SemaDeclCXX.cpp revision 965bb710410b94a6f07cb3dc90eec37b48a887f7
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      NewParam->setHasInheritedDefaultArg();
302      if (OldParam->hasUninstantiatedDefaultArg())
303        NewParam->setUninstantiatedDefaultArg(
304                                      OldParam->getUninstantiatedDefaultArg());
305      else
306        NewParam->setDefaultArg(OldParam->getDefaultArg());
307    } else if (NewParam->hasDefaultArg()) {
308      if (New->getDescribedFunctionTemplate()) {
309        // Paragraph 4, quoted above, only applies to non-template functions.
310        Diag(NewParam->getLocation(),
311             diag::err_param_default_argument_template_redecl)
312          << NewParam->getDefaultArgRange();
313        Diag(Old->getLocation(), diag::note_template_prev_declaration)
314          << false;
315      } else if (New->getTemplateSpecializationKind()
316                   != TSK_ImplicitInstantiation &&
317                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
318        // C++ [temp.expr.spec]p21:
319        //   Default function arguments shall not be specified in a declaration
320        //   or a definition for one of the following explicit specializations:
321        //     - the explicit specialization of a function template;
322        //     - the explicit specialization of a member function template;
323        //     - the explicit specialization of a member function of a class
324        //       template where the class template specialization to which the
325        //       member function specialization belongs is implicitly
326        //       instantiated.
327        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
328          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
329          << New->getDeclName()
330          << NewParam->getDefaultArgRange();
331      } else if (New->getDeclContext()->isDependentContext()) {
332        // C++ [dcl.fct.default]p6 (DR217):
333        //   Default arguments for a member function of a class template shall
334        //   be specified on the initial declaration of the member function
335        //   within the class template.
336        //
337        // Reading the tea leaves a bit in DR217 and its reference to DR205
338        // leads me to the conclusion that one cannot add default function
339        // arguments for an out-of-line definition of a member function of a
340        // dependent type.
341        int WhichKind = 2;
342        if (CXXRecordDecl *Record
343              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
344          if (Record->getDescribedClassTemplate())
345            WhichKind = 0;
346          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
347            WhichKind = 1;
348          else
349            WhichKind = 2;
350        }
351
352        Diag(NewParam->getLocation(),
353             diag::err_param_default_argument_member_template_redecl)
354          << WhichKind
355          << NewParam->getDefaultArgRange();
356      }
357    }
358  }
359
360  if (CheckEquivalentExceptionSpec(Old, New))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        if (!Param->hasUnparsedDefaultArg())
413          Param->getDefaultArg()->Destroy(Context);
414        Param->setDefaultArg(0);
415      }
416    }
417  }
418}
419
420/// isCurrentClassName - Determine whether the identifier II is the
421/// name of the class type currently being defined. In the case of
422/// nested classes, this will only return true if II is the name of
423/// the innermost class.
424bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
425                              const CXXScopeSpec *SS) {
426  assert(getLangOptions().CPlusPlus && "No class names in C!");
427
428  CXXRecordDecl *CurDecl;
429  if (SS && SS->isSet() && !SS->isInvalid()) {
430    DeclContext *DC = computeDeclContext(*SS, true);
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
432  } else
433    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
434
435  if (CurDecl && CurDecl->getIdentifier())
436    return &II == CurDecl->getIdentifier();
437  else
438    return false;
439}
440
441/// \brief Check the validity of a C++ base class specifier.
442///
443/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
444/// and returns NULL otherwise.
445CXXBaseSpecifier *
446Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
447                         SourceRange SpecifierRange,
448                         bool Virtual, AccessSpecifier Access,
449                         QualType BaseType,
450                         SourceLocation BaseLoc) {
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                Class->getTagKind() == RecordDecl::TK_class,
462                                Access, BaseType);
463
464  // Base specifiers must be record types.
465  if (!BaseType->isRecordType()) {
466    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
467    return 0;
468  }
469
470  // C++ [class.union]p1:
471  //   A union shall not be used as a base class.
472  if (BaseType->isUnionType()) {
473    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
474    return 0;
475  }
476
477  // C++ [class.derived]p2:
478  //   The class-name in a base-specifier shall not be an incompletely
479  //   defined class.
480  if (RequireCompleteType(BaseLoc, BaseType,
481                          PDiag(diag::err_incomplete_base_class)
482                            << SpecifierRange))
483    return 0;
484
485  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
486  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
487  assert(BaseDecl && "Record type has no declaration");
488  BaseDecl = BaseDecl->getDefinition();
489  assert(BaseDecl && "Base type is not incomplete, but has no definition");
490  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
491  assert(CXXBaseDecl && "Base type is not a C++ type");
492
493  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
494  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
495    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
496    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
497      << BaseType;
498    return 0;
499  }
500
501  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
502
503  // Create the base specifier.
504  // FIXME: Allocate via ASTContext?
505  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
506                              Class->getTagKind() == RecordDecl::TK_class,
507                              Access, BaseType);
508}
509
510void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
511                                          const CXXRecordDecl *BaseClass,
512                                          bool BaseIsVirtual) {
513  // A class with a non-empty base class is not empty.
514  // FIXME: Standard ref?
515  if (!BaseClass->isEmpty())
516    Class->setEmpty(false);
517
518  // C++ [class.virtual]p1:
519  //   A class that [...] inherits a virtual function is called a polymorphic
520  //   class.
521  if (BaseClass->isPolymorphic())
522    Class->setPolymorphic(true);
523
524  // C++ [dcl.init.aggr]p1:
525  //   An aggregate is [...] a class with [...] no base classes [...].
526  Class->setAggregate(false);
527
528  // C++ [class]p4:
529  //   A POD-struct is an aggregate class...
530  Class->setPOD(false);
531
532  if (BaseIsVirtual) {
533    // C++ [class.ctor]p5:
534    //   A constructor is trivial if its class has no virtual base classes.
535    Class->setHasTrivialConstructor(false);
536
537    // C++ [class.copy]p6:
538    //   A copy constructor is trivial if its class has no virtual base classes.
539    Class->setHasTrivialCopyConstructor(false);
540
541    // C++ [class.copy]p11:
542    //   A copy assignment operator is trivial if its class has no virtual
543    //   base classes.
544    Class->setHasTrivialCopyAssignment(false);
545
546    // C++0x [meta.unary.prop] is_empty:
547    //    T is a class type, but not a union type, with ... no virtual base
548    //    classes
549    Class->setEmpty(false);
550  } else {
551    // C++ [class.ctor]p5:
552    //   A constructor is trivial if all the direct base classes of its
553    //   class have trivial constructors.
554    if (!BaseClass->hasTrivialConstructor())
555      Class->setHasTrivialConstructor(false);
556
557    // C++ [class.copy]p6:
558    //   A copy constructor is trivial if all the direct base classes of its
559    //   class have trivial copy constructors.
560    if (!BaseClass->hasTrivialCopyConstructor())
561      Class->setHasTrivialCopyConstructor(false);
562
563    // C++ [class.copy]p11:
564    //   A copy assignment operator is trivial if all the direct base classes
565    //   of its class have trivial copy assignment operators.
566    if (!BaseClass->hasTrivialCopyAssignment())
567      Class->setHasTrivialCopyAssignment(false);
568  }
569
570  // C++ [class.ctor]p3:
571  //   A destructor is trivial if all the direct base classes of its class
572  //   have trivial destructors.
573  if (!BaseClass->hasTrivialDestructor())
574    Class->setHasTrivialDestructor(false);
575}
576
577/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
578/// one entry in the base class list of a class specifier, for
579/// example:
580///    class foo : public bar, virtual private baz {
581/// 'public bar' and 'virtual private baz' are each base-specifiers.
