SemaDeclCXX.cpp revision 930e8d0c2f0b30da3a6a9c440503976d8250e7cf
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
111  ExprOwningPtr<Expr> DefaultArg(this, (Expr *)defarg.release());
112  QualType ParamType = Param->getType();
113
114  // Default arguments are only permitted in C++
115  if (!getLangOptions().CPlusPlus) {
116    Diag(EqualLoc, diag::err_param_default_argument)
117      << DefaultArg->getSourceRange();
118    Param->setInvalidDecl();
119    return;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  Expr *DefaultArgPtr = DefaultArg.get();
129  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
130                                                 EqualLoc,
131                                                 Param->getDeclName(),
132                                                 /*DirectInit=*/false);
133  if (DefaultArgPtr != DefaultArg.get()) {
134    DefaultArg.take();
135    DefaultArg.reset(DefaultArgPtr);
136  }
137  if (DefaultInitFailed) {
138    return;
139  }
140
141  // Check that the default argument is well-formed
142  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
143  if (DefaultArgChecker.Visit(DefaultArg.get())) {
144    Param->setInvalidDecl();
145    return;
146  }
147
148  // Okay: add the default argument to the parameter
149  Param->setDefaultArg(DefaultArg.take());
150}
151
152/// ActOnParamUnparsedDefaultArgument - We've seen a default
153/// argument for a function parameter, but we can't parse it yet
154/// because we're inside a class definition. Note that this default
155/// argument will be parsed later.
156void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
157                                             SourceLocation EqualLoc) {
158  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
159  if (Param)
160    Param->setUnparsedDefaultArg();
161}
162
163/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
164/// the default argument for the parameter param failed.
165void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
166  cast<ParmVarDecl>(param.getAs<Decl>())->setInvalidDecl();
167}
168
169/// CheckExtraCXXDefaultArguments - Check for any extra default
170/// arguments in the declarator, which is not a function declaration
171/// or definition and therefore is not permitted to have default
172/// arguments. This routine should be invoked for every declarator
173/// that is not a function declaration or definition.
174void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
175  // C++ [dcl.fct.default]p3
176  //   A default argument expression shall be specified only in the
177  //   parameter-declaration-clause of a function declaration or in a
178  //   template-parameter (14.1). It shall not be specified for a
179  //   parameter pack. If it is specified in a
180  //   parameter-declaration-clause, it shall not occur within a
181  //   declarator or abstract-declarator of a parameter-declaration.
182  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
183    DeclaratorChunk &chunk = D.getTypeObject(i);
184    if (chunk.Kind == DeclaratorChunk::Function) {
185      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
186        ParmVarDecl *Param =
187          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
188        if (Param->hasUnparsedDefaultArg()) {
189          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
190          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
191            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
192          delete Toks;
193          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
194        } else if (Param->getDefaultArg()) {
195          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
196            << Param->getDefaultArg()->getSourceRange();
197          Param->setDefaultArg(0);
198        }
199      }
200    }
201  }
202}
203
204// MergeCXXFunctionDecl - Merge two declarations of the same C++
205// function, once we already know that they have the same
206// type. Subroutine of MergeFunctionDecl. Returns true if there was an
207// error, false otherwise.
208bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
209  bool Invalid = false;
210
211  // C++ [dcl.fct.default]p4:
212  //
213  //   For non-template functions, default arguments can be added in
214  //   later declarations of a function in the same
215  //   scope. Declarations in different scopes have completely
216  //   distinct sets of default arguments. That is, declarations in
217  //   inner scopes do not acquire default arguments from
218  //   declarations in outer scopes, and vice versa. In a given
219  //   function declaration, all parameters subsequent to a
220  //   parameter with a default argument shall have default
221  //   arguments supplied in this or previous declarations. A
222  //   default argument shall not be redefined by a later
223  //   declaration (not even to the same value).
224  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
225    ParmVarDecl *OldParam = Old->getParamDecl(p);
226    ParmVarDecl *NewParam = New->getParamDecl(p);
227
228    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
229      Diag(NewParam->getLocation(),
230           diag::err_param_default_argument_redefinition)
231        << NewParam->getDefaultArg()->getSourceRange();
232      Diag(OldParam->getLocation(), diag::note_previous_definition);
233      Invalid = true;
234    } else if (OldParam->getDefaultArg()) {
235      // Merge the old default argument into the new parameter
236      NewParam->setDefaultArg(OldParam->getDefaultArg());
237    }
238  }
239
240  return Invalid;
241}
242
243/// CheckCXXDefaultArguments - Verify that the default arguments for a
244/// function declaration are well-formed according to C++
245/// [dcl.fct.default].
246void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
247  unsigned NumParams = FD->getNumParams();
248  unsigned p;
249
250  // Find first parameter with a default argument
251  for (p = 0; p < NumParams; ++p) {
252    ParmVarDecl *Param = FD->getParamDecl(p);
253    if (Param->getDefaultArg())
254      break;
255  }
256
257  // C++ [dcl.fct.default]p4:
258  //   In a given function declaration, all parameters
259  //   subsequent to a parameter with a default argument shall
260  //   have default arguments supplied in this or previous
261  //   declarations. A default argument shall not be redefined
262  //   by a later declaration (not even to the same value).
263  unsigned LastMissingDefaultArg = 0;
264  for(; p < NumParams; ++p) {
265    ParmVarDecl *Param = FD->getParamDecl(p);
266    if (!Param->getDefaultArg()) {
267      if (Param->isInvalidDecl())
268        /* We already complained about this parameter. */;
269      else if (Param->getIdentifier())
270        Diag(Param->getLocation(),
271             diag::err_param_default_argument_missing_name)
272          << Param->getIdentifier();
273      else
274        Diag(Param->getLocation(),
275             diag::err_param_default_argument_missing);
276
277      LastMissingDefaultArg = p;
278    }
279  }
280
281  if (LastMissingDefaultArg > 0) {
282    // Some default arguments were missing. Clear out all of the
283    // default arguments up to (and including) the last missing
284    // default argument, so that we leave the function parameters
285    // in a semantically valid state.
286    for (p = 0; p <= LastMissingDefaultArg; ++p) {
287      ParmVarDecl *Param = FD->getParamDecl(p);
288      if (Param->getDefaultArg()) {
289        if (!Param->hasUnparsedDefaultArg())
290          Param->getDefaultArg()->Destroy(Context);
291        Param->setDefaultArg(0);
292      }
293    }
294  }
295}
296
297/// isCurrentClassName - Determine whether the identifier II is the
298/// name of the class type currently being defined. In the case of
299/// nested classes, this will only return true if II is the name of
300/// the innermost class.
301bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
302                              const CXXScopeSpec *SS) {
303  CXXRecordDecl *CurDecl;
304  if (SS && SS->isSet() && !SS->isInvalid()) {
305    DeclContext *DC = computeDeclContext(*SS);
306    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
307  } else
308    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
309
310  if (CurDecl)
311    return &II == CurDecl->getIdentifier();
312  else
313    return false;
314}
315
316/// \brief Check the validity of a C++ base class specifier.
317///
318/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
319/// and returns NULL otherwise.
320CXXBaseSpecifier *
321Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
322                         SourceRange SpecifierRange,
323                         bool Virtual, AccessSpecifier Access,
324                         QualType BaseType,
325                         SourceLocation BaseLoc) {
326  // C++ [class.union]p1:
327  //   A union shall not have base classes.
328  if (Class->isUnion()) {
329    Diag(Class->getLocation(), diag::err_base_clause_on_union)
330      << SpecifierRange;
331    return 0;
332  }
333
334  if (BaseType->isDependentType())
335    return new CXXBaseSpecifier(SpecifierRange, Virtual,
336                                Class->getTagKind() == RecordDecl::TK_class,
337                                Access, BaseType);
338
339  // Base specifiers must be record types.
340  if (!BaseType->isRecordType()) {
341    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
342    return 0;
343  }
344
345  // C++ [class.union]p1:
346  //   A union shall not be used as a base class.
347  if (BaseType->isUnionType()) {
348    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
349    return 0;
350  }
351
352  // C++ [class.derived]p2:
353  //   The class-name in a base-specifier shall not be an incompletely
354  //   defined class.
355  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
356                          SpecifierRange))
357    return 0;
358
359  // If the base class is polymorphic, the new one is, too.
360  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
361  assert(BaseDecl && "Record type has no declaration");
362  BaseDecl = BaseDecl->getDefinition(Context);
363  assert(BaseDecl && "Base type is not incomplete, but has no definition");
364  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
365    Class->setPolymorphic(true);
366
367  // C++ [dcl.init.aggr]p1:
368  //   An aggregate is [...] a class with [...] no base classes [...].
369  Class->setAggregate(false);
370  Class->setPOD(false);
371
372  if (Virtual) {
373    // C++ [class.ctor]p5:
374    //   A constructor is trivial if its class has no virtual base classes.
375    Class->setHasTrivialConstructor(false);
376  } else {
377    // C++ [class.ctor]p5:
378    //   A constructor is trivial if all the direct base classes of its
379    //   class have trivial constructors.
380    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
381                                    hasTrivialConstructor());
382  }
383
384  // Create the base specifier.
385  // FIXME: Allocate via ASTContext?
386  return new CXXBaseSpecifier(SpecifierRange, Virtual,
387                              Class->getTagKind() == RecordDecl::TK_class,
388                              Access, BaseType);
389}
390
391/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
392/// one entry in the base class list of a class specifier, for
393/// example:
394///    class foo : public bar, virtual private baz {
395/// 'public bar' and 'virtual private baz' are each base-specifiers.
396Sema::BaseResult
397Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
398                         bool Virtual, AccessSpecifier Access,
399                         TypeTy *basetype, SourceLocation BaseLoc) {
400  AdjustDeclIfTemplate(classdecl);
401  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
402  QualType BaseType = QualType::getFromOpaquePtr(basetype);
403  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
404                                                      Virtual, Access,
405                                                      BaseType, BaseLoc))
406    return BaseSpec;
407
408  return true;
409}
410
411/// \brief Performs the actual work of attaching the given base class
412/// specifiers to a C++ class.
413bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
414                                unsigned NumBases) {
415 if (NumBases == 0)
416    return false;
417
418  // Used to keep track of which base types we have already seen, so
419  // that we can properly diagnose redundant direct base types. Note
420  // that the key is always the unqualified canonical type of the base
421  // class.
422  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
423
424  // Copy non-redundant base specifiers into permanent storage.
425  unsigned NumGoodBases = 0;
426  bool Invalid = false;
427  for (unsigned idx = 0; idx < NumBases; ++idx) {
428    QualType NewBaseType
429      = Context.getCanonicalType(Bases[idx]->getType());
430    NewBaseType = NewBaseType.getUnqualifiedType();
431
432    if (KnownBaseTypes[NewBaseType]) {
433      // C++ [class.mi]p3:
434      //   A class shall not be specified as a direct base class of a
435      //   derived class more than once.
