SemaDeclCXX.cpp revision 9158902bae11aec846edcf132a6dc29c834f197b
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++0x [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(NewFD)) {
663    // C++0x [dcl.constexpr]p4:
664    //  In the definition of a constexpr constructor, each of the parameter
665    //  types shall be a literal type.
666    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
667      return false;
668
669    //  In addition, either its function-body shall be = delete or = default or
670    //  it shall satisfy the following constraints:
671    //  - the class shall not have any virtual base classes;
672    const CXXRecordDecl *RD = CD->getParent();
673    if (RD->getNumVBases()) {
674      // Note, this is still illegal if the body is = default, since the
675      // implicit body does not satisfy the requirements of a constexpr
676      // constructor. We also reject cases where the body is = delete, as
677      // required by N3308.
678      if (CCK != CCK_Instantiation) {
679        Diag(NewFD->getLocation(),
680             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
681                                    : diag::note_constexpr_tmpl_virtual_base)
682          << RD->isStruct() << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  } else {
691    // C++0x [dcl.constexpr]p3:
692    //  The definition of a constexpr function shall satisfy the following
693    //  constraints:
694    // - it shall not be virtual;
695    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
696    if (Method && Method->isVirtual()) {
697      if (CCK != CCK_Instantiation) {
698        Diag(NewFD->getLocation(),
699             CCK == CCK_Declaration ? diag::err_constexpr_virtual
700                                    : diag::note_constexpr_tmpl_virtual);
701
702        // If it's not obvious why this function is virtual, find an overridden
703        // function which uses the 'virtual' keyword.
704        const CXXMethodDecl *WrittenVirtual = Method;
705        while (!WrittenVirtual->isVirtualAsWritten())
706          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
707        if (WrittenVirtual != Method)
708          Diag(WrittenVirtual->getLocation(),
709               diag::note_overridden_virtual_function);
710      }
711      return false;
712    }
713
714    // - its return type shall be a literal type;
715    QualType RT = NewFD->getResultType();
716    if (!RT->isDependentType() &&
717        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
718                           PDiag(diag::err_constexpr_non_literal_return) :
719                           PDiag(),
720                           /*AllowIncompleteType*/ true)) {
721      if (CCK == CCK_NoteNonConstexprInstantiation)
722        Diag(NewFD->getLocation(),
723             diag::note_constexpr_tmpl_non_literal_return) << RT;
724      return false;
725    }
726
727    // - each of its parameter types shall be a literal type;
728    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
729      return false;
730  }
731
732  return true;
733}
734
735/// Check the given declaration statement is legal within a constexpr function
736/// body. C++0x [dcl.constexpr]p3,p4.
737///
738/// \return true if the body is OK, false if we have diagnosed a problem.
739static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
740                                   DeclStmt *DS) {
741  // C++0x [dcl.constexpr]p3 and p4:
742  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
743  //  contain only
744  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
745         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
746    switch ((*DclIt)->getKind()) {
747    case Decl::StaticAssert:
748    case Decl::Using:
749    case Decl::UsingShadow:
750    case Decl::UsingDirective:
751    case Decl::UnresolvedUsingTypename:
752      //   - static_assert-declarations
753      //   - using-declarations,
754      //   - using-directives,
755      continue;
756
757    case Decl::Typedef:
758    case Decl::TypeAlias: {
759      //   - typedef declarations and alias-declarations that do not define
760      //     classes or enumerations,
761      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
762      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
763        // Don't allow variably-modified types in constexpr functions.
764        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
765        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
766          << TL.getSourceRange() << TL.getType()
767          << isa<CXXConstructorDecl>(Dcl);
768        return false;
769      }
770      continue;
771    }
772
773    case Decl::Enum:
774    case Decl::CXXRecord:
775      // As an extension, we allow the declaration (but not the definition) of
776      // classes and enumerations in all declarations, not just in typedef and
777      // alias declarations.
778      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
779        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
780          << isa<CXXConstructorDecl>(Dcl);
781        return false;
782      }
783      continue;
784
785    case Decl::Var:
786      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
787        << isa<CXXConstructorDecl>(Dcl);
788      return false;
789
790    default:
791      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
792        << isa<CXXConstructorDecl>(Dcl);
793      return false;
794    }
795  }
796
797  return true;
798}
799
800/// Check that the given field is initialized within a constexpr constructor.
801///
802/// \param Dcl The constexpr constructor being checked.
803/// \param Field The field being checked. This may be a member of an anonymous
804///        struct or union nested within the class being checked.
805/// \param Inits All declarations, including anonymous struct/union members and
806///        indirect members, for which any initialization was provided.
807/// \param Diagnosed Set to true if an error is produced.
808static void CheckConstexprCtorInitializer(Sema &SemaRef,
809                                          const FunctionDecl *Dcl,
810                                          FieldDecl *Field,
811                                          llvm::SmallSet<Decl*, 16> &Inits,
812                                          bool &Diagnosed) {
813  if (Field->isUnnamedBitfield())
814    return;
815
816  if (!Inits.count(Field)) {
817    if (!Diagnosed) {
818      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
819      Diagnosed = true;
820    }
821    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
822  } else if (Field->isAnonymousStructOrUnion()) {
823    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
824    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
825         I != E; ++I)
826      // If an anonymous union contains an anonymous struct of which any member
827      // is initialized, all members must be initialized.
828      if (!RD->isUnion() || Inits.count(*I))
829        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
830  }
831}
832
833/// Check the body for the given constexpr function declaration only contains
834/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
835///
836/// \return true if the body is OK, false if we have diagnosed a problem.
837bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
838  if (isa<CXXTryStmt>(Body)) {
839    // C++0x [dcl.constexpr]p3:
840    //  The definition of a constexpr function shall satisfy the following
841    //  constraints: [...]
842    // - its function-body shall be = delete, = default, or a
843    //   compound-statement
844    //
845    // C++0x [dcl.constexpr]p4:
846    //  In the definition of a constexpr constructor, [...]
847    // - its function-body shall not be a function-try-block;
848    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
849      << isa<CXXConstructorDecl>(Dcl);
850    return false;
851  }
852
853  // - its function-body shall be [...] a compound-statement that contains only
854  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
855
856  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
857  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
858         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
859    switch ((*BodyIt)->getStmtClass()) {
860    case Stmt::NullStmtClass:
861      //   - null statements,
862      continue;
863
864    case Stmt::DeclStmtClass:
865      //   - static_assert-declarations
866      //   - using-declarations,
867      //   - using-directives,
868      //   - typedef declarations and alias-declarations that do not define
869      //     classes or enumerations,
870      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
871        return false;
872      continue;
873
874    case Stmt::ReturnStmtClass:
875      //   - and exactly one return statement;
876      if (isa<CXXConstructorDecl>(Dcl))
877        break;
878
879      ReturnStmts.push_back((*BodyIt)->getLocStart());
880      // FIXME
881      // - every constructor call and implicit conversion used in initializing
882      //   the return value shall be one of those allowed in a constant
883      //   expression.
884      // Deal with this as part of a general check that the function can produce
885      // a constant expression (for [dcl.constexpr]p5).
886      continue;
887
888    default:
889      break;
890    }
891
892    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
893      << isa<CXXConstructorDecl>(Dcl);
894    return false;
895  }
896
897  if (const CXXConstructorDecl *Constructor
898        = dyn_cast<CXXConstructorDecl>(Dcl)) {
899    const CXXRecordDecl *RD = Constructor->getParent();
900    // - every non-static data member and base class sub-object shall be
901    //   initialized;
902    if (RD->isUnion()) {
903      // DR1359: Exactly one member of a union shall be initialized.
904      if (Constructor->getNumCtorInitializers() == 0) {
905        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
906        return false;
907      }
908    } else if (!Constructor->isDependentContext() &&
909               !Constructor->isDelegatingConstructor()) {
910      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
911
912      // Skip detailed checking if we have enough initializers, and we would
913      // allow at most one initializer per member.
914      bool AnyAnonStructUnionMembers = false;
915      unsigned Fields = 0;
916      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
917           E = RD->field_end(); I != E; ++I, ++Fields) {
918        if ((*I)->isAnonymousStructOrUnion()) {
919          AnyAnonStructUnionMembers = true;
920          break;
921        }
922      }
923      if (AnyAnonStructUnionMembers ||
924          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
925        // Check initialization of non-static data members. Base classes are
926        // always initialized so do not need to be checked. Dependent bases
927        // might not have initializers in the member initializer list.
928        llvm::SmallSet<Decl*, 16> Inits;
929        for (CXXConstructorDecl::init_const_iterator
930               I = Constructor->init_begin(), E = Constructor->init_end();
931             I != E; ++I) {
932          if (FieldDecl *FD = (*I)->getMember())
933            Inits.insert(FD);
934          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
935            Inits.insert(ID->chain_begin(), ID->chain_end());
936        }
937
938        bool Diagnosed = false;
939        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
940             E = RD->field_end(); I != E; ++I)
941          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
942        if (Diagnosed)
943          return false;
944      }
945    }
946
947    // FIXME
948    // - every constructor involved in initializing non-static data members
949    //   and base class sub-objects shall be a constexpr constructor;
950    // - every assignment-expression that is an initializer-clause appearing
951    //   directly or indirectly within a brace-or-equal-initializer for
952    //   a non-static data member that is not named by a mem-initializer-id
953    //   shall be a constant expression; and
954    // - every implicit conversion used in converting a constructor argument
955    //   to the corresponding parameter type and converting
956    //   a full-expression to the corresponding member type shall be one of
957    //   those allowed in a constant expression.
958    // Deal with these as part of a general check that the function can produce
959    // a constant expression (for [dcl.constexpr]p5).
960  } else {
961    if (ReturnStmts.empty()) {
962      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
963      return false;
964    }
965    if (ReturnStmts.size() > 1) {
966      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
967      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
968        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
969      return false;
970    }
971  }
972
973  return true;
974}
975
976/// isCurrentClassName - Determine whether the identifier II is the
977/// name of the class type currently being defined. In the case of
978/// nested classes, this will only return true if II is the name of
979/// the innermost class.
980bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
981                              const CXXScopeSpec *SS) {
982  assert(getLangOptions().CPlusPlus && "No class names in C!");
983
984  CXXRecordDecl *CurDecl;
985  if (SS && SS->isSet() && !SS->isInvalid()) {
986    DeclContext *DC = computeDeclContext(*SS, true);
987    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
988  } else
989    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
990
991  if (CurDecl && CurDecl->getIdentifier())
992    return &II == CurDecl->getIdentifier();
993  else
994    return false;
995}
996
997/// \brief Check the validity of a C++ base class specifier.
998///
999/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1000/// and returns NULL otherwise.
1001CXXBaseSpecifier *
1002Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1003                         SourceRange SpecifierRange,
1004                         bool Virtual, AccessSpecifier Access,
1005                         TypeSourceInfo *TInfo,
1006                         SourceLocation EllipsisLoc) {
1007  QualType BaseType = TInfo->getType();
1008
1009  // C++ [class.union]p1:
1010  //   A union shall not have base classes.
1011  if (Class->isUnion()) {
1012    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1013      << SpecifierRange;
1014    return 0;
1015  }
1016
1017  if (EllipsisLoc.isValid() &&
1018      !TInfo->getType()->containsUnexpandedParameterPack()) {
1019    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1020      << TInfo->getTypeLoc().getSourceRange();
1021    EllipsisLoc = SourceLocation();
1022  }
1023
1024  if (BaseType->isDependentType())
1025    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1026                                          Class->getTagKind() == TTK_Class,
1027                                          Access, TInfo, EllipsisLoc);
1028
1029  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1030
1031  // Base specifiers must be record types.
1032  if (!BaseType->isRecordType()) {
1033    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1034    return 0;
1035  }
1036
1037  // C++ [class.union]p1:
1038  //   A union shall not be used as a base class.
1039  if (BaseType->isUnionType()) {
1040    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1041    return 0;
1042  }
1043
1044  // C++ [class.derived]p2:
1045  //   The class-name in a base-specifier shall not be an incompletely
1046  //   defined class.
1047  if (RequireCompleteType(BaseLoc, BaseType,
1048                          PDiag(diag::err_incomplete_base_class)
1049                            << SpecifierRange)) {
1050    Class->setInvalidDecl();
1051    return 0;
1052  }
1053
1054  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1055  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1056  assert(BaseDecl && "Record type has no declaration");
1057  BaseDecl = BaseDecl->getDefinition();
1058  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1059  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1060  assert(CXXBaseDecl && "Base type is not a C++ type");
1061
1062  // C++ [class]p3:
1063  //   If a class is marked final and it appears as a base-type-specifier in
1064  //   base-clause, the program is ill-formed.
1065  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1066    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1067      << CXXBaseDecl->getDeclName();
1068    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1069      << CXXBaseDecl->getDeclName();
1070    return 0;
1071  }
1072
1073  if (BaseDecl->isInvalidDecl())
1074    Class->setInvalidDecl();
1075
1076  // Create the base specifier.
1077  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1078                                        Class->getTagKind() == TTK_Class,
1079                                        Access, TInfo, EllipsisLoc);
1080}
1081
1082/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1083/// one entry in the base class list of a class specifier, for
1084/// example:
1085///    class foo : public bar, virtual private baz {
1086/// 'public bar' and 'virtual private baz' are each base-specifiers.
1087BaseResult
1088Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1089                         bool Virtual, AccessSpecifier Access,
1090                         ParsedType basetype, SourceLocation BaseLoc,
1091                         SourceLocation EllipsisLoc) {
1092  if (!classdecl)
1093    return true;
1094
1095  AdjustDeclIfTemplate(classdecl);
1096  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1097  if (!Class)
1098    return true;
1099
1100  TypeSourceInfo *TInfo = 0;
1101  GetTypeFromParser(basetype, &TInfo);
1102
1103  if (EllipsisLoc.isInvalid() &&
1104      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1105                                      UPPC_BaseType))
1106    return true;
1107
1108  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1109                                                      Virtual, Access, TInfo,
1110                                                      EllipsisLoc))
1111    return BaseSpec;
1112
1113  return true;
1114}
1115
1116/// \brief Performs the actual work of attaching the given base class
1117/// specifiers to a C++ class.
1118bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1119                                unsigned NumBases) {
1120 if (NumBases == 0)
1121    return false;
1122
1123  // Used to keep track of which base types we have already seen, so
1124  // that we can properly diagnose redundant direct base types. Note
1125  // that the key is always the unqualified canonical type of the base
1126  // class.
1127  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1128
1129  // Copy non-redundant base specifiers into permanent storage.
1130  unsigned NumGoodBases = 0;
1131  bool Invalid = false;
1132  for (unsigned idx = 0; idx < NumBases; ++idx) {
1133    QualType NewBaseType
1134      = Context.getCanonicalType(Bases[idx]->getType());
1135    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1136    if (KnownBaseTypes[NewBaseType]) {
1137      // C++ [class.mi]p3:
1138      //   A class shall not be specified as a direct base class of a
1139      //   derived class more than once.
1140      Diag(Bases[idx]->getSourceRange().getBegin(),
1141           diag::err_duplicate_base_class)
1142        << KnownBaseTypes[NewBaseType]->getType()
1143        << Bases[idx]->getSourceRange();
1144
1145      // Delete the duplicate base class specifier; we're going to
1146      // overwrite its pointer later.
1147      Context.Deallocate(Bases[idx]);
1148
1149      Invalid = true;
1150    } else {
1151      // Okay, add this new base class.
1152      KnownBaseTypes[NewBaseType] = Bases[idx];
1153      Bases[NumGoodBases++] = Bases[idx];
1154      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1155        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1156          if (RD->hasAttr<WeakAttr>())
1157            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1158    }
1159  }
1160
1161  // Attach the remaining base class specifiers to the derived class.
1162  Class->setBases(Bases, NumGoodBases);
1163
1164  // Delete the remaining (good) base class specifiers, since their
1165  // data has been copied into the CXXRecordDecl.
1166  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1167    Context.Deallocate(Bases[idx]);
1168
1169  return Invalid;
1170}
1171
1172/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1173/// class, after checking whether there are any duplicate base
1174/// classes.
1175void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1176                               unsigned NumBases) {
1177  if (!ClassDecl || !Bases || !NumBases)
1178    return;
1179
1180  AdjustDeclIfTemplate(ClassDecl);
1181  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1182                       (CXXBaseSpecifier**)(Bases), NumBases);
1183}
1184
1185static CXXRecordDecl *GetClassForType(QualType T) {
1186  if (const RecordType *RT = T->getAs<RecordType>())
1187    return cast<CXXRecordDecl>(RT->getDecl());
1188  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1189    return ICT->getDecl();
1190  else
1191    return 0;
1192}
1193
1194/// \brief Determine whether the type \p Derived is a C++ class that is
1195/// derived from the type \p Base.
1196bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1197  if (!getLangOptions().CPlusPlus)
1198    return false;
1199
1200  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1201  if (!DerivedRD)
1202    return false;
1203
1204  CXXRecordDecl *BaseRD = GetClassForType(Base);
1205  if (!BaseRD)
1206    return false;
1207
1208  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1209  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1210}
1211
1212/// \brief Determine whether the type \p Derived is a C++ class that is
1213/// derived from the type \p Base.
1214bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1215  if (!getLangOptions().CPlusPlus)
1216    return false;
1217
1218  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1219  if (!DerivedRD)
1220    return false;
1221
1222  CXXRecordDecl *BaseRD = GetClassForType(Base);
1223  if (!BaseRD)
1224    return false;
1225
1226  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1227}
1228
1229void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1230                              CXXCastPath &BasePathArray) {
1231  assert(BasePathArray.empty() && "Base path array must be empty!");
1232  assert(Paths.isRecordingPaths() && "Must record paths!");
1233
1234  const CXXBasePath &Path = Paths.front();
1235
1236  // We first go backward and check if we have a virtual base.
1237  // FIXME: It would be better if CXXBasePath had the base specifier for
1238  // the nearest virtual base.
1239  unsigned Start = 0;
1240  for (unsigned I = Path.size(); I != 0; --I) {
1241    if (Path[I - 1].Base->isVirtual()) {
1242      Start = I - 1;
1243      break;
1244    }
1245  }
1246
1247  // Now add all bases.
1248  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1249    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1250}
1251
1252/// \brief Determine whether the given base path includes a virtual
1253/// base class.
1254bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1255  for (CXXCastPath::const_iterator B = BasePath.begin(),
1256                                BEnd = BasePath.end();
1257       B != BEnd; ++B)
1258    if ((*B)->isVirtual())
1259      return true;
1260
1261  return false;
1262}
1263
1264/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1265/// conversion (where Derived and Base are class types) is
1266/// well-formed, meaning that the conversion is unambiguous (and
1267/// that all of the base classes are accessible). Returns true
1268/// and emits a diagnostic if the code is ill-formed, returns false
1269/// otherwise. Loc is the location where this routine should point to
1270/// if there is an error, and Range is the source range to highlight
1271/// if there is an error.
1272bool
1273Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1274                                   unsigned InaccessibleBaseID,
1275                                   unsigned AmbigiousBaseConvID,
1276                                   SourceLocation Loc, SourceRange Range,
1277                                   DeclarationName Name,
1278                                   CXXCastPath *BasePath) {
1279  // First, determine whether the path from Derived to Base is
1280  // ambiguous. This is slightly more expensive than checking whether
1281  // the Derived to Base conversion exists, because here we need to
1282  // explore multiple paths to determine if there is an ambiguity.
1283  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1284                     /*DetectVirtual=*/false);
1285  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1286  assert(DerivationOkay &&
1287         "Can only be used with a derived-to-base conversion");
1288  (void)DerivationOkay;
1289
1290  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1291    if (InaccessibleBaseID) {
1292      // Check that the base class can be accessed.
1293      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1294                                   InaccessibleBaseID)) {
1295        case AR_inaccessible:
1296          return true;
1297        case AR_accessible:
1298        case AR_dependent:
1299        case AR_delayed:
1300          break;
1301      }
1302    }
1303
1304    // Build a base path if necessary.
1305    if (BasePath)
1306      BuildBasePathArray(Paths, *BasePath);
1307    return false;
1308  }
1309
1310  // We know that the derived-to-base conversion is ambiguous, and
1311  // we're going to produce a diagnostic. Perform the derived-to-base
1312  // search just one more time to compute all of the possible paths so
1313  // that we can print them out. This is more expensive than any of
1314  // the previous derived-to-base checks we've done, but at this point
1315  // performance isn't as much of an issue.
1316  Paths.clear();
1317  Paths.setRecordingPaths(true);
1318  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1319  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1320  (void)StillOkay;
1321
1322  // Build up a textual representation of the ambiguous paths, e.g.,
1323  // D -> B -> A, that will be used to illustrate the ambiguous
1324  // conversions in the diagnostic. We only print one of the paths
1325  // to each base class subobject.
1326  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1327
1328  Diag(Loc, AmbigiousBaseConvID)
1329  << Derived << Base << PathDisplayStr << Range << Name;
1330  return true;
1331}
1332
1333bool
1334Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1335                                   SourceLocation Loc, SourceRange Range,
1336                                   CXXCastPath *BasePath,
1337                                   bool IgnoreAccess) {
1338  return CheckDerivedToBaseConversion(Derived, Base,
1339                                      IgnoreAccess ? 0
1340                                       : diag::err_upcast_to_inaccessible_base,
1341                                      diag::err_ambiguous_derived_to_base_conv,
1342                                      Loc, Range, DeclarationName(),
1343                                      BasePath);
1344}
1345
1346
1347/// @brief Builds a string representing ambiguous paths from a
1348/// specific derived class to different subobjects of the same base
1349/// class.
1350///
1351/// This function builds a string that can be used in error messages
1352/// to show the different paths that one can take through the
1353/// inheritance hierarchy to go from the derived class to different
1354/// subobjects of a base class. The result looks something like this:
1355/// @code
1356/// struct D -> struct B -> struct A
1357/// struct D -> struct C -> struct A
1358/// @endcode
1359std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1360  std::string PathDisplayStr;
1361  std::set<unsigned> DisplayedPaths;
1362  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1363       Path != Paths.end(); ++Path) {
1364    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1365      // We haven't displayed a path to this particular base
1366      // class subobject yet.
1367      PathDisplayStr += "\n    ";
1368      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1369      for (CXXBasePath::const_iterator Element = Path->begin();
1370           Element != Path->end(); ++Element)
1371        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1372    }
1373  }
1374
1375  return PathDisplayStr;
1376}
1377
1378//===----------------------------------------------------------------------===//
1379// C++ class member Handling
1380//===----------------------------------------------------------------------===//
1381
1382/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1383bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1384                                SourceLocation ASLoc,
1385                                SourceLocation ColonLoc,
1386                                AttributeList *Attrs) {
1387  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1388  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1389                                                  ASLoc, ColonLoc);
1390  CurContext->addHiddenDecl(ASDecl);
1391  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1392}
1393
1394/// CheckOverrideControl - Check C++0x override control semantics.
1395void Sema::CheckOverrideControl(const Decl *D) {
1396  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1397  if (!MD || !MD->isVirtual())
1398    return;
1399
1400  if (MD->isDependentContext())
1401    return;
1402
1403  // C++0x [class.virtual]p3:
1404  //   If a virtual function is marked with the virt-specifier override and does
1405  //   not override a member function of a base class,
1406  //   the program is ill-formed.
1407  bool HasOverriddenMethods =
1408    MD->begin_overridden_methods() != MD->end_overridden_methods();
1409  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1410    Diag(MD->getLocation(),
1411                 diag::err_function_marked_override_not_overriding)
1412      << MD->getDeclName();
1413    return;
1414  }
1415}
1416
1417/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1418/// function overrides a virtual member function marked 'final', according to
1419/// C++0x [class.virtual]p3.
1420bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1421                                                  const CXXMethodDecl *Old) {
1422  if (!Old->hasAttr<FinalAttr>())
1423    return false;
1424
1425  Diag(New->getLocation(), diag::err_final_function_overridden)
1426    << New->getDeclName();
1427  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1428  return true;
1429}
1430
1431/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1432/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1433/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1434/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1435/// present but parsing it has been deferred.
1436Decl *
1437Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1438                               MultiTemplateParamsArg TemplateParameterLists,
1439                               Expr *BW, const VirtSpecifiers &VS,
1440                               bool HasDeferredInit) {
1441  const DeclSpec &DS = D.getDeclSpec();
1442  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1443  DeclarationName Name = NameInfo.getName();
1444  SourceLocation Loc = NameInfo.getLoc();
1445
1446  // For anonymous bitfields, the location should point to the type.
1447  if (Loc.isInvalid())
1448    Loc = D.getSourceRange().getBegin();
1449
1450  Expr *BitWidth = static_cast<Expr*>(BW);
1451
1452  assert(isa<CXXRecordDecl>(CurContext));
1453  assert(!DS.isFriendSpecified());
1454
1455  bool isFunc = D.isDeclarationOfFunction();
1456
1457  // C++ 9.2p6: A member shall not be declared to have automatic storage
1458  // duration (auto, register) or with the extern storage-class-specifier.
1459  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1460  // data members and cannot be applied to names declared const or static,
1461  // and cannot be applied to reference members.
1462  switch (DS.getStorageClassSpec()) {
1463    case DeclSpec::SCS_unspecified:
1464    case DeclSpec::SCS_typedef:
1465    case DeclSpec::SCS_static:
1466      // FALL THROUGH.
1467      break;
1468    case DeclSpec::SCS_mutable:
1469      if (isFunc) {
1470        if (DS.getStorageClassSpecLoc().isValid())
1471          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1472        else
1473          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1474
1475        // FIXME: It would be nicer if the keyword was ignored only for this
1476        // declarator. Otherwise we could get follow-up errors.
1477        D.getMutableDeclSpec().ClearStorageClassSpecs();
1478      }
1479      break;
1480    default:
1481      if (DS.getStorageClassSpecLoc().isValid())
1482        Diag(DS.getStorageClassSpecLoc(),
1483             diag::err_storageclass_invalid_for_member);
1484      else
1485        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1486      D.getMutableDeclSpec().ClearStorageClassSpecs();
1487  }
1488
1489  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1490                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1491                      !isFunc);
1492
1493  Decl *Member;
1494  if (isInstField) {
1495    CXXScopeSpec &SS = D.getCXXScopeSpec();
1496
1497    // Data members must have identifiers for names.
1498    if (Name.getNameKind() != DeclarationName::Identifier) {
1499      Diag(Loc, diag::err_bad_variable_name)
1500        << Name;
1501      return 0;
1502    }
1503
1504    IdentifierInfo *II = Name.getAsIdentifierInfo();
1505
1506    // Member field could not be with "template" keyword.
1507    // So TemplateParameterLists should be empty in this case.
1508    if (TemplateParameterLists.size()) {
1509      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1510      if (TemplateParams->size()) {
1511        // There is no such thing as a member field template.
1512        Diag(D.getIdentifierLoc(), diag::err_template_member)
1513            << II
1514            << SourceRange(TemplateParams->getTemplateLoc(),
1515                TemplateParams->getRAngleLoc());
1516      } else {
1517        // There is an extraneous 'template<>' for this member.
1518        Diag(TemplateParams->getTemplateLoc(),
1519            diag::err_template_member_noparams)
1520            << II
1521            << SourceRange(TemplateParams->getTemplateLoc(),
1522                TemplateParams->getRAngleLoc());
1523      }
1524      return 0;
1525    }
1526
1527    if (SS.isSet() && !SS.isInvalid()) {
1528      // The user provided a superfluous scope specifier inside a class
1529      // definition:
1530      //
1531      // class X {
1532      //   int X::member;
1533      // };
1534      DeclContext *DC = 0;
1535      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1536        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1537        << Name << FixItHint::CreateRemoval(SS.getRange());
1538      else
1539        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1540          << Name << SS.getRange();
1541
1542      SS.clear();
1543    }
1544
1545    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1546                         HasDeferredInit, AS);
1547    assert(Member && "HandleField never returns null");
1548  } else {
1549    assert(!HasDeferredInit);
1550
1551    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1552    if (!Member) {
1553      return 0;
1554    }
1555
1556    // Non-instance-fields can't have a bitfield.
1557    if (BitWidth) {
1558      if (Member->isInvalidDecl()) {
1559        // don't emit another diagnostic.
1560      } else if (isa<VarDecl>(Member)) {
1561        // C++ 9.6p3: A bit-field shall not be a static member.
1562        // "static member 'A' cannot be a bit-field"
1563        Diag(Loc, diag::err_static_not_bitfield)
1564          << Name << BitWidth->getSourceRange();
1565      } else if (isa<TypedefDecl>(Member)) {
1566        // "typedef member 'x' cannot be a bit-field"
1567        Diag(Loc, diag::err_typedef_not_bitfield)
1568          << Name << BitWidth->getSourceRange();
1569      } else {
1570        // A function typedef ("typedef int f(); f a;").
1571        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1572        Diag(Loc, diag::err_not_integral_type_bitfield)
1573          << Name << cast<ValueDecl>(Member)->getType()
1574          << BitWidth->getSourceRange();
1575      }
1576
1577      BitWidth = 0;
1578      Member->setInvalidDecl();
1579    }
1580
1581    Member->setAccess(AS);
1582
1583    // If we have declared a member function template, set the access of the
1584    // templated declaration as well.
1585    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1586      FunTmpl->getTemplatedDecl()->setAccess(AS);
1587  }
1588
1589  if (VS.isOverrideSpecified()) {
1590    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1591    if (!MD || !MD->isVirtual()) {
1592      Diag(Member->getLocStart(),
1593           diag::override_keyword_only_allowed_on_virtual_member_functions)
1594        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1595    } else
1596      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1597  }
1598  if (VS.isFinalSpecified()) {
1599    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1600    if (!MD || !MD->isVirtual()) {
1601      Diag(Member->getLocStart(),
1602           diag::override_keyword_only_allowed_on_virtual_member_functions)
1603      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1604    } else
1605      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1606  }
1607
1608  if (VS.getLastLocation().isValid()) {
1609    // Update the end location of a method that has a virt-specifiers.
1610    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1611      MD->setRangeEnd(VS.getLastLocation());
1612  }
1613
1614  CheckOverrideControl(Member);
1615
1616  assert((Name || isInstField) && "No identifier for non-field ?");
1617
1618  if (isInstField)
1619    FieldCollector->Add(cast<FieldDecl>(Member));
1620  return Member;
1621}
1622
1623/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1624/// in-class initializer for a non-static C++ class member, and after
1625/// instantiating an in-class initializer in a class template. Such actions
1626/// are deferred until the class is complete.
1627void
1628Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1629                                       Expr *InitExpr) {
1630  FieldDecl *FD = cast<FieldDecl>(D);
1631
1632  if (!InitExpr) {
1633    FD->setInvalidDecl();
1634    FD->removeInClassInitializer();
1635    return;
1636  }
1637
1638  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1639    FD->setInvalidDecl();
1640    FD->removeInClassInitializer();
1641    return;
1642  }
1643
1644  ExprResult Init = InitExpr;
1645  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1646    // FIXME: if there is no EqualLoc, this is list-initialization.
1647    Init = PerformCopyInitialization(
1648      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1649    if (Init.isInvalid()) {
1650      FD->setInvalidDecl();
1651      return;
1652    }
1653
1654    CheckImplicitConversions(Init.get(), EqualLoc);
1655  }
1656
1657  // C++0x [class.base.init]p7:
1658  //   The initialization of each base and member constitutes a
1659  //   full-expression.
1660  Init = MaybeCreateExprWithCleanups(Init);
1661  if (Init.isInvalid()) {
1662    FD->setInvalidDecl();
1663    return;
1664  }
1665
1666  InitExpr = Init.release();
1667
1668  FD->setInClassInitializer(InitExpr);
1669}
1670
1671/// \brief Find the direct and/or virtual base specifiers that
1672/// correspond to the given base type, for use in base initialization
1673/// within a constructor.
1674static bool FindBaseInitializer(Sema &SemaRef,
1675                                CXXRecordDecl *ClassDecl,
1676                                QualType BaseType,
1677                                const CXXBaseSpecifier *&DirectBaseSpec,
1678                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1679  // First, check for a direct base class.
1680  DirectBaseSpec = 0;
1681  for (CXXRecordDecl::base_class_const_iterator Base
1682         = ClassDecl->bases_begin();
1683       Base != ClassDecl->bases_end(); ++Base) {
1684    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1685      // We found a direct base of this type. That's what we're
1686      // initializing.
1687      DirectBaseSpec = &*Base;
1688      break;
1689    }
1690  }
1691
1692  // Check for a virtual base class.
1693  // FIXME: We might be able to short-circuit this if we know in advance that
1694  // there are no virtual bases.
1695  VirtualBaseSpec = 0;
1696  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1697    // We haven't found a base yet; search the class hierarchy for a
1698    // virtual base class.
1699    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1700                       /*DetectVirtual=*/false);
1701    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1702                              BaseType, Paths)) {
1703      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1704           Path != Paths.end(); ++Path) {
1705        if (Path->back().Base->isVirtual()) {
1706          VirtualBaseSpec = Path->back().Base;
1707          break;
1708        }
1709      }
1710    }
1711  }
1712
1713  return DirectBaseSpec || VirtualBaseSpec;
1714}
1715
1716/// \brief Handle a C++ member initializer using braced-init-list syntax.
1717MemInitResult
1718Sema::ActOnMemInitializer(Decl *ConstructorD,
1719                          Scope *S,
1720                          CXXScopeSpec &SS,
1721                          IdentifierInfo *MemberOrBase,
1722                          ParsedType TemplateTypeTy,
1723                          SourceLocation IdLoc,
1724                          Expr *InitList,
1725                          SourceLocation EllipsisLoc) {
1726  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1727                             IdLoc, MultiInitializer(InitList), EllipsisLoc);
1728}
1729
1730/// \brief Handle a C++ member initializer using parentheses syntax.
1731MemInitResult
1732Sema::ActOnMemInitializer(Decl *ConstructorD,
1733                          Scope *S,
1734                          CXXScopeSpec &SS,
1735                          IdentifierInfo *MemberOrBase,
1736                          ParsedType TemplateTypeTy,
1737                          SourceLocation IdLoc,
1738                          SourceLocation LParenLoc,
1739                          Expr **Args, unsigned NumArgs,
1740                          SourceLocation RParenLoc,
1741                          SourceLocation EllipsisLoc) {
1742  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1743                             IdLoc, MultiInitializer(LParenLoc, Args, NumArgs,
1744                                                     RParenLoc),
1745                             EllipsisLoc);
1746}
1747
1748/// \brief Handle a C++ member initializer.
1749MemInitResult
1750Sema::BuildMemInitializer(Decl *ConstructorD,
1751                          Scope *S,
1752                          CXXScopeSpec &SS,
1753                          IdentifierInfo *MemberOrBase,
1754                          ParsedType TemplateTypeTy,
1755                          SourceLocation IdLoc,
1756                          const MultiInitializer &Args,
1757                          SourceLocation EllipsisLoc) {
1758  if (!ConstructorD)
1759    return true;
1760
1761  AdjustDeclIfTemplate(ConstructorD);
1762
1763  CXXConstructorDecl *Constructor
1764    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1765  if (!Constructor) {
1766    // The user wrote a constructor initializer on a function that is
1767    // not a C++ constructor. Ignore the error for now, because we may
1768    // have more member initializers coming; we'll diagnose it just
1769    // once in ActOnMemInitializers.
1770    return true;
1771  }
1772
1773  CXXRecordDecl *ClassDecl = Constructor->getParent();
1774
1775  // C++ [class.base.init]p2:
1776  //   Names in a mem-initializer-id are looked up in the scope of the
1777  //   constructor's class and, if not found in that scope, are looked
1778  //   up in the scope containing the constructor's definition.
1779  //   [Note: if the constructor's class contains a member with the
1780  //   same name as a direct or virtual base class of the class, a
1781  //   mem-initializer-id naming the member or base class and composed
1782  //   of a single identifier refers to the class member. A
1783  //   mem-initializer-id for the hidden base class may be specified
1784  //   using a qualified name. ]
1785  if (!SS.getScopeRep() && !TemplateTypeTy) {
1786    // Look for a member, first.
1787    DeclContext::lookup_result Result
1788      = ClassDecl->lookup(MemberOrBase);
1789    if (Result.first != Result.second) {
1790      ValueDecl *Member;
1791      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1792          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1793        if (EllipsisLoc.isValid())
1794          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1795            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1796
1797        return BuildMemberInitializer(Member, Args, IdLoc);
1798      }
1799    }
1800  }
1801  // It didn't name a member, so see if it names a class.
1802  QualType BaseType;
1803  TypeSourceInfo *TInfo = 0;
1804
1805  if (TemplateTypeTy) {
1806    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1807  } else {
1808    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1809    LookupParsedName(R, S, &SS);
1810
1811    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1812    if (!TyD) {
1813      if (R.isAmbiguous()) return true;
1814
1815      // We don't want access-control diagnostics here.
1816      R.suppressDiagnostics();
1817
1818      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1819        bool NotUnknownSpecialization = false;
1820        DeclContext *DC = computeDeclContext(SS, false);
1821        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1822          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1823
1824        if (!NotUnknownSpecialization) {
1825          // When the scope specifier can refer to a member of an unknown
1826          // specialization, we take it as a type name.
1827          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1828                                       SS.getWithLocInContext(Context),
1829                                       *MemberOrBase, IdLoc);
1830          if (BaseType.isNull())
1831            return true;
1832
1833          R.clear();
1834          R.setLookupName(MemberOrBase);
1835        }
1836      }
1837
1838      // If no results were found, try to correct typos.
1839      TypoCorrection Corr;
1840      if (R.empty() && BaseType.isNull() &&
1841          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1842                              ClassDecl, false, CTC_NoKeywords))) {
1843        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1844        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1845        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1846          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1847            // We have found a non-static data member with a similar
1848            // name to what was typed; complain and initialize that
1849            // member.
1850            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1851              << MemberOrBase << true << CorrectedQuotedStr
1852              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1853            Diag(Member->getLocation(), diag::note_previous_decl)
1854              << CorrectedQuotedStr;
1855
1856            return BuildMemberInitializer(Member, Args, IdLoc);
1857          }
1858        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1859          const CXXBaseSpecifier *DirectBaseSpec;
1860          const CXXBaseSpecifier *VirtualBaseSpec;
1861          if (FindBaseInitializer(*this, ClassDecl,
1862                                  Context.getTypeDeclType(Type),
1863                                  DirectBaseSpec, VirtualBaseSpec)) {
1864            // We have found a direct or virtual base class with a
1865            // similar name to what was typed; complain and initialize
1866            // that base class.
1867            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1868              << MemberOrBase << false << CorrectedQuotedStr
1869              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1870
1871            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1872                                                             : VirtualBaseSpec;
1873            Diag(BaseSpec->getSourceRange().getBegin(),
1874                 diag::note_base_class_specified_here)
1875              << BaseSpec->getType()
1876              << BaseSpec->getSourceRange();
1877
1878            TyD = Type;
1879          }
1880        }
1881      }
1882
1883      if (!TyD && BaseType.isNull()) {
1884        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1885          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1886        return true;
1887      }
1888    }
1889
1890    if (BaseType.isNull()) {
1891      BaseType = Context.getTypeDeclType(TyD);
1892      if (SS.isSet()) {
1893        NestedNameSpecifier *Qualifier =
1894          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1895
1896        // FIXME: preserve source range information
1897        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1898      }
1899    }
1900  }
1901
1902  if (!TInfo)
1903    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1904
1905  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1906}
1907
1908/// Checks a member initializer expression for cases where reference (or
1909/// pointer) members are bound to by-value parameters (or their addresses).
1910static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1911                                               Expr *Init,
1912                                               SourceLocation IdLoc) {
1913  QualType MemberTy = Member->getType();
1914
1915  // We only handle pointers and references currently.
1916  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1917  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1918    return;
1919
1920  const bool IsPointer = MemberTy->isPointerType();
1921  if (IsPointer) {
1922    if (const UnaryOperator *Op
1923          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1924      // The only case we're worried about with pointers requires taking the
1925      // address.
1926      if (Op->getOpcode() != UO_AddrOf)
1927        return;
1928
1929      Init = Op->getSubExpr();
1930    } else {
1931      // We only handle address-of expression initializers for pointers.