582Sema::BaseResult
583Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
584                         bool Virtual, AccessSpecifier Access,
585                         TypeTy *basetype, SourceLocation BaseLoc) {
586  if (!classdecl)
587    return true;
588
589  AdjustDeclIfTemplate(classdecl);
590  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
591  if (!Class)
592    return true;
593
594  QualType BaseType = GetTypeFromParser(basetype);
595  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
596                                                      Virtual, Access,
597                                                      BaseType, BaseLoc))
598    return BaseSpec;
599
600  return true;
601}
602
603/// \brief Performs the actual work of attaching the given base class
604/// specifiers to a C++ class.
605bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
606                                unsigned NumBases) {
607 if (NumBases == 0)
608    return false;
609
610  // Used to keep track of which base types we have already seen, so
611  // that we can properly diagnose redundant direct base types. Note
612  // that the key is always the unqualified canonical type of the base
613  // class.
614  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
615
616  // Copy non-redundant base specifiers into permanent storage.
617  unsigned NumGoodBases = 0;
618  bool Invalid = false;
619  for (unsigned idx = 0; idx < NumBases; ++idx) {
620    QualType NewBaseType
621      = Context.getCanonicalType(Bases[idx]->getType());
622    NewBaseType = NewBaseType.getLocalUnqualifiedType();
623
624    if (KnownBaseTypes[NewBaseType]) {
625      // C++ [class.mi]p3:
626      //   A class shall not be specified as a direct base class of a
627      //   derived class more than once.
628      Diag(Bases[idx]->getSourceRange().getBegin(),
629           diag::err_duplicate_base_class)
630        << KnownBaseTypes[NewBaseType]->getType()
631        << Bases[idx]->getSourceRange();
632
633      // Delete the duplicate base class specifier; we're going to
634      // overwrite its pointer later.
635      Context.Deallocate(Bases[idx]);
636
637      Invalid = true;
638    } else {
639      // Okay, add this new base class.
640      KnownBaseTypes[NewBaseType] = Bases[idx];
641      Bases[NumGoodBases++] = Bases[idx];
642    }
643  }
644
645  // Attach the remaining base class specifiers to the derived class.
646  Class->setBases(Bases, NumGoodBases);
647
648  // Delete the remaining (good) base class specifiers, since their
649  // data has been copied into the CXXRecordDecl.
650  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
651    Context.Deallocate(Bases[idx]);
652
653  return Invalid;
654}
655
656/// ActOnBaseSpecifiers - Attach the given base specifiers to the
657/// class, after checking whether there are any duplicate base
658/// classes.
659void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
660                               unsigned NumBases) {
661  if (!ClassDecl || !Bases || !NumBases)
662    return;
663
664  AdjustDeclIfTemplate(ClassDecl);
665  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
666                       (CXXBaseSpecifier**)(Bases), NumBases);
667}
668
669static CXXRecordDecl *GetClassForType(QualType T) {
670  if (const RecordType *RT = T->getAs<RecordType>())
671    return cast<CXXRecordDecl>(RT->getDecl());
672  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
673    return ICT->getDecl();
674  else
675    return 0;
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
693  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
694}
695
696/// \brief Determine whether the type \p Derived is a C++ class that is
697/// derived from the type \p Base.
698bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
699  if (!getLangOptions().CPlusPlus)
700    return false;
701
702  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
703  if (!DerivedRD)
704    return false;
705
706  CXXRecordDecl *BaseRD = GetClassForType(Base);
707  if (!BaseRD)
708    return false;
709
710  return DerivedRD->isDerivedFrom(BaseRD, Paths);
711}
712
713/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
714/// conversion (where Derived and Base are class types) is
715/// well-formed, meaning that the conversion is unambiguous (and
716/// that all of the base classes are accessible). Returns true
717/// and emits a diagnostic if the code is ill-formed, returns false
718/// otherwise. Loc is the location where this routine should point to
719/// if there is an error, and Range is the source range to highlight
720/// if there is an error.
721bool
722Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
723                                   unsigned InaccessibleBaseID,
724                                   unsigned AmbigiousBaseConvID,
725                                   SourceLocation Loc, SourceRange Range,
726                                   DeclarationName Name) {
727  // First, determine whether the path from Derived to Base is
728  // ambiguous. This is slightly more expensive than checking whether
729  // the Derived to Base conversion exists, because here we need to
730  // explore multiple paths to determine if there is an ambiguity.
731  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
732                     /*DetectVirtual=*/false);
733  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
734  assert(DerivationOkay &&
735         "Can only be used with a derived-to-base conversion");
736  (void)DerivationOkay;
737
738  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
739    if (!InaccessibleBaseID)
740      return false;
741
742    // Check that the base class can be accessed.
743    switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
744                                 InaccessibleBaseID)) {
745    case AR_accessible: return false;
746    case AR_inaccessible: return true;
747    case AR_dependent: return false;
748    case AR_delayed: return false;
749    }
750  }
751
752  // We know that the derived-to-base conversion is ambiguous, and
753  // we're going to produce a diagnostic. Perform the derived-to-base
754  // search just one more time to compute all of the possible paths so
755  // that we can print them out. This is more expensive than any of
756  // the previous derived-to-base checks we've done, but at this point
757  // performance isn't as much of an issue.
758  Paths.clear();
759  Paths.setRecordingPaths(true);
760  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
761  assert(StillOkay && "Can only be used with a derived-to-base conversion");
762  (void)StillOkay;
763
764  // Build up a textual representation of the ambiguous paths, e.g.,
765  // D -> B -> A, that will be used to illustrate the ambiguous
766  // conversions in the diagnostic. We only print one of the paths
767  // to each base class subobject.
768  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
769
770  Diag(Loc, AmbigiousBaseConvID)
771  << Derived << Base << PathDisplayStr << Range << Name;
772  return true;
773}
774
775bool
776Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
777                                   SourceLocation Loc, SourceRange Range,
778                                   bool IgnoreAccess) {
779  return CheckDerivedToBaseConversion(Derived, Base,
780                                      IgnoreAccess ? 0
781                                       : diag::err_upcast_to_inaccessible_base,
782                                      diag::err_ambiguous_derived_to_base_conv,
783                                      Loc, Range, DeclarationName());
784}
785
786
787/// @brief Builds a string representing ambiguous paths from a
788/// specific derived class to different subobjects of the same base
789/// class.
790///
791/// This function builds a string that can be used in error messages
792/// to show the different paths that one can take through the
793/// inheritance hierarchy to go from the derived class to different
794/// subobjects of a base class. The result looks something like this:
795/// @code
796/// struct D -> struct B -> struct A
797/// struct D -> struct C -> struct A
798/// @endcode
799std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
800  std::string PathDisplayStr;
801  std::set<unsigned> DisplayedPaths;
802  for (CXXBasePaths::paths_iterator Path = Paths.begin();
803       Path != Paths.end(); ++Path) {
804    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
805      // We haven't displayed a path to this particular base
806      // class subobject yet.
807      PathDisplayStr += "\n    ";
808      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
809      for (CXXBasePath::const_iterator Element = Path->begin();
810           Element != Path->end(); ++Element)
811        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
812    }
813  }
814
815  return PathDisplayStr;
816}
817
818//===----------------------------------------------------------------------===//
819// C++ class member Handling
820//===----------------------------------------------------------------------===//
821
822/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
823/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
824/// bitfield width if there is one and 'InitExpr' specifies the initializer if
825/// any.
