SemaDeclCXX.cpp revision 916a5ed560c015f6399909b1672ebe90d7f65635
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm> // for std::equal
27#include <map>
28
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// CheckDefaultArgumentVisitor
33//===----------------------------------------------------------------------===//
34
35namespace {
36  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
37  /// the default argument of a parameter to determine whether it
38  /// contains any ill-formed subexpressions. For example, this will
39  /// diagnose the use of local variables or parameters within the
40  /// default argument expression.
41  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
42    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
43    Expr *DefaultArg;
44    Sema *S;
45
46  public:
47    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
48      : DefaultArg(defarg), S(s) {}
49
50    bool VisitExpr(Expr *Node);
51    bool VisitDeclRefExpr(DeclRefExpr *DRE);
52    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
53  };
54
55  /// VisitExpr - Visit all of the children of this expression.
56  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
57    bool IsInvalid = false;
58    for (Stmt::child_iterator I = Node->child_begin(),
59         E = Node->child_end(); I != E; ++I)
60      IsInvalid |= Visit(*I);
61    return IsInvalid;
62  }
63
64  /// VisitDeclRefExpr - Visit a reference to a declaration, to
65  /// determine whether this declaration can be used in the default
66  /// argument expression.
67  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
68    NamedDecl *Decl = DRE->getDecl();
69    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
70      // C++ [dcl.fct.default]p9
71      //   Default arguments are evaluated each time the function is
72      //   called. The order of evaluation of function arguments is
73      //   unspecified. Consequently, parameters of a function shall not
74      //   be used in default argument expressions, even if they are not
75      //   evaluated. Parameters of a function declared before a default
76      //   argument expression are in scope and can hide namespace and
77      //   class member names.
78      return S->Diag(DRE->getSourceRange().getBegin(),
79                     diag::err_param_default_argument_references_param)
80         << Param->getDeclName() << DefaultArg->getSourceRange();
81    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p7
83      //   Local variables shall not be used in default argument
84      //   expressions.
85      if (VDecl->isBlockVarDecl())
86        return S->Diag(DRE->getSourceRange().getBegin(),
87                       diag::err_param_default_argument_references_local)
88          << VDecl->getDeclName() << DefaultArg->getSourceRange();
89    }
90
91    return false;
92  }
93
94  /// VisitCXXThisExpr - Visit a C++ "this" expression.
95  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
96    // C++ [dcl.fct.default]p8:
97    //   The keyword this shall not be used in a default argument of a
98    //   member function.
99    return S->Diag(ThisE->getSourceRange().getBegin(),
100                   diag::err_param_default_argument_references_this)
101               << ThisE->getSourceRange();
102  }
103}
104
105bool
106Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
107                              SourceLocation EqualLoc)
108{
109  QualType ParamType = Param->getType();
110
111  if (RequireCompleteType(Param->getLocation(), Param->getType(),
112                          diag::err_typecheck_decl_incomplete_type)) {
113    Param->setInvalidDecl();
114    return true;
115  }
116
117  Expr *Arg = (Expr *)DefaultArg.get();
118
119  // C++ [dcl.fct.default]p5
120  //   A default argument expression is implicitly converted (clause
121  //   4) to the parameter type. The default argument expression has
122  //   the same semantic constraints as the initializer expression in
123  //   a declaration of a variable of the parameter type, using the
124  //   copy-initialization semantics (8.5).
125  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
126                            Param->getDeclName(), /*DirectInit=*/false))
127    return true;
128
129  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
130
131  // Okay: add the default argument to the parameter
132  Param->setDefaultArg(Arg);
133
134  DefaultArg.release();
135
136  return false;
137}
138
139/// ActOnParamDefaultArgument - Check whether the default argument
140/// provided for a function parameter is well-formed. If so, attach it
141/// to the parameter declaration.
142void
143Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
144                                ExprArg defarg) {
145  if (!param || !defarg.get())
146    return;
147
148  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
149  UnparsedDefaultArgLocs.erase(Param);
150
151  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
152  QualType ParamType = Param->getType();
153
154  // Default arguments are only permitted in C++
155  if (!getLangOptions().CPlusPlus) {
156    Diag(EqualLoc, diag::err_param_default_argument)
157      << DefaultArg->getSourceRange();
158    Param->setInvalidDecl();
159    return;
160  }
161
162  // Check that the default argument is well-formed
163  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
164  if (DefaultArgChecker.Visit(DefaultArg.get())) {
165    Param->setInvalidDecl();
166    return;
167  }
168
169  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
170}
171
172/// ActOnParamUnparsedDefaultArgument - We've seen a default
173/// argument for a function parameter, but we can't parse it yet
174/// because we're inside a class definition. Note that this default
175/// argument will be parsed later.
176void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
177                                             SourceLocation EqualLoc,
178                                             SourceLocation ArgLoc) {
179  if (!param)
180    return;
181
182  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
183  if (Param)
184    Param->setUnparsedDefaultArg();
185
186  UnparsedDefaultArgLocs[Param] = ArgLoc;
187}
188
189/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
190/// the default argument for the parameter param failed.
191void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
192  if (!param)
193    return;
194
195  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
196
197  Param->setInvalidDecl();
198
199  UnparsedDefaultArgLocs.erase(Param);
200}
201
202/// CheckExtraCXXDefaultArguments - Check for any extra default
203/// arguments in the declarator, which is not a function declaration
204/// or definition and therefore is not permitted to have default
205/// arguments. This routine should be invoked for every declarator
206/// that is not a function declaration or definition.
207void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
208  // C++ [dcl.fct.default]p3
209  //   A default argument expression shall be specified only in the
210  //   parameter-declaration-clause of a function declaration or in a
211  //   template-parameter (14.1). It shall not be specified for a
212  //   parameter pack. If it is specified in a
213  //   parameter-declaration-clause, it shall not occur within a
214  //   declarator or abstract-declarator of a parameter-declaration.
215  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
216    DeclaratorChunk &chunk = D.getTypeObject(i);
217    if (chunk.Kind == DeclaratorChunk::Function) {
218      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
219        ParmVarDecl *Param =
220          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
221        if (Param->hasUnparsedDefaultArg()) {
222          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
223          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
224            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
225          delete Toks;
226          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
227        } else if (Param->getDefaultArg()) {
228          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
229            << Param->getDefaultArg()->getSourceRange();
230          Param->setDefaultArg(0);
231        }
232      }
233    }
234  }
235}
236
237// MergeCXXFunctionDecl - Merge two declarations of the same C++
238// function, once we already know that they have the same
239// type. Subroutine of MergeFunctionDecl. Returns true if there was an
240// error, false otherwise.
241bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
242  bool Invalid = false;
243
244  // C++ [dcl.fct.default]p4:
245  //
246  //   For non-template functions, default arguments can be added in
247  //   later declarations of a function in the same
248  //   scope. Declarations in different scopes have completely
249  //   distinct sets of default arguments. That is, declarations in
250  //   inner scopes do not acquire default arguments from
251  //   declarations in outer scopes, and vice versa. In a given
252  //   function declaration, all parameters subsequent to a
253  //   parameter with a default argument shall have default
254  //   arguments supplied in this or previous declarations. A
255  //   default argument shall not be redefined by a later
256  //   declaration (not even to the same value).
257  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
258    ParmVarDecl *OldParam = Old->getParamDecl(p);
259    ParmVarDecl *NewParam = New->getParamDecl(p);
260
261    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
262      Diag(NewParam->getLocation(),
263           diag::err_param_default_argument_redefinition)
264        << NewParam->getDefaultArg()->getSourceRange();
265      Diag(OldParam->getLocation(), diag::note_previous_definition);
266      Invalid = true;
267    } else if (OldParam->getDefaultArg()) {
268      // Merge the old default argument into the new parameter
269      NewParam->setDefaultArg(OldParam->getDefaultArg());
270    }
271  }
272
273  if (CheckEquivalentExceptionSpec(
274          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
275          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
276    Invalid = true;
277  }
278
279  return Invalid;
280}
281
282/// CheckCXXDefaultArguments - Verify that the default arguments for a
283/// function declaration are well-formed according to C++
284/// [dcl.fct.default].
285void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
286  unsigned NumParams = FD->getNumParams();
287  unsigned p;
288
289  // Find first parameter with a default argument
290  for (p = 0; p < NumParams; ++p) {
291    ParmVarDecl *Param = FD->getParamDecl(p);
292    if (Param->hasDefaultArg())
293      break;
294  }
295
296  // C++ [dcl.fct.default]p4:
297  //   In a given function declaration, all parameters
298  //   subsequent to a parameter with a default argument shall
299  //   have default arguments supplied in this or previous
300  //   declarations. A default argument shall not be redefined
301  //   by a later declaration (not even to the same value).
302  unsigned LastMissingDefaultArg = 0;
303  for(; p < NumParams; ++p) {
304    ParmVarDecl *Param = FD->getParamDecl(p);
305    if (!Param->hasDefaultArg()) {
306      if (Param->isInvalidDecl())
307        /* We already complained about this parameter. */;
308      else if (Param->getIdentifier())
309        Diag(Param->getLocation(),
310             diag::err_param_default_argument_missing_name)
311          << Param->getIdentifier();
312      else
313        Diag(Param->getLocation(),
314             diag::err_param_default_argument_missing);
315
316      LastMissingDefaultArg = p;
317    }
318  }
319
320  if (LastMissingDefaultArg > 0) {
321    // Some default arguments were missing. Clear out all of the
322    // default arguments up to (and including) the last missing
323    // default argument, so that we leave the function parameters
324    // in a semantically valid state.
325    for (p = 0; p <= LastMissingDefaultArg; ++p) {
326      ParmVarDecl *Param = FD->getParamDecl(p);
327      if (Param->hasDefaultArg()) {
328        if (!Param->hasUnparsedDefaultArg())
329          Param->getDefaultArg()->Destroy(Context);
330        Param->setDefaultArg(0);
331      }
332    }
333  }
334}
335
336/// isCurrentClassName - Determine whether the identifier II is the
337/// name of the class type currently being defined. In the case of
338/// nested classes, this will only return true if II is the name of
339/// the innermost class.
340bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
341                              const CXXScopeSpec *SS) {
342  CXXRecordDecl *CurDecl;
343  if (SS && SS->isSet() && !SS->isInvalid()) {
344    DeclContext *DC = computeDeclContext(*SS, true);
345    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
346  } else
347    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
348
349  if (CurDecl)
350    return &II == CurDecl->getIdentifier();
351  else
352    return false;
353}
354
355/// \brief Check the validity of a C++ base class specifier.
356///
357/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
358/// and returns NULL otherwise.
359CXXBaseSpecifier *
360Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
361                         SourceRange SpecifierRange,
362                         bool Virtual, AccessSpecifier Access,
363                         QualType BaseType,
364                         SourceLocation BaseLoc) {
365  // C++ [class.union]p1:
366  //   A union shall not have base classes.
367  if (Class->isUnion()) {
368    Diag(Class->getLocation(), diag::err_base_clause_on_union)
369      << SpecifierRange;
370    return 0;
371  }
372
373  if (BaseType->isDependentType())
374    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
375                                Class->getTagKind() == RecordDecl::TK_class,
376                                Access, BaseType);
377
378  // Base specifiers must be record types.
379  if (!BaseType->isRecordType()) {
380    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
381    return 0;
382  }
383
384  // C++ [class.union]p1:
385  //   A union shall not be used as a base class.
386  if (BaseType->isUnionType()) {
387    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
388    return 0;
389  }
390
391  // C++ [class.derived]p2:
392  //   The class-name in a base-specifier shall not be an incompletely
393  //   defined class.
394  if (RequireCompleteType(BaseLoc, BaseType,
395                          PDiag(diag::err_incomplete_base_class)
396                            << SpecifierRange))
397    return 0;
398
399  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
400  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
401  assert(BaseDecl && "Record type has no declaration");
402  BaseDecl = BaseDecl->getDefinition(Context);
403  assert(BaseDecl && "Base type is not incomplete, but has no definition");
404  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
405  assert(CXXBaseDecl && "Base type is not a C++ type");
406  if (!CXXBaseDecl->isEmpty())
407    Class->setEmpty(false);
408  if (CXXBaseDecl->isPolymorphic())
409    Class->setPolymorphic(true);
410
411  // C++ [dcl.init.aggr]p1:
412  //   An aggregate is [...] a class with [...] no base classes [...].
413  Class->setAggregate(false);
414  Class->setPOD(false);
415
416  if (Virtual) {
417    // C++ [class.ctor]p5:
418    //   A constructor is trivial if its class has no virtual base classes.
419    Class->setHasTrivialConstructor(false);
420
421    // C++ [class.copy]p6:
422    //   A copy constructor is trivial if its class has no virtual base classes.
423    Class->setHasTrivialCopyConstructor(false);
424
425    // C++ [class.copy]p11:
426    //   A copy assignment operator is trivial if its class has no virtual
427    //   base classes.
428    Class->setHasTrivialCopyAssignment(false);
429
430    // C++0x [meta.unary.prop] is_empty:
431    //    T is a class type, but not a union type, with ... no virtual base
432    //    classes
433    Class->setEmpty(false);
434  } else {
435    // C++ [class.ctor]p5:
436    //   A constructor is trivial if all the direct base classes of its
437    //   class have trivial constructors.
438    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
439      Class->setHasTrivialConstructor(false);
440
441    // C++ [class.copy]p6:
442    //   A copy constructor is trivial if all the direct base classes of its
443    //   class have trivial copy constructors.
444    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
445      Class->setHasTrivialCopyConstructor(false);
446
447    // C++ [class.copy]p11:
448    //   A copy assignment operator is trivial if all the direct base classes
449    //   of its class have trivial copy assignment operators.
450    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
451      Class->setHasTrivialCopyAssignment(false);
452  }
453
454  // C++ [class.ctor]p3:
455  //   A destructor is trivial if all the direct base classes of its class
456  //   have trivial destructors.
457  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
458    Class->setHasTrivialDestructor(false);
459
460  // Create the base specifier.
461  // FIXME: Allocate via ASTContext?
462  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
463                              Class->getTagKind() == RecordDecl::TK_class,
464                              Access, BaseType);
465}
466
467/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
468/// one entry in the base class list of a class specifier, for
469/// example:
470///    class foo : public bar, virtual private baz {
471/// 'public bar' and 'virtual private baz' are each base-specifiers.
472Sema::BaseResult
473Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
474                         bool Virtual, AccessSpecifier Access,
475                         TypeTy *basetype, SourceLocation BaseLoc) {
476  if (!classdecl)
477    return true;
478
479  AdjustDeclIfTemplate(classdecl);
480  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
481  QualType BaseType = GetTypeFromParser(basetype);
482  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
483                                                      Virtual, Access,
484                                                      BaseType, BaseLoc))
485    return BaseSpec;
486
487  return true;
488}
489
490/// \brief Performs the actual work of attaching the given base class
491/// specifiers to a C++ class.
492bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
493                                unsigned NumBases) {
494 if (NumBases == 0)
495    return false;
496
497  // Used to keep track of which base types we have already seen, so
498  // that we can properly diagnose redundant direct base types. Note
499  // that the key is always the unqualified canonical type of the base
500  // class.
501  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
502
503  // Copy non-redundant base specifiers into permanent storage.
504  unsigned NumGoodBases = 0;
505  bool Invalid = false;
506  for (unsigned idx = 0; idx < NumBases; ++idx) {
507    QualType NewBaseType
508      = Context.getCanonicalType(Bases[idx]->getType());
509    NewBaseType = NewBaseType.getUnqualifiedType();
510
511    if (KnownBaseTypes[NewBaseType]) {
512      // C++ [class.mi]p3:
513      //   A class shall not be specified as a direct base class of a
514      //   derived class more than once.
515      Diag(Bases[idx]->getSourceRange().getBegin(),
516           diag::err_duplicate_base_class)
517        << KnownBaseTypes[NewBaseType]->getType()
518        << Bases[idx]->getSourceRange();
519
520      // Delete the duplicate base class specifier; we're going to
521      // overwrite its pointer later.
522      Context.Deallocate(Bases[idx]);
523
524      Invalid = true;
525    } else {
526      // Okay, add this new base class.
527      KnownBaseTypes[NewBaseType] = Bases[idx];
528      Bases[NumGoodBases++] = Bases[idx];
529    }
530  }
531
532  // Attach the remaining base class specifiers to the derived class.
533  Class->setBases(Context, Bases, NumGoodBases);
534
535  // Delete the remaining (good) base class specifiers, since their
536  // data has been copied into the CXXRecordDecl.
537  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
538    Context.Deallocate(Bases[idx]);
539
540  return Invalid;
541}
542
543/// ActOnBaseSpecifiers - Attach the given base specifiers to the
544/// class, after checking whether there are any duplicate base
545/// classes.
546void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
547                               unsigned NumBases) {
548  if (!ClassDecl || !Bases || !NumBases)
549    return;
550
551  AdjustDeclIfTemplate(ClassDecl);
552  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
553                       (CXXBaseSpecifier**)(Bases), NumBases);
554}
555
556//===----------------------------------------------------------------------===//
557// C++ class member Handling
558//===----------------------------------------------------------------------===//
559
560/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
561/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
562/// bitfield width if there is one and 'InitExpr' specifies the initializer if
563/// any.
