->size() == 1) {
5848        NonTypeTemplateParmDecl *PmDecl =
5849          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5850
5851        // The template parameter must be a char parameter pack.
5852        // FIXME: This test will always fail because non-type parameter packs
5853        //   have not been implemented.
5854        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5855            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5856          Valid = true;
5857      }
5858    }
5859  } else {
5860    // Check the first parameter
5861    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5862
5863    QualType T = (*Param)->getType();
5864
5865    // unsigned long long int, long double, and any character type are allowed
5866    // as the only parameters.
5867    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5868        Context.hasSameType(T, Context.LongDoubleTy) ||
5869        Context.hasSameType(T, Context.CharTy) ||
5870        Context.hasSameType(T, Context.WCharTy) ||
5871        Context.hasSameType(T, Context.Char16Ty) ||
5872        Context.hasSameType(T, Context.Char32Ty)) {
5873      if (++Param == FnDecl->param_end())
5874        Valid = true;
5875      goto FinishedParams;
5876    }
5877
5878    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5879    const PointerType *PT = T->getAs<PointerType>();
5880    if (!PT)
5881      goto FinishedParams;
5882    T = PT->getPointeeType();
5883    if (!T.isConstQualified())
5884      goto FinishedParams;
5885    T = T.getUnqualifiedType();
5886
5887    // Move on to the second parameter;
5888    ++Param;
5889
5890    // If there is no second parameter, the first must be a const char *
5891    if (Param == FnDecl->param_end()) {
5892      if (Context.hasSameType(T, Context.CharTy))
5893        Valid = true;
5894      goto FinishedParams;
5895    }
5896
5897    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5898    // are allowed as the first parameter to a two-parameter function
5899    if (!(Context.hasSameType(T, Context.CharTy) ||
5900          Context.hasSameType(T, Context.WCharTy) ||
5901          Context.hasSameType(T, Context.Char16Ty) ||
5902          Context.hasSameType(T, Context.Char32Ty)))
5903      goto FinishedParams;
5904
5905    // The second and final parameter must be an std::size_t
5906    T = (*Param)->getType().getUnqualifiedType();
5907    if (Context.hasSameType(T, Context.getSizeType()) &&
5908        ++Param == FnDecl->param_end())
5909      Valid = true;
5910  }
5911
5912  // FIXME: This diagnostic is absolutely terrible.
5913FinishedParams:
5914  if (!Valid) {
5915    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5916      << FnDecl->getDeclName();
5917    return true;
5918  }
5919
5920  return false;
5921}
5922
5923/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5924/// linkage specification, including the language and (if present)
5925/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5926/// the location of the language string literal, which is provided
5927/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5928/// the '{' brace. Otherwise, this linkage specification does not
5929/// have any braces.
5930Decl *Sema::ActOnStartLinkageSpecification(Scope *S,
5931                                                     SourceLocation ExternLoc,
5932                                                     SourceLocation LangLoc,
5933                                                     llvm::StringRef Lang,
5934                                                     SourceLocation LBraceLoc) {
5935  LinkageSpecDecl::LanguageIDs Language;
5936  if (Lang == "\"C\"")
5937    Language = LinkageSpecDecl::lang_c;
5938  else if (Lang == "\"C++\"")
5939    Language = LinkageSpecDecl::lang_cxx;
5940  else {
5941    Diag(LangLoc, diag::err_bad_language);
5942    return 0;
5943  }
5944
5945  // FIXME: Add all the various semantics of linkage specifications
5946
5947  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5948                                               LangLoc, Language,
5949                                               LBraceLoc.isValid());
5950  CurContext->addDecl(D);
5951  PushDeclContext(S, D);
5952  return D;
5953}
5954
5955/// ActOnFinishLinkageSpecification - Complete the definition of
5956/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5957/// valid, it's the position of the closing '}' brace in a linkage
5958/// specification that uses braces.
5959Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
5960                                                      Decl *LinkageSpec,
5961                                                      SourceLocation RBraceLoc) {
5962  if (LinkageSpec)
5963    PopDeclContext();
5964  return LinkageSpec;
5965}
5966
5967/// \brief Perform semantic analysis for the variable declaration that
5968/// occurs within a C++ catch clause, returning the newly-created
5969/// variable.