826Sema::DeclPtrTy
827Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
828                               MultiTemplateParamsArg TemplateParameterLists,
829                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
830                               bool Deleted) {
831  const DeclSpec &DS = D.getDeclSpec();
832  DeclarationName Name = GetNameForDeclarator(D);
833  Expr *BitWidth = static_cast<Expr*>(BW);
834  Expr *Init = static_cast<Expr*>(InitExpr);
835  SourceLocation Loc = D.getIdentifierLoc();
836
837  bool isFunc = D.isFunctionDeclarator();
838
839  assert(!DS.isFriendSpecified());
840
841  // C++ 9.2p6: A member shall not be declared to have automatic storage
842  // duration (auto, register) or with the extern storage-class-specifier.
843  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
844  // data members and cannot be applied to names declared const or static,
845  // and cannot be applied to reference members.
846  switch (DS.getStorageClassSpec()) {
847    case DeclSpec::SCS_unspecified:
848    case DeclSpec::SCS_typedef:
849    case DeclSpec::SCS_static:
850      // FALL THROUGH.
851      break;
852    case DeclSpec::SCS_mutable:
853      if (isFunc) {
854        if (DS.getStorageClassSpecLoc().isValid())
855          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
856        else
857          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
858
859        // FIXME: It would be nicer if the keyword was ignored only for this
860        // declarator. Otherwise we could get follow-up errors.
861        D.getMutableDeclSpec().ClearStorageClassSpecs();
862      } else {
863        QualType T = GetTypeForDeclarator(D, S);
864        diag::kind err = static_cast<diag::kind>(0);
865        if (T->isReferenceType())
866          err = diag::err_mutable_reference;
867        else if (T.isConstQualified())
868          err = diag::err_mutable_const;
869        if (err != 0) {
870          if (DS.getStorageClassSpecLoc().isValid())
871            Diag(DS.getStorageClassSpecLoc(), err);
872          else
873            Diag(DS.getThreadSpecLoc(), err);
874          // FIXME: It would be nicer if the keyword was ignored only for this
875          // declarator. Otherwise we could get follow-up errors.
876          D.getMutableDeclSpec().ClearStorageClassSpecs();
877        }
878      }
879      break;
880    default:
881      if (DS.getStorageClassSpecLoc().isValid())
882        Diag(DS.getStorageClassSpecLoc(),
883             diag::err_storageclass_invalid_for_member);
884      else
885        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
886      D.getMutableDeclSpec().ClearStorageClassSpecs();
887  }
888
889  if (!isFunc &&
890      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
891      D.getNumTypeObjects() == 0) {
892    // Check also for this case:
893    //
894    // typedef int f();
895    // f a;
896    //
897    QualType TDType = GetTypeFromParser(DS.getTypeRep());
898    isFunc = TDType->isFunctionType();
899  }
900
901  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
902                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
903                      !isFunc);
904
905  Decl *Member;
906  if (isInstField) {
907    // FIXME: Check for template parameters!
908    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
909                         AS);
910    assert(Member && "HandleField never returns null");
911  } else {
912    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
913               .getAs<Decl>();
914    if (!Member) {
915      if (BitWidth) DeleteExpr(BitWidth);
916      return DeclPtrTy();
917    }
918
919    // Non-instance-fields can't have a bitfield.
920    if (BitWidth) {
921      if (Member->isInvalidDecl()) {
922        // don't emit another diagnostic.
923      } else if (isa<VarDecl>(Member)) {
924        // C++ 9.6p3: A bit-field shall not be a static member.
925        // "static member 'A' cannot be a bit-field"
926        Diag(Loc, diag::err_static_not_bitfield)
927          << Name << BitWidth->getSourceRange();
928      } else if (isa<TypedefDecl>(Member)) {
929        // "typedef member 'x' cannot be a bit-field"
930        Diag(Loc, diag::err_typedef_not_bitfield)
931          << Name << BitWidth->getSourceRange();
932      } else {
933        // A function typedef ("typedef int f(); f a;").
934        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
935        Diag(Loc, diag::err_not_integral_type_bitfield)
936          << Name << cast<ValueDecl>(Member)->getType()
937          << BitWidth->getSourceRange();
938      }
939
940      DeleteExpr(BitWidth);
941      BitWidth = 0;
942      Member->setInvalidDecl();
943    }
944
945    Member->setAccess(AS);
946
947    // If we have declared a member function template, set the access of the
948    // templated declaration as well.
949    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
950      FunTmpl->getTemplatedDecl()->setAccess(AS);
951  }
952
953  assert((Name || isInstField) && "No identifier for non-field ?");
954
955  if (Init)
956    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
957  if (Deleted) // FIXME: Source location is not very good.
958    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
959
960  if (isInstField) {
961    FieldCollector->Add(cast<FieldDecl>(Member));
962    return DeclPtrTy();
963  }
964  return DeclPtrTy::make(Member);
965}
966
967/// \brief Find the direct and/or virtual base specifiers that
968/// correspond to the given base type, for use in base initialization
969/// within a constructor.
970static bool FindBaseInitializer(Sema &SemaRef,
971                                CXXRecordDecl *ClassDecl,
972                                QualType BaseType,
973                                const CXXBaseSpecifier *&DirectBaseSpec,
974                                const CXXBaseSpecifier *&VirtualBaseSpec) {
975  // First, check for a direct base class.
976  DirectBaseSpec = 0;
977  for (CXXRecordDecl::base_class_const_iterator Base
978         = ClassDecl->bases_begin();
979       Base != ClassDecl->bases_end(); ++Base) {
980    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
981      // We found a direct base of this type. That's what we're
982      // initializing.
983      DirectBaseSpec = &*Base;
984      break;
985    }
986  }
987
988  // Check for a virtual base class.
989  // FIXME: We might be able to short-circuit this if we know in advance that
990  // there are no virtual bases.
991  VirtualBaseSpec = 0;
992  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
993    // We haven't found a base yet; search the class hierarchy for a
994    // virtual base class.
995    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
996                       /*DetectVirtual=*/false);
997    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
998                              BaseType, Paths)) {
999      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1000           Path != Paths.end(); ++Path) {
1001        if (Path->back().Base->isVirtual()) {
1002          VirtualBaseSpec = Path->back().Base;
1003          break;
1004        }
1005      }
1006    }
1007  }
1008
1009  return DirectBaseSpec || VirtualBaseSpec;
1010}
1011
1012/// ActOnMemInitializer - Handle a C++ member initializer.
1013Sema::MemInitResult
1014Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1015                          Scope *S,
1016                          const CXXScopeSpec &SS,
1017                          IdentifierInfo *MemberOrBase,
1018                          TypeTy *TemplateTypeTy,
1019                          SourceLocation IdLoc,
1020                          SourceLocation LParenLoc,
1021                          ExprTy **Args, unsigned NumArgs,
1022                          SourceLocation *CommaLocs,
1023                          SourceLocation RParenLoc) {
1024  if (!ConstructorD)
1025    return true;
1026
1027  AdjustDeclIfTemplate(ConstructorD);
1028
1029  CXXConstructorDecl *Constructor
1030    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1031  if (!Constructor) {
1032    // The user wrote a constructor initializer on a function that is
1033    // not a C++ constructor. Ignore the error for now, because we may
1034    // have more member initializers coming; we'll diagnose it just
1035    // once in ActOnMemInitializers.
1036    return true;
1037  }
1038
1039  CXXRecordDecl *ClassDecl = Constructor->getParent();
1040
1041  // C++ [class.base.init]p2:
1042  //   Names in a mem-initializer-id are looked up in the scope of the
1043  //   constructor’s class and, if not found in that scope, are looked
1044  //   up in the scope containing the constructor’s
1045  //   definition. [Note: if the constructor’s class contains a member
1046  //   with the same name as a direct or virtual base class of the
1047  //   class, a mem-initializer-id naming the member or base class and
1048  //   composed of a single identifier refers to the class member. A
1049  //   mem-initializer-id for the hidden base class may be specified
1050  //   using a qualified name. ]
1051  if (!SS.getScopeRep() && !TemplateTypeTy) {
1052    // Look for a member, first.