564Sema::DeclPtrTy
565Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
566                               MultiTemplateParamsArg TemplateParameterLists,
567                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
568  const DeclSpec &DS = D.getDeclSpec();
569  DeclarationName Name = GetNameForDeclarator(D);
570  Expr *BitWidth = static_cast<Expr*>(BW);
571  Expr *Init = static_cast<Expr*>(InitExpr);
572  SourceLocation Loc = D.getIdentifierLoc();
573
574  bool isFunc = D.isFunctionDeclarator();
575
576  assert(!DS.isFriendSpecified());
577
578  // C++ 9.2p6: A member shall not be declared to have automatic storage
579  // duration (auto, register) or with the extern storage-class-specifier.
580  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
581  // data members and cannot be applied to names declared const or static,
582  // and cannot be applied to reference members.
583  switch (DS.getStorageClassSpec()) {
584    case DeclSpec::SCS_unspecified:
585    case DeclSpec::SCS_typedef:
586    case DeclSpec::SCS_static:
587      // FALL THROUGH.
588      break;
589    case DeclSpec::SCS_mutable:
590      if (isFunc) {
591        if (DS.getStorageClassSpecLoc().isValid())
592          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
593        else
594          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
595
596        // FIXME: It would be nicer if the keyword was ignored only for this
597        // declarator. Otherwise we could get follow-up errors.
598        D.getMutableDeclSpec().ClearStorageClassSpecs();
599      } else {
600        QualType T = GetTypeForDeclarator(D, S);
601        diag::kind err = static_cast<diag::kind>(0);
602        if (T->isReferenceType())
603          err = diag::err_mutable_reference;
604        else if (T.isConstQualified())
605          err = diag::err_mutable_const;
606        if (err != 0) {
607          if (DS.getStorageClassSpecLoc().isValid())
608            Diag(DS.getStorageClassSpecLoc(), err);
609          else
610            Diag(DS.getThreadSpecLoc(), err);
611          // FIXME: It would be nicer if the keyword was ignored only for this
612          // declarator. Otherwise we could get follow-up errors.
613          D.getMutableDeclSpec().ClearStorageClassSpecs();
614        }
615      }
616      break;
617    default:
618      if (DS.getStorageClassSpecLoc().isValid())
619        Diag(DS.getStorageClassSpecLoc(),
620             diag::err_storageclass_invalid_for_member);
621      else
622        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
623      D.getMutableDeclSpec().ClearStorageClassSpecs();
624  }
625
626  if (!isFunc &&
627      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
628      D.getNumTypeObjects() == 0) {
629    // Check also for this case:
630    //
631    // typedef int f();
632    // f a;
633    //
634    QualType TDType = GetTypeFromParser(DS.getTypeRep());
635    isFunc = TDType->isFunctionType();
636  }
637
638  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
639                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
640                      !isFunc);
641
642  Decl *Member;
643  if (isInstField) {
644    // FIXME: Check for template parameters!
645    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
646                         AS);
647    assert(Member && "HandleField never returns null");
648  } else {
649    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
650               .getAs<Decl>();
651    if (!Member) {
652      if (BitWidth) DeleteExpr(BitWidth);
653      return DeclPtrTy();
654    }
655
656    // Non-instance-fields can't have a bitfield.
657    if (BitWidth) {
658      if (Member->isInvalidDecl()) {
659        // don't emit another diagnostic.
660      } else if (isa<VarDecl>(Member)) {
661        // C++ 9.6p3: A bit-field shall not be a static member.
662        // "static member 'A' cannot be a bit-field"
663        Diag(Loc, diag::err_static_not_bitfield)
664          << Name << BitWidth->getSourceRange();
665      } else if (isa<TypedefDecl>(Member)) {
666        // "typedef member 'x' cannot be a bit-field"
667        Diag(Loc, diag::err_typedef_not_bitfield)
668          << Name << BitWidth->getSourceRange();
669      } else {
670        // A function typedef ("typedef int f(); f a;").
671        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
672        Diag(Loc, diag::err_not_integral_type_bitfield)
673          << Name << cast<ValueDecl>(Member)->getType()
674          << BitWidth->getSourceRange();
675      }
676
677      DeleteExpr(BitWidth);
678      BitWidth = 0;
679      Member->setInvalidDecl();
680    }
681
682    Member->setAccess(AS);
683
684    // If we have declared a member function template, set the access of the
685    // templated declaration as well.
686    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
687      FunTmpl->getTemplatedDecl()->setAccess(AS);
688  }
689
690  assert((Name || isInstField) && "No identifier for non-field ?");
691
692  if (Init)
693    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
694  if (Deleted) // FIXME: Source location is not very good.
695    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
696
697  if (isInstField) {
698    FieldCollector->Add(cast<FieldDecl>(Member));
699    return DeclPtrTy();
700  }
701  return DeclPtrTy::make(Member);
702}
703
704/// ActOnMemInitializer - Handle a C++ member initializer.
705Sema::MemInitResult
706Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
707                          Scope *S,
708                          const CXXScopeSpec &SS,
709                          IdentifierInfo *MemberOrBase,
710                          TypeTy *TemplateTypeTy,
711                          SourceLocation IdLoc,
712                          SourceLocation LParenLoc,
713                          ExprTy **Args, unsigned NumArgs,
714                          SourceLocation *CommaLocs,
715                          SourceLocation RParenLoc) {
716  if (!ConstructorD)
717    return true;
718
719  AdjustDeclIfTemplate(ConstructorD);
720
721  CXXConstructorDecl *Constructor
722    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
723  if (!Constructor) {
724    // The user wrote a constructor initializer on a function that is
725    // not a C++ constructor. Ignore the error for now, because we may
726    // have more member initializers coming; we'll diagnose it just
727    // once in ActOnMemInitializers.
728    return true;
729  }
730
731  CXXRecordDecl *ClassDecl = Constructor->getParent();
732
733  // C++ [class.base.init]p2:
734  //   Names in a mem-initializer-id are looked up in the scope of the
735  //   constructor’s class and, if not found in that scope, are looked
736  //   up in the scope containing the constructor’s
737  //   definition. [Note: if the constructor’s class contains a member
738  //   with the same name as a direct or virtual base class of the
739  //   class, a mem-initializer-id naming the member or base class and
740  //   composed of a single identifier refers to the class member. A
741  //   mem-initializer-id for the hidden base class may be specified
742  //   using a qualified name. ]
743  if (!SS.getScopeRep() && !TemplateTypeTy) {
744    // Look for a member, first.
745    FieldDecl *Member = 0;
746    DeclContext::lookup_result Result
747      = ClassDecl->lookup(MemberOrBase);
748    if (Result.first != Result.second)
749      Member = dyn_cast<FieldDecl>(*Result.first);
750
751    // FIXME: Handle members of an anonymous union.
752
753    if (Member)
754      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
755                                    RParenLoc);
756  }
757  // It didn't name a member, so see if it names a class.
758  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
759                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
760  if (!BaseTy)
761    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
762      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
763
764  QualType BaseType = GetTypeFromParser(BaseTy);
765
766  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
767                              RParenLoc, ClassDecl);
768}
769
770Sema::MemInitResult
771Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
772                             unsigned NumArgs, SourceLocation IdLoc,
773                             SourceLocation RParenLoc) {
774  bool HasDependentArg = false;
775  for (unsigned i = 0; i < NumArgs; i++)
776    HasDependentArg |= Args[i]->isTypeDependent();
777
778  CXXConstructorDecl *C = 0;
779  QualType FieldType = Member->getType();
780  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
781    FieldType = Array->getElementType();
782  if (FieldType->isDependentType()) {
783    // Can't check init for dependent type.
784  } else if (FieldType->getAs<RecordType>()) {
785    if (!HasDependentArg)
786      C = PerformInitializationByConstructor(
787            FieldType, (Expr **)Args, NumArgs, IdLoc,
788            SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
789  } else if (NumArgs != 1 && NumArgs != 0) {
790    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
791                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
792  } else if (!HasDependentArg) {
793    Expr *NewExp;
794    if (NumArgs == 0) {
795      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
796      NumArgs = 1;
797    }
798    else
799      NewExp = (Expr*)Args[0];
800    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
801      return true;
802    Args[0] = NewExp;
803  }
804  // FIXME: Perform direct initialization of the member.
805  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
806                                                  NumArgs, C, IdLoc, RParenLoc);
807}
808
809Sema::MemInitResult
810Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
811                           unsigned NumArgs, SourceLocation IdLoc,
812                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
813  bool HasDependentArg = false;
814  for (unsigned i = 0; i < NumArgs; i++)
815    HasDependentArg |= Args[i]->isTypeDependent();
816
817  if (!BaseType->isDependentType()) {
818    if (!BaseType->isRecordType())
819      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
820        << BaseType << SourceRange(IdLoc, RParenLoc);
821
822    // C++ [class.base.init]p2:
823    //   [...] Unless the mem-initializer-id names a nonstatic data
824    //   member of the constructor’s class or a direct or virtual base
825    //   of that class, the mem-initializer is ill-formed. A
826    //   mem-initializer-list can initialize a base class using any
827    //   name that denotes that base class type.
828
829    // First, check for a direct base class.
830    const CXXBaseSpecifier *DirectBaseSpec = 0;
831    for (CXXRecordDecl::base_class_const_iterator Base =
832         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
833      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
834          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
835        // We found a direct base of this type. That's what we're
836        // initializing.
837        DirectBaseSpec = &*Base;
838        break;
839      }
840    }
841
842    // Check for a virtual base class.
843    // FIXME: We might be able to short-circuit this if we know in advance that
844    // there are no virtual bases.
845    const CXXBaseSpecifier *VirtualBaseSpec = 0;
846    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
847      // We haven't found a base yet; search the class hierarchy for a
848      // virtual base class.
849      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
850                      /*DetectVirtual=*/false);
851      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
852        for (BasePaths::paths_iterator Path = Paths.begin();
853             Path != Paths.end(); ++Path) {
854          if (Path->back().Base->isVirtual()) {
855            VirtualBaseSpec = Path->back().Base;
856            break;
857          }
858        }
859      }
860    }
861
862    // C++ [base.class.init]p2:
863    //   If a mem-initializer-id is ambiguous because it designates both
864    //   a direct non-virtual base class and an inherited virtual base
865    //   class, the mem-initializer is ill-formed.
866    if (DirectBaseSpec && VirtualBaseSpec)
867      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
868        << BaseType << SourceRange(IdLoc, RParenLoc);
869    // C++ [base.class.init]p2:
870    // Unless the mem-initializer-id names a nonstatic data membeer of the
871    // constructor's class ot a direst or virtual base of that class, the
872    // mem-initializer is ill-formed.
873    if (!DirectBaseSpec && !VirtualBaseSpec)
874      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
875      << BaseType << ClassDecl->getNameAsCString()
876      << SourceRange(IdLoc, RParenLoc);
877  }
878
879  CXXConstructorDecl *C = 0;
880  if (!BaseType->isDependentType() && !HasDependentArg) {
881    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
882                                            Context.getCanonicalType(BaseType));
883    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs,
884                                           IdLoc, SourceRange(IdLoc, RParenLoc),
885                                           Name, IK_Direct);
886  }
887
888  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
889                                                  NumArgs, C, IdLoc, RParenLoc);
890}
891
892void
893Sema::BuildBaseOrMemberInitializers(ASTContext &C,
894                                 CXXConstructorDecl *Constructor,
895                                 CXXBaseOrMemberInitializer **Initializers,
896                                 unsigned NumInitializers
897                                 ) {
898  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
899  llvm::SmallVector<FieldDecl *, 4>Members;
900
901  Constructor->setBaseOrMemberInitializers(C,
902                                           Initializers, NumInitializers,
903                                           Bases, Members);
904  for (unsigned int i = 0; i < Bases.size(); i++)
905    Diag(Bases[i]->getSourceRange().getBegin(),
906         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
907  for (unsigned int i = 0; i < Members.size(); i++)
908    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
909          << 1 << Members[i]->getType();
910}
911
912static void *GetKeyForTopLevelField(FieldDecl *Field) {
913  // For anonymous unions, use the class declaration as the key.
914  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
915    if (RT->getDecl()->isAnonymousStructOrUnion())
916      return static_cast<void *>(RT->getDecl());
917  }
918  return static_cast<void *>(Field);
919}
920
921static void *GetKeyForBase(QualType BaseType) {
922  if (const RecordType *RT = BaseType->getAs<RecordType>())
923    return (void *)RT;
924
925  assert(0 && "Unexpected base type!");
926  return 0;
927}
928
929static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
930                             bool MemberMaybeAnon = false) {
931  // For fields injected into the class via declaration of an anonymous union,
932  // use its anonymous union class declaration as the unique key.
933  if (Member->isMemberInitializer()) {
934    FieldDecl *Field = Member->getMember();
935
936    // After BuildBaseOrMemberInitializers call, Field is the anonymous union
937    // data member of the class. Data member used in the initializer list is
938    // in AnonUnionMember field.
939    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
940      Field = Member->getAnonUnionMember();
941    if (Field->getDeclContext()->isRecord()) {
942      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
943      if (RD->isAnonymousStructOrUnion())
944        return static_cast<void *>(RD);
945    }
946    return static_cast<void *>(Field);
947  }
948
949  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
950}
951
952void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
953                                SourceLocation ColonLoc,
954                                MemInitTy **MemInits, unsigned NumMemInits) {
955  if (!ConstructorDecl)
956    return;
957
958  AdjustDeclIfTemplate(ConstructorDecl);
959
960  CXXConstructorDecl *Constructor
961    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
962
963  if (!Constructor) {
964    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
965    return;
966  }
967
968  if (!Constructor->isDependentContext()) {
969    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
970    bool err = false;
971    for (unsigned i = 0; i < NumMemInits; i++) {
972      CXXBaseOrMemberInitializer *Member =
973        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
974      void *KeyToMember = GetKeyForMember(Member);
975      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
976      if (!PrevMember) {
977        PrevMember = Member;
978        continue;
979      }
980      if (FieldDecl *Field = Member->getMember())
981        Diag(Member->getSourceLocation(),
982             diag::error_multiple_mem_initialization)
983        << Field->getNameAsString();
984      else {
985        Type *BaseClass = Member->getBaseClass();
986        assert(BaseClass && "ActOnMemInitializers - neither field or base");
987        Diag(Member->getSourceLocation(),
988             diag::error_multiple_base_initialization)
989          << BaseClass->getDesugaredType(true);
990      }
991      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
992        << 0;
993      err = true;
994    }
995
996    if (err)
997      return;
998  }
999
1000  BuildBaseOrMemberInitializers(Context, Constructor,
1001                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1002                      NumMemInits);
1003
1004  if (Constructor->isDependentContext())
1005    return;
1006  // Mark all constructors used in initialization of class's members
1007  // as referenced.
1008  // FIXME. We can do this while building the initializer list. But
1009  // MarkDeclarationReferenced is not accessible in ASTContext.
1010  for (CXXConstructorDecl::init_const_iterator B = Constructor->init_begin(),
1011       E = Constructor->init_end();
1012       B != E; ++B) {
1013    CXXBaseOrMemberInitializer *Member = (*B);
1014    if (!Member->isMemberInitializer())
1015      continue;
1016    FieldDecl *Field = Member->getMember();
1017    QualType FT = Context.getBaseElementType(Field->getType());
1018    if (FT->isDependentType())
1019      continue;
1020    if (const RecordType* RT = FT->getAs<RecordType>())
1021      if (CXXConstructorDecl *Ctor =
1022            cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context))
1023        MarkDeclarationReferenced(Ctor->getLocation(), Ctor);
1024  }
1025  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1026      Diagnostic::Ignored &&
1027      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1028      Diagnostic::Ignored)
1029    return;
1030
1031  // Also issue warning if order of ctor-initializer list does not match order
1032  // of 1) base class declarations and 2) order of non-static data members.
1033  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1034
1035  CXXRecordDecl *ClassDecl
1036    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1037  // Push virtual bases before others.
1038  for (CXXRecordDecl::base_class_iterator VBase =
1039       ClassDecl->vbases_begin(),
1040       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1041    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1042
1043  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1044       E = ClassDecl->bases_end(); Base != E; ++Base) {
1045    // Virtuals are alread in the virtual base list and are constructed
1046    // first.
1047    if (Base->isVirtual())
1048      continue;
1049    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1050  }
1051
1052  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1053       E = ClassDecl->field_end(); Field != E; ++Field)
1054    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1055
1056  int Last = AllBaseOrMembers.size();
1057  int curIndex = 0;
1058  CXXBaseOrMemberInitializer *PrevMember = 0;
1059  for (unsigned i = 0; i < NumMemInits; i++) {
1060    CXXBaseOrMemberInitializer *Member =
1061      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1062    void *MemberInCtorList = GetKeyForMember(Member, true);
1063
1064    for (; curIndex < Last; curIndex++)
1065      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1066        break;
1067    if (curIndex == Last) {
1068      assert(PrevMember && "Member not in member list?!");
1069      // Initializer as specified in ctor-initializer list is out of order.