1932      return;
1933    }
1934  }
1935
1936  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1937    // Taking the address of a temporary will be diagnosed as a hard error.
1938    if (IsPointer)
1939      return;
1940
1941    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1942      << Member << Init->getSourceRange();
1943  } else if (const DeclRefExpr *DRE
1944               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1945    // We only warn when referring to a non-reference parameter declaration.
1946    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1947    if (!Parameter || Parameter->getType()->isReferenceType())
1948      return;
1949
1950    S.Diag(Init->getExprLoc(),
1951           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1952                     : diag::warn_bind_ref_member_to_parameter)
1953      << Member << Parameter << Init->getSourceRange();
1954  } else {
1955    // Other initializers are fine.
1956    return;
1957  }
1958
1959  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1960    << (unsigned)IsPointer;
1961}
1962
1963/// Checks an initializer expression for use of uninitialized fields, such as
1964/// containing the field that is being initialized. Returns true if there is an
1965/// uninitialized field was used an updates the SourceLocation parameter; false
1966/// otherwise.
1967static bool InitExprContainsUninitializedFields(const Stmt *S,
1968                                                const ValueDecl *LhsField,
1969                                                SourceLocation *L) {
1970  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1971
1972  if (isa<CallExpr>(S)) {
1973    // Do not descend into function calls or constructors, as the use
1974    // of an uninitialized field may be valid. One would have to inspect
1975    // the contents of the function/ctor to determine if it is safe or not.
1976    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1977    // may be safe, depending on what the function/ctor does.
1978    return false;
1979  }
1980  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1981    const NamedDecl *RhsField = ME->getMemberDecl();
1982
1983    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1984      // The member expression points to a static data member.
1985      assert(VD->isStaticDataMember() &&
1986             "Member points to non-static data member!");
1987      (void)VD;
1988      return false;
1989    }
1990
1991    if (isa<EnumConstantDecl>(RhsField)) {
1992      // The member expression points to an enum.
1993      return false;
1994    }
1995
1996    if (RhsField == LhsField) {
1997      // Initializing a field with itself. Throw a warning.
1998      // But wait; there are exceptions!
1999      // Exception #1:  The field may not belong to this record.
2000      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2001      const Expr *base = ME->getBase();
2002      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2003        // Even though the field matches, it does not belong to this record.
2004        return false;
2005      }
2006      // None of the exceptions triggered; return true to indicate an
2007      // uninitialized field was used.
2008      *L = ME->getMemberLoc();
2009      return true;
2010    }
2011  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2012    // sizeof/alignof doesn't reference contents, do not warn.
2013    return false;
2014  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2015    // address-of doesn't reference contents (the pointer may be dereferenced
2016    // in the same expression but it would be rare; and weird).
2017    if (UOE->getOpcode() == UO_AddrOf)
2018      return false;
2019  }
2020  for (Stmt::const_child_range it = S->children(); it; ++it) {
2021    if (!*it) {
2022      // An expression such as 'member(arg ?: "")' may trigger this.
2023      continue;
2024    }
2025    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2026      return true;
2027  }
2028  return false;
2029}
2030
2031MemInitResult
2032Sema::BuildMemberInitializer(ValueDecl *Member,
2033                             const MultiInitializer &Args,
2034                             SourceLocation IdLoc) {
2035  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2036  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2037  assert((DirectMember || IndirectMember) &&
2038         "Member must be a FieldDecl or IndirectFieldDecl");
2039
2040  if (Args.DiagnoseUnexpandedParameterPack(*this))
2041    return true;
2042
2043  if (Member->isInvalidDecl())
2044    return true;
2045
2046  // Diagnose value-uses of fields to initialize themselves, e.g.
2047  //   foo(foo)
2048  // where foo is not also a parameter to the constructor.
2049  // TODO: implement -Wuninitialized and fold this into that framework.
2050  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2051       I != E; ++I) {
2052    SourceLocation L;
2053    Expr *Arg = *I;
2054    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2055      Arg = DIE->getInit();
2056    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2057      // FIXME: Return true in the case when other fields are used before being
2058      // uninitialized. For example, let this field be the i'th field. When
2059      // initializing the i'th field, throw a warning if any of the >= i'th
2060      // fields are used, as they are not yet initialized.
2061      // Right now we are only handling the case where the i'th field uses
2062      // itself in its initializer.
2063      Diag(L, diag::warn_field_is_uninit);
2064    }
2065  }
2066
2067  bool HasDependentArg = Args.isTypeDependent();
2068
2069  Expr *Init;
2070  if (Member->getType()->isDependentType() || HasDependentArg) {
2071    // Can't check initialization for a member of dependent type or when
2072    // any of the arguments are type-dependent expressions.
2073    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2074
2075    DiscardCleanupsInEvaluationContext();
2076  } else {
2077    // Initialize the member.
2078    InitializedEntity MemberEntity =
2079      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2080                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2081    InitializationKind Kind =
2082      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2083                                       Args.getEndLoc());
2084
2085    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2086    if (MemberInit.isInvalid())
2087      return true;
2088
2089    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2090
2091    // C++0x [class.base.init]p7:
2092    //   The initialization of each base and member constitutes a
2093    //   full-expression.
2094    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2095    if (MemberInit.isInvalid())
2096      return true;
2097
2098    // If we are in a dependent context, template instantiation will
2099    // perform this type-checking again. Just save the arguments that we
2100    // received in a ParenListExpr.
2101    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2102    // of the information that we have about the member
2103    // initializer. However, deconstructing the ASTs is a dicey process,
2104    // and this approach is far more likely to get the corner cases right.
2105    if (CurContext->isDependentContext()) {
2106      Init = Args.CreateInitExpr(Context,
2107                                 Member->getType().getNonReferenceType());
2108    } else {
2109      Init = MemberInit.get();
2110      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2111    }
2112  }
2113
2114  if (DirectMember) {
2115    return new (Context) CXXCtorInitializer(Context, DirectMember,
2116                                                    IdLoc, Args.getStartLoc(),
2117                                                    Init, Args.getEndLoc());
2118  } else {
2119    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2120                                                    IdLoc, Args.getStartLoc(),
2121                                                    Init, Args.getEndLoc());
2122  }
2123}
2124
2125MemInitResult
2126Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2127                                 const MultiInitializer &Args,
2128                                 SourceLocation NameLoc,
2129                                 CXXRecordDecl *ClassDecl) {
2130  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2131  if (!LangOpts.CPlusPlus0x)
2132    return Diag(Loc, diag::err_delegating_ctor)
2133      << TInfo->getTypeLoc().getLocalSourceRange();
2134  Diag(Loc, diag::warn_cxx98_compat_delegating_ctor);
2135
2136  // Initialize the object.
2137  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2138                                     QualType(ClassDecl->getTypeForDecl(), 0));
2139  InitializationKind Kind =
2140    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2141                                     Args.getEndLoc());
2142
2143  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2144  if (DelegationInit.isInvalid())
2145    return true;
2146
2147  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
2148  CXXConstructorDecl *Constructor
2149    = ConExpr->getConstructor();
2150  assert(Constructor && "Delegating constructor with no target?");
2151
2152  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2153
2154  // C++0x [class.base.init]p7:
2155  //   The initialization of each base and member constitutes a
2156  //   full-expression.
2157  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2158  if (DelegationInit.isInvalid())
2159    return true;
2160
2161  assert(!CurContext->isDependentContext());
2162  return new (Context) CXXCtorInitializer(Context, Loc, Args.getStartLoc(),
2163                                          Constructor,
2164                                          DelegationInit.takeAs<Expr>(),
2165                                          Args.getEndLoc());
2166}
2167
2168MemInitResult
2169Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2170                           const MultiInitializer &Args,
2171                           CXXRecordDecl *ClassDecl,
2172                           SourceLocation EllipsisLoc) {
2173  bool HasDependentArg = Args.isTypeDependent();
2174
2175  SourceLocation BaseLoc
2176    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2177
2178  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2179    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2180             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2181
2182  // C++ [class.base.init]p2:
2183  //   [...] Unless the mem-initializer-id names a nonstatic data
2184  //   member of the constructor's class or a direct or virtual base
2185  //   of that class, the mem-initializer is ill-formed. A
2186  //   mem-initializer-list can initialize a base class using any
2187  //   name that denotes that base class type.
2188  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2189
2190  if (EllipsisLoc.isValid()) {
2191    // This is a pack expansion.
2192    if (!BaseType->containsUnexpandedParameterPack())  {
2193      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2194        << SourceRange(BaseLoc, Args.getEndLoc());
2195
2196      EllipsisLoc = SourceLocation();
2197    }
2198  } else {
2199    // Check for any unexpanded parameter packs.
2200    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2201      return true;
2202
2203    if (Args.DiagnoseUnexpandedParameterPack(*this))
2204      return true;
2205  }
2206
2207  // Check for direct and virtual base classes.
2208  const CXXBaseSpecifier *DirectBaseSpec = 0;
2209  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2210  if (!Dependent) {
2211    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2212                                       BaseType))
2213      return BuildDelegatingInitializer(BaseTInfo, Args, BaseLoc, ClassDecl);
2214
2215    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2216                        VirtualBaseSpec);
2217
2218    // C++ [base.class.init]p2:
2219    // Unless the mem-initializer-id names a nonstatic data member of the
2220    // constructor's class or a direct or virtual base of that class, the
2221    // mem-initializer is ill-formed.
2222    if (!DirectBaseSpec && !VirtualBaseSpec) {
2223      // If the class has any dependent bases, then it's possible that
2224      // one of those types will resolve to the same type as
2225      // BaseType. Therefore, just treat this as a dependent base
2226      // class initialization.  FIXME: Should we try to check the
2227      // initialization anyway? It seems odd.
2228      if (ClassDecl->hasAnyDependentBases())
2229        Dependent = true;
2230      else
2231        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2232          << BaseType << Context.getTypeDeclType(ClassDecl)
2233          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2234    }
2235  }
2236
2237  if (Dependent) {
2238    // Can't check initialization for a base of dependent type or when
2239    // any of the arguments are type-dependent expressions.
2240    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2241
2242    DiscardCleanupsInEvaluationContext();
2243
2244    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2245                                            /*IsVirtual=*/false,
2246                                            Args.getStartLoc(), BaseInit,
2247                                            Args.getEndLoc(), EllipsisLoc);
2248  }
2249
2250  // C++ [base.class.init]p2:
2251  //   If a mem-initializer-id is ambiguous because it designates both
2252  //   a direct non-virtual base class and an inherited virtual base
2253  //   class, the mem-initializer is ill-formed.
2254  if (DirectBaseSpec && VirtualBaseSpec)
2255    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2256      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2257
2258  CXXBaseSpecifier *BaseSpec
2259    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2260  if (!BaseSpec)
2261    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2262
2263  // Initialize the base.
2264  InitializedEntity BaseEntity =
2265    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2266  InitializationKind Kind =
2267    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2268                                     Args.getEndLoc());
2269
2270  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2271  if (BaseInit.isInvalid())
2272    return true;
2273
2274  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2275
2276  // C++0x [class.base.init]p7:
2277  //   The initialization of each base and member constitutes a
2278  //   full-expression.
2279  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2280  if (BaseInit.isInvalid())
2281    return true;
2282
2283  // If we are in a dependent context, template instantiation will
2284  // perform this type-checking again. Just save the arguments that we
2285  // received in a ParenListExpr.
2286  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2287  // of the information that we have about the base
2288  // initializer. However, deconstructing the ASTs is a dicey process,
2289  // and this approach is far more likely to get the corner cases right.
2290  if (CurContext->isDependentContext())
2291    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2292
2293  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2294                                          BaseSpec->isVirtual(),
2295                                          Args.getStartLoc(),
2296                                          BaseInit.takeAs<Expr>(),
2297                                          Args.getEndLoc(), EllipsisLoc);
2298}
2299
2300// Create a static_cast\<T&&>(expr).
2301static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2302  QualType ExprType = E->getType();
2303  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2304  SourceLocation ExprLoc = E->getLocStart();
2305  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2306      TargetType, ExprLoc);
2307
2308  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2309                                   SourceRange(ExprLoc, ExprLoc),
2310                                   E->getSourceRange()).take();
2311}
2312
2313/// ImplicitInitializerKind - How an implicit base or member initializer should
2314/// initialize its base or member.
2315enum ImplicitInitializerKind {
2316  IIK_Default,
2317  IIK_Copy,
2318  IIK_Move
2319};
2320
2321static bool
2322BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2323                             ImplicitInitializerKind ImplicitInitKind,
2324                             CXXBaseSpecifier *BaseSpec,
2325                             bool IsInheritedVirtualBase,
2326                             CXXCtorInitializer *&CXXBaseInit) {
2327  InitializedEntity InitEntity
2328    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2329                                        IsInheritedVirtualBase);
2330
2331  ExprResult BaseInit;
2332
2333  switch (ImplicitInitKind) {
2334  case IIK_Default: {
2335    InitializationKind InitKind
2336      = InitializationKind::CreateDefault(Constructor->getLocation());
2337    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2338    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2339                               MultiExprArg(SemaRef, 0, 0));
2340    break;
2341  }
2342
2343  case IIK_Move:
2344  case IIK_Copy: {
2345    bool Moving = ImplicitInitKind == IIK_Move;
2346    ParmVarDecl *Param = Constructor->getParamDecl(0);
2347    QualType ParamType = Param->getType().getNonReferenceType();
2348
2349    Expr *CopyCtorArg =
2350      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2351                          Constructor->getLocation(), ParamType,
2352                          VK_LValue, 0);
2353
2354    // Cast to the base class to avoid ambiguities.
2355    QualType ArgTy =
2356      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2357                                       ParamType.getQualifiers());
2358
2359    if (Moving) {
2360      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2361    }
2362
2363    CXXCastPath BasePath;
2364    BasePath.push_back(BaseSpec);
2365    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2366                                            CK_UncheckedDerivedToBase,
2367                                            Moving ? VK_XValue : VK_LValue,
2368                                            &BasePath).take();
2369
2370    InitializationKind InitKind
2371      = InitializationKind::CreateDirect(Constructor->getLocation(),
2372                                         SourceLocation(), SourceLocation());
2373    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2374                                   &CopyCtorArg, 1);
2375    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2376                               MultiExprArg(&CopyCtorArg, 1));
2377    break;
2378  }
2379  }
2380
2381  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2382  if (BaseInit.isInvalid())
2383    return true;
2384
2385  CXXBaseInit =
2386    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2387               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2388                                                        SourceLocation()),
2389                                             BaseSpec->isVirtual(),
2390                                             SourceLocation(),
2391                                             BaseInit.takeAs<Expr>(),
2392                                             SourceLocation(),
2393                                             SourceLocation());
2394
2395  return false;
2396}
2397
2398static bool RefersToRValueRef(Expr *MemRef) {
2399  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2400  return Referenced->getType()->isRValueReferenceType();
2401}
2402
2403static bool
2404BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2405                               ImplicitInitializerKind ImplicitInitKind,
2406                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2407                               CXXCtorInitializer *&CXXMemberInit) {
2408  if (Field->isInvalidDecl())
2409    return true;
2410
2411  SourceLocation Loc = Constructor->getLocation();
2412
2413  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2414    bool Moving = ImplicitInitKind == IIK_Move;
2415    ParmVarDecl *Param = Constructor->getParamDecl(0);
2416    QualType ParamType = Param->getType().getNonReferenceType();
2417
2418    // Suppress copying zero-width bitfields.
2419    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2420      return false;
2421
2422    Expr *MemberExprBase =
2423      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2424                          Loc, ParamType, VK_LValue, 0);
2425
2426    if (Moving) {
2427      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2428    }
2429
2430    // Build a reference to this field within the parameter.
2431    CXXScopeSpec SS;
2432    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2433                              Sema::LookupMemberName);
2434    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2435                                  : cast<ValueDecl>(Field), AS_public);
2436    MemberLookup.resolveKind();
2437    ExprResult CtorArg
2438      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2439                                         ParamType, Loc,
2440                                         /*IsArrow=*/false,
2441                                         SS,
2442                                         /*FirstQualifierInScope=*/0,
2443                                         MemberLookup,
2444                                         /*TemplateArgs=*/0);
2445    if (CtorArg.isInvalid())
2446      return true;
2447
2448    // C++11 [class.copy]p15:
2449    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2450    //     with static_cast<T&&>(x.m);
2451    if (RefersToRValueRef(CtorArg.get())) {
2452      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2453    }
2454
2455    // When the field we are copying is an array, create index variables for
2456    // each dimension of the array. We use these index variables to subscript
2457    // the source array, and other clients (e.g., CodeGen) will perform the
2458    // necessary iteration with these index variables.
2459    SmallVector<VarDecl *, 4> IndexVariables;
2460    QualType BaseType = Field->getType();
2461    QualType SizeType = SemaRef.Context.getSizeType();
2462    bool InitializingArray = false;
2463    while (const ConstantArrayType *Array
2464                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2465      InitializingArray = true;
2466      // Create the iteration variable for this array index.
2467      IdentifierInfo *IterationVarName = 0;
2468      {
2469        llvm::SmallString<8> Str;
2470        llvm::raw_svector_ostream OS(Str);
2471        OS << "__i" << IndexVariables.size();
2472        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2473      }
2474      VarDecl *IterationVar
2475        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2476                          IterationVarName, SizeType,
2477                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2478                          SC_None, SC_None);
2479      IndexVariables.push_back(IterationVar);
2480
2481      // Create a reference to the iteration variable.
2482      ExprResult IterationVarRef
2483        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2484      assert(!IterationVarRef.isInvalid() &&
2485             "Reference to invented variable cannot fail!");
2486
2487      // Subscript the array with this iteration variable.
2488      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2489                                                        IterationVarRef.take(),
2490                                                        Loc);
2491      if (CtorArg.isInvalid())
2492        return true;
2493
2494      BaseType = Array->getElementType();
2495    }
2496
2497    // The array subscript expression is an lvalue, which is wrong for moving.
2498    if (Moving && InitializingArray)
2499      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2500
2501    // Construct the entity that we will be initializing. For an array, this
2502    // will be first element in the array, which may require several levels
2503    // of array-subscript entities.
2504    SmallVector<InitializedEntity, 4> Entities;
2505    Entities.reserve(1 + IndexVariables.size());
2506    if (Indirect)
2507      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2508    else
2509      Entities.push_back(InitializedEntity::InitializeMember(Field));
2510    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2511      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2512                                                              0,
2513                                                              Entities.back()));
2514
2515    // Direct-initialize to use the copy constructor.
2516    InitializationKind InitKind =
2517      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2518
2519    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2520    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2521                                   &CtorArgE, 1);
2522
2523    ExprResult MemberInit
2524      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2525                        MultiExprArg(&CtorArgE, 1));
2526    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2527    if (MemberInit.isInvalid())
2528      return true;
2529
2530    if (Indirect) {
2531      assert(IndexVariables.size() == 0 &&
2532             "Indirect field improperly initialized");
2533      CXXMemberInit
2534        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2535                                                   Loc, Loc,
2536                                                   MemberInit.takeAs<Expr>(),
2537                                                   Loc);
2538    } else
2539      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2540                                                 Loc, MemberInit.takeAs<Expr>(),
2541                                                 Loc,
2542                                                 IndexVariables.data(),
2543                                                 IndexVariables.size());
2544    return false;
2545  }
2546
2547  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2548
2549  QualType FieldBaseElementType =
2550    SemaRef.Context.getBaseElementType(Field->getType());
2551
2552  if (FieldBaseElementType->isRecordType()) {
2553    InitializedEntity InitEntity
2554      = Indirect? InitializedEntity::InitializeMember(Indirect)
2555                : InitializedEntity::InitializeMember(Field);
2556    InitializationKind InitKind =
2557      InitializationKind::CreateDefault(Loc);
2558
2559    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2560    ExprResult MemberInit =
2561      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2562
2563    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2564    if (MemberInit.isInvalid())
2565      return true;
2566
2567    if (Indirect)
2568      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2569                                                               Indirect, Loc,
2570                                                               Loc,
2571                                                               MemberInit.get(),
2572                                                               Loc);
2573    else
2574      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2575                                                               Field, Loc, Loc,
2576                                                               MemberInit.get(),
2577                                                               Loc);
2578    return false;
2579  }
2580
2581  if (!Field->getParent()->isUnion()) {
2582    if (FieldBaseElementType->isReferenceType()) {
2583      SemaRef.Diag(Constructor->getLocation(),
2584                   diag::err_uninitialized_member_in_ctor)
2585      << (int)Constructor->isImplicit()
2586      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2587      << 0 << Field->getDeclName();
2588      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2589      return true;
2590    }
2591
2592    if (FieldBaseElementType.isConstQualified()) {
2593      SemaRef.Diag(Constructor->getLocation(),
2594                   diag::err_uninitialized_member_in_ctor)
2595      << (int)Constructor->isImplicit()
2596      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2597      << 1 << Field->getDeclName();
2598      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2599      return true;
2600    }
2601  }
2602
2603  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2604      FieldBaseElementType->isObjCRetainableType() &&
2605      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2606      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2607    // Instant objects:
2608    //   Default-initialize Objective-C pointers to NULL.
2609    CXXMemberInit
2610      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2611                                                 Loc, Loc,
2612                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2613                                                 Loc);
2614    return false;
2615  }
2616
2617  // Nothing to initialize.
2618  CXXMemberInit = 0;
2619  return false;
2620}
2621
2622namespace {
2623struct BaseAndFieldInfo {
2624  Sema &S;
2625  CXXConstructorDecl *Ctor;
2626  bool AnyErrorsInInits;
2627  ImplicitInitializerKind IIK;
2628  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2629  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2630
2631  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2632    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2633    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2634    if (Generated && Ctor->isCopyConstructor())
2635      IIK = IIK_Copy;
2636    else if (Generated && Ctor->isMoveConstructor())
2637      IIK = IIK_Move;
2638    else
2639      IIK = IIK_Default;
2640  }
2641};
2642}
2643
2644/// \brief Determine whether the given indirect field declaration is somewhere
2645/// within an anonymous union.
2646static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2647  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2648                                      CEnd = F->chain_end();
2649       C != CEnd; ++C)
2650    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2651      if (Record->isUnion())
2652        return true;
2653
2654  return false;
2655}
2656
2657static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2658                                    FieldDecl *Field,
2659                                    IndirectFieldDecl *Indirect = 0) {
2660
2661  // Overwhelmingly common case: we have a direct initializer for this field.
2662  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2663    Info.AllToInit.push_back(Init);
2664    return false;
2665  }
2666
2667  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2668  // has a brace-or-equal-initializer, the entity is initialized as specified
2669  // in [dcl.init].
2670  if (Field->hasInClassInitializer()) {
2671    CXXCtorInitializer *Init;
2672    if (Indirect)
2673      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2674                                                      SourceLocation(),
2675                                                      SourceLocation(), 0,
2676                                                      SourceLocation());
2677    else
2678      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2679                                                      SourceLocation(),
2680                                                      SourceLocation(), 0,
2681                                                      SourceLocation());
2682    Info.AllToInit.push_back(Init);
2683    return false;
2684  }
2685
2686  // Don't build an implicit initializer for union members if none was
2687  // explicitly specified.
2688  if (Field->getParent()->isUnion() ||
2689      (Indirect && isWithinAnonymousUnion(Indirect)))
2690    return false;
2691
2692  // Don't try to build an implicit initializer if there were semantic
2693  // errors in any of the initializers (and therefore we might be
2694  // missing some that the user actually wrote).
2695  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2696    return false;
2697
2698  CXXCtorInitializer *Init = 0;
2699  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2700                                     Indirect, Init))
2701    return true;
2702
2703  if (Init)
2704    Info.AllToInit.push_back(Init);
2705
2706  return false;
2707}
2708
2709bool
2710Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2711                               CXXCtorInitializer *Initializer) {
2712  assert(Initializer->isDelegatingInitializer());
2713  Constructor->setNumCtorInitializers(1);
2714  CXXCtorInitializer **initializer =
2715    new (Context) CXXCtorInitializer*[1];
2716  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2717  Constructor->setCtorInitializers(initializer);
2718
2719  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2720    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2721    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2722  }
2723
2724  DelegatingCtorDecls.push_back(Constructor);
2725
2726  return false;
2727}
2728
2729bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2730                               CXXCtorInitializer **Initializers,
2731                               unsigned NumInitializers,
2732                               bool AnyErrors) {
2733  if (Constructor->isDependentContext()) {
2734    // Just store the initializers as written, they will be checked during
2735    // instantiation.
2736    if (NumInitializers > 0) {
2737      Constructor->setNumCtorInitializers(NumInitializers);
2738      CXXCtorInitializer **baseOrMemberInitializers =
2739        new (Context) CXXCtorInitializer*[NumInitializers];
2740      memcpy(baseOrMemberInitializers, Initializers,
2741             NumInitializers * sizeof(CXXCtorInitializer*));
2742      Constructor->setCtorInitializers(baseOrMemberInitializers);
2743    }
2744
2745    return false;
2746  }
2747
2748  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2749
2750  // We need to build the initializer AST according to order of construction
2751  // and not what user specified in the Initializers list.
2752  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2753  if (!ClassDecl)
2754    return true;
2755
2756  bool HadError = false;
2757
2758  for (unsigned i = 0; i < NumInitializers; i++) {
2759    CXXCtorInitializer *Member = Initializers[i];
2760
2761    if (Member->isBaseInitializer())
2762      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2763    else
2764      Info.AllBaseFields[Member->getAnyMember()] = Member;
2765  }
2766
2767  // Keep track of the direct virtual bases.
2768  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2769  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2770       E = ClassDecl->bases_end(); I != E; ++I) {
2771    if (I->isVirtual())
2772      DirectVBases.insert(I);
2773  }
2774
2775  // Push virtual bases before others.
2776  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2777       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2778
2779    if (CXXCtorInitializer *Value
2780        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2781      Info.AllToInit.push_back(Value);
2782    } else if (!AnyErrors) {
2783      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2784      CXXCtorInitializer *CXXBaseInit;
2785      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2786                                       VBase, IsInheritedVirtualBase,
2787                                       CXXBaseInit)) {
2788        HadError = true;
2789        continue;
2790      }
2791
2792      Info.AllToInit.push_back(CXXBaseInit);
2793    }
2794  }
2795
2796  // Non-virtual bases.
2797  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2798       E = ClassDecl->bases_end(); Base != E; ++Base) {
2799    // Virtuals are in the virtual base list and already constructed.
2800    if (Base->isVirtual())
2801      continue;
2802
2803    if (CXXCtorInitializer *Value
2804          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2805      Info.AllToInit.push_back(Value);
2806    } else if (!AnyErrors) {
2807      CXXCtorInitializer *CXXBaseInit;
2808      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2809                                       Base, /*IsInheritedVirtualBase=*/false,
2810                                       CXXBaseInit)) {
2811        HadError = true;
2812        continue;
2813      }
2814
2815      Info.AllToInit.push_back(CXXBaseInit);
2816    }
2817  }
2818
2819  // Fields.
2820  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2821                               MemEnd = ClassDecl->decls_end();
2822       Mem != MemEnd; ++Mem) {
2823    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2824      // C++ [class.bit]p2:
2825      //   A declaration for a bit-field that omits the identifier declares an
2826      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2827      //   initialized.
2828      if (F->isUnnamedBitfield())
2829        continue;
2830
2831      if (F->getType()->isIncompleteArrayType()) {
2832        assert(ClassDecl->hasFlexibleArrayMember() &&
2833               "Incomplete array type is not valid");
2834        continue;
2835      }
2836
2837      // If we're not generating the implicit copy/move constructor, then we'll
2838      // handle anonymous struct/union fields based on their individual
2839      // indirect fields.
2840      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2841        continue;
2842
2843      if (CollectFieldInitializer(*this, Info, F))
2844        HadError = true;
2845      continue;
2846    }
2847
2848    // Beyond this point, we only consider default initialization.
2849    if (Info.IIK != IIK_Default)
2850      continue;
2851
2852    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2853      if (F->getType()->isIncompleteArrayType()) {
2854        assert(ClassDecl->hasFlexibleArrayMember() &&
2855               "Incomplete array type is not valid");
2856        continue;
2857      }
2858
2859      // Initialize each field of an anonymous struct individually.
2860      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2861        HadError = true;
2862
2863      continue;
2864    }
2865  }
2866
2867  NumInitializers = Info.AllToInit.size();
2868  if (NumInitializers > 0) {
2869    Constructor->setNumCtorInitializers(NumInitializers);
2870    CXXCtorInitializer **baseOrMemberInitializers =
2871      new (Context) CXXCtorInitializer*[NumInitializers];
2872    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2873           NumInitializers * sizeof(CXXCtorInitializer*));
2874    Constructor->setCtorInitializers(baseOrMemberInitializers);
2875
2876    // Constructors implicitly reference the base and member
2877    // destructors.
2878    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2879                                           Constructor->getParent());
2880  }
2881
2882  return HadError;
2883}
2884
2885static void *GetKeyForTopLevelField(FieldDecl *Field) {
2886  // For anonymous unions, use the class declaration as the key.
2887  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2888    if (RT->getDecl()->isAnonymousStructOrUnion())
2889      return static_cast<void *>(RT->getDecl());
2890  }
2891  return static_cast<void *>(Field);
2892}
2893
2894static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2895  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2896}
2897
2898static void *GetKeyForMember(ASTContext &Context,
2899                             CXXCtorInitializer *Member) {
2900  if (!Member->isAnyMemberInitializer())
2901    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2902
2903  // For fields injected into the class via declaration of an anonymous union,
2904  // use its anonymous union class declaration as the unique key.
2905  FieldDecl *Field = Member->getAnyMember();
2906
2907  // If the field is a member of an anonymous struct or union, our key
2908  // is the anonymous record decl that's a direct child of the class.
2909  RecordDecl *RD = Field->getParent();
2910  if (RD->isAnonymousStructOrUnion()) {
2911    while (true) {
2912      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2913      if (Parent->isAnonymousStructOrUnion())
2914        RD = Parent;
2915      else
2916        break;
2917    }
2918
2919    return static_cast<void *>(RD);
2920  }
2921
2922  return static_cast<void *>(Field);
2923}
2924
2925static void
2926DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2927                                  const CXXConstructorDecl *Constructor,
2928                                  CXXCtorInitializer **Inits,
2929                                  unsigned NumInits) {
2930  if (Constructor->getDeclContext()->isDependentContext())
2931    return;
2932
2933  // Don't check initializers order unless the warning is enabled at the
2934  // location of at least one initializer.
2935  bool ShouldCheckOrder = false;
2936  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2937    CXXCtorInitializer *Init = Inits[InitIndex];
2938    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2939                                         Init->getSourceLocation())
2940          != DiagnosticsEngine::Ignored) {
2941      ShouldCheckOrder = true;
2942      break;
2943    }
2944  }
2945  if (!ShouldCheckOrder)
2946    return;
2947
2948  // Build the list of bases and members in the order that they'll
2949  // actually be initialized.  The explicit initializers should be in
2950  // this same order but may be missing things.
2951  SmallVector<const void*, 32> IdealInitKeys;
2952
2953  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2954
2955  // 1. Virtual bases.
2956  for (CXXRecordDecl::base_class_const_iterator VBase =
2957       ClassDecl->vbases_begin(),
2958       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2959    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2960
2961  // 2. Non-virtual bases.
2962  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2963       E = ClassDecl->bases_end(); Base != E; ++Base) {
2964    if (Base->isVirtual())
2965      continue;
2966    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2967  }
2968
2969  // 3. Direct fields.
2970  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2971       E = ClassDecl->field_end(); Field != E; ++Field) {
2972    if (Field->isUnnamedBitfield())
2973      continue;
2974
2975    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2976  }
2977
2978  unsigned NumIdealInits = IdealInitKeys.size();
2979  unsigned IdealIndex = 0;
2980
2981  CXXCtorInitializer *PrevInit = 0;
2982  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2983    CXXCtorInitializer *Init = Inits[InitIndex];
2984    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2985
2986    // Scan forward to try to find this initializer in the idealized
2987    // initializers list.
2988    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2989      if (InitKey == IdealInitKeys[IdealIndex])
2990        break;
2991
2992    // If we didn't find this initializer, it must be because we
2993    // scanned past it on a previous iteration.  That can only
2994    // happen if we're out of order;  emit a warning.
2995    if (IdealIndex == NumIdealInits && PrevInit) {
2996      Sema::SemaDiagnosticBuilder D =
2997        SemaRef.Diag(PrevInit->getSourceLocation(),
2998                     diag::warn_initializer_out_of_order);
2999
3000      if (PrevInit->isAnyMemberInitializer())
3001        D << 0 << PrevInit->getAnyMember()->getDeclName();
3002      else
3003        D << 1 << PrevInit->getBaseClassInfo()->getType();
3004
3005      if (Init->isAnyMemberInitializer())
3006        D << 0 << Init->getAnyMember()->getDeclName();
3007      else
3008        D << 1 << Init->getBaseClassInfo()->getType();
3009
3010      // Move back to the initializer's location in the ideal list.
3011      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3012        if (InitKey == IdealInitKeys[IdealIndex])
3013          break;
3014
3015      assert(IdealIndex != NumIdealInits &&
3016             "initializer not found in initializer list");
3017    }
3018
3019    PrevInit = Init;
3020  }
3021}
3022
3023namespace {
3024bool CheckRedundantInit(Sema &S,
3025                        CXXCtorInitializer *Init,
3026                        CXXCtorInitializer *&PrevInit) {
3027  if (!PrevInit) {
3028    PrevInit = Init;
3029    return false;
3030  }
3031
3032  if (FieldDecl *Field = Init->getMember())
3033    S.Diag(Init->getSourceLocation(),
3034           diag::err_multiple_mem_initialization)
3035      << Field->getDeclName()
3036      << Init->getSourceRange();
3037  else {
3038    const Type *BaseClass = Init->getBaseClass();
3039    assert(BaseClass && "neither field nor base");
3040    S.Diag(Init->getSourceLocation(),
3041           diag::err_multiple_base_initialization)
3042      << QualType(BaseClass, 0)
3043      << Init->getSourceRange();
3044  }
3045  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3046    << 0 << PrevInit->getSourceRange();
3047
3048  return true;
3049}
3050
3051typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3052typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3053
3054bool CheckRedundantUnionInit(Sema &S,
3055                             CXXCtorInitializer *Init,
3056                             RedundantUnionMap &Unions) {
3057  FieldDecl *Field = Init->getAnyMember();
3058  RecordDecl *Parent = Field->getParent();
3059  if (!Parent->isAnonymousStructOrUnion())
3060    return false;
3061
3062  NamedDecl *Child = Field;
3063  do {
3064    if (Parent->isUnion()) {
3065      UnionEntry &En = Unions[Parent];
3066      if (En.first && En.first != Child) {
3067        S.Diag(Init->getSourceLocation(),
3068               diag::err_multiple_mem_union_initialization)
3069          << Field->getDeclName()
3070          << Init->getSourceRange();
3071        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3072          << 0 << En.second->getSourceRange();
3073        return true;
3074      } else if (!En.first) {
3075        En.first = Child;
3076        En.second = Init;
3077      }
3078    }
3079
3080    Child = Parent;
3081    Parent = cast<RecordDecl>(Parent->getDeclContext());
3082  } while (Parent->isAnonymousStructOrUnion());
3083
3084  return false;
3085}
3086}
3087
3088/// ActOnMemInitializers - Handle the member initializers for a constructor.
3089void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3090                                SourceLocation ColonLoc,
3091                                CXXCtorInitializer **meminits,
3092                                unsigned NumMemInits,
3093                                bool AnyErrors) {
3094  if (!ConstructorDecl)
3095    return;
3096
3097  AdjustDeclIfTemplate(ConstructorDecl);
3098
3099  CXXConstructorDecl *Constructor
3100    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3101
3102  if (!Constructor) {
3103    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3104    return;
3105  }
3106
3107  CXXCtorInitializer **MemInits =
3108    reinterpret_cast<CXXCtorInitializer **>(meminits);
3109
3110  // Mapping for the duplicate initializers check.
3111  // For member initializers, this is keyed with a FieldDecl*.
3112  // For base initializers, this is keyed with a Type*.
3113  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3114
3115  // Mapping for the inconsistent anonymous-union initializers check.
3116  RedundantUnionMap MemberUnions;
3117
3118  bool HadError = false;
3119  for (unsigned i = 0; i < NumMemInits; i++) {
3120    CXXCtorInitializer *Init = MemInits[i];
3121
3122    // Set the source order index.
3123    Init->setSourceOrder(i);
3124
3125    if (Init->isAnyMemberInitializer()) {
3126      FieldDecl *Field = Init->getAnyMember();
3127      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3128          CheckRedundantUnionInit(*this, Init, MemberUnions))
3129        HadError = true;
3130    } else if (Init->isBaseInitializer()) {
3131      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3132      if (CheckRedundantInit(*this, Init, Members[Key]))
3133        HadError = true;
3134    } else {
3135      assert(Init->isDelegatingInitializer());
3136      // This must be the only initializer
3137      if (i != 0 || NumMemInits > 1) {
3138        Diag(MemInits[0]->getSourceLocation(),
3139             diag::err_delegating_initializer_alone)
3140          << MemInits[0]->getSourceRange();
3141        HadError = true;
3142        // We will treat this as being the only initializer.
3143      }
3144      SetDelegatingInitializer(Constructor, MemInits[i]);
3145      // Return immediately as the initializer is set.
3146      return;
3147    }
3148  }
3149
3150  if (HadError)
3151    return;
3152
3153  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3154
3155  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3156}
3157
3158void
3159Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3160                                             CXXRecordDecl *ClassDecl) {
3161  // Ignore dependent contexts. Also ignore unions, since their members never
3162  // have destructors implicitly called.
3163  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3164    return;
3165
3166  // FIXME: all the access-control diagnostics are positioned on the
3167  // field/base declaration.  That's probably good; that said, the
3168  // user might reasonably want to know why the destructor is being
3169  // emitted, and we currently don't say.
3170
3171  // Non-static data members.
3172  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3173       E = ClassDecl->field_end(); I != E; ++I) {
3174    FieldDecl *Field = *I;
3175    if (Field->isInvalidDecl())
3176      continue;
3177    QualType FieldType = Context.getBaseElementType(Field->getType());
3178
3179    const RecordType* RT = FieldType->getAs<RecordType>();
3180    if (!RT)
3181      continue;
3182
3183    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3184    if (FieldClassDecl->isInvalidDecl())
3185      continue;
3186    if (FieldClassDecl->hasTrivialDestructor())
3187      continue;
3188
3189    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3190    assert(Dtor && "No dtor found for FieldClassDecl!");
3191    CheckDestructorAccess(Field->getLocation(), Dtor,
3192                          PDiag(diag::err_access_dtor_field)
3193                            << Field->getDeclName()
3194                            << FieldType);
3195
3196    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3197  }
3198
3199  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3200
3201  // Bases.
3202  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3203       E = ClassDecl->bases_end(); Base != E; ++Base) {
3204    // Bases are always records in a well-formed non-dependent class.
3205    const RecordType *RT = Base->getType()->getAs<RecordType>();
3206
3207    // Remember direct virtual bases.
3208    if (Base->isVirtual())
3209      DirectVirtualBases.insert(RT);
3210
3211    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3212    // If our base class is invalid, we probably can't get its dtor anyway.
3213    if (BaseClassDecl->isInvalidDecl())
3214      continue;
3215    // Ignore trivial destructors.
3216    if (BaseClassDecl->hasTrivialDestructor())
3217      continue;
3218
3219    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3220    assert(Dtor && "No dtor found for BaseClassDecl!");
3221
3222    // FIXME: caret should be on the start of the class name
3223    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3224                          PDiag(diag::err_access_dtor_base)
3225                            << Base->getType()
3226                            << Base->getSourceRange());
3227
3228    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3229  }
3230
3231  // Virtual bases.
3232  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3233       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3234
3235    // Bases are always records in a well-formed non-dependent class.
3236    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3237
3238    // Ignore direct virtual bases.