436      Diag(Bases[idx]->getSourceRange().getBegin(),
437           diag::err_duplicate_base_class)
438        << KnownBaseTypes[NewBaseType]->getType()
439        << Bases[idx]->getSourceRange();
440
441      // Delete the duplicate base class specifier; we're going to
442      // overwrite its pointer later.
443      delete Bases[idx];
444
445      Invalid = true;
446    } else {
447      // Okay, add this new base class.
448      KnownBaseTypes[NewBaseType] = Bases[idx];
449      Bases[NumGoodBases++] = Bases[idx];
450    }
451  }
452
453  // Attach the remaining base class specifiers to the derived class.
454  Class->setBases(Bases, NumGoodBases);
455
456  // Delete the remaining (good) base class specifiers, since their
457  // data has been copied into the CXXRecordDecl.
458  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
459    delete Bases[idx];
460
461  return Invalid;
462}
463
464/// ActOnBaseSpecifiers - Attach the given base specifiers to the
465/// class, after checking whether there are any duplicate base
466/// classes.
467void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
468                               unsigned NumBases) {
469  if (!ClassDecl || !Bases || !NumBases)
470    return;
471
472  AdjustDeclIfTemplate(ClassDecl);
473  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
474                       (CXXBaseSpecifier**)(Bases), NumBases);
475}
476
477//===----------------------------------------------------------------------===//
478// C++ class member Handling
479//===----------------------------------------------------------------------===//
480
481/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
482/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
483/// bitfield width if there is one and 'InitExpr' specifies the initializer if
484/// any.
485Sema::DeclPtrTy
486Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
487                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
488  const DeclSpec &DS = D.getDeclSpec();
489  DeclarationName Name = GetNameForDeclarator(D);
490  Expr *BitWidth = static_cast<Expr*>(BW);
491  Expr *Init = static_cast<Expr*>(InitExpr);
492  SourceLocation Loc = D.getIdentifierLoc();
493
494  bool isFunc = D.isFunctionDeclarator();
495
496  // C++ 9.2p6: A member shall not be declared to have automatic storage
497  // duration (auto, register) or with the extern storage-class-specifier.
498  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
499  // data members and cannot be applied to names declared const or static,
500  // and cannot be applied to reference members.
501  switch (DS.getStorageClassSpec()) {
502    case DeclSpec::SCS_unspecified:
503    case DeclSpec::SCS_typedef:
504    case DeclSpec::SCS_static:
505      // FALL THROUGH.
506      break;
507    case DeclSpec::SCS_mutable:
508      if (isFunc) {
509        if (DS.getStorageClassSpecLoc().isValid())
510          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
511        else
512          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
513
514        // FIXME: It would be nicer if the keyword was ignored only for this
515        // declarator. Otherwise we could get follow-up errors.
516        D.getMutableDeclSpec().ClearStorageClassSpecs();
517      } else {
518        QualType T = GetTypeForDeclarator(D, S);
519        diag::kind err = static_cast<diag::kind>(0);
520        if (T->isReferenceType())
521          err = diag::err_mutable_reference;
522        else if (T.isConstQualified())
523          err = diag::err_mutable_const;
524        if (err != 0) {
525          if (DS.getStorageClassSpecLoc().isValid())
526            Diag(DS.getStorageClassSpecLoc(), err);
527          else
528            Diag(DS.getThreadSpecLoc(), err);
529          // FIXME: It would be nicer if the keyword was ignored only for this
530          // declarator. Otherwise we could get follow-up errors.
531          D.getMutableDeclSpec().ClearStorageClassSpecs();
532        }
533      }
534      break;
535    default:
536      if (DS.getStorageClassSpecLoc().isValid())
537        Diag(DS.getStorageClassSpecLoc(),
538             diag::err_storageclass_invalid_for_member);
539      else
540        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
541      D.getMutableDeclSpec().ClearStorageClassSpecs();
542  }
543
544  if (!isFunc &&
545      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
546      D.getNumTypeObjects() == 0) {
547    // Check also for this case:
548    //
549    // typedef int f();
550    // f a;
551    //
552    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
553    isFunc = TDType->isFunctionType();
554  }
555
556  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
557                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
558                      !isFunc);
559
560  Decl *Member;
561  if (isInstField) {
562    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
563                         AS);
564    assert(Member && "HandleField never returns null");
565  } else {
566    Member = ActOnDeclarator(S, D).getAs<Decl>();
567    if (!Member) {
568      if (BitWidth) DeleteExpr(BitWidth);
569      return DeclPtrTy();
570    }
571
572    // Non-instance-fields can't have a bitfield.
573    if (BitWidth) {
574      if (Member->isInvalidDecl()) {
575        // don't emit another diagnostic.
576      } else if (isa<VarDecl>(Member)) {
577        // C++ 9.6p3: A bit-field shall not be a static member.
578        // "static member 'A' cannot be a bit-field"
579        Diag(Loc, diag::err_static_not_bitfield)
580          << Name << BitWidth->getSourceRange();
581      } else if (isa<TypedefDecl>(Member)) {
582        // "typedef member 'x' cannot be a bit-field"
583        Diag(Loc, diag::err_typedef_not_bitfield)
584          << Name << BitWidth->getSourceRange();
585      } else {
586        // A function typedef ("typedef int f(); f a;").
587        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
588        Diag(Loc, diag::err_not_integral_type_bitfield)
589          << Name << cast<ValueDecl>(Member)->getType()
590          << BitWidth->getSourceRange();
591      }
592
593      DeleteExpr(BitWidth);
594      BitWidth = 0;
595      Member->setInvalidDecl();
596    }
597
598    Member->setAccess(AS);
599  }
600
601  assert((Name || isInstField) && "No identifier for non-field ?");
602
603  if (Init)
604    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
605  if (Deleted) // FIXME: Source location is not very good.
606    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
607
608  if (isInstField) {
609    FieldCollector->Add(cast<FieldDecl>(Member));
610    return DeclPtrTy();
611  }
612  return DeclPtrTy::make(Member);
613}
614
615/// ActOnMemInitializer - Handle a C++ member initializer.
616Sema::MemInitResult
617Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
618                          Scope *S,
619                          IdentifierInfo *MemberOrBase,
620                          SourceLocation IdLoc,
621                          SourceLocation LParenLoc,
622                          ExprTy **Args, unsigned NumArgs,
623                          SourceLocation *CommaLocs,
624                          SourceLocation RParenLoc) {
625  CXXConstructorDecl *Constructor
626    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
627  if (!Constructor) {
628    // The user wrote a constructor initializer on a function that is
629    // not a C++ constructor. Ignore the error for now, because we may
630    // have more member initializers coming; we'll diagnose it just
631    // once in ActOnMemInitializers.
632    return true;
633  }
634
635  CXXRecordDecl *ClassDecl = Constructor->getParent();
636
637  // C++ [class.base.init]p2:
638  //   Names in a mem-initializer-id are looked up in the scope of the
639  //   constructor’s class and, if not found in that scope, are looked
640  //   up in the scope containing the constructor’s
641  //   definition. [Note: if the constructor’s class contains a member
642  //   with the same name as a direct or virtual base class of the
643  //   class, a mem-initializer-id naming the member or base class and
644  //   composed of a single identifier refers to the class member. A
645  //   mem-initializer-id for the hidden base class may be specified
646  //   using a qualified name. ]
647  // Look for a member, first.
648  FieldDecl *Member = 0;
649  DeclContext::lookup_result Result
650    = ClassDecl->lookup(Context, MemberOrBase);
651  if (Result.first != Result.second)
652    Member = dyn_cast<FieldDecl>(*Result.first);
653
654  // FIXME: Handle members of an anonymous union.
655
656  if (Member) {
657    // FIXME: Perform direct initialization of the member.
658    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
659  }
660
661  // It didn't name a member, so see if it names a class.
662  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
663  if (!BaseTy)
664    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
665      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
666
667  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
668  if (!BaseType->isRecordType())
669    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
670      << BaseType << SourceRange(IdLoc, RParenLoc);
671
672  // C++ [class.base.init]p2:
673  //   [...] Unless the mem-initializer-id names a nonstatic data
674  //   member of the constructor’s class or a direct or virtual base
675  //   of that class, the mem-initializer is ill-formed. A
676  //   mem-initializer-list can initialize a base class using any
677  //   name that denotes that base class type.
678
679  // First, check for a direct base class.
680  const CXXBaseSpecifier *DirectBaseSpec = 0;
681  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
682       Base != ClassDecl->bases_end(); ++Base) {
683    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
684        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
685      // We found a direct base of this type. That's what we're
686      // initializing.
687      DirectBaseSpec = &*Base;
688      break;
689    }
690  }
691
692  // Check for a virtual base class.
693  // FIXME: We might be able to short-circuit this if we know in
694  // advance that there are no virtual bases.
695  const CXXBaseSpecifier *VirtualBaseSpec = 0;
696  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
697    // We haven't found a base yet; search the class hierarchy for a
698    // virtual base class.
699    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
700                    /*DetectVirtual=*/false);
701    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
702      for (BasePaths::paths_iterator Path = Paths.begin();
703           Path != Paths.end(); ++Path) {
704        if (Path->back().Base->isVirtual()) {
705          VirtualBaseSpec = Path->back().Base;
706          break;
707        }
708      }
709    }
710  }
711
712  // C++ [base.class.init]p2:
713  //   If a mem-initializer-id is ambiguous because it designates both
714  //   a direct non-virtual base class and an inherited virtual base
715  //   class, the mem-initializer is ill-formed.
716  if (DirectBaseSpec && VirtualBaseSpec)
717    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
718      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
719
720  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
721}
722
723void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
724                                SourceLocation ColonLoc,
725                                MemInitTy **MemInits, unsigned NumMemInits) {
726  CXXConstructorDecl *Constructor =
727  dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
728
729  if (!Constructor) {
730    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
731    return;
732  }
733}
734
735namespace {
736  /// PureVirtualMethodCollector - traverses a class and its superclasses
737  /// and determines if it has any pure virtual methods.
738  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
739    ASTContext &Context;
740
741  public:
742    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
743
744  private:
745    MethodList Methods;
746
747    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
748
749  public:
750    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
751      : Context(Ctx) {
752
753      MethodList List;
754      Collect(RD, List);
755
756      // Copy the temporary list to methods, and make sure to ignore any
757      // null entries.
758      for (size_t i = 0, e = List.size(); i != e; ++i) {
759        if (List[i])
760          Methods.push_back(List[i]);
761      }
762    }
763
764    bool empty() const { return Methods.empty(); }
765
766    MethodList::const_iterator methods_begin() { return Methods.begin(); }
767    MethodList::const_iterator methods_end() { return Methods.end(); }
768  };
769
770  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
771                                           MethodList& Methods) {
772    // First, collect the pure virtual methods for the base classes.