1070      // Issue a warning diagnostic.
1071      if (PrevMember->isBaseInitializer()) {
1072        // Diagnostics is for an initialized base class.
1073        Type *BaseClass = PrevMember->getBaseClass();
1074        Diag(PrevMember->getSourceLocation(),
1075             diag::warn_base_initialized)
1076              << BaseClass->getDesugaredType(true);
1077      } else {
1078        FieldDecl *Field = PrevMember->getMember();
1079        Diag(PrevMember->getSourceLocation(),
1080             diag::warn_field_initialized)
1081          << Field->getNameAsString();
1082      }
1083      // Also the note!
1084      if (FieldDecl *Field = Member->getMember())
1085        Diag(Member->getSourceLocation(),
1086             diag::note_fieldorbase_initialized_here) << 0
1087          << Field->getNameAsString();
1088      else {
1089        Type *BaseClass = Member->getBaseClass();
1090        Diag(Member->getSourceLocation(),
1091             diag::note_fieldorbase_initialized_here) << 1
1092          << BaseClass->getDesugaredType(true);
1093      }
1094      for (curIndex = 0; curIndex < Last; curIndex++)
1095        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1096          break;
1097    }
1098    PrevMember = Member;
1099  }
1100}
1101
1102void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1103  if (!CDtorDecl)
1104    return;
1105
1106  AdjustDeclIfTemplate(CDtorDecl);
1107
1108  if (CXXConstructorDecl *Constructor
1109      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1110    BuildBaseOrMemberInitializers(Context,
1111                                     Constructor,
1112                                     (CXXBaseOrMemberInitializer **)0, 0);
1113}
1114
1115namespace {
1116  /// PureVirtualMethodCollector - traverses a class and its superclasses
1117  /// and determines if it has any pure virtual methods.
1118  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1119    ASTContext &Context;
1120
1121  public:
1122    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1123
1124  private:
1125    MethodList Methods;
1126
1127    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1128
1129  public:
1130    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1131      : Context(Ctx) {
1132
1133      MethodList List;
1134      Collect(RD, List);
1135
1136      // Copy the temporary list to methods, and make sure to ignore any
1137      // null entries.
1138      for (size_t i = 0, e = List.size(); i != e; ++i) {
1139        if (List[i])
1140          Methods.push_back(List[i]);
1141      }
1142    }
1143
1144    bool empty() const { return Methods.empty(); }
1145
1146    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1147    MethodList::const_iterator methods_end() { return Methods.end(); }
1148  };
1149
1150  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1151                                           MethodList& Methods) {
1152    // First, collect the pure virtual methods for the base classes.
1153    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1154         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1155      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1156        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1157        if (BaseDecl && BaseDecl->isAbstract())
1158          Collect(BaseDecl, Methods);
1159      }
1160    }
1161
1162    // Next, zero out any pure virtual methods that this class overrides.
1163    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1164
1165    MethodSetTy OverriddenMethods;
1166    size_t MethodsSize = Methods.size();
1167
1168    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1169         i != e; ++i) {
1170      // Traverse the record, looking for methods.
1171      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1172        // If the method is pure virtual, add it to the methods vector.
1173        if (MD->isPure()) {
1174          Methods.push_back(MD);
1175          continue;
1176        }
1177
1178        // Otherwise, record all the overridden methods in our set.
1179        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1180             E = MD->end_overridden_methods(); I != E; ++I) {
1181          // Keep track of the overridden methods.
1182          OverriddenMethods.insert(*I);
1183        }
1184      }
1185    }
1186
1187    // Now go through the methods and zero out all the ones we know are
1188    // overridden.
1189    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1190      if (OverriddenMethods.count(Methods[i]))
1191        Methods[i] = 0;
1192    }
1193
1194  }
1195}
1196
1197
1198bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1199                                  unsigned DiagID, AbstractDiagSelID SelID,
1200                                  const CXXRecordDecl *CurrentRD) {
1201  if (SelID == -1)
1202    return RequireNonAbstractType(Loc, T,
1203                                  PDiag(DiagID), CurrentRD);
1204  else
1205    return RequireNonAbstractType(Loc, T,
1206                                  PDiag(DiagID) << SelID, CurrentRD);
1207}
1208
1209bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1210                                  const PartialDiagnostic &PD,
1211                                  const CXXRecordDecl *CurrentRD) {
1212  if (!getLangOptions().CPlusPlus)
1213    return false;
1214
1215  if (const ArrayType *AT = Context.getAsArrayType(T))
1216    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1217                                  CurrentRD);
1218
1219  if (const PointerType *PT = T->getAs<PointerType>()) {
1220    // Find the innermost pointer type.
1221    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1222      PT = T;
1223
1224    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1225      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1226  }
1227
1228  const RecordType *RT = T->getAs<RecordType>();
1229  if (!RT)
1230    return false;
1231
1232  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1233  if (!RD)
1234    return false;
1235
1236  if (CurrentRD && CurrentRD != RD)
1237    return false;
1238
1239  if (!RD->isAbstract())
1240    return false;
1241
1242  Diag(Loc, PD) << RD->getDeclName();
1243
1244  // Check if we've already emitted the list of pure virtual functions for this
1245  // class.
1246  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1247    return true;
1248
1249  PureVirtualMethodCollector Collector(Context, RD);
1250
1251  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1252       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1253    const CXXMethodDecl *MD = *I;
1254
1255    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1256      MD->getDeclName();
1257  }
1258
1259  if (!PureVirtualClassDiagSet)
1260    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1261  PureVirtualClassDiagSet->insert(RD);
1262
1263  return true;
1264}
1265
1266namespace {
1267  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1268    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1269    Sema &SemaRef;
1270    CXXRecordDecl *AbstractClass;
1271
1272    bool VisitDeclContext(const DeclContext *DC) {
1273      bool Invalid = false;
1274
1275      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1276           E = DC->decls_end(); I != E; ++I)
1277        Invalid |= Visit(*I);
1278
1279      return Invalid;
1280    }
1281
1282  public:
1283    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1284      : SemaRef(SemaRef), AbstractClass(ac) {
1285        Visit(SemaRef.Context.getTranslationUnitDecl());
1286    }
1287
1288    bool VisitFunctionDecl(const FunctionDecl *FD) {
1289      if (FD->isThisDeclarationADefinition()) {
1290        // No need to do the check if we're in a definition, because it requires
1291        // that the return/param types are complete.
1292        // because that requires
1293        return VisitDeclContext(FD);
1294      }
1295
1296      // Check the return type.
1297      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1298      bool Invalid =
1299        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1300                                       diag::err_abstract_type_in_decl,
1301                                       Sema::AbstractReturnType,
1302                                       AbstractClass);
1303
1304      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1305           E = FD->param_end(); I != E; ++I) {
1306        const ParmVarDecl *VD = *I;
1307        Invalid |=
1308          SemaRef.RequireNonAbstractType(VD->getLocation(),
1309                                         VD->getOriginalType(),
1310                                         diag::err_abstract_type_in_decl,
1311                                         Sema::AbstractParamType,
1312                                         AbstractClass);
1313      }
1314
1315      return Invalid;
1316    }
1317
1318    bool VisitDecl(const Decl* D) {
1319      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1320        return VisitDeclContext(DC);
1321
1322      return false;
1323    }
1324  };
1325}
1326
1327void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1328                                             DeclPtrTy TagDecl,
1329                                             SourceLocation LBrac,
1330                                             SourceLocation RBrac) {
1331  if (!TagDecl)
1332    return;
1333
1334  AdjustDeclIfTemplate(TagDecl);
1335  ActOnFields(S, RLoc, TagDecl,
1336              (DeclPtrTy*)FieldCollector->getCurFields(),
1337              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1338
1339  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1340  if (!RD->isAbstract()) {
1341    // Collect all the pure virtual methods and see if this is an abstract
1342    // class after all.
1343    PureVirtualMethodCollector Collector(Context, RD);
1344    if (!Collector.empty())
1345      RD->setAbstract(true);
1346  }
1347
1348  if (RD->isAbstract())
1349    AbstractClassUsageDiagnoser(*this, RD);
1350
1351  if (!RD->isDependentType())
1352    AddImplicitlyDeclaredMembersToClass(RD);
1353}
1354
1355/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1356/// special functions, such as the default constructor, copy
1357/// constructor, or destructor, to the given C++ class (C++
1358/// [special]p1).  This routine can only be executed just before the
1359/// definition of the class is complete.
1360void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1361  CanQualType ClassType
1362    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1363
1364  // FIXME: Implicit declarations have exception specifications, which are
1365  // the union of the specifications of the implicitly called functions.
1366
1367  if (!ClassDecl->hasUserDeclaredConstructor()) {
1368    // C++ [class.ctor]p5:
1369    //   A default constructor for a class X is a constructor of class X
1370    //   that can be called without an argument. If there is no
1371    //   user-declared constructor for class X, a default constructor is
1372    //   implicitly declared. An implicitly-declared default constructor
1373    //   is an inline public member of its class.
1374    DeclarationName Name
1375      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1376    CXXConstructorDecl *DefaultCon =
1377      CXXConstructorDecl::Create(Context, ClassDecl,
1378                                 ClassDecl->getLocation(), Name,
1379                                 Context.getFunctionType(Context.VoidTy,
1380                                                         0, 0, false, 0),
1381                                 /*DInfo=*/0,
1382                                 /*isExplicit=*/false,
1383                                 /*isInline=*/true,
1384                                 /*isImplicitlyDeclared=*/true);
1385    DefaultCon->setAccess(AS_public);
1386    DefaultCon->setImplicit();
1387    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1388    ClassDecl->addDecl(DefaultCon);
1389  }
1390
1391  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1392    // C++ [class.copy]p4:
1393    //   If the class definition does not explicitly declare a copy
1394    //   constructor, one is declared implicitly.
1395
1396    // C++ [class.copy]p5:
1397    //   The implicitly-declared copy constructor for a class X will
1398    //   have the form
1399    //
1400    //       X::X(const X&)
1401    //
1402    //   if
1403    bool HasConstCopyConstructor = true;
1404
1405    //     -- each direct or virtual base class B of X has a copy
1406    //        constructor whose first parameter is of type const B& or
1407    //        const volatile B&, and
1408    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1409         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1410      const CXXRecordDecl *BaseClassDecl
1411        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1412      HasConstCopyConstructor
1413        = BaseClassDecl->hasConstCopyConstructor(Context);
1414    }
1415
1416    //     -- for all the nonstatic data members of X that are of a
1417    //        class type M (or array thereof), each such class type
1418    //        has a copy constructor whose first parameter is of type
1419    //        const M& or const volatile M&.
1420    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1421         HasConstCopyConstructor && Field != ClassDecl->field_end();
1422         ++Field) {
1423      QualType FieldType = (*Field)->getType();
1424      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1425        FieldType = Array->getElementType();
1426      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1427        const CXXRecordDecl *FieldClassDecl
1428          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1429        HasConstCopyConstructor
1430          = FieldClassDecl->hasConstCopyConstructor(Context);
1431      }
1432    }
1433
1434    //   Otherwise, the implicitly declared copy constructor will have
1435    //   the form
1436    //
1437    //       X::X(X&)
1438    QualType ArgType = ClassType;
1439    if (HasConstCopyConstructor)
1440      ArgType = ArgType.withConst();
1441    ArgType = Context.getLValueReferenceType(ArgType);
1442
1443    //   An implicitly-declared copy constructor is an inline public
1444    //   member of its class.
1445    DeclarationName Name
1446      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1447    CXXConstructorDecl *CopyConstructor
1448      = CXXConstructorDecl::Create(Context, ClassDecl,
1449                                   ClassDecl->getLocation(), Name,
1450                                   Context.getFunctionType(Context.VoidTy,
1451                                                           &ArgType, 1,
1452                                                           false, 0),
1453                                   /*DInfo=*/0,
1454                                   /*isExplicit=*/false,
1455                                   /*isInline=*/true,
1456                                   /*isImplicitlyDeclared=*/true);
1457    CopyConstructor->setAccess(AS_public);
1458    CopyConstructor->setImplicit();
1459    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1460
1461    // Add the parameter to the constructor.
1462    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1463                                                 ClassDecl->getLocation(),
1464                                                 /*IdentifierInfo=*/0,
1465                                                 ArgType, /*DInfo=*/0,
1466                                                 VarDecl::None, 0);
1467    CopyConstructor->setParams(Context, &FromParam, 1);
1468    ClassDecl->addDecl(CopyConstructor);
1469  }
1470
1471  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1472    // Note: The following rules are largely analoguous to the copy
1473    // constructor rules. Note that virtual bases are not taken into account
1474    // for determining the argument type of the operator. Note also that
1475    // operators taking an object instead of a reference are allowed.
1476    //
1477    // C++ [class.copy]p10:
1478    //   If the class definition does not explicitly declare a copy
1479    //   assignment operator, one is declared implicitly.
1480    //   The implicitly-defined copy assignment operator for a class X
1481    //   will have the form
1482    //
1483    //       X& X::operator=(const X&)
1484    //
1485    //   if
1486    bool HasConstCopyAssignment = true;
1487
1488    //       -- each direct base class B of X has a copy assignment operator
1489    //          whose parameter is of type const B&, const volatile B& or B,
1490    //          and
1491    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1492         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1493      const CXXRecordDecl *BaseClassDecl
1494        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1495      const CXXMethodDecl *MD = 0;
1496      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
1497                                                                     MD);
1498    }
1499
1500    //       -- for all the nonstatic data members of X that are of a class
1501    //          type M (or array thereof), each such class type has a copy
1502    //          assignment operator whose parameter is of type const M&,
1503    //          const volatile M& or M.
1504    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1505         HasConstCopyAssignment && Field != ClassDecl->field_end();
1506         ++Field) {
1507      QualType FieldType = (*Field)->getType();
1508      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1509        FieldType = Array->getElementType();
1510      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1511        const CXXRecordDecl *FieldClassDecl
1512          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1513        const CXXMethodDecl *MD = 0;
1514        HasConstCopyAssignment
1515          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
1516      }
1517    }
1518
1519    //   Otherwise, the implicitly declared copy assignment operator will
1520    //   have the form
1521    //
1522    //       X& X::operator=(X&)
1523    QualType ArgType = ClassType;
1524    QualType RetType = Context.getLValueReferenceType(ArgType);
1525    if (HasConstCopyAssignment)
1526      ArgType = ArgType.withConst();
1527    ArgType = Context.getLValueReferenceType(ArgType);
1528
1529    //   An implicitly-declared copy assignment operator is an inline public
1530    //   member of its class.
1531    DeclarationName Name =
1532      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1533    CXXMethodDecl *CopyAssignment =
1534      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1535                            Context.getFunctionType(RetType, &ArgType, 1,
1536                                                    false, 0),
1537                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
1538    CopyAssignment->setAccess(AS_public);
1539    CopyAssignment->setImplicit();
1540    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1541    CopyAssignment->setCopyAssignment(true);
1542
1543    // Add the parameter to the operator.
1544    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1545                                                 ClassDecl->getLocation(),
1546                                                 /*IdentifierInfo=*/0,
1547                                                 ArgType, /*DInfo=*/0,
1548                                                 VarDecl::None, 0);
1549    CopyAssignment->setParams(Context, &FromParam, 1);
1550
1551    // Don't call addedAssignmentOperator. There is no way to distinguish an
1552    // implicit from an explicit assignment operator.
1553    ClassDecl->addDecl(CopyAssignment);
1554  }
1555
1556  if (!ClassDecl->hasUserDeclaredDestructor()) {
1557    // C++ [class.dtor]p2:
1558    //   If a class has no user-declared destructor, a destructor is
1559    //   declared implicitly. An implicitly-declared destructor is an
1560    //   inline public member of its class.
1561    DeclarationName Name
1562      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1563    CXXDestructorDecl *Destructor
1564      = CXXDestructorDecl::Create(Context, ClassDecl,
1565                                  ClassDecl->getLocation(), Name,
1566                                  Context.getFunctionType(Context.VoidTy,
1567                                                          0, 0, false, 0),
1568                                  /*isInline=*/true,
1569                                  /*isImplicitlyDeclared=*/true);
1570    Destructor->setAccess(AS_public);
1571    Destructor->setImplicit();
1572    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1573    ClassDecl->addDecl(Destructor);
1574  }
1575}
1576
1577void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1578  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1579  if (!Template)
1580    return;
1581
1582  TemplateParameterList *Params = Template->getTemplateParameters();
1583  for (TemplateParameterList::iterator Param = Params->begin(),
1584                                    ParamEnd = Params->end();
1585       Param != ParamEnd; ++Param) {
1586    NamedDecl *Named = cast<NamedDecl>(*Param);
1587    if (Named->getDeclName()) {
1588      S->AddDecl(DeclPtrTy::make(Named));
1589      IdResolver.AddDecl(Named);
1590    }
1591  }
1592}
1593
1594/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1595/// parsing a top-level (non-nested) C++ class, and we are now
1596/// parsing those parts of the given Method declaration that could
1597/// not be parsed earlier (C++ [class.mem]p2), such as default
1598/// arguments. This action should enter the scope of the given
1599/// Method declaration as if we had just parsed the qualified method
1600/// name. However, it should not bring the parameters into scope;
1601/// that will be performed by ActOnDelayedCXXMethodParameter.