1053    FieldDecl *Member = 0;
1054    DeclContext::lookup_result Result
1055      = ClassDecl->lookup(MemberOrBase);
1056    if (Result.first != Result.second)
1057      Member = dyn_cast<FieldDecl>(*Result.first);
1058
1059    // FIXME: Handle members of an anonymous union.
1060
1061    if (Member)
1062      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1063                                    LParenLoc, RParenLoc);
1064  }
1065  // It didn't name a member, so see if it names a class.
1066  QualType BaseType;
1067  TypeSourceInfo *TInfo = 0;
1068
1069  if (TemplateTypeTy) {
1070    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1071  } else {
1072    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1073    LookupParsedName(R, S, &SS);
1074
1075    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1076    if (!TyD) {
1077      if (R.isAmbiguous()) return true;
1078
1079      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1080        bool NotUnknownSpecialization = false;
1081        DeclContext *DC = computeDeclContext(SS, false);
1082        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1083          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1084
1085        if (!NotUnknownSpecialization) {
1086          // When the scope specifier can refer to a member of an unknown
1087          // specialization, we take it as a type name.
1088          BaseType = CheckTypenameType((NestedNameSpecifier *)SS.getScopeRep(),
1089                                       *MemberOrBase, SS.getRange());
1090          if (BaseType.isNull())
1091            return true;
1092
1093          R.clear();
1094        }
1095      }
1096
1097      // If no results were found, try to correct typos.
1098      if (R.empty() && BaseType.isNull() &&
1099          CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) {
1100        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1101          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1102            // We have found a non-static data member with a similar
1103            // name to what was typed; complain and initialize that
1104            // member.
1105            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1106              << MemberOrBase << true << R.getLookupName()
1107              << FixItHint::CreateReplacement(R.getNameLoc(),
1108                                              R.getLookupName().getAsString());
1109            Diag(Member->getLocation(), diag::note_previous_decl)
1110              << Member->getDeclName();
1111
1112            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1113                                          LParenLoc, RParenLoc);
1114          }
1115        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1116          const CXXBaseSpecifier *DirectBaseSpec;
1117          const CXXBaseSpecifier *VirtualBaseSpec;
1118          if (FindBaseInitializer(*this, ClassDecl,
1119                                  Context.getTypeDeclType(Type),
1120                                  DirectBaseSpec, VirtualBaseSpec)) {
1121            // We have found a direct or virtual base class with a
1122            // similar name to what was typed; complain and initialize
1123            // that base class.
1124            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1125              << MemberOrBase << false << R.getLookupName()
1126              << FixItHint::CreateReplacement(R.getNameLoc(),
1127                                              R.getLookupName().getAsString());
1128
1129            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1130                                                             : VirtualBaseSpec;
1131            Diag(BaseSpec->getSourceRange().getBegin(),
1132                 diag::note_base_class_specified_here)
1133              << BaseSpec->getType()
1134              << BaseSpec->getSourceRange();
1135
1136            TyD = Type;
1137          }
1138        }
1139      }
1140
1141      if (!TyD && BaseType.isNull()) {
1142        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1143          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1144        return true;
1145      }
1146    }
1147
1148    if (BaseType.isNull()) {
1149      BaseType = Context.getTypeDeclType(TyD);
1150      if (SS.isSet()) {
1151        NestedNameSpecifier *Qualifier =
1152          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1153
1154        // FIXME: preserve source range information
1155        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1156      }
1157    }
1158  }
1159
1160  if (!TInfo)
1161    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1162
1163  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1164                              LParenLoc, RParenLoc, ClassDecl);
1165}
1166
1167/// Checks an initializer expression for use of uninitialized fields, such as
1168/// containing the field that is being initialized. Returns true if there is an
1169/// uninitialized field was used an updates the SourceLocation parameter; false
1170/// otherwise.
1171static bool InitExprContainsUninitializedFields(const Stmt* S,
1172                                                const FieldDecl* LhsField,
1173                                                SourceLocation* L) {
1174  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1175  if (ME) {
1176    const NamedDecl* RhsField = ME->getMemberDecl();
1177    if (RhsField == LhsField) {
1178      // Initializing a field with itself. Throw a warning.
1179      // But wait; there are exceptions!
1180      // Exception #1:  The field may not belong to this record.
1181      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1182      const Expr* base = ME->getBase();
1183      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1184        // Even though the field matches, it does not belong to this record.
1185        return false;
1186      }
1187      // None of the exceptions triggered; return true to indicate an
1188      // uninitialized field was used.
1189      *L = ME->getMemberLoc();
1190      return true;
1191    }
1192  }
1193  bool found = false;
1194  for (Stmt::const_child_iterator it = S->child_begin();
1195       it != S->child_end() && found == false;
1196       ++it) {
1197    if (isa<CallExpr>(S)) {
1198      // Do not descend into function calls or constructors, as the use
1199      // of an uninitialized field may be valid. One would have to inspect
1200      // the contents of the function/ctor to determine if it is safe or not.
1201      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1202      // may be safe, depending on what the function/ctor does.
1203      continue;
1204    }
1205    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1206  }
1207  return found;
1208}
1209
1210Sema::MemInitResult
1211Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1212                             unsigned NumArgs, SourceLocation IdLoc,
1213                             SourceLocation LParenLoc,
1214                             SourceLocation RParenLoc) {
1215  // Diagnose value-uses of fields to initialize themselves, e.g.
1216  //   foo(foo)
1217  // where foo is not also a parameter to the constructor.
1218  // TODO: implement -Wuninitialized and fold this into that framework.
1219  for (unsigned i = 0; i < NumArgs; ++i) {
1220    SourceLocation L;
1221    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1222      // FIXME: Return true in the case when other fields are used before being
1223      // uninitialized. For example, let this field be the i'th field. When
1224      // initializing the i'th field, throw a warning if any of the >= i'th
1225      // fields are used, as they are not yet initialized.
1226      // Right now we are only handling the case where the i'th field uses
1227      // itself in its initializer.
1228      Diag(L, diag::warn_field_is_uninit);
1229    }
1230  }
1231
1232  bool HasDependentArg = false;
1233  for (unsigned i = 0; i < NumArgs; i++)
1234    HasDependentArg |= Args[i]->isTypeDependent();
1235
1236  QualType FieldType = Member->getType();
1237  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1238    FieldType = Array->getElementType();
1239  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1240  if (FieldType->isDependentType() || HasDependentArg) {
1241    // Can't check initialization for a member of dependent type or when
1242    // any of the arguments are type-dependent expressions.
1243    OwningExprResult Init
1244      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1245                                          RParenLoc));
1246
1247    // Erase any temporaries within this evaluation context; we're not
1248    // going to track them in the AST, since we'll be rebuilding the
1249    // ASTs during template instantiation.
1250    ExprTemporaries.erase(
1251              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1252                          ExprTemporaries.end());
1253
1254    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1255                                                    LParenLoc,
1256                                                    Init.takeAs<Expr>(),
1257                                                    RParenLoc);
1258
1259  }
1260
1261  if (Member->isInvalidDecl())
1262    return true;
1263
1264  // Initialize the member.
1265  InitializedEntity MemberEntity =
1266    InitializedEntity::InitializeMember(Member, 0);
1267  InitializationKind Kind =
1268    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1269
1270  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1271
1272  OwningExprResult MemberInit =
1273    InitSeq.Perform(*this, MemberEntity, Kind,
1274                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1275  if (MemberInit.isInvalid())
1276    return true;
1277
1278  // C++0x [class.base.init]p7:
1279  //   The initialization of each base and member constitutes a
1280  //   full-expression.