5970VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
5971                                         TypeSourceInfo *TInfo,
5972                                         IdentifierInfo *Name,
5973                                         SourceLocation Loc) {
5974  bool Invalid = false;
5975  QualType ExDeclType = TInfo->getType();
5976
5977  // Arrays and functions decay.
5978  if (ExDeclType->isArrayType())
5979    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5980  else if (ExDeclType->isFunctionType())
5981    ExDeclType = Context.getPointerType(ExDeclType);
5982
5983  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5984  // The exception-declaration shall not denote a pointer or reference to an
5985  // incomplete type, other than [cv] void*.
5986  // N2844 forbids rvalue references.
5987  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5988    Diag(Loc, diag::err_catch_rvalue_ref);
5989    Invalid = true;
5990  }
5991
5992  // GCC allows catching pointers and references to incomplete types
5993  // as an extension; so do we, but we warn by default.
5994
5995  QualType BaseType = ExDeclType;
5996  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5997  unsigned DK = diag::err_catch_incomplete;
5998  bool IncompleteCatchIsInvalid = true;
5999  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6000    BaseType = Ptr->getPointeeType();
6001    Mode = 1;
6002    DK = diag::ext_catch_incomplete_ptr;
6003    IncompleteCatchIsInvalid = false;
6004  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6005    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6006    BaseType = Ref->getPointeeType();
6007    Mode = 2;
6008    DK = diag::ext_catch_incomplete_ref;
6009    IncompleteCatchIsInvalid = false;
6010  }
6011  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6012      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6013      IncompleteCatchIsInvalid)
6014    Invalid = true;
6015
6016  if (!Invalid && !ExDeclType->isDependentType() &&
6017      RequireNonAbstractType(Loc, ExDeclType,
6018                             diag::err_abstract_type_in_decl,
6019                             AbstractVariableType))
6020    Invalid = true;
6021
6022  // Only the non-fragile NeXT runtime currently supports C++ catches
6023  // of ObjC types, and no runtime supports catching ObjC types by value.
6024  if (!Invalid && getLangOptions().ObjC1) {
6025    QualType T = ExDeclType;
6026    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6027      T = RT->getPointeeType();
6028
6029    if (T->isObjCObjectType()) {
6030      Diag(Loc, diag::err_objc_object_catch);
6031      Invalid = true;
6032    } else if (T->isObjCObjectPointerType()) {
6033      if (!getLangOptions().NeXTRuntime) {
6034        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6035        Invalid = true;
6036      } else if (!getLangOptions().ObjCNonFragileABI) {
6037        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6038        Invalid = true;
6039      }
6040    }
6041  }
6042
6043  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6044                                    Name, ExDeclType, TInfo, SC_None,
6045                                    SC_None);
6046  ExDecl->setExceptionVariable(true);
6047
6048  if (!Invalid) {
6049    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6050      // C++ [except.handle]p16:
6051      //   The object declared in an exception-declaration or, if the
6052      //   exception-declaration does not specify a name, a temporary (12.2) is
6053      //   copy-initialized (8.5) from the exception object. [...]
6054      //   The object is destroyed when the handler exits, after the destruction
6055      //   of any automatic objects initialized within the handler.
6056      //
6057      // We just pretend to initialize the object with itself, then make sure
6058      // it can be destroyed later.
6059      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6060      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6061                                            Loc, ExDeclType, 0);
6062      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6063                                                               SourceLocation());
6064      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6065      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6066                                         MultiExprArg(*this, &ExDeclRef, 1));
6067      if (Result.isInvalid())
6068        Invalid = true;
6069      else
6070        FinalizeVarWithDestructor(ExDecl, RecordTy);
6071    }
6072  }
6073
6074  if (Invalid)
6075    ExDecl->setInvalidDecl();
6076
6077  return ExDecl;
6078}
6079
6080/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6081/// handler.
6082Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6083  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6084  QualType ExDeclType = TInfo->getType();
6085
6086  bool Invalid = D.isInvalidType();
6087  IdentifierInfo *II = D.getIdentifier();
6088  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6089                                             LookupOrdinaryName,
6090                                             ForRedeclaration)) {
6091    // The scope should be freshly made just for us. There is just no way
6092    // it contains any previous declaration.
6093    assert(!S->isDeclScope(PrevDecl));
6094    if (PrevDecl->isTemplateParameter()) {
6095      // Maybe we will complain about the shadowed template parameter.