1602void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1603  if (!MethodD)
1604    return;
1605
1606  AdjustDeclIfTemplate(MethodD);
1607
1608  CXXScopeSpec SS;
1609  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1610  QualType ClassTy
1611    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1612  SS.setScopeRep(
1613    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1614  ActOnCXXEnterDeclaratorScope(S, SS);
1615}
1616
1617/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1618/// C++ method declaration. We're (re-)introducing the given
1619/// function parameter into scope for use in parsing later parts of
1620/// the method declaration. For example, we could see an
1621/// ActOnParamDefaultArgument event for this parameter.
1622void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1623  if (!ParamD)
1624    return;
1625
1626  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1627
1628  // If this parameter has an unparsed default argument, clear it out
1629  // to make way for the parsed default argument.
1630  if (Param->hasUnparsedDefaultArg())
1631    Param->setDefaultArg(0);
1632
1633  S->AddDecl(DeclPtrTy::make(Param));
1634  if (Param->getDeclName())
1635    IdResolver.AddDecl(Param);
1636}
1637
1638/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1639/// processing the delayed method declaration for Method. The method
1640/// declaration is now considered finished. There may be a separate
1641/// ActOnStartOfFunctionDef action later (not necessarily
1642/// immediately!) for this method, if it was also defined inside the
1643/// class body.
1644void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1645  if (!MethodD)
1646    return;
1647
1648  AdjustDeclIfTemplate(MethodD);
1649
1650  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1651  CXXScopeSpec SS;
1652  QualType ClassTy
1653    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1654  SS.setScopeRep(
1655    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1656  ActOnCXXExitDeclaratorScope(S, SS);
1657
1658  // Now that we have our default arguments, check the constructor
1659  // again. It could produce additional diagnostics or affect whether
1660  // the class has implicitly-declared destructors, among other
1661  // things.
1662  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1663    CheckConstructor(Constructor);
1664
1665  // Check the default arguments, which we may have added.
1666  if (!Method->isInvalidDecl())
1667    CheckCXXDefaultArguments(Method);
1668}
1669
1670/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1671/// the well-formedness of the constructor declarator @p D with type @p
1672/// R. If there are any errors in the declarator, this routine will
1673/// emit diagnostics and set the invalid bit to true.  In any case, the type
1674/// will be updated to reflect a well-formed type for the constructor and
1675/// returned.
1676QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1677                                          FunctionDecl::StorageClass &SC) {
1678  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1679
1680  // C++ [class.ctor]p3:
1681  //   A constructor shall not be virtual (10.3) or static (9.4). A
1682  //   constructor can be invoked for a const, volatile or const
1683  //   volatile object. A constructor shall not be declared const,
1684  //   volatile, or const volatile (9.3.2).
1685  if (isVirtual) {
1686    if (!D.isInvalidType())
1687      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1688        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1689        << SourceRange(D.getIdentifierLoc());
1690    D.setInvalidType();
1691  }
1692  if (SC == FunctionDecl::Static) {
1693    if (!D.isInvalidType())
1694      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1695        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1696        << SourceRange(D.getIdentifierLoc());
1697    D.setInvalidType();
1698    SC = FunctionDecl::None;
1699  }
1700
1701  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1702  if (FTI.TypeQuals != 0) {
1703    if (FTI.TypeQuals & QualType::Const)
1704      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1705        << "const" << SourceRange(D.getIdentifierLoc());
1706    if (FTI.TypeQuals & QualType::Volatile)
1707      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1708        << "volatile" << SourceRange(D.getIdentifierLoc());
1709    if (FTI.TypeQuals & QualType::Restrict)
1710      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1711        << "restrict" << SourceRange(D.getIdentifierLoc());
1712  }
1713
1714  // Rebuild the function type "R" without any type qualifiers (in
1715  // case any of the errors above fired) and with "void" as the
1716  // return type, since constructors don't have return types. We
1717  // *always* have to do this, because GetTypeForDeclarator will
1718  // put in a result type of "int" when none was specified.
1719  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1720  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1721                                 Proto->getNumArgs(),
1722                                 Proto->isVariadic(), 0);
1723}
1724
1725/// CheckConstructor - Checks a fully-formed constructor for
1726/// well-formedness, issuing any diagnostics required. Returns true if
1727/// the constructor declarator is invalid.
1728void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1729  CXXRecordDecl *ClassDecl
1730    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1731  if (!ClassDecl)
1732    return Constructor->setInvalidDecl();
1733
1734  // C++ [class.copy]p3:
1735  //   A declaration of a constructor for a class X is ill-formed if
1736  //   its first parameter is of type (optionally cv-qualified) X and
1737  //   either there are no other parameters or else all other
1738  //   parameters have default arguments.
1739  if (!Constructor->isInvalidDecl() &&
1740      ((Constructor->getNumParams() == 1) ||
1741       (Constructor->getNumParams() > 1 &&
1742        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1743    QualType ParamType = Constructor->getParamDecl(0)->getType();
1744    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1745    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1746      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1747      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1748        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1749      Constructor->setInvalidDecl();
1750    }
1751  }
1752
1753  // Notify the class that we've added a constructor.
1754  ClassDecl->addedConstructor(Context, Constructor);
1755}
1756
1757static inline bool
1758FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1759  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1760          FTI.ArgInfo[0].Param &&
1761          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1762}
1763
1764/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1765/// the well-formednes of the destructor declarator @p D with type @p
1766/// R. If there are any errors in the declarator, this routine will
1767/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1768/// will be updated to reflect a well-formed type for the destructor and
1769/// returned.
1770QualType Sema::CheckDestructorDeclarator(Declarator &D,
1771                                         FunctionDecl::StorageClass& SC) {
1772  // C++ [class.dtor]p1:
1773  //   [...] A typedef-name that names a class is a class-name
1774  //   (7.1.3); however, a typedef-name that names a class shall not
1775  //   be used as the identifier in the declarator for a destructor
1776  //   declaration.
1777  QualType DeclaratorType = GetTypeFromParser(D.getDeclaratorIdType());
1778  if (isa<TypedefType>(DeclaratorType)) {
1779    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1780      << DeclaratorType;
1781    D.setInvalidType();
1782  }
1783
1784  // C++ [class.dtor]p2:
1785  //   A destructor is used to destroy objects of its class type. A
1786  //   destructor takes no parameters, and no return type can be
1787  //   specified for it (not even void). The address of a destructor
1788  //   shall not be taken. A destructor shall not be static. A
1789  //   destructor can be invoked for a const, volatile or const
1790  //   volatile object. A destructor shall not be declared const,
1791  //   volatile or const volatile (9.3.2).
1792  if (SC == FunctionDecl::Static) {
1793    if (!D.isInvalidType())
1794      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1795        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1796        << SourceRange(D.getIdentifierLoc());
1797    SC = FunctionDecl::None;
1798    D.setInvalidType();
1799  }
1800  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1801    // Destructors don't have return types, but the parser will
1802    // happily parse something like:
1803    //
1804    //   class X {
1805    //     float ~X();
1806    //   };
1807    //
1808    // The return type will be eliminated later.
1809    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1810      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1811      << SourceRange(D.getIdentifierLoc());
1812  }
1813
1814  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1815  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1816    if (FTI.TypeQuals & QualType::Const)
1817      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1818        << "const" << SourceRange(D.getIdentifierLoc());
1819    if (FTI.TypeQuals & QualType::Volatile)
1820      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1821        << "volatile" << SourceRange(D.getIdentifierLoc());
1822    if (FTI.TypeQuals & QualType::Restrict)
1823      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1824        << "restrict" << SourceRange(D.getIdentifierLoc());
1825    D.setInvalidType();
1826  }
1827
1828  // Make sure we don't have any parameters.
1829  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1830    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1831
1832    // Delete the parameters.
1833    FTI.freeArgs();
1834    D.setInvalidType();
1835  }
1836
1837  // Make sure the destructor isn't variadic.
1838  if (FTI.isVariadic) {
1839    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1840    D.setInvalidType();
1841  }
1842
1843  // Rebuild the function type "R" without any type qualifiers or
1844  // parameters (in case any of the errors above fired) and with
1845  // "void" as the return type, since destructors don't have return
1846  // types. We *always* have to do this, because GetTypeForDeclarator
1847  // will put in a result type of "int" when none was specified.
1848  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1849}
1850
1851/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1852/// well-formednes of the conversion function declarator @p D with
1853/// type @p R. If there are any errors in the declarator, this routine
1854/// will emit diagnostics and return true. Otherwise, it will return
1855/// false. Either way, the type @p R will be updated to reflect a
1856/// well-formed type for the conversion operator.
1857void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1858                                     FunctionDecl::StorageClass& SC) {
1859  // C++ [class.conv.fct]p1:
1860  //   Neither parameter types nor return type can be specified. The
1861  //   type of a conversion function (8.3.5) is "function taking no
1862  //   parameter returning conversion-type-id."
1863  if (SC == FunctionDecl::Static) {
1864    if (!D.isInvalidType())
1865      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1866        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1867        << SourceRange(D.getIdentifierLoc());
1868    D.setInvalidType();
1869    SC = FunctionDecl::None;
1870  }
1871  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1872    // Conversion functions don't have return types, but the parser will
1873    // happily parse something like:
1874    //
1875    //   class X {
1876    //     float operator bool();
1877    //   };
1878    //
1879    // The return type will be changed later anyway.
1880    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1881      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1882      << SourceRange(D.getIdentifierLoc());
1883  }
1884
1885  // Make sure we don't have any parameters.
1886  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1887    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1888
1889    // Delete the parameters.
1890    D.getTypeObject(0).Fun.freeArgs();
1891    D.setInvalidType();
1892  }
1893
1894  // Make sure the conversion function isn't variadic.
1895  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1896    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1897    D.setInvalidType();
1898  }
1899
1900  // C++ [class.conv.fct]p4:
1901  //   The conversion-type-id shall not represent a function type nor
1902  //   an array type.
1903  QualType ConvType = GetTypeFromParser(D.getDeclaratorIdType());
1904  if (ConvType->isArrayType()) {
1905    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1906    ConvType = Context.getPointerType(ConvType);
1907    D.setInvalidType();
1908  } else if (ConvType->isFunctionType()) {
1909    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1910    ConvType = Context.getPointerType(ConvType);
1911    D.setInvalidType();
1912  }
1913
1914  // Rebuild the function type "R" without any parameters (in case any
1915  // of the errors above fired) and with the conversion type as the
1916  // return type.
1917  R = Context.getFunctionType(ConvType, 0, 0, false,
1918                              R->getAsFunctionProtoType()->getTypeQuals());
1919
1920  // C++0x explicit conversion operators.
1921  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1922    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1923         diag::warn_explicit_conversion_functions)
1924      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1925}
1926
1927/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1928/// the declaration of the given C++ conversion function. This routine
1929/// is responsible for recording the conversion function in the C++
1930/// class, if possible.
1931Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1932  assert(Conversion && "Expected to receive a conversion function declaration");
1933
1934  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1935
1936  // Make sure we aren't redeclaring the conversion function.
1937  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1938
1939  // C++ [class.conv.fct]p1:
1940  //   [...] A conversion function is never used to convert a
1941  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1942  //   same object type (or a reference to it), to a (possibly
1943  //   cv-qualified) base class of that type (or a reference to it),
1944  //   or to (possibly cv-qualified) void.
1945  // FIXME: Suppress this warning if the conversion function ends up being a
1946  // virtual function that overrides a virtual function in a base class.
1947  QualType ClassType
1948    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1949  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
1950    ConvType = ConvTypeRef->getPointeeType();
1951  if (ConvType->isRecordType()) {
1952    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1953    if (ConvType == ClassType)
1954      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1955        << ClassType;
1956    else if (IsDerivedFrom(ClassType, ConvType))
1957      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1958        <<  ClassType << ConvType;
1959  } else if (ConvType->isVoidType()) {
1960    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1961      << ClassType << ConvType;
1962  }
1963
1964  if (Conversion->getPreviousDeclaration()) {
1965    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
1966    if (FunctionTemplateDecl *ConversionTemplate
1967          = Conversion->getDescribedFunctionTemplate())
1968      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
1969    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1970    for (OverloadedFunctionDecl::function_iterator
1971           Conv = Conversions->function_begin(),
1972           ConvEnd = Conversions->function_end();
1973         Conv != ConvEnd; ++Conv) {
1974      if (*Conv == ExpectedPrevDecl) {
1975        *Conv = Conversion;
1976        return DeclPtrTy::make(Conversion);
1977      }
1978    }
1979    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1980  } else if (FunctionTemplateDecl *ConversionTemplate
1981               = Conversion->getDescribedFunctionTemplate())
1982    ClassDecl->addConversionFunction(Context, ConversionTemplate);
1983  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
1984    ClassDecl->addConversionFunction(Context, Conversion);
1985
1986  return DeclPtrTy::make(Conversion);
1987}
1988
1989//===----------------------------------------------------------------------===//
1990// Namespace Handling
1991//===----------------------------------------------------------------------===//
1992
1993/// ActOnStartNamespaceDef - This is called at the start of a namespace
1994/// definition.
1995Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1996                                             SourceLocation IdentLoc,
1997                                             IdentifierInfo *II,
1998                                             SourceLocation LBrace) {
1999  NamespaceDecl *Namespc =
2000      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2001  Namespc->setLBracLoc(LBrace);
2002
2003  Scope *DeclRegionScope = NamespcScope->getParent();
2004
2005  if (II) {
2006    // C++ [namespace.def]p2:
2007    // The identifier in an original-namespace-definition shall not have been
2008    // previously defined in the declarative region in which the
2009    // original-namespace-definition appears. The identifier in an
2010    // original-namespace-definition is the name of the namespace. Subsequently
2011    // in that declarative region, it is treated as an original-namespace-name.
2012
2013    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
2014                                     true);
2015
2016    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2017      // This is an extended namespace definition.
2018      // Attach this namespace decl to the chain of extended namespace
2019      // definitions.
2020      OrigNS->setNextNamespace(Namespc);
2021      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2022
2023      // Remove the previous declaration from the scope.
2024      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2025        IdResolver.RemoveDecl(OrigNS);
2026        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2027      }
2028    } else if (PrevDecl) {
2029      // This is an invalid name redefinition.
2030      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2031       << Namespc->getDeclName();
2032      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2033      Namespc->setInvalidDecl();
2034      // Continue on to push Namespc as current DeclContext and return it.
2035    }
2036
2037    PushOnScopeChains(Namespc, DeclRegionScope);
2038  } else {
2039    // FIXME: Handle anonymous namespaces
2040  }
2041
2042  // Although we could have an invalid decl (i.e. the namespace name is a
2043  // redefinition), push it as current DeclContext and try to continue parsing.
2044  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2045  // for the namespace has the declarations that showed up in that particular
2046  // namespace definition.
2047  PushDeclContext(NamespcScope, Namespc);
2048  return DeclPtrTy::make(Namespc);
2049}
2050
2051/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2052/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2053void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2054  Decl *Dcl = D.getAs<Decl>();
2055  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2056  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2057  Namespc->setRBracLoc(RBrace);
2058  PopDeclContext();
2059}
2060
2061Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2062                                          SourceLocation UsingLoc,
2063                                          SourceLocation NamespcLoc,
2064                                          const CXXScopeSpec &SS,
2065                                          SourceLocation IdentLoc,
2066                                          IdentifierInfo *NamespcName,
2067                                          AttributeList *AttrList) {
2068  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2069  assert(NamespcName && "Invalid NamespcName.");
2070  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2071  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2072
2073  UsingDirectiveDecl *UDir = 0;
2074
2075  // Lookup namespace name.
2076  LookupResult R = LookupParsedName(S, &SS, NamespcName,
2077                                    LookupNamespaceName, false);
2078  if (R.isAmbiguous()) {
2079    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
2080    return DeclPtrTy();
2081  }
2082  if (NamedDecl *NS = R) {
2083    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2084    // C++ [namespace.udir]p1:
2085    //   A using-directive specifies that the names in the nominated
2086    //   namespace can be used in the scope in which the
2087    //   using-directive appears after the using-directive. During
2088    //   unqualified name lookup (3.4.1), the names appear as if they
2089    //   were declared in the nearest enclosing namespace which
2090    //   contains both the using-directive and the nominated
2091    //   namespace. [Note: in this context, "contains" means "contains
2092    //   directly or indirectly". ]
2093
2094    // Find enclosing context containing both using-directive and
2095    // nominated namespace.
2096    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2097    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2098      CommonAncestor = CommonAncestor->getParent();
2099
2100    UDir = UsingDirectiveDecl::Create(Context,
2101                                      CurContext, UsingLoc,
2102                                      NamespcLoc,
2103                                      SS.getRange(),
2104                                      (NestedNameSpecifier *)SS.getScopeRep(),
2105                                      IdentLoc,
2106                                      cast<NamespaceDecl>(NS),
2107                                      CommonAncestor);
2108    PushUsingDirective(S, UDir);
2109  } else {
2110    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2111  }
2112
2113  // FIXME: We ignore attributes for now.