3239    if (DirectVirtualBases.count(RT))
3240      continue;
3241
3242    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3243    // If our base class is invalid, we probably can't get its dtor anyway.
3244    if (BaseClassDecl->isInvalidDecl())
3245      continue;
3246    // Ignore trivial destructors.
3247    if (BaseClassDecl->hasTrivialDestructor())
3248      continue;
3249
3250    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3251    assert(Dtor && "No dtor found for BaseClassDecl!");
3252    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3253                          PDiag(diag::err_access_dtor_vbase)
3254                            << VBase->getType());
3255
3256    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3257  }
3258}
3259
3260void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3261  if (!CDtorDecl)
3262    return;
3263
3264  if (CXXConstructorDecl *Constructor
3265      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3266    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3267}
3268
3269bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3270                                  unsigned DiagID, AbstractDiagSelID SelID) {
3271  if (SelID == -1)
3272    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3273  else
3274    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3275}
3276
3277bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3278                                  const PartialDiagnostic &PD) {
3279  if (!getLangOptions().CPlusPlus)
3280    return false;
3281
3282  if (const ArrayType *AT = Context.getAsArrayType(T))
3283    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3284
3285  if (const PointerType *PT = T->getAs<PointerType>()) {
3286    // Find the innermost pointer type.
3287    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3288      PT = T;
3289
3290    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3291      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3292  }
3293
3294  const RecordType *RT = T->getAs<RecordType>();
3295  if (!RT)
3296    return false;
3297
3298  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3299
3300  // We can't answer whether something is abstract until it has a
3301  // definition.  If it's currently being defined, we'll walk back
3302  // over all the declarations when we have a full definition.
3303  const CXXRecordDecl *Def = RD->getDefinition();
3304  if (!Def || Def->isBeingDefined())
3305    return false;
3306
3307  if (!RD->isAbstract())
3308    return false;
3309
3310  Diag(Loc, PD) << RD->getDeclName();
3311  DiagnoseAbstractType(RD);
3312
3313  return true;
3314}
3315
3316void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3317  // Check if we've already emitted the list of pure virtual functions
3318  // for this class.
3319  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3320    return;
3321
3322  CXXFinalOverriderMap FinalOverriders;
3323  RD->getFinalOverriders(FinalOverriders);
3324
3325  // Keep a set of seen pure methods so we won't diagnose the same method
3326  // more than once.
3327  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3328
3329  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3330                                   MEnd = FinalOverriders.end();
3331       M != MEnd;
3332       ++M) {
3333    for (OverridingMethods::iterator SO = M->second.begin(),
3334                                  SOEnd = M->second.end();
3335         SO != SOEnd; ++SO) {
3336      // C++ [class.abstract]p4:
3337      //   A class is abstract if it contains or inherits at least one
3338      //   pure virtual function for which the final overrider is pure
3339      //   virtual.
3340
3341      //
3342      if (SO->second.size() != 1)
3343        continue;
3344
3345      if (!SO->second.front().Method->isPure())
3346        continue;
3347
3348      if (!SeenPureMethods.insert(SO->second.front().Method))
3349        continue;
3350
3351      Diag(SO->second.front().Method->getLocation(),
3352           diag::note_pure_virtual_function)
3353        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3354    }
3355  }
3356
3357  if (!PureVirtualClassDiagSet)
3358    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3359  PureVirtualClassDiagSet->insert(RD);
3360}
3361
3362namespace {
3363struct AbstractUsageInfo {
3364  Sema &S;
3365  CXXRecordDecl *Record;
3366  CanQualType AbstractType;
3367  bool Invalid;
3368
3369  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3370    : S(S), Record(Record),
3371      AbstractType(S.Context.getCanonicalType(
3372                   S.Context.getTypeDeclType(Record))),
3373      Invalid(false) {}
3374
3375  void DiagnoseAbstractType() {
3376    if (Invalid) return;
3377    S.DiagnoseAbstractType(Record);
3378    Invalid = true;
3379  }
3380
3381  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3382};
3383
3384struct CheckAbstractUsage {
3385  AbstractUsageInfo &Info;
3386  const NamedDecl *Ctx;
3387
3388  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3389    : Info(Info), Ctx(Ctx) {}
3390
3391  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3392    switch (TL.getTypeLocClass()) {
3393#define ABSTRACT_TYPELOC(CLASS, PARENT)
3394#define TYPELOC(CLASS, PARENT) \
3395    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3396#include "clang/AST/TypeLocNodes.def"
3397    }
3398  }
3399
3400  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3401    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3402    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3403      if (!TL.getArg(I))
3404        continue;
3405
3406      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3407      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3408    }
3409  }
3410
3411  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3412    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3413  }
3414
3415  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3416    // Visit the type parameters from a permissive context.
3417    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3418      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3419      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3420        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3421          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3422      // TODO: other template argument types?
3423    }
3424  }
3425
3426  // Visit pointee types from a permissive context.
3427#define CheckPolymorphic(Type) \
3428  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3429    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3430  }
3431  CheckPolymorphic(PointerTypeLoc)
3432  CheckPolymorphic(ReferenceTypeLoc)
3433  CheckPolymorphic(MemberPointerTypeLoc)
3434  CheckPolymorphic(BlockPointerTypeLoc)
3435  CheckPolymorphic(AtomicTypeLoc)
3436
3437  /// Handle all the types we haven't given a more specific
3438  /// implementation for above.
3439  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3440    // Every other kind of type that we haven't called out already
3441    // that has an inner type is either (1) sugar or (2) contains that
3442    // inner type in some way as a subobject.
3443    if (TypeLoc Next = TL.getNextTypeLoc())
3444      return Visit(Next, Sel);
3445
3446    // If there's no inner type and we're in a permissive context,
3447    // don't diagnose.
3448    if (Sel == Sema::AbstractNone) return;
3449
3450    // Check whether the type matches the abstract type.
3451    QualType T = TL.getType();
3452    if (T->isArrayType()) {
3453      Sel = Sema::AbstractArrayType;
3454      T = Info.S.Context.getBaseElementType(T);
3455    }
3456    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3457    if (CT != Info.AbstractType) return;
3458
3459    // It matched; do some magic.
3460    if (Sel == Sema::AbstractArrayType) {
3461      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3462        << T << TL.getSourceRange();
3463    } else {
3464      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3465        << Sel << T << TL.getSourceRange();
3466    }
3467    Info.DiagnoseAbstractType();
3468  }
3469};
3470
3471void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3472                                  Sema::AbstractDiagSelID Sel) {
3473  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3474}
3475
3476}
3477
3478/// Check for invalid uses of an abstract type in a method declaration.
3479static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3480                                    CXXMethodDecl *MD) {
3481  // No need to do the check on definitions, which require that
3482  // the return/param types be complete.
3483  if (MD->doesThisDeclarationHaveABody())
3484    return;
3485
3486  // For safety's sake, just ignore it if we don't have type source
3487  // information.  This should never happen for non-implicit methods,
3488  // but...
3489  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3490    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3491}
3492
3493/// Check for invalid uses of an abstract type within a class definition.
3494static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3495                                    CXXRecordDecl *RD) {
3496  for (CXXRecordDecl::decl_iterator
3497         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3498    Decl *D = *I;
3499    if (D->isImplicit()) continue;
3500
3501    // Methods and method templates.
3502    if (isa<CXXMethodDecl>(D)) {
3503      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3504    } else if (isa<FunctionTemplateDecl>(D)) {
3505      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3506      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3507
3508    // Fields and static variables.
3509    } else if (isa<FieldDecl>(D)) {
3510      FieldDecl *FD = cast<FieldDecl>(D);
3511      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3512        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3513    } else if (isa<VarDecl>(D)) {
3514      VarDecl *VD = cast<VarDecl>(D);
3515      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3516        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3517
3518    // Nested classes and class templates.
3519    } else if (isa<CXXRecordDecl>(D)) {
3520      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3521    } else if (isa<ClassTemplateDecl>(D)) {
3522      CheckAbstractClassUsage(Info,
3523                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3524    }
3525  }
3526}
3527
3528/// \brief Perform semantic checks on a class definition that has been
3529/// completing, introducing implicitly-declared members, checking for
3530/// abstract types, etc.
3531void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3532  if (!Record)
3533    return;
3534
3535  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3536    AbstractUsageInfo Info(*this, Record);
3537    CheckAbstractClassUsage(Info, Record);
3538  }
3539
3540  // If this is not an aggregate type and has no user-declared constructor,
3541  // complain about any non-static data members of reference or const scalar
3542  // type, since they will never get initializers.
3543  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3544      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3545    bool Complained = false;
3546    for (RecordDecl::field_iterator F = Record->field_begin(),
3547                                 FEnd = Record->field_end();
3548         F != FEnd; ++F) {
3549      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3550        continue;
3551
3552      if (F->getType()->isReferenceType() ||
3553          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3554        if (!Complained) {
3555          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3556            << Record->getTagKind() << Record;
3557          Complained = true;
3558        }
3559
3560        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3561          << F->getType()->isReferenceType()
3562          << F->getDeclName();
3563      }
3564    }
3565  }
3566
3567  if (Record->isDynamicClass() && !Record->isDependentType())
3568    DynamicClasses.push_back(Record);
3569
3570  if (Record->getIdentifier()) {
3571    // C++ [class.mem]p13:
3572    //   If T is the name of a class, then each of the following shall have a
3573    //   name different from T:
3574    //     - every member of every anonymous union that is a member of class T.
3575    //
3576    // C++ [class.mem]p14:
3577    //   In addition, if class T has a user-declared constructor (12.1), every
3578    //   non-static data member of class T shall have a name different from T.
3579    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3580         R.first != R.second; ++R.first) {
3581      NamedDecl *D = *R.first;
3582      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3583          isa<IndirectFieldDecl>(D)) {
3584        Diag(D->getLocation(), diag::err_member_name_of_class)
3585          << D->getDeclName();
3586        break;
3587      }
3588    }
3589  }
3590
3591  // Warn if the class has virtual methods but non-virtual public destructor.
3592  if (Record->isPolymorphic() && !Record->isDependentType()) {
3593    CXXDestructorDecl *dtor = Record->getDestructor();
3594    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3595      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3596           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3597  }
3598
3599  // See if a method overloads virtual methods in a base
3600  /// class without overriding any.
3601  if (!Record->isDependentType()) {
3602    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3603                                     MEnd = Record->method_end();
3604         M != MEnd; ++M) {
3605      if (!(*M)->isStatic())
3606        DiagnoseHiddenVirtualMethods(Record, *M);
3607    }
3608  }
3609
3610  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3611  // function that is not a constructor declares that member function to be
3612  // const. [...] The class of which that function is a member shall be
3613  // a literal type.
3614  //
3615  // It's fine to diagnose constructors here too: such constructors cannot
3616  // produce a constant expression, so are ill-formed (no diagnostic required).
3617  //
3618  // If the class has virtual bases, any constexpr members will already have
3619  // been diagnosed by the checks performed on the member declaration, so
3620  // suppress this (less useful) diagnostic.
3621  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3622      !Record->isLiteral() && !Record->getNumVBases()) {
3623    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3624                                     MEnd = Record->method_end();
3625         M != MEnd; ++M) {
3626      if ((*M)->isConstexpr()) {
3627        switch (Record->getTemplateSpecializationKind()) {
3628        case TSK_ImplicitInstantiation:
3629        case TSK_ExplicitInstantiationDeclaration:
3630        case TSK_ExplicitInstantiationDefinition:
3631          // If a template instantiates to a non-literal type, but its members
3632          // instantiate to constexpr functions, the template is technically
3633          // ill-formed, but we allow it for sanity. Such members are treated as
3634          // non-constexpr.
3635          (*M)->setConstexpr(false);
3636          continue;
3637
3638        case TSK_Undeclared:
3639        case TSK_ExplicitSpecialization:
3640          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3641                             PDiag(diag::err_constexpr_method_non_literal));
3642          break;
3643        }
3644
3645        // Only produce one error per class.
3646        break;
3647      }
3648    }
3649  }
3650
3651  // Declare inherited constructors. We do this eagerly here because:
3652  // - The standard requires an eager diagnostic for conflicting inherited
3653  //   constructors from different classes.
3654  // - The lazy declaration of the other implicit constructors is so as to not
3655  //   waste space and performance on classes that are not meant to be
3656  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3657  //   have inherited constructors.
3658  DeclareInheritedConstructors(Record);
3659
3660  if (!Record->isDependentType())
3661    CheckExplicitlyDefaultedMethods(Record);
3662}
3663
3664void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3665  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3666                                      ME = Record->method_end();
3667       MI != ME; ++MI) {
3668    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3669      switch (getSpecialMember(*MI)) {
3670      case CXXDefaultConstructor:
3671        CheckExplicitlyDefaultedDefaultConstructor(
3672                                                  cast<CXXConstructorDecl>(*MI));
3673        break;
3674
3675      case CXXDestructor:
3676        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3677        break;
3678
3679      case CXXCopyConstructor:
3680        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3681        break;
3682
3683      case CXXCopyAssignment:
3684        CheckExplicitlyDefaultedCopyAssignment(*MI);
3685        break;
3686
3687      case CXXMoveConstructor:
3688        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3689        break;
3690
3691      case CXXMoveAssignment:
3692        CheckExplicitlyDefaultedMoveAssignment(*MI);
3693        break;
3694
3695      case CXXInvalid:
3696        llvm_unreachable("non-special member explicitly defaulted!");
3697      }
3698    }
3699  }
3700
3701}
3702
3703void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3704  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3705
3706  // Whether this was the first-declared instance of the constructor.
3707  // This affects whether we implicitly add an exception spec (and, eventually,
3708  // constexpr). It is also ill-formed to explicitly default a constructor such
3709  // that it would be deleted. (C++0x [decl.fct.def.default])
3710  bool First = CD == CD->getCanonicalDecl();
3711
3712  bool HadError = false;
3713  if (CD->getNumParams() != 0) {
3714    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3715      << CD->getSourceRange();
3716    HadError = true;
3717  }
3718
3719  ImplicitExceptionSpecification Spec
3720    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3721  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3722  if (EPI.ExceptionSpecType == EST_Delayed) {
3723    // Exception specification depends on some deferred part of the class. We'll
3724    // try again when the class's definition has been fully processed.
3725    return;
3726  }
3727  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3728                          *ExceptionType = Context.getFunctionType(
3729                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3730
3731  if (CtorType->hasExceptionSpec()) {
3732    if (CheckEquivalentExceptionSpec(
3733          PDiag(diag::err_incorrect_defaulted_exception_spec)
3734            << CXXDefaultConstructor,
3735          PDiag(),
3736          ExceptionType, SourceLocation(),
3737          CtorType, CD->getLocation())) {
3738      HadError = true;
3739    }
3740  } else if (First) {
3741    // We set the declaration to have the computed exception spec here.
3742    // We know there are no parameters.
3743    EPI.ExtInfo = CtorType->getExtInfo();
3744    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3745  }
3746
3747  if (HadError) {
3748    CD->setInvalidDecl();
3749    return;
3750  }
3751
3752  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3753    if (First) {
3754      CD->setDeletedAsWritten();
3755    } else {
3756      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3757        << CXXDefaultConstructor;
3758      CD->setInvalidDecl();
3759    }
3760  }
3761}
3762
3763void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3764  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3765
3766  // Whether this was the first-declared instance of the constructor.
3767  bool First = CD == CD->getCanonicalDecl();
3768
3769  bool HadError = false;
3770  if (CD->getNumParams() != 1) {
3771    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3772      << CD->getSourceRange();
3773    HadError = true;
3774  }
3775
3776  ImplicitExceptionSpecification Spec(Context);
3777  bool Const;
3778  llvm::tie(Spec, Const) =
3779    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3780
3781  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3782  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3783                          *ExceptionType = Context.getFunctionType(
3784                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3785
3786  // Check for parameter type matching.
3787  // This is a copy ctor so we know it's a cv-qualified reference to T.
3788  QualType ArgType = CtorType->getArgType(0);
3789  if (ArgType->getPointeeType().isVolatileQualified()) {
3790    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3791    HadError = true;
3792  }
3793  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3794    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3795    HadError = true;
3796  }
3797
3798  if (CtorType->hasExceptionSpec()) {
3799    if (CheckEquivalentExceptionSpec(
3800          PDiag(diag::err_incorrect_defaulted_exception_spec)
3801            << CXXCopyConstructor,
3802          PDiag(),
3803          ExceptionType, SourceLocation(),
3804          CtorType, CD->getLocation())) {
3805      HadError = true;
3806    }
3807  } else if (First) {
3808    // We set the declaration to have the computed exception spec here.
3809    // We duplicate the one parameter type.
3810    EPI.ExtInfo = CtorType->getExtInfo();
3811    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3812  }
3813
3814  if (HadError) {
3815    CD->setInvalidDecl();
3816    return;
3817  }
3818
3819  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3820    if (First) {
3821      CD->setDeletedAsWritten();
3822    } else {
3823      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3824        << CXXCopyConstructor;
3825      CD->setInvalidDecl();
3826    }
3827  }
3828}
3829
3830void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3831  assert(MD->isExplicitlyDefaulted());
3832
3833  // Whether this was the first-declared instance of the operator
3834  bool First = MD == MD->getCanonicalDecl();
3835
3836  bool HadError = false;
3837  if (MD->getNumParams() != 1) {
3838    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3839      << MD->getSourceRange();
3840    HadError = true;
3841  }
3842
3843  QualType ReturnType =
3844    MD->getType()->getAs<FunctionType>()->getResultType();
3845  if (!ReturnType->isLValueReferenceType() ||
3846      !Context.hasSameType(
3847        Context.getCanonicalType(ReturnType->getPointeeType()),
3848        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3849    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3850    HadError = true;
3851  }
3852
3853  ImplicitExceptionSpecification Spec(Context);
3854  bool Const;
3855  llvm::tie(Spec, Const) =
3856    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3857
3858  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3859  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3860                          *ExceptionType = Context.getFunctionType(
3861                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3862
3863  QualType ArgType = OperType->getArgType(0);
3864  if (!ArgType->isLValueReferenceType()) {
3865    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3866    HadError = true;
3867  } else {
3868    if (ArgType->getPointeeType().isVolatileQualified()) {
3869      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3870      HadError = true;
3871    }
3872    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3873      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3874      HadError = true;
3875    }
3876  }
3877
3878  if (OperType->getTypeQuals()) {
3879    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3880    HadError = true;
3881  }
3882
3883  if (OperType->hasExceptionSpec()) {
3884    if (CheckEquivalentExceptionSpec(
3885          PDiag(diag::err_incorrect_defaulted_exception_spec)
3886            << CXXCopyAssignment,
3887          PDiag(),
3888          ExceptionType, SourceLocation(),
3889          OperType, MD->getLocation())) {
3890      HadError = true;
3891    }
3892  } else if (First) {
3893    // We set the declaration to have the computed exception spec here.
3894    // We duplicate the one parameter type.
3895    EPI.RefQualifier = OperType->getRefQualifier();
3896    EPI.ExtInfo = OperType->getExtInfo();
3897    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3898  }
3899
3900  if (HadError) {
3901    MD->setInvalidDecl();
3902    return;
3903  }
3904
3905  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3906    if (First) {
3907      MD->setDeletedAsWritten();
3908    } else {
3909      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3910        << CXXCopyAssignment;
3911      MD->setInvalidDecl();
3912    }
3913  }
3914}
3915
3916void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
3917  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
3918
3919  // Whether this was the first-declared instance of the constructor.
3920  bool First = CD == CD->getCanonicalDecl();
3921
3922  bool HadError = false;
3923  if (CD->getNumParams() != 1) {
3924    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
3925      << CD->getSourceRange();
3926    HadError = true;
3927  }
3928
3929  ImplicitExceptionSpecification Spec(
3930      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
3931
3932  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3933  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3934                          *ExceptionType = Context.getFunctionType(
3935                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3936
3937  // Check for parameter type matching.
3938  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
3939  QualType ArgType = CtorType->getArgType(0);
3940  if (ArgType->getPointeeType().isVolatileQualified()) {
3941    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
3942    HadError = true;
3943  }
3944  if (ArgType->getPointeeType().isConstQualified()) {
3945    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
3946    HadError = true;
3947  }
3948
3949  if (CtorType->hasExceptionSpec()) {
3950    if (CheckEquivalentExceptionSpec(
3951          PDiag(diag::err_incorrect_defaulted_exception_spec)
3952            << CXXMoveConstructor,
3953          PDiag(),
3954          ExceptionType, SourceLocation(),
3955          CtorType, CD->getLocation())) {
3956      HadError = true;
3957    }
3958  } else if (First) {
3959    // We set the declaration to have the computed exception spec here.
3960    // We duplicate the one parameter type.
3961    EPI.ExtInfo = CtorType->getExtInfo();
3962    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3963  }
3964
3965  if (HadError) {
3966    CD->setInvalidDecl();
3967    return;
3968  }
3969
3970  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
3971    if (First) {
3972      CD->setDeletedAsWritten();
3973    } else {
3974      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3975        << CXXMoveConstructor;
3976      CD->setInvalidDecl();
3977    }
3978  }
3979}
3980
3981void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
3982  assert(MD->isExplicitlyDefaulted());
3983
3984  // Whether this was the first-declared instance of the operator
3985  bool First = MD == MD->getCanonicalDecl();
3986
3987  bool HadError = false;
3988  if (MD->getNumParams() != 1) {
3989    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
3990      << MD->getSourceRange();
3991    HadError = true;
3992  }
3993
3994  QualType ReturnType =
3995    MD->getType()->getAs<FunctionType>()->getResultType();
3996  if (!ReturnType->isLValueReferenceType() ||
3997      !Context.hasSameType(
3998        Context.getCanonicalType(ReturnType->getPointeeType()),
3999        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4000    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4001    HadError = true;
4002  }
4003
4004  ImplicitExceptionSpecification Spec(
4005      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4006
4007  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4008  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4009                          *ExceptionType = Context.getFunctionType(
4010                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4011
4012  QualType ArgType = OperType->getArgType(0);
4013  if (!ArgType->isRValueReferenceType()) {
4014    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4015    HadError = true;
4016  } else {
4017    if (ArgType->getPointeeType().isVolatileQualified()) {
4018      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4019      HadError = true;
4020    }
4021    if (ArgType->getPointeeType().isConstQualified()) {
4022      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4023      HadError = true;
4024    }
4025  }
4026
4027  if (OperType->getTypeQuals()) {
4028    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4029    HadError = true;
4030  }
4031
4032  if (OperType->hasExceptionSpec()) {
4033    if (CheckEquivalentExceptionSpec(
4034          PDiag(diag::err_incorrect_defaulted_exception_spec)
4035            << CXXMoveAssignment,
4036          PDiag(),
4037          ExceptionType, SourceLocation(),
4038          OperType, MD->getLocation())) {
4039      HadError = true;
4040    }
4041  } else if (First) {
4042    // We set the declaration to have the computed exception spec here.
4043    // We duplicate the one parameter type.
4044    EPI.RefQualifier = OperType->getRefQualifier();
4045    EPI.ExtInfo = OperType->getExtInfo();
4046    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4047  }
4048
4049  if (HadError) {
4050    MD->setInvalidDecl();
4051    return;
4052  }
4053
4054  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4055    if (First) {
4056      MD->setDeletedAsWritten();
4057    } else {
4058      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4059        << CXXMoveAssignment;
4060      MD->setInvalidDecl();
4061    }
4062  }
4063}
4064
4065void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4066  assert(DD->isExplicitlyDefaulted());
4067
4068  // Whether this was the first-declared instance of the destructor.
4069  bool First = DD == DD->getCanonicalDecl();
4070
4071  ImplicitExceptionSpecification Spec
4072    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4073  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4074  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4075                          *ExceptionType = Context.getFunctionType(
4076                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4077
4078  if (DtorType->hasExceptionSpec()) {
4079    if (CheckEquivalentExceptionSpec(
4080          PDiag(diag::err_incorrect_defaulted_exception_spec)
4081            << CXXDestructor,
4082          PDiag(),
4083          ExceptionType, SourceLocation(),
4084          DtorType, DD->getLocation())) {
4085      DD->setInvalidDecl();
4086      return;
4087    }
4088  } else if (First) {
4089    // We set the declaration to have the computed exception spec here.
4090    // There are no parameters.
4091    EPI.ExtInfo = DtorType->getExtInfo();
4092    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4093  }
4094
4095  if (ShouldDeleteDestructor(DD)) {
4096    if (First) {
4097      DD->setDeletedAsWritten();
4098    } else {
4099      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4100        << CXXDestructor;
4101      DD->setInvalidDecl();
4102    }
4103  }
4104}
4105
4106/// This function implements the following C++0x paragraphs:
4107///  - [class.ctor]/5
4108///  - [class.copy]/11
4109bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4110  assert(!MD->isInvalidDecl());
4111  CXXRecordDecl *RD = MD->getParent();
4112  assert(!RD->isDependentType() && "do deletion after instantiation");
4113  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4114    return false;
4115
4116  bool IsUnion = RD->isUnion();
4117  bool IsConstructor = false;
4118  bool IsAssignment = false;
4119  bool IsMove = false;
4120
4121  bool ConstArg = false;
4122
4123  switch (CSM) {
4124  case CXXDefaultConstructor:
4125    IsConstructor = true;
4126    break;
4127  case CXXCopyConstructor:
4128    IsConstructor = true;
4129    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4130    break;
4131  case CXXMoveConstructor:
4132    IsConstructor = true;
4133    IsMove = true;
4134    break;
4135  default:
4136    llvm_unreachable("function only currently implemented for default ctors");
4137  }
4138
4139  SourceLocation Loc = MD->getLocation();
4140
4141  // Do access control from the special member function
4142  ContextRAII MethodContext(*this, MD);
4143
4144  bool AllConst = true;
4145
4146  // We do this because we should never actually use an anonymous
4147  // union's constructor.
4148  if (IsUnion && RD->isAnonymousStructOrUnion())
4149    return false;
4150
4151  // FIXME: We should put some diagnostic logic right into this function.
4152
4153  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4154                                          BE = RD->bases_end();
4155       BI != BE; ++BI) {
4156    // We'll handle this one later
4157    if (BI->isVirtual())
4158      continue;
4159
4160    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4161    assert(BaseDecl && "base isn't a CXXRecordDecl");
4162
4163    // Unless we have an assignment operator, the base's destructor must
4164    // be accessible and not deleted.
4165    if (!IsAssignment) {
4166      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4167      if (BaseDtor->isDeleted())
4168        return true;
4169      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4170          AR_accessible)
4171        return true;
4172    }
4173
4174    // Finding the corresponding member in the base should lead to a
4175    // unique, accessible, non-deleted function. If we are doing
4176    // a destructor, we have already checked this case.
4177    if (CSM != CXXDestructor) {
4178      SpecialMemberOverloadResult *SMOR =
4179        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4180                            false);
4181      if (!SMOR->hasSuccess())
4182        return true;
4183      CXXMethodDecl *BaseMember = SMOR->getMethod();
4184      if (IsConstructor) {
4185        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4186        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4187                                   PDiag()) != AR_accessible)
4188          return true;
4189
4190        // For a move operation, the corresponding operation must actually
4191        // be a move operation (and not a copy selected by overload
4192        // resolution) unless we are working on a trivially copyable class.
4193        if (IsMove && !BaseCtor->isMoveConstructor() &&
4194            !BaseDecl->isTriviallyCopyable())
4195          return true;
4196      }
4197    }
4198  }
4199
4200  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4201                                          BE = RD->vbases_end();
4202       BI != BE; ++BI) {
4203    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4204    assert(BaseDecl && "base isn't a CXXRecordDecl");
4205
4206    // Unless we have an assignment operator, the base's destructor must
4207    // be accessible and not deleted.
4208    if (!IsAssignment) {
4209      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4210      if (BaseDtor->isDeleted())
4211        return true;
4212      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4213          AR_accessible)
4214        return true;
4215    }
4216
4217    // Finding the corresponding member in the base should lead to a
4218    // unique, accessible, non-deleted function.
4219    if (CSM != CXXDestructor) {
4220      SpecialMemberOverloadResult *SMOR =
4221        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4222                            false);
4223      if (!SMOR->hasSuccess())
4224        return true;
4225      CXXMethodDecl *BaseMember = SMOR->getMethod();
4226      if (IsConstructor) {
4227        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4228        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4229                                   PDiag()) != AR_accessible)
4230          return true;
4231
4232        // For a move operation, the corresponding operation must actually
4233        // be a move operation (and not a copy selected by overload
4234        // resolution) unless we are working on a trivially copyable class.
4235        if (IsMove && !BaseCtor->isMoveConstructor() &&
4236            !BaseDecl->isTriviallyCopyable())
4237          return true;
4238      }
4239    }
4240  }
4241
4242  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4243                                     FE = RD->field_end();
4244       FI != FE; ++FI) {
4245    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4246      continue;
4247
4248    QualType FieldType = Context.getBaseElementType(FI->getType());
4249    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4250
4251    // For a default constructor, all references must be initialized in-class
4252    // and, if a union, it must have a non-const member.
4253    if (CSM == CXXDefaultConstructor) {
4254      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4255        return true;
4256
4257      if (IsUnion && !FieldType.isConstQualified())
4258        AllConst = false;
4259    // For a copy constructor, data members must not be of rvalue reference
4260    // type.
4261    } else if (CSM == CXXCopyConstructor) {
4262      if (FieldType->isRValueReferenceType())
4263        return true;
4264    }
4265
4266    if (FieldRecord) {
4267      // For a default constructor, a const member must have a user-provided
4268      // default constructor or else be explicitly initialized.
4269      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4270          !FI->hasInClassInitializer() &&
4271          !FieldRecord->hasUserProvidedDefaultConstructor())
4272        return true;
4273
4274      // Some additional restrictions exist on the variant members.
4275      if (!IsUnion && FieldRecord->isUnion() &&
4276          FieldRecord->isAnonymousStructOrUnion()) {
4277        // We're okay to reuse AllConst here since we only care about the
4278        // value otherwise if we're in a union.
4279        AllConst = true;
4280
4281        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4282                                           UE = FieldRecord->field_end();
4283             UI != UE; ++UI) {
4284          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4285          CXXRecordDecl *UnionFieldRecord =
4286            UnionFieldType->getAsCXXRecordDecl();
4287
4288          if (!UnionFieldType.isConstQualified())
4289            AllConst = false;
4290
4291          if (UnionFieldRecord) {
4292            // FIXME: Checking for accessibility and validity of this
4293            //        destructor is technically going beyond the
4294            //        standard, but this is believed to be a defect.
4295            if (!IsAssignment) {
4296              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4297              if (FieldDtor->isDeleted())
4298                return true;
4299              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4300                  AR_accessible)
4301                return true;
4302              if (!FieldDtor->isTrivial())
4303                return true;
4304            }
4305
4306            if (CSM != CXXDestructor) {
4307              SpecialMemberOverloadResult *SMOR =
4308                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4309                                    false, false, false);
4310              // FIXME: Checking for accessibility and validity of this
4311              //        corresponding member is technically going beyond the
4312              //        standard, but this is believed to be a defect.
4313              if (!SMOR->hasSuccess())
4314                return true;
4315
4316              CXXMethodDecl *FieldMember = SMOR->getMethod();
4317              // A member of a union must have a trivial corresponding
4318              // constructor.
4319              if (!FieldMember->isTrivial())
4320                return true;
4321
4322              if (IsConstructor) {
4323                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4324                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4325                                           PDiag()) != AR_accessible)
4326                return true;
4327              }
4328            }
4329          }
4330        }
4331
4332        // At least one member in each anonymous union must be non-const
4333        if (CSM == CXXDefaultConstructor && AllConst)
4334          return true;
4335
4336        // Don't try to initialize the anonymous union
4337        // This is technically non-conformant, but sanity demands it.
4338        continue;
4339      }
4340
4341      // Unless we're doing assignment, the field's destructor must be
4342      // accessible and not deleted.
4343      if (!IsAssignment) {
4344        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4345        if (FieldDtor->isDeleted())
4346          return true;
4347        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4348            AR_accessible)
4349          return true;
4350      }
4351
4352      // Check that the corresponding member of the field is accessible,
4353      // unique, and non-deleted. We don't do this if it has an explicit
4354      // initialization when default-constructing.
4355      if (CSM != CXXDestructor &&
4356          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4357        SpecialMemberOverloadResult *SMOR =
4358          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4359                              false);
4360        if (!SMOR->hasSuccess())
4361          return true;
4362
4363        CXXMethodDecl *FieldMember = SMOR->getMethod();
4364        if (IsConstructor) {
4365          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4366          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4367                                     PDiag()) != AR_accessible)
4368          return true;
4369
4370          // For a move operation, the corresponding operation must actually
4371          // be a move operation (and not a copy selected by overload
4372          // resolution) unless we are working on a trivially copyable class.
4373          if (IsMove && !FieldCtor->isMoveConstructor() &&
4374              !FieldRecord->isTriviallyCopyable())
4375            return true;
4376        }
4377
4378        // We need the corresponding member of a union to be trivial so that
4379        // we can safely copy them all simultaneously.
4380        // FIXME: Note that performing the check here (where we rely on the lack
4381        // of an in-class initializer) is technically ill-formed. However, this
4382        // seems most obviously to be a bug in the standard.
4383        if (IsUnion && !FieldMember->isTrivial())
4384          return true;
4385      }
4386    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4387               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4388      // We can't initialize a const member of non-class type to any value.
4389      return true;
4390    }
4391  }
4392
4393  // We can't have all const members in a union when default-constructing,
4394  // or else they're all nonsensical garbage values that can't be changed.
4395  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4396    return true;
4397
4398  return false;
4399}
4400
4401bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4402  CXXRecordDecl *RD = MD->getParent();
4403  assert(!RD->isDependentType() && "do deletion after instantiation");
4404  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4405    return false;
4406
4407  SourceLocation Loc = MD->getLocation();
4408
4409  // Do access control from the constructor
4410  ContextRAII MethodContext(*this, MD);
4411
4412  bool Union = RD->isUnion();
4413
4414  unsigned ArgQuals =
4415    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4416      Qualifiers::Const : 0;
4417
4418  // We do this because we should never actually use an anonymous
4419  // union's constructor.
4420  if (Union && RD->isAnonymousStructOrUnion())
4421    return false;
4422
4423  // FIXME: We should put some diagnostic logic right into this function.
4424
4425  // C++0x [class.copy]/20
4426  //    A defaulted [copy] assignment operator for class X is defined as deleted
4427  //    if X has:
4428
4429  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4430                                          BE = RD->bases_end();
4431       BI != BE; ++BI) {
4432    // We'll handle this one later
4433    if (BI->isVirtual())
4434      continue;
4435
4436    QualType BaseType = BI->getType();
4437    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4438    assert(BaseDecl && "base isn't a CXXRecordDecl");
4439
4440    // -- a [direct base class] B that cannot be [copied] because overload
4441    //    resolution, as applied to B's [copy] assignment operator, results in
4442    //    an ambiguity or a function that is deleted or inaccessible from the
4443    //    assignment operator
4444    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4445                                                      0);
4446    if (!CopyOper || CopyOper->isDeleted())
4447      return true;
4448    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4449      return true;
4450  }
4451
4452  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4453                                          BE = RD->vbases_end();
4454       BI != BE; ++BI) {
4455    QualType BaseType = BI->getType();
4456    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4457    assert(BaseDecl && "base isn't a CXXRecordDecl");
4458
4459    // -- a [virtual base class] B that cannot be [copied] because overload
4460    //    resolution, as applied to B's [copy] assignment operator, results in
4461    //    an ambiguity or a function that is deleted or inaccessible from the
4462    //    assignment operator
4463    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4464                                                      0);
4465    if (!CopyOper || CopyOper->isDeleted())
4466      return true;
4467    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4468      return true;
4469  }
4470
4471  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4472                                     FE = RD->field_end();
4473       FI != FE; ++FI) {
4474    if (FI->isUnnamedBitfield())
4475      continue;
4476
4477    QualType FieldType = Context.getBaseElementType(FI->getType());
4478
4479    // -- a non-static data member of reference type
4480    if (FieldType->isReferenceType())
4481      return true;
4482
4483    // -- a non-static data member of const non-class type (or array thereof)
4484    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4485      return true;
4486
4487    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4488
4489    if (FieldRecord) {
4490      // This is an anonymous union
4491      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4492        // Anonymous unions inside unions do not variant members create
4493        if (!Union) {
4494          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4495                                             UE = FieldRecord->field_end();
4496               UI != UE; ++UI) {
4497            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4498            CXXRecordDecl *UnionFieldRecord =
4499              UnionFieldType->getAsCXXRecordDecl();
4500
4501            // -- a variant member with a non-trivial [copy] assignment operator
4502            //    and X is a union-like class
4503            if (UnionFieldRecord &&
4504                !UnionFieldRecord->hasTrivialCopyAssignment())
4505              return true;
4506          }
4507        }
4508
4509        // Don't try to initalize an anonymous union
4510        continue;
4511      // -- a variant member with a non-trivial [copy] assignment operator
4512      //    and X is a union-like class
4513      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4514          return true;
4515      }
4516
4517      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4518                                                        false, 0);
4519      if (!CopyOper || CopyOper->isDeleted())
4520        return true;
4521      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4522        return true;
4523    }
4524  }
4525
4526  return false;
4527}
4528
4529bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4530  CXXRecordDecl *RD = MD->getParent();
4531  assert(!RD->isDependentType() && "do deletion after instantiation");
4532  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4533    return false;
4534
4535  SourceLocation Loc = MD->getLocation();
4536
4537  // Do access control from the constructor
4538  ContextRAII MethodContext(*this, MD);
4539
4540  bool Union = RD->isUnion();
4541
4542  // We do this because we should never actually use an anonymous
4543  // union's constructor.
4544  if (Union && RD->isAnonymousStructOrUnion())
4545    return false;
4546
4547  // C++0x [class.copy]/20
4548  //    A defaulted [move] assignment operator for class X is defined as deleted
4549  //    if X has:
4550
4551  //    -- for the move constructor, [...] any direct or indirect virtual base
4552  //       class.
4553  if (RD->getNumVBases() != 0)
4554    return true;
4555
4556  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4557                                          BE = RD->bases_end();
4558       BI != BE; ++BI) {
4559
4560    QualType BaseType = BI->getType();
4561    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4562    assert(BaseDecl && "base isn't a CXXRecordDecl");
4563
4564    // -- a [direct base class] B that cannot be [moved] because overload
4565    //    resolution, as applied to B's [move] assignment operator, results in
4566    //    an ambiguity or a function that is deleted or inaccessible from the
4567    //    assignment operator
4568    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4569    if (!MoveOper || MoveOper->isDeleted())
4570      return true;
4571    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4572      return true;
4573
4574    // -- for the move assignment operator, a [direct base class] with a type
4575    //    that does not have a move assignment operator and is not trivially
4576    //    copyable.
4577    if (!MoveOper->isMoveAssignmentOperator() &&
4578        !BaseDecl->isTriviallyCopyable())
4579      return true;
4580  }
4581
4582  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4583                                     FE = RD->field_end();
4584       FI != FE; ++FI) {
4585    if (FI->isUnnamedBitfield())
4586      continue;
4587
4588    QualType FieldType = Context.getBaseElementType(FI->getType());
4589
4590    // -- a non-static data member of reference type
4591    if (FieldType->isReferenceType())
4592      return true;
4593
4594    // -- a non-static data member of const non-class type (or array thereof)
4595    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4596      return true;
4597
4598    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4599
4600    if (FieldRecord) {
4601      // This is an anonymous union
4602      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4603        // Anonymous unions inside unions do not variant members create
4604        if (!Union) {
4605          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4606                                             UE = FieldRecord->field_end();
4607               UI != UE; ++UI) {
4608            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4609            CXXRecordDecl *UnionFieldRecord =
4610              UnionFieldType->getAsCXXRecordDecl();
4611
4612            // -- a variant member with a non-trivial [move] assignment operator
4613            //    and X is a union-like class
4614            if (UnionFieldRecord &&
4615                !UnionFieldRecord->hasTrivialMoveAssignment())
4616              return true;
4617          }
4618        }
4619
4620        // Don't try to initalize an anonymous union
4621        continue;
4622      // -- a variant member with a non-trivial [move] assignment operator
4623      //    and X is a union-like class
4624      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4625          return true;
4626      }
4627
4628      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4629      if (!MoveOper || MoveOper->isDeleted())
4630        return true;
4631      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4632        return true;
4633
4634      // -- for the move assignment operator, a [non-static data member] with a
4635      //    type that does not have a move assignment operator and is not
4636      //    trivially copyable.