6096      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6097    }
6098  }
6099
6100  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6101    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6102      << D.getCXXScopeSpec().getRange();
6103    Invalid = true;
6104  }
6105
6106  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6107                                              D.getIdentifier(),
6108                                              D.getIdentifierLoc());
6109
6110  if (Invalid)
6111    ExDecl->setInvalidDecl();
6112
6113  // Add the exception declaration into this scope.
6114  if (II)
6115    PushOnScopeChains(ExDecl, S);
6116  else
6117    CurContext->addDecl(ExDecl);
6118
6119  ProcessDeclAttributes(S, ExDecl, D);
6120  return ExDecl;
6121}
6122
6123Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6124                                         Expr *AssertExpr,
6125                                         Expr *AssertMessageExpr_) {
6126  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6127
6128  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6129    llvm::APSInt Value(32);
6130    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6131      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6132        AssertExpr->getSourceRange();
6133      return 0;
6134    }
6135
6136    if (Value == 0) {
6137      Diag(AssertLoc, diag::err_static_assert_failed)
6138        << AssertMessage->getString() << AssertExpr->getSourceRange();
6139    }
6140  }
6141
6142  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6143                                        AssertExpr, AssertMessage);
6144
6145  CurContext->addDecl(Decl);
6146  return Decl;
6147}
6148
6149/// \brief Perform semantic analysis of the given friend type declaration.
6150///
6151/// \returns A friend declaration that.
6152FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6153                                      TypeSourceInfo *TSInfo) {
6154  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6155
6156  QualType T = TSInfo->getType();
6157  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6158
6159  if (!getLangOptions().CPlusPlus0x) {
6160    // C++03 [class.friend]p2:
6161    //   An elaborated-type-specifier shall be used in a friend declaration
6162    //   for a class.*
6163    //
6164    //   * The class-key of the elaborated-type-specifier is required.
6165    if (!ActiveTemplateInstantiations.empty()) {
6166      // Do not complain about the form of friend template types during
6167      // template instantiation; we will already have complained when the
6168      // template was declared.
6169    } else if (!T->isElaboratedTypeSpecifier()) {
6170      // If we evaluated the type to a record type, suggest putting
6171      // a tag in front.
6172      if (const RecordType *RT = T->getAs<RecordType>()) {
6173        RecordDecl *RD = RT->getDecl();
6174
6175        std::string InsertionText = std::string(" ") + RD->getKindName();
6176
6177        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6178          << (unsigned) RD->getTagKind()
6179          << T
6180          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6181                                        InsertionText);
6182      } else {
6183        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6184          << T
6185          << SourceRange(FriendLoc, TypeRange.getEnd());
6186      }
6187    } else if (T->getAs<EnumType>()) {
6188      Diag(FriendLoc, diag::ext_enum_friend)
6189        << T
6190        << SourceRange(FriendLoc, TypeRange.getEnd());
6191    }
6192  }
6193
6194  // C++0x [class.friend]p3:
6195  //   If the type specifier in a friend declaration designates a (possibly
6196  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6197  //   the friend declaration is ignored.
6198
6199  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6200  // in [class.friend]p3 that we do not implement.
6201
6202  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6203}
6204
6205/// Handle a friend type declaration.  This works in tandem with
6206/// ActOnTag.
6207///
6208/// Notes on friend class templates:
6209///
6210/// We generally treat friend class declarations as if they were
6211/// declaring a class.  So, for example, the elaborated type specifier
6212/// in a friend declaration is required to obey the restrictions of a
6213/// class-head (i.e. no typedefs in the scope chain), template
6214/// parameters are required to match up with simple template-ids, &c.
6215/// However, unlike when declaring a template specialization, it's
6216/// okay to refer to a template specialization without an empty
6217/// template parameter declaration, e.g.
6218///   friend class A<T>::B<unsigned>;
6219/// We permit this as a special case; if there are any template
6220/// parameters present at all, require proper matching, i.e.
6221///   template <> template <class T> friend class A<int>::B;
6222Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6223                                          MultiTemplateParamsArg TempParams) {
6224  SourceLocation Loc = DS.getSourceRange().getBegin();
6225
6226  assert(DS.isFriendSpecified());
6227  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6228
6229  // Try to convert the decl specifier to a type.  This works for
6230  // friend templates because ActOnTag never produces a ClassTemplateDecl
6231  // for a TUK_Friend.