2114  delete AttrList;
2115  return DeclPtrTy::make(UDir);
2116}
2117
2118void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2119  // If scope has associated entity, then using directive is at namespace
2120  // or translation unit scope. We add UsingDirectiveDecls, into
2121  // it's lookup structure.
2122  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2123    Ctx->addDecl(UDir);
2124  else
2125    // Otherwise it is block-sope. using-directives will affect lookup
2126    // only to the end of scope.
2127    S->PushUsingDirective(DeclPtrTy::make(UDir));
2128}
2129
2130
2131Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2132                                            AccessSpecifier AS,
2133                                            SourceLocation UsingLoc,
2134                                            const CXXScopeSpec &SS,
2135                                            SourceLocation IdentLoc,
2136                                            IdentifierInfo *TargetName,
2137                                            OverloadedOperatorKind Op,
2138                                            AttributeList *AttrList,
2139                                            bool IsTypeName) {
2140  assert((TargetName || Op) && "Invalid TargetName.");
2141  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2142
2143  DeclarationName Name;
2144  if (TargetName)
2145    Name = TargetName;
2146  else
2147    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2148
2149  NamedDecl *UD = BuildUsingDeclaration(UsingLoc, SS, IdentLoc,
2150                                        Name, AttrList, IsTypeName);
2151  if (UD) {
2152    PushOnScopeChains(UD, S);
2153    UD->setAccess(AS);
2154  }
2155
2156  return DeclPtrTy::make(UD);
2157}
2158
2159NamedDecl *Sema::BuildUsingDeclaration(SourceLocation UsingLoc,
2160                                       const CXXScopeSpec &SS,
2161                                       SourceLocation IdentLoc,
2162                                       DeclarationName Name,
2163                                       AttributeList *AttrList,
2164                                       bool IsTypeName) {
2165  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2166  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2167
2168  // FIXME: We ignore attributes for now.
2169  delete AttrList;
2170
2171  if (SS.isEmpty()) {
2172    Diag(IdentLoc, diag::err_using_requires_qualname);
2173    return 0;
2174  }
2175
2176  NestedNameSpecifier *NNS =
2177    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2178
2179  if (isUnknownSpecialization(SS)) {
2180    return UnresolvedUsingDecl::Create(Context, CurContext, UsingLoc,
2181                                       SS.getRange(), NNS,
2182                                       IdentLoc, Name, IsTypeName);
2183  }
2184
2185  DeclContext *LookupContext = 0;
2186
2187  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2188    // C++0x N2914 [namespace.udecl]p3:
2189    // A using-declaration used as a member-declaration shall refer to a member
2190    // of a base class of the class being defined, shall refer to a member of an
2191    // anonymous union that is a member of a base class of the class being
2192    // defined, or shall refer to an enumerator for an enumeration type that is
2193    // a member of a base class of the class being defined.
2194    const Type *Ty = NNS->getAsType();
2195    if (!Ty || !IsDerivedFrom(Context.getTagDeclType(RD), QualType(Ty, 0))) {
2196      Diag(SS.getRange().getBegin(),
2197           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2198        << NNS << RD->getDeclName();
2199      return 0;
2200    }
2201
2202    QualType BaseTy = Context.getCanonicalType(QualType(Ty, 0));
2203    LookupContext = BaseTy->getAs<RecordType>()->getDecl();
2204  } else {
2205    // C++0x N2914 [namespace.udecl]p8:
2206    // A using-declaration for a class member shall be a member-declaration.
2207    if (NNS->getKind() == NestedNameSpecifier::TypeSpec) {
2208      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2209        << SS.getRange();
2210      return 0;
2211    }
2212
2213    // C++0x N2914 [namespace.udecl]p9:
2214    // In a using-declaration, a prefix :: refers to the global namespace.
2215    if (NNS->getKind() == NestedNameSpecifier::Global)
2216      LookupContext = Context.getTranslationUnitDecl();
2217    else
2218      LookupContext = NNS->getAsNamespace();
2219  }
2220
2221
2222  // Lookup target name.
2223  LookupResult R = LookupQualifiedName(LookupContext,
2224                                       Name, LookupOrdinaryName);
2225
2226  if (!R) {
2227    DiagnoseMissingMember(IdentLoc, Name, NNS, SS.getRange());
2228    return 0;
2229  }
2230
2231  NamedDecl *ND = R.getAsDecl();
2232
2233  if (IsTypeName && !isa<TypeDecl>(ND)) {
2234    Diag(IdentLoc, diag::err_using_typename_non_type);
2235    return 0;
2236  }
2237
2238  // C++0x N2914 [namespace.udecl]p6:
2239  // A using-declaration shall not name a namespace.
2240  if (isa<NamespaceDecl>(ND)) {
2241    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
2242      << SS.getRange();
2243    return 0;
2244  }
2245
2246  return UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2247                           ND->getLocation(), UsingLoc, ND, NNS, IsTypeName);
2248}
2249
2250/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2251/// is a namespace alias, returns the namespace it points to.
2252static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2253  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2254    return AD->getNamespace();
2255  return dyn_cast_or_null<NamespaceDecl>(D);
2256}
2257
2258Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2259                                             SourceLocation NamespaceLoc,
2260                                             SourceLocation AliasLoc,
2261                                             IdentifierInfo *Alias,
2262                                             const CXXScopeSpec &SS,
2263                                             SourceLocation IdentLoc,
2264                                             IdentifierInfo *Ident) {
2265
2266  // Lookup the namespace name.
2267  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2268
2269  // Check if we have a previous declaration with the same name.
2270  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2271    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2272      // We already have an alias with the same name that points to the same
2273      // namespace, so don't create a new one.
2274      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2275        return DeclPtrTy();
2276    }
2277
2278    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2279      diag::err_redefinition_different_kind;
2280    Diag(AliasLoc, DiagID) << Alias;
2281    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2282    return DeclPtrTy();
2283  }
2284
2285  if (R.isAmbiguous()) {
2286    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2287    return DeclPtrTy();
2288  }
2289
2290  if (!R) {
2291    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2292    return DeclPtrTy();
2293  }
2294
2295  NamespaceAliasDecl *AliasDecl =
2296    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2297                               Alias, SS.getRange(),
2298                               (NestedNameSpecifier *)SS.getScopeRep(),
2299                               IdentLoc, R);
2300
2301  CurContext->addDecl(AliasDecl);
2302  return DeclPtrTy::make(AliasDecl);
2303}
2304
2305void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2306                                            CXXConstructorDecl *Constructor) {
2307  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2308          !Constructor->isUsed()) &&
2309    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2310
2311  CXXRecordDecl *ClassDecl
2312    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2313  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2314  // Before the implicitly-declared default constructor for a class is
2315  // implicitly defined, all the implicitly-declared default constructors
2316  // for its base class and its non-static data members shall have been
2317  // implicitly defined.
2318  bool err = false;
2319  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2320       E = ClassDecl->bases_end(); Base != E; ++Base) {
2321    CXXRecordDecl *BaseClassDecl
2322      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2323    if (!BaseClassDecl->hasTrivialConstructor()) {
2324      if (CXXConstructorDecl *BaseCtor =
2325            BaseClassDecl->getDefaultConstructor(Context))
2326        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2327      else {
2328        Diag(CurrentLocation, diag::err_defining_default_ctor)
2329          << Context.getTagDeclType(ClassDecl) << 1
2330          << Context.getTagDeclType(BaseClassDecl);
2331        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2332              << Context.getTagDeclType(BaseClassDecl);
2333        err = true;
2334      }
2335    }
2336  }
2337  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2338       E = ClassDecl->field_end(); Field != E; ++Field) {
2339    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2340    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2341      FieldType = Array->getElementType();
2342    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2343      CXXRecordDecl *FieldClassDecl
2344        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2345      if (!FieldClassDecl->hasTrivialConstructor()) {
2346        if (CXXConstructorDecl *FieldCtor =
2347            FieldClassDecl->getDefaultConstructor(Context))
2348          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2349        else {
2350          Diag(CurrentLocation, diag::err_defining_default_ctor)
2351          << Context.getTagDeclType(ClassDecl) << 0 <<
2352              Context.getTagDeclType(FieldClassDecl);
2353          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2354          << Context.getTagDeclType(FieldClassDecl);
2355          err = true;
2356        }
2357      }
2358    } else if (FieldType->isReferenceType()) {
2359      Diag(CurrentLocation, diag::err_unintialized_member)
2360        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2361      Diag((*Field)->getLocation(), diag::note_declared_at);
2362      err = true;
2363    } else if (FieldType.isConstQualified()) {
2364      Diag(CurrentLocation, diag::err_unintialized_member)
2365        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2366       Diag((*Field)->getLocation(), diag::note_declared_at);
2367      err = true;
2368    }
2369  }
2370  if (!err)
2371    Constructor->setUsed();
2372  else
2373    Constructor->setInvalidDecl();
2374}
2375
2376void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2377                                            CXXDestructorDecl *Destructor) {
2378  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2379         "DefineImplicitDestructor - call it for implicit default dtor");
2380
2381  CXXRecordDecl *ClassDecl
2382  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2383  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2384  // C++ [class.dtor] p5
2385  // Before the implicitly-declared default destructor for a class is
2386  // implicitly defined, all the implicitly-declared default destructors
2387  // for its base class and its non-static data members shall have been
2388  // implicitly defined.
2389  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2390       E = ClassDecl->bases_end(); Base != E; ++Base) {
2391    CXXRecordDecl *BaseClassDecl
2392      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2393    if (!BaseClassDecl->hasTrivialDestructor()) {
2394      if (CXXDestructorDecl *BaseDtor =
2395          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2396        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2397      else
2398        assert(false &&
2399               "DefineImplicitDestructor - missing dtor in a base class");
2400    }
2401  }
2402
2403  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2404       E = ClassDecl->field_end(); Field != E; ++Field) {
2405    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2406    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2407      FieldType = Array->getElementType();
2408    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2409      CXXRecordDecl *FieldClassDecl
2410        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2411      if (!FieldClassDecl->hasTrivialDestructor()) {
2412        if (CXXDestructorDecl *FieldDtor =
2413            const_cast<CXXDestructorDecl*>(
2414                                        FieldClassDecl->getDestructor(Context)))
2415          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2416        else
2417          assert(false &&
2418          "DefineImplicitDestructor - missing dtor in class of a data member");
2419      }
2420    }
2421  }
2422  Destructor->setUsed();
2423}
2424
2425void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2426                                          CXXMethodDecl *MethodDecl) {
2427  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2428          MethodDecl->getOverloadedOperator() == OO_Equal &&
2429          !MethodDecl->isUsed()) &&
2430         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2431
2432  CXXRecordDecl *ClassDecl
2433    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2434
2435  // C++[class.copy] p12
2436  // Before the implicitly-declared copy assignment operator for a class is
2437  // implicitly defined, all implicitly-declared copy assignment operators
2438  // for its direct base classes and its nonstatic data members shall have
2439  // been implicitly defined.
2440  bool err = false;
2441  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2442       E = ClassDecl->bases_end(); Base != E; ++Base) {
2443    CXXRecordDecl *BaseClassDecl
2444      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2445    if (CXXMethodDecl *BaseAssignOpMethod =
2446          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2447      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2448  }
2449  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2450       E = ClassDecl->field_end(); Field != E; ++Field) {
2451    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2452    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2453      FieldType = Array->getElementType();
2454    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2455      CXXRecordDecl *FieldClassDecl
2456        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2457      if (CXXMethodDecl *FieldAssignOpMethod =
2458          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2459        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2460    } else if (FieldType->isReferenceType()) {
2461      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2462      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2463      Diag(Field->getLocation(), diag::note_declared_at);
2464      Diag(CurrentLocation, diag::note_first_required_here);
2465      err = true;
2466    } else if (FieldType.isConstQualified()) {
2467      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2468      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2469      Diag(Field->getLocation(), diag::note_declared_at);
2470      Diag(CurrentLocation, diag::note_first_required_here);
2471      err = true;
2472    }
2473  }
2474  if (!err)
2475    MethodDecl->setUsed();
2476}
2477
2478CXXMethodDecl *
2479Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2480                              CXXRecordDecl *ClassDecl) {
2481  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2482  QualType RHSType(LHSType);
2483  // If class's assignment operator argument is const/volatile qualified,
2484  // look for operator = (const/volatile B&). Otherwise, look for
2485  // operator = (B&).
2486  if (ParmDecl->getType().isConstQualified())
2487    RHSType.addConst();
2488  if (ParmDecl->getType().isVolatileQualified())
2489    RHSType.addVolatile();
2490  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2491                                                          LHSType,
2492                                                          SourceLocation()));
2493  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2494                                                          RHSType,
2495                                                          SourceLocation()));
2496  Expr *Args[2] = { &*LHS, &*RHS };
2497  OverloadCandidateSet CandidateSet;
2498  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2499                              CandidateSet);
2500  OverloadCandidateSet::iterator Best;
2501  if (BestViableFunction(CandidateSet,
2502                         ClassDecl->getLocation(), Best) == OR_Success)
2503    return cast<CXXMethodDecl>(Best->Function);
2504  assert(false &&
2505         "getAssignOperatorMethod - copy assignment operator method not found");
2506  return 0;
2507}
2508
2509void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2510                                   CXXConstructorDecl *CopyConstructor,
2511                                   unsigned TypeQuals) {
2512  assert((CopyConstructor->isImplicit() &&
2513          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2514          !CopyConstructor->isUsed()) &&
2515         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2516
2517  CXXRecordDecl *ClassDecl
2518    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2519  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2520  // C++ [class.copy] p209
2521  // Before the implicitly-declared copy constructor for a class is
2522  // implicitly defined, all the implicitly-declared copy constructors
2523  // for its base class and its non-static data members shall have been
2524  // implicitly defined.
2525  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2526       Base != ClassDecl->bases_end(); ++Base) {
2527    CXXRecordDecl *BaseClassDecl
2528      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2529    if (CXXConstructorDecl *BaseCopyCtor =
2530        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2531      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2532  }
2533  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2534                                  FieldEnd = ClassDecl->field_end();
2535       Field != FieldEnd; ++Field) {
2536    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2537    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2538      FieldType = Array->getElementType();
2539    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2540      CXXRecordDecl *FieldClassDecl
2541        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2542      if (CXXConstructorDecl *FieldCopyCtor =
2543          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2544        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2545    }
2546  }
2547  CopyConstructor->setUsed();
2548}
2549
2550Sema::OwningExprResult
2551Sema::BuildCXXConstructExpr(QualType DeclInitType,
2552                            CXXConstructorDecl *Constructor,
2553                            Expr **Exprs, unsigned NumExprs) {
2554  bool Elidable = false;
2555
2556  // [class.copy]p15:
2557  // Whenever a temporary class object is copied using a copy constructor, and
2558  // this object and the copy have the same cv-unqualified type, an
2559  // implementation is permitted to treat the original and the copy as two
2560  // different ways of referring to the same object and not perform a copy at
2561  //all, even if the class copy constructor or destructor have side effects.
2562
2563  // FIXME: Is this enough?
2564  if (Constructor->isCopyConstructor(Context) && NumExprs == 1) {
2565    Expr *E = Exprs[0];
2566    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2567      E = BE->getSubExpr();
2568
2569    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
2570      Elidable = true;
2571  }
2572
2573  return BuildCXXConstructExpr(DeclInitType, Constructor, Elidable,
2574                               Exprs, NumExprs);
2575}
2576
2577/// BuildCXXConstructExpr - Creates a complete call to a constructor,
2578/// including handling of its default argument expressions.
2579Sema::OwningExprResult
2580Sema::BuildCXXConstructExpr(QualType DeclInitType,
2581                            CXXConstructorDecl *Constructor,
2582                            bool Elidable,
2583                            Expr **Exprs,
2584                            unsigned NumExprs) {
2585  ExprOwningPtr<CXXConstructExpr> Temp(this,
2586                                       CXXConstructExpr::Create(Context,
2587                                                                DeclInitType,
2588                                                                Constructor,
2589                                                                Elidable,
2590                                                                Exprs,
2591                                                                NumExprs));
2592  // Default arguments must be added to constructor call expression.
2593  FunctionDecl *FDecl = cast<FunctionDecl>(Constructor);
2594  unsigned NumArgsInProto = FDecl->param_size();
2595  for (unsigned j = NumExprs; j != NumArgsInProto; j++) {
2596    ParmVarDecl *Param = FDecl->getParamDecl(j);
2597
2598    OwningExprResult ArgExpr =
2599      BuildCXXDefaultArgExpr(/*FIXME:*/SourceLocation(),
2600                             FDecl, Param);
2601    if (ArgExpr.isInvalid())
2602      return ExprError();
2603
2604    Temp->setArg(j, ArgExpr.takeAs<Expr>());
2605  }
2606  return move(Temp);
2607}
2608
2609Sema::OwningExprResult
2610Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
2611                                  QualType Ty,
2612                                  SourceLocation TyBeginLoc,
2613                                  MultiExprArg Args,
2614                                  SourceLocation RParenLoc) {
2615  CXXTemporaryObjectExpr *E
2616    = new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty, TyBeginLoc,
2617                                           (Expr **)Args.get(),
2618                                           Args.size(), RParenLoc);
2619
2620  ExprOwningPtr<CXXTemporaryObjectExpr> Temp(this, E);
2621
2622    // Default arguments must be added to constructor call expression.