4637      if (!MoveOper->isMoveAssignmentOperator() &&
4638          !FieldRecord->isTriviallyCopyable())
4639        return true;
4640    }
4641  }
4642
4643  return false;
4644}
4645
4646bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4647  CXXRecordDecl *RD = DD->getParent();
4648  assert(!RD->isDependentType() && "do deletion after instantiation");
4649  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4650    return false;
4651
4652  SourceLocation Loc = DD->getLocation();
4653
4654  // Do access control from the destructor
4655  ContextRAII CtorContext(*this, DD);
4656
4657  bool Union = RD->isUnion();
4658
4659  // We do this because we should never actually use an anonymous
4660  // union's destructor.
4661  if (Union && RD->isAnonymousStructOrUnion())
4662    return false;
4663
4664  // C++0x [class.dtor]p5
4665  //    A defaulted destructor for a class X is defined as deleted if:
4666  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4667                                          BE = RD->bases_end();
4668       BI != BE; ++BI) {
4669    // We'll handle this one later
4670    if (BI->isVirtual())
4671      continue;
4672
4673    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4674    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4675    assert(BaseDtor && "base has no destructor");
4676
4677    // -- any direct or virtual base class has a deleted destructor or
4678    //    a destructor that is inaccessible from the defaulted destructor
4679    if (BaseDtor->isDeleted())
4680      return true;
4681    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4682        AR_accessible)
4683      return true;
4684  }
4685
4686  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4687                                          BE = RD->vbases_end();
4688       BI != BE; ++BI) {
4689    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4690    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4691    assert(BaseDtor && "base has no destructor");
4692
4693    // -- any direct or virtual base class has a deleted destructor or
4694    //    a destructor that is inaccessible from the defaulted destructor
4695    if (BaseDtor->isDeleted())
4696      return true;
4697    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4698        AR_accessible)
4699      return true;
4700  }
4701
4702  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4703                                     FE = RD->field_end();
4704       FI != FE; ++FI) {
4705    QualType FieldType = Context.getBaseElementType(FI->getType());
4706    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4707    if (FieldRecord) {
4708      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4709         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4710                                            UE = FieldRecord->field_end();
4711              UI != UE; ++UI) {
4712           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4713           CXXRecordDecl *UnionFieldRecord =
4714             UnionFieldType->getAsCXXRecordDecl();
4715
4716           // -- X is a union-like class that has a variant member with a non-
4717           //    trivial destructor.
4718           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4719             return true;
4720         }
4721      // Technically we are supposed to do this next check unconditionally.
4722      // But that makes absolutely no sense.
4723      } else {
4724        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4725
4726        // -- any of the non-static data members has class type M (or array
4727        //    thereof) and M has a deleted destructor or a destructor that is
4728        //    inaccessible from the defaulted destructor
4729        if (FieldDtor->isDeleted())
4730          return true;
4731        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4732          AR_accessible)
4733        return true;
4734
4735        // -- X is a union-like class that has a variant member with a non-
4736        //    trivial destructor.
4737        if (Union && !FieldDtor->isTrivial())
4738          return true;
4739      }
4740    }
4741  }
4742
4743  if (DD->isVirtual()) {
4744    FunctionDecl *OperatorDelete = 0;
4745    DeclarationName Name =
4746      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4747    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4748          false))
4749      return true;
4750  }
4751
4752
4753  return false;
4754}
4755
4756/// \brief Data used with FindHiddenVirtualMethod
4757namespace {
4758  struct FindHiddenVirtualMethodData {
4759    Sema *S;
4760    CXXMethodDecl *Method;
4761    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4762    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4763  };
4764}
4765
4766/// \brief Member lookup function that determines whether a given C++
4767/// method overloads virtual methods in a base class without overriding any,
4768/// to be used with CXXRecordDecl::lookupInBases().
4769static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4770                                    CXXBasePath &Path,
4771                                    void *UserData) {
4772  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4773
4774  FindHiddenVirtualMethodData &Data
4775    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4776
4777  DeclarationName Name = Data.Method->getDeclName();
4778  assert(Name.getNameKind() == DeclarationName::Identifier);
4779
4780  bool foundSameNameMethod = false;
4781  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4782  for (Path.Decls = BaseRecord->lookup(Name);
4783       Path.Decls.first != Path.Decls.second;
4784       ++Path.Decls.first) {
4785    NamedDecl *D = *Path.Decls.first;
4786    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4787      MD = MD->getCanonicalDecl();
4788      foundSameNameMethod = true;
4789      // Interested only in hidden virtual methods.
4790      if (!MD->isVirtual())
4791        continue;
4792      // If the method we are checking overrides a method from its base
4793      // don't warn about the other overloaded methods.
4794      if (!Data.S->IsOverload(Data.Method, MD, false))
4795        return true;
4796      // Collect the overload only if its hidden.
4797      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4798        overloadedMethods.push_back(MD);
4799    }
4800  }
4801
4802  if (foundSameNameMethod)
4803    Data.OverloadedMethods.append(overloadedMethods.begin(),
4804                                   overloadedMethods.end());
4805  return foundSameNameMethod;
4806}
4807
4808/// \brief See if a method overloads virtual methods in a base class without
4809/// overriding any.
4810void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4811  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4812                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4813    return;
4814  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4815    return;
4816
4817  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4818                     /*bool RecordPaths=*/false,
4819                     /*bool DetectVirtual=*/false);
4820  FindHiddenVirtualMethodData Data;
4821  Data.Method = MD;
4822  Data.S = this;
4823
4824  // Keep the base methods that were overriden or introduced in the subclass
4825  // by 'using' in a set. A base method not in this set is hidden.
4826  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4827       res.first != res.second; ++res.first) {
4828    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4829      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4830                                          E = MD->end_overridden_methods();
4831           I != E; ++I)
4832        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4833    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4834      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4835        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4836  }
4837
4838  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4839      !Data.OverloadedMethods.empty()) {
4840    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4841      << MD << (Data.OverloadedMethods.size() > 1);
4842
4843    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4844      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4845      Diag(overloadedMD->getLocation(),
4846           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4847    }
4848  }
4849}
4850
4851void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4852                                             Decl *TagDecl,
4853                                             SourceLocation LBrac,
4854                                             SourceLocation RBrac,
4855                                             AttributeList *AttrList) {
4856  if (!TagDecl)
4857    return;
4858
4859  AdjustDeclIfTemplate(TagDecl);
4860
4861  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4862              // strict aliasing violation!
4863              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4864              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4865
4866  CheckCompletedCXXClass(
4867                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4868}
4869
4870/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4871/// special functions, such as the default constructor, copy
4872/// constructor, or destructor, to the given C++ class (C++
4873/// [special]p1).  This routine can only be executed just before the
4874/// definition of the class is complete.
4875void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4876  if (!ClassDecl->hasUserDeclaredConstructor())
4877    ++ASTContext::NumImplicitDefaultConstructors;
4878
4879  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4880    ++ASTContext::NumImplicitCopyConstructors;
4881
4882  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4883    ++ASTContext::NumImplicitCopyAssignmentOperators;
4884
4885    // If we have a dynamic class, then the copy assignment operator may be
4886    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4887    // it shows up in the right place in the vtable and that we diagnose
4888    // problems with the implicit exception specification.
4889    if (ClassDecl->isDynamicClass())
4890      DeclareImplicitCopyAssignment(ClassDecl);
4891  }
4892
4893  if (!ClassDecl->hasUserDeclaredDestructor()) {
4894    ++ASTContext::NumImplicitDestructors;
4895
4896    // If we have a dynamic class, then the destructor may be virtual, so we
4897    // have to declare the destructor immediately. This ensures that, e.g., it
4898    // shows up in the right place in the vtable and that we diagnose problems
4899    // with the implicit exception specification.
4900    if (ClassDecl->isDynamicClass())
4901      DeclareImplicitDestructor(ClassDecl);
4902  }
4903}
4904
4905void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4906  if (!D)
4907    return;
4908
4909  int NumParamList = D->getNumTemplateParameterLists();
4910  for (int i = 0; i < NumParamList; i++) {
4911    TemplateParameterList* Params = D->getTemplateParameterList(i);
4912    for (TemplateParameterList::iterator Param = Params->begin(),
4913                                      ParamEnd = Params->end();
4914          Param != ParamEnd; ++Param) {
4915      NamedDecl *Named = cast<NamedDecl>(*Param);
4916      if (Named->getDeclName()) {
4917        S->AddDecl(Named);
4918        IdResolver.AddDecl(Named);
4919      }
4920    }
4921  }
4922}
4923
4924void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4925  if (!D)
4926    return;
4927
4928  TemplateParameterList *Params = 0;
4929  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4930    Params = Template->getTemplateParameters();
4931  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4932           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4933    Params = PartialSpec->getTemplateParameters();
4934  else
4935    return;
4936
4937  for (TemplateParameterList::iterator Param = Params->begin(),
4938                                    ParamEnd = Params->end();
4939       Param != ParamEnd; ++Param) {
4940    NamedDecl *Named = cast<NamedDecl>(*Param);
4941    if (Named->getDeclName()) {
4942      S->AddDecl(Named);
4943      IdResolver.AddDecl(Named);
4944    }
4945  }
4946}
4947
4948void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4949  if (!RecordD) return;
4950  AdjustDeclIfTemplate(RecordD);
4951  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4952  PushDeclContext(S, Record);
4953}
4954
4955void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4956  if (!RecordD) return;
4957  PopDeclContext();
4958}
4959
4960/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4961/// parsing a top-level (non-nested) C++ class, and we are now
4962/// parsing those parts of the given Method declaration that could
4963/// not be parsed earlier (C++ [class.mem]p2), such as default
4964/// arguments. This action should enter the scope of the given
4965/// Method declaration as if we had just parsed the qualified method
4966/// name. However, it should not bring the parameters into scope;
4967/// that will be performed by ActOnDelayedCXXMethodParameter.
4968void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4969}
4970
4971/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4972/// C++ method declaration. We're (re-)introducing the given
4973/// function parameter into scope for use in parsing later parts of
4974/// the method declaration. For example, we could see an
4975/// ActOnParamDefaultArgument event for this parameter.
4976void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4977  if (!ParamD)
4978    return;
4979
4980  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4981
4982  // If this parameter has an unparsed default argument, clear it out
4983  // to make way for the parsed default argument.
4984  if (Param->hasUnparsedDefaultArg())
4985    Param->setDefaultArg(0);
4986
4987  S->AddDecl(Param);
4988  if (Param->getDeclName())
4989    IdResolver.AddDecl(Param);
4990}
4991
4992/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4993/// processing the delayed method declaration for Method. The method
4994/// declaration is now considered finished. There may be a separate
4995/// ActOnStartOfFunctionDef action later (not necessarily
4996/// immediately!) for this method, if it was also defined inside the
4997/// class body.
4998void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4999  if (!MethodD)
5000    return;
5001
5002  AdjustDeclIfTemplate(MethodD);
5003
5004  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5005
5006  // Now that we have our default arguments, check the constructor
5007  // again. It could produce additional diagnostics or affect whether
5008  // the class has implicitly-declared destructors, among other
5009  // things.
5010  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5011    CheckConstructor(Constructor);
5012
5013  // Check the default arguments, which we may have added.
5014  if (!Method->isInvalidDecl())
5015    CheckCXXDefaultArguments(Method);
5016}
5017
5018/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5019/// the well-formedness of the constructor declarator @p D with type @p
5020/// R. If there are any errors in the declarator, this routine will
5021/// emit diagnostics and set the invalid bit to true.  In any case, the type
5022/// will be updated to reflect a well-formed type for the constructor and
5023/// returned.
5024QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5025                                          StorageClass &SC) {
5026  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5027
5028  // C++ [class.ctor]p3:
5029  //   A constructor shall not be virtual (10.3) or static (9.4). A
5030  //   constructor can be invoked for a const, volatile or const
5031  //   volatile object. A constructor shall not be declared const,
5032  //   volatile, or const volatile (9.3.2).
5033  if (isVirtual) {
5034    if (!D.isInvalidType())
5035      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5036        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5037        << SourceRange(D.getIdentifierLoc());
5038    D.setInvalidType();
5039  }
5040  if (SC == SC_Static) {
5041    if (!D.isInvalidType())
5042      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5043        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5044        << SourceRange(D.getIdentifierLoc());
5045    D.setInvalidType();
5046    SC = SC_None;
5047  }
5048
5049  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5050  if (FTI.TypeQuals != 0) {
5051    if (FTI.TypeQuals & Qualifiers::Const)
5052      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5053        << "const" << SourceRange(D.getIdentifierLoc());
5054    if (FTI.TypeQuals & Qualifiers::Volatile)
5055      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5056        << "volatile" << SourceRange(D.getIdentifierLoc());
5057    if (FTI.TypeQuals & Qualifiers::Restrict)
5058      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5059        << "restrict" << SourceRange(D.getIdentifierLoc());
5060    D.setInvalidType();
5061  }
5062
5063  // C++0x [class.ctor]p4:
5064  //   A constructor shall not be declared with a ref-qualifier.
5065  if (FTI.hasRefQualifier()) {
5066    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5067      << FTI.RefQualifierIsLValueRef
5068      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5069    D.setInvalidType();
5070  }
5071
5072  // Rebuild the function type "R" without any type qualifiers (in
5073  // case any of the errors above fired) and with "void" as the
5074  // return type, since constructors don't have return types.
5075  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5076  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5077    return R;
5078
5079  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5080  EPI.TypeQuals = 0;
5081  EPI.RefQualifier = RQ_None;
5082
5083  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5084                                 Proto->getNumArgs(), EPI);
5085}
5086
5087/// CheckConstructor - Checks a fully-formed constructor for
5088/// well-formedness, issuing any diagnostics required. Returns true if
5089/// the constructor declarator is invalid.
5090void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5091  CXXRecordDecl *ClassDecl
5092    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5093  if (!ClassDecl)
5094    return Constructor->setInvalidDecl();
5095
5096  // C++ [class.copy]p3:
5097  //   A declaration of a constructor for a class X is ill-formed if
5098  //   its first parameter is of type (optionally cv-qualified) X and
5099  //   either there are no other parameters or else all other
5100  //   parameters have default arguments.
5101  if (!Constructor->isInvalidDecl() &&
5102      ((Constructor->getNumParams() == 1) ||
5103       (Constructor->getNumParams() > 1 &&
5104        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5105      Constructor->getTemplateSpecializationKind()
5106                                              != TSK_ImplicitInstantiation) {
5107    QualType ParamType = Constructor->getParamDecl(0)->getType();
5108    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5109    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5110      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5111      const char *ConstRef
5112        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5113                                                        : " const &";
5114      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5115        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5116
5117      // FIXME: Rather that making the constructor invalid, we should endeavor
5118      // to fix the type.
5119      Constructor->setInvalidDecl();
5120    }
5121  }
5122}
5123
5124/// CheckDestructor - Checks a fully-formed destructor definition for
5125/// well-formedness, issuing any diagnostics required.  Returns true
5126/// on error.
5127bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5128  CXXRecordDecl *RD = Destructor->getParent();
5129
5130  if (Destructor->isVirtual()) {
5131    SourceLocation Loc;
5132
5133    if (!Destructor->isImplicit())
5134      Loc = Destructor->getLocation();
5135    else
5136      Loc = RD->getLocation();
5137
5138    // If we have a virtual destructor, look up the deallocation function
5139    FunctionDecl *OperatorDelete = 0;
5140    DeclarationName Name =
5141    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5142    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5143      return true;
5144
5145    MarkDeclarationReferenced(Loc, OperatorDelete);
5146
5147    Destructor->setOperatorDelete(OperatorDelete);
5148  }
5149
5150  return false;
5151}
5152
5153static inline bool
5154FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5155  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5156          FTI.ArgInfo[0].Param &&
5157          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5158}
5159
5160/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5161/// the well-formednes of the destructor declarator @p D with type @p
5162/// R. If there are any errors in the declarator, this routine will
5163/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5164/// will be updated to reflect a well-formed type for the destructor and
5165/// returned.
5166QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5167                                         StorageClass& SC) {
5168  // C++ [class.dtor]p1:
5169  //   [...] A typedef-name that names a class is a class-name
5170  //   (7.1.3); however, a typedef-name that names a class shall not
5171  //   be used as the identifier in the declarator for a destructor
5172  //   declaration.
5173  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5174  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5175    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5176      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5177  else if (const TemplateSpecializationType *TST =
5178             DeclaratorType->getAs<TemplateSpecializationType>())
5179    if (TST->isTypeAlias())
5180      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5181        << DeclaratorType << 1;
5182
5183  // C++ [class.dtor]p2:
5184  //   A destructor is used to destroy objects of its class type. A
5185  //   destructor takes no parameters, and no return type can be
5186  //   specified for it (not even void). The address of a destructor
5187  //   shall not be taken. A destructor shall not be static. A
5188  //   destructor can be invoked for a const, volatile or const
5189  //   volatile object. A destructor shall not be declared const,
5190  //   volatile or const volatile (9.3.2).
5191  if (SC == SC_Static) {
5192    if (!D.isInvalidType())
5193      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5194        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5195        << SourceRange(D.getIdentifierLoc())
5196        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5197
5198    SC = SC_None;
5199  }
5200  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5201    // Destructors don't have return types, but the parser will
5202    // happily parse something like:
5203    //
5204    //   class X {
5205    //     float ~X();
5206    //   };
5207    //
5208    // The return type will be eliminated later.
5209    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5210      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5211      << SourceRange(D.getIdentifierLoc());
5212  }
5213
5214  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5215  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5216    if (FTI.TypeQuals & Qualifiers::Const)
5217      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5218        << "const" << SourceRange(D.getIdentifierLoc());
5219    if (FTI.TypeQuals & Qualifiers::Volatile)
5220      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5221        << "volatile" << SourceRange(D.getIdentifierLoc());
5222    if (FTI.TypeQuals & Qualifiers::Restrict)
5223      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5224        << "restrict" << SourceRange(D.getIdentifierLoc());
5225    D.setInvalidType();
5226  }
5227
5228  // C++0x [class.dtor]p2:
5229  //   A destructor shall not be declared with a ref-qualifier.
5230  if (FTI.hasRefQualifier()) {
5231    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5232      << FTI.RefQualifierIsLValueRef
5233      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5234    D.setInvalidType();
5235  }
5236
5237  // Make sure we don't have any parameters.
5238  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5239    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5240
5241    // Delete the parameters.
5242    FTI.freeArgs();
5243    D.setInvalidType();
5244  }
5245
5246  // Make sure the destructor isn't variadic.
5247  if (FTI.isVariadic) {
5248    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5249    D.setInvalidType();
5250  }
5251
5252  // Rebuild the function type "R" without any type qualifiers or
5253  // parameters (in case any of the errors above fired) and with
5254  // "void" as the return type, since destructors don't have return
5255  // types.
5256  if (!D.isInvalidType())
5257    return R;
5258
5259  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5260  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5261  EPI.Variadic = false;
5262  EPI.TypeQuals = 0;
5263  EPI.RefQualifier = RQ_None;
5264  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5265}
5266
5267/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5268/// well-formednes of the conversion function declarator @p D with
5269/// type @p R. If there are any errors in the declarator, this routine
5270/// will emit diagnostics and return true. Otherwise, it will return
5271/// false. Either way, the type @p R will be updated to reflect a
5272/// well-formed type for the conversion operator.
5273void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5274                                     StorageClass& SC) {
5275  // C++ [class.conv.fct]p1:
5276  //   Neither parameter types nor return type can be specified. The
5277  //   type of a conversion function (8.3.5) is "function taking no
5278  //   parameter returning conversion-type-id."
5279  if (SC == SC_Static) {
5280    if (!D.isInvalidType())
5281      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5282        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5283        << SourceRange(D.getIdentifierLoc());
5284    D.setInvalidType();
5285    SC = SC_None;
5286  }
5287
5288  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5289
5290  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5291    // Conversion functions don't have return types, but the parser will
5292    // happily parse something like:
5293    //
5294    //   class X {
5295    //     float operator bool();
5296    //   };
5297    //
5298    // The return type will be changed later anyway.
5299    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5300      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5301      << SourceRange(D.getIdentifierLoc());
5302    D.setInvalidType();
5303  }
5304
5305  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5306
5307  // Make sure we don't have any parameters.
5308  if (Proto->getNumArgs() > 0) {
5309    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5310
5311    // Delete the parameters.
5312    D.getFunctionTypeInfo().freeArgs();
5313    D.setInvalidType();
5314  } else if (Proto->isVariadic()) {
5315    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5316    D.setInvalidType();
5317  }
5318
5319  // Diagnose "&operator bool()" and other such nonsense.  This
5320  // is actually a gcc extension which we don't support.
5321  if (Proto->getResultType() != ConvType) {
5322    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5323      << Proto->getResultType();
5324    D.setInvalidType();
5325    ConvType = Proto->getResultType();
5326  }
5327
5328  // C++ [class.conv.fct]p4:
5329  //   The conversion-type-id shall not represent a function type nor
5330  //   an array type.
5331  if (ConvType->isArrayType()) {
5332    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5333    ConvType = Context.getPointerType(ConvType);
5334    D.setInvalidType();
5335  } else if (ConvType->isFunctionType()) {
5336    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5337    ConvType = Context.getPointerType(ConvType);
5338    D.setInvalidType();
5339  }
5340
5341  // Rebuild the function type "R" without any parameters (in case any
5342  // of the errors above fired) and with the conversion type as the
5343  // return type.
5344  if (D.isInvalidType())
5345    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5346
5347  // C++0x explicit conversion operators.
5348  if (D.getDeclSpec().isExplicitSpecified())
5349    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5350         getLangOptions().CPlusPlus0x ?
5351           diag::warn_cxx98_compat_explicit_conversion_functions :
5352           diag::ext_explicit_conversion_functions)
5353      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5354}
5355
5356/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5357/// the declaration of the given C++ conversion function. This routine
5358/// is responsible for recording the conversion function in the C++
5359/// class, if possible.
5360Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5361  assert(Conversion && "Expected to receive a conversion function declaration");
5362
5363  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5364
5365  // Make sure we aren't redeclaring the conversion function.
5366  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5367
5368  // C++ [class.conv.fct]p1:
5369  //   [...] A conversion function is never used to convert a
5370  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5371  //   same object type (or a reference to it), to a (possibly
5372  //   cv-qualified) base class of that type (or a reference to it),
5373  //   or to (possibly cv-qualified) void.
5374  // FIXME: Suppress this warning if the conversion function ends up being a
5375  // virtual function that overrides a virtual function in a base class.
5376  QualType ClassType
5377    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5378  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5379    ConvType = ConvTypeRef->getPointeeType();
5380  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5381      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5382    /* Suppress diagnostics for instantiations. */;
5383  else if (ConvType->isRecordType()) {
5384    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5385    if (ConvType == ClassType)
5386      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5387        << ClassType;
5388    else if (IsDerivedFrom(ClassType, ConvType))
5389      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5390        <<  ClassType << ConvType;
5391  } else if (ConvType->isVoidType()) {
5392    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5393      << ClassType << ConvType;
5394  }
5395
5396  if (FunctionTemplateDecl *ConversionTemplate
5397                                = Conversion->getDescribedFunctionTemplate())
5398    return ConversionTemplate;
5399
5400  return Conversion;
5401}
5402
5403//===----------------------------------------------------------------------===//
5404// Namespace Handling
5405//===----------------------------------------------------------------------===//
5406
5407
5408
5409/// ActOnStartNamespaceDef - This is called at the start of a namespace
5410/// definition.
5411Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5412                                   SourceLocation InlineLoc,
5413                                   SourceLocation NamespaceLoc,
5414                                   SourceLocation IdentLoc,
5415                                   IdentifierInfo *II,
5416                                   SourceLocation LBrace,
5417                                   AttributeList *AttrList) {
5418  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5419  // For anonymous namespace, take the location of the left brace.
5420  SourceLocation Loc = II ? IdentLoc : LBrace;
5421  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
5422                                                 StartLoc, Loc, II);
5423  Namespc->setInline(InlineLoc.isValid());
5424
5425  Scope *DeclRegionScope = NamespcScope->getParent();
5426
5427  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5428
5429  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5430    PushNamespaceVisibilityAttr(Attr);
5431
5432  if (II) {
5433    // C++ [namespace.def]p2:
5434    //   The identifier in an original-namespace-definition shall not
5435    //   have been previously defined in the declarative region in
5436    //   which the original-namespace-definition appears. The
5437    //   identifier in an original-namespace-definition is the name of
5438    //   the namespace. Subsequently in that declarative region, it is
5439    //   treated as an original-namespace-name.
5440    //
5441    // Since namespace names are unique in their scope, and we don't
5442    // look through using directives, just look for any ordinary names.
5443
5444    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5445      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5446      Decl::IDNS_Namespace;
5447    NamedDecl *PrevDecl = 0;
5448    for (DeclContext::lookup_result R
5449            = CurContext->getRedeclContext()->lookup(II);
5450         R.first != R.second; ++R.first) {
5451      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5452        PrevDecl = *R.first;
5453        break;
5454      }
5455    }
5456
5457    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
5458      // This is an extended namespace definition.
5459      if (Namespc->isInline() != OrigNS->isInline()) {
5460        // inline-ness must match
5461        if (OrigNS->isInline()) {
5462          // The user probably just forgot the 'inline', so suggest that it
5463          // be added back.
5464          Diag(Namespc->getLocation(),
5465               diag::warn_inline_namespace_reopened_noninline)
5466            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5467        } else {
5468          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5469            << Namespc->isInline();
5470        }
5471        Diag(OrigNS->getLocation(), diag::note_previous_definition);
5472
5473        // Recover by ignoring the new namespace's inline status.
5474        Namespc->setInline(OrigNS->isInline());
5475      }
5476
5477      // Attach this namespace decl to the chain of extended namespace
5478      // definitions.
5479      OrigNS->setNextNamespace(Namespc);
5480      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
5481
5482      // Remove the previous declaration from the scope.
5483      if (DeclRegionScope->isDeclScope(OrigNS)) {
5484        IdResolver.RemoveDecl(OrigNS);
5485        DeclRegionScope->RemoveDecl(OrigNS);
5486      }
5487    } else if (PrevDecl) {
5488      // This is an invalid name redefinition.
5489      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
5490       << Namespc->getDeclName();
5491      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5492      Namespc->setInvalidDecl();
5493      // Continue on to push Namespc as current DeclContext and return it.
5494    } else if (II->isStr("std") &&
5495               CurContext->getRedeclContext()->isTranslationUnit()) {
5496      // This is the first "real" definition of the namespace "std", so update
5497      // our cache of the "std" namespace to point at this definition.
5498      if (NamespaceDecl *StdNS = getStdNamespace()) {
5499        // We had already defined a dummy namespace "std". Link this new
5500        // namespace definition to the dummy namespace "std".
5501        StdNS->setNextNamespace(Namespc);
5502        StdNS->setLocation(IdentLoc);
5503        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
5504      }
5505
5506      // Make our StdNamespace cache point at the first real definition of the
5507      // "std" namespace.
5508      StdNamespace = Namespc;
5509
5510      // Add this instance of "std" to the set of known namespaces
5511      KnownNamespaces[Namespc] = false;
5512    } else if (!Namespc->isInline()) {
5513      // Since this is an "original" namespace, add it to the known set of
5514      // namespaces if it is not an inline namespace.
5515      KnownNamespaces[Namespc] = false;
5516    }
5517
5518    PushOnScopeChains(Namespc, DeclRegionScope);
5519  } else {
5520    // Anonymous namespaces.
5521    assert(Namespc->isAnonymousNamespace());
5522
5523    // Link the anonymous namespace into its parent.
5524    NamespaceDecl *PrevDecl;
5525    DeclContext *Parent = CurContext->getRedeclContext();
5526    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5527      PrevDecl = TU->getAnonymousNamespace();
5528      TU->setAnonymousNamespace(Namespc);
5529    } else {
5530      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5531      PrevDecl = ND->getAnonymousNamespace();
5532      ND->setAnonymousNamespace(Namespc);
5533    }
5534
5535    // Link the anonymous namespace with its previous declaration.
5536    if (PrevDecl) {
5537      assert(PrevDecl->isAnonymousNamespace());
5538      assert(!PrevDecl->getNextNamespace());
5539      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
5540      PrevDecl->setNextNamespace(Namespc);
5541
5542      if (Namespc->isInline() != PrevDecl->isInline()) {
5543        // inline-ness must match
5544        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5545          << Namespc->isInline();
5546        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5547        Namespc->setInvalidDecl();
5548        // Recover by ignoring the new namespace's inline status.
5549        Namespc->setInline(PrevDecl->isInline());
5550      }
5551    }
5552
5553    CurContext->addDecl(Namespc);
5554
5555    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5556    //   behaves as if it were replaced by
5557    //     namespace unique { /* empty body */ }
5558    //     using namespace unique;
5559    //     namespace unique { namespace-body }
5560    //   where all occurrences of 'unique' in a translation unit are
5561    //   replaced by the same identifier and this identifier differs
5562    //   from all other identifiers in the entire program.
5563
5564    // We just create the namespace with an empty name and then add an
5565    // implicit using declaration, just like the standard suggests.
5566    //
5567    // CodeGen enforces the "universally unique" aspect by giving all
5568    // declarations semantically contained within an anonymous
5569    // namespace internal linkage.
5570
5571    if (!PrevDecl) {
5572      UsingDirectiveDecl* UD
5573        = UsingDirectiveDecl::Create(Context, CurContext,
5574                                     /* 'using' */ LBrace,
5575                                     /* 'namespace' */ SourceLocation(),
5576                                     /* qualifier */ NestedNameSpecifierLoc(),
5577                                     /* identifier */ SourceLocation(),
5578                                     Namespc,
5579                                     /* Ancestor */ CurContext);
5580      UD->setImplicit();
5581      CurContext->addDecl(UD);
5582    }
5583  }
5584
5585  // Although we could have an invalid decl (i.e. the namespace name is a
5586  // redefinition), push it as current DeclContext and try to continue parsing.
5587  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5588  // for the namespace has the declarations that showed up in that particular
5589  // namespace definition.
5590  PushDeclContext(NamespcScope, Namespc);
5591  return Namespc;
5592}
5593
5594/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5595/// is a namespace alias, returns the namespace it points to.
5596static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5597  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5598    return AD->getNamespace();
5599  return dyn_cast_or_null<NamespaceDecl>(D);
5600}
5601
5602/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5603/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5604void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5605  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5606  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5607  Namespc->setRBraceLoc(RBrace);
5608  PopDeclContext();
5609  if (Namespc->hasAttr<VisibilityAttr>())
5610    PopPragmaVisibility();
5611}
5612
5613CXXRecordDecl *Sema::getStdBadAlloc() const {
5614  return cast_or_null<CXXRecordDecl>(
5615                                  StdBadAlloc.get(Context.getExternalSource()));
5616}
5617
5618NamespaceDecl *Sema::getStdNamespace() const {
5619  return cast_or_null<NamespaceDecl>(
5620                                 StdNamespace.get(Context.getExternalSource()));
5621}
5622
5623/// \brief Retrieve the special "std" namespace, which may require us to
5624/// implicitly define the namespace.
5625NamespaceDecl *Sema::getOrCreateStdNamespace() {
5626  if (!StdNamespace) {
5627    // The "std" namespace has not yet been defined, so build one implicitly.
5628    StdNamespace = NamespaceDecl::Create(Context,
5629                                         Context.getTranslationUnitDecl(),
5630                                         SourceLocation(), SourceLocation(),
5631                                         &PP.getIdentifierTable().get("std"));
5632    getStdNamespace()->setImplicit(true);
5633  }
5634
5635  return getStdNamespace();
5636}
5637
5638/// \brief Determine whether a using statement is in a context where it will be
5639/// apply in all contexts.
5640static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5641  switch (CurContext->getDeclKind()) {
5642    case Decl::TranslationUnit:
5643      return true;
5644    case Decl::LinkageSpec:
5645      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5646    default:
5647      return false;
5648  }
5649}
5650
5651static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5652                                       CXXScopeSpec &SS,
5653                                       SourceLocation IdentLoc,
5654                                       IdentifierInfo *Ident) {
5655  R.clear();
5656  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5657                                               R.getLookupKind(), Sc, &SS, NULL,
5658                                               false, S.CTC_NoKeywords, NULL)) {
5659    if (Corrected.getCorrectionDeclAs<NamespaceDecl>() ||
5660        Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) {
5661      std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5662      std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5663      if (DeclContext *DC = S.computeDeclContext(SS, false))
5664        S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5665          << Ident << DC << CorrectedQuotedStr << SS.getRange()
5666          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5667      else
5668        S.Diag(IdentLoc, diag::err_using_directive_suggest)
5669          << Ident << CorrectedQuotedStr
5670          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5671
5672      S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5673           diag::note_namespace_defined_here) << CorrectedQuotedStr;
5674
5675      Ident = Corrected.getCorrectionAsIdentifierInfo();
5676      R.addDecl(Corrected.getCorrectionDecl());
5677      return true;
5678    }
5679    R.setLookupName(Ident);
5680  }
5681  return false;
5682}
5683
5684Decl *Sema::ActOnUsingDirective(Scope *S,
5685                                          SourceLocation UsingLoc,
5686                                          SourceLocation NamespcLoc,
5687                                          CXXScopeSpec &SS,
5688                                          SourceLocation IdentLoc,
5689                                          IdentifierInfo *NamespcName,
5690                                          AttributeList *AttrList) {
5691  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5692  assert(NamespcName && "Invalid NamespcName.");
5693  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5694
5695  // This can only happen along a recovery path.
5696  while (S->getFlags() & Scope::TemplateParamScope)
5697    S = S->getParent();
5698  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5699
5700  UsingDirectiveDecl *UDir = 0;
5701  NestedNameSpecifier *Qualifier = 0;
5702  if (SS.isSet())
5703    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5704
5705  // Lookup namespace name.
5706  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5707  LookupParsedName(R, S, &SS);
5708  if (R.isAmbiguous())
5709    return 0;
5710
5711  if (R.empty()) {
5712    R.clear();
5713    // Allow "using namespace std;" or "using namespace ::std;" even if
5714    // "std" hasn't been defined yet, for GCC compatibility.
5715    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5716        NamespcName->isStr("std")) {
5717      Diag(IdentLoc, diag::ext_using_undefined_std);
5718      R.addDecl(getOrCreateStdNamespace());
5719      R.resolveKind();
5720    }
5721    // Otherwise, attempt typo correction.
5722    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5723  }
5724
5725  if (!R.empty()) {
5726    NamedDecl *Named = R.getFoundDecl();
5727    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5728        && "expected namespace decl");
5729    // C++ [namespace.udir]p1:
5730    //   A using-directive specifies that the names in the nominated
5731    //   namespace can be used in the scope in which the
5732    //   using-directive appears after the using-directive. During
5733    //   unqualified name lookup (3.4.1), the names appear as if they
5734    //   were declared in the nearest enclosing namespace which
5735    //   contains both the using-directive and the nominated
5736    //   namespace. [Note: in this context, "contains" means "contains
5737    //   directly or indirectly". ]
5738
5739    // Find enclosing context containing both using-directive and
5740    // nominated namespace.
5741    NamespaceDecl *NS = getNamespaceDecl(Named);
5742    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5743    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5744      CommonAncestor = CommonAncestor->getParent();
5745
5746    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5747                                      SS.getWithLocInContext(Context),
5748                                      IdentLoc, Named, CommonAncestor);
5749
5750    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5751        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5752      Diag(IdentLoc, diag::warn_using_directive_in_header);
5753    }
5754
5755    PushUsingDirective(S, UDir);
5756  } else {
5757    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5758  }
5759
5760  // FIXME: We ignore attributes for now.
5761  return UDir;
5762}
5763
5764void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5765  // If scope has associated entity, then using directive is at namespace
5766  // or translation unit scope. We add UsingDirectiveDecls, into
5767  // it's lookup structure.
5768  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5769    Ctx->addDecl(UDir);
5770  else
5771    // Otherwise it is block-sope. using-directives will affect lookup
5772    // only to the end of scope.
5773    S->PushUsingDirective(UDir);
5774}
5775
5776
5777Decl *Sema::ActOnUsingDeclaration(Scope *S,
5778                                  AccessSpecifier AS,
5779                                  bool HasUsingKeyword,
5780                                  SourceLocation UsingLoc,
5781                                  CXXScopeSpec &SS,
5782                                  UnqualifiedId &Name,
5783                                  AttributeList *AttrList,
5784                                  bool IsTypeName,
5785                                  SourceLocation TypenameLoc) {
5786  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5787
5788  switch (Name.getKind()) {
5789  case UnqualifiedId::IK_ImplicitSelfParam:
5790  case UnqualifiedId::IK_Identifier:
5791  case UnqualifiedId::IK_OperatorFunctionId:
5792  case UnqualifiedId::IK_LiteralOperatorId:
5793  case UnqualifiedId::IK_ConversionFunctionId:
5794    break;
5795
5796  case UnqualifiedId::IK_ConstructorName:
5797  case UnqualifiedId::IK_ConstructorTemplateId:
5798    // C++0x inherited constructors.
5799    Diag(Name.getSourceRange().getBegin(),
5800         getLangOptions().CPlusPlus0x ?
5801           diag::warn_cxx98_compat_using_decl_constructor :
5802           diag::err_using_decl_constructor)
5803      << SS.getRange();
5804
5805    if (getLangOptions().CPlusPlus0x) break;
5806
5807    return 0;
5808
5809  case UnqualifiedId::IK_DestructorName:
5810    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5811      << SS.getRange();
5812    return 0;
5813
5814  case UnqualifiedId::IK_TemplateId:
5815    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5816      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5817    return 0;
5818  }
5819
5820  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5821  DeclarationName TargetName = TargetNameInfo.getName();
5822  if (!TargetName)
5823    return 0;
5824
5825  // Warn about using declarations.
5826  // TODO: store that the declaration was written without 'using' and
5827  // talk about access decls instead of using decls in the
5828  // diagnostics.
5829  if (!HasUsingKeyword) {
5830    UsingLoc = Name.getSourceRange().getBegin();
5831
5832    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5833      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5834  }
5835
5836  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5837      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5838    return 0;
5839
5840  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5841                                        TargetNameInfo, AttrList,
5842                                        /* IsInstantiation */ false,
5843                                        IsTypeName, TypenameLoc);
5844  if (UD)
5845    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5846
5847  return UD;
5848}
5849
5850/// \brief Determine whether a using declaration considers the given
5851/// declarations as "equivalent", e.g., if they are redeclarations of
5852/// the same entity or are both typedefs of the same type.
5853static bool
5854IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5855                         bool &SuppressRedeclaration) {
5856  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5857    SuppressRedeclaration = false;
5858    return true;
5859  }
5860
5861  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5862    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5863      SuppressRedeclaration = true;
5864      return Context.hasSameType(TD1->getUnderlyingType(),
5865                                 TD2->getUnderlyingType());
5866    }
5867
5868  return false;
5869}
5870
5871
5872/// Determines whether to create a using shadow decl for a particular
5873/// decl, given the set of decls existing prior to this using lookup.
5874bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5875                                const LookupResult &Previous) {
5876  // Diagnose finding a decl which is not from a base class of the
5877  // current class.  We do this now because there are cases where this
5878  // function will silently decide not to build a shadow decl, which
5879  // will pre-empt further diagnostics.
5880  //
5881  // We don't need to do this in C++0x because we do the check once on
5882  // the qualifier.
5883  //
5884  // FIXME: diagnose the following if we care enough:
5885  //   struct A { int foo; };
5886  //   struct B : A { using A::foo; };
5887  //   template <class T> struct C : A {};
5888  //   template <class T> struct D : C<T> { using B::foo; } // <---
5889  // This is invalid (during instantiation) in C++03 because B::foo
5890  // resolves to the using decl in B, which is not a base class of D<T>.