773    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
774         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
775      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
776        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
777        if (BaseDecl && BaseDecl->isAbstract())
778          Collect(BaseDecl, Methods);
779      }
780    }
781
782    // Next, zero out any pure virtual methods that this class overrides.
783    for (size_t i = 0, e = Methods.size(); i != e; ++i) {
784      const CXXMethodDecl *VMD = dyn_cast_or_null<CXXMethodDecl>(Methods[i]);
785      if (!VMD)
786        continue;
787
788      DeclContext::lookup_const_iterator I, E;
789      for (llvm::tie(I, E) = RD->lookup(Context, VMD->getDeclName());
790           I != E; ++I) {
791        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I)) {
792          if (Context.getCanonicalType(MD->getType()) ==
793              Context.getCanonicalType(VMD->getType())) {
794            // We did find a matching method, which means that this is not a
795            // pure virtual method in the current class. Zero it out.
796            Methods[i] = 0;
797          }
798        }
799      }
800    }
801
802    // Finally, add pure virtual methods from this class.
803    for (RecordDecl::decl_iterator i = RD->decls_begin(Context),
804                                   e = RD->decls_end(Context);
805         i != e; ++i) {
806      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
807        if (MD->isPure())
808          Methods.push_back(MD);
809      }
810    }
811  }
812}
813
814bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
815                                  unsigned DiagID, AbstractDiagSelID SelID,
816                                  const CXXRecordDecl *CurrentRD) {
817
818  if (!getLangOptions().CPlusPlus)
819    return false;
820
821  if (const ArrayType *AT = Context.getAsArrayType(T))
822    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
823                                  CurrentRD);
824
825  if (const PointerType *PT = T->getAsPointerType()) {
826    // Find the innermost pointer type.
827    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
828      PT = T;
829
830    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
831      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
832                                    CurrentRD);
833  }
834
835  const RecordType *RT = T->getAsRecordType();
836  if (!RT)
837    return false;
838
839  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
840  if (!RD)
841    return false;
842
843  if (CurrentRD && CurrentRD != RD)
844    return false;
845
846  if (!RD->isAbstract())
847    return false;
848
849  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
850
851  // Check if we've already emitted the list of pure virtual functions for this
852  // class.
853  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
854    return true;
855
856  PureVirtualMethodCollector Collector(Context, RD);
857
858  for (PureVirtualMethodCollector::MethodList::const_iterator I =
859       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
860    const CXXMethodDecl *MD = *I;
861
862    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
863      MD->getDeclName();
864  }
865
866  if (!PureVirtualClassDiagSet)
867    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
868  PureVirtualClassDiagSet->insert(RD);
869
870  return true;
871}
872
873namespace {
874  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
875    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
876    Sema &SemaRef;
877    CXXRecordDecl *AbstractClass;
878
879    bool VisitDeclContext(const DeclContext *DC) {
880      bool Invalid = false;
881
882      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(SemaRef.Context),
883           E = DC->decls_end(SemaRef.Context); I != E; ++I)
884        Invalid |= Visit(*I);
885
886      return Invalid;
887    }
888
889  public:
890    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
891      : SemaRef(SemaRef), AbstractClass(ac) {
892        Visit(SemaRef.Context.getTranslationUnitDecl());
893    }
894
895    bool VisitFunctionDecl(const FunctionDecl *FD) {
896      if (FD->isThisDeclarationADefinition()) {
897        // No need to do the check if we're in a definition, because it requires
898        // that the return/param types are complete.
899        // because that requires
900        return VisitDeclContext(FD);
901      }
902
903      // Check the return type.
904      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
905      bool Invalid =
906        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
907                                       diag::err_abstract_type_in_decl,
908                                       Sema::AbstractReturnType,
909                                       AbstractClass);
910
911      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
912           E = FD->param_end(); I != E; ++I) {
913        const ParmVarDecl *VD = *I;
914        Invalid |=
915          SemaRef.RequireNonAbstractType(VD->getLocation(),
916                                         VD->getOriginalType(),
917                                         diag::err_abstract_type_in_decl,
918                                         Sema::AbstractParamType,
919                                         AbstractClass);
920      }
921
922      return Invalid;
923    }
924
925    bool VisitDecl(const Decl* D) {
926      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
927        return VisitDeclContext(DC);
928
929      return false;
930    }
931  };
932}
933
934void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
935                                             DeclPtrTy TagDecl,
936                                             SourceLocation LBrac,
937                                             SourceLocation RBrac) {
938  TemplateDecl *Template = AdjustDeclIfTemplate(TagDecl);
939  ActOnFields(S, RLoc, TagDecl,
940              (DeclPtrTy*)FieldCollector->getCurFields(),
941              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
942
943  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
944  if (!RD->isAbstract()) {
945    // Collect all the pure virtual methods and see if this is an abstract
946    // class after all.
947    PureVirtualMethodCollector Collector(Context, RD);
948    if (!Collector.empty())
949      RD->setAbstract(true);
950  }
951
952  if (RD->isAbstract())
953    AbstractClassUsageDiagnoser(*this, RD);
954
955  if (RD->hasTrivialConstructor()) {
956    for (RecordDecl::field_iterator i = RD->field_begin(Context),
957         e = RD->field_end(Context); i != e; ++i) {
958      // All the nonstatic data members must have trivial constructors.
959      QualType FTy = i->getType();
960      while (const ArrayType *AT = Context.getAsArrayType(FTy))
961        FTy = AT->getElementType();
962
963      if (const RecordType *RT = FTy->getAsRecordType()) {
964        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
965        if (!FieldRD->hasTrivialConstructor()) {
966          RD->setHasTrivialConstructor(false);
967          break;
968        }
969      }
970    }
971  }
972
973  if (!Template)
974    AddImplicitlyDeclaredMembersToClass(RD);
975}
976
977/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
978/// special functions, such as the default constructor, copy
979/// constructor, or destructor, to the given C++ class (C++
980/// [special]p1).  This routine can only be executed just before the
981/// definition of the class is complete.
982void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
983  QualType ClassType = Context.getTypeDeclType(ClassDecl);
984  ClassType = Context.getCanonicalType(ClassType);
985
986  if (!ClassDecl->hasUserDeclaredConstructor()) {
987    // C++ [class.ctor]p5:
988    //   A default constructor for a class X is a constructor of class X
989    //   that can be called without an argument. If there is no
990    //   user-declared constructor for class X, a default constructor is
991    //   implicitly declared. An implicitly-declared default constructor
992    //   is an inline public member of its class.
993    DeclarationName Name
994      = Context.DeclarationNames.getCXXConstructorName(ClassType);
995    CXXConstructorDecl *DefaultCon =
996      CXXConstructorDecl::Create(Context, ClassDecl,
997                                 ClassDecl->getLocation(), Name,
998                                 Context.getFunctionType(Context.VoidTy,
999                                                         0, 0, false, 0),
1000                                 /*isExplicit=*/false,
1001                                 /*isInline=*/true,
1002                                 /*isImplicitlyDeclared=*/true);
1003    DefaultCon->setAccess(AS_public);
1004    DefaultCon->setImplicit();
1005    ClassDecl->addDecl(Context, DefaultCon);
1006
1007    // Notify the class that we've added a constructor.
1008    ClassDecl->addedConstructor(Context, DefaultCon);
1009  }
1010
1011  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1012    // C++ [class.copy]p4:
1013    //   If the class definition does not explicitly declare a copy
1014    //   constructor, one is declared implicitly.
1015
1016    // C++ [class.copy]p5:
1017    //   The implicitly-declared copy constructor for a class X will
1018    //   have the form
1019    //
1020    //       X::X(const X&)
1021    //
1022    //   if
1023    bool HasConstCopyConstructor = true;
1024
1025    //     -- each direct or virtual base class B of X has a copy
1026    //        constructor whose first parameter is of type const B& or
1027    //        const volatile B&, and
1028    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1029         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1030      const CXXRecordDecl *BaseClassDecl
1031        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1032      HasConstCopyConstructor
1033        = BaseClassDecl->hasConstCopyConstructor(Context);
1034    }
1035
1036    //     -- for all the nonstatic data members of X that are of a
1037    //        class type M (or array thereof), each such class type
1038    //        has a copy constructor whose first parameter is of type
1039    //        const M& or const volatile M&.
1040    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1041         HasConstCopyConstructor && Field != ClassDecl->field_end(Context);
1042         ++Field) {
1043      QualType FieldType = (*Field)->getType();
1044      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1045        FieldType = Array->getElementType();
1046      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1047        const CXXRecordDecl *FieldClassDecl
1048          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1049        HasConstCopyConstructor
1050          = FieldClassDecl->hasConstCopyConstructor(Context);
1051      }
1052    }
1053
1054    //   Otherwise, the implicitly declared copy constructor will have
1055    //   the form
1056    //
1057    //       X::X(X&)
1058    QualType ArgType = ClassType;
1059    if (HasConstCopyConstructor)
1060      ArgType = ArgType.withConst();
1061    ArgType = Context.getLValueReferenceType(ArgType);
1062
1063    //   An implicitly-declared copy constructor is an inline public
1064    //   member of its class.
1065    DeclarationName Name
1066      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1067    CXXConstructorDecl *CopyConstructor
1068      = CXXConstructorDecl::Create(Context, ClassDecl,
1069                                   ClassDecl->getLocation(), Name,
1070                                   Context.getFunctionType(Context.VoidTy,
1071                                                           &ArgType, 1,
1072                                                           false, 0),
1073                                   /*isExplicit=*/false,
1074                                   /*isInline=*/true,
1075                                   /*isImplicitlyDeclared=*/true);
1076    CopyConstructor->setAccess(AS_public);
1077    CopyConstructor->setImplicit();
1078
1079    // Add the parameter to the constructor.
1080    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1081                                                 ClassDecl->getLocation(),
1082                                                 /*IdentifierInfo=*/0,
1083                                                 ArgType, VarDecl::None, 0);
1084    CopyConstructor->setParams(Context, &FromParam, 1);
1085
1086    ClassDecl->addedConstructor(Context, CopyConstructor);
1087    ClassDecl->addDecl(Context, CopyConstructor);
1088  }
1089
1090  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1091    // Note: The following rules are largely analoguous to the copy
1092    // constructor rules. Note that virtual bases are not taken into account
1093    // for determining the argument type of the operator. Note also that
1094    // operators taking an object instead of a reference are allowed.
1095    //
1096    // C++ [class.copy]p10:
1097    //   If the class definition does not explicitly declare a copy
1098    //   assignment operator, one is declared implicitly.