2623  FunctionDecl *FDecl = cast<FunctionDecl>(Constructor);
2624  unsigned NumArgsInProto = FDecl->param_size();
2625  for (unsigned j = Args.size(); j != NumArgsInProto; j++) {
2626    ParmVarDecl *Param = FDecl->getParamDecl(j);
2627
2628    OwningExprResult ArgExpr = BuildCXXDefaultArgExpr(TyBeginLoc, FDecl, Param);
2629    if (ArgExpr.isInvalid())
2630      return ExprError();
2631
2632    Temp->setArg(j, ArgExpr.takeAs<Expr>());
2633  }
2634
2635  Args.release();
2636  return move(Temp);
2637}
2638
2639
2640bool Sema::InitializeVarWithConstructor(VarDecl *VD,
2641                                        CXXConstructorDecl *Constructor,
2642                                        QualType DeclInitType,
2643                                        Expr **Exprs, unsigned NumExprs) {
2644  OwningExprResult TempResult = BuildCXXConstructExpr(DeclInitType, Constructor,
2645                                                      Exprs, NumExprs);
2646  if (TempResult.isInvalid())
2647    return true;
2648
2649  Expr *Temp = TempResult.takeAs<Expr>();
2650  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2651  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
2652  VD->setInit(Context, Temp);
2653
2654  return false;
2655}
2656
2657void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType)
2658{
2659  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2660                                  DeclInitType->getAs<RecordType>()->getDecl());
2661  if (!ClassDecl->hasTrivialDestructor())
2662    if (CXXDestructorDecl *Destructor =
2663        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2664      MarkDeclarationReferenced(VD->getLocation(), Destructor);
2665}
2666
2667/// AddCXXDirectInitializerToDecl - This action is called immediately after
2668/// ActOnDeclarator, when a C++ direct initializer is present.
2669/// e.g: "int x(1);"
2670void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2671                                         SourceLocation LParenLoc,
2672                                         MultiExprArg Exprs,
2673                                         SourceLocation *CommaLocs,
2674                                         SourceLocation RParenLoc) {
2675  unsigned NumExprs = Exprs.size();
2676  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2677  Decl *RealDecl = Dcl.getAs<Decl>();
2678
2679  // If there is no declaration, there was an error parsing it.  Just ignore
2680  // the initializer.
2681  if (RealDecl == 0)
2682    return;
2683
2684  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2685  if (!VDecl) {
2686    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2687    RealDecl->setInvalidDecl();
2688    return;
2689  }
2690
2691  // We will represent direct-initialization similarly to copy-initialization:
2692  //    int x(1);  -as-> int x = 1;
2693  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2694  //
2695  // Clients that want to distinguish between the two forms, can check for
2696  // direct initializer using VarDecl::hasCXXDirectInitializer().
2697  // A major benefit is that clients that don't particularly care about which
2698  // exactly form was it (like the CodeGen) can handle both cases without
2699  // special case code.
2700
2701  // If either the declaration has a dependent type or if any of the expressions
2702  // is type-dependent, we represent the initialization via a ParenListExpr for
2703  // later use during template instantiation.
2704  if (VDecl->getType()->isDependentType() ||
2705      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
2706    // Let clients know that initialization was done with a direct initializer.
2707    VDecl->setCXXDirectInitializer(true);
2708
2709    // Store the initialization expressions as a ParenListExpr.
2710    unsigned NumExprs = Exprs.size();
2711    VDecl->setInit(Context,
2712                   new (Context) ParenListExpr(Context, LParenLoc,
2713                                               (Expr **)Exprs.release(),
2714                                               NumExprs, RParenLoc));
2715    return;
2716  }
2717
2718
2719  // C++ 8.5p11:
2720  // The form of initialization (using parentheses or '=') is generally
2721  // insignificant, but does matter when the entity being initialized has a
2722  // class type.
2723  QualType DeclInitType = VDecl->getType();
2724  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2725    DeclInitType = Array->getElementType();
2726
2727  // FIXME: This isn't the right place to complete the type.
2728  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2729                          diag::err_typecheck_decl_incomplete_type)) {
2730    VDecl->setInvalidDecl();
2731    return;
2732  }
2733
2734  if (VDecl->getType()->isRecordType()) {
2735    CXXConstructorDecl *Constructor
2736      = PerformInitializationByConstructor(DeclInitType,
2737                                           (Expr **)Exprs.get(), NumExprs,
2738                                           VDecl->getLocation(),
2739                                           SourceRange(VDecl->getLocation(),
2740                                                       RParenLoc),
2741                                           VDecl->getDeclName(),
2742                                           IK_Direct);
2743    if (!Constructor)
2744      RealDecl->setInvalidDecl();
2745    else {
2746      VDecl->setCXXDirectInitializer(true);
2747      if (InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2748                                       (Expr**)Exprs.release(), NumExprs))
2749        RealDecl->setInvalidDecl();
2750      FinalizeVarWithDestructor(VDecl, DeclInitType);
2751    }
2752    return;
2753  }
2754
2755  if (NumExprs > 1) {
2756    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2757      << SourceRange(VDecl->getLocation(), RParenLoc);
2758    RealDecl->setInvalidDecl();
2759    return;
2760  }
2761
2762  // Let clients know that initialization was done with a direct initializer.
2763  VDecl->setCXXDirectInitializer(true);
2764
2765  assert(NumExprs == 1 && "Expected 1 expression");
2766  // Set the init expression, handles conversions.
2767  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2768                       /*DirectInit=*/true);
2769}
2770
2771/// PerformInitializationByConstructor - Perform initialization by
2772/// constructor (C++ [dcl.init]p14), which may occur as part of
2773/// direct-initialization or copy-initialization. We are initializing
2774/// an object of type @p ClassType with the given arguments @p
2775/// Args. @p Loc is the location in the source code where the
2776/// initializer occurs (e.g., a declaration, member initializer,
2777/// functional cast, etc.) while @p Range covers the whole
2778/// initialization. @p InitEntity is the entity being initialized,
2779/// which may by the name of a declaration or a type. @p Kind is the
2780/// kind of initialization we're performing, which affects whether
2781/// explicit constructors will be considered. When successful, returns
2782/// the constructor that will be used to perform the initialization;
2783/// when the initialization fails, emits a diagnostic and returns
2784/// null.
2785CXXConstructorDecl *
2786Sema::PerformInitializationByConstructor(QualType ClassType,
2787                                         Expr **Args, unsigned NumArgs,
2788                                         SourceLocation Loc, SourceRange Range,
2789                                         DeclarationName InitEntity,
2790                                         InitializationKind Kind) {
2791  const RecordType *ClassRec = ClassType->getAs<RecordType>();
2792  assert(ClassRec && "Can only initialize a class type here");
2793
2794  // C++ [dcl.init]p14:
2795  //
2796  //   If the initialization is direct-initialization, or if it is
2797  //   copy-initialization where the cv-unqualified version of the
2798  //   source type is the same class as, or a derived class of, the
2799  //   class of the destination, constructors are considered. The
2800  //   applicable constructors are enumerated (13.3.1.3), and the
2801  //   best one is chosen through overload resolution (13.3). The
2802  //   constructor so selected is called to initialize the object,
2803  //   with the initializer expression(s) as its argument(s). If no
2804  //   constructor applies, or the overload resolution is ambiguous,
2805  //   the initialization is ill-formed.
2806  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2807  OverloadCandidateSet CandidateSet;
2808
2809  // Add constructors to the overload set.
2810  DeclarationName ConstructorName
2811    = Context.DeclarationNames.getCXXConstructorName(
2812                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2813  DeclContext::lookup_const_iterator Con, ConEnd;
2814  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2815       Con != ConEnd; ++Con) {
2816    // Find the constructor (which may be a template).
2817    CXXConstructorDecl *Constructor = 0;
2818    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
2819    if (ConstructorTmpl)
2820      Constructor
2821        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2822    else
2823      Constructor = cast<CXXConstructorDecl>(*Con);
2824
2825    if ((Kind == IK_Direct) ||
2826        (Kind == IK_Copy &&
2827         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
2828        (Kind == IK_Default && Constructor->isDefaultConstructor())) {
2829      if (ConstructorTmpl)
2830        AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0,
2831                                     Args, NumArgs, CandidateSet);
2832      else
2833        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2834    }
2835  }
2836
2837  // FIXME: When we decide not to synthesize the implicitly-declared
2838  // constructors, we'll need to make them appear here.
2839
2840  OverloadCandidateSet::iterator Best;
2841  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2842  case OR_Success:
2843    // We found a constructor. Return it.
2844    return cast<CXXConstructorDecl>(Best->Function);
2845
2846  case OR_No_Viable_Function:
2847    if (InitEntity)
2848      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2849        << InitEntity << Range;
2850    else
2851      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2852        << ClassType << Range;
2853    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2854    return 0;
2855
2856  case OR_Ambiguous:
2857    if (InitEntity)
2858      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2859    else
2860      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2861    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2862    return 0;
2863
2864  case OR_Deleted:
2865    if (InitEntity)
2866      Diag(Loc, diag::err_ovl_deleted_init)
2867        << Best->Function->isDeleted()
2868        << InitEntity << Range;
2869    else
2870      Diag(Loc, diag::err_ovl_deleted_init)
2871        << Best->Function->isDeleted()
2872        << InitEntity << Range;
2873    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2874    return 0;
2875  }
2876
2877  return 0;
2878}
2879
2880/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2881/// determine whether they are reference-related,
2882/// reference-compatible, reference-compatible with added
2883/// qualification, or incompatible, for use in C++ initialization by
2884/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2885/// type, and the first type (T1) is the pointee type of the reference
2886/// type being initialized.
2887Sema::ReferenceCompareResult
2888Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2889                                   bool& DerivedToBase) {
2890  assert(!T1->isReferenceType() &&
2891    "T1 must be the pointee type of the reference type");
2892  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2893
2894  T1 = Context.getCanonicalType(T1);
2895  T2 = Context.getCanonicalType(T2);
2896  QualType UnqualT1 = T1.getUnqualifiedType();
2897  QualType UnqualT2 = T2.getUnqualifiedType();
2898
2899  // C++ [dcl.init.ref]p4:
2900  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2901  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2902  //   T1 is a base class of T2.
2903  if (UnqualT1 == UnqualT2)
2904    DerivedToBase = false;
2905  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2906    DerivedToBase = true;
2907  else
2908    return Ref_Incompatible;
2909
2910  // At this point, we know that T1 and T2 are reference-related (at
2911  // least).
2912
2913  // C++ [dcl.init.ref]p4:
2914  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2915  //   reference-related to T2 and cv1 is the same cv-qualification
2916  //   as, or greater cv-qualification than, cv2. For purposes of
2917  //   overload resolution, cases for which cv1 is greater
2918  //   cv-qualification than cv2 are identified as
2919  //   reference-compatible with added qualification (see 13.3.3.2).
2920  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2921    return Ref_Compatible;
2922  else if (T1.isMoreQualifiedThan(T2))
2923    return Ref_Compatible_With_Added_Qualification;
2924  else
2925    return Ref_Related;
2926}
2927
2928/// CheckReferenceInit - Check the initialization of a reference
2929/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2930/// the initializer (either a simple initializer or an initializer
2931/// list), and DeclType is the type of the declaration. When ICS is
2932/// non-null, this routine will compute the implicit conversion
2933/// sequence according to C++ [over.ics.ref] and will not produce any
2934/// diagnostics; when ICS is null, it will emit diagnostics when any
2935/// errors are found. Either way, a return value of true indicates
2936/// that there was a failure, a return value of false indicates that
2937/// the reference initialization succeeded.
2938///
2939/// When @p SuppressUserConversions, user-defined conversions are
2940/// suppressed.
2941/// When @p AllowExplicit, we also permit explicit user-defined
2942/// conversion functions.
2943/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2944bool
2945Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2946                         bool SuppressUserConversions,
2947                         bool AllowExplicit, bool ForceRValue,
2948                         ImplicitConversionSequence *ICS) {
2949  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2950
2951  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2952  QualType T2 = Init->getType();
2953
2954  // If the initializer is the address of an overloaded function, try
2955  // to resolve the overloaded function. If all goes well, T2 is the
2956  // type of the resulting function.
2957  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2958    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2959                                                          ICS != 0);
2960    if (Fn) {
2961      // Since we're performing this reference-initialization for
2962      // real, update the initializer with the resulting function.
2963      if (!ICS) {
2964        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2965          return true;
2966
2967        FixOverloadedFunctionReference(Init, Fn);
2968      }
2969
2970      T2 = Fn->getType();
2971    }
2972  }
2973
2974  // Compute some basic properties of the types and the initializer.
2975  bool isRValRef = DeclType->isRValueReferenceType();
2976  bool DerivedToBase = false;
2977  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2978                                                  Init->isLvalue(Context);
2979  ReferenceCompareResult RefRelationship
2980    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2981
2982  // Most paths end in a failed conversion.
2983  if (ICS)
2984    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2985
2986  // C++ [dcl.init.ref]p5:
2987  //   A reference to type "cv1 T1" is initialized by an expression
2988  //   of type "cv2 T2" as follows:
2989
2990  //     -- If the initializer expression
2991
2992  // Rvalue references cannot bind to lvalues (N2812).
2993  // There is absolutely no situation where they can. In particular, note that
2994  // this is ill-formed, even if B has a user-defined conversion to A&&:
2995  //   B b;
2996  //   A&& r = b;
2997  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2998    if (!ICS)
2999      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
3000        << Init->getSourceRange();
3001    return true;
3002  }
3003
3004  bool BindsDirectly = false;
3005  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3006  //          reference-compatible with "cv2 T2," or
3007  //
3008  // Note that the bit-field check is skipped if we are just computing
3009  // the implicit conversion sequence (C++ [over.best.ics]p2).
3010  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
3011      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3012    BindsDirectly = true;
3013
3014    if (ICS) {
3015      // C++ [over.ics.ref]p1:
3016      //   When a parameter of reference type binds directly (8.5.3)
3017      //   to an argument expression, the implicit conversion sequence
3018      //   is the identity conversion, unless the argument expression
3019      //   has a type that is a derived class of the parameter type,
3020      //   in which case the implicit conversion sequence is a
3021      //   derived-to-base Conversion (13.3.3.1).
3022      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3023      ICS->Standard.First = ICK_Identity;
3024      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3025      ICS->Standard.Third = ICK_Identity;
3026      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3027      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3028      ICS->Standard.ReferenceBinding = true;
3029      ICS->Standard.DirectBinding = true;
3030      ICS->Standard.RRefBinding = false;
3031      ICS->Standard.CopyConstructor = 0;
3032
3033      // Nothing more to do: the inaccessibility/ambiguity check for
3034      // derived-to-base conversions is suppressed when we're
3035      // computing the implicit conversion sequence (C++
3036      // [over.best.ics]p2).
3037      return false;
3038    } else {
3039      // Perform the conversion.
3040      // FIXME: Binding to a subobject of the lvalue is going to require more
3041      // AST annotation than this.
3042      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
3043    }
3044  }
3045
3046  //       -- has a class type (i.e., T2 is a class type) and can be
3047  //          implicitly converted to an lvalue of type "cv3 T3,"
3048  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3049  //          92) (this conversion is selected by enumerating the
3050  //          applicable conversion functions (13.3.1.6) and choosing
3051  //          the best one through overload resolution (13.3)),
3052  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3053      !RequireCompleteType(SourceLocation(), T2, 0)) {
3054    // FIXME: Look for conversions in base classes!
3055    CXXRecordDecl *T2RecordDecl
3056      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3057
3058    OverloadCandidateSet CandidateSet;
3059    OverloadedFunctionDecl *Conversions
3060      = T2RecordDecl->getConversionFunctions();
3061    for (OverloadedFunctionDecl::function_iterator Func
3062           = Conversions->function_begin();
3063         Func != Conversions->function_end(); ++Func) {
3064      FunctionTemplateDecl *ConvTemplate
3065        = dyn_cast<FunctionTemplateDecl>(*Func);
3066      CXXConversionDecl *Conv;
3067      if (ConvTemplate)
3068        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3069      else
3070        Conv = cast<CXXConversionDecl>(*Func);
3071
3072      // If the conversion function doesn't return a reference type,
3073      // it can't be considered for this conversion.
3074      if (Conv->getConversionType()->isLValueReferenceType() &&
3075          (AllowExplicit || !Conv->isExplicit())) {
3076        if (ConvTemplate)
3077          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3078                                         CandidateSet);
3079        else
3080          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3081      }
3082    }
3083
3084    OverloadCandidateSet::iterator Best;
3085    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
3086    case OR_Success:
3087      // This is a direct binding.