5891  // We can't diagnose it immediately because C<T> is an unknown
5892  // specialization.  The UsingShadowDecl in D<T> then points directly
5893  // to A::foo, which will look well-formed when we instantiate.
5894  // The right solution is to not collapse the shadow-decl chain.
5895  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5896    DeclContext *OrigDC = Orig->getDeclContext();
5897
5898    // Handle enums and anonymous structs.
5899    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5900    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5901    while (OrigRec->isAnonymousStructOrUnion())
5902      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5903
5904    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5905      if (OrigDC == CurContext) {
5906        Diag(Using->getLocation(),
5907             diag::err_using_decl_nested_name_specifier_is_current_class)
5908          << Using->getQualifierLoc().getSourceRange();
5909        Diag(Orig->getLocation(), diag::note_using_decl_target);
5910        return true;
5911      }
5912
5913      Diag(Using->getQualifierLoc().getBeginLoc(),
5914           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5915        << Using->getQualifier()
5916        << cast<CXXRecordDecl>(CurContext)
5917        << Using->getQualifierLoc().getSourceRange();
5918      Diag(Orig->getLocation(), diag::note_using_decl_target);
5919      return true;
5920    }
5921  }
5922
5923  if (Previous.empty()) return false;
5924
5925  NamedDecl *Target = Orig;
5926  if (isa<UsingShadowDecl>(Target))
5927    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5928
5929  // If the target happens to be one of the previous declarations, we
5930  // don't have a conflict.
5931  //
5932  // FIXME: but we might be increasing its access, in which case we
5933  // should redeclare it.
5934  NamedDecl *NonTag = 0, *Tag = 0;
5935  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5936         I != E; ++I) {
5937    NamedDecl *D = (*I)->getUnderlyingDecl();
5938    bool Result;
5939    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5940      return Result;
5941
5942    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5943  }
5944
5945  if (Target->isFunctionOrFunctionTemplate()) {
5946    FunctionDecl *FD;
5947    if (isa<FunctionTemplateDecl>(Target))
5948      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5949    else
5950      FD = cast<FunctionDecl>(Target);
5951
5952    NamedDecl *OldDecl = 0;
5953    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5954    case Ovl_Overload:
5955      return false;
5956
5957    case Ovl_NonFunction:
5958      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5959      break;
5960
5961    // We found a decl with the exact signature.
5962    case Ovl_Match:
5963      // If we're in a record, we want to hide the target, so we
5964      // return true (without a diagnostic) to tell the caller not to
5965      // build a shadow decl.
5966      if (CurContext->isRecord())
5967        return true;
5968
5969      // If we're not in a record, this is an error.
5970      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5971      break;
5972    }
5973
5974    Diag(Target->getLocation(), diag::note_using_decl_target);
5975    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5976    return true;
5977  }
5978
5979  // Target is not a function.
5980
5981  if (isa<TagDecl>(Target)) {
5982    // No conflict between a tag and a non-tag.
5983    if (!Tag) return false;
5984
5985    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5986    Diag(Target->getLocation(), diag::note_using_decl_target);
5987    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5988    return true;
5989  }
5990
5991  // No conflict between a tag and a non-tag.
5992  if (!NonTag) return false;
5993
5994  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5995  Diag(Target->getLocation(), diag::note_using_decl_target);
5996  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5997  return true;
5998}
5999
6000/// Builds a shadow declaration corresponding to a 'using' declaration.
6001UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6002                                            UsingDecl *UD,
6003                                            NamedDecl *Orig) {
6004
6005  // If we resolved to another shadow declaration, just coalesce them.
6006  NamedDecl *Target = Orig;
6007  if (isa<UsingShadowDecl>(Target)) {
6008    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6009    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6010  }
6011
6012  UsingShadowDecl *Shadow
6013    = UsingShadowDecl::Create(Context, CurContext,
6014                              UD->getLocation(), UD, Target);
6015  UD->addShadowDecl(Shadow);
6016
6017  Shadow->setAccess(UD->getAccess());
6018  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6019    Shadow->setInvalidDecl();
6020
6021  if (S)
6022    PushOnScopeChains(Shadow, S);
6023  else
6024    CurContext->addDecl(Shadow);
6025
6026
6027  return Shadow;
6028}
6029
6030/// Hides a using shadow declaration.  This is required by the current
6031/// using-decl implementation when a resolvable using declaration in a
6032/// class is followed by a declaration which would hide or override
6033/// one or more of the using decl's targets; for example:
6034///
6035///   struct Base { void foo(int); };
6036///   struct Derived : Base {
6037///     using Base::foo;
6038///     void foo(int);
6039///   };
6040///
6041/// The governing language is C++03 [namespace.udecl]p12:
6042///
6043///   When a using-declaration brings names from a base class into a
6044///   derived class scope, member functions in the derived class
6045///   override and/or hide member functions with the same name and
6046///   parameter types in a base class (rather than conflicting).
6047///
6048/// There are two ways to implement this:
6049///   (1) optimistically create shadow decls when they're not hidden
6050///       by existing declarations, or
6051///   (2) don't create any shadow decls (or at least don't make them
6052///       visible) until we've fully parsed/instantiated the class.
6053/// The problem with (1) is that we might have to retroactively remove
6054/// a shadow decl, which requires several O(n) operations because the
6055/// decl structures are (very reasonably) not designed for removal.
6056/// (2) avoids this but is very fiddly and phase-dependent.
6057void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6058  if (Shadow->getDeclName().getNameKind() ==
6059        DeclarationName::CXXConversionFunctionName)
6060    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6061
6062  // Remove it from the DeclContext...
6063  Shadow->getDeclContext()->removeDecl(Shadow);
6064
6065  // ...and the scope, if applicable...
6066  if (S) {
6067    S->RemoveDecl(Shadow);
6068    IdResolver.RemoveDecl(Shadow);
6069  }
6070
6071  // ...and the using decl.
6072  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6073
6074  // TODO: complain somehow if Shadow was used.  It shouldn't
6075  // be possible for this to happen, because...?
6076}
6077
6078/// Builds a using declaration.
6079///
6080/// \param IsInstantiation - Whether this call arises from an
6081///   instantiation of an unresolved using declaration.  We treat
6082///   the lookup differently for these declarations.
6083NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6084                                       SourceLocation UsingLoc,
6085                                       CXXScopeSpec &SS,
6086                                       const DeclarationNameInfo &NameInfo,
6087                                       AttributeList *AttrList,
6088                                       bool IsInstantiation,
6089                                       bool IsTypeName,
6090                                       SourceLocation TypenameLoc) {
6091  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6092  SourceLocation IdentLoc = NameInfo.getLoc();
6093  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6094
6095  // FIXME: We ignore attributes for now.
6096
6097  if (SS.isEmpty()) {
6098    Diag(IdentLoc, diag::err_using_requires_qualname);
6099    return 0;
6100  }
6101
6102  // Do the redeclaration lookup in the current scope.
6103  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6104                        ForRedeclaration);
6105  Previous.setHideTags(false);
6106  if (S) {
6107    LookupName(Previous, S);
6108
6109    // It is really dumb that we have to do this.
6110    LookupResult::Filter F = Previous.makeFilter();
6111    while (F.hasNext()) {
6112      NamedDecl *D = F.next();
6113      if (!isDeclInScope(D, CurContext, S))
6114        F.erase();
6115    }
6116    F.done();
6117  } else {
6118    assert(IsInstantiation && "no scope in non-instantiation");
6119    assert(CurContext->isRecord() && "scope not record in instantiation");
6120    LookupQualifiedName(Previous, CurContext);
6121  }
6122
6123  // Check for invalid redeclarations.
6124  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6125    return 0;
6126
6127  // Check for bad qualifiers.
6128  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6129    return 0;
6130
6131  DeclContext *LookupContext = computeDeclContext(SS);
6132  NamedDecl *D;
6133  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6134  if (!LookupContext) {
6135    if (IsTypeName) {
6136      // FIXME: not all declaration name kinds are legal here
6137      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6138                                              UsingLoc, TypenameLoc,
6139                                              QualifierLoc,
6140                                              IdentLoc, NameInfo.getName());
6141    } else {
6142      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6143                                           QualifierLoc, NameInfo);
6144    }
6145  } else {
6146    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6147                          NameInfo, IsTypeName);
6148  }
6149  D->setAccess(AS);
6150  CurContext->addDecl(D);
6151
6152  if (!LookupContext) return D;
6153  UsingDecl *UD = cast<UsingDecl>(D);
6154
6155  if (RequireCompleteDeclContext(SS, LookupContext)) {
6156    UD->setInvalidDecl();
6157    return UD;
6158  }
6159
6160  // Constructor inheriting using decls get special treatment.
6161  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6162    if (CheckInheritedConstructorUsingDecl(UD))
6163      UD->setInvalidDecl();
6164    return UD;
6165  }
6166
6167  // Otherwise, look up the target name.
6168
6169  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6170
6171  // Unlike most lookups, we don't always want to hide tag
6172  // declarations: tag names are visible through the using declaration
6173  // even if hidden by ordinary names, *except* in a dependent context
6174  // where it's important for the sanity of two-phase lookup.
6175  if (!IsInstantiation)
6176    R.setHideTags(false);
6177
6178  LookupQualifiedName(R, LookupContext);
6179
6180  if (R.empty()) {
6181    Diag(IdentLoc, diag::err_no_member)
6182      << NameInfo.getName() << LookupContext << SS.getRange();
6183    UD->setInvalidDecl();
6184    return UD;
6185  }
6186
6187  if (R.isAmbiguous()) {
6188    UD->setInvalidDecl();
6189    return UD;
6190  }
6191
6192  if (IsTypeName) {
6193    // If we asked for a typename and got a non-type decl, error out.
6194    if (!R.getAsSingle<TypeDecl>()) {
6195      Diag(IdentLoc, diag::err_using_typename_non_type);
6196      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6197        Diag((*I)->getUnderlyingDecl()->getLocation(),
6198             diag::note_using_decl_target);
6199      UD->setInvalidDecl();
6200      return UD;
6201    }
6202  } else {
6203    // If we asked for a non-typename and we got a type, error out,
6204    // but only if this is an instantiation of an unresolved using
6205    // decl.  Otherwise just silently find the type name.
6206    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6207      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6208      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6209      UD->setInvalidDecl();
6210      return UD;
6211    }
6212  }
6213
6214  // C++0x N2914 [namespace.udecl]p6:
6215  // A using-declaration shall not name a namespace.
6216  if (R.getAsSingle<NamespaceDecl>()) {
6217    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6218      << SS.getRange();
6219    UD->setInvalidDecl();
6220    return UD;
6221  }
6222
6223  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6224    if (!CheckUsingShadowDecl(UD, *I, Previous))
6225      BuildUsingShadowDecl(S, UD, *I);
6226  }
6227
6228  return UD;
6229}
6230
6231/// Additional checks for a using declaration referring to a constructor name.
6232bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6233  if (UD->isTypeName()) {
6234    // FIXME: Cannot specify typename when specifying constructor
6235    return true;
6236  }
6237
6238  const Type *SourceType = UD->getQualifier()->getAsType();
6239  assert(SourceType &&
6240         "Using decl naming constructor doesn't have type in scope spec.");
6241  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6242
6243  // Check whether the named type is a direct base class.
6244  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6245  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6246  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6247       BaseIt != BaseE; ++BaseIt) {
6248    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6249    if (CanonicalSourceType == BaseType)
6250      break;
6251  }
6252
6253  if (BaseIt == BaseE) {
6254    // Did not find SourceType in the bases.
6255    Diag(UD->getUsingLocation(),
6256         diag::err_using_decl_constructor_not_in_direct_base)
6257      << UD->getNameInfo().getSourceRange()
6258      << QualType(SourceType, 0) << TargetClass;
6259    return true;
6260  }
6261
6262  BaseIt->setInheritConstructors();
6263
6264  return false;
6265}
6266
6267/// Checks that the given using declaration is not an invalid
6268/// redeclaration.  Note that this is checking only for the using decl
6269/// itself, not for any ill-formedness among the UsingShadowDecls.
6270bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6271                                       bool isTypeName,
6272                                       const CXXScopeSpec &SS,
6273                                       SourceLocation NameLoc,
6274                                       const LookupResult &Prev) {
6275  // C++03 [namespace.udecl]p8:
6276  // C++0x [namespace.udecl]p10:
6277  //   A using-declaration is a declaration and can therefore be used
6278  //   repeatedly where (and only where) multiple declarations are
6279  //   allowed.
6280  //
6281  // That's in non-member contexts.
6282  if (!CurContext->getRedeclContext()->isRecord())
6283    return false;
6284
6285  NestedNameSpecifier *Qual
6286    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6287
6288  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6289    NamedDecl *D = *I;
6290
6291    bool DTypename;
6292    NestedNameSpecifier *DQual;
6293    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6294      DTypename = UD->isTypeName();
6295      DQual = UD->getQualifier();
6296    } else if (UnresolvedUsingValueDecl *UD
6297                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6298      DTypename = false;
6299      DQual = UD->getQualifier();
6300    } else if (UnresolvedUsingTypenameDecl *UD
6301                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6302      DTypename = true;
6303      DQual = UD->getQualifier();
6304    } else continue;
6305
6306    // using decls differ if one says 'typename' and the other doesn't.
6307    // FIXME: non-dependent using decls?
6308    if (isTypeName != DTypename) continue;
6309
6310    // using decls differ if they name different scopes (but note that
6311    // template instantiation can cause this check to trigger when it
6312    // didn't before instantiation).
6313    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6314        Context.getCanonicalNestedNameSpecifier(DQual))
6315      continue;
6316
6317    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6318    Diag(D->getLocation(), diag::note_using_decl) << 1;
6319    return true;
6320  }
6321
6322  return false;
6323}
6324
6325
6326/// Checks that the given nested-name qualifier used in a using decl
6327/// in the current context is appropriately related to the current
6328/// scope.  If an error is found, diagnoses it and returns true.
6329bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6330                                   const CXXScopeSpec &SS,
6331                                   SourceLocation NameLoc) {
6332  DeclContext *NamedContext = computeDeclContext(SS);
6333
6334  if (!CurContext->isRecord()) {
6335    // C++03 [namespace.udecl]p3:
6336    // C++0x [namespace.udecl]p8:
6337    //   A using-declaration for a class member shall be a member-declaration.
6338
6339    // If we weren't able to compute a valid scope, it must be a
6340    // dependent class scope.
6341    if (!NamedContext || NamedContext->isRecord()) {
6342      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6343        << SS.getRange();
6344      return true;
6345    }
6346
6347    // Otherwise, everything is known to be fine.
6348    return false;
6349  }
6350
6351  // The current scope is a record.
6352
6353  // If the named context is dependent, we can't decide much.
6354  if (!NamedContext) {
6355    // FIXME: in C++0x, we can diagnose if we can prove that the
6356    // nested-name-specifier does not refer to a base class, which is
6357    // still possible in some cases.
6358
6359    // Otherwise we have to conservatively report that things might be
6360    // okay.
6361    return false;
6362  }
6363
6364  if (!NamedContext->isRecord()) {
6365    // Ideally this would point at the last name in the specifier,
6366    // but we don't have that level of source info.
6367    Diag(SS.getRange().getBegin(),
6368         diag::err_using_decl_nested_name_specifier_is_not_class)
6369      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6370    return true;
6371  }
6372
6373  if (!NamedContext->isDependentContext() &&
6374      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6375    return true;
6376
6377  if (getLangOptions().CPlusPlus0x) {
6378    // C++0x [namespace.udecl]p3:
6379    //   In a using-declaration used as a member-declaration, the
6380    //   nested-name-specifier shall name a base class of the class
6381    //   being defined.
6382
6383    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6384                                 cast<CXXRecordDecl>(NamedContext))) {
6385      if (CurContext == NamedContext) {
6386        Diag(NameLoc,
6387             diag::err_using_decl_nested_name_specifier_is_current_class)
6388          << SS.getRange();
6389        return true;
6390      }
6391
6392      Diag(SS.getRange().getBegin(),
6393           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6394        << (NestedNameSpecifier*) SS.getScopeRep()
6395        << cast<CXXRecordDecl>(CurContext)
6396        << SS.getRange();
6397      return true;
6398    }
6399
6400    return false;
6401  }
6402
6403  // C++03 [namespace.udecl]p4:
6404  //   A using-declaration used as a member-declaration shall refer
6405  //   to a member of a base class of the class being defined [etc.].
6406
6407  // Salient point: SS doesn't have to name a base class as long as
6408  // lookup only finds members from base classes.  Therefore we can
6409  // diagnose here only if we can prove that that can't happen,
6410  // i.e. if the class hierarchies provably don't intersect.
6411
6412  // TODO: it would be nice if "definitely valid" results were cached
6413  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6414  // need to be repeated.
6415
6416  struct UserData {
6417    llvm::DenseSet<const CXXRecordDecl*> Bases;
6418
6419    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6420      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6421      Data->Bases.insert(Base);
6422      return true;
6423    }
6424
6425    bool hasDependentBases(const CXXRecordDecl *Class) {
6426      return !Class->forallBases(collect, this);
6427    }
6428
6429    /// Returns true if the base is dependent or is one of the
6430    /// accumulated base classes.
6431    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6432      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6433      return !Data->Bases.count(Base);
6434    }
6435
6436    bool mightShareBases(const CXXRecordDecl *Class) {
6437      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6438    }
6439  };
6440
6441  UserData Data;
6442
6443  // Returns false if we find a dependent base.
6444  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6445    return false;
6446
6447  // Returns false if the class has a dependent base or if it or one
6448  // of its bases is present in the base set of the current context.
6449  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6450    return false;
6451
6452  Diag(SS.getRange().getBegin(),
6453       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6454    << (NestedNameSpecifier*) SS.getScopeRep()
6455    << cast<CXXRecordDecl>(CurContext)
6456    << SS.getRange();
6457
6458  return true;
6459}
6460
6461Decl *Sema::ActOnAliasDeclaration(Scope *S,
6462                                  AccessSpecifier AS,
6463                                  MultiTemplateParamsArg TemplateParamLists,
6464                                  SourceLocation UsingLoc,
6465                                  UnqualifiedId &Name,
6466                                  TypeResult Type) {
6467  // Skip up to the relevant declaration scope.
6468  while (S->getFlags() & Scope::TemplateParamScope)
6469    S = S->getParent();
6470  assert((S->getFlags() & Scope::DeclScope) &&
6471         "got alias-declaration outside of declaration scope");
6472
6473  if (Type.isInvalid())
6474    return 0;
6475
6476  bool Invalid = false;
6477  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6478  TypeSourceInfo *TInfo = 0;
6479  GetTypeFromParser(Type.get(), &TInfo);
6480
6481  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6482    return 0;
6483
6484  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6485                                      UPPC_DeclarationType)) {
6486    Invalid = true;
6487    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6488                                             TInfo->getTypeLoc().getBeginLoc());
6489  }
6490
6491  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6492  LookupName(Previous, S);
6493
6494  // Warn about shadowing the name of a template parameter.
6495  if (Previous.isSingleResult() &&
6496      Previous.getFoundDecl()->isTemplateParameter()) {
6497    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6498    Previous.clear();
6499  }
6500
6501  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6502         "name in alias declaration must be an identifier");
6503  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6504                                               Name.StartLocation,
6505                                               Name.Identifier, TInfo);
6506
6507  NewTD->setAccess(AS);
6508
6509  if (Invalid)
6510    NewTD->setInvalidDecl();
6511
6512  CheckTypedefForVariablyModifiedType(S, NewTD);
6513  Invalid |= NewTD->isInvalidDecl();
6514
6515  bool Redeclaration = false;
6516
6517  NamedDecl *NewND;
6518  if (TemplateParamLists.size()) {
6519    TypeAliasTemplateDecl *OldDecl = 0;
6520    TemplateParameterList *OldTemplateParams = 0;
6521
6522    if (TemplateParamLists.size() != 1) {
6523      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6524        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6525         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6526    }
6527    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6528
6529    // Only consider previous declarations in the same scope.
6530    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6531                         /*ExplicitInstantiationOrSpecialization*/false);
6532    if (!Previous.empty()) {
6533      Redeclaration = true;
6534
6535      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6536      if (!OldDecl && !Invalid) {
6537        Diag(UsingLoc, diag::err_redefinition_different_kind)
6538          << Name.Identifier;
6539
6540        NamedDecl *OldD = Previous.getRepresentativeDecl();
6541        if (OldD->getLocation().isValid())
6542          Diag(OldD->getLocation(), diag::note_previous_definition);
6543
6544        Invalid = true;
6545      }
6546
6547      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6548        if (TemplateParameterListsAreEqual(TemplateParams,
6549                                           OldDecl->getTemplateParameters(),
6550                                           /*Complain=*/true,
6551                                           TPL_TemplateMatch))
6552          OldTemplateParams = OldDecl->getTemplateParameters();
6553        else
6554          Invalid = true;
6555
6556        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6557        if (!Invalid &&
6558            !Context.hasSameType(OldTD->getUnderlyingType(),
6559                                 NewTD->getUnderlyingType())) {
6560          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6561          // but we can't reasonably accept it.
6562          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6563            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6564          if (OldTD->getLocation().isValid())
6565            Diag(OldTD->getLocation(), diag::note_previous_definition);
6566          Invalid = true;
6567        }
6568      }
6569    }
6570
6571    // Merge any previous default template arguments into our parameters,
6572    // and check the parameter list.
6573    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6574                                   TPC_TypeAliasTemplate))
6575      return 0;
6576
6577    TypeAliasTemplateDecl *NewDecl =
6578      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6579                                    Name.Identifier, TemplateParams,
6580                                    NewTD);
6581
6582    NewDecl->setAccess(AS);
6583
6584    if (Invalid)
6585      NewDecl->setInvalidDecl();
6586    else if (OldDecl)
6587      NewDecl->setPreviousDeclaration(OldDecl);
6588
6589    NewND = NewDecl;
6590  } else {
6591    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6592    NewND = NewTD;
6593  }
6594
6595  if (!Redeclaration)
6596    PushOnScopeChains(NewND, S);
6597
6598  return NewND;
6599}
6600
6601Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6602                                             SourceLocation NamespaceLoc,
6603                                             SourceLocation AliasLoc,
6604                                             IdentifierInfo *Alias,
6605                                             CXXScopeSpec &SS,
6606                                             SourceLocation IdentLoc,
6607                                             IdentifierInfo *Ident) {
6608
6609  // Lookup the namespace name.
6610  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6611  LookupParsedName(R, S, &SS);
6612
6613  // Check if we have a previous declaration with the same name.
6614  NamedDecl *PrevDecl
6615    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6616                       ForRedeclaration);
6617  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6618    PrevDecl = 0;
6619
6620  if (PrevDecl) {
6621    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6622      // We already have an alias with the same name that points to the same
6623      // namespace, so don't create a new one.
6624      // FIXME: At some point, we'll want to create the (redundant)
6625      // declaration to maintain better source information.
6626      if (!R.isAmbiguous() && !R.empty() &&
6627          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6628        return 0;
6629    }
6630
6631    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6632      diag::err_redefinition_different_kind;
6633    Diag(AliasLoc, DiagID) << Alias;
6634    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6635    return 0;
6636  }
6637
6638  if (R.isAmbiguous())
6639    return 0;
6640
6641  if (R.empty()) {
6642    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6643      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6644      return 0;
6645    }
6646  }
6647
6648  NamespaceAliasDecl *AliasDecl =
6649    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6650                               Alias, SS.getWithLocInContext(Context),
6651                               IdentLoc, R.getFoundDecl());
6652
6653  PushOnScopeChains(AliasDecl, S);
6654  return AliasDecl;
6655}
6656
6657namespace {
6658  /// \brief Scoped object used to handle the state changes required in Sema
6659  /// to implicitly define the body of a C++ member function;
6660  class ImplicitlyDefinedFunctionScope {
6661    Sema &S;
6662    Sema::ContextRAII SavedContext;
6663
6664  public:
6665    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6666      : S(S), SavedContext(S, Method)
6667    {
6668      S.PushFunctionScope();
6669      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6670    }
6671
6672    ~ImplicitlyDefinedFunctionScope() {
6673      S.PopExpressionEvaluationContext();
6674      S.PopFunctionOrBlockScope();
6675    }
6676  };
6677}
6678
6679Sema::ImplicitExceptionSpecification
6680Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6681  // C++ [except.spec]p14:
6682  //   An implicitly declared special member function (Clause 12) shall have an
6683  //   exception-specification. [...]
6684  ImplicitExceptionSpecification ExceptSpec(Context);
6685  if (ClassDecl->isInvalidDecl())
6686    return ExceptSpec;
6687
6688  // Direct base-class constructors.
6689  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6690                                       BEnd = ClassDecl->bases_end();
6691       B != BEnd; ++B) {
6692    if (B->isVirtual()) // Handled below.
6693      continue;
6694
6695    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6696      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6697      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6698      // If this is a deleted function, add it anyway. This might be conformant
6699      // with the standard. This might not. I'm not sure. It might not matter.
6700      if (Constructor)
6701        ExceptSpec.CalledDecl(Constructor);
6702    }
6703  }
6704
6705  // Virtual base-class constructors.
6706  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6707                                       BEnd = ClassDecl->vbases_end();
6708       B != BEnd; ++B) {
6709    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6710      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6711      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6712      // If this is a deleted function, add it anyway. This might be conformant
6713      // with the standard. This might not. I'm not sure. It might not matter.
6714      if (Constructor)
6715        ExceptSpec.CalledDecl(Constructor);
6716    }
6717  }
6718
6719  // Field constructors.
6720  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6721                               FEnd = ClassDecl->field_end();
6722       F != FEnd; ++F) {
6723    if (F->hasInClassInitializer()) {
6724      if (Expr *E = F->getInClassInitializer())
6725        ExceptSpec.CalledExpr(E);
6726      else if (!F->isInvalidDecl())
6727        ExceptSpec.SetDelayed();
6728    } else if (const RecordType *RecordTy
6729              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6730      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6731      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6732      // If this is a deleted function, add it anyway. This might be conformant
6733      // with the standard. This might not. I'm not sure. It might not matter.
6734      // In particular, the problem is that this function never gets called. It
6735      // might just be ill-formed because this function attempts to refer to
6736      // a deleted function here.
6737      if (Constructor)
6738        ExceptSpec.CalledDecl(Constructor);
6739    }
6740  }
6741
6742  return ExceptSpec;
6743}
6744
6745CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6746                                                     CXXRecordDecl *ClassDecl) {
6747  // C++ [class.ctor]p5:
6748  //   A default constructor for a class X is a constructor of class X
6749  //   that can be called without an argument. If there is no
6750  //   user-declared constructor for class X, a default constructor is
6751  //   implicitly declared. An implicitly-declared default constructor
6752  //   is an inline public member of its class.
6753  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6754         "Should not build implicit default constructor!");
6755
6756  ImplicitExceptionSpecification Spec =
6757    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6758  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6759
6760  // Create the actual constructor declaration.
6761  CanQualType ClassType
6762    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6763  SourceLocation ClassLoc = ClassDecl->getLocation();
6764  DeclarationName Name
6765    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6766  DeclarationNameInfo NameInfo(Name, ClassLoc);
6767  CXXConstructorDecl *DefaultCon
6768    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6769                                 Context.getFunctionType(Context.VoidTy,
6770                                                         0, 0, EPI),
6771                                 /*TInfo=*/0,
6772                                 /*isExplicit=*/false,
6773                                 /*isInline=*/true,
6774                                 /*isImplicitlyDeclared=*/true,
6775                                 // FIXME: apply the rules for definitions here
6776                                 /*isConstexpr=*/false);
6777  DefaultCon->setAccess(AS_public);
6778  DefaultCon->setDefaulted();
6779  DefaultCon->setImplicit();
6780  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6781
6782  // Note that we have declared this constructor.
6783  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6784
6785  if (Scope *S = getScopeForContext(ClassDecl))
6786    PushOnScopeChains(DefaultCon, S, false);
6787  ClassDecl->addDecl(DefaultCon);
6788
6789  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6790    DefaultCon->setDeletedAsWritten();
6791
6792  return DefaultCon;
6793}
6794
6795void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6796                                            CXXConstructorDecl *Constructor) {
6797  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6798          !Constructor->doesThisDeclarationHaveABody() &&
6799          !Constructor->isDeleted()) &&
6800    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6801
6802  CXXRecordDecl *ClassDecl = Constructor->getParent();
6803  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6804
6805  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6806  DiagnosticErrorTrap Trap(Diags);
6807  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6808      Trap.hasErrorOccurred()) {
6809    Diag(CurrentLocation, diag::note_member_synthesized_at)
6810      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6811    Constructor->setInvalidDecl();
6812    return;
6813  }
6814
6815  SourceLocation Loc = Constructor->getLocation();
6816  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6817
6818  Constructor->setUsed();
6819  MarkVTableUsed(CurrentLocation, ClassDecl);
6820
6821  if (ASTMutationListener *L = getASTMutationListener()) {
6822    L->CompletedImplicitDefinition(Constructor);
6823  }
6824}
6825
6826/// Get any existing defaulted default constructor for the given class. Do not
6827/// implicitly define one if it does not exist.
6828static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6829                                                             CXXRecordDecl *D) {
6830  ASTContext &Context = Self.Context;
6831  QualType ClassType = Context.getTypeDeclType(D);
6832  DeclarationName ConstructorName
6833    = Context.DeclarationNames.getCXXConstructorName(
6834                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6835
6836  DeclContext::lookup_const_iterator Con, ConEnd;
6837  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6838       Con != ConEnd; ++Con) {
6839    // A function template cannot be defaulted.
6840    if (isa<FunctionTemplateDecl>(*Con))
6841      continue;
6842
6843    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6844    if (Constructor->isDefaultConstructor())
6845      return Constructor->isDefaulted() ? Constructor : 0;
6846  }
6847  return 0;
6848}
6849
6850void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6851  if (!D) return;
6852  AdjustDeclIfTemplate(D);
6853
6854  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6855  CXXConstructorDecl *CtorDecl
6856    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6857
6858  if (!CtorDecl) return;
6859
6860  // Compute the exception specification for the default constructor.
6861  const FunctionProtoType *CtorTy =
6862    CtorDecl->getType()->castAs<FunctionProtoType>();
6863  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6864    ImplicitExceptionSpecification Spec =
6865      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6866    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6867    assert(EPI.ExceptionSpecType != EST_Delayed);
6868
6869    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6870  }
6871
6872  // If the default constructor is explicitly defaulted, checking the exception
6873  // specification is deferred until now.
6874  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6875      !ClassDecl->isDependentType())
6876    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6877}
6878
6879void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6880  // We start with an initial pass over the base classes to collect those that
6881  // inherit constructors from. If there are none, we can forgo all further
6882  // processing.
6883  typedef SmallVector<const RecordType *, 4> BasesVector;
6884  BasesVector BasesToInheritFrom;
6885  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6886                                          BaseE = ClassDecl->bases_end();
6887         BaseIt != BaseE; ++BaseIt) {
6888    if (BaseIt->getInheritConstructors()) {
6889      QualType Base = BaseIt->getType();
6890      if (Base->isDependentType()) {
6891        // If we inherit constructors from anything that is dependent, just
6892        // abort processing altogether. We'll get another chance for the
6893        // instantiations.
6894        return;
6895      }
6896      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6897    }
6898  }
6899  if (BasesToInheritFrom.empty())
6900    return;
6901
6902  // Now collect the constructors that we already have in the current class.
6903  // Those take precedence over inherited constructors.
6904  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6905  //   unless there is a user-declared constructor with the same signature in
6906  //   the class where the using-declaration appears.
6907  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6908  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6909                                    CtorE = ClassDecl->ctor_end();
6910       CtorIt != CtorE; ++CtorIt) {
6911    ExistingConstructors.insert(
6912        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6913  }
6914
6915  Scope *S = getScopeForContext(ClassDecl);
6916  DeclarationName CreatedCtorName =
6917      Context.DeclarationNames.getCXXConstructorName(
6918          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6919
6920  // Now comes the true work.
6921  // First, we keep a map from constructor types to the base that introduced
6922  // them. Needed for finding conflicting constructors. We also keep the
6923  // actually inserted declarations in there, for pretty diagnostics.
6924  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6925  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6926  ConstructorToSourceMap InheritedConstructors;
6927  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6928                             BaseE = BasesToInheritFrom.end();
6929       BaseIt != BaseE; ++BaseIt) {
6930    const RecordType *Base = *BaseIt;
6931    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6932    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6933    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6934                                      CtorE = BaseDecl->ctor_end();
6935         CtorIt != CtorE; ++CtorIt) {
6936      // Find the using declaration for inheriting this base's constructors.
6937      DeclarationName Name =
6938          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6939      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6940          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6941      SourceLocation UsingLoc = UD ? UD->getLocation() :
6942                                     ClassDecl->getLocation();
6943
6944      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6945      //   from the class X named in the using-declaration consists of actual
6946      //   constructors and notional constructors that result from the
6947      //   transformation of defaulted parameters as follows:
6948      //   - all non-template default constructors of X, and
6949      //   - for each non-template constructor of X that has at least one
6950      //     parameter with a default argument, the set of constructors that
6951      //     results from omitting any ellipsis parameter specification and
6952      //     successively omitting parameters with a default argument from the
6953      //     end of the parameter-type-list.
6954      CXXConstructorDecl *BaseCtor = *CtorIt;
6955      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6956      const FunctionProtoType *BaseCtorType =
6957          BaseCtor->getType()->getAs<FunctionProtoType>();
6958
6959      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6960                    maxParams = BaseCtor->getNumParams();
6961           params <= maxParams; ++params) {
6962        // Skip default constructors. They're never inherited.
6963        if (params == 0)
6964          continue;
6965        // Skip copy and move constructors for the same reason.
6966        if (CanBeCopyOrMove && params == 1)
6967          continue;
6968
6969        // Build up a function type for this particular constructor.
6970        // FIXME: The working paper does not consider that the exception spec
6971        // for the inheriting constructor might be larger than that of the
6972        // source. This code doesn't yet, either. When it does, this code will
6973        // need to be delayed until after exception specifications and in-class
6974        // member initializers are attached.
6975        const Type *NewCtorType;
6976        if (params == maxParams)
6977          NewCtorType = BaseCtorType;
6978        else {
6979          SmallVector<QualType, 16> Args;
6980          for (unsigned i = 0; i < params; ++i) {
6981            Args.push_back(BaseCtorType->getArgType(i));
6982          }
6983          FunctionProtoType::ExtProtoInfo ExtInfo =
6984              BaseCtorType->getExtProtoInfo();
6985          ExtInfo.Variadic = false;
6986          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6987                                                Args.data(), params, ExtInfo)
6988                       .getTypePtr();
6989        }
6990        const Type *CanonicalNewCtorType =
6991            Context.getCanonicalType(NewCtorType);
6992
6993        // Now that we have the type, first check if the class already has a
6994        // constructor with this signature.
6995        if (ExistingConstructors.count(CanonicalNewCtorType))
6996          continue;
6997
6998        // Then we check if we have already declared an inherited constructor
6999        // with this signature.
7000        std::pair<ConstructorToSourceMap::iterator, bool> result =
7001            InheritedConstructors.insert(std::make_pair(
7002                CanonicalNewCtorType,
7003                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7004        if (!result.second) {
7005          // Already in the map. If it came from a different class, that's an
7006          // error. Not if it's from the same.
7007          CanQualType PreviousBase = result.first->second.first;
7008          if (CanonicalBase != PreviousBase) {
7009            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7010            const CXXConstructorDecl *PrevBaseCtor =
7011                PrevCtor->getInheritedConstructor();
7012            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7013
7014            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7015            Diag(BaseCtor->getLocation(),
7016                 diag::note_using_decl_constructor_conflict_current_ctor);
7017            Diag(PrevBaseCtor->getLocation(),
7018                 diag::note_using_decl_constructor_conflict_previous_ctor);
7019            Diag(PrevCtor->getLocation(),
7020                 diag::note_using_decl_constructor_conflict_previous_using);
7021          }
7022          continue;
7023        }
7024
7025        // OK, we're there, now add the constructor.
7026        // C++0x [class.inhctor]p8: [...] that would be performed by a
7027        //   user-written inline constructor [...]
7028        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7029        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7030            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7031            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7032            /*ImplicitlyDeclared=*/true,
7033            // FIXME: Due to a defect in the standard, we treat inherited
7034            // constructors as constexpr even if that makes them ill-formed.
7035            /*Constexpr=*/BaseCtor->isConstexpr());
7036        NewCtor->setAccess(BaseCtor->getAccess());
7037
7038        // Build up the parameter decls and add them.
7039        SmallVector<ParmVarDecl *, 16> ParamDecls;
7040        for (unsigned i = 0; i < params; ++i) {
7041          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7042                                                   UsingLoc, UsingLoc,
7043                                                   /*IdentifierInfo=*/0,
7044                                                   BaseCtorType->getArgType(i),
7045                                                   /*TInfo=*/0, SC_None,
7046                                                   SC_None, /*DefaultArg=*/0));
7047        }
7048        NewCtor->setParams(ParamDecls);
7049        NewCtor->setInheritedConstructor(BaseCtor);
7050
7051        PushOnScopeChains(NewCtor, S, false);
7052        ClassDecl->addDecl(NewCtor);
7053        result.first->second.second = NewCtor;
7054      }
7055    }
7056  }
7057}
7058
7059Sema::ImplicitExceptionSpecification
7060Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7061  // C++ [except.spec]p14:
7062  //   An implicitly declared special member function (Clause 12) shall have
7063  //   an exception-specification.
7064  ImplicitExceptionSpecification ExceptSpec(Context);
7065  if (ClassDecl->isInvalidDecl())
7066    return ExceptSpec;
7067
7068  // Direct base-class destructors.
7069  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7070                                       BEnd = ClassDecl->bases_end();
7071       B != BEnd; ++B) {
7072    if (B->isVirtual()) // Handled below.
7073      continue;
7074
7075    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7076      ExceptSpec.CalledDecl(
7077                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7078  }
7079
7080  // Virtual base-class destructors.
7081  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7082                                       BEnd = ClassDecl->vbases_end();
7083       B != BEnd; ++B) {
7084    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7085      ExceptSpec.CalledDecl(
7086                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7087  }
7088
7089  // Field destructors.
7090  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7091                               FEnd = ClassDecl->field_end();
7092       F != FEnd; ++F) {
7093    if (const RecordType *RecordTy
7094        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7095      ExceptSpec.CalledDecl(
7096                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7097  }
7098
7099  return ExceptSpec;
7100}
7101
7102CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7103  // C++ [class.dtor]p2:
7104  //   If a class has no user-declared destructor, a destructor is
7105  //   declared implicitly. An implicitly-declared destructor is an
7106  //   inline public member of its class.
7107
7108  ImplicitExceptionSpecification Spec =
7109      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7110  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7111
7112  // Create the actual destructor declaration.
7113  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7114
7115  CanQualType ClassType
7116    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7117  SourceLocation ClassLoc = ClassDecl->getLocation();
7118  DeclarationName Name
7119    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7120  DeclarationNameInfo NameInfo(Name, ClassLoc);
7121  CXXDestructorDecl *Destructor
7122      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7123                                  /*isInline=*/true,
7124                                  /*isImplicitlyDeclared=*/true);
7125  Destructor->setAccess(AS_public);
7126  Destructor->setDefaulted();
7127  Destructor->setImplicit();
7128  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7129
7130  // Note that we have declared this destructor.
7131  ++ASTContext::NumImplicitDestructorsDeclared;
7132
7133  // Introduce this destructor into its scope.
7134  if (Scope *S = getScopeForContext(ClassDecl))
7135    PushOnScopeChains(Destructor, S, false);
7136  ClassDecl->addDecl(Destructor);
7137
7138  // This could be uniqued if it ever proves significant.