1099    //   The implicitly-defined copy assignment operator for a class X
1100    //   will have the form
1101    //
1102    //       X& X::operator=(const X&)
1103    //
1104    //   if
1105    bool HasConstCopyAssignment = true;
1106
1107    //       -- each direct base class B of X has a copy assignment operator
1108    //          whose parameter is of type const B&, const volatile B& or B,
1109    //          and
1110    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1111         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1112      const CXXRecordDecl *BaseClassDecl
1113        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1114      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1115    }
1116
1117    //       -- for all the nonstatic data members of X that are of a class
1118    //          type M (or array thereof), each such class type has a copy
1119    //          assignment operator whose parameter is of type const M&,
1120    //          const volatile M& or M.
1121    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1122         HasConstCopyAssignment && Field != ClassDecl->field_end(Context);
1123         ++Field) {
1124      QualType FieldType = (*Field)->getType();
1125      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1126        FieldType = Array->getElementType();
1127      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1128        const CXXRecordDecl *FieldClassDecl
1129          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1130        HasConstCopyAssignment
1131          = FieldClassDecl->hasConstCopyAssignment(Context);
1132      }
1133    }
1134
1135    //   Otherwise, the implicitly declared copy assignment operator will
1136    //   have the form
1137    //
1138    //       X& X::operator=(X&)
1139    QualType ArgType = ClassType;
1140    QualType RetType = Context.getLValueReferenceType(ArgType);
1141    if (HasConstCopyAssignment)
1142      ArgType = ArgType.withConst();
1143    ArgType = Context.getLValueReferenceType(ArgType);
1144
1145    //   An implicitly-declared copy assignment operator is an inline public
1146    //   member of its class.
1147    DeclarationName Name =
1148      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1149    CXXMethodDecl *CopyAssignment =
1150      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1151                            Context.getFunctionType(RetType, &ArgType, 1,
1152                                                    false, 0),
1153                            /*isStatic=*/false, /*isInline=*/true);
1154    CopyAssignment->setAccess(AS_public);
1155    CopyAssignment->setImplicit();
1156
1157    // Add the parameter to the operator.
1158    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1159                                                 ClassDecl->getLocation(),
1160                                                 /*IdentifierInfo=*/0,
1161                                                 ArgType, VarDecl::None, 0);
1162    CopyAssignment->setParams(Context, &FromParam, 1);
1163
1164    // Don't call addedAssignmentOperator. There is no way to distinguish an
1165    // implicit from an explicit assignment operator.
1166    ClassDecl->addDecl(Context, CopyAssignment);
1167  }
1168
1169  if (!ClassDecl->hasUserDeclaredDestructor()) {
1170    // C++ [class.dtor]p2:
1171    //   If a class has no user-declared destructor, a destructor is
1172    //   declared implicitly. An implicitly-declared destructor is an
1173    //   inline public member of its class.
1174    DeclarationName Name
1175      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1176    CXXDestructorDecl *Destructor
1177      = CXXDestructorDecl::Create(Context, ClassDecl,
1178                                  ClassDecl->getLocation(), Name,
1179                                  Context.getFunctionType(Context.VoidTy,
1180                                                          0, 0, false, 0),
1181                                  /*isInline=*/true,
1182                                  /*isImplicitlyDeclared=*/true);
1183    Destructor->setAccess(AS_public);
1184    Destructor->setImplicit();
1185    ClassDecl->addDecl(Context, Destructor);
1186  }
1187}
1188
1189/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1190/// parsing a top-level (non-nested) C++ class, and we are now
1191/// parsing those parts of the given Method declaration that could
1192/// not be parsed earlier (C++ [class.mem]p2), such as default
1193/// arguments. This action should enter the scope of the given
1194/// Method declaration as if we had just parsed the qualified method
1195/// name. However, it should not bring the parameters into scope;
1196/// that will be performed by ActOnDelayedCXXMethodParameter.
1197void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1198  CXXScopeSpec SS;
1199  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1200  QualType ClassTy
1201    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1202  SS.setScopeRep(
1203    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1204  ActOnCXXEnterDeclaratorScope(S, SS);
1205}
1206
1207/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1208/// C++ method declaration. We're (re-)introducing the given
1209/// function parameter into scope for use in parsing later parts of
1210/// the method declaration. For example, we could see an
1211/// ActOnParamDefaultArgument event for this parameter.
1212void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1213  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1214
1215  // If this parameter has an unparsed default argument, clear it out
1216  // to make way for the parsed default argument.
1217  if (Param->hasUnparsedDefaultArg())
1218    Param->setDefaultArg(0);
1219
1220  S->AddDecl(DeclPtrTy::make(Param));
1221  if (Param->getDeclName())
1222    IdResolver.AddDecl(Param);
1223}
1224
1225/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1226/// processing the delayed method declaration for Method. The method
1227/// declaration is now considered finished. There may be a separate
1228/// ActOnStartOfFunctionDef action later (not necessarily
1229/// immediately!) for this method, if it was also defined inside the
1230/// class body.
1231void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1232  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1233  CXXScopeSpec SS;
1234  QualType ClassTy
1235    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1236  SS.setScopeRep(
1237    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1238  ActOnCXXExitDeclaratorScope(S, SS);
1239
1240  // Now that we have our default arguments, check the constructor
1241  // again. It could produce additional diagnostics or affect whether
1242  // the class has implicitly-declared destructors, among other
1243  // things.
1244  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
1245    if (CheckConstructor(Constructor))
1246      Constructor->setInvalidDecl();
1247  }
1248
1249  // Check the default arguments, which we may have added.
1250  if (!Method->isInvalidDecl())
1251    CheckCXXDefaultArguments(Method);
1252}
1253
1254/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1255/// the well-formedness of the constructor declarator @p D with type @p
1256/// R. If there are any errors in the declarator, this routine will
1257/// emit diagnostics and return true. Otherwise, it will return
1258/// false. Either way, the type @p R will be updated to reflect a
1259/// well-formed type for the constructor.
1260bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
1261                                      FunctionDecl::StorageClass& SC) {
1262  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1263  bool isInvalid = false;
1264
1265  // C++ [class.ctor]p3:
1266  //   A constructor shall not be virtual (10.3) or static (9.4). A
1267  //   constructor can be invoked for a const, volatile or const
1268  //   volatile object. A constructor shall not be declared const,
1269  //   volatile, or const volatile (9.3.2).
1270  if (isVirtual) {
1271    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1272      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1273      << SourceRange(D.getIdentifierLoc());
1274    isInvalid = true;
1275  }
1276  if (SC == FunctionDecl::Static) {
1277    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1278      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1279      << SourceRange(D.getIdentifierLoc());
1280    isInvalid = true;
1281    SC = FunctionDecl::None;
1282  }
1283  if (D.getDeclSpec().hasTypeSpecifier()) {
1284    // Constructors don't have return types, but the parser will
1285    // happily parse something like:
1286    //
1287    //   class X {
1288    //     float X(float);
1289    //   };
1290    //
1291    // The return type will be eliminated later.
1292    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
1293      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1294      << SourceRange(D.getIdentifierLoc());
1295  }
1296  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1297    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1298    if (FTI.TypeQuals & QualType::Const)
1299      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1300        << "const" << SourceRange(D.getIdentifierLoc());
1301    if (FTI.TypeQuals & QualType::Volatile)
1302      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1303        << "volatile" << SourceRange(D.getIdentifierLoc());
1304    if (FTI.TypeQuals & QualType::Restrict)
1305      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1306        << "restrict" << SourceRange(D.getIdentifierLoc());
1307  }
1308
1309  // Rebuild the function type "R" without any type qualifiers (in
1310  // case any of the errors above fired) and with "void" as the
1311  // return type, since constructors don't have return types. We
1312  // *always* have to do this, because GetTypeForDeclarator will
1313  // put in a result type of "int" when none was specified.
1314  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1315  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1316                              Proto->getNumArgs(),
1317                              Proto->isVariadic(),
1318                              0);
1319
1320  return isInvalid;
1321}
1322
1323/// CheckConstructor - Checks a fully-formed constructor for
1324/// well-formedness, issuing any diagnostics required. Returns true if
1325/// the constructor declarator is invalid.
1326bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1327  CXXRecordDecl *ClassDecl
1328    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1329  if (!ClassDecl)
1330    return true;
1331
1332  bool Invalid = Constructor->isInvalidDecl();
1333
1334  // C++ [class.copy]p3:
1335  //   A declaration of a constructor for a class X is ill-formed if
1336  //   its first parameter is of type (optionally cv-qualified) X and
1337  //   either there are no other parameters or else all other
1338  //   parameters have default arguments.
1339  if (!Constructor->isInvalidDecl() &&
1340      ((Constructor->getNumParams() == 1) ||
1341       (Constructor->getNumParams() > 1 &&
1342        Constructor->getParamDecl(1)->getDefaultArg() != 0))) {
1343    QualType ParamType = Constructor->getParamDecl(0)->getType();
1344    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1345    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1346      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1347      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1348        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1349      Invalid = true;
1350    }
1351  }
1352
1353  // Notify the class that we've added a constructor.
1354  ClassDecl->addedConstructor(Context, Constructor);
1355
1356  return Invalid;
1357}
1358
1359/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1360/// the well-formednes of the destructor declarator @p D with type @p
1361/// R. If there are any errors in the declarator, this routine will
1362/// emit diagnostics and return true. Otherwise, it will return
1363/// false. Either way, the type @p R will be updated to reflect a
1364/// well-formed type for the destructor.
1365bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1366                                     FunctionDecl::StorageClass& SC) {
1367  bool isInvalid = false;
1368
1369  // C++ [class.dtor]p1:
1370  //   [...] A typedef-name that names a class is a class-name
1371  //   (7.1.3); however, a typedef-name that names a class shall not
1372  //   be used as the identifier in the declarator for a destructor
1373  //   declaration.
1374  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1375  if (DeclaratorType->getAsTypedefType()) {
1376    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1377      << DeclaratorType;
1378    isInvalid = true;
1379  }
1380
1381  // C++ [class.dtor]p2:
1382  //   A destructor is used to destroy objects of its class type. A
1383  //   destructor takes no parameters, and no return type can be
1384  //   specified for it (not even void). The address of a destructor
1385  //   shall not be taken. A destructor shall not be static. A
1386  //   destructor can be invoked for a const, volatile or const
1387  //   volatile object. A destructor shall not be declared const,
1388  //   volatile or const volatile (9.3.2).
1389  if (SC == FunctionDecl::Static) {
1390    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1391      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1392      << SourceRange(D.getIdentifierLoc());
1393    isInvalid = true;
1394    SC = FunctionDecl::None;
1395  }
1396  if (D.getDeclSpec().hasTypeSpecifier()) {
1397    // Destructors don't have return types, but the parser will
1398    // happily parse something like:
1399    //
1400    //   class X {
1401    //     float ~X();
1402    //   };
1403    //
1404    // The return type will be eliminated later.