1281  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1282  if (MemberInit.isInvalid())
1283    return true;
1284
1285  // If we are in a dependent context, template instantiation will
1286  // perform this type-checking again. Just save the arguments that we
1287  // received in a ParenListExpr.
1288  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1289  // of the information that we have about the member
1290  // initializer. However, deconstructing the ASTs is a dicey process,
1291  // and this approach is far more likely to get the corner cases right.
1292  if (CurContext->isDependentContext()) {
1293    // Bump the reference count of all of the arguments.
1294    for (unsigned I = 0; I != NumArgs; ++I)
1295      Args[I]->Retain();
1296
1297    OwningExprResult Init
1298      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1299                                          RParenLoc));
1300    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1301                                                    LParenLoc,
1302                                                    Init.takeAs<Expr>(),
1303                                                    RParenLoc);
1304  }
1305
1306  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1307                                                  LParenLoc,
1308                                                  MemberInit.takeAs<Expr>(),
1309                                                  RParenLoc);
1310}
1311
1312Sema::MemInitResult
1313Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1314                           Expr **Args, unsigned NumArgs,
1315                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1316                           CXXRecordDecl *ClassDecl) {
1317  bool HasDependentArg = false;
1318  for (unsigned i = 0; i < NumArgs; i++)
1319    HasDependentArg |= Args[i]->isTypeDependent();
1320
1321  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1322  if (BaseType->isDependentType() || HasDependentArg) {
1323    // Can't check initialization for a base of dependent type or when
1324    // any of the arguments are type-dependent expressions.
1325    OwningExprResult BaseInit
1326      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1327                                          RParenLoc));
1328
1329    // Erase any temporaries within this evaluation context; we're not
1330    // going to track them in the AST, since we'll be rebuilding the
1331    // ASTs during template instantiation.
1332    ExprTemporaries.erase(
1333              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1334                          ExprTemporaries.end());
1335
1336    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1337                                                    LParenLoc,
1338                                                    BaseInit.takeAs<Expr>(),
1339                                                    RParenLoc);
1340  }
1341
1342  if (!BaseType->isRecordType())
1343    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1344             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1345
1346  // C++ [class.base.init]p2:
1347  //   [...] Unless the mem-initializer-id names a nonstatic data
1348  //   member of the constructor’s class or a direct or virtual base
1349  //   of that class, the mem-initializer is ill-formed. A
1350  //   mem-initializer-list can initialize a base class using any
1351  //   name that denotes that base class type.
1352
1353  // Check for direct and virtual base classes.
1354  const CXXBaseSpecifier *DirectBaseSpec = 0;
1355  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1356  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1357                      VirtualBaseSpec);
1358
1359  // C++ [base.class.init]p2:
1360  //   If a mem-initializer-id is ambiguous because it designates both
1361  //   a direct non-virtual base class and an inherited virtual base
1362  //   class, the mem-initializer is ill-formed.
1363  if (DirectBaseSpec && VirtualBaseSpec)
1364    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1365      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1366  // C++ [base.class.init]p2:
1367  // Unless the mem-initializer-id names a nonstatic data membeer of the
1368  // constructor's class ot a direst or virtual base of that class, the
1369  // mem-initializer is ill-formed.
1370  if (!DirectBaseSpec && !VirtualBaseSpec)
1371    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1372      << BaseType << ClassDecl->getNameAsCString()
1373      << BaseTInfo->getTypeLoc().getSourceRange();
1374
1375  CXXBaseSpecifier *BaseSpec
1376    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1377  if (!BaseSpec)
1378    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1379
1380  // Initialize the base.
1381  InitializedEntity BaseEntity =
1382    InitializedEntity::InitializeBase(Context, BaseSpec);
1383  InitializationKind Kind =
1384    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1385
1386  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1387
1388  OwningExprResult BaseInit =
1389    InitSeq.Perform(*this, BaseEntity, Kind,
1390                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1391  if (BaseInit.isInvalid())
1392    return true;
1393
1394  // C++0x [class.base.init]p7:
1395  //   The initialization of each base and member constitutes a
1396  //   full-expression.
1397  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1398  if (BaseInit.isInvalid())
1399    return true;
1400
1401  // If we are in a dependent context, template instantiation will
1402  // perform this type-checking again. Just save the arguments that we
1403  // received in a ParenListExpr.
1404  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1405  // of the information that we have about the base
1406  // initializer. However, deconstructing the ASTs is a dicey process,
1407  // and this approach is far more likely to get the corner cases right.
1408  if (CurContext->isDependentContext()) {
1409    // Bump the reference count of all of the arguments.
1410    for (unsigned I = 0; I != NumArgs; ++I)
1411      Args[I]->Retain();
1412
1413    OwningExprResult Init
1414      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1415                                          RParenLoc));
1416    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1417                                                    LParenLoc,
1418                                                    Init.takeAs<Expr>(),
1419                                                    RParenLoc);
1420  }
1421
1422  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1423                                                  LParenLoc,
1424                                                  BaseInit.takeAs<Expr>(),
1425                                                  RParenLoc);
1426}
1427
1428bool
1429Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1430                                  CXXBaseOrMemberInitializer **Initializers,
1431                                  unsigned NumInitializers,
1432                                  bool AnyErrors) {
1433  if (Constructor->isDependentContext()) {
1434    // Just store the initializers as written, they will be checked during
1435    // instantiation.
1436    if (NumInitializers > 0) {
1437      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1438      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1439        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1440      memcpy(baseOrMemberInitializers, Initializers,
1441             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1442      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1443    }
1444
1445    return false;
1446  }
1447
1448  // We need to build the initializer AST according to order of construction
1449  // and not what user specified in the Initializers list.
1450  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1451  if (!ClassDecl)
1452    return true;
1453
1454  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1455  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1456  bool HadError = false;
1457
1458  for (unsigned i = 0; i < NumInitializers; i++) {
1459    CXXBaseOrMemberInitializer *Member = Initializers[i];
1460
1461    if (Member->isBaseInitializer())
1462      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1463    else
1464      AllBaseFields[Member->getMember()] = Member;
1465  }
1466
1467  llvm::SmallVector<CXXBaseSpecifier *, 4> BasesToDefaultInit;
1468
1469  // Push virtual bases before others.
1470  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1471       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1472
1473    if (CXXBaseOrMemberInitializer *Value
1474        = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1475      AllToInit.push_back(Value);
1476    } else if (!AnyErrors) {
1477      InitializedEntity InitEntity
1478        = InitializedEntity::InitializeBase(Context, VBase);
1479      InitializationKind InitKind
1480        = InitializationKind::CreateDefault(Constructor->getLocation());
1481      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1482      OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1483                                                  MultiExprArg(*this, 0, 0));
1484      BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1485      if (BaseInit.isInvalid()) {
1486        HadError = true;
1487        continue;
1488      }
1489
1490      CXXBaseOrMemberInitializer *CXXBaseInit =
1491        new (Context) CXXBaseOrMemberInitializer(Context,
1492                           Context.getTrivialTypeSourceInfo(VBase->getType(),
1493                                                            SourceLocation()),
1494                                                 SourceLocation(),
1495                                                 BaseInit.takeAs<Expr>(),
1496                                                 SourceLocation());
1497      AllToInit.push_back(CXXBaseInit);
1498    }
1499  }
1500
1501  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1502       E = ClassDecl->bases_end(); Base != E; ++Base) {
1503    // Virtuals are in the virtual base list and already constructed.