7139  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7140
7141  if (ShouldDeleteDestructor(Destructor))
7142    Destructor->setDeletedAsWritten();
7143
7144  AddOverriddenMethods(ClassDecl, Destructor);
7145
7146  return Destructor;
7147}
7148
7149void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7150                                    CXXDestructorDecl *Destructor) {
7151  assert((Destructor->isDefaulted() &&
7152          !Destructor->doesThisDeclarationHaveABody()) &&
7153         "DefineImplicitDestructor - call it for implicit default dtor");
7154  CXXRecordDecl *ClassDecl = Destructor->getParent();
7155  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7156
7157  if (Destructor->isInvalidDecl())
7158    return;
7159
7160  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7161
7162  DiagnosticErrorTrap Trap(Diags);
7163  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7164                                         Destructor->getParent());
7165
7166  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7167    Diag(CurrentLocation, diag::note_member_synthesized_at)
7168      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7169
7170    Destructor->setInvalidDecl();
7171    return;
7172  }
7173
7174  SourceLocation Loc = Destructor->getLocation();
7175  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7176  Destructor->setImplicitlyDefined(true);
7177  Destructor->setUsed();
7178  MarkVTableUsed(CurrentLocation, ClassDecl);
7179
7180  if (ASTMutationListener *L = getASTMutationListener()) {
7181    L->CompletedImplicitDefinition(Destructor);
7182  }
7183}
7184
7185void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7186                                         CXXDestructorDecl *destructor) {
7187  // C++11 [class.dtor]p3:
7188  //   A declaration of a destructor that does not have an exception-
7189  //   specification is implicitly considered to have the same exception-
7190  //   specification as an implicit declaration.
7191  const FunctionProtoType *dtorType = destructor->getType()->
7192                                        getAs<FunctionProtoType>();
7193  if (dtorType->hasExceptionSpec())
7194    return;
7195
7196  ImplicitExceptionSpecification exceptSpec =
7197      ComputeDefaultedDtorExceptionSpec(classDecl);
7198
7199  // Replace the destructor's type, building off the existing one. Fortunately,
7200  // the only thing of interest in the destructor type is its extended info.
7201  // The return and arguments are fixed.
7202  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7203  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7204  epi.NumExceptions = exceptSpec.size();
7205  epi.Exceptions = exceptSpec.data();
7206  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7207
7208  destructor->setType(ty);
7209
7210  // FIXME: If the destructor has a body that could throw, and the newly created
7211  // spec doesn't allow exceptions, we should emit a warning, because this
7212  // change in behavior can break conforming C++03 programs at runtime.
7213  // However, we don't have a body yet, so it needs to be done somewhere else.
7214}
7215
7216/// \brief Builds a statement that copies/moves the given entity from \p From to
7217/// \c To.
7218///
7219/// This routine is used to copy/move the members of a class with an
7220/// implicitly-declared copy/move assignment operator. When the entities being
7221/// copied are arrays, this routine builds for loops to copy them.
7222///
7223/// \param S The Sema object used for type-checking.
7224///
7225/// \param Loc The location where the implicit copy/move is being generated.
7226///
7227/// \param T The type of the expressions being copied/moved. Both expressions
7228/// must have this type.
7229///
7230/// \param To The expression we are copying/moving to.
7231///
7232/// \param From The expression we are copying/moving from.
7233///
7234/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7235/// Otherwise, it's a non-static member subobject.
7236///
7237/// \param Copying Whether we're copying or moving.
7238///
7239/// \param Depth Internal parameter recording the depth of the recursion.
7240///
7241/// \returns A statement or a loop that copies the expressions.
7242static StmtResult
7243BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7244                      Expr *To, Expr *From,
7245                      bool CopyingBaseSubobject, bool Copying,
7246                      unsigned Depth = 0) {
7247  // C++0x [class.copy]p28:
7248  //   Each subobject is assigned in the manner appropriate to its type:
7249  //
7250  //     - if the subobject is of class type, as if by a call to operator= with
7251  //       the subobject as the object expression and the corresponding
7252  //       subobject of x as a single function argument (as if by explicit
7253  //       qualification; that is, ignoring any possible virtual overriding
7254  //       functions in more derived classes);
7255  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7256    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7257
7258    // Look for operator=.
7259    DeclarationName Name
7260      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7261    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7262    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7263
7264    // Filter out any result that isn't a copy/move-assignment operator.
7265    LookupResult::Filter F = OpLookup.makeFilter();
7266    while (F.hasNext()) {
7267      NamedDecl *D = F.next();
7268      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7269        if (Copying ? Method->isCopyAssignmentOperator() :
7270                      Method->isMoveAssignmentOperator())
7271          continue;
7272
7273      F.erase();
7274    }
7275    F.done();
7276
7277    // Suppress the protected check (C++ [class.protected]) for each of the
7278    // assignment operators we found. This strange dance is required when
7279    // we're assigning via a base classes's copy-assignment operator. To
7280    // ensure that we're getting the right base class subobject (without
7281    // ambiguities), we need to cast "this" to that subobject type; to
7282    // ensure that we don't go through the virtual call mechanism, we need
7283    // to qualify the operator= name with the base class (see below). However,
7284    // this means that if the base class has a protected copy assignment
7285    // operator, the protected member access check will fail. So, we
7286    // rewrite "protected" access to "public" access in this case, since we
7287    // know by construction that we're calling from a derived class.
7288    if (CopyingBaseSubobject) {
7289      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7290           L != LEnd; ++L) {
7291        if (L.getAccess() == AS_protected)
7292          L.setAccess(AS_public);
7293      }
7294    }
7295
7296    // Create the nested-name-specifier that will be used to qualify the
7297    // reference to operator=; this is required to suppress the virtual
7298    // call mechanism.
7299    CXXScopeSpec SS;
7300    SS.MakeTrivial(S.Context,
7301                   NestedNameSpecifier::Create(S.Context, 0, false,
7302                                               T.getTypePtr()),
7303                   Loc);
7304
7305    // Create the reference to operator=.
7306    ExprResult OpEqualRef
7307      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7308                                   /*FirstQualifierInScope=*/0, OpLookup,
7309                                   /*TemplateArgs=*/0,
7310                                   /*SuppressQualifierCheck=*/true);
7311    if (OpEqualRef.isInvalid())
7312      return StmtError();
7313
7314    // Build the call to the assignment operator.
7315
7316    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7317                                                  OpEqualRef.takeAs<Expr>(),
7318                                                  Loc, &From, 1, Loc);
7319    if (Call.isInvalid())
7320      return StmtError();
7321
7322    return S.Owned(Call.takeAs<Stmt>());
7323  }
7324
7325  //     - if the subobject is of scalar type, the built-in assignment
7326  //       operator is used.
7327  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7328  if (!ArrayTy) {
7329    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7330    if (Assignment.isInvalid())
7331      return StmtError();
7332
7333    return S.Owned(Assignment.takeAs<Stmt>());
7334  }
7335
7336  //     - if the subobject is an array, each element is assigned, in the
7337  //       manner appropriate to the element type;
7338
7339  // Construct a loop over the array bounds, e.g.,
7340  //
7341  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7342  //
7343  // that will copy each of the array elements.
7344  QualType SizeType = S.Context.getSizeType();
7345
7346  // Create the iteration variable.
7347  IdentifierInfo *IterationVarName = 0;
7348  {
7349    llvm::SmallString<8> Str;
7350    llvm::raw_svector_ostream OS(Str);
7351    OS << "__i" << Depth;
7352    IterationVarName = &S.Context.Idents.get(OS.str());
7353  }
7354  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7355                                          IterationVarName, SizeType,
7356                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7357                                          SC_None, SC_None);
7358
7359  // Initialize the iteration variable to zero.
7360  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7361  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7362
7363  // Create a reference to the iteration variable; we'll use this several
7364  // times throughout.
7365  Expr *IterationVarRef
7366    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
7367  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7368
7369  // Create the DeclStmt that holds the iteration variable.
7370  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7371
7372  // Create the comparison against the array bound.
7373  llvm::APInt Upper
7374    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7375  Expr *Comparison
7376    = new (S.Context) BinaryOperator(IterationVarRef,
7377                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7378                                     BO_NE, S.Context.BoolTy,
7379                                     VK_RValue, OK_Ordinary, Loc);
7380
7381  // Create the pre-increment of the iteration variable.
7382  Expr *Increment
7383    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7384                                    VK_LValue, OK_Ordinary, Loc);
7385
7386  // Subscript the "from" and "to" expressions with the iteration variable.
7387  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7388                                                         IterationVarRef, Loc));
7389  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7390                                                       IterationVarRef, Loc));
7391  if (!Copying) // Cast to rvalue
7392    From = CastForMoving(S, From);
7393
7394  // Build the copy/move for an individual element of the array.
7395  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7396                                          To, From, CopyingBaseSubobject,
7397                                          Copying, Depth + 1);
7398  if (Copy.isInvalid())
7399    return StmtError();
7400
7401  // Construct the loop that copies all elements of this array.
7402  return S.ActOnForStmt(Loc, Loc, InitStmt,
7403                        S.MakeFullExpr(Comparison),
7404                        0, S.MakeFullExpr(Increment),
7405                        Loc, Copy.take());
7406}
7407
7408std::pair<Sema::ImplicitExceptionSpecification, bool>
7409Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7410                                                   CXXRecordDecl *ClassDecl) {
7411  if (ClassDecl->isInvalidDecl())
7412    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7413
7414  // C++ [class.copy]p10:
7415  //   If the class definition does not explicitly declare a copy
7416  //   assignment operator, one is declared implicitly.
7417  //   The implicitly-defined copy assignment operator for a class X
7418  //   will have the form
7419  //
7420  //       X& X::operator=(const X&)
7421  //
7422  //   if
7423  bool HasConstCopyAssignment = true;
7424
7425  //       -- each direct base class B of X has a copy assignment operator
7426  //          whose parameter is of type const B&, const volatile B& or B,
7427  //          and
7428  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7429                                       BaseEnd = ClassDecl->bases_end();
7430       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7431    // We'll handle this below
7432    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7433      continue;
7434
7435    assert(!Base->getType()->isDependentType() &&
7436           "Cannot generate implicit members for class with dependent bases.");
7437    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7438    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7439                            &HasConstCopyAssignment);
7440  }
7441
7442  // In C++11, the above citation has "or virtual" added
7443  if (LangOpts.CPlusPlus0x) {
7444    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7445                                         BaseEnd = ClassDecl->vbases_end();
7446         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7447      assert(!Base->getType()->isDependentType() &&
7448             "Cannot generate implicit members for class with dependent bases.");
7449      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7450      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7451                              &HasConstCopyAssignment);
7452    }
7453  }
7454
7455  //       -- for all the nonstatic data members of X that are of a class
7456  //          type M (or array thereof), each such class type has a copy
7457  //          assignment operator whose parameter is of type const M&,
7458  //          const volatile M& or M.
7459  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7460                                  FieldEnd = ClassDecl->field_end();
7461       HasConstCopyAssignment && Field != FieldEnd;
7462       ++Field) {
7463    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7464    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7465      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7466                              &HasConstCopyAssignment);
7467    }
7468  }
7469
7470  //   Otherwise, the implicitly declared copy assignment operator will
7471  //   have the form
7472  //
7473  //       X& X::operator=(X&)
7474
7475  // C++ [except.spec]p14:
7476  //   An implicitly declared special member function (Clause 12) shall have an
7477  //   exception-specification. [...]
7478
7479  // It is unspecified whether or not an implicit copy assignment operator
7480  // attempts to deduplicate calls to assignment operators of virtual bases are
7481  // made. As such, this exception specification is effectively unspecified.
7482  // Based on a similar decision made for constness in C++0x, we're erring on
7483  // the side of assuming such calls to be made regardless of whether they
7484  // actually happen.
7485  ImplicitExceptionSpecification ExceptSpec(Context);
7486  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7487  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7488                                       BaseEnd = ClassDecl->bases_end();
7489       Base != BaseEnd; ++Base) {
7490    if (Base->isVirtual())
7491      continue;
7492
7493    CXXRecordDecl *BaseClassDecl
7494      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7495    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7496                                                            ArgQuals, false, 0))
7497      ExceptSpec.CalledDecl(CopyAssign);
7498  }
7499
7500  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7501                                       BaseEnd = ClassDecl->vbases_end();
7502       Base != BaseEnd; ++Base) {
7503    CXXRecordDecl *BaseClassDecl
7504      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7505    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7506                                                            ArgQuals, false, 0))
7507      ExceptSpec.CalledDecl(CopyAssign);
7508  }
7509
7510  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7511                                  FieldEnd = ClassDecl->field_end();
7512       Field != FieldEnd;
7513       ++Field) {
7514    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7515    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7516      if (CXXMethodDecl *CopyAssign =
7517          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7518        ExceptSpec.CalledDecl(CopyAssign);
7519    }
7520  }
7521
7522  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7523}
7524
7525CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7526  // Note: The following rules are largely analoguous to the copy
7527  // constructor rules. Note that virtual bases are not taken into account
7528  // for determining the argument type of the operator. Note also that
7529  // operators taking an object instead of a reference are allowed.
7530
7531  ImplicitExceptionSpecification Spec(Context);
7532  bool Const;
7533  llvm::tie(Spec, Const) =
7534    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7535
7536  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7537  QualType RetType = Context.getLValueReferenceType(ArgType);
7538  if (Const)
7539    ArgType = ArgType.withConst();
7540  ArgType = Context.getLValueReferenceType(ArgType);
7541
7542  //   An implicitly-declared copy assignment operator is an inline public
7543  //   member of its class.
7544  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7545  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7546  SourceLocation ClassLoc = ClassDecl->getLocation();
7547  DeclarationNameInfo NameInfo(Name, ClassLoc);
7548  CXXMethodDecl *CopyAssignment
7549    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7550                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7551                            /*TInfo=*/0, /*isStatic=*/false,
7552                            /*StorageClassAsWritten=*/SC_None,
7553                            /*isInline=*/true, /*isConstexpr=*/false,
7554                            SourceLocation());
7555  CopyAssignment->setAccess(AS_public);
7556  CopyAssignment->setDefaulted();
7557  CopyAssignment->setImplicit();
7558  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7559
7560  // Add the parameter to the operator.
7561  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7562                                               ClassLoc, ClassLoc, /*Id=*/0,
7563                                               ArgType, /*TInfo=*/0,
7564                                               SC_None,
7565                                               SC_None, 0);
7566  CopyAssignment->setParams(FromParam);
7567
7568  // Note that we have added this copy-assignment operator.
7569  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7570
7571  if (Scope *S = getScopeForContext(ClassDecl))
7572    PushOnScopeChains(CopyAssignment, S, false);
7573  ClassDecl->addDecl(CopyAssignment);
7574
7575  // C++0x [class.copy]p18:
7576  //   ... If the class definition declares a move constructor or move
7577  //   assignment operator, the implicitly declared copy assignment operator is
7578  //   defined as deleted; ...
7579  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7580      ClassDecl->hasUserDeclaredMoveAssignment() ||
7581      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7582    CopyAssignment->setDeletedAsWritten();
7583
7584  AddOverriddenMethods(ClassDecl, CopyAssignment);
7585  return CopyAssignment;
7586}
7587
7588void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7589                                        CXXMethodDecl *CopyAssignOperator) {
7590  assert((CopyAssignOperator->isDefaulted() &&
7591          CopyAssignOperator->isOverloadedOperator() &&
7592          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7593          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7594         "DefineImplicitCopyAssignment called for wrong function");
7595
7596  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7597
7598  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7599    CopyAssignOperator->setInvalidDecl();
7600    return;
7601  }
7602
7603  CopyAssignOperator->setUsed();
7604
7605  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7606  DiagnosticErrorTrap Trap(Diags);
7607
7608  // C++0x [class.copy]p30:
7609  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7610  //   for a non-union class X performs memberwise copy assignment of its
7611  //   subobjects. The direct base classes of X are assigned first, in the
7612  //   order of their declaration in the base-specifier-list, and then the
7613  //   immediate non-static data members of X are assigned, in the order in
7614  //   which they were declared in the class definition.
7615
7616  // The statements that form the synthesized function body.
7617  ASTOwningVector<Stmt*> Statements(*this);
7618
7619  // The parameter for the "other" object, which we are copying from.
7620  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7621  Qualifiers OtherQuals = Other->getType().getQualifiers();
7622  QualType OtherRefType = Other->getType();
7623  if (const LValueReferenceType *OtherRef
7624                                = OtherRefType->getAs<LValueReferenceType>()) {
7625    OtherRefType = OtherRef->getPointeeType();
7626    OtherQuals = OtherRefType.getQualifiers();
7627  }
7628
7629  // Our location for everything implicitly-generated.
7630  SourceLocation Loc = CopyAssignOperator->getLocation();
7631
7632  // Construct a reference to the "other" object. We'll be using this
7633  // throughout the generated ASTs.
7634  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7635  assert(OtherRef && "Reference to parameter cannot fail!");
7636
7637  // Construct the "this" pointer. We'll be using this throughout the generated
7638  // ASTs.
7639  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7640  assert(This && "Reference to this cannot fail!");
7641
7642  // Assign base classes.
7643  bool Invalid = false;
7644  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7645       E = ClassDecl->bases_end(); Base != E; ++Base) {
7646    // Form the assignment:
7647    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7648    QualType BaseType = Base->getType().getUnqualifiedType();
7649    if (!BaseType->isRecordType()) {
7650      Invalid = true;
7651      continue;
7652    }
7653
7654    CXXCastPath BasePath;
7655    BasePath.push_back(Base);
7656
7657    // Construct the "from" expression, which is an implicit cast to the
7658    // appropriately-qualified base type.
7659    Expr *From = OtherRef;
7660    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7661                             CK_UncheckedDerivedToBase,
7662                             VK_LValue, &BasePath).take();
7663
7664    // Dereference "this".
7665    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7666
7667    // Implicitly cast "this" to the appropriately-qualified base type.
7668    To = ImpCastExprToType(To.take(),
7669                           Context.getCVRQualifiedType(BaseType,
7670                                     CopyAssignOperator->getTypeQualifiers()),
7671                           CK_UncheckedDerivedToBase,
7672                           VK_LValue, &BasePath);
7673
7674    // Build the copy.
7675    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7676                                            To.get(), From,
7677                                            /*CopyingBaseSubobject=*/true,
7678                                            /*Copying=*/true);
7679    if (Copy.isInvalid()) {
7680      Diag(CurrentLocation, diag::note_member_synthesized_at)
7681        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7682      CopyAssignOperator->setInvalidDecl();
7683      return;
7684    }
7685
7686    // Success! Record the copy.
7687    Statements.push_back(Copy.takeAs<Expr>());
7688  }
7689
7690  // \brief Reference to the __builtin_memcpy function.
7691  Expr *BuiltinMemCpyRef = 0;
7692  // \brief Reference to the __builtin_objc_memmove_collectable function.
7693  Expr *CollectableMemCpyRef = 0;
7694
7695  // Assign non-static members.
7696  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7697                                  FieldEnd = ClassDecl->field_end();
7698       Field != FieldEnd; ++Field) {
7699    if (Field->isUnnamedBitfield())
7700      continue;
7701
7702    // Check for members of reference type; we can't copy those.
7703    if (Field->getType()->isReferenceType()) {
7704      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7705        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7706      Diag(Field->getLocation(), diag::note_declared_at);
7707      Diag(CurrentLocation, diag::note_member_synthesized_at)
7708        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7709      Invalid = true;
7710      continue;
7711    }
7712
7713    // Check for members of const-qualified, non-class type.
7714    QualType BaseType = Context.getBaseElementType(Field->getType());
7715    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7716      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7717        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7718      Diag(Field->getLocation(), diag::note_declared_at);
7719      Diag(CurrentLocation, diag::note_member_synthesized_at)
7720        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7721      Invalid = true;
7722      continue;
7723    }
7724
7725    // Suppress assigning zero-width bitfields.
7726    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7727      continue;
7728
7729    QualType FieldType = Field->getType().getNonReferenceType();
7730    if (FieldType->isIncompleteArrayType()) {
7731      assert(ClassDecl->hasFlexibleArrayMember() &&
7732             "Incomplete array type is not valid");
7733      continue;
7734    }
7735
7736    // Build references to the field in the object we're copying from and to.
7737    CXXScopeSpec SS; // Intentionally empty
7738    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7739                              LookupMemberName);
7740    MemberLookup.addDecl(*Field);
7741    MemberLookup.resolveKind();
7742    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7743                                               Loc, /*IsArrow=*/false,
7744                                               SS, 0, MemberLookup, 0);
7745    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7746                                             Loc, /*IsArrow=*/true,
7747                                             SS, 0, MemberLookup, 0);
7748    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7749    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7750
7751    // If the field should be copied with __builtin_memcpy rather than via
7752    // explicit assignments, do so. This optimization only applies for arrays
7753    // of scalars and arrays of class type with trivial copy-assignment
7754    // operators.
7755    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7756        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7757      // Compute the size of the memory buffer to be copied.
7758      QualType SizeType = Context.getSizeType();
7759      llvm::APInt Size(Context.getTypeSize(SizeType),
7760                       Context.getTypeSizeInChars(BaseType).getQuantity());
7761      for (const ConstantArrayType *Array
7762              = Context.getAsConstantArrayType(FieldType);
7763           Array;
7764           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7765        llvm::APInt ArraySize
7766          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7767        Size *= ArraySize;
7768      }
7769
7770      // Take the address of the field references for "from" and "to".
7771      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7772      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7773
7774      bool NeedsCollectableMemCpy =
7775          (BaseType->isRecordType() &&
7776           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7777
7778      if (NeedsCollectableMemCpy) {
7779        if (!CollectableMemCpyRef) {
7780          // Create a reference to the __builtin_objc_memmove_collectable function.
7781          LookupResult R(*this,
7782                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7783                         Loc, LookupOrdinaryName);
7784          LookupName(R, TUScope, true);
7785
7786          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7787          if (!CollectableMemCpy) {
7788            // Something went horribly wrong earlier, and we will have
7789            // complained about it.
7790            Invalid = true;
7791            continue;
7792          }
7793
7794          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7795                                                  CollectableMemCpy->getType(),
7796                                                  VK_LValue, Loc, 0).take();
7797          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7798        }
7799      }
7800      // Create a reference to the __builtin_memcpy builtin function.
7801      else if (!BuiltinMemCpyRef) {
7802        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7803                       LookupOrdinaryName);
7804        LookupName(R, TUScope, true);
7805
7806        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7807        if (!BuiltinMemCpy) {
7808          // Something went horribly wrong earlier, and we will have complained
7809          // about it.
7810          Invalid = true;
7811          continue;
7812        }
7813
7814        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7815                                            BuiltinMemCpy->getType(),
7816                                            VK_LValue, Loc, 0).take();
7817        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7818      }
7819
7820      ASTOwningVector<Expr*> CallArgs(*this);
7821      CallArgs.push_back(To.takeAs<Expr>());
7822      CallArgs.push_back(From.takeAs<Expr>());
7823      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7824      ExprResult Call = ExprError();
7825      if (NeedsCollectableMemCpy)
7826        Call = ActOnCallExpr(/*Scope=*/0,
7827                             CollectableMemCpyRef,
7828                             Loc, move_arg(CallArgs),
7829                             Loc);
7830      else
7831        Call = ActOnCallExpr(/*Scope=*/0,
7832                             BuiltinMemCpyRef,
7833                             Loc, move_arg(CallArgs),
7834                             Loc);
7835
7836      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7837      Statements.push_back(Call.takeAs<Expr>());
7838      continue;
7839    }
7840
7841    // Build the copy of this field.
7842    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7843                                            To.get(), From.get(),
7844                                            /*CopyingBaseSubobject=*/false,
7845                                            /*Copying=*/true);
7846    if (Copy.isInvalid()) {
7847      Diag(CurrentLocation, diag::note_member_synthesized_at)
7848        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7849      CopyAssignOperator->setInvalidDecl();
7850      return;
7851    }
7852
7853    // Success! Record the copy.
7854    Statements.push_back(Copy.takeAs<Stmt>());
7855  }
7856
7857  if (!Invalid) {
7858    // Add a "return *this;"
7859    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7860
7861    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7862    if (Return.isInvalid())
7863      Invalid = true;
7864    else {
7865      Statements.push_back(Return.takeAs<Stmt>());
7866
7867      if (Trap.hasErrorOccurred()) {
7868        Diag(CurrentLocation, diag::note_member_synthesized_at)
7869          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7870        Invalid = true;
7871      }
7872    }
7873  }
7874
7875  if (Invalid) {
7876    CopyAssignOperator->setInvalidDecl();
7877    return;
7878  }
7879
7880  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7881                                            /*isStmtExpr=*/false);
7882  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7883  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7884
7885  if (ASTMutationListener *L = getASTMutationListener()) {
7886    L->CompletedImplicitDefinition(CopyAssignOperator);
7887  }
7888}
7889
7890Sema::ImplicitExceptionSpecification
7891Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7892  ImplicitExceptionSpecification ExceptSpec(Context);
7893
7894  if (ClassDecl->isInvalidDecl())
7895    return ExceptSpec;
7896
7897  // C++0x [except.spec]p14:
7898  //   An implicitly declared special member function (Clause 12) shall have an
7899  //   exception-specification. [...]
7900
7901  // It is unspecified whether or not an implicit move assignment operator
7902  // attempts to deduplicate calls to assignment operators of virtual bases are
7903  // made. As such, this exception specification is effectively unspecified.
7904  // Based on a similar decision made for constness in C++0x, we're erring on
7905  // the side of assuming such calls to be made regardless of whether they
7906  // actually happen.
7907  // Note that a move constructor is not implicitly declared when there are
7908  // virtual bases, but it can still be user-declared and explicitly defaulted.
7909  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7910                                       BaseEnd = ClassDecl->bases_end();
7911       Base != BaseEnd; ++Base) {
7912    if (Base->isVirtual())
7913      continue;
7914
7915    CXXRecordDecl *BaseClassDecl
7916      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7917    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7918                                                           false, 0))
7919      ExceptSpec.CalledDecl(MoveAssign);
7920  }
7921
7922  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7923                                       BaseEnd = ClassDecl->vbases_end();
7924       Base != BaseEnd; ++Base) {
7925    CXXRecordDecl *BaseClassDecl
7926      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7927    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7928                                                           false, 0))
7929      ExceptSpec.CalledDecl(MoveAssign);
7930  }
7931
7932  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7933                                  FieldEnd = ClassDecl->field_end();
7934       Field != FieldEnd;
7935       ++Field) {
7936    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7937    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7938      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
7939                                                             false, 0))
7940        ExceptSpec.CalledDecl(MoveAssign);
7941    }
7942  }
7943
7944  return ExceptSpec;
7945}
7946
7947CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
7948  // Note: The following rules are largely analoguous to the move
7949  // constructor rules.
7950
7951  ImplicitExceptionSpecification Spec(
7952      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
7953
7954  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7955  QualType RetType = Context.getLValueReferenceType(ArgType);
7956  ArgType = Context.getRValueReferenceType(ArgType);
7957
7958  //   An implicitly-declared move assignment operator is an inline public
7959  //   member of its class.
7960  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7961  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7962  SourceLocation ClassLoc = ClassDecl->getLocation();
7963  DeclarationNameInfo NameInfo(Name, ClassLoc);
7964  CXXMethodDecl *MoveAssignment
7965    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7966                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7967                            /*TInfo=*/0, /*isStatic=*/false,
7968                            /*StorageClassAsWritten=*/SC_None,
7969                            /*isInline=*/true,
7970                            /*isConstexpr=*/false,
7971                            SourceLocation());
7972  MoveAssignment->setAccess(AS_public);
7973  MoveAssignment->setDefaulted();
7974  MoveAssignment->setImplicit();
7975  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
7976
7977  // Add the parameter to the operator.
7978  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
7979                                               ClassLoc, ClassLoc, /*Id=*/0,
7980                                               ArgType, /*TInfo=*/0,
7981                                               SC_None,
7982                                               SC_None, 0);
7983  MoveAssignment->setParams(FromParam);
7984
7985  // Note that we have added this copy-assignment operator.
7986  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
7987
7988  // C++0x [class.copy]p9:
7989  //   If the definition of a class X does not explicitly declare a move
7990  //   assignment operator, one will be implicitly declared as defaulted if and
7991  //   only if:
7992  //   [...]
7993  //   - the move assignment operator would not be implicitly defined as
7994  //     deleted.
7995  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
7996    // Cache this result so that we don't try to generate this over and over
7997    // on every lookup, leaking memory and wasting time.
7998    ClassDecl->setFailedImplicitMoveAssignment();
7999    return 0;
8000  }
8001
8002  if (Scope *S = getScopeForContext(ClassDecl))
8003    PushOnScopeChains(MoveAssignment, S, false);
8004  ClassDecl->addDecl(MoveAssignment);
8005
8006  AddOverriddenMethods(ClassDecl, MoveAssignment);
8007  return MoveAssignment;
8008}
8009
8010void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8011                                        CXXMethodDecl *MoveAssignOperator) {
8012  assert((MoveAssignOperator->isDefaulted() &&
8013          MoveAssignOperator->isOverloadedOperator() &&
8014          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8015          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8016         "DefineImplicitMoveAssignment called for wrong function");
8017
8018  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8019
8020  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8021    MoveAssignOperator->setInvalidDecl();
8022    return;
8023  }
8024
8025  MoveAssignOperator->setUsed();
8026
8027  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8028  DiagnosticErrorTrap Trap(Diags);
8029
8030  // C++0x [class.copy]p28:
8031  //   The implicitly-defined or move assignment operator for a non-union class
8032  //   X performs memberwise move assignment of its subobjects. The direct base
8033  //   classes of X are assigned first, in the order of their declaration in the
8034  //   base-specifier-list, and then the immediate non-static data members of X
8035  //   are assigned, in the order in which they were declared in the class
8036  //   definition.
8037
8038  // The statements that form the synthesized function body.
8039  ASTOwningVector<Stmt*> Statements(*this);
8040
8041  // The parameter for the "other" object, which we are move from.
8042  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8043  QualType OtherRefType = Other->getType()->
8044      getAs<RValueReferenceType>()->getPointeeType();
8045  assert(OtherRefType.getQualifiers() == 0 &&
8046         "Bad argument type of defaulted move assignment");
8047
8048  // Our location for everything implicitly-generated.
8049  SourceLocation Loc = MoveAssignOperator->getLocation();
8050
8051  // Construct a reference to the "other" object. We'll be using this
8052  // throughout the generated ASTs.
8053  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8054  assert(OtherRef && "Reference to parameter cannot fail!");
8055  // Cast to rvalue.
8056  OtherRef = CastForMoving(*this, OtherRef);
8057
8058  // Construct the "this" pointer. We'll be using this throughout the generated
8059  // ASTs.
8060  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8061  assert(This && "Reference to this cannot fail!");
8062
8063  // Assign base classes.
8064  bool Invalid = false;
8065  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8066       E = ClassDecl->bases_end(); Base != E; ++Base) {
8067    // Form the assignment:
8068    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8069    QualType BaseType = Base->getType().getUnqualifiedType();
8070    if (!BaseType->isRecordType()) {
8071      Invalid = true;
8072      continue;
8073    }
8074
8075    CXXCastPath BasePath;
8076    BasePath.push_back(Base);
8077
8078    // Construct the "from" expression, which is an implicit cast to the
8079    // appropriately-qualified base type.
8080    Expr *From = OtherRef;
8081    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8082                             VK_XValue, &BasePath).take();
8083
8084    // Dereference "this".
8085    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8086
8087    // Implicitly cast "this" to the appropriately-qualified base type.
8088    To = ImpCastExprToType(To.take(),
8089                           Context.getCVRQualifiedType(BaseType,
8090                                     MoveAssignOperator->getTypeQualifiers()),
8091                           CK_UncheckedDerivedToBase,
8092                           VK_LValue, &BasePath);
8093
8094    // Build the move.
8095    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8096                                            To.get(), From,
8097                                            /*CopyingBaseSubobject=*/true,
8098                                            /*Copying=*/false);
8099    if (Move.isInvalid()) {
8100      Diag(CurrentLocation, diag::note_member_synthesized_at)
8101        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8102      MoveAssignOperator->setInvalidDecl();
8103      return;
8104    }
8105
8106    // Success! Record the move.
8107    Statements.push_back(Move.takeAs<Expr>());
8108  }
8109
8110  // \brief Reference to the __builtin_memcpy function.
8111  Expr *BuiltinMemCpyRef = 0;
8112  // \brief Reference to the __builtin_objc_memmove_collectable function.
8113  Expr *CollectableMemCpyRef = 0;
8114
8115  // Assign non-static members.
8116  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8117                                  FieldEnd = ClassDecl->field_end();
8118       Field != FieldEnd; ++Field) {
8119    if (Field->isUnnamedBitfield())
8120      continue;
8121
8122    // Check for members of reference type; we can't move those.
8123    if (Field->getType()->isReferenceType()) {
8124      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8125        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8126      Diag(Field->getLocation(), diag::note_declared_at);
8127      Diag(CurrentLocation, diag::note_member_synthesized_at)
8128        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8129      Invalid = true;
8130      continue;
8131    }
8132
8133    // Check for members of const-qualified, non-class type.
8134    QualType BaseType = Context.getBaseElementType(Field->getType());
8135    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8136      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8137        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8138      Diag(Field->getLocation(), diag::note_declared_at);
8139      Diag(CurrentLocation, diag::note_member_synthesized_at)
8140        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8141      Invalid = true;
8142      continue;
8143    }
8144
8145    // Suppress assigning zero-width bitfields.
8146    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8147      continue;
8148
8149    QualType FieldType = Field->getType().getNonReferenceType();
8150    if (FieldType->isIncompleteArrayType()) {
8151      assert(ClassDecl->hasFlexibleArrayMember() &&
8152             "Incomplete array type is not valid");
8153      continue;
8154    }
8155
8156    // Build references to the field in the object we're copying from and to.
8157    CXXScopeSpec SS; // Intentionally empty
8158    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8159                              LookupMemberName);
8160    MemberLookup.addDecl(*Field);
8161    MemberLookup.resolveKind();
8162    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8163                                               Loc, /*IsArrow=*/false,
8164                                               SS, 0, MemberLookup, 0);
8165    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8166                                             Loc, /*IsArrow=*/true,
8167                                             SS, 0, MemberLookup, 0);
8168    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8169    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8170
8171    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8172        "Member reference with rvalue base must be rvalue except for reference "
8173        "members, which aren't allowed for move assignment.");
8174
8175    // If the field should be copied with __builtin_memcpy rather than via
8176    // explicit assignments, do so. This optimization only applies for arrays
8177    // of scalars and arrays of class type with trivial move-assignment
8178    // operators.
8179    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8180        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8181      // Compute the size of the memory buffer to be copied.
8182      QualType SizeType = Context.getSizeType();
8183      llvm::APInt Size(Context.getTypeSize(SizeType),
8184                       Context.getTypeSizeInChars(BaseType).getQuantity());
8185      for (const ConstantArrayType *Array
8186              = Context.getAsConstantArrayType(FieldType);
8187           Array;
8188           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8189        llvm::APInt ArraySize
8190          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8191        Size *= ArraySize;
8192      }
8193
8194      // Take the address of the field references for "from" and "to". We
8195      // directly construct UnaryOperators here because semantic analysis
8196      // does not permit us to take the address of an xvalue.
8197      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8198                             Context.getPointerType(From.get()->getType()),
8199                             VK_RValue, OK_Ordinary, Loc);
8200      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8201                           Context.getPointerType(To.get()->getType()),
8202                           VK_RValue, OK_Ordinary, Loc);
8203
8204      bool NeedsCollectableMemCpy =
8205          (BaseType->isRecordType() &&
8206           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8207
8208      if (NeedsCollectableMemCpy) {
8209        if (!CollectableMemCpyRef) {
8210          // Create a reference to the __builtin_objc_memmove_collectable function.
8211          LookupResult R(*this,
8212                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8213                         Loc, LookupOrdinaryName);
8214          LookupName(R, TUScope, true);
8215
8216          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8217          if (!CollectableMemCpy) {
8218            // Something went horribly wrong earlier, and we will have
8219            // complained about it.
8220            Invalid = true;
8221            continue;
8222          }
8223
8224          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8225                                                  CollectableMemCpy->getType(),
8226                                                  VK_LValue, Loc, 0).take();
8227          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8228        }
8229      }
8230      // Create a reference to the __builtin_memcpy builtin function.
8231      else if (!BuiltinMemCpyRef) {
8232        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8233                       LookupOrdinaryName);
8234        LookupName(R, TUScope, true);
8235
8236        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8237        if (!BuiltinMemCpy) {
8238          // Something went horribly wrong earlier, and we will have complained
8239          // about it.
8240          Invalid = true;
8241          continue;
8242        }
8243
8244        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8245                                            BuiltinMemCpy->getType(),
8246                                            VK_LValue, Loc, 0).take();
8247        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8248      }
8249
8250      ASTOwningVector<Expr*> CallArgs(*this);
8251      CallArgs.push_back(To.takeAs<Expr>());
8252      CallArgs.push_back(From.takeAs<Expr>());
8253      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8254      ExprResult Call = ExprError();
8255      if (NeedsCollectableMemCpy)
8256        Call = ActOnCallExpr(/*Scope=*/0,
8257                             CollectableMemCpyRef,
8258                             Loc, move_arg(CallArgs),
8259                             Loc);
8260      else
8261        Call = ActOnCallExpr(/*Scope=*/0,
8262                             BuiltinMemCpyRef,
8263                             Loc, move_arg(CallArgs),
8264                             Loc);
8265
8266      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8267      Statements.push_back(Call.takeAs<Expr>());
8268      continue;
8269    }
8270
8271    // Build the move of this field.
8272    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8273                                            To.get(), From.get(),
8274                                            /*CopyingBaseSubobject=*/false,
8275                                            /*Copying=*/false);
8276    if (Move.isInvalid()) {
8277      Diag(CurrentLocation, diag::note_member_synthesized_at)
8278        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8279      MoveAssignOperator->setInvalidDecl();
8280      return;
8281    }
8282
8283    // Success! Record the copy.
8284    Statements.push_back(Move.takeAs<Stmt>());
8285  }
8286
8287  if (!Invalid) {
8288    // Add a "return *this;"
8289    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8290
8291    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8292    if (Return.isInvalid())
8293      Invalid = true;
8294    else {
8295      Statements.push_back(Return.takeAs<Stmt>());
8296
8297      if (Trap.hasErrorOccurred()) {
8298        Diag(CurrentLocation, diag::note_member_synthesized_at)
8299          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8300        Invalid = true;
8301      }
8302    }
8303  }
8304
8305  if (Invalid) {
8306    MoveAssignOperator->setInvalidDecl();
8307    return;
8308  }
8309
8310  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8311                                            /*isStmtExpr=*/false);
8312  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8313  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8314
8315  if (ASTMutationListener *L = getASTMutationListener()) {
8316    L->CompletedImplicitDefinition(MoveAssignOperator);
8317  }
8318}
8319
8320std::pair<Sema::ImplicitExceptionSpecification, bool>
8321Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8322  if (ClassDecl->isInvalidDecl())
8323    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8324
8325  // C++ [class.copy]p5:
8326  //   The implicitly-declared copy constructor for a class X will
8327  //   have the form
8328  //
8329  //       X::X(const X&)
8330  //
8331  //   if
8332  // FIXME: It ought to be possible to store this on the record.
8333  bool HasConstCopyConstructor = true;
8334
8335  //     -- each direct or virtual base class B of X has a copy
8336  //        constructor whose first parameter is of type const B& or
8337  //        const volatile B&, and
8338  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8339                                       BaseEnd = ClassDecl->bases_end();
8340       HasConstCopyConstructor && Base != BaseEnd;
8341       ++Base) {
8342    // Virtual bases are handled below.
8343    if (Base->isVirtual())
8344      continue;
8345
8346    CXXRecordDecl *BaseClassDecl
8347      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8348    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8349                             &HasConstCopyConstructor);
8350  }
8351
8352  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8353                                       BaseEnd = ClassDecl->vbases_end();
8354       HasConstCopyConstructor && Base != BaseEnd;
8355       ++Base) {
8356    CXXRecordDecl *BaseClassDecl
8357      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8358    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8359                             &HasConstCopyConstructor);
8360  }
8361
8362  //     -- for all the nonstatic data members of X that are of a
8363  //        class type M (or array thereof), each such class type
8364  //        has a copy constructor whose first parameter is of type
8365  //        const M& or const volatile M&.