1405    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1406      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1407      << SourceRange(D.getIdentifierLoc());
1408  }
1409  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1410    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1411    if (FTI.TypeQuals & QualType::Const)
1412      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1413        << "const" << SourceRange(D.getIdentifierLoc());
1414    if (FTI.TypeQuals & QualType::Volatile)
1415      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1416        << "volatile" << SourceRange(D.getIdentifierLoc());
1417    if (FTI.TypeQuals & QualType::Restrict)
1418      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1419        << "restrict" << SourceRange(D.getIdentifierLoc());
1420  }
1421
1422  // Make sure we don't have any parameters.
1423  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1424    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1425
1426    // Delete the parameters.
1427    D.getTypeObject(0).Fun.freeArgs();
1428  }
1429
1430  // Make sure the destructor isn't variadic.
1431  if (R->getAsFunctionProtoType()->isVariadic())
1432    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1433
1434  // Rebuild the function type "R" without any type qualifiers or
1435  // parameters (in case any of the errors above fired) and with
1436  // "void" as the return type, since destructors don't have return
1437  // types. We *always* have to do this, because GetTypeForDeclarator
1438  // will put in a result type of "int" when none was specified.
1439  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1440
1441  return isInvalid;
1442}
1443
1444/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1445/// well-formednes of the conversion function declarator @p D with
1446/// type @p R. If there are any errors in the declarator, this routine
1447/// will emit diagnostics and return true. Otherwise, it will return
1448/// false. Either way, the type @p R will be updated to reflect a
1449/// well-formed type for the conversion operator.
1450bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1451                                     FunctionDecl::StorageClass& SC) {
1452  bool isInvalid = false;
1453
1454  // C++ [class.conv.fct]p1:
1455  //   Neither parameter types nor return type can be specified. The
1456  //   type of a conversion function (8.3.5) is “function taking no
1457  //   parameter returning conversion-type-id.”
1458  if (SC == FunctionDecl::Static) {
1459    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1460      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1461      << SourceRange(D.getIdentifierLoc());
1462    isInvalid = true;
1463    SC = FunctionDecl::None;
1464  }
1465  if (D.getDeclSpec().hasTypeSpecifier()) {
1466    // Conversion functions don't have return types, but the parser will
1467    // happily parse something like:
1468    //
1469    //   class X {
1470    //     float operator bool();
1471    //   };
1472    //
1473    // The return type will be changed later anyway.
1474    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1475      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1476      << SourceRange(D.getIdentifierLoc());
1477  }
1478
1479  // Make sure we don't have any parameters.
1480  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1481    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1482
1483    // Delete the parameters.
1484    D.getTypeObject(0).Fun.freeArgs();
1485  }
1486
1487  // Make sure the conversion function isn't variadic.
1488  if (R->getAsFunctionProtoType()->isVariadic())
1489    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1490
1491  // C++ [class.conv.fct]p4:
1492  //   The conversion-type-id shall not represent a function type nor
1493  //   an array type.
1494  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1495  if (ConvType->isArrayType()) {
1496    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1497    ConvType = Context.getPointerType(ConvType);
1498  } else if (ConvType->isFunctionType()) {
1499    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1500    ConvType = Context.getPointerType(ConvType);
1501  }
1502
1503  // Rebuild the function type "R" without any parameters (in case any
1504  // of the errors above fired) and with the conversion type as the
1505  // return type.
1506  R = Context.getFunctionType(ConvType, 0, 0, false,
1507                              R->getAsFunctionProtoType()->getTypeQuals());
1508
1509  // C++0x explicit conversion operators.
1510  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1511    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1512         diag::warn_explicit_conversion_functions)
1513      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1514
1515  return isInvalid;
1516}
1517
1518/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1519/// the declaration of the given C++ conversion function. This routine
1520/// is responsible for recording the conversion function in the C++
1521/// class, if possible.
1522Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1523  assert(Conversion && "Expected to receive a conversion function declaration");
1524
1525  // Set the lexical context of this conversion function
1526  Conversion->setLexicalDeclContext(CurContext);
1527
1528  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1529
1530  // Make sure we aren't redeclaring the conversion function.
1531  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1532
1533  // C++ [class.conv.fct]p1:
1534  //   [...] A conversion function is never used to convert a
1535  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1536  //   same object type (or a reference to it), to a (possibly
1537  //   cv-qualified) base class of that type (or a reference to it),
1538  //   or to (possibly cv-qualified) void.
1539  // FIXME: Suppress this warning if the conversion function ends up
1540  // being a virtual function that overrides a virtual function in a
1541  // base class.
1542  QualType ClassType
1543    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1544  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1545    ConvType = ConvTypeRef->getPointeeType();
1546  if (ConvType->isRecordType()) {
1547    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1548    if (ConvType == ClassType)
1549      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1550        << ClassType;
1551    else if (IsDerivedFrom(ClassType, ConvType))
1552      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1553        <<  ClassType << ConvType;
1554  } else if (ConvType->isVoidType()) {
1555    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1556      << ClassType << ConvType;
1557  }
1558
1559  if (Conversion->getPreviousDeclaration()) {
1560    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1561    for (OverloadedFunctionDecl::function_iterator
1562           Conv = Conversions->function_begin(),
1563           ConvEnd = Conversions->function_end();
1564         Conv != ConvEnd; ++Conv) {
1565      if (*Conv == Conversion->getPreviousDeclaration()) {
1566        *Conv = Conversion;
1567        return DeclPtrTy::make(Conversion);
1568      }
1569    }
1570    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1571  } else
1572    ClassDecl->addConversionFunction(Context, Conversion);
1573
1574  return DeclPtrTy::make(Conversion);
1575}
1576
1577//===----------------------------------------------------------------------===//
1578// Namespace Handling
1579//===----------------------------------------------------------------------===//
1580
1581/// ActOnStartNamespaceDef - This is called at the start of a namespace
1582/// definition.
1583Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1584                                             SourceLocation IdentLoc,
1585                                             IdentifierInfo *II,
1586                                             SourceLocation LBrace) {
1587  NamespaceDecl *Namespc =
1588      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1589  Namespc->setLBracLoc(LBrace);
1590
1591  Scope *DeclRegionScope = NamespcScope->getParent();
1592
1593  if (II) {
1594    // C++ [namespace.def]p2:
1595    // The identifier in an original-namespace-definition shall not have been
1596    // previously defined in the declarative region in which the
1597    // original-namespace-definition appears. The identifier in an
1598    // original-namespace-definition is the name of the namespace. Subsequently
1599    // in that declarative region, it is treated as an original-namespace-name.
1600
1601    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1602                                     true);
1603
1604    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1605      // This is an extended namespace definition.
1606      // Attach this namespace decl to the chain of extended namespace
1607      // definitions.
1608      OrigNS->setNextNamespace(Namespc);
1609      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1610
1611      // Remove the previous declaration from the scope.
1612      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1613        IdResolver.RemoveDecl(OrigNS);
1614        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1615      }
1616    } else if (PrevDecl) {
1617      // This is an invalid name redefinition.
1618      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1619       << Namespc->getDeclName();
1620      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1621      Namespc->setInvalidDecl();
1622      // Continue on to push Namespc as current DeclContext and return it.
1623    }
1624
1625    PushOnScopeChains(Namespc, DeclRegionScope);
1626  } else {
1627    // FIXME: Handle anonymous namespaces
1628  }
1629
1630  // Although we could have an invalid decl (i.e. the namespace name is a
1631  // redefinition), push it as current DeclContext and try to continue parsing.
1632  // FIXME: We should be able to push Namespc here, so that the
1633  // each DeclContext for the namespace has the declarations
1634  // that showed up in that particular namespace definition.
1635  PushDeclContext(NamespcScope, Namespc);
1636  return DeclPtrTy::make(Namespc);
1637}
1638
1639/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1640/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1641void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1642  Decl *Dcl = D.getAs<Decl>();
1643  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1644  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1645  Namespc->setRBracLoc(RBrace);
1646  PopDeclContext();
1647}
1648
1649Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1650                                          SourceLocation UsingLoc,
1651                                          SourceLocation NamespcLoc,
1652                                          const CXXScopeSpec &SS,
1653                                          SourceLocation IdentLoc,
1654                                          IdentifierInfo *NamespcName,
1655                                          AttributeList *AttrList) {
1656  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1657  assert(NamespcName && "Invalid NamespcName.");
1658  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1659  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1660
1661  UsingDirectiveDecl *UDir = 0;
1662
1663  // Lookup namespace name.
1664  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1665                                    LookupNamespaceName, false);
1666  if (R.isAmbiguous()) {
1667    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1668    return DeclPtrTy();
1669  }
1670  if (NamedDecl *NS = R) {
1671    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1672    // C++ [namespace.udir]p1:
1673    //   A using-directive specifies that the names in the nominated
1674    //   namespace can be used in the scope in which the
1675    //   using-directive appears after the using-directive. During
1676    //   unqualified name lookup (3.4.1), the names appear as if they
1677    //   were declared in the nearest enclosing namespace which
1678    //   contains both the using-directive and the nominated
1679    //   namespace. [Note: in this context, “contains” means “contains
1680    //   directly or indirectly”. ]
1681
1682    // Find enclosing context containing both using-directive and
1683    // nominated namespace.
1684    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1685    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1686      CommonAncestor = CommonAncestor->getParent();
1687
1688    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc,
1689                                      NamespcLoc, IdentLoc,
1690                                      cast<NamespaceDecl>(NS),
1691                                      CommonAncestor);
1692    PushUsingDirective(S, UDir);
1693  } else {
1694    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1695  }
1696
1697  // FIXME: We ignore attributes for now.
1698  delete AttrList;
1699  return DeclPtrTy::make(UDir);
1700}
1701
1702void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1703  // If scope has associated entity, then using directive is at namespace
1704  // or translation unit scope. We add UsingDirectiveDecls, into
1705  // it's lookup structure.
1706  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1707    Ctx->addDecl(Context, UDir);
1708  else
1709    // Otherwise it is block-sope. using-directives will affect lookup
1710    // only to the end of scope.
1711    S->PushUsingDirective(DeclPtrTy::make(UDir));
1712}
1713
1714/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1715/// is a namespace alias, returns the namespace it points to.
1716static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1717  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1718    return AD->getNamespace();
1719  return dyn_cast_or_null<NamespaceDecl>(D);
1720}
1721
1722Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1723                                             SourceLocation NamespaceLoc,
1724                                             SourceLocation AliasLoc,
1725                                             IdentifierInfo *Alias,
1726                                             const CXXScopeSpec &SS,
1727                                             SourceLocation IdentLoc,
1728                                             IdentifierInfo *Ident) {
1729
1730  // Lookup the namespace name.
1731  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1732
1733  // Check if we have a previous declaration with the same name.
1734  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1735    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1736      // We already have an alias with the same name that points to the same
1737      // namespace, so don't create a new one.