6232  Declarator TheDeclarator(DS, Declarator::MemberContext);
6233  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6234  QualType T = TSI->getType();
6235  if (TheDeclarator.isInvalidType())
6236    return 0;
6237
6238  // This is definitely an error in C++98.  It's probably meant to
6239  // be forbidden in C++0x, too, but the specification is just
6240  // poorly written.
6241  //
6242  // The problem is with declarations like the following:
6243  //   template <T> friend A<T>::foo;
6244  // where deciding whether a class C is a friend or not now hinges
6245  // on whether there exists an instantiation of A that causes
6246  // 'foo' to equal C.  There are restrictions on class-heads
6247  // (which we declare (by fiat) elaborated friend declarations to
6248  // be) that makes this tractable.
6249  //
6250  // FIXME: handle "template <> friend class A<T>;", which
6251  // is possibly well-formed?  Who even knows?
6252  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6253    Diag(Loc, diag::err_tagless_friend_type_template)
6254      << DS.getSourceRange();
6255    return 0;
6256  }
6257
6258  // C++98 [class.friend]p1: A friend of a class is a function
6259  //   or class that is not a member of the class . . .
6260  // This is fixed in DR77, which just barely didn't make the C++03
6261  // deadline.  It's also a very silly restriction that seriously
6262  // affects inner classes and which nobody else seems to implement;
6263  // thus we never diagnose it, not even in -pedantic.
6264  //
6265  // But note that we could warn about it: it's always useless to
6266  // friend one of your own members (it's not, however, worthless to
6267  // friend a member of an arbitrary specialization of your template).
6268
6269  Decl *D;
6270  if (unsigned NumTempParamLists = TempParams.size())
6271    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6272                                   NumTempParamLists,
6273                                 (TemplateParameterList**) TempParams.release(),
6274                                   TSI,
6275                                   DS.getFriendSpecLoc());
6276  else
6277    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6278
6279  if (!D)
6280    return 0;
6281
6282  D->setAccess(AS_public);
6283  CurContext->addDecl(D);
6284
6285  return D;
6286}
6287
6288Decl *Sema::ActOnFriendFunctionDecl(Scope *S,
6289                                         Declarator &D,
6290                                         bool IsDefinition,
6291                              MultiTemplateParamsArg TemplateParams) {
6292  const DeclSpec &DS = D.getDeclSpec();
6293
6294  assert(DS.isFriendSpecified());
6295  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6296
6297  SourceLocation Loc = D.getIdentifierLoc();
6298  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6299  QualType T = TInfo->getType();
6300
6301  // C++ [class.friend]p1
6302  //   A friend of a class is a function or class....
6303  // Note that this sees through typedefs, which is intended.
6304  // It *doesn't* see through dependent types, which is correct
6305  // according to [temp.arg.type]p3:
6306  //   If a declaration acquires a function type through a
6307  //   type dependent on a template-parameter and this causes
6308  //   a declaration that does not use the syntactic form of a
6309  //   function declarator to have a function type, the program
6310  //   is ill-formed.
6311  if (!T->isFunctionType()) {
6312    Diag(Loc, diag::err_unexpected_friend);
6313
6314    // It might be worthwhile to try to recover by creating an
6315    // appropriate declaration.
6316    return 0;
6317  }
6318
6319  // C++ [namespace.memdef]p3
6320  //  - If a friend declaration in a non-local class first declares a
6321  //    class or function, the friend class or function is a member
6322  //    of the innermost enclosing namespace.
6323  //  - The name of the friend is not found by simple name lookup
6324  //    until a matching declaration is provided in that namespace
6325  //    scope (either before or after the class declaration granting
6326  //    friendship).
6327  //  - If a friend function is called, its name may be found by the
6328  //    name lookup that considers functions from namespaces and
6329  //    classes associated with the types of the function arguments.
6330  //  - When looking for a prior declaration of a class or a function
6331  //    declared as a friend, scopes outside the innermost enclosing
6332  //    namespace scope are not considered.
6333
6334  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
6335  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6336  DeclarationName Name = NameInfo.getName();
6337  assert(Name);
6338
6339  // The context we found the declaration in, or in which we should
6340  // create the declaration.