1504    if (Base->isVirtual())
1505      continue;
1506
1507    if (CXXBaseOrMemberInitializer *Value
1508          = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1509      AllToInit.push_back(Value);
1510    } else if (!AnyErrors) {
1511      InitializedEntity InitEntity
1512        = InitializedEntity::InitializeBase(Context, Base);
1513      InitializationKind InitKind
1514        = InitializationKind::CreateDefault(Constructor->getLocation());
1515      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1516      OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1517                                                  MultiExprArg(*this, 0, 0));
1518      BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1519      if (BaseInit.isInvalid()) {
1520        HadError = true;
1521        continue;
1522      }
1523
1524      CXXBaseOrMemberInitializer *CXXBaseInit =
1525        new (Context) CXXBaseOrMemberInitializer(Context,
1526                           Context.getTrivialTypeSourceInfo(Base->getType(),
1527                                                            SourceLocation()),
1528                                                 SourceLocation(),
1529                                                 BaseInit.takeAs<Expr>(),
1530                                                 SourceLocation());
1531      AllToInit.push_back(CXXBaseInit);
1532    }
1533  }
1534
1535  // non-static data members.
1536  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1537       E = ClassDecl->field_end(); Field != E; ++Field) {
1538    if ((*Field)->isAnonymousStructOrUnion()) {
1539      if (const RecordType *FieldClassType =
1540          Field->getType()->getAs<RecordType>()) {
1541        CXXRecordDecl *FieldClassDecl
1542          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1543        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1544            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1545          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1546            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1547            // set to the anonymous union data member used in the initializer
1548            // list.
1549            Value->setMember(*Field);
1550            Value->setAnonUnionMember(*FA);
1551            AllToInit.push_back(Value);
1552            break;
1553          }
1554        }
1555      }
1556      continue;
1557    }
1558    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1559      AllToInit.push_back(Value);
1560      continue;
1561    }
1562
1563    if ((*Field)->getType()->isDependentType() || AnyErrors)
1564      continue;
1565
1566    QualType FT = Context.getBaseElementType((*Field)->getType());
1567    if (FT->getAs<RecordType>()) {
1568      InitializedEntity InitEntity
1569        = InitializedEntity::InitializeMember(*Field);
1570      InitializationKind InitKind
1571        = InitializationKind::CreateDefault(Constructor->getLocation());
1572
1573      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1574      OwningExprResult MemberInit = InitSeq.Perform(*this, InitEntity, InitKind,
1575                                                    MultiExprArg(*this, 0, 0));
1576      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1577      if (MemberInit.isInvalid()) {
1578        HadError = true;
1579        continue;
1580      }
1581
1582      // Don't attach synthesized member initializers in a dependent
1583      // context; they'll be regenerated a template instantiation
1584      // time.
1585      if (CurContext->isDependentContext())
1586        continue;
1587
1588      CXXBaseOrMemberInitializer *Member =
1589        new (Context) CXXBaseOrMemberInitializer(Context,
1590                                                 *Field, SourceLocation(),
1591                                                 SourceLocation(),
1592                                                 MemberInit.takeAs<Expr>(),
1593                                                 SourceLocation());
1594
1595      AllToInit.push_back(Member);
1596    }
1597    else if (FT->isReferenceType()) {
1598      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1599        << (int)Constructor->isImplicit() << Context.getTagDeclType(ClassDecl)
1600        << 0 << (*Field)->getDeclName();
1601      Diag((*Field)->getLocation(), diag::note_declared_at);
1602      HadError = true;
1603    }
1604    else if (FT.isConstQualified()) {
1605      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1606        << (int)Constructor->isImplicit() << Context.getTagDeclType(ClassDecl)
1607        << 1 << (*Field)->getDeclName();
1608      Diag((*Field)->getLocation(), diag::note_declared_at);
1609      HadError = true;
1610    }
1611  }
1612
1613  NumInitializers = AllToInit.size();
1614  if (NumInitializers > 0) {
1615    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1616    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1617      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1618    memcpy(baseOrMemberInitializers, AllToInit.data(),
1619           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1620    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1621
1622    // Constructors implicitly reference the base and member
1623    // destructors.
1624    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1625                                           Constructor->getParent());
1626  }
1627
1628  return HadError;
1629}
1630
1631static void *GetKeyForTopLevelField(FieldDecl *Field) {
1632  // For anonymous unions, use the class declaration as the key.
1633  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1634    if (RT->getDecl()->isAnonymousStructOrUnion())
1635      return static_cast<void *>(RT->getDecl());
1636  }
1637  return static_cast<void *>(Field);
1638}
1639
1640static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1641  return Context.getCanonicalType(BaseType).getTypePtr();
1642}
1643
1644static void *GetKeyForMember(ASTContext &Context,
1645                             CXXBaseOrMemberInitializer *Member,
1646                             bool MemberMaybeAnon = false) {
1647  if (!Member->isMemberInitializer())
1648    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1649
1650  // For fields injected into the class via declaration of an anonymous union,
1651  // use its anonymous union class declaration as the unique key.
1652  FieldDecl *Field = Member->getMember();
1653
1654  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1655  // data member of the class. Data member used in the initializer list is
1656  // in AnonUnionMember field.
1657  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1658    Field = Member->getAnonUnionMember();
1659
1660  // If the field is a member of an anonymous union, we use record decl of the
1661  // union as the key.
1662  RecordDecl *RD = Field->getParent();
1663  if (RD->isAnonymousStructOrUnion() && RD->isUnion())
1664    return static_cast<void *>(RD);
1665
1666  return static_cast<void *>(Field);
1667}
1668
1669static void
1670DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1671                                  const CXXConstructorDecl *Constructor,
1672                                  CXXBaseOrMemberInitializer **MemInits,
1673                                  unsigned NumMemInits) {
1674  if (Constructor->isDependentContext())
1675    return;
1676
1677  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1678      Diagnostic::Ignored &&
1679      SemaRef.Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1680      Diagnostic::Ignored)
1681    return;
1682
1683  // Also issue warning if order of ctor-initializer list does not match order
1684  // of 1) base class declarations and 2) order of non-static data members.
1685  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1686
1687  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1688
1689  // Push virtual bases before others.
1690  for (CXXRecordDecl::base_class_const_iterator VBase =
1691       ClassDecl->vbases_begin(),
1692       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1693    AllBaseOrMembers.push_back(GetKeyForBase(SemaRef.Context,
1694                                             VBase->getType()));
1695
1696  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1697       E = ClassDecl->bases_end(); Base != E; ++Base) {
1698    // Virtuals are alread in the virtual base list and are constructed
1699    // first.
1700    if (Base->isVirtual())
1701      continue;
1702    AllBaseOrMembers.push_back(GetKeyForBase(SemaRef.Context,
1703                                             Base->getType()));
1704  }
1705
1706  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1707       E = ClassDecl->field_end(); Field != E; ++Field)
1708    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1709
1710  int Last = AllBaseOrMembers.size();
1711  int curIndex = 0;
1712  CXXBaseOrMemberInitializer *PrevMember = 0;
1713  for (unsigned i = 0; i < NumMemInits; i++) {
1714    CXXBaseOrMemberInitializer *Member = MemInits[i];
1715    void *MemberInCtorList = GetKeyForMember(SemaRef.Context, Member, true);
1716
1717    for (; curIndex < Last; curIndex++)
1718      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1719        break;
1720    if (curIndex == Last) {
1721      assert(PrevMember && "Member not in member list?!");
1722      // Initializer as specified in ctor-initializer list is out of order.
1723      // Issue a warning diagnostic.
1724      if (PrevMember->isBaseInitializer()) {
1725        // Diagnostics is for an initialized base class.
1726        Type *BaseClass = PrevMember->getBaseClass();
1727        SemaRef.Diag(PrevMember->getSourceLocation(),
1728                     diag::warn_base_initialized)
1729          << QualType(BaseClass, 0);
1730      } else {
1731        FieldDecl *Field = PrevMember->getMember();
1732        SemaRef.Diag(PrevMember->getSourceLocation(),
1733                     diag::warn_field_initialized)
1734          << Field->getNameAsString();
1735      }
1736      // Also the note!