1738      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1739        return DeclPtrTy();
1740    }
1741
1742    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1743      diag::err_redefinition_different_kind;
1744    Diag(AliasLoc, DiagID) << Alias;
1745    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1746    return DeclPtrTy();
1747  }
1748
1749  if (R.isAmbiguous()) {
1750    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1751    return DeclPtrTy();
1752  }
1753
1754  if (!R) {
1755    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
1756    return DeclPtrTy();
1757  }
1758
1759  NamespaceAliasDecl *AliasDecl =
1760    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, Alias,
1761                               IdentLoc, R);
1762
1763  CurContext->addDecl(Context, AliasDecl);
1764  return DeclPtrTy::make(AliasDecl);
1765}
1766
1767void Sema::InitializeVarWithConstructor(VarDecl *VD,
1768                                        CXXConstructorDecl *Constructor,
1769                                        QualType DeclInitType,
1770                                        Expr **Exprs, unsigned NumExprs) {
1771  Expr *Temp =
1772    new (Context) CXXTemporaryObjectExpr(Constructor, DeclInitType,
1773                                         SourceLocation(),
1774                                         Exprs, NumExprs,
1775                                         SourceLocation());
1776  VD->setInit(Temp);
1777}
1778
1779/// AddCXXDirectInitializerToDecl - This action is called immediately after
1780/// ActOnDeclarator, when a C++ direct initializer is present.
1781/// e.g: "int x(1);"
1782void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
1783                                         SourceLocation LParenLoc,
1784                                         MultiExprArg Exprs,
1785                                         SourceLocation *CommaLocs,
1786                                         SourceLocation RParenLoc) {
1787  unsigned NumExprs = Exprs.size();
1788  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
1789  Decl *RealDecl = Dcl.getAs<Decl>();
1790
1791  // If there is no declaration, there was an error parsing it.  Just ignore
1792  // the initializer.
1793  if (RealDecl == 0)
1794    return;
1795
1796  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1797  if (!VDecl) {
1798    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1799    RealDecl->setInvalidDecl();
1800    return;
1801  }
1802
1803  // FIXME: Need to handle dependent types and expressions here.
1804
1805  // We will treat direct-initialization as a copy-initialization:
1806  //    int x(1);  -as-> int x = 1;
1807  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1808  //
1809  // Clients that want to distinguish between the two forms, can check for
1810  // direct initializer using VarDecl::hasCXXDirectInitializer().
1811  // A major benefit is that clients that don't particularly care about which
1812  // exactly form was it (like the CodeGen) can handle both cases without
1813  // special case code.
1814
1815  // C++ 8.5p11:
1816  // The form of initialization (using parentheses or '=') is generally
1817  // insignificant, but does matter when the entity being initialized has a
1818  // class type.
1819  QualType DeclInitType = VDecl->getType();
1820  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1821    DeclInitType = Array->getElementType();
1822
1823  // FIXME: This isn't the right place to complete the type.
1824  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
1825                          diag::err_typecheck_decl_incomplete_type)) {
1826    VDecl->setInvalidDecl();
1827    return;
1828  }
1829
1830  if (VDecl->getType()->isRecordType()) {
1831    CXXConstructorDecl *Constructor
1832      = PerformInitializationByConstructor(DeclInitType,
1833                                           (Expr **)Exprs.get(), NumExprs,
1834                                           VDecl->getLocation(),
1835                                           SourceRange(VDecl->getLocation(),
1836                                                       RParenLoc),
1837                                           VDecl->getDeclName(),
1838                                           IK_Direct);
1839    if (!Constructor)
1840      RealDecl->setInvalidDecl();
1841    else {
1842      VDecl->setCXXDirectInitializer(true);
1843      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
1844                                   (Expr**)Exprs.release(), NumExprs);
1845    }
1846    return;
1847  }
1848
1849  if (NumExprs > 1) {
1850    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1851      << SourceRange(VDecl->getLocation(), RParenLoc);
1852    RealDecl->setInvalidDecl();
1853    return;
1854  }
1855
1856  // Let clients know that initialization was done with a direct initializer.
1857  VDecl->setCXXDirectInitializer(true);
1858
1859  assert(NumExprs == 1 && "Expected 1 expression");
1860  // Set the init expression, handles conversions.
1861  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
1862                       /*DirectInit=*/true);
1863}
1864
1865/// PerformInitializationByConstructor - Perform initialization by
1866/// constructor (C++ [dcl.init]p14), which may occur as part of
1867/// direct-initialization or copy-initialization. We are initializing
1868/// an object of type @p ClassType with the given arguments @p
1869/// Args. @p Loc is the location in the source code where the
1870/// initializer occurs (e.g., a declaration, member initializer,
1871/// functional cast, etc.) while @p Range covers the whole
1872/// initialization. @p InitEntity is the entity being initialized,
1873/// which may by the name of a declaration or a type. @p Kind is the
1874/// kind of initialization we're performing, which affects whether
1875/// explicit constructors will be considered. When successful, returns
1876/// the constructor that will be used to perform the initialization;
1877/// when the initialization fails, emits a diagnostic and returns
1878/// null.
1879CXXConstructorDecl *
1880Sema::PerformInitializationByConstructor(QualType ClassType,
1881                                         Expr **Args, unsigned NumArgs,
1882                                         SourceLocation Loc, SourceRange Range,
1883                                         DeclarationName InitEntity,
1884                                         InitializationKind Kind) {
1885  const RecordType *ClassRec = ClassType->getAsRecordType();
1886  assert(ClassRec && "Can only initialize a class type here");
1887
1888  // C++ [dcl.init]p14:
1889  //
1890  //   If the initialization is direct-initialization, or if it is
1891  //   copy-initialization where the cv-unqualified version of the
1892  //   source type is the same class as, or a derived class of, the
1893  //   class of the destination, constructors are considered. The
1894  //   applicable constructors are enumerated (13.3.1.3), and the
1895  //   best one is chosen through overload resolution (13.3). The
1896  //   constructor so selected is called to initialize the object,
1897  //   with the initializer expression(s) as its argument(s). If no
1898  //   constructor applies, or the overload resolution is ambiguous,
1899  //   the initialization is ill-formed.
1900  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1901  OverloadCandidateSet CandidateSet;
1902
1903  // Add constructors to the overload set.
1904  DeclarationName ConstructorName
1905    = Context.DeclarationNames.getCXXConstructorName(
1906                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1907  DeclContext::lookup_const_iterator Con, ConEnd;
1908  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(Context, ConstructorName);
1909       Con != ConEnd; ++Con) {
1910    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1911    if ((Kind == IK_Direct) ||
1912        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1913        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1914      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1915  }
1916
1917  // FIXME: When we decide not to synthesize the implicitly-declared
1918  // constructors, we'll need to make them appear here.
1919
1920  OverloadCandidateSet::iterator Best;
1921  switch (BestViableFunction(CandidateSet, Best)) {
1922  case OR_Success:
1923    // We found a constructor. Return it.
1924    return cast<CXXConstructorDecl>(Best->Function);
1925
1926  case OR_No_Viable_Function:
1927    if (InitEntity)
1928      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1929        << InitEntity << Range;
1930    else
1931      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1932        << ClassType << Range;
1933    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1934    return 0;
1935
1936  case OR_Ambiguous:
1937    if (InitEntity)
1938      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1939    else
1940      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1941    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1942    return 0;
1943
1944  case OR_Deleted:
1945    if (InitEntity)
1946      Diag(Loc, diag::err_ovl_deleted_init)
1947        << Best->Function->isDeleted()
1948        << InitEntity << Range;
1949    else
1950      Diag(Loc, diag::err_ovl_deleted_init)
1951        << Best->Function->isDeleted()
1952        << InitEntity << Range;
1953    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1954    return 0;
1955  }
1956
1957  return 0;
1958}
1959
1960/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1961/// determine whether they are reference-related,
1962/// reference-compatible, reference-compatible with added
1963/// qualification, or incompatible, for use in C++ initialization by
1964/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1965/// type, and the first type (T1) is the pointee type of the reference
1966/// type being initialized.
1967Sema::ReferenceCompareResult
1968Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1969                                   bool& DerivedToBase) {
1970  assert(!T1->isReferenceType() &&
1971    "T1 must be the pointee type of the reference type");
1972  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1973
1974  T1 = Context.getCanonicalType(T1);
1975  T2 = Context.getCanonicalType(T2);
1976  QualType UnqualT1 = T1.getUnqualifiedType();
1977  QualType UnqualT2 = T2.getUnqualifiedType();
1978
1979  // C++ [dcl.init.ref]p4:
1980  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1981  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1982  //   T1 is a base class of T2.
1983  if (UnqualT1 == UnqualT2)
1984    DerivedToBase = false;
1985  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1986    DerivedToBase = true;
1987  else
1988    return Ref_Incompatible;
1989
1990  // At this point, we know that T1 and T2 are reference-related (at
1991  // least).
1992
1993  // C++ [dcl.init.ref]p4:
1994  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1995  //   reference-related to T2 and cv1 is the same cv-qualification
1996  //   as, or greater cv-qualification than, cv2. For purposes of
1997  //   overload resolution, cases for which cv1 is greater
1998  //   cv-qualification than cv2 are identified as
1999  //   reference-compatible with added qualification (see 13.3.3.2).
2000  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2001    return Ref_Compatible;
2002  else if (T1.isMoreQualifiedThan(T2))
2003    return Ref_Compatible_With_Added_Qualification;
2004  else
2005    return Ref_Related;
2006}
2007
2008/// CheckReferenceInit - Check the initialization of a reference
2009/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2010/// the initializer (either a simple initializer or an initializer
2011/// list), and DeclType is the type of the declaration. When ICS is
2012/// non-null, this routine will compute the implicit conversion
2013/// sequence according to C++ [over.ics.ref] and will not produce any
2014/// diagnostics; when ICS is null, it will emit diagnostics when any
2015/// errors are found. Either way, a return value of true indicates
2016/// that there was a failure, a return value of false indicates that
2017/// the reference initialization succeeded.
2018///
2019/// When @p SuppressUserConversions, user-defined conversions are
2020/// suppressed.
2021/// When @p AllowExplicit, we also permit explicit user-defined
2022/// conversion functions.
2023/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2024bool
2025Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2026                         ImplicitConversionSequence *ICS,
2027                         bool SuppressUserConversions,
2028                         bool AllowExplicit, bool ForceRValue) {
2029  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2030
2031  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2032  QualType T2 = Init->getType();
2033
2034  // If the initializer is the address of an overloaded function, try
2035  // to resolve the overloaded function. If all goes well, T2 is the
2036  // type of the resulting function.
2037  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2038    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2039                                                          ICS != 0);
2040    if (Fn) {
2041      // Since we're performing this reference-initialization for
2042      // real, update the initializer with the resulting function.
2043      if (!ICS) {
2044        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2045          return true;
2046
2047        FixOverloadedFunctionReference(Init, Fn);
2048      }
2049
2050      T2 = Fn->getType();
2051    }
2052  }
2053
2054  // Compute some basic properties of the types and the initializer.