3088      BindsDirectly = true;
3089
3090      if (ICS) {
3091        // C++ [over.ics.ref]p1:
3092        //
3093        //   [...] If the parameter binds directly to the result of
3094        //   applying a conversion function to the argument
3095        //   expression, the implicit conversion sequence is a
3096        //   user-defined conversion sequence (13.3.3.1.2), with the
3097        //   second standard conversion sequence either an identity
3098        //   conversion or, if the conversion function returns an
3099        //   entity of a type that is a derived class of the parameter
3100        //   type, a derived-to-base Conversion.
3101        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3102        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3103        ICS->UserDefined.After = Best->FinalConversion;
3104        ICS->UserDefined.ConversionFunction = Best->Function;
3105        assert(ICS->UserDefined.After.ReferenceBinding &&
3106               ICS->UserDefined.After.DirectBinding &&
3107               "Expected a direct reference binding!");
3108        return false;
3109      } else {
3110        // Perform the conversion.
3111        // FIXME: Binding to a subobject of the lvalue is going to require more
3112        // AST annotation than this.
3113        ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
3114      }
3115      break;
3116
3117    case OR_Ambiguous:
3118      assert(false && "Ambiguous reference binding conversions not implemented.");
3119      return true;
3120
3121    case OR_No_Viable_Function:
3122    case OR_Deleted:
3123      // There was no suitable conversion, or we found a deleted
3124      // conversion; continue with other checks.
3125      break;
3126    }
3127  }
3128
3129  if (BindsDirectly) {
3130    // C++ [dcl.init.ref]p4:
3131    //   [...] In all cases where the reference-related or
3132    //   reference-compatible relationship of two types is used to
3133    //   establish the validity of a reference binding, and T1 is a
3134    //   base class of T2, a program that necessitates such a binding
3135    //   is ill-formed if T1 is an inaccessible (clause 11) or
3136    //   ambiguous (10.2) base class of T2.
3137    //
3138    // Note that we only check this condition when we're allowed to
3139    // complain about errors, because we should not be checking for
3140    // ambiguity (or inaccessibility) unless the reference binding
3141    // actually happens.
3142    if (DerivedToBase)
3143      return CheckDerivedToBaseConversion(T2, T1,
3144                                          Init->getSourceRange().getBegin(),
3145                                          Init->getSourceRange());
3146    else
3147      return false;
3148  }
3149
3150  //     -- Otherwise, the reference shall be to a non-volatile const
3151  //        type (i.e., cv1 shall be const), or the reference shall be an
3152  //        rvalue reference and the initializer expression shall be an rvalue.
3153  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
3154    if (!ICS)
3155      Diag(Init->getSourceRange().getBegin(),
3156           diag::err_not_reference_to_const_init)
3157        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3158        << T2 << Init->getSourceRange();
3159    return true;
3160  }
3161
3162  //       -- If the initializer expression is an rvalue, with T2 a
3163  //          class type, and "cv1 T1" is reference-compatible with
3164  //          "cv2 T2," the reference is bound in one of the
3165  //          following ways (the choice is implementation-defined):
3166  //
3167  //          -- The reference is bound to the object represented by
3168  //             the rvalue (see 3.10) or to a sub-object within that
3169  //             object.
3170  //
3171  //          -- A temporary of type "cv1 T2" [sic] is created, and
3172  //             a constructor is called to copy the entire rvalue
3173  //             object into the temporary. The reference is bound to
3174  //             the temporary or to a sub-object within the
3175  //             temporary.
3176  //
3177  //          The constructor that would be used to make the copy
3178  //          shall be callable whether or not the copy is actually
3179  //          done.
3180  //
3181  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
3182  // freedom, so we will always take the first option and never build
3183  // a temporary in this case. FIXME: We will, however, have to check
3184  // for the presence of a copy constructor in C++98/03 mode.
3185  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
3186      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3187    if (ICS) {
3188      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3189      ICS->Standard.First = ICK_Identity;
3190      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3191      ICS->Standard.Third = ICK_Identity;
3192      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3193      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3194      ICS->Standard.ReferenceBinding = true;
3195      ICS->Standard.DirectBinding = false;
3196      ICS->Standard.RRefBinding = isRValRef;
3197      ICS->Standard.CopyConstructor = 0;
3198    } else {
3199      // FIXME: Binding to a subobject of the rvalue is going to require more
3200      // AST annotation than this.
3201      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/false);
3202    }
3203    return false;
3204  }
3205
3206  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3207  //          initialized from the initializer expression using the
3208  //          rules for a non-reference copy initialization (8.5). The
3209  //          reference is then bound to the temporary. If T1 is
3210  //          reference-related to T2, cv1 must be the same
3211  //          cv-qualification as, or greater cv-qualification than,
3212  //          cv2; otherwise, the program is ill-formed.
3213  if (RefRelationship == Ref_Related) {
3214    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3215    // we would be reference-compatible or reference-compatible with
3216    // added qualification. But that wasn't the case, so the reference
3217    // initialization fails.
3218    if (!ICS)
3219      Diag(Init->getSourceRange().getBegin(),
3220           diag::err_reference_init_drops_quals)
3221        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3222        << T2 << Init->getSourceRange();
3223    return true;
3224  }
3225
3226  // If at least one of the types is a class type, the types are not
3227  // related, and we aren't allowed any user conversions, the
3228  // reference binding fails. This case is important for breaking
3229  // recursion, since TryImplicitConversion below will attempt to
3230  // create a temporary through the use of a copy constructor.
3231  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
3232      (T1->isRecordType() || T2->isRecordType())) {
3233    if (!ICS)
3234      Diag(Init->getSourceRange().getBegin(),
3235           diag::err_typecheck_convert_incompatible)
3236        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
3237    return true;
3238  }
3239
3240  // Actually try to convert the initializer to T1.
3241  if (ICS) {
3242    // C++ [over.ics.ref]p2:
3243    //
3244    //   When a parameter of reference type is not bound directly to
3245    //   an argument expression, the conversion sequence is the one
3246    //   required to convert the argument expression to the
3247    //   underlying type of the reference according to
3248    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3249    //   to copy-initializing a temporary of the underlying type with
3250    //   the argument expression. Any difference in top-level
3251    //   cv-qualification is subsumed by the initialization itself
3252    //   and does not constitute a conversion.
3253    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
3254                                 /*AllowExplicit=*/false,
3255                                 /*ForceRValue=*/false,
3256                                 /*InOverloadResolution=*/false);
3257
3258    // Of course, that's still a reference binding.
3259    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3260      ICS->Standard.ReferenceBinding = true;
3261      ICS->Standard.RRefBinding = isRValRef;
3262    } else if(ICS->ConversionKind ==
3263              ImplicitConversionSequence::UserDefinedConversion) {
3264      ICS->UserDefined.After.ReferenceBinding = true;
3265      ICS->UserDefined.After.RRefBinding = isRValRef;
3266    }
3267    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3268  } else {
3269    return PerformImplicitConversion(Init, T1, "initializing");
3270  }
3271}
3272
3273/// CheckOverloadedOperatorDeclaration - Check whether the declaration
3274/// of this overloaded operator is well-formed. If so, returns false;
3275/// otherwise, emits appropriate diagnostics and returns true.
3276bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
3277  assert(FnDecl && FnDecl->isOverloadedOperator() &&
3278         "Expected an overloaded operator declaration");
3279
3280  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
3281
3282  // C++ [over.oper]p5:
3283  //   The allocation and deallocation functions, operator new,
3284  //   operator new[], operator delete and operator delete[], are
3285  //   described completely in 3.7.3. The attributes and restrictions
3286  //   found in the rest of this subclause do not apply to them unless
3287  //   explicitly stated in 3.7.3.
3288  // FIXME: Write a separate routine for checking this. For now, just allow it.
3289  if (Op == OO_New || Op == OO_Array_New ||
3290      Op == OO_Delete || Op == OO_Array_Delete)
3291    return false;
3292
3293  // C++ [over.oper]p6:
3294  //   An operator function shall either be a non-static member
3295  //   function or be a non-member function and have at least one
3296  //   parameter whose type is a class, a reference to a class, an
3297  //   enumeration, or a reference to an enumeration.
3298  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
3299    if (MethodDecl->isStatic())
3300      return Diag(FnDecl->getLocation(),
3301                  diag::err_operator_overload_static) << FnDecl->getDeclName();
3302  } else {
3303    bool ClassOrEnumParam = false;
3304    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
3305                                   ParamEnd = FnDecl->param_end();
3306         Param != ParamEnd; ++Param) {
3307      QualType ParamType = (*Param)->getType().getNonReferenceType();
3308      if (ParamType->isDependentType() || ParamType->isRecordType() ||
3309          ParamType->isEnumeralType()) {
3310        ClassOrEnumParam = true;
3311        break;
3312      }
3313    }
3314
3315    if (!ClassOrEnumParam)
3316      return Diag(FnDecl->getLocation(),
3317                  diag::err_operator_overload_needs_class_or_enum)
3318        << FnDecl->getDeclName();
3319  }
3320
3321  // C++ [over.oper]p8:
3322  //   An operator function cannot have default arguments (8.3.6),
3323  //   except where explicitly stated below.
3324  //
3325  // Only the function-call operator allows default arguments
3326  // (C++ [over.call]p1).
3327  if (Op != OO_Call) {
3328    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
3329         Param != FnDecl->param_end(); ++Param) {
3330      if ((*Param)->hasUnparsedDefaultArg())
3331        return Diag((*Param)->getLocation(),
3332                    diag::err_operator_overload_default_arg)
3333          << FnDecl->getDeclName();
3334      else if (Expr *DefArg = (*Param)->getDefaultArg())
3335        return Diag((*Param)->getLocation(),
3336                    diag::err_operator_overload_default_arg)
3337          << FnDecl->getDeclName() << DefArg->getSourceRange();
3338    }
3339  }
3340
3341  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3342    { false, false, false }
3343#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3344    , { Unary, Binary, MemberOnly }
3345#include "clang/Basic/OperatorKinds.def"
3346  };
3347
3348  bool CanBeUnaryOperator = OperatorUses[Op][0];
3349  bool CanBeBinaryOperator = OperatorUses[Op][1];
3350  bool MustBeMemberOperator = OperatorUses[Op][2];
3351
3352  // C++ [over.oper]p8:
3353  //   [...] Operator functions cannot have more or fewer parameters
3354  //   than the number required for the corresponding operator, as
3355  //   described in the rest of this subclause.
3356  unsigned NumParams = FnDecl->getNumParams()
3357                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3358  if (Op != OO_Call &&
3359      ((NumParams == 1 && !CanBeUnaryOperator) ||
3360       (NumParams == 2 && !CanBeBinaryOperator) ||
3361       (NumParams < 1) || (NumParams > 2))) {
3362    // We have the wrong number of parameters.
3363    unsigned ErrorKind;
3364    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3365      ErrorKind = 2;  // 2 -> unary or binary.
3366    } else if (CanBeUnaryOperator) {
3367      ErrorKind = 0;  // 0 -> unary
3368    } else {
3369      assert(CanBeBinaryOperator &&
3370             "All non-call overloaded operators are unary or binary!");
3371      ErrorKind = 1;  // 1 -> binary
3372    }
3373
3374    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3375      << FnDecl->getDeclName() << NumParams << ErrorKind;
3376  }
3377
3378  // Overloaded operators other than operator() cannot be variadic.
3379  if (Op != OO_Call &&
3380      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3381    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3382      << FnDecl->getDeclName();
3383  }
3384
3385  // Some operators must be non-static member functions.
3386  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3387    return Diag(FnDecl->getLocation(),
3388                diag::err_operator_overload_must_be_member)
3389      << FnDecl->getDeclName();
3390  }
3391
3392  // C++ [over.inc]p1:
3393  //   The user-defined function called operator++ implements the
3394  //   prefix and postfix ++ operator. If this function is a member
3395  //   function with no parameters, or a non-member function with one
3396  //   parameter of class or enumeration type, it defines the prefix
3397  //   increment operator ++ for objects of that type. If the function
3398  //   is a member function with one parameter (which shall be of type
3399  //   int) or a non-member function with two parameters (the second
3400  //   of which shall be of type int), it defines the postfix
3401  //   increment operator ++ for objects of that type.
3402  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3403    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3404    bool ParamIsInt = false;
3405    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3406      ParamIsInt = BT->getKind() == BuiltinType::Int;
3407
3408    if (!ParamIsInt)
3409      return Diag(LastParam->getLocation(),
3410                  diag::err_operator_overload_post_incdec_must_be_int)
3411        << LastParam->getType() << (Op == OO_MinusMinus);
3412  }
3413
3414  // Notify the class if it got an assignment operator.
3415  if (Op == OO_Equal) {
3416    // Would have returned earlier otherwise.
3417    assert(isa<CXXMethodDecl>(FnDecl) &&
3418      "Overloaded = not member, but not filtered.");
3419    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3420    Method->setCopyAssignment(true);
3421    Method->getParent()->addedAssignmentOperator(Context, Method);
3422  }
3423
3424  return false;
3425}
3426
3427/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3428/// linkage specification, including the language and (if present)
3429/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3430/// the location of the language string literal, which is provided
3431/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3432/// the '{' brace. Otherwise, this linkage specification does not
3433/// have any braces.
3434Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3435                                                     SourceLocation ExternLoc,
3436                                                     SourceLocation LangLoc,
3437                                                     const char *Lang,
3438                                                     unsigned StrSize,
3439                                                     SourceLocation LBraceLoc) {
3440  LinkageSpecDecl::LanguageIDs Language;
3441  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3442    Language = LinkageSpecDecl::lang_c;
3443  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3444    Language = LinkageSpecDecl::lang_cxx;
3445  else {
3446    Diag(LangLoc, diag::err_bad_language);
3447    return DeclPtrTy();
3448  }
3449
3450  // FIXME: Add all the various semantics of linkage specifications
3451
3452  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3453                                               LangLoc, Language,
3454                                               LBraceLoc.isValid());
3455  CurContext->addDecl(D);
3456  PushDeclContext(S, D);
3457  return DeclPtrTy::make(D);
3458}
3459
3460/// ActOnFinishLinkageSpecification - Completely the definition of
3461/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3462/// valid, it's the position of the closing '}' brace in a linkage
3463/// specification that uses braces.
3464Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3465                                                      DeclPtrTy LinkageSpec,
3466                                                      SourceLocation RBraceLoc) {
3467  if (LinkageSpec)
3468    PopDeclContext();
3469  return LinkageSpec;
3470}
3471
3472/// \brief Perform semantic analysis for the variable declaration that
3473/// occurs within a C++ catch clause, returning the newly-created
3474/// variable.
3475VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3476                                         DeclaratorInfo *DInfo,
3477                                         IdentifierInfo *Name,
3478                                         SourceLocation Loc,
3479                                         SourceRange Range) {
3480  bool Invalid = false;
3481
3482  // Arrays and functions decay.
3483  if (ExDeclType->isArrayType())
3484    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3485  else if (ExDeclType->isFunctionType())
3486    ExDeclType = Context.getPointerType(ExDeclType);
3487
3488  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3489  // The exception-declaration shall not denote a pointer or reference to an
3490  // incomplete type, other than [cv] void*.
3491  // N2844 forbids rvalue references.
3492  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3493    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3494    Invalid = true;
3495  }
3496
3497  QualType BaseType = ExDeclType;
3498  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3499  unsigned DK = diag::err_catch_incomplete;
3500  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3501    BaseType = Ptr->getPointeeType();
3502    Mode = 1;
3503    DK = diag::err_catch_incomplete_ptr;
3504  } else if(const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
3505    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3506    BaseType = Ref->getPointeeType();
3507    Mode = 2;
3508    DK = diag::err_catch_incomplete_ref;
3509  }
3510  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3511      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3512    Invalid = true;
3513
3514  if (!Invalid && !ExDeclType->isDependentType() &&
3515      RequireNonAbstractType(Loc, ExDeclType,
3516                             diag::err_abstract_type_in_decl,
3517                             AbstractVariableType))
3518    Invalid = true;
3519
3520  // FIXME: Need to test for ability to copy-construct and destroy the
3521  // exception variable.
3522
3523  // FIXME: Need to check for abstract classes.
3524
3525  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3526                                    Name, ExDeclType, DInfo, VarDecl::None);
3527
3528  if (Invalid)
3529    ExDecl->setInvalidDecl();
3530
3531  return ExDecl;
3532}
3533
3534/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3535/// handler.
3536Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3537  DeclaratorInfo *DInfo = 0;
3538  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
3539
3540  bool Invalid = D.isInvalidType();
3541  IdentifierInfo *II = D.getIdentifier();
3542  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3543    // The scope should be freshly made just for us. There is just no way
3544    // it contains any previous declaration.
3545    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3546    if (PrevDecl->isTemplateParameter()) {
3547      // Maybe we will complain about the shadowed template parameter.
3548      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3549    }
3550  }
3551
3552  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3553    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3554      << D.getCXXScopeSpec().getRange();
3555    Invalid = true;
3556  }
3557
3558  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
3559                                              D.getIdentifier(),
3560                                              D.getIdentifierLoc(),
3561                                            D.getDeclSpec().getSourceRange());
3562
3563  if (Invalid)
3564    ExDecl->setInvalidDecl();
3565
3566  // Add the exception declaration into this scope.