6341  DeclContext *DC;
6342
6343  // FIXME: handle local classes
6344
6345  // Recover from invalid scope qualifiers as if they just weren't there.
6346  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6347                        ForRedeclaration);
6348  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
6349    DC = computeDeclContext(ScopeQual);
6350
6351    // FIXME: handle dependent contexts
6352    if (!DC) return 0;
6353    if (RequireCompleteDeclContext(ScopeQual, DC)) return 0;
6354
6355    LookupQualifiedName(Previous, DC);
6356
6357    // Ignore things found implicitly in the wrong scope.
6358    // TODO: better diagnostics for this case.  Suggesting the right
6359    // qualified scope would be nice...
6360    LookupResult::Filter F = Previous.makeFilter();
6361    while (F.hasNext()) {
6362      NamedDecl *D = F.next();
6363      if (!DC->InEnclosingNamespaceSetOf(
6364              D->getDeclContext()->getRedeclContext()))
6365        F.erase();
6366    }
6367    F.done();
6368
6369    if (Previous.empty()) {
6370      D.setInvalidType();
6371      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6372      return 0;
6373    }
6374
6375    // C++ [class.friend]p1: A friend of a class is a function or
6376    //   class that is not a member of the class . . .
6377    if (DC->Equals(CurContext))
6378      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6379
6380  // Otherwise walk out to the nearest namespace scope looking for matches.
6381  } else {
6382    // TODO: handle local class contexts.
6383
6384    DC = CurContext;
6385    while (true) {
6386      // Skip class contexts.  If someone can cite chapter and verse
6387      // for this behavior, that would be nice --- it's what GCC and
6388      // EDG do, and it seems like a reasonable intent, but the spec
6389      // really only says that checks for unqualified existing
6390      // declarations should stop at the nearest enclosing namespace,
6391      // not that they should only consider the nearest enclosing
6392      // namespace.
6393      while (DC->isRecord())
6394        DC = DC->getParent();
6395
6396      LookupQualifiedName(Previous, DC);
6397
6398      // TODO: decide what we think about using declarations.
6399      if (!Previous.empty())
6400        break;
6401
6402      if (DC->isFileContext()) break;
6403      DC = DC->getParent();
6404    }
6405
6406    // C++ [class.friend]p1: A friend of a class is a function or
6407    //   class that is not a member of the class . . .
6408    // C++0x changes this for both friend types and functions.
6409    // Most C++ 98 compilers do seem to give an error here, so
6410    // we do, too.
6411    if (!Previous.empty() && DC->Equals(CurContext)
6412        && !getLangOptions().CPlusPlus0x)
6413      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6414  }
6415
6416  if (DC->isFileContext()) {
6417    // This implies that it has to be an operator or function.
6418    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6419        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6420        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6421      Diag(Loc, diag::err_introducing_special_friend) <<
6422        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6423         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6424      return 0;
6425    }
6426  }
6427
6428  bool Redeclaration = false;
6429  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
6430                                          move(TemplateParams),
6431                                          IsDefinition,
6432                                          Redeclaration);
6433  if (!ND) return 0;
6434
6435  assert(ND->getDeclContext() == DC);
6436  assert(ND->getLexicalDeclContext() == CurContext);
6437
6438  // Add the function declaration to the appropriate lookup tables,
6439  // adjusting the redeclarations list as necessary.  We don't
6440  // want to do this yet if the friending class is dependent.
6441  //
6442  // Also update the scope-based lookup if the target context's
6443  // lookup context is in lexical scope.
6444  if (!CurContext->isDependentContext()) {
6445    DC = DC->getRedeclContext();
6446    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6447    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6448      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6449  }
6450
6451  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6452                                       D.getIdentifierLoc(), ND,
6453                                       DS.getFriendSpecLoc());
6454  FrD->setAccess(AS_public);
6455  CurContext->addDecl(FrD);
6456
6457  return ND;
6458}
6459
6460void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
6461  AdjustDeclIfTemplate(Dcl);
6462
6463  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6464  if (!Fn) {
6465    Diag(DelLoc, diag::err_deleted_non_function);
6466    return;
6467  }
6468  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6469    Diag(DelLoc, diag::err_deleted_decl_not_first);
6470    Diag(Prev->getLocation(), diag::note_previous_declaration);
6471    // If the declaration wasn't the first, we delete the function anyway for
6472    // recovery.