1737      if (FieldDecl *Field = Member->getMember())
1738        SemaRef.Diag(Member->getSourceLocation(),
1739                     diag::note_fieldorbase_initialized_here) << 0
1740          << Field->getNameAsString();
1741      else {
1742        Type *BaseClass = Member->getBaseClass();
1743        SemaRef.Diag(Member->getSourceLocation(),
1744             diag::note_fieldorbase_initialized_here) << 1
1745          << QualType(BaseClass, 0);
1746      }
1747      for (curIndex = 0; curIndex < Last; curIndex++)
1748        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1749          break;
1750    }
1751    PrevMember = Member;
1752  }
1753}
1754
1755/// ActOnMemInitializers - Handle the member initializers for a constructor.
1756void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1757                                SourceLocation ColonLoc,
1758                                MemInitTy **meminits, unsigned NumMemInits,
1759                                bool AnyErrors) {
1760  if (!ConstructorDecl)
1761    return;
1762
1763  AdjustDeclIfTemplate(ConstructorDecl);
1764
1765  CXXConstructorDecl *Constructor
1766    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1767
1768  if (!Constructor) {
1769    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1770    return;
1771  }
1772
1773  CXXBaseOrMemberInitializer **MemInits =
1774    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
1775
1776  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
1777  bool HadError = false;
1778  for (unsigned i = 0; i < NumMemInits; i++) {
1779    CXXBaseOrMemberInitializer *Member = MemInits[i];
1780
1781    void *KeyToMember = GetKeyForMember(Context, Member);
1782    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1783    if (!PrevMember) {
1784      PrevMember = Member;
1785      continue;
1786    }
1787    if (FieldDecl *Field = Member->getMember())
1788      Diag(Member->getSourceLocation(),
1789           diag::error_multiple_mem_initialization)
1790        << Field->getNameAsString()
1791        << Member->getSourceRange();
1792    else {
1793      Type *BaseClass = Member->getBaseClass();
1794      assert(BaseClass && "ActOnMemInitializers - neither field or base");
1795      Diag(Member->getSourceLocation(),
1796           diag::error_multiple_base_initialization)
1797        << QualType(BaseClass, 0)
1798        << Member->getSourceRange();
1799    }
1800    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1801      << 0;
1802    HadError = true;
1803  }
1804
1805  if (HadError)
1806    return;
1807
1808  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
1809
1810  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
1811}
1812
1813void
1814Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
1815                                             CXXRecordDecl *ClassDecl) {
1816  // Ignore dependent contexts.
1817  if (ClassDecl->isDependentContext())
1818    return;
1819
1820  // FIXME: all the access-control diagnostics are positioned on the
1821  // field/base declaration.  That's probably good; that said, the
1822  // user might reasonably want to know why the destructor is being
1823  // emitted, and we currently don't say.
1824
1825  // Non-static data members.
1826  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1827       E = ClassDecl->field_end(); I != E; ++I) {
1828    FieldDecl *Field = *I;
1829
1830    QualType FieldType = Context.getBaseElementType(Field->getType());
1831
1832    const RecordType* RT = FieldType->getAs<RecordType>();
1833    if (!RT)
1834      continue;
1835
1836    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1837    if (FieldClassDecl->hasTrivialDestructor())
1838      continue;
1839
1840    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1841    CheckDestructorAccess(Field->getLocation(), Dtor,
1842                          PDiag(diag::err_access_dtor_field)
1843                            << Field->getDeclName()
1844                            << FieldType);
1845
1846    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1847  }
1848
1849  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
1850
1851  // Bases.
1852  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1853       E = ClassDecl->bases_end(); Base != E; ++Base) {
1854    // Bases are always records in a well-formed non-dependent class.
1855    const RecordType *RT = Base->getType()->getAs<RecordType>();
1856
1857    // Remember direct virtual bases.
1858    if (Base->isVirtual())
1859      DirectVirtualBases.insert(RT);
1860
1861    // Ignore trivial destructors.
1862    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1863    if (BaseClassDecl->hasTrivialDestructor())
1864      continue;
1865
1866    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1867
1868    // FIXME: caret should be on the start of the class name
1869    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
1870                          PDiag(diag::err_access_dtor_base)
1871                            << Base->getType()
1872                            << Base->getSourceRange());
1873
1874    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1875  }
1876
1877  // Virtual bases.
1878  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1879       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1880
1881    // Bases are always records in a well-formed non-dependent class.
1882    const RecordType *RT = VBase->getType()->getAs<RecordType>();
1883
1884    // Ignore direct virtual bases.
1885    if (DirectVirtualBases.count(RT))
1886      continue;
1887
1888    // Ignore trivial destructors.
1889    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1890    if (BaseClassDecl->hasTrivialDestructor())
1891      continue;
1892
1893    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1894    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
1895                          PDiag(diag::err_access_dtor_vbase)
1896                            << VBase->getType());
1897
1898    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1899  }
1900}
1901
1902void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1903  if (!CDtorDecl)
1904    return;
1905
1906  if (CXXConstructorDecl *Constructor
1907      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1908    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
1909}
1910
1911bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1912                                  unsigned DiagID, AbstractDiagSelID SelID,
1913                                  const CXXRecordDecl *CurrentRD) {
1914  if (SelID == -1)
1915    return RequireNonAbstractType(Loc, T,
1916                                  PDiag(DiagID), CurrentRD);
1917  else
1918    return RequireNonAbstractType(Loc, T,
1919                                  PDiag(DiagID) << SelID, CurrentRD);
1920}
1921
1922bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1923                                  const PartialDiagnostic &PD,
1924                                  const CXXRecordDecl *CurrentRD) {
1925  if (!getLangOptions().CPlusPlus)
1926    return false;
1927
1928  if (const ArrayType *AT = Context.getAsArrayType(T))
1929    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1930                                  CurrentRD);
1931
1932  if (const PointerType *PT = T->getAs<PointerType>()) {
1933    // Find the innermost pointer type.
1934    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1935      PT = T;
1936
1937    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1938      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1939  }
1940
1941  const RecordType *RT = T->getAs<RecordType>();
1942  if (!RT)
1943    return false;
1944
1945  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1946
1947  if (CurrentRD && CurrentRD != RD)
1948    return false;
1949
1950  // FIXME: is this reasonable?  It matches current behavior, but....
1951  if (!RD->getDefinition())
1952    return false;
1953
1954  if (!RD->isAbstract())
1955    return false;
1956
1957  Diag(Loc, PD) << RD->getDeclName();
1958
1959  // Check if we've already emitted the list of pure virtual functions for this
1960  // class.
1961  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1962    return true;
1963
1964  CXXFinalOverriderMap FinalOverriders;
1965  RD->getFinalOverriders(FinalOverriders);
1966
1967  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
1968                                   MEnd = FinalOverriders.end();
1969       M != MEnd;
1970       ++M) {
1971    for (OverridingMethods::iterator SO = M->second.begin(),
1972                                  SOEnd = M->second.end();
1973         SO != SOEnd; ++SO) {
1974      // C++ [class.abstract]p4:
1975      //   A class is abstract if it contains or inherits at least one
1976      //   pure virtual function for which the final overrider is pure
1977      //   virtual.