2055  bool isRValRef = DeclType->isRValueReferenceType();
2056  bool DerivedToBase = false;
2057  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2058                                                  Init->isLvalue(Context);
2059  ReferenceCompareResult RefRelationship
2060    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2061
2062  // Most paths end in a failed conversion.
2063  if (ICS)
2064    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2065
2066  // C++ [dcl.init.ref]p5:
2067  //   A reference to type “cv1 T1” is initialized by an expression
2068  //   of type “cv2 T2” as follows:
2069
2070  //     -- If the initializer expression
2071
2072  // Rvalue references cannot bind to lvalues (N2812).
2073  // There is absolutely no situation where they can. In particular, note that
2074  // this is ill-formed, even if B has a user-defined conversion to A&&:
2075  //   B b;
2076  //   A&& r = b;
2077  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2078    if (!ICS)
2079      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2080        << Init->getSourceRange();
2081    return true;
2082  }
2083
2084  bool BindsDirectly = false;
2085  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2086  //          reference-compatible with “cv2 T2,” or
2087  //
2088  // Note that the bit-field check is skipped if we are just computing
2089  // the implicit conversion sequence (C++ [over.best.ics]p2).
2090  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
2091      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2092    BindsDirectly = true;
2093
2094    if (ICS) {
2095      // C++ [over.ics.ref]p1:
2096      //   When a parameter of reference type binds directly (8.5.3)
2097      //   to an argument expression, the implicit conversion sequence
2098      //   is the identity conversion, unless the argument expression
2099      //   has a type that is a derived class of the parameter type,
2100      //   in which case the implicit conversion sequence is a
2101      //   derived-to-base Conversion (13.3.3.1).
2102      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2103      ICS->Standard.First = ICK_Identity;
2104      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2105      ICS->Standard.Third = ICK_Identity;
2106      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2107      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2108      ICS->Standard.ReferenceBinding = true;
2109      ICS->Standard.DirectBinding = true;
2110      ICS->Standard.RRefBinding = false;
2111
2112      // Nothing more to do: the inaccessibility/ambiguity check for
2113      // derived-to-base conversions is suppressed when we're
2114      // computing the implicit conversion sequence (C++
2115      // [over.best.ics]p2).
2116      return false;
2117    } else {
2118      // Perform the conversion.
2119      // FIXME: Binding to a subobject of the lvalue is going to require
2120      // more AST annotation than this.
2121      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2122    }
2123  }
2124
2125  //       -- has a class type (i.e., T2 is a class type) and can be
2126  //          implicitly converted to an lvalue of type “cv3 T3,”
2127  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2128  //          92) (this conversion is selected by enumerating the
2129  //          applicable conversion functions (13.3.1.6) and choosing
2130  //          the best one through overload resolution (13.3)),
2131  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2132    // FIXME: Look for conversions in base classes!
2133    CXXRecordDecl *T2RecordDecl
2134      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2135
2136    OverloadCandidateSet CandidateSet;
2137    OverloadedFunctionDecl *Conversions
2138      = T2RecordDecl->getConversionFunctions();
2139    for (OverloadedFunctionDecl::function_iterator Func
2140           = Conversions->function_begin();
2141         Func != Conversions->function_end(); ++Func) {
2142      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2143
2144      // If the conversion function doesn't return a reference type,
2145      // it can't be considered for this conversion.
2146      if (Conv->getConversionType()->isLValueReferenceType() &&
2147          (AllowExplicit || !Conv->isExplicit()))
2148        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2149    }
2150
2151    OverloadCandidateSet::iterator Best;
2152    switch (BestViableFunction(CandidateSet, Best)) {
2153    case OR_Success:
2154      // This is a direct binding.
2155      BindsDirectly = true;
2156
2157      if (ICS) {
2158        // C++ [over.ics.ref]p1:
2159        //
2160        //   [...] If the parameter binds directly to the result of
2161        //   applying a conversion function to the argument
2162        //   expression, the implicit conversion sequence is a
2163        //   user-defined conversion sequence (13.3.3.1.2), with the
2164        //   second standard conversion sequence either an identity
2165        //   conversion or, if the conversion function returns an
2166        //   entity of a type that is a derived class of the parameter
2167        //   type, a derived-to-base Conversion.
2168        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2169        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2170        ICS->UserDefined.After = Best->FinalConversion;
2171        ICS->UserDefined.ConversionFunction = Best->Function;
2172        assert(ICS->UserDefined.After.ReferenceBinding &&
2173               ICS->UserDefined.After.DirectBinding &&
2174               "Expected a direct reference binding!");
2175        return false;
2176      } else {
2177        // Perform the conversion.
2178        // FIXME: Binding to a subobject of the lvalue is going to require
2179        // more AST annotation than this.
2180        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2181      }
2182      break;
2183
2184    case OR_Ambiguous:
2185      assert(false && "Ambiguous reference binding conversions not implemented.");
2186      return true;
2187
2188    case OR_No_Viable_Function:
2189    case OR_Deleted:
2190      // There was no suitable conversion, or we found a deleted
2191      // conversion; continue with other checks.
2192      break;
2193    }
2194  }
2195
2196  if (BindsDirectly) {
2197    // C++ [dcl.init.ref]p4:
2198    //   [...] In all cases where the reference-related or
2199    //   reference-compatible relationship of two types is used to
2200    //   establish the validity of a reference binding, and T1 is a
2201    //   base class of T2, a program that necessitates such a binding
2202    //   is ill-formed if T1 is an inaccessible (clause 11) or
2203    //   ambiguous (10.2) base class of T2.
2204    //
2205    // Note that we only check this condition when we're allowed to
2206    // complain about errors, because we should not be checking for
2207    // ambiguity (or inaccessibility) unless the reference binding
2208    // actually happens.
2209    if (DerivedToBase)
2210      return CheckDerivedToBaseConversion(T2, T1,
2211                                          Init->getSourceRange().getBegin(),
2212                                          Init->getSourceRange());
2213    else
2214      return false;
2215  }
2216
2217  //     -- Otherwise, the reference shall be to a non-volatile const
2218  //        type (i.e., cv1 shall be const), or the reference shall be an
2219  //        rvalue reference and the initializer expression shall be an rvalue.
2220  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2221    if (!ICS)
2222      Diag(Init->getSourceRange().getBegin(),
2223           diag::err_not_reference_to_const_init)
2224        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2225        << T2 << Init->getSourceRange();
2226    return true;
2227  }
2228
2229  //       -- If the initializer expression is an rvalue, with T2 a
2230  //          class type, and “cv1 T1” is reference-compatible with
2231  //          “cv2 T2,” the reference is bound in one of the
2232  //          following ways (the choice is implementation-defined):
2233  //
2234  //          -- The reference is bound to the object represented by
2235  //             the rvalue (see 3.10) or to a sub-object within that
2236  //             object.
2237  //
2238  //          -- A temporary of type “cv1 T2” [sic] is created, and
2239  //             a constructor is called to copy the entire rvalue
2240  //             object into the temporary. The reference is bound to
2241  //             the temporary or to a sub-object within the
2242  //             temporary.
2243  //
2244  //          The constructor that would be used to make the copy
2245  //          shall be callable whether or not the copy is actually
2246  //          done.
2247  //
2248  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2249  // freedom, so we will always take the first option and never build
2250  // a temporary in this case. FIXME: We will, however, have to check
2251  // for the presence of a copy constructor in C++98/03 mode.
2252  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2253      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2254    if (ICS) {
2255      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2256      ICS->Standard.First = ICK_Identity;
2257      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2258      ICS->Standard.Third = ICK_Identity;
2259      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2260      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2261      ICS->Standard.ReferenceBinding = true;
2262      ICS->Standard.DirectBinding = false;
2263      ICS->Standard.RRefBinding = isRValRef;
2264    } else {
2265      // FIXME: Binding to a subobject of the rvalue is going to require
2266      // more AST annotation than this.
2267      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2268    }
2269    return false;
2270  }
2271
2272  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2273  //          initialized from the initializer expression using the
2274  //          rules for a non-reference copy initialization (8.5). The
2275  //          reference is then bound to the temporary. If T1 is
2276  //          reference-related to T2, cv1 must be the same
2277  //          cv-qualification as, or greater cv-qualification than,
2278  //          cv2; otherwise, the program is ill-formed.
2279  if (RefRelationship == Ref_Related) {
2280    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2281    // we would be reference-compatible or reference-compatible with
2282    // added qualification. But that wasn't the case, so the reference
2283    // initialization fails.
2284    if (!ICS)
2285      Diag(Init->getSourceRange().getBegin(),
2286           diag::err_reference_init_drops_quals)
2287        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2288        << T2 << Init->getSourceRange();
2289    return true;
2290  }
2291
2292  // If at least one of the types is a class type, the types are not
2293  // related, and we aren't allowed any user conversions, the
2294  // reference binding fails. This case is important for breaking
2295  // recursion, since TryImplicitConversion below will attempt to
2296  // create a temporary through the use of a copy constructor.
2297  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2298      (T1->isRecordType() || T2->isRecordType())) {
2299    if (!ICS)
2300      Diag(Init->getSourceRange().getBegin(),
2301           diag::err_typecheck_convert_incompatible)
2302        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2303    return true;
2304  }
2305
2306  // Actually try to convert the initializer to T1.
2307  if (ICS) {
2308    // C++ [over.ics.ref]p2:
2309    //
2310    //   When a parameter of reference type is not bound directly to
2311    //   an argument expression, the conversion sequence is the one
2312    //   required to convert the argument expression to the
2313    //   underlying type of the reference according to
2314    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2315    //   to copy-initializing a temporary of the underlying type with
2316    //   the argument expression. Any difference in top-level
2317    //   cv-qualification is subsumed by the initialization itself
2318    //   and does not constitute a conversion.
2319    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2320    // Of course, that's still a reference binding.
2321    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2322      ICS->Standard.ReferenceBinding = true;
2323      ICS->Standard.RRefBinding = isRValRef;
2324    } else if(ICS->ConversionKind ==
2325              ImplicitConversionSequence::UserDefinedConversion) {
2326      ICS->UserDefined.After.ReferenceBinding = true;
2327      ICS->UserDefined.After.RRefBinding = isRValRef;
2328    }
2329    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2330  } else {
2331    return PerformImplicitConversion(Init, T1, "initializing");
2332  }
2333}
2334
2335/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2336/// of this overloaded operator is well-formed. If so, returns false;
2337/// otherwise, emits appropriate diagnostics and returns true.
2338bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2339  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2340         "Expected an overloaded operator declaration");
2341
2342  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2343
2344  // C++ [over.oper]p5:
2345  //   The allocation and deallocation functions, operator new,
2346  //   operator new[], operator delete and operator delete[], are
2347  //   described completely in 3.7.3. The attributes and restrictions
2348  //   found in the rest of this subclause do not apply to them unless
2349  //   explicitly stated in 3.7.3.