8366  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8367                                  FieldEnd = ClassDecl->field_end();
8368       HasConstCopyConstructor && Field != FieldEnd;
8369       ++Field) {
8370    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8371    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8372      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8373                               &HasConstCopyConstructor);
8374    }
8375  }
8376  //   Otherwise, the implicitly declared copy constructor will have
8377  //   the form
8378  //
8379  //       X::X(X&)
8380
8381  // C++ [except.spec]p14:
8382  //   An implicitly declared special member function (Clause 12) shall have an
8383  //   exception-specification. [...]
8384  ImplicitExceptionSpecification ExceptSpec(Context);
8385  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8386  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8387                                       BaseEnd = ClassDecl->bases_end();
8388       Base != BaseEnd;
8389       ++Base) {
8390    // Virtual bases are handled below.
8391    if (Base->isVirtual())
8392      continue;
8393
8394    CXXRecordDecl *BaseClassDecl
8395      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8396    if (CXXConstructorDecl *CopyConstructor =
8397          LookupCopyingConstructor(BaseClassDecl, Quals))
8398      ExceptSpec.CalledDecl(CopyConstructor);
8399  }
8400  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8401                                       BaseEnd = ClassDecl->vbases_end();
8402       Base != BaseEnd;
8403       ++Base) {
8404    CXXRecordDecl *BaseClassDecl
8405      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8406    if (CXXConstructorDecl *CopyConstructor =
8407          LookupCopyingConstructor(BaseClassDecl, Quals))
8408      ExceptSpec.CalledDecl(CopyConstructor);
8409  }
8410  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8411                                  FieldEnd = ClassDecl->field_end();
8412       Field != FieldEnd;
8413       ++Field) {
8414    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8415    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8416      if (CXXConstructorDecl *CopyConstructor =
8417        LookupCopyingConstructor(FieldClassDecl, Quals))
8418      ExceptSpec.CalledDecl(CopyConstructor);
8419    }
8420  }
8421
8422  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8423}
8424
8425CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8426                                                    CXXRecordDecl *ClassDecl) {
8427  // C++ [class.copy]p4:
8428  //   If the class definition does not explicitly declare a copy
8429  //   constructor, one is declared implicitly.
8430
8431  ImplicitExceptionSpecification Spec(Context);
8432  bool Const;
8433  llvm::tie(Spec, Const) =
8434    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8435
8436  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8437  QualType ArgType = ClassType;
8438  if (Const)
8439    ArgType = ArgType.withConst();
8440  ArgType = Context.getLValueReferenceType(ArgType);
8441
8442  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8443
8444  DeclarationName Name
8445    = Context.DeclarationNames.getCXXConstructorName(
8446                                           Context.getCanonicalType(ClassType));
8447  SourceLocation ClassLoc = ClassDecl->getLocation();
8448  DeclarationNameInfo NameInfo(Name, ClassLoc);
8449
8450  //   An implicitly-declared copy constructor is an inline public
8451  //   member of its class.
8452  CXXConstructorDecl *CopyConstructor
8453    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8454                                 Context.getFunctionType(Context.VoidTy,
8455                                                         &ArgType, 1, EPI),
8456                                 /*TInfo=*/0,
8457                                 /*isExplicit=*/false,
8458                                 /*isInline=*/true,
8459                                 /*isImplicitlyDeclared=*/true,
8460                                 // FIXME: apply the rules for definitions here
8461                                 /*isConstexpr=*/false);
8462  CopyConstructor->setAccess(AS_public);
8463  CopyConstructor->setDefaulted();
8464  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8465
8466  // Note that we have declared this constructor.
8467  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8468
8469  // Add the parameter to the constructor.
8470  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8471                                               ClassLoc, ClassLoc,
8472                                               /*IdentifierInfo=*/0,
8473                                               ArgType, /*TInfo=*/0,
8474                                               SC_None,
8475                                               SC_None, 0);
8476  CopyConstructor->setParams(FromParam);
8477
8478  if (Scope *S = getScopeForContext(ClassDecl))
8479    PushOnScopeChains(CopyConstructor, S, false);
8480  ClassDecl->addDecl(CopyConstructor);
8481
8482  // C++0x [class.copy]p7:
8483  //   ... If the class definition declares a move constructor or move
8484  //   assignment operator, the implicitly declared constructor is defined as
8485  //   deleted; ...
8486  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8487      ClassDecl->hasUserDeclaredMoveAssignment() ||
8488      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8489    CopyConstructor->setDeletedAsWritten();
8490
8491  return CopyConstructor;
8492}
8493
8494void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8495                                   CXXConstructorDecl *CopyConstructor) {
8496  assert((CopyConstructor->isDefaulted() &&
8497          CopyConstructor->isCopyConstructor() &&
8498          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8499         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8500
8501  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8502  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8503
8504  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8505  DiagnosticErrorTrap Trap(Diags);
8506
8507  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8508      Trap.hasErrorOccurred()) {
8509    Diag(CurrentLocation, diag::note_member_synthesized_at)
8510      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8511    CopyConstructor->setInvalidDecl();
8512  }  else {
8513    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8514                                               CopyConstructor->getLocation(),
8515                                               MultiStmtArg(*this, 0, 0),
8516                                               /*isStmtExpr=*/false)
8517                                                              .takeAs<Stmt>());
8518    CopyConstructor->setImplicitlyDefined(true);
8519  }
8520
8521  CopyConstructor->setUsed();
8522  if (ASTMutationListener *L = getASTMutationListener()) {
8523    L->CompletedImplicitDefinition(CopyConstructor);
8524  }
8525}
8526
8527Sema::ImplicitExceptionSpecification
8528Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8529  // C++ [except.spec]p14:
8530  //   An implicitly declared special member function (Clause 12) shall have an
8531  //   exception-specification. [...]
8532  ImplicitExceptionSpecification ExceptSpec(Context);
8533  if (ClassDecl->isInvalidDecl())
8534    return ExceptSpec;
8535
8536  // Direct base-class constructors.
8537  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8538                                       BEnd = ClassDecl->bases_end();
8539       B != BEnd; ++B) {
8540    if (B->isVirtual()) // Handled below.
8541      continue;
8542
8543    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8544      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8545      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8546      // If this is a deleted function, add it anyway. This might be conformant
8547      // with the standard. This might not. I'm not sure. It might not matter.
8548      if (Constructor)
8549        ExceptSpec.CalledDecl(Constructor);
8550    }
8551  }
8552
8553  // Virtual base-class constructors.
8554  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8555                                       BEnd = ClassDecl->vbases_end();
8556       B != BEnd; ++B) {
8557    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8558      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8559      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8560      // If this is a deleted function, add it anyway. This might be conformant
8561      // with the standard. This might not. I'm not sure. It might not matter.
8562      if (Constructor)
8563        ExceptSpec.CalledDecl(Constructor);
8564    }
8565  }
8566
8567  // Field constructors.
8568  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8569                               FEnd = ClassDecl->field_end();
8570       F != FEnd; ++F) {
8571    if (F->hasInClassInitializer()) {
8572      if (Expr *E = F->getInClassInitializer())
8573        ExceptSpec.CalledExpr(E);
8574      else if (!F->isInvalidDecl())
8575        ExceptSpec.SetDelayed();
8576    } else if (const RecordType *RecordTy
8577              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8578      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8579      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8580      // If this is a deleted function, add it anyway. This might be conformant
8581      // with the standard. This might not. I'm not sure. It might not matter.
8582      // In particular, the problem is that this function never gets called. It
8583      // might just be ill-formed because this function attempts to refer to
8584      // a deleted function here.
8585      if (Constructor)
8586        ExceptSpec.CalledDecl(Constructor);
8587    }
8588  }
8589
8590  return ExceptSpec;
8591}
8592
8593CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8594                                                    CXXRecordDecl *ClassDecl) {
8595  ImplicitExceptionSpecification Spec(
8596      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8597
8598  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8599  QualType ArgType = Context.getRValueReferenceType(ClassType);
8600
8601  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8602
8603  DeclarationName Name
8604    = Context.DeclarationNames.getCXXConstructorName(
8605                                           Context.getCanonicalType(ClassType));
8606  SourceLocation ClassLoc = ClassDecl->getLocation();
8607  DeclarationNameInfo NameInfo(Name, ClassLoc);
8608
8609  // C++0x [class.copy]p11:
8610  //   An implicitly-declared copy/move constructor is an inline public
8611  //   member of its class.
8612  CXXConstructorDecl *MoveConstructor
8613    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8614                                 Context.getFunctionType(Context.VoidTy,
8615                                                         &ArgType, 1, EPI),
8616                                 /*TInfo=*/0,
8617                                 /*isExplicit=*/false,
8618                                 /*isInline=*/true,
8619                                 /*isImplicitlyDeclared=*/true,
8620                                 // FIXME: apply the rules for definitions here
8621                                 /*isConstexpr=*/false);
8622  MoveConstructor->setAccess(AS_public);
8623  MoveConstructor->setDefaulted();
8624  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8625
8626  // Add the parameter to the constructor.
8627  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8628                                               ClassLoc, ClassLoc,
8629                                               /*IdentifierInfo=*/0,
8630                                               ArgType, /*TInfo=*/0,
8631                                               SC_None,
8632                                               SC_None, 0);
8633  MoveConstructor->setParams(FromParam);
8634
8635  // C++0x [class.copy]p9:
8636  //   If the definition of a class X does not explicitly declare a move
8637  //   constructor, one will be implicitly declared as defaulted if and only if:
8638  //   [...]
8639  //   - the move constructor would not be implicitly defined as deleted.
8640  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8641    // Cache this result so that we don't try to generate this over and over
8642    // on every lookup, leaking memory and wasting time.
8643    ClassDecl->setFailedImplicitMoveConstructor();
8644    return 0;
8645  }
8646
8647  // Note that we have declared this constructor.
8648  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8649
8650  if (Scope *S = getScopeForContext(ClassDecl))
8651    PushOnScopeChains(MoveConstructor, S, false);
8652  ClassDecl->addDecl(MoveConstructor);
8653
8654  return MoveConstructor;
8655}
8656
8657void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8658                                   CXXConstructorDecl *MoveConstructor) {
8659  assert((MoveConstructor->isDefaulted() &&
8660          MoveConstructor->isMoveConstructor() &&
8661          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8662         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8663
8664  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8665  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8666
8667  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8668  DiagnosticErrorTrap Trap(Diags);
8669
8670  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8671      Trap.hasErrorOccurred()) {
8672    Diag(CurrentLocation, diag::note_member_synthesized_at)
8673      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8674    MoveConstructor->setInvalidDecl();
8675  }  else {
8676    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8677                                               MoveConstructor->getLocation(),
8678                                               MultiStmtArg(*this, 0, 0),
8679                                               /*isStmtExpr=*/false)
8680                                                              .takeAs<Stmt>());
8681    MoveConstructor->setImplicitlyDefined(true);
8682  }
8683
8684  MoveConstructor->setUsed();
8685
8686  if (ASTMutationListener *L = getASTMutationListener()) {
8687    L->CompletedImplicitDefinition(MoveConstructor);
8688  }
8689}
8690
8691ExprResult
8692Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8693                            CXXConstructorDecl *Constructor,
8694                            MultiExprArg ExprArgs,
8695                            bool HadMultipleCandidates,
8696                            bool RequiresZeroInit,
8697                            unsigned ConstructKind,
8698                            SourceRange ParenRange) {
8699  bool Elidable = false;
8700
8701  // C++0x [class.copy]p34:
8702  //   When certain criteria are met, an implementation is allowed to
8703  //   omit the copy/move construction of a class object, even if the
8704  //   copy/move constructor and/or destructor for the object have
8705  //   side effects. [...]
8706  //     - when a temporary class object that has not been bound to a
8707  //       reference (12.2) would be copied/moved to a class object
8708  //       with the same cv-unqualified type, the copy/move operation
8709  //       can be omitted by constructing the temporary object
8710  //       directly into the target of the omitted copy/move
8711  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8712      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8713    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8714    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8715  }
8716
8717  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8718                               Elidable, move(ExprArgs), HadMultipleCandidates,
8719                               RequiresZeroInit, ConstructKind, ParenRange);
8720}
8721
8722/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8723/// including handling of its default argument expressions.
8724ExprResult
8725Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8726                            CXXConstructorDecl *Constructor, bool Elidable,
8727                            MultiExprArg ExprArgs,
8728                            bool HadMultipleCandidates,
8729                            bool RequiresZeroInit,
8730                            unsigned ConstructKind,
8731                            SourceRange ParenRange) {
8732  unsigned NumExprs = ExprArgs.size();
8733  Expr **Exprs = (Expr **)ExprArgs.release();
8734
8735  for (specific_attr_iterator<NonNullAttr>
8736           i = Constructor->specific_attr_begin<NonNullAttr>(),
8737           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8738    const NonNullAttr *NonNull = *i;
8739    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8740  }
8741
8742  MarkDeclarationReferenced(ConstructLoc, Constructor);
8743  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8744                                        Constructor, Elidable, Exprs, NumExprs,
8745                                        HadMultipleCandidates, RequiresZeroInit,
8746              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8747                                        ParenRange));
8748}
8749
8750bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8751                                        CXXConstructorDecl *Constructor,
8752                                        MultiExprArg Exprs,
8753                                        bool HadMultipleCandidates) {
8754  // FIXME: Provide the correct paren SourceRange when available.
8755  ExprResult TempResult =
8756    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8757                          move(Exprs), HadMultipleCandidates, false,
8758                          CXXConstructExpr::CK_Complete, SourceRange());
8759  if (TempResult.isInvalid())
8760    return true;
8761
8762  Expr *Temp = TempResult.takeAs<Expr>();
8763  CheckImplicitConversions(Temp, VD->getLocation());
8764  MarkDeclarationReferenced(VD->getLocation(), Constructor);
8765  Temp = MaybeCreateExprWithCleanups(Temp);
8766  VD->setInit(Temp);
8767
8768  return false;
8769}
8770
8771void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
8772  if (VD->isInvalidDecl()) return;
8773
8774  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
8775  if (ClassDecl->isInvalidDecl()) return;
8776  if (ClassDecl->hasTrivialDestructor()) return;
8777  if (ClassDecl->isDependentContext()) return;
8778
8779  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
8780  MarkDeclarationReferenced(VD->getLocation(), Destructor);
8781  CheckDestructorAccess(VD->getLocation(), Destructor,
8782                        PDiag(diag::err_access_dtor_var)
8783                        << VD->getDeclName()
8784                        << VD->getType());
8785
8786  if (!VD->hasGlobalStorage()) return;
8787
8788  // Emit warning for non-trivial dtor in global scope (a real global,
8789  // class-static, function-static).
8790  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
8791
8792  // TODO: this should be re-enabled for static locals by !CXAAtExit
8793  if (!VD->isStaticLocal())
8794    Diag(VD->getLocation(), diag::warn_global_destructor);
8795}
8796
8797/// AddCXXDirectInitializerToDecl - This action is called immediately after
8798/// ActOnDeclarator, when a C++ direct initializer is present.
8799/// e.g: "int x(1);"
8800void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
8801                                         SourceLocation LParenLoc,
8802                                         MultiExprArg Exprs,
8803                                         SourceLocation RParenLoc,
8804                                         bool TypeMayContainAuto) {
8805  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
8806
8807  // If there is no declaration, there was an error parsing it.  Just ignore
8808  // the initializer.
8809  if (RealDecl == 0)
8810    return;
8811
8812  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8813  if (!VDecl) {
8814    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8815    RealDecl->setInvalidDecl();
8816    return;
8817  }
8818
8819  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
8820  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
8821    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
8822    if (Exprs.size() > 1) {
8823      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
8824           diag::err_auto_var_init_multiple_expressions)
8825        << VDecl->getDeclName() << VDecl->getType()
8826        << VDecl->getSourceRange();
8827      RealDecl->setInvalidDecl();
8828      return;
8829    }
8830
8831    Expr *Init = Exprs.get()[0];
8832    TypeSourceInfo *DeducedType = 0;
8833    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
8834      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
8835        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
8836        << Init->getSourceRange();
8837    if (!DeducedType) {
8838      RealDecl->setInvalidDecl();
8839      return;
8840    }
8841    VDecl->setTypeSourceInfo(DeducedType);
8842    VDecl->setType(DeducedType->getType());
8843
8844    // In ARC, infer lifetime.
8845    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8846      VDecl->setInvalidDecl();
8847
8848    // If this is a redeclaration, check that the type we just deduced matches
8849    // the previously declared type.
8850    if (VarDecl *Old = VDecl->getPreviousDeclaration())
8851      MergeVarDeclTypes(VDecl, Old);
8852  }
8853
8854  // We will represent direct-initialization similarly to copy-initialization:
8855  //    int x(1);  -as-> int x = 1;
8856  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8857  //
8858  // Clients that want to distinguish between the two forms, can check for
8859  // direct initializer using VarDecl::hasCXXDirectInitializer().
8860  // A major benefit is that clients that don't particularly care about which
8861  // exactly form was it (like the CodeGen) can handle both cases without
8862  // special case code.
8863
8864  // C++ 8.5p11:
8865  // The form of initialization (using parentheses or '=') is generally
8866  // insignificant, but does matter when the entity being initialized has a
8867  // class type.
8868
8869  if (!VDecl->getType()->isDependentType() &&
8870      !VDecl->getType()->isIncompleteArrayType() &&
8871      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
8872                          diag::err_typecheck_decl_incomplete_type)) {
8873    VDecl->setInvalidDecl();
8874    return;
8875  }
8876
8877  // The variable can not have an abstract class type.
8878  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8879                             diag::err_abstract_type_in_decl,
8880                             AbstractVariableType))
8881    VDecl->setInvalidDecl();
8882
8883  const VarDecl *Def;
8884  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8885    Diag(VDecl->getLocation(), diag::err_redefinition)
8886    << VDecl->getDeclName();
8887    Diag(Def->getLocation(), diag::note_previous_definition);
8888    VDecl->setInvalidDecl();
8889    return;
8890  }
8891
8892  // C++ [class.static.data]p4
8893  //   If a static data member is of const integral or const
8894  //   enumeration type, its declaration in the class definition can
8895  //   specify a constant-initializer which shall be an integral
8896  //   constant expression (5.19). In that case, the member can appear
8897  //   in integral constant expressions. The member shall still be
8898  //   defined in a namespace scope if it is used in the program and the
8899  //   namespace scope definition shall not contain an initializer.
8900  //
8901  // We already performed a redefinition check above, but for static
8902  // data members we also need to check whether there was an in-class
8903  // declaration with an initializer.
8904  const VarDecl* PrevInit = 0;
8905  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8906    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
8907    Diag(PrevInit->getLocation(), diag::note_previous_definition);
8908    return;
8909  }
8910
8911  bool IsDependent = false;
8912  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
8913    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
8914      VDecl->setInvalidDecl();
8915      return;
8916    }
8917
8918    if (Exprs.get()[I]->isTypeDependent())
8919      IsDependent = true;
8920  }
8921
8922  // If either the declaration has a dependent type or if any of the
8923  // expressions is type-dependent, we represent the initialization
8924  // via a ParenListExpr for later use during template instantiation.
8925  if (VDecl->getType()->isDependentType() || IsDependent) {
8926    // Let clients know that initialization was done with a direct initializer.
8927    VDecl->setCXXDirectInitializer(true);
8928
8929    // Store the initialization expressions as a ParenListExpr.
8930    unsigned NumExprs = Exprs.size();
8931    VDecl->setInit(new (Context) ParenListExpr(
8932        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
8933        VDecl->getType().getNonReferenceType()));
8934    return;
8935  }
8936
8937  // Capture the variable that is being initialized and the style of
8938  // initialization.
8939  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8940
8941  // FIXME: Poor source location information.
8942  InitializationKind Kind
8943    = InitializationKind::CreateDirect(VDecl->getLocation(),
8944                                       LParenLoc, RParenLoc);
8945
8946  QualType T = VDecl->getType();
8947  InitializationSequence InitSeq(*this, Entity, Kind,
8948                                 Exprs.get(), Exprs.size());
8949  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
8950  if (Result.isInvalid()) {
8951    VDecl->setInvalidDecl();
8952    return;
8953  } else if (T != VDecl->getType()) {
8954    VDecl->setType(T);
8955    Result.get()->setType(T);
8956  }
8957
8958
8959  Expr *Init = Result.get();
8960  CheckImplicitConversions(Init, LParenLoc);
8961
8962  if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() &&
8963      !Init->isValueDependent() &&
8964      !Init->isConstantInitializer(Context,
8965                                   VDecl->getType()->isReferenceType())) {
8966    // FIXME: Improve this diagnostic to explain why the initializer is not
8967    // a constant expression.
8968    Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init)
8969      << VDecl << Init->getSourceRange();
8970  }
8971
8972  Init = MaybeCreateExprWithCleanups(Init);
8973  VDecl->setInit(Init);
8974  VDecl->setCXXDirectInitializer(true);
8975
8976  CheckCompleteVariableDeclaration(VDecl);
8977}
8978
8979/// \brief Given a constructor and the set of arguments provided for the
8980/// constructor, convert the arguments and add any required default arguments
8981/// to form a proper call to this constructor.
8982///
8983/// \returns true if an error occurred, false otherwise.
8984bool
8985Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
8986                              MultiExprArg ArgsPtr,
8987                              SourceLocation Loc,
8988                              ASTOwningVector<Expr*> &ConvertedArgs) {
8989  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
8990  unsigned NumArgs = ArgsPtr.size();
8991  Expr **Args = (Expr **)ArgsPtr.get();
8992
8993  const FunctionProtoType *Proto
8994    = Constructor->getType()->getAs<FunctionProtoType>();
8995  assert(Proto && "Constructor without a prototype?");
8996  unsigned NumArgsInProto = Proto->getNumArgs();
8997
8998  // If too few arguments are available, we'll fill in the rest with defaults.
8999  if (NumArgs < NumArgsInProto)
9000    ConvertedArgs.reserve(NumArgsInProto);
9001  else
9002    ConvertedArgs.reserve(NumArgs);
9003
9004  VariadicCallType CallType =
9005    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9006  SmallVector<Expr *, 8> AllArgs;
9007  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9008                                        Proto, 0, Args, NumArgs, AllArgs,
9009                                        CallType);
9010  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9011    ConvertedArgs.push_back(AllArgs[i]);
9012  return Invalid;
9013}
9014
9015static inline bool
9016CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9017                                       const FunctionDecl *FnDecl) {
9018  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9019  if (isa<NamespaceDecl>(DC)) {
9020    return SemaRef.Diag(FnDecl->getLocation(),
9021                        diag::err_operator_new_delete_declared_in_namespace)
9022      << FnDecl->getDeclName();
9023  }
9024
9025  if (isa<TranslationUnitDecl>(DC) &&
9026      FnDecl->getStorageClass() == SC_Static) {
9027    return SemaRef.Diag(FnDecl->getLocation(),
9028                        diag::err_operator_new_delete_declared_static)
9029      << FnDecl->getDeclName();
9030  }
9031
9032  return false;
9033}
9034
9035static inline bool
9036CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9037                            CanQualType ExpectedResultType,
9038                            CanQualType ExpectedFirstParamType,
9039                            unsigned DependentParamTypeDiag,
9040                            unsigned InvalidParamTypeDiag) {
9041  QualType ResultType =
9042    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9043
9044  // Check that the result type is not dependent.
9045  if (ResultType->isDependentType())
9046    return SemaRef.Diag(FnDecl->getLocation(),
9047                        diag::err_operator_new_delete_dependent_result_type)
9048    << FnDecl->getDeclName() << ExpectedResultType;
9049
9050  // Check that the result type is what we expect.
9051  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9052    return SemaRef.Diag(FnDecl->getLocation(),
9053                        diag::err_operator_new_delete_invalid_result_type)
9054    << FnDecl->getDeclName() << ExpectedResultType;
9055
9056  // A function template must have at least 2 parameters.
9057  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9058    return SemaRef.Diag(FnDecl->getLocation(),
9059                      diag::err_operator_new_delete_template_too_few_parameters)
9060        << FnDecl->getDeclName();
9061
9062  // The function decl must have at least 1 parameter.
9063  if (FnDecl->getNumParams() == 0)
9064    return SemaRef.Diag(FnDecl->getLocation(),
9065                        diag::err_operator_new_delete_too_few_parameters)
9066      << FnDecl->getDeclName();
9067
9068  // Check the the first parameter type is not dependent.
9069  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9070  if (FirstParamType->isDependentType())
9071    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9072      << FnDecl->getDeclName() << ExpectedFirstParamType;
9073
9074  // Check that the first parameter type is what we expect.
9075  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9076      ExpectedFirstParamType)
9077    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9078    << FnDecl->getDeclName() << ExpectedFirstParamType;
9079
9080  return false;
9081}
9082
9083static bool
9084CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9085  // C++ [basic.stc.dynamic.allocation]p1:
9086  //   A program is ill-formed if an allocation function is declared in a
9087  //   namespace scope other than global scope or declared static in global
9088  //   scope.
9089  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9090    return true;
9091
9092  CanQualType SizeTy =
9093    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9094
9095  // C++ [basic.stc.dynamic.allocation]p1:
9096  //  The return type shall be void*. The first parameter shall have type
9097  //  std::size_t.
9098  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9099                                  SizeTy,
9100                                  diag::err_operator_new_dependent_param_type,
9101                                  diag::err_operator_new_param_type))
9102    return true;
9103
9104  // C++ [basic.stc.dynamic.allocation]p1:
9105  //  The first parameter shall not have an associated default argument.
9106  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9107    return SemaRef.Diag(FnDecl->getLocation(),
9108                        diag::err_operator_new_default_arg)
9109      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9110
9111  return false;
9112}
9113
9114static bool
9115CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9116  // C++ [basic.stc.dynamic.deallocation]p1:
9117  //   A program is ill-formed if deallocation functions are declared in a
9118  //   namespace scope other than global scope or declared static in global
9119  //   scope.
9120  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9121    return true;
9122
9123  // C++ [basic.stc.dynamic.deallocation]p2:
9124  //   Each deallocation function shall return void and its first parameter
9125  //   shall be void*.
9126  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9127                                  SemaRef.Context.VoidPtrTy,
9128                                 diag::err_operator_delete_dependent_param_type,
9129                                 diag::err_operator_delete_param_type))
9130    return true;
9131
9132  return false;
9133}
9134
9135/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9136/// of this overloaded operator is well-formed. If so, returns false;
9137/// otherwise, emits appropriate diagnostics and returns true.
9138bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9139  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9140         "Expected an overloaded operator declaration");
9141
9142  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9143
9144  // C++ [over.oper]p5:
9145  //   The allocation and deallocation functions, operator new,
9146  //   operator new[], operator delete and operator delete[], are
9147  //   described completely in 3.7.3. The attributes and restrictions
9148  //   found in the rest of this subclause do not apply to them unless
9149  //   explicitly stated in 3.7.3.
9150  if (Op == OO_Delete || Op == OO_Array_Delete)
9151    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9152
9153  if (Op == OO_New || Op == OO_Array_New)
9154    return CheckOperatorNewDeclaration(*this, FnDecl);
9155
9156  // C++ [over.oper]p6:
9157  //   An operator function shall either be a non-static member
9158  //   function or be a non-member function and have at least one
9159  //   parameter whose type is a class, a reference to a class, an
9160  //   enumeration, or a reference to an enumeration.
9161  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9162    if (MethodDecl->isStatic())
9163      return Diag(FnDecl->getLocation(),
9164                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9165  } else {
9166    bool ClassOrEnumParam = false;
9167    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9168                                   ParamEnd = FnDecl->param_end();
9169         Param != ParamEnd; ++Param) {
9170      QualType ParamType = (*Param)->getType().getNonReferenceType();
9171      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9172          ParamType->isEnumeralType()) {
9173        ClassOrEnumParam = true;
9174        break;
9175      }
9176    }
9177
9178    if (!ClassOrEnumParam)
9179      return Diag(FnDecl->getLocation(),
9180                  diag::err_operator_overload_needs_class_or_enum)
9181        << FnDecl->getDeclName();
9182  }
9183
9184  // C++ [over.oper]p8:
9185  //   An operator function cannot have default arguments (8.3.6),
9186  //   except where explicitly stated below.
9187  //
9188  // Only the function-call operator allows default arguments
9189  // (C++ [over.call]p1).
9190  if (Op != OO_Call) {
9191    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9192         Param != FnDecl->param_end(); ++Param) {
9193      if ((*Param)->hasDefaultArg())
9194        return Diag((*Param)->getLocation(),
9195                    diag::err_operator_overload_default_arg)
9196          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9197    }
9198  }
9199
9200  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9201    { false, false, false }
9202#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9203    , { Unary, Binary, MemberOnly }
9204#include "clang/Basic/OperatorKinds.def"
9205  };
9206
9207  bool CanBeUnaryOperator = OperatorUses[Op][0];
9208  bool CanBeBinaryOperator = OperatorUses[Op][1];
9209  bool MustBeMemberOperator = OperatorUses[Op][2];
9210
9211  // C++ [over.oper]p8:
9212  //   [...] Operator functions cannot have more or fewer parameters
9213  //   than the number required for the corresponding operator, as
9214  //   described in the rest of this subclause.
9215  unsigned NumParams = FnDecl->getNumParams()
9216                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9217  if (Op != OO_Call &&
9218      ((NumParams == 1 && !CanBeUnaryOperator) ||
9219       (NumParams == 2 && !CanBeBinaryOperator) ||
9220       (NumParams < 1) || (NumParams > 2))) {
9221    // We have the wrong number of parameters.
9222    unsigned ErrorKind;
9223    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9224      ErrorKind = 2;  // 2 -> unary or binary.
9225    } else if (CanBeUnaryOperator) {
9226      ErrorKind = 0;  // 0 -> unary
9227    } else {
9228      assert(CanBeBinaryOperator &&
9229             "All non-call overloaded operators are unary or binary!");
9230      ErrorKind = 1;  // 1 -> binary
9231    }
9232
9233    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9234      << FnDecl->getDeclName() << NumParams << ErrorKind;
9235  }
9236
9237  // Overloaded operators other than operator() cannot be variadic.
9238  if (Op != OO_Call &&
9239      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9240    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9241      << FnDecl->getDeclName();
9242  }
9243
9244  // Some operators must be non-static member functions.
9245  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9246    return Diag(FnDecl->getLocation(),
9247                diag::err_operator_overload_must_be_member)
9248      << FnDecl->getDeclName();
9249  }
9250
9251  // C++ [over.inc]p1:
9252  //   The user-defined function called operator++ implements the
9253  //   prefix and postfix ++ operator. If this function is a member
9254  //   function with no parameters, or a non-member function with one
9255  //   parameter of class or enumeration type, it defines the prefix
9256  //   increment operator ++ for objects of that type. If the function
9257  //   is a member function with one parameter (which shall be of type
9258  //   int) or a non-member function with two parameters (the second
9259  //   of which shall be of type int), it defines the postfix
9260  //   increment operator ++ for objects of that type.
9261  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9262    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9263    bool ParamIsInt = false;
9264    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9265      ParamIsInt = BT->getKind() == BuiltinType::Int;
9266
9267    if (!ParamIsInt)
9268      return Diag(LastParam->getLocation(),
9269                  diag::err_operator_overload_post_incdec_must_be_int)
9270        << LastParam->getType() << (Op == OO_MinusMinus);
9271  }
9272
9273  return false;
9274}
9275
9276/// CheckLiteralOperatorDeclaration - Check whether the declaration
9277/// of this literal operator function is well-formed. If so, returns
9278/// false; otherwise, emits appropriate diagnostics and returns true.
9279bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9280  DeclContext *DC = FnDecl->getDeclContext();
9281  Decl::Kind Kind = DC->getDeclKind();
9282  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9283      Kind != Decl::LinkageSpec) {
9284    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9285      << FnDecl->getDeclName();
9286    return true;
9287  }
9288
9289  bool Valid = false;
9290
9291  // template <char...> type operator "" name() is the only valid template
9292  // signature, and the only valid signature with no parameters.
9293  if (FnDecl->param_size() == 0) {
9294    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9295      // Must have only one template parameter
9296      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9297      if (Params->size() == 1) {
9298        NonTypeTemplateParmDecl *PmDecl =
9299          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9300
9301        // The template parameter must be a char parameter pack.
9302        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9303            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9304          Valid = true;
9305      }
9306    }
9307  } else {
9308    // Check the first parameter
9309    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9310
9311    QualType T = (*Param)->getType();
9312
9313    // unsigned long long int, long double, and any character type are allowed
9314    // as the only parameters.
9315    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9316        Context.hasSameType(T, Context.LongDoubleTy) ||
9317        Context.hasSameType(T, Context.CharTy) ||
9318        Context.hasSameType(T, Context.WCharTy) ||
9319        Context.hasSameType(T, Context.Char16Ty) ||
9320        Context.hasSameType(T, Context.Char32Ty)) {
9321      if (++Param == FnDecl->param_end())
9322        Valid = true;
9323      goto FinishedParams;
9324    }
9325
9326    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9327    const PointerType *PT = T->getAs<PointerType>();
9328    if (!PT)
9329      goto FinishedParams;
9330    T = PT->getPointeeType();
9331    if (!T.isConstQualified())
9332      goto FinishedParams;
9333    T = T.getUnqualifiedType();
9334
9335    // Move on to the second parameter;
9336    ++Param;
9337
9338    // If there is no second parameter, the first must be a const char *
9339    if (Param == FnDecl->param_end()) {
9340      if (Context.hasSameType(T, Context.CharTy))
9341        Valid = true;
9342      goto FinishedParams;
9343    }
9344
9345    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9346    // are allowed as the first parameter to a two-parameter function
9347    if (!(Context.hasSameType(T, Context.CharTy) ||
9348          Context.hasSameType(T, Context.WCharTy) ||
9349          Context.hasSameType(T, Context.Char16Ty) ||
9350          Context.hasSameType(T, Context.Char32Ty)))
9351      goto FinishedParams;
9352
9353    // The second and final parameter must be an std::size_t
9354    T = (*Param)->getType().getUnqualifiedType();
9355    if (Context.hasSameType(T, Context.getSizeType()) &&
9356        ++Param == FnDecl->param_end())
9357      Valid = true;
9358  }
9359
9360  // FIXME: This diagnostic is absolutely terrible.
9361FinishedParams:
9362  if (!Valid) {
9363    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9364      << FnDecl->getDeclName();
9365    return true;
9366  }
9367
9368  StringRef LiteralName
9369    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9370  if (LiteralName[0] != '_') {
9371    // C++0x [usrlit.suffix]p1:
9372    //   Literal suffix identifiers that do not start with an underscore are
9373    //   reserved for future standardization.
9374    bool IsHexFloat = true;
9375    if (LiteralName.size() > 1 &&
9376        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9377      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9378        if (!isdigit(LiteralName[I])) {
9379          IsHexFloat = false;
9380          break;
9381        }
9382      }
9383    }
9384
9385    if (IsHexFloat)
9386      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9387        << LiteralName;
9388    else
9389      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9390  }
9391
9392  return false;
9393}
9394
9395/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9396/// linkage specification, including the language and (if present)
9397/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9398/// the location of the language string literal, which is provided
9399/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9400/// the '{' brace. Otherwise, this linkage specification does not
9401/// have any braces.
9402Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9403                                           SourceLocation LangLoc,
9404                                           StringRef Lang,
9405                                           SourceLocation LBraceLoc) {
9406  LinkageSpecDecl::LanguageIDs Language;
9407  if (Lang == "\"C\"")
9408    Language = LinkageSpecDecl::lang_c;
9409  else if (Lang == "\"C++\"")
9410    Language = LinkageSpecDecl::lang_cxx;
9411  else {
9412    Diag(LangLoc, diag::err_bad_language);
9413    return 0;
9414  }
9415
9416  // FIXME: Add all the various semantics of linkage specifications
9417
9418  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9419                                               ExternLoc, LangLoc, Language);
9420  CurContext->addDecl(D);
9421  PushDeclContext(S, D);
9422  return D;
9423}
9424
9425/// ActOnFinishLinkageSpecification - Complete the definition of
9426/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9427/// valid, it's the position of the closing '}' brace in a linkage
9428/// specification that uses braces.
9429Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9430                                            Decl *LinkageSpec,
9431                                            SourceLocation RBraceLoc) {
9432  if (LinkageSpec) {
9433    if (RBraceLoc.isValid()) {
9434      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9435      LSDecl->setRBraceLoc(RBraceLoc);
9436    }
9437    PopDeclContext();
9438  }
9439  return LinkageSpec;
9440}
9441
9442/// \brief Perform semantic analysis for the variable declaration that
9443/// occurs within a C++ catch clause, returning the newly-created
9444/// variable.
9445VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9446                                         TypeSourceInfo *TInfo,
9447                                         SourceLocation StartLoc,
9448                                         SourceLocation Loc,
9449                                         IdentifierInfo *Name) {
9450  bool Invalid = false;
9451  QualType ExDeclType = TInfo->getType();
9452
9453  // Arrays and functions decay.
9454  if (ExDeclType->isArrayType())
9455    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9456  else if (ExDeclType->isFunctionType())
9457    ExDeclType = Context.getPointerType(ExDeclType);
9458
9459  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9460  // The exception-declaration shall not denote a pointer or reference to an
9461  // incomplete type, other than [cv] void*.
9462  // N2844 forbids rvalue references.
9463  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9464    Diag(Loc, diag::err_catch_rvalue_ref);
9465    Invalid = true;
9466  }
9467
9468  // GCC allows catching pointers and references to incomplete types
9469  // as an extension; so do we, but we warn by default.
9470
9471  QualType BaseType = ExDeclType;
9472  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9473  unsigned DK = diag::err_catch_incomplete;
9474  bool IncompleteCatchIsInvalid = true;
9475  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9476    BaseType = Ptr->getPointeeType();
9477    Mode = 1;
9478    DK = diag::ext_catch_incomplete_ptr;
9479    IncompleteCatchIsInvalid = false;
9480  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9481    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9482    BaseType = Ref->getPointeeType();
9483    Mode = 2;
9484    DK = diag::ext_catch_incomplete_ref;
9485    IncompleteCatchIsInvalid = false;
9486  }
9487  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9488      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
9489      IncompleteCatchIsInvalid)
9490    Invalid = true;
9491
9492  if (!Invalid && !ExDeclType->isDependentType() &&
9493      RequireNonAbstractType(Loc, ExDeclType,
9494                             diag::err_abstract_type_in_decl,
9495                             AbstractVariableType))
9496    Invalid = true;
9497
9498  // Only the non-fragile NeXT runtime currently supports C++ catches
9499  // of ObjC types, and no runtime supports catching ObjC types by value.
9500  if (!Invalid && getLangOptions().ObjC1) {
9501    QualType T = ExDeclType;
9502    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9503      T = RT->getPointeeType();
9504
9505    if (T->isObjCObjectType()) {
9506      Diag(Loc, diag::err_objc_object_catch);
9507      Invalid = true;
9508    } else if (T->isObjCObjectPointerType()) {
9509      if (!getLangOptions().ObjCNonFragileABI)
9510        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9511    }
9512  }
9513
9514  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9515                                    ExDeclType, TInfo, SC_None, SC_None);
9516  ExDecl->setExceptionVariable(true);
9517
9518  if (!Invalid && !ExDeclType->isDependentType()) {
9519    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9520      // C++ [except.handle]p16:
9521      //   The object declared in an exception-declaration or, if the
9522      //   exception-declaration does not specify a name, a temporary (12.2) is
9523      //   copy-initialized (8.5) from the exception object. [...]
9524      //   The object is destroyed when the handler exits, after the destruction
9525      //   of any automatic objects initialized within the handler.
9526      //
9527      // We just pretend to initialize the object with itself, then make sure
9528      // it can be destroyed later.