3567  if (II)
3568    PushOnScopeChains(ExDecl, S);
3569  else
3570    CurContext->addDecl(ExDecl);
3571
3572  ProcessDeclAttributes(S, ExDecl, D);
3573  return DeclPtrTy::make(ExDecl);
3574}
3575
3576Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3577                                                   ExprArg assertexpr,
3578                                                   ExprArg assertmessageexpr) {
3579  Expr *AssertExpr = (Expr *)assertexpr.get();
3580  StringLiteral *AssertMessage =
3581    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3582
3583  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3584    llvm::APSInt Value(32);
3585    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3586      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3587        AssertExpr->getSourceRange();
3588      return DeclPtrTy();
3589    }
3590
3591    if (Value == 0) {
3592      std::string str(AssertMessage->getStrData(),
3593                      AssertMessage->getByteLength());
3594      Diag(AssertLoc, diag::err_static_assert_failed)
3595        << str << AssertExpr->getSourceRange();
3596    }
3597  }
3598
3599  assertexpr.release();
3600  assertmessageexpr.release();
3601  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3602                                        AssertExpr, AssertMessage);
3603
3604  CurContext->addDecl(Decl);
3605  return DeclPtrTy::make(Decl);
3606}
3607
3608Sema::DeclPtrTy Sema::ActOnFriendDecl(Scope *S,
3609                       llvm::PointerUnion<const DeclSpec*,Declarator*> DU,
3610                                      bool IsDefinition) {
3611  if (DU.is<Declarator*>())
3612    return ActOnFriendFunctionDecl(S, *DU.get<Declarator*>(), IsDefinition);
3613  else
3614    return ActOnFriendTypeDecl(S, *DU.get<const DeclSpec*>(), IsDefinition);
3615}
3616
3617Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S,
3618                                          const DeclSpec &DS,
3619                                          bool IsDefinition) {
3620  SourceLocation Loc = DS.getSourceRange().getBegin();
3621
3622  assert(DS.isFriendSpecified());
3623  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3624
3625  // Check to see if the decl spec was syntactically like "struct foo".
3626  RecordDecl *RD = NULL;
3627
3628  switch (DS.getTypeSpecType()) {
3629  case DeclSpec::TST_class:
3630  case DeclSpec::TST_struct:
3631  case DeclSpec::TST_union:
3632    RD = dyn_cast_or_null<CXXRecordDecl>((Decl*) DS.getTypeRep());
3633    if (!RD) return DeclPtrTy();
3634
3635    // The parser doesn't quite handle
3636    //   friend class A {}
3637    // as we'd like, because it might have been the (valid) prefix of
3638    //   friend class A {} foo();
3639    // So even in C++0x mode we don't want to
3640    IsDefinition |= RD->isDefinition();
3641    break;
3642
3643  default: break;
3644  }
3645
3646  FriendDecl::FriendUnion FU = RD;
3647
3648  // C++ [class.friend]p2:
3649  //   An elaborated-type-specifier shall be used in a friend declaration
3650  //   for a class.*
3651  //   * The class-key of the elaborated-type-specifier is required.
3652  // So if we didn't get a record decl above, we're invalid in C++98 mode.
3653  if (!RD) {
3654    bool invalid = false;
3655    QualType T = ConvertDeclSpecToType(DS, Loc, invalid);
3656    if (invalid) return DeclPtrTy();
3657
3658    if (const RecordType *RT = T->getAs<RecordType>()) {
3659      FU = RD = cast<CXXRecordDecl>(RT->getDecl());
3660
3661      // Untagged typenames are invalid prior to C++0x, but we can
3662      // suggest an easy fix which should work.
3663      if (!getLangOptions().CPlusPlus0x) {
3664        Diag(DS.getFriendSpecLoc(), diag::err_unelaborated_friend_type)
3665          << (RD->isUnion())
3666          << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
3667                                        RD->isUnion() ? " union" : " class");
3668        return DeclPtrTy();
3669      }
3670    }else if (!getLangOptions().CPlusPlus0x) {
3671      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
3672          << DS.getSourceRange();
3673      return DeclPtrTy();
3674    }else {
3675      FU = T.getTypePtr();
3676    }
3677  }
3678
3679  assert(FU && "should have a friend decl/type by here!");
3680
3681  // C++ [class.friend]p2: A class shall not be defined inside
3682  //   a friend declaration.
3683  if (IsDefinition) {
3684    Diag(DS.getFriendSpecLoc(), diag::err_friend_decl_defines_class)
3685      << DS.getSourceRange();
3686    return DeclPtrTy();
3687  }
3688
3689  // C++98 [class.friend]p1: A friend of a class is a function
3690  //   or class that is not a member of the class . . .
3691  // But that's a silly restriction which nobody implements for
3692  // inner classes, and C++0x removes it anyway, so we only report
3693  // this (as a warning) if we're being pedantic.
3694  if (!getLangOptions().CPlusPlus0x) {
3695    assert(RD && "must have a record decl in C++98 mode");
3696    if (RD->getDeclContext() == CurContext)
3697      Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
3698  }
3699
3700  FriendDecl *FD = FriendDecl::Create(Context, CurContext, Loc, FU,
3701                                      DS.getFriendSpecLoc());
3702  FD->setAccess(AS_public);
3703  CurContext->addDecl(FD);
3704
3705  return DeclPtrTy::make(FD);
3706}
3707
3708Sema::DeclPtrTy Sema::ActOnFriendFunctionDecl(Scope *S,
3709                                              Declarator &D,
3710                                              bool IsDefinition) {
3711  const DeclSpec &DS = D.getDeclSpec();
3712
3713  assert(DS.isFriendSpecified());
3714  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3715
3716  SourceLocation Loc = D.getIdentifierLoc();
3717  DeclaratorInfo *DInfo = 0;
3718  QualType T = GetTypeForDeclarator(D, S, &DInfo);
3719
3720  // C++ [class.friend]p1
3721  //   A friend of a class is a function or class....
3722  // Note that this sees through typedefs, which is intended.
3723  // It *doesn't* see through dependent types, which is correct
3724  // according to [temp.arg.type]p3:
3725  //   If a declaration acquires a function type through a
3726  //   type dependent on a template-parameter and this causes
3727  //   a declaration that does not use the syntactic form of a
3728  //   function declarator to have a function type, the program
3729  //   is ill-formed.
3730  if (!T->isFunctionType()) {
3731    Diag(Loc, diag::err_unexpected_friend);
3732
3733    // It might be worthwhile to try to recover by creating an
3734    // appropriate declaration.
3735    return DeclPtrTy();
3736  }
3737
3738  // C++ [namespace.memdef]p3
3739  //  - If a friend declaration in a non-local class first declares a
3740  //    class or function, the friend class or function is a member
3741  //    of the innermost enclosing namespace.
3742  //  - The name of the friend is not found by simple name lookup
3743  //    until a matching declaration is provided in that namespace
3744  //    scope (either before or after the class declaration granting
3745  //    friendship).
3746  //  - If a friend function is called, its name may be found by the
3747  //    name lookup that considers functions from namespaces and
3748  //    classes associated with the types of the function arguments.
3749  //  - When looking for a prior declaration of a class or a function
3750  //    declared as a friend, scopes outside the innermost enclosing
3751  //    namespace scope are not considered.
3752
3753  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
3754  DeclarationName Name = GetNameForDeclarator(D);
3755  assert(Name);
3756
3757  // The existing declaration we found.
3758  FunctionDecl *FD = NULL;
3759
3760  // The context we found the declaration in, or in which we should
3761  // create the declaration.
3762  DeclContext *DC;
3763
3764  // FIXME: handle local classes
3765
3766  // Recover from invalid scope qualifiers as if they just weren't there.
3767  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
3768    DC = computeDeclContext(ScopeQual);
3769
3770    // FIXME: handle dependent contexts
3771    if (!DC) return DeclPtrTy();
3772
3773    Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3774
3775    // If searching in that context implicitly found a declaration in
3776    // a different context, treat it like it wasn't found at all.
3777    // TODO: better diagnostics for this case.  Suggesting the right
3778    // qualified scope would be nice...
3779    if (!Dec || Dec->getDeclContext() != DC) {
3780      D.setInvalidType();
3781      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
3782      return DeclPtrTy();
3783    }
3784
3785    // C++ [class.friend]p1: A friend of a class is a function or
3786    //   class that is not a member of the class . . .
3787    if (DC == CurContext)
3788      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3789
3790    FD = cast<FunctionDecl>(Dec);
3791
3792  // Otherwise walk out to the nearest namespace scope looking for matches.
3793  } else {
3794    // TODO: handle local class contexts.
3795
3796    DC = CurContext;
3797    while (true) {
3798      // Skip class contexts.  If someone can cite chapter and verse
3799      // for this behavior, that would be nice --- it's what GCC and
3800      // EDG do, and it seems like a reasonable intent, but the spec
3801      // really only says that checks for unqualified existing
3802      // declarations should stop at the nearest enclosing namespace,
3803      // not that they should only consider the nearest enclosing
3804      // namespace.
3805      while (DC->isRecord()) DC = DC->getParent();
3806
3807      Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3808
3809      // TODO: decide what we think about using declarations.
3810      if (Dec) {
3811        FD = cast<FunctionDecl>(Dec);
3812        break;
3813      }
3814      if (DC->isFileContext()) break;
3815      DC = DC->getParent();
3816    }
3817
3818    // C++ [class.friend]p1: A friend of a class is a function or
3819    //   class that is not a member of the class . . .
3820    // C++0x changes this for both friend types and functions.
3821    // Most C++ 98 compilers do seem to give an error here, so
3822    // we do, too.
3823    if (FD && DC == CurContext && !getLangOptions().CPlusPlus0x)
3824      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3825  }
3826
3827  bool Redeclaration = (FD != 0);
3828
3829  // If we found a match, create a friend function declaration with
3830  // that function as the previous declaration.
3831  if (Redeclaration) {
3832    // Create it in the semantic context of the original declaration.
3833    DC = FD->getDeclContext();
3834
3835  // If we didn't find something matching the type exactly, create
3836  // a declaration.  This declaration should only be findable via
3837  // argument-dependent lookup.
3838  } else {
3839    assert(DC->isFileContext());
3840
3841    // This implies that it has to be an operator or function.
3842    if (D.getKind() == Declarator::DK_Constructor ||
3843        D.getKind() == Declarator::DK_Destructor ||
3844        D.getKind() == Declarator::DK_Conversion) {
3845      Diag(Loc, diag::err_introducing_special_friend) <<
3846        (D.getKind() == Declarator::DK_Constructor ? 0 :
3847         D.getKind() == Declarator::DK_Destructor ? 1 : 2);
3848      return DeclPtrTy();
3849    }
3850  }
3851
3852  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo,
3853                                          /* PrevDecl = */ FD,
3854                                          MultiTemplateParamsArg(*this),
3855                                          IsDefinition,
3856                                          Redeclaration);
3857  if (!ND) return DeclPtrTy();
3858
3859  assert(cast<FunctionDecl>(ND)->getPreviousDeclaration() == FD &&
3860         "lost reference to previous declaration");
3861
3862  FD = cast<FunctionDecl>(ND);
3863
3864  assert(FD->getDeclContext() == DC);
3865  assert(FD->getLexicalDeclContext() == CurContext);
3866
3867  // Add the function declaration to the appropriate lookup tables,
3868  // adjusting the redeclarations list as necessary.  We don't
3869  // want to do this yet if the friending class is dependent.
3870  //
3871  // Also update the scope-based lookup if the target context's
3872  // lookup context is in lexical scope.
3873  if (!CurContext->isDependentContext()) {
3874    DC = DC->getLookupContext();
3875    DC->makeDeclVisibleInContext(FD, /* Recoverable=*/ false);
3876    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
3877      PushOnScopeChains(FD, EnclosingScope, /*AddToContext=*/ false);
3878  }
3879
3880  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
3881                                       D.getIdentifierLoc(), FD,
3882                                       DS.getFriendSpecLoc());
3883  FrD->setAccess(AS_public);
3884  CurContext->addDecl(FrD);
3885
3886  return DeclPtrTy::make(FD);
3887}
3888
3889void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3890  AdjustDeclIfTemplate(dcl);
3891
3892  Decl *Dcl = dcl.getAs<Decl>();
3893  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3894  if (!Fn) {
3895    Diag(DelLoc, diag::err_deleted_non_function);
3896    return;
3897  }
3898  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3899    Diag(DelLoc, diag::err_deleted_decl_not_first);
3900    Diag(Prev->getLocation(), diag::note_previous_declaration);
3901    // If the declaration wasn't the first, we delete the function anyway for
3902    // recovery.
3903  }
3904  Fn->setDeleted();
3905}
3906
3907static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3908  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3909       ++CI) {
3910    Stmt *SubStmt = *CI;
3911    if (!SubStmt)
3912      continue;
3913    if (isa<ReturnStmt>(SubStmt))
3914      Self.Diag(SubStmt->getSourceRange().getBegin(),
3915           diag::err_return_in_constructor_handler);
3916    if (!isa<Expr>(SubStmt))
3917      SearchForReturnInStmt(Self, SubStmt);
3918  }
3919}
3920
3921void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3922  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3923    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3924    SearchForReturnInStmt(*this, Handler);
3925  }
3926}
3927
3928bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3929                                             const CXXMethodDecl *Old) {
3930  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3931  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3932
3933  QualType CNewTy = Context.getCanonicalType(NewTy);
3934  QualType COldTy = Context.getCanonicalType(OldTy);
3935
3936  if (CNewTy == COldTy &&
3937      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3938    return false;
3939
3940  // Check if the return types are covariant
3941  QualType NewClassTy, OldClassTy;
3942
3943  /// Both types must be pointers or references to classes.
3944  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3945    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3946      NewClassTy = NewPT->getPointeeType();
3947      OldClassTy = OldPT->getPointeeType();
3948    }
3949  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3950    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3951      NewClassTy = NewRT->getPointeeType();
3952      OldClassTy = OldRT->getPointeeType();
3953    }
3954  }
3955
3956  // The return types aren't either both pointers or references to a class type.
3957  if (NewClassTy.isNull()) {
3958    Diag(New->getLocation(),
3959         diag::err_different_return_type_for_overriding_virtual_function)
3960      << New->getDeclName() << NewTy << OldTy;
3961    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3962
3963    return true;
3964  }
3965
3966  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3967    // Check if the new class derives from the old class.
3968    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3969      Diag(New->getLocation(),
3970           diag::err_covariant_return_not_derived)
3971      << New->getDeclName() << NewTy << OldTy;
3972      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3973      return true;
3974    }
3975
3976    // Check if we the conversion from derived to base is valid.
3977    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3978                      diag::err_covariant_return_inaccessible_base,
3979                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3980                      // FIXME: Should this point to the return type?
3981                      New->getLocation(), SourceRange(), New->getDeclName())) {
3982      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3983      return true;
3984    }
3985  }
3986
3987  // The qualifiers of the return types must be the same.
3988  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3989    Diag(New->getLocation(),
3990         diag::err_covariant_return_type_different_qualifications)
3991    << New->getDeclName() << NewTy << OldTy;
3992    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3993    return true;
3994  };
3995
3996
3997  // The new class type must have the same or less qualifiers as the old type.
3998  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3999    Diag(New->getLocation(),
4000         diag::err_covariant_return_type_class_type_more_qualified)
4001    << New->getDeclName() << NewTy << OldTy;
4002    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4003    return true;
4004  };
4005
4006  return false;
4007}
4008
4009bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
4010                                                const CXXMethodDecl *Old)
4011{
4012  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
4013                                  diag::note_overridden_virtual_function,
4014                                  Old->getType()->getAsFunctionProtoType(),
4015                                  Old->getLocation(),
4016                                  New->getType()->getAsFunctionProtoType(),
4017                                  New->getLocation());
4018}
4019
4020/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
4021/// initializer for the declaration 'Dcl'.
4022/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
4023/// static data member of class X, names should be looked up in the scope of
4024/// class X.
4025void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4026  AdjustDeclIfTemplate(Dcl);
4027
4028  Decl *D = Dcl.getAs<Decl>();
4029  // If there is no declaration, there was an error parsing it.
4030  if (D == 0)
4031    return;
4032
4033  // Check whether it is a declaration with a nested name specifier like
4034  // int foo::bar;
4035  if (!D->isOutOfLine())
4036    return;
4037
4038  // C++ [basic.lookup.unqual]p13
4039  //
4040  // A name used in the definition of a static data member of class X
4041  // (after the qualified-id of the static member) is looked up as if the name
4042  // was used in a member function of X.
4043
4044  // Change current context into the context of the initializing declaration.
4045  EnterDeclaratorContext(S, D->getDeclContext());
4046}
4047
4048/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4049/// initializer for the declaration 'Dcl'.
4050void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4051  AdjustDeclIfTemplate(Dcl);
4052
4053  Decl *D = Dcl.getAs<Decl>();
4054  // If there is no declaration, there was an error parsing it.
4055  if (D == 0)
4056    return;
4057
4058  // Check whether it is a declaration with a nested name specifier like
4059  // int foo::bar;
4060  if (!D->isOutOfLine())
4061    return;
4062
4063  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4064  ExitDeclaratorContext(S);
4065}
4066