6473  }
6474  Fn->setDeleted();
6475}
6476
6477static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6478  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6479       ++CI) {
6480    Stmt *SubStmt = *CI;
6481    if (!SubStmt)
6482      continue;
6483    if (isa<ReturnStmt>(SubStmt))
6484      Self.Diag(SubStmt->getSourceRange().getBegin(),
6485           diag::err_return_in_constructor_handler);
6486    if (!isa<Expr>(SubStmt))
6487      SearchForReturnInStmt(Self, SubStmt);
6488  }
6489}
6490
6491void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6492  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6493    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6494    SearchForReturnInStmt(*this, Handler);
6495  }
6496}
6497
6498bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6499                                             const CXXMethodDecl *Old) {
6500  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6501  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6502
6503  if (Context.hasSameType(NewTy, OldTy) ||
6504      NewTy->isDependentType() || OldTy->isDependentType())
6505    return false;
6506
6507  // Check if the return types are covariant
6508  QualType NewClassTy, OldClassTy;
6509
6510  /// Both types must be pointers or references to classes.
6511  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6512    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6513      NewClassTy = NewPT->getPointeeType();
6514      OldClassTy = OldPT->getPointeeType();
6515    }
6516  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6517    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6518      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6519        NewClassTy = NewRT->getPointeeType();
6520        OldClassTy = OldRT->getPointeeType();
6521      }
6522    }
6523  }
6524
6525  // The return types aren't either both pointers or references to a class type.
6526  if (NewClassTy.isNull()) {
6527    Diag(New->getLocation(),
6528         diag::err_different_return_type_for_overriding_virtual_function)
6529      << New->getDeclName() << NewTy << OldTy;
6530    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6531
6532    return true;
6533  }
6534
6535  // C++ [class.virtual]p6:
6536  //   If the return type of D::f differs from the return type of B::f, the
6537  //   class type in the return type of D::f shall be complete at the point of
6538  //   declaration of D::f or shall be the class type D.
6539  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6540    if (!RT->isBeingDefined() &&
6541        RequireCompleteType(New->getLocation(), NewClassTy,
6542                            PDiag(diag::err_covariant_return_incomplete)
6543                              << New->getDeclName()))
6544    return true;
6545  }
6546
6547  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6548    // Check if the new class derives from the old class.
6549    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6550      Diag(New->getLocation(),
6551           diag::err_covariant_return_not_derived)
6552      << New->getDeclName() << NewTy << OldTy;
6553      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6554      return true;
6555    }
6556
6557    // Check if we the conversion from derived to base is valid.
6558    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6559                    diag::err_covariant_return_inaccessible_base,
6560                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6561                    // FIXME: Should this point to the return type?
6562                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6563      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6564      return true;
6565    }
6566  }
6567
6568  // The qualifiers of the return types must be the same.
6569  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6570    Diag(New->getLocation(),
6571         diag::err_covariant_return_type_different_qualifications)
6572    << New->getDeclName() << NewTy << OldTy;
6573    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6574    return true;
6575  };
6576
6577
6578  // The new class type must have the same or less qualifiers as the old type.
6579  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6580    Diag(New->getLocation(),
6581         diag::err_covariant_return_type_class_type_more_qualified)
6582    << New->getDeclName() << NewTy << OldTy;
6583    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6584    return true;
6585  };
6586
6587  return false;
6588}
6589
6590bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6591                                             const CXXMethodDecl *Old)
6592{
6593  if (Old->hasAttr<FinalAttr>()) {
6594    Diag(New->getLocation(), diag::err_final_function_overridden)
6595      << New->getDeclName();
6596    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6597    return true;
6598  }
6599
6600  return false;
6601}
6602
6603/// \brief Mark the given method pure.
6604///
6605/// \param Method the method to be marked pure.
6606///
6607/// \param InitRange the source range that covers the "0" initializer.
6608bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6609  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6610    Method->setPure();
6611    return false;
6612  }
6613
6614  if (!Method->isInvalidDecl())
6615    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6616      << Method->getDeclName() << InitRange;
6617  return true;
6618}
6619
6620/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6621/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6622/// is a fresh scope pushed for just this purpose.
6623///
6624/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6625/// static data member of class X, names should be looked up in the scope of
6626/// class X.