9529      QualType initType = ExDeclType;
9530
9531      InitializedEntity entity =
9532        InitializedEntity::InitializeVariable(ExDecl);
9533      InitializationKind initKind =
9534        InitializationKind::CreateCopy(Loc, SourceLocation());
9535
9536      Expr *opaqueValue =
9537        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9538      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9539      ExprResult result = sequence.Perform(*this, entity, initKind,
9540                                           MultiExprArg(&opaqueValue, 1));
9541      if (result.isInvalid())
9542        Invalid = true;
9543      else {
9544        // If the constructor used was non-trivial, set this as the
9545        // "initializer".
9546        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9547        if (!construct->getConstructor()->isTrivial()) {
9548          Expr *init = MaybeCreateExprWithCleanups(construct);
9549          ExDecl->setInit(init);
9550        }
9551
9552        // And make sure it's destructable.
9553        FinalizeVarWithDestructor(ExDecl, recordType);
9554      }
9555    }
9556  }
9557
9558  if (Invalid)
9559    ExDecl->setInvalidDecl();
9560
9561  return ExDecl;
9562}
9563
9564/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9565/// handler.
9566Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9567  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9568  bool Invalid = D.isInvalidType();
9569
9570  // Check for unexpanded parameter packs.
9571  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9572                                               UPPC_ExceptionType)) {
9573    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9574                                             D.getIdentifierLoc());
9575    Invalid = true;
9576  }
9577
9578  IdentifierInfo *II = D.getIdentifier();
9579  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9580                                             LookupOrdinaryName,
9581                                             ForRedeclaration)) {
9582    // The scope should be freshly made just for us. There is just no way
9583    // it contains any previous declaration.
9584    assert(!S->isDeclScope(PrevDecl));
9585    if (PrevDecl->isTemplateParameter()) {
9586      // Maybe we will complain about the shadowed template parameter.
9587      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9588      PrevDecl = 0;
9589    }
9590  }
9591
9592  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9593    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9594      << D.getCXXScopeSpec().getRange();
9595    Invalid = true;
9596  }
9597
9598  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9599                                              D.getSourceRange().getBegin(),
9600                                              D.getIdentifierLoc(),
9601                                              D.getIdentifier());
9602  if (Invalid)
9603    ExDecl->setInvalidDecl();
9604
9605  // Add the exception declaration into this scope.
9606  if (II)
9607    PushOnScopeChains(ExDecl, S);
9608  else
9609    CurContext->addDecl(ExDecl);
9610
9611  ProcessDeclAttributes(S, ExDecl, D);
9612  return ExDecl;
9613}
9614
9615Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9616                                         Expr *AssertExpr,
9617                                         Expr *AssertMessageExpr_,
9618                                         SourceLocation RParenLoc) {
9619  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9620
9621  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9622    llvm::APSInt Value(32);
9623    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
9624      Diag(StaticAssertLoc,
9625           diag::err_static_assert_expression_is_not_constant) <<
9626        AssertExpr->getSourceRange();
9627      return 0;
9628    }
9629
9630    if (Value == 0) {
9631      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9632        << AssertMessage->getString() << AssertExpr->getSourceRange();
9633    }
9634  }
9635
9636  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9637    return 0;
9638
9639  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9640                                        AssertExpr, AssertMessage, RParenLoc);
9641
9642  CurContext->addDecl(Decl);
9643  return Decl;
9644}
9645
9646/// \brief Perform semantic analysis of the given friend type declaration.
9647///
9648/// \returns A friend declaration that.
9649FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
9650                                      TypeSourceInfo *TSInfo) {
9651  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9652
9653  QualType T = TSInfo->getType();
9654  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9655
9656  // C++03 [class.friend]p2:
9657  //   An elaborated-type-specifier shall be used in a friend declaration
9658  //   for a class.*
9659  //
9660  //   * The class-key of the elaborated-type-specifier is required.
9661  if (!ActiveTemplateInstantiations.empty()) {
9662    // Do not complain about the form of friend template types during
9663    // template instantiation; we will already have complained when the
9664    // template was declared.
9665  } else if (!T->isElaboratedTypeSpecifier()) {
9666    // If we evaluated the type to a record type, suggest putting
9667    // a tag in front.
9668    if (const RecordType *RT = T->getAs<RecordType>()) {
9669      RecordDecl *RD = RT->getDecl();
9670
9671      std::string InsertionText = std::string(" ") + RD->getKindName();
9672
9673      Diag(TypeRange.getBegin(),
9674           getLangOptions().CPlusPlus0x ?
9675             diag::warn_cxx98_compat_unelaborated_friend_type :
9676             diag::ext_unelaborated_friend_type)
9677        << (unsigned) RD->getTagKind()
9678        << T
9679        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9680                                      InsertionText);
9681    } else {
9682      Diag(FriendLoc,
9683           getLangOptions().CPlusPlus0x ?
9684             diag::warn_cxx98_compat_nonclass_type_friend :
9685             diag::ext_nonclass_type_friend)
9686        << T
9687        << SourceRange(FriendLoc, TypeRange.getEnd());
9688    }
9689  } else if (T->getAs<EnumType>()) {
9690    Diag(FriendLoc,
9691         getLangOptions().CPlusPlus0x ?
9692           diag::warn_cxx98_compat_enum_friend :
9693           diag::ext_enum_friend)
9694      << T
9695      << SourceRange(FriendLoc, TypeRange.getEnd());
9696  }
9697
9698  // C++0x [class.friend]p3:
9699  //   If the type specifier in a friend declaration designates a (possibly
9700  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9701  //   the friend declaration is ignored.
9702
9703  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9704  // in [class.friend]p3 that we do not implement.
9705
9706  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
9707}
9708
9709/// Handle a friend tag declaration where the scope specifier was
9710/// templated.
9711Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9712                                    unsigned TagSpec, SourceLocation TagLoc,
9713                                    CXXScopeSpec &SS,
9714                                    IdentifierInfo *Name, SourceLocation NameLoc,
9715                                    AttributeList *Attr,
9716                                    MultiTemplateParamsArg TempParamLists) {
9717  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9718
9719  bool isExplicitSpecialization = false;
9720  bool Invalid = false;
9721
9722  if (TemplateParameterList *TemplateParams
9723        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9724                                                  TempParamLists.get(),
9725                                                  TempParamLists.size(),
9726                                                  /*friend*/ true,
9727                                                  isExplicitSpecialization,
9728                                                  Invalid)) {
9729    if (TemplateParams->size() > 0) {
9730      // This is a declaration of a class template.
9731      if (Invalid)
9732        return 0;
9733
9734      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9735                                SS, Name, NameLoc, Attr,
9736                                TemplateParams, AS_public,
9737                                /*ModulePrivateLoc=*/SourceLocation(),
9738                                TempParamLists.size() - 1,
9739                   (TemplateParameterList**) TempParamLists.release()).take();
9740    } else {
9741      // The "template<>" header is extraneous.
9742      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9743        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9744      isExplicitSpecialization = true;
9745    }
9746  }
9747
9748  if (Invalid) return 0;
9749
9750  bool isAllExplicitSpecializations = true;
9751  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9752    if (TempParamLists.get()[I]->size()) {
9753      isAllExplicitSpecializations = false;
9754      break;
9755    }
9756  }
9757
9758  // FIXME: don't ignore attributes.
9759
9760  // If it's explicit specializations all the way down, just forget
9761  // about the template header and build an appropriate non-templated
9762  // friend.  TODO: for source fidelity, remember the headers.
9763  if (isAllExplicitSpecializations) {
9764    if (SS.isEmpty()) {
9765      bool Owned = false;
9766      bool IsDependent = false;
9767      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9768                      Attr, AS_public,
9769                      /*ModulePrivateLoc=*/SourceLocation(),
9770                      MultiTemplateParamsArg(), Owned, IsDependent,
9771                      /*ScopedEnum=*/false,
9772                      /*ScopedEnumUsesClassTag=*/false,
9773                      /*UnderlyingType=*/TypeResult());
9774    }
9775
9776    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9777    ElaboratedTypeKeyword Keyword
9778      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9779    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9780                                   *Name, NameLoc);
9781    if (T.isNull())
9782      return 0;
9783
9784    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9785    if (isa<DependentNameType>(T)) {
9786      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9787      TL.setKeywordLoc(TagLoc);
9788      TL.setQualifierLoc(QualifierLoc);
9789      TL.setNameLoc(NameLoc);
9790    } else {
9791      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9792      TL.setKeywordLoc(TagLoc);
9793      TL.setQualifierLoc(QualifierLoc);
9794      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9795    }
9796
9797    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9798                                            TSI, FriendLoc);
9799    Friend->setAccess(AS_public);
9800    CurContext->addDecl(Friend);
9801    return Friend;
9802  }
9803
9804  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9805
9806
9807
9808  // Handle the case of a templated-scope friend class.  e.g.
9809  //   template <class T> class A<T>::B;
9810  // FIXME: we don't support these right now.
9811  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9812  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9813  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9814  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9815  TL.setKeywordLoc(TagLoc);
9816  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9817  TL.setNameLoc(NameLoc);
9818
9819  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9820                                          TSI, FriendLoc);
9821  Friend->setAccess(AS_public);
9822  Friend->setUnsupportedFriend(true);
9823  CurContext->addDecl(Friend);
9824  return Friend;
9825}
9826
9827
9828/// Handle a friend type declaration.  This works in tandem with
9829/// ActOnTag.
9830///
9831/// Notes on friend class templates:
9832///
9833/// We generally treat friend class declarations as if they were
9834/// declaring a class.  So, for example, the elaborated type specifier
9835/// in a friend declaration is required to obey the restrictions of a
9836/// class-head (i.e. no typedefs in the scope chain), template
9837/// parameters are required to match up with simple template-ids, &c.
9838/// However, unlike when declaring a template specialization, it's
9839/// okay to refer to a template specialization without an empty
9840/// template parameter declaration, e.g.
9841///   friend class A<T>::B<unsigned>;
9842/// We permit this as a special case; if there are any template
9843/// parameters present at all, require proper matching, i.e.
9844///   template <> template <class T> friend class A<int>::B;
9845Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9846                                MultiTemplateParamsArg TempParams) {
9847  SourceLocation Loc = DS.getSourceRange().getBegin();
9848
9849  assert(DS.isFriendSpecified());
9850  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9851
9852  // Try to convert the decl specifier to a type.  This works for
9853  // friend templates because ActOnTag never produces a ClassTemplateDecl
9854  // for a TUK_Friend.
9855  Declarator TheDeclarator(DS, Declarator::MemberContext);
9856  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9857  QualType T = TSI->getType();
9858  if (TheDeclarator.isInvalidType())
9859    return 0;
9860
9861  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9862    return 0;
9863
9864  // This is definitely an error in C++98.  It's probably meant to
9865  // be forbidden in C++0x, too, but the specification is just
9866  // poorly written.
9867  //
9868  // The problem is with declarations like the following:
9869  //   template <T> friend A<T>::foo;
9870  // where deciding whether a class C is a friend or not now hinges
9871  // on whether there exists an instantiation of A that causes
9872  // 'foo' to equal C.  There are restrictions on class-heads
9873  // (which we declare (by fiat) elaborated friend declarations to
9874  // be) that makes this tractable.
9875  //
9876  // FIXME: handle "template <> friend class A<T>;", which
9877  // is possibly well-formed?  Who even knows?
9878  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9879    Diag(Loc, diag::err_tagless_friend_type_template)
9880      << DS.getSourceRange();
9881    return 0;
9882  }
9883
9884  // C++98 [class.friend]p1: A friend of a class is a function
9885  //   or class that is not a member of the class . . .
9886  // This is fixed in DR77, which just barely didn't make the C++03
9887  // deadline.  It's also a very silly restriction that seriously
9888  // affects inner classes and which nobody else seems to implement;
9889  // thus we never diagnose it, not even in -pedantic.
9890  //
9891  // But note that we could warn about it: it's always useless to
9892  // friend one of your own members (it's not, however, worthless to
9893  // friend a member of an arbitrary specialization of your template).
9894
9895  Decl *D;
9896  if (unsigned NumTempParamLists = TempParams.size())
9897    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
9898                                   NumTempParamLists,
9899                                   TempParams.release(),
9900                                   TSI,
9901                                   DS.getFriendSpecLoc());
9902  else
9903    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
9904
9905  if (!D)
9906    return 0;
9907
9908  D->setAccess(AS_public);
9909  CurContext->addDecl(D);
9910
9911  return D;
9912}
9913
9914Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
9915                                    MultiTemplateParamsArg TemplateParams) {
9916  const DeclSpec &DS = D.getDeclSpec();
9917
9918  assert(DS.isFriendSpecified());
9919  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9920
9921  SourceLocation Loc = D.getIdentifierLoc();
9922  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9923
9924  // C++ [class.friend]p1
9925  //   A friend of a class is a function or class....
9926  // Note that this sees through typedefs, which is intended.
9927  // It *doesn't* see through dependent types, which is correct
9928  // according to [temp.arg.type]p3:
9929  //   If a declaration acquires a function type through a
9930  //   type dependent on a template-parameter and this causes
9931  //   a declaration that does not use the syntactic form of a
9932  //   function declarator to have a function type, the program
9933  //   is ill-formed.
9934  if (!TInfo->getType()->isFunctionType()) {
9935    Diag(Loc, diag::err_unexpected_friend);
9936
9937    // It might be worthwhile to try to recover by creating an
9938    // appropriate declaration.
9939    return 0;
9940  }
9941
9942  // C++ [namespace.memdef]p3
9943  //  - If a friend declaration in a non-local class first declares a
9944  //    class or function, the friend class or function is a member
9945  //    of the innermost enclosing namespace.
9946  //  - The name of the friend is not found by simple name lookup
9947  //    until a matching declaration is provided in that namespace
9948  //    scope (either before or after the class declaration granting
9949  //    friendship).
9950  //  - If a friend function is called, its name may be found by the
9951  //    name lookup that considers functions from namespaces and
9952  //    classes associated with the types of the function arguments.
9953  //  - When looking for a prior declaration of a class or a function
9954  //    declared as a friend, scopes outside the innermost enclosing
9955  //    namespace scope are not considered.
9956
9957  CXXScopeSpec &SS = D.getCXXScopeSpec();
9958  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9959  DeclarationName Name = NameInfo.getName();
9960  assert(Name);
9961
9962  // Check for unexpanded parameter packs.
9963  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
9964      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
9965      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
9966    return 0;
9967
9968  // The context we found the declaration in, or in which we should
9969  // create the declaration.
9970  DeclContext *DC;
9971  Scope *DCScope = S;
9972  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
9973                        ForRedeclaration);
9974
9975  // FIXME: there are different rules in local classes
9976
9977  // There are four cases here.
9978  //   - There's no scope specifier, in which case we just go to the
9979  //     appropriate scope and look for a function or function template
9980  //     there as appropriate.
9981  // Recover from invalid scope qualifiers as if they just weren't there.
9982  if (SS.isInvalid() || !SS.isSet()) {
9983    // C++0x [namespace.memdef]p3:
9984    //   If the name in a friend declaration is neither qualified nor
9985    //   a template-id and the declaration is a function or an
9986    //   elaborated-type-specifier, the lookup to determine whether
9987    //   the entity has been previously declared shall not consider
9988    //   any scopes outside the innermost enclosing namespace.
9989    // C++0x [class.friend]p11:
9990    //   If a friend declaration appears in a local class and the name
9991    //   specified is an unqualified name, a prior declaration is
9992    //   looked up without considering scopes that are outside the
9993    //   innermost enclosing non-class scope. For a friend function
9994    //   declaration, if there is no prior declaration, the program is
9995    //   ill-formed.
9996    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
9997    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
9998
9999    // Find the appropriate context according to the above.
10000    DC = CurContext;
10001    while (true) {
10002      // Skip class contexts.  If someone can cite chapter and verse
10003      // for this behavior, that would be nice --- it's what GCC and
10004      // EDG do, and it seems like a reasonable intent, but the spec
10005      // really only says that checks for unqualified existing
10006      // declarations should stop at the nearest enclosing namespace,
10007      // not that they should only consider the nearest enclosing
10008      // namespace.
10009      while (DC->isRecord())
10010        DC = DC->getParent();
10011
10012      LookupQualifiedName(Previous, DC);
10013
10014      // TODO: decide what we think about using declarations.
10015      if (isLocal || !Previous.empty())
10016        break;
10017
10018      if (isTemplateId) {
10019        if (isa<TranslationUnitDecl>(DC)) break;
10020      } else {
10021        if (DC->isFileContext()) break;
10022      }
10023      DC = DC->getParent();
10024    }
10025
10026    // C++ [class.friend]p1: A friend of a class is a function or
10027    //   class that is not a member of the class . . .
10028    // C++11 changes this for both friend types and functions.
10029    // Most C++ 98 compilers do seem to give an error here, so
10030    // we do, too.
10031    if (!Previous.empty() && DC->Equals(CurContext))
10032      Diag(DS.getFriendSpecLoc(),
10033           getLangOptions().CPlusPlus0x ?
10034             diag::warn_cxx98_compat_friend_is_member :
10035             diag::err_friend_is_member);
10036
10037    DCScope = getScopeForDeclContext(S, DC);
10038
10039    // C++ [class.friend]p6:
10040    //   A function can be defined in a friend declaration of a class if and
10041    //   only if the class is a non-local class (9.8), the function name is
10042    //   unqualified, and the function has namespace scope.
10043    if (isLocal && D.isFunctionDefinition()) {
10044      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10045    }
10046
10047  //   - There's a non-dependent scope specifier, in which case we
10048  //     compute it and do a previous lookup there for a function
10049  //     or function template.
10050  } else if (!SS.getScopeRep()->isDependent()) {
10051    DC = computeDeclContext(SS);
10052    if (!DC) return 0;
10053
10054    if (RequireCompleteDeclContext(SS, DC)) return 0;
10055
10056    LookupQualifiedName(Previous, DC);
10057
10058    // Ignore things found implicitly in the wrong scope.
10059    // TODO: better diagnostics for this case.  Suggesting the right
10060    // qualified scope would be nice...
10061    LookupResult::Filter F = Previous.makeFilter();
10062    while (F.hasNext()) {
10063      NamedDecl *D = F.next();
10064      if (!DC->InEnclosingNamespaceSetOf(
10065              D->getDeclContext()->getRedeclContext()))
10066        F.erase();
10067    }
10068    F.done();
10069
10070    if (Previous.empty()) {
10071      D.setInvalidType();
10072      Diag(Loc, diag::err_qualified_friend_not_found)
10073          << Name << TInfo->getType();
10074      return 0;
10075    }
10076
10077    // C++ [class.friend]p1: A friend of a class is a function or
10078    //   class that is not a member of the class . . .
10079    if (DC->Equals(CurContext))
10080      Diag(DS.getFriendSpecLoc(),
10081           getLangOptions().CPlusPlus0x ?
10082             diag::warn_cxx98_compat_friend_is_member :
10083             diag::err_friend_is_member);
10084
10085    if (D.isFunctionDefinition()) {
10086      // C++ [class.friend]p6:
10087      //   A function can be defined in a friend declaration of a class if and
10088      //   only if the class is a non-local class (9.8), the function name is
10089      //   unqualified, and the function has namespace scope.
10090      SemaDiagnosticBuilder DB
10091        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10092
10093      DB << SS.getScopeRep();
10094      if (DC->isFileContext())
10095        DB << FixItHint::CreateRemoval(SS.getRange());
10096      SS.clear();
10097    }
10098
10099  //   - There's a scope specifier that does not match any template
10100  //     parameter lists, in which case we use some arbitrary context,
10101  //     create a method or method template, and wait for instantiation.
10102  //   - There's a scope specifier that does match some template
10103  //     parameter lists, which we don't handle right now.
10104  } else {
10105    if (D.isFunctionDefinition()) {
10106      // C++ [class.friend]p6:
10107      //   A function can be defined in a friend declaration of a class if and
10108      //   only if the class is a non-local class (9.8), the function name is
10109      //   unqualified, and the function has namespace scope.
10110      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10111        << SS.getScopeRep();
10112    }
10113
10114    DC = CurContext;
10115    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10116  }
10117
10118  if (!DC->isRecord()) {
10119    // This implies that it has to be an operator or function.
10120    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10121        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10122        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10123      Diag(Loc, diag::err_introducing_special_friend) <<
10124        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10125         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10126      return 0;
10127    }
10128  }
10129
10130  bool AddToScope = true;
10131  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10132                                          move(TemplateParams), AddToScope);
10133  if (!ND) return 0;
10134
10135  assert(ND->getDeclContext() == DC);
10136  assert(ND->getLexicalDeclContext() == CurContext);
10137
10138  // Add the function declaration to the appropriate lookup tables,
10139  // adjusting the redeclarations list as necessary.  We don't
10140  // want to do this yet if the friending class is dependent.
10141  //
10142  // Also update the scope-based lookup if the target context's
10143  // lookup context is in lexical scope.
10144  if (!CurContext->isDependentContext()) {
10145    DC = DC->getRedeclContext();
10146    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10147    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10148      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10149  }
10150
10151  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10152                                       D.getIdentifierLoc(), ND,
10153                                       DS.getFriendSpecLoc());
10154  FrD->setAccess(AS_public);
10155  CurContext->addDecl(FrD);
10156
10157  if (ND->isInvalidDecl())
10158    FrD->setInvalidDecl();
10159  else {
10160    FunctionDecl *FD;
10161    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10162      FD = FTD->getTemplatedDecl();
10163    else
10164      FD = cast<FunctionDecl>(ND);
10165
10166    // Mark templated-scope function declarations as unsupported.
10167    if (FD->getNumTemplateParameterLists())
10168      FrD->setUnsupportedFriend(true);
10169  }
10170
10171  return ND;
10172}
10173
10174void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10175  AdjustDeclIfTemplate(Dcl);
10176
10177  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10178  if (!Fn) {
10179    Diag(DelLoc, diag::err_deleted_non_function);
10180    return;
10181  }
10182  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
10183    Diag(DelLoc, diag::err_deleted_decl_not_first);
10184    Diag(Prev->getLocation(), diag::note_previous_declaration);
10185    // If the declaration wasn't the first, we delete the function anyway for
10186    // recovery.
10187  }
10188  Fn->setDeletedAsWritten();
10189}
10190
10191void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10192  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10193
10194  if (MD) {
10195    if (MD->getParent()->isDependentType()) {
10196      MD->setDefaulted();
10197      MD->setExplicitlyDefaulted();
10198      return;
10199    }
10200
10201    CXXSpecialMember Member = getSpecialMember(MD);
10202    if (Member == CXXInvalid) {
10203      Diag(DefaultLoc, diag::err_default_special_members);
10204      return;
10205    }
10206
10207    MD->setDefaulted();
10208    MD->setExplicitlyDefaulted();
10209
10210    // If this definition appears within the record, do the checking when
10211    // the record is complete.
10212    const FunctionDecl *Primary = MD;
10213    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10214      // Find the uninstantiated declaration that actually had the '= default'
10215      // on it.
10216      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10217
10218    if (Primary == Primary->getCanonicalDecl())
10219      return;
10220
10221    switch (Member) {
10222    case CXXDefaultConstructor: {
10223      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10224      CheckExplicitlyDefaultedDefaultConstructor(CD);
10225      if (!CD->isInvalidDecl())
10226        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10227      break;
10228    }
10229
10230    case CXXCopyConstructor: {
10231      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10232      CheckExplicitlyDefaultedCopyConstructor(CD);
10233      if (!CD->isInvalidDecl())
10234        DefineImplicitCopyConstructor(DefaultLoc, CD);
10235      break;
10236    }
10237
10238    case CXXCopyAssignment: {
10239      CheckExplicitlyDefaultedCopyAssignment(MD);
10240      if (!MD->isInvalidDecl())
10241        DefineImplicitCopyAssignment(DefaultLoc, MD);
10242      break;
10243    }
10244
10245    case CXXDestructor: {
10246      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10247      CheckExplicitlyDefaultedDestructor(DD);
10248      if (!DD->isInvalidDecl())
10249        DefineImplicitDestructor(DefaultLoc, DD);
10250      break;
10251    }
10252
10253    case CXXMoveConstructor: {
10254      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10255      CheckExplicitlyDefaultedMoveConstructor(CD);
10256      if (!CD->isInvalidDecl())
10257        DefineImplicitMoveConstructor(DefaultLoc, CD);
10258      break;
10259    }
10260
10261    case CXXMoveAssignment: {
10262      CheckExplicitlyDefaultedMoveAssignment(MD);
10263      if (!MD->isInvalidDecl())
10264        DefineImplicitMoveAssignment(DefaultLoc, MD);
10265      break;
10266    }
10267
10268    case CXXInvalid:
10269      llvm_unreachable("Invalid special member.");
10270    }
10271  } else {
10272    Diag(DefaultLoc, diag::err_default_special_members);
10273  }
10274}
10275
10276static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10277  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10278    Stmt *SubStmt = *CI;
10279    if (!SubStmt)
10280      continue;
10281    if (isa<ReturnStmt>(SubStmt))
10282      Self.Diag(SubStmt->getSourceRange().getBegin(),
10283           diag::err_return_in_constructor_handler);
10284    if (!isa<Expr>(SubStmt))
10285      SearchForReturnInStmt(Self, SubStmt);
10286  }
10287}
10288
10289void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10290  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10291    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10292    SearchForReturnInStmt(*this, Handler);
10293  }
10294}
10295
10296bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10297                                             const CXXMethodDecl *Old) {
10298  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10299  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10300
10301  if (Context.hasSameType(NewTy, OldTy) ||
10302      NewTy->isDependentType() || OldTy->isDependentType())
10303    return false;
10304
10305  // Check if the return types are covariant
10306  QualType NewClassTy, OldClassTy;
10307
10308  /// Both types must be pointers or references to classes.
10309  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10310    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10311      NewClassTy = NewPT->getPointeeType();
10312      OldClassTy = OldPT->getPointeeType();
10313    }
10314  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10315    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10316      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10317        NewClassTy = NewRT->getPointeeType();
10318        OldClassTy = OldRT->getPointeeType();
10319      }
10320    }
10321  }
10322
10323  // The return types aren't either both pointers or references to a class type.
10324  if (NewClassTy.isNull()) {
10325    Diag(New->getLocation(),
10326         diag::err_different_return_type_for_overriding_virtual_function)
10327      << New->getDeclName() << NewTy << OldTy;
10328    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10329
10330    return true;
10331  }
10332
10333  // C++ [class.virtual]p6:
10334  //   If the return type of D::f differs from the return type of B::f, the
10335  //   class type in the return type of D::f shall be complete at the point of
10336  //   declaration of D::f or shall be the class type D.
10337  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10338    if (!RT->isBeingDefined() &&
10339        RequireCompleteType(New->getLocation(), NewClassTy,
10340                            PDiag(diag::err_covariant_return_incomplete)
10341                              << New->getDeclName()))
10342    return true;
10343  }
10344
10345  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10346    // Check if the new class derives from the old class.
10347    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10348      Diag(New->getLocation(),
10349           diag::err_covariant_return_not_derived)
10350      << New->getDeclName() << NewTy << OldTy;
10351      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10352      return true;
10353    }
10354
10355    // Check if we the conversion from derived to base is valid.
10356    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10357                    diag::err_covariant_return_inaccessible_base,
10358                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10359                    // FIXME: Should this point to the return type?
10360                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10361      // FIXME: this note won't trigger for delayed access control
10362      // diagnostics, and it's impossible to get an undelayed error
10363      // here from access control during the original parse because
10364      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10365      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10366      return true;
10367    }
10368  }
10369
10370  // The qualifiers of the return types must be the same.
10371  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10372    Diag(New->getLocation(),
10373         diag::err_covariant_return_type_different_qualifications)
10374    << New->getDeclName() << NewTy << OldTy;
10375    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10376    return true;
10377  };
10378
10379
10380  // The new class type must have the same or less qualifiers as the old type.
10381  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10382    Diag(New->getLocation(),
10383         diag::err_covariant_return_type_class_type_more_qualified)
10384    << New->getDeclName() << NewTy << OldTy;
10385    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10386    return true;
10387  };
10388
10389  return false;
10390}
10391
10392/// \brief Mark the given method pure.
10393///
10394/// \param Method the method to be marked pure.
10395///
10396/// \param InitRange the source range that covers the "0" initializer.
10397bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10398  SourceLocation EndLoc = InitRange.getEnd();
10399  if (EndLoc.isValid())
10400    Method->setRangeEnd(EndLoc);
10401
10402  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10403    Method->setPure();
10404    return false;
10405  }
10406
10407  if (!Method->isInvalidDecl())
10408    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10409      << Method->getDeclName() << InitRange;
10410  return true;
10411}
10412
10413/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10414/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10415/// is a fresh scope pushed for just this purpose.
10416///
10417/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10418/// static data member of class X, names should be looked up in the scope of
10419/// class X.
10420void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10421  // If there is no declaration, there was an error parsing it.
10422  if (D == 0 || D->isInvalidDecl()) return;
10423
10424  // We should only get called for declarations with scope specifiers, like:
10425  //   int foo::bar;
10426  assert(D->isOutOfLine());
10427  EnterDeclaratorContext(S, D->getDeclContext());
10428}
10429
10430/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10431/// initializer for the out-of-line declaration 'D'.
10432void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10433  // If there is no declaration, there was an error parsing it.
10434  if (D == 0 || D->isInvalidDecl()) return;
10435
10436  assert(D->isOutOfLine());
10437  ExitDeclaratorContext(S);
10438}
10439
10440/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10441/// C++ if/switch/while/for statement.
10442/// e.g: "if (int x = f()) {...}"
10443DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10444  // C++ 6.4p2:
10445  // The declarator shall not specify a function or an array.
10446  // The type-specifier-seq shall not contain typedef and shall not declare a
10447  // new class or enumeration.
10448  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10449         "Parser allowed 'typedef' as storage class of condition decl.");
10450
10451  Decl *Dcl = ActOnDeclarator(S, D);
10452  if (!Dcl)
10453    return true;
10454
10455  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10456    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10457      << D.getSourceRange();
10458    return true;
10459  }
10460
10461  return Dcl;
10462}
10463
10464void Sema::LoadExternalVTableUses() {
10465  if (!ExternalSource)
10466    return;
10467
10468  SmallVector<ExternalVTableUse, 4> VTables;
10469  ExternalSource->ReadUsedVTables(VTables);
10470  SmallVector<VTableUse, 4> NewUses;
10471  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10472    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10473      = VTablesUsed.find(VTables[I].Record);
10474    // Even if a definition wasn't required before, it may be required now.
10475    if (Pos != VTablesUsed.end()) {
10476      if (!Pos->second && VTables[I].DefinitionRequired)
10477        Pos->second = true;
10478      continue;
10479    }
10480
10481    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10482    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10483  }
10484
10485  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10486}
10487
10488void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10489                          bool DefinitionRequired) {
10490  // Ignore any vtable uses in unevaluated operands or for classes that do
10491  // not have a vtable.
10492  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10493      CurContext->isDependentContext() ||
10494      ExprEvalContexts.back().Context == Unevaluated)
10495    return;
10496
10497  // Try to insert this class into the map.
10498  LoadExternalVTableUses();
10499  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10500  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10501    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10502  if (!Pos.second) {
10503    // If we already had an entry, check to see if we are promoting this vtable
10504    // to required a definition. If so, we need to reappend to the VTableUses
10505    // list, since we may have already processed the first entry.
10506    if (DefinitionRequired && !Pos.first->second) {
10507      Pos.first->second = true;
10508    } else {
10509      // Otherwise, we can early exit.
10510      return;
10511    }
10512  }
10513
10514  // Local classes need to have their virtual members marked
10515  // immediately. For all other classes, we mark their virtual members
10516  // at the end of the translation unit.
10517  if (Class->isLocalClass())
10518    MarkVirtualMembersReferenced(Loc, Class);
10519  else
10520    VTableUses.push_back(std::make_pair(Class, Loc));
10521}
10522
10523bool Sema::DefineUsedVTables() {
10524  LoadExternalVTableUses();
10525  if (VTableUses.empty())
10526    return false;
10527
10528  // Note: The VTableUses vector could grow as a result of marking
10529  // the members of a class as "used", so we check the size each
10530  // time through the loop and prefer indices (with are stable) to
10531  // iterators (which are not).
10532  bool DefinedAnything = false;
10533  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10534    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10535    if (!Class)
10536      continue;
10537
10538    SourceLocation Loc = VTableUses[I].second;
10539
10540    // If this class has a key function, but that key function is
10541    // defined in another translation unit, we don't need to emit the
10542    // vtable even though we're using it.
10543    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10544    if (KeyFunction && !KeyFunction->hasBody()) {
10545      switch (KeyFunction->getTemplateSpecializationKind()) {
10546      case TSK_Undeclared:
10547      case TSK_ExplicitSpecialization:
10548      case TSK_ExplicitInstantiationDeclaration:
10549        // The key function is in another translation unit.
10550        continue;
10551
10552      case TSK_ExplicitInstantiationDefinition:
10553      case TSK_ImplicitInstantiation:
10554        // We will be instantiating the key function.
10555        break;
10556      }
10557    } else if (!KeyFunction) {
10558      // If we have a class with no key function that is the subject
10559      // of an explicit instantiation declaration, suppress the
10560      // vtable; it will live with the explicit instantiation
10561      // definition.
10562      bool IsExplicitInstantiationDeclaration
10563        = Class->getTemplateSpecializationKind()
10564                                      == TSK_ExplicitInstantiationDeclaration;
10565      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10566                                 REnd = Class->redecls_end();
10567           R != REnd; ++R) {
10568        TemplateSpecializationKind TSK
10569          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10570        if (TSK == TSK_ExplicitInstantiationDeclaration)
10571          IsExplicitInstantiationDeclaration = true;
10572        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10573          IsExplicitInstantiationDeclaration = false;
10574          break;
10575        }
10576      }
10577
10578      if (IsExplicitInstantiationDeclaration)
10579        continue;
10580    }
10581
10582    // Mark all of the virtual members of this class as referenced, so
10583    // that we can build a vtable. Then, tell the AST consumer that a
10584    // vtable for this class is required.
10585    DefinedAnything = true;
10586    MarkVirtualMembersReferenced(Loc, Class);
10587    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10588    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10589
10590    // Optionally warn if we're emitting a weak vtable.
10591    if (Class->getLinkage() == ExternalLinkage &&
10592        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10593      const FunctionDecl *KeyFunctionDef = 0;
10594      if (!KeyFunction ||
10595          (KeyFunction->hasBody(KeyFunctionDef) &&
10596           KeyFunctionDef->isInlined()))
10597        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
10598    }
10599  }
10600  VTableUses.clear();
10601
10602  return DefinedAnything;
10603}
10604
10605void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10606                                        const CXXRecordDecl *RD) {
10607  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10608       e = RD->method_end(); i != e; ++i) {
10609    CXXMethodDecl *MD = *i;
10610
10611    // C++ [basic.def.odr]p2:
10612    //   [...] A virtual member function is used if it is not pure. [...]
10613    if (MD->isVirtual() && !MD->isPure())
10614      MarkDeclarationReferenced(Loc, MD);
10615  }
10616
10617  // Only classes that have virtual bases need a VTT.
10618  if (RD->getNumVBases() == 0)
10619    return;
10620
10621  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10622           e = RD->bases_end(); i != e; ++i) {
10623    const CXXRecordDecl *Base =
10624        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10625    if (Base->getNumVBases() == 0)
10626      continue;
10627    MarkVirtualMembersReferenced(Loc, Base);
10628  }
10629}
10630
10631/// SetIvarInitializers - This routine builds initialization ASTs for the
10632/// Objective-C implementation whose ivars need be initialized.
10633void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10634  if (!getLangOptions().CPlusPlus)
10635    return;
10636  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10637    SmallVector<ObjCIvarDecl*, 8> ivars;
10638    CollectIvarsToConstructOrDestruct(OID, ivars);
10639    if (ivars.empty())
10640      return;
10641    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10642    for (unsigned i = 0; i < ivars.size(); i++) {
10643      FieldDecl *Field = ivars[i];
10644      if (Field->isInvalidDecl())
10645        continue;
10646
10647      CXXCtorInitializer *Member;
10648      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10649      InitializationKind InitKind =
10650        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10651
10652      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10653      ExprResult MemberInit =
10654        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10655      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10656      // Note, MemberInit could actually come back empty if no initialization
10657      // is required (e.g., because it would call a trivial default constructor)
10658      if (!MemberInit.get() || MemberInit.isInvalid())
10659        continue;
10660
10661      Member =
10662        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10663                                         SourceLocation(),
10664                                         MemberInit.takeAs<Expr>(),
10665                                         SourceLocation());
10666      AllToInit.push_back(Member);
10667
10668      // Be sure that the destructor is accessible and is marked as referenced.
10669      if (const RecordType *RecordTy
10670                  = Context.getBaseElementType(Field->getType())
10671                                                        ->getAs<RecordType>()) {
10672                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10673        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10674          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10675          CheckDestructorAccess(Field->getLocation(), Destructor,
10676                            PDiag(diag::err_access_dtor_ivar)
10677                              << Context.getBaseElementType(Field->getType()));
10678        }
10679      }
10680    }
10681    ObjCImplementation->setIvarInitializers(Context,
10682                                            AllToInit.data(), AllToInit.size());
10683  }
10684}
10685
10686static
10687void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10688                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10689                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10690                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10691                           Sema &S) {
10692  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10693                                                   CE = Current.end();
10694  if (Ctor->isInvalidDecl())
10695    return;
10696
10697  const FunctionDecl *FNTarget = 0;
10698  CXXConstructorDecl *Target;
10699
10700  // We ignore the result here since if we don't have a body, Target will be
10701  // null below.
10702  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10703  Target
10704= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10705
10706  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10707                     // Avoid dereferencing a null pointer here.
10708                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10709
10710  if (!Current.insert(Canonical))
10711    return;
10712
10713  // We know that beyond here, we aren't chaining into a cycle.
10714  if (!Target || !Target->isDelegatingConstructor() ||
10715      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10716    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10717      Valid.insert(*CI);
10718    Current.clear();
10719  // We've hit a cycle.
10720  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10721             Current.count(TCanonical)) {
10722    // If we haven't diagnosed this cycle yet, do so now.
10723    if (!Invalid.count(TCanonical)) {
10724      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10725             diag::warn_delegating_ctor_cycle)
10726        << Ctor;
10727
10728      // Don't add a note for a function delegating directo to itself.
10729      if (TCanonical != Canonical)
10730        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10731
10732      CXXConstructorDecl *C = Target;
10733      while (C->getCanonicalDecl() != Canonical) {
10734        (void)C->getTargetConstructor()->hasBody(FNTarget);
10735        assert(FNTarget && "Ctor cycle through bodiless function");
10736
10737        C
10738       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10739        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10740      }
10741    }
10742
10743    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10744      Invalid.insert(*CI);
10745    Current.clear();
10746  } else {
10747    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10748  }
10749}
10750
10751
10752void Sema::CheckDelegatingCtorCycles() {
10753  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10754
10755  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10756                                                   CE = Current.end();
10757
10758  for (DelegatingCtorDeclsType::iterator
10759         I = DelegatingCtorDecls.begin(ExternalSource),
10760         E = DelegatingCtorDecls.end();
10761       I != E; ++I) {
10762   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10763  }
10764
10765  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10766    (*CI)->setInvalidDecl();
10767}
10768
10769/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10770Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10771  // Implicitly declared functions (e.g. copy constructors) are
10772  // __host__ __device__
10773  if (D->isImplicit())
10774    return CFT_HostDevice;
10775
10776  if (D->hasAttr<CUDAGlobalAttr>())
10777    return CFT_Global;
10778
10779  if (D->hasAttr<CUDADeviceAttr>()) {
10780    if (D->hasAttr<CUDAHostAttr>())
10781      return CFT_HostDevice;
10782    else
10783      return CFT_Device;
10784  }
10785
10786  return CFT_Host;
10787}
10788
10789bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10790                           CUDAFunctionTarget CalleeTarget) {
10791  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10792  // Callable from the device only."
10793  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10794    return true;
10795
10796  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10797  // Callable from the host only."
10798  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10799  // Callable from the host only."
10800  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10801      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10802    return true;
10803
10804  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10805    return true;
10806
10807  return false;
10808}
10809