2350  // FIXME: Write a separate routine for checking this. For now, just
2351  // allow it.
2352  if (Op == OO_New || Op == OO_Array_New ||
2353      Op == OO_Delete || Op == OO_Array_Delete)
2354    return false;
2355
2356  // C++ [over.oper]p6:
2357  //   An operator function shall either be a non-static member
2358  //   function or be a non-member function and have at least one
2359  //   parameter whose type is a class, a reference to a class, an
2360  //   enumeration, or a reference to an enumeration.
2361  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2362    if (MethodDecl->isStatic())
2363      return Diag(FnDecl->getLocation(),
2364                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2365  } else {
2366    bool ClassOrEnumParam = false;
2367    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2368                                   ParamEnd = FnDecl->param_end();
2369         Param != ParamEnd; ++Param) {
2370      QualType ParamType = (*Param)->getType().getNonReferenceType();
2371      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2372        ClassOrEnumParam = true;
2373        break;
2374      }
2375    }
2376
2377    if (!ClassOrEnumParam)
2378      return Diag(FnDecl->getLocation(),
2379                  diag::err_operator_overload_needs_class_or_enum)
2380        << FnDecl->getDeclName();
2381  }
2382
2383  // C++ [over.oper]p8:
2384  //   An operator function cannot have default arguments (8.3.6),
2385  //   except where explicitly stated below.
2386  //
2387  // Only the function-call operator allows default arguments
2388  // (C++ [over.call]p1).
2389  if (Op != OO_Call) {
2390    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2391         Param != FnDecl->param_end(); ++Param) {
2392      if ((*Param)->hasUnparsedDefaultArg())
2393        return Diag((*Param)->getLocation(),
2394                    diag::err_operator_overload_default_arg)
2395          << FnDecl->getDeclName();
2396      else if (Expr *DefArg = (*Param)->getDefaultArg())
2397        return Diag((*Param)->getLocation(),
2398                    diag::err_operator_overload_default_arg)
2399          << FnDecl->getDeclName() << DefArg->getSourceRange();
2400    }
2401  }
2402
2403  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2404    { false, false, false }
2405#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2406    , { Unary, Binary, MemberOnly }
2407#include "clang/Basic/OperatorKinds.def"
2408  };
2409
2410  bool CanBeUnaryOperator = OperatorUses[Op][0];
2411  bool CanBeBinaryOperator = OperatorUses[Op][1];
2412  bool MustBeMemberOperator = OperatorUses[Op][2];
2413
2414  // C++ [over.oper]p8:
2415  //   [...] Operator functions cannot have more or fewer parameters
2416  //   than the number required for the corresponding operator, as
2417  //   described in the rest of this subclause.
2418  unsigned NumParams = FnDecl->getNumParams()
2419                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2420  if (Op != OO_Call &&
2421      ((NumParams == 1 && !CanBeUnaryOperator) ||
2422       (NumParams == 2 && !CanBeBinaryOperator) ||
2423       (NumParams < 1) || (NumParams > 2))) {
2424    // We have the wrong number of parameters.
2425    unsigned ErrorKind;
2426    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2427      ErrorKind = 2;  // 2 -> unary or binary.
2428    } else if (CanBeUnaryOperator) {
2429      ErrorKind = 0;  // 0 -> unary
2430    } else {
2431      assert(CanBeBinaryOperator &&
2432             "All non-call overloaded operators are unary or binary!");
2433      ErrorKind = 1;  // 1 -> binary
2434    }
2435
2436    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2437      << FnDecl->getDeclName() << NumParams << ErrorKind;
2438  }
2439
2440  // Overloaded operators other than operator() cannot be variadic.
2441  if (Op != OO_Call &&
2442      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2443    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2444      << FnDecl->getDeclName();
2445  }
2446
2447  // Some operators must be non-static member functions.
2448  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2449    return Diag(FnDecl->getLocation(),
2450                diag::err_operator_overload_must_be_member)
2451      << FnDecl->getDeclName();
2452  }
2453
2454  // C++ [over.inc]p1:
2455  //   The user-defined function called operator++ implements the
2456  //   prefix and postfix ++ operator. If this function is a member
2457  //   function with no parameters, or a non-member function with one
2458  //   parameter of class or enumeration type, it defines the prefix
2459  //   increment operator ++ for objects of that type. If the function
2460  //   is a member function with one parameter (which shall be of type
2461  //   int) or a non-member function with two parameters (the second
2462  //   of which shall be of type int), it defines the postfix
2463  //   increment operator ++ for objects of that type.
2464  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2465    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2466    bool ParamIsInt = false;
2467    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2468      ParamIsInt = BT->getKind() == BuiltinType::Int;
2469
2470    if (!ParamIsInt)
2471      return Diag(LastParam->getLocation(),
2472                  diag::err_operator_overload_post_incdec_must_be_int)
2473        << LastParam->getType() << (Op == OO_MinusMinus);
2474  }
2475
2476  // Notify the class if it got an assignment operator.
2477  if (Op == OO_Equal) {
2478    // Would have returned earlier otherwise.
2479    assert(isa<CXXMethodDecl>(FnDecl) &&
2480      "Overloaded = not member, but not filtered.");
2481    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2482    Method->getParent()->addedAssignmentOperator(Context, Method);
2483  }
2484
2485  return false;
2486}
2487
2488/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2489/// linkage specification, including the language and (if present)
2490/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2491/// the location of the language string literal, which is provided
2492/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2493/// the '{' brace. Otherwise, this linkage specification does not
2494/// have any braces.
2495Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
2496                                                     SourceLocation ExternLoc,
2497                                                     SourceLocation LangLoc,
2498                                                     const char *Lang,
2499                                                     unsigned StrSize,
2500                                                     SourceLocation LBraceLoc) {
2501  LinkageSpecDecl::LanguageIDs Language;
2502  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2503    Language = LinkageSpecDecl::lang_c;
2504  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2505    Language = LinkageSpecDecl::lang_cxx;
2506  else {
2507    Diag(LangLoc, diag::err_bad_language);
2508    return DeclPtrTy();
2509  }
2510
2511  // FIXME: Add all the various semantics of linkage specifications
2512
2513  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2514                                               LangLoc, Language,
2515                                               LBraceLoc.isValid());
2516  CurContext->addDecl(Context, D);
2517  PushDeclContext(S, D);
2518  return DeclPtrTy::make(D);
2519}
2520
2521/// ActOnFinishLinkageSpecification - Completely the definition of
2522/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2523/// valid, it's the position of the closing '}' brace in a linkage
2524/// specification that uses braces.
2525Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
2526                                                      DeclPtrTy LinkageSpec,
2527                                                      SourceLocation RBraceLoc) {
2528  if (LinkageSpec)
2529    PopDeclContext();
2530  return LinkageSpec;
2531}
2532
2533/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2534/// handler.
2535Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
2536  QualType ExDeclType = GetTypeForDeclarator(D, S);
2537  SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin();
2538
2539  bool Invalid = false;
2540
2541  // Arrays and functions decay.
2542  if (ExDeclType->isArrayType())
2543    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2544  else if (ExDeclType->isFunctionType())
2545    ExDeclType = Context.getPointerType(ExDeclType);
2546
2547  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2548  // The exception-declaration shall not denote a pointer or reference to an
2549  // incomplete type, other than [cv] void*.
2550  // N2844 forbids rvalue references.
2551  if(ExDeclType->isRValueReferenceType()) {
2552    Diag(Begin, diag::err_catch_rvalue_ref) << D.getSourceRange();
2553    Invalid = true;
2554  }
2555  QualType BaseType = ExDeclType;
2556  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2557  unsigned DK = diag::err_catch_incomplete;
2558  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2559    BaseType = Ptr->getPointeeType();
2560    Mode = 1;
2561    DK = diag::err_catch_incomplete_ptr;
2562  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2563    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2564    BaseType = Ref->getPointeeType();
2565    Mode = 2;
2566    DK = diag::err_catch_incomplete_ref;
2567  }
2568  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2569      RequireCompleteType(Begin, BaseType, DK))
2570    Invalid = true;
2571
2572  // FIXME: Need to test for ability to copy-construct and destroy the
2573  // exception variable.
2574  // FIXME: Need to check for abstract classes.
2575
2576  IdentifierInfo *II = D.getIdentifier();
2577  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2578    // The scope should be freshly made just for us. There is just no way
2579    // it contains any previous declaration.
2580    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
2581    if (PrevDecl->isTemplateParameter()) {
2582      // Maybe we will complain about the shadowed template parameter.
2583      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2584    }
2585  }
2586
2587  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
2588                                    II, ExDeclType, VarDecl::None, Begin);
2589  if (D.getInvalidType() || Invalid)
2590    ExDecl->setInvalidDecl();
2591
2592  if (D.getCXXScopeSpec().isSet()) {
2593    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2594      << D.getCXXScopeSpec().getRange();
2595    ExDecl->setInvalidDecl();
2596  }
2597
2598  // Add the exception declaration into this scope.
2599  S->AddDecl(DeclPtrTy::make(ExDecl));
2600  if (II)
2601    IdResolver.AddDecl(ExDecl);
2602
2603  ProcessDeclAttributes(ExDecl, D);
2604  return DeclPtrTy::make(ExDecl);
2605}
2606
2607Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
2608                                                   ExprArg assertexpr,
2609                                                   ExprArg assertmessageexpr) {
2610  Expr *AssertExpr = (Expr *)assertexpr.get();
2611  StringLiteral *AssertMessage =
2612    cast<StringLiteral>((Expr *)assertmessageexpr.get());
2613
2614  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
2615    llvm::APSInt Value(32);
2616    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
2617      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
2618        AssertExpr->getSourceRange();
2619      return DeclPtrTy();
2620    }
2621
2622    if (Value == 0) {
2623      std::string str(AssertMessage->getStrData(),
2624                      AssertMessage->getByteLength());
2625      Diag(AssertLoc, diag::err_static_assert_failed)
2626        << str << AssertExpr->getSourceRange();
2627    }
2628  }
2629
2630  assertexpr.release();
2631  assertmessageexpr.release();
2632  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
2633                                        AssertExpr, AssertMessage);
2634
2635  CurContext->addDecl(Context, Decl);
2636  return DeclPtrTy::make(Decl);
2637}
2638
2639void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
2640  Decl *Dcl = dcl.getAs<Decl>();
2641  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
2642  if (!Fn) {
2643    Diag(DelLoc, diag::err_deleted_non_function);
2644    return;
2645  }
2646  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
2647    Diag(DelLoc, diag::err_deleted_decl_not_first);
2648    Diag(Prev->getLocation(), diag::note_previous_declaration);
2649    // If the declaration wasn't the first, we delete the function anyway for
2650    // recovery.
2651  }
2652  Fn->setDeleted();
2653}
2654