6627void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
6628  // If there is no declaration, there was an error parsing it.
6629  if (D == 0) return;
6630
6631  // We should only get called for declarations with scope specifiers, like:
6632  //   int foo::bar;
6633  assert(D->isOutOfLine());
6634  EnterDeclaratorContext(S, D->getDeclContext());
6635}
6636
6637/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6638/// initializer for the out-of-line declaration 'D'.
6639void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
6640  // If there is no declaration, there was an error parsing it.
6641  if (D == 0) return;
6642
6643  assert(D->isOutOfLine());
6644  ExitDeclaratorContext(S);
6645}
6646
6647/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6648/// C++ if/switch/while/for statement.
6649/// e.g: "if (int x = f()) {...}"
6650DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6651  // C++ 6.4p2:
6652  // The declarator shall not specify a function or an array.
6653  // The type-specifier-seq shall not contain typedef and shall not declare a
6654  // new class or enumeration.
6655  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6656         "Parser allowed 'typedef' as storage class of condition decl.");
6657
6658  TagDecl *OwnedTag = 0;
6659  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6660  QualType Ty = TInfo->getType();
6661
6662  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6663                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6664                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6665    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6666      << D.getSourceRange();
6667    return DeclResult();
6668  } else if (OwnedTag && OwnedTag->isDefinition()) {
6669    // The type-specifier-seq shall not declare a new class or enumeration.
6670    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6671  }
6672
6673  Decl *Dcl = ActOnDeclarator(S, D);
6674  if (!Dcl)
6675    return DeclResult();
6676
6677  return Dcl;
6678}
6679
6680void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6681                          bool DefinitionRequired) {
6682  // Ignore any vtable uses in unevaluated operands or for classes that do
6683  // not have a vtable.
6684  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6685      CurContext->isDependentContext() ||
6686      ExprEvalContexts.back().Context == Unevaluated)
6687    return;
6688
6689  // Try to insert this class into the map.
6690  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6691  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6692    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6693  if (!Pos.second) {
6694    // If we already had an entry, check to see if we are promoting this vtable
6695    // to required a definition. If so, we need to reappend to the VTableUses
6696    // list, since we may have already processed the first entry.
6697    if (DefinitionRequired && !Pos.first->second) {
6698      Pos.first->second = true;
6699    } else {
6700      // Otherwise, we can early exit.
6701      return;
6702    }
6703  }
6704
6705  // Local classes need to have their virtual members marked
6706  // immediately. For all other classes, we mark their virtual members
6707  // at the end of the translation unit.
6708  if (Class->isLocalClass())
6709    MarkVirtualMembersReferenced(Loc, Class);
6710  else
6711    VTableUses.push_back(std::make_pair(Class, Loc));
6712}
6713
6714bool Sema::DefineUsedVTables() {
6715  // If any dynamic classes have their key function defined within
6716  // this translation unit, then those vtables are considered "used" and must
6717  // be emitted.
6718  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6719    if (const CXXMethodDecl *KeyFunction
6720                             = Context.getKeyFunction(DynamicClasses[I])) {
6721      const FunctionDecl *Definition = 0;
6722      if (KeyFunction->hasBody(Definition))
6723        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6724    }
6725  }
6726
6727  if (VTableUses.empty())
6728    return false;
6729
6730  // Note: The VTableUses vector could grow as a result of marking
6731  // the members of a class as "used", so we check the size each
6732  // time through the loop and prefer indices (with are stable) to
6733  // iterators (which are not).
6734  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6735    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6736    if (!Class)
6737      continue;
6738
6739    SourceLocation Loc = VTableUses[I].second;
6740
6741    // If this class has a key function, but that key function is
6742    // defined in another translation unit, we don't need to emit the
6743    // vtable even though we're using it.
6744    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6745    if (KeyFunction && !KeyFunction->hasBody()) {
6746      switch (KeyFunction->getTemplateSpecializationKind()) {
6747      case TSK_Undeclared:
6748      case TSK_ExplicitSpecialization:
6749      case TSK_ExplicitInstantiationDeclaration:
6750        // The key function is in another translation unit.
6751        continue;
6752
6753      case TSK_ExplicitInstantiationDefinition:
6754      case TSK_ImplicitInstantiation:
6755        // We will be instantiating the key function.
6756        break;
6757      }
6758    } else if (!KeyFunction) {
6759      // If we have a class with no key function that is the subject
6760      // of an explicit instantiation declaration, suppress the
6761      // vtable; it will live with the explicit instantiation
6762      // definition.
6763      bool IsExplicitInstantiationDeclaration
6764        = Class->getTemplateSpecializationKind()
6765                                      == TSK_ExplicitInstantiationDeclaration;
6766      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6767                                 REnd = Class->redecls_end();
6768           R != REnd; ++R) {
6769        TemplateSpecializationKind TSK
6770          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6771        if (TSK == TSK_ExplicitInstantiationDeclaration)
6772          IsExplicitInstantiationDeclaration = true;
6773        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6774          IsExplicitInstantiationDeclaration = false;
6775          break;
6776        }
6777      }
6778
6779      if (IsExplicitInstantiationDeclaration)
6780        continue;
6781    }
6782
6783    // Mark all of the virtual members of this class as referenced, so
6784    // that we can build a vtable. Then, tell the AST consumer that a
6785    // vtable for this class is required.
6786    MarkVirtualMembersReferenced(Loc, Class);
6787    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6788    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6789
6790    // Optionally warn if we're emitting a weak vtable.
6791    if (Class->getLinkage() == ExternalLinkage &&
6792        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6793      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
6794        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6795    }
6796  }
6797  VTableUses.clear();
6798
6799  return true;
6800}
6801
6802void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6803                                        const CXXRecordDecl *RD) {
6804  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6805       e = RD->method_end(); i != e; ++i) {
6806    CXXMethodDecl *MD = *i;
6807
6808    // C++ [basic.def.odr]p2:
6809    //   [...] A virtual member function is used if it is not pure. [...]
6810    if (MD->isVirtual() && !MD->isPure())
6811      MarkDeclarationReferenced(Loc, MD);
6812  }
6813
6814  // Only classes that have virtual bases need a VTT.
6815  if (RD->getNumVBases() == 0)
6816    return;
6817
6818  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6819           e = RD->bases_end(); i != e; ++i) {
6820    const CXXRecordDecl *Base =
6821        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6822    if (Base->getNumVBases() == 0)
6823      continue;
6824    MarkVirtualMembersReferenced(Loc, Base);
6825  }
6826}
6827
6828/// SetIvarInitializers - This routine builds initialization ASTs for the
6829/// Objective-C implementation whose ivars need be initialized.
6830void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6831  if (!getLangOptions().CPlusPlus)
6832    return;
6833  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6834    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6835    CollectIvarsToConstructOrDestruct(OID, ivars);
6836    if (ivars.empty())
6837      return;
6838    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6839    for (unsigned i = 0; i < ivars.size(); i++) {
6840      FieldDecl *Field = ivars[i];
6841      if (Field->isInvalidDecl())
6842        continue;
6843
6844      CXXBaseOrMemberInitializer *Member;
6845      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6846      InitializationKind InitKind =
6847        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6848
6849      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6850      ExprResult MemberInit =
6851        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
6852      MemberInit = MaybeCreateCXXExprWithTemporaries(MemberInit.get());
6853      // Note, MemberInit could actually come back empty if no initialization
6854      // is required (e.g., because it would call a trivial default constructor)
6855      if (!MemberInit.get() || MemberInit.isInvalid())
6856        continue;
6857
6858      Member =
6859        new (Context) CXXBaseOrMemberInitializer(Context,
6860                                                 Field, SourceLocation(),
6861                                                 SourceLocation(),
6862                                                 MemberInit.takeAs<Expr>(),
6863                                                 SourceLocation());
6864      AllToInit.push_back(Member);
6865
6866      // Be sure that the destructor is accessible and is marked as referenced.
6867      if (const RecordType *RecordTy
6868                  = Context.getBaseElementType(Field->getType())
6869                                                        ->getAs<RecordType>()) {
6870                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6871        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
6872          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6873          CheckDestructorAccess(Field->getLocation(), Destructor,
6874                            PDiag(diag::err_access_dtor_ivar)
6875                              << Context.getBaseElementType(Field->getType()));
6876        }
6877      }
6878    }
6879    ObjCImplementation->setIvarInitializers(Context,
6880                                            AllToInit.data(), AllToInit.size());
6881  }
6882}
6883