1978
1979      //
1980      if (SO->second.size() != 1)
1981        continue;
1982
1983      if (!SO->second.front().Method->isPure())
1984        continue;
1985
1986      Diag(SO->second.front().Method->getLocation(),
1987           diag::note_pure_virtual_function)
1988        << SO->second.front().Method->getDeclName();
1989    }
1990  }
1991
1992  if (!PureVirtualClassDiagSet)
1993    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1994  PureVirtualClassDiagSet->insert(RD);
1995
1996  return true;
1997}
1998
1999namespace {
2000  class AbstractClassUsageDiagnoser
2001    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2002    Sema &SemaRef;
2003    CXXRecordDecl *AbstractClass;
2004
2005    bool VisitDeclContext(const DeclContext *DC) {
2006      bool Invalid = false;
2007
2008      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2009           E = DC->decls_end(); I != E; ++I)
2010        Invalid |= Visit(*I);
2011
2012      return Invalid;
2013    }
2014
2015  public:
2016    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2017      : SemaRef(SemaRef), AbstractClass(ac) {
2018        Visit(SemaRef.Context.getTranslationUnitDecl());
2019    }
2020
2021    bool VisitFunctionDecl(const FunctionDecl *FD) {
2022      if (FD->isThisDeclarationADefinition()) {
2023        // No need to do the check if we're in a definition, because it requires
2024        // that the return/param types are complete.
2025        // because that requires
2026        return VisitDeclContext(FD);
2027      }
2028
2029      // Check the return type.
2030      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2031      bool Invalid =
2032        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2033                                       diag::err_abstract_type_in_decl,
2034                                       Sema::AbstractReturnType,
2035                                       AbstractClass);
2036
2037      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2038           E = FD->param_end(); I != E; ++I) {
2039        const ParmVarDecl *VD = *I;
2040        Invalid |=
2041          SemaRef.RequireNonAbstractType(VD->getLocation(),
2042                                         VD->getOriginalType(),
2043                                         diag::err_abstract_type_in_decl,
2044                                         Sema::AbstractParamType,
2045                                         AbstractClass);
2046      }
2047
2048      return Invalid;
2049    }
2050
2051    bool VisitDecl(const Decl* D) {
2052      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2053        return VisitDeclContext(DC);
2054
2055      return false;
2056    }
2057  };
2058}
2059
2060/// \brief Perform semantic checks on a class definition that has been
2061/// completing, introducing implicitly-declared members, checking for
2062/// abstract types, etc.
2063void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2064  if (!Record || Record->isInvalidDecl())
2065    return;
2066
2067  if (!Record->isDependentType())
2068    AddImplicitlyDeclaredMembersToClass(Record);
2069
2070  if (Record->isInvalidDecl())
2071    return;
2072
2073  // Set access bits correctly on the directly-declared conversions.
2074  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2075  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2076    Convs->setAccess(I, (*I)->getAccess());
2077
2078  // Determine whether we need to check for final overriders. We do
2079  // this either when there are virtual base classes (in which case we
2080  // may end up finding multiple final overriders for a given virtual
2081  // function) or any of the base classes is abstract (in which case
2082  // we might detect that this class is abstract).
2083  bool CheckFinalOverriders = false;
2084  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2085      !Record->isDependentType()) {
2086    if (Record->getNumVBases())
2087      CheckFinalOverriders = true;
2088    else if (!Record->isAbstract()) {
2089      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2090                                                 BEnd = Record->bases_end();
2091           B != BEnd; ++B) {
2092        CXXRecordDecl *BaseDecl
2093          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2094        if (BaseDecl->isAbstract()) {
2095          CheckFinalOverriders = true;
2096          break;
2097        }
2098      }
2099    }
2100  }
2101
2102  if (CheckFinalOverriders) {
2103    CXXFinalOverriderMap FinalOverriders;
2104    Record->getFinalOverriders(FinalOverriders);
2105
2106    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2107                                     MEnd = FinalOverriders.end();
2108         M != MEnd; ++M) {
2109      for (OverridingMethods::iterator SO = M->second.begin(),
2110                                    SOEnd = M->second.end();
2111           SO != SOEnd; ++SO) {
2112        assert(SO->second.size() > 0 &&
2113               "All virtual functions have overridding virtual functions");
2114        if (SO->second.size() == 1) {
2115          // C++ [class.abstract]p4:
2116          //   A class is abstract if it contains or inherits at least one
2117          //   pure virtual function for which the final overrider is pure
2118          //   virtual.
2119          if (SO->second.front().Method->isPure())
2120            Record->setAbstract(true);
2121          continue;
2122        }
2123
2124        // C++ [class.virtual]p2:
2125        //   In a derived class, if a virtual member function of a base
2126        //   class subobject has more than one final overrider the
2127        //   program is ill-formed.
2128        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2129          << (NamedDecl *)M->first << Record;
2130        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2131        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2132                                                 OMEnd = SO->second.end();
2133             OM != OMEnd; ++OM)
2134          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2135            << (NamedDecl *)M->first << OM->Method->getParent();
2136
2137        Record->setInvalidDecl();
2138      }
2139    }
2140  }
2141
2142  if (Record->isAbstract() && !Record->isInvalidDecl())
2143    (void)AbstractClassUsageDiagnoser(*this, Record);
2144}
2145
2146void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2147                                             DeclPtrTy TagDecl,
2148                                             SourceLocation LBrac,
2149                                             SourceLocation RBrac,
2150                                             AttributeList *AttrList) {
2151  if (!TagDecl)
2152    return;
2153
2154  AdjustDeclIfTemplate(TagDecl);
2155
2156  ActOnFields(S, RLoc, TagDecl,
2157              (DeclPtrTy*)FieldCollector->getCurFields(),
2158              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2159
2160  CheckCompletedCXXClass(
2161                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2162}
2163
2164/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2165/// special functions, such as the default constructor, copy
2166/// constructor, or destructor, to the given C++ class (C++
2167/// [special]p1).  This routine can only be executed just before the
2168/// definition of the class is complete.
2169void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2170  CanQualType ClassType
2171    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2172
2173  // FIXME: Implicit declarations have exception specifications, which are
2174  // the union of the specifications of the implicitly called functions.
2175
2176  if (!ClassDecl->hasUserDeclaredConstructor()) {
2177    // C++ [class.ctor]p5:
2178    //   A default constructor for a class X is a constructor of class X
2179    //   that can be called without an argument. If there is no
2180    //   user-declared constructor for class X, a default constructor is
2181    //   implicitly declared. An implicitly-declared default constructor
2182    //   is an inline public member of its class.
2183    DeclarationName Name
2184      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2185    CXXConstructorDecl *DefaultCon =
2186      CXXConstructorDecl::Create(Context, ClassDecl,
2187                                 ClassDecl->getLocation(), Name,
2188                                 Context.getFunctionType(Context.VoidTy,
2189                                                         0, 0, false, 0,
2190                                                         /*FIXME*/false, false,
2191                                                         0, 0,
2192                                                       FunctionType::ExtInfo()),
2193                                 /*TInfo=*/0,
2194                                 /*isExplicit=*/false,
2195                                 /*isInline=*/true,
2196                                 /*isImplicitlyDeclared=*/true);
2197    DefaultCon->setAccess(AS_public);
2198    DefaultCon->setImplicit();
2199    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2200    ClassDecl->addDecl(DefaultCon);
2201  }
2202
2203  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2204    // C++ [class.copy]p4:
2205    //   If the class definition does not explicitly declare a copy
2206    //   constructor, one is declared implicitly.
2207
2208    // C++ [class.copy]p5:
2209    //   The implicitly-declared copy constructor for a class X will
2210    //   have the form
2211    //
2212    //       X::X(const X&)
2213    //
2214    //   if
2215    bool HasConstCopyConstructor = true;
2216
2217    //     -- each direct or virtual base class B of X has a copy
2218    //        constructor whose first parameter is of type const B& or
2219    //        const volatile B&, and
2220    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2221         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2222      const CXXRecordDecl *BaseClassDecl
2223        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2224      HasConstCopyConstructor
2225        = BaseClassDecl->hasConstCopyConstructor(Context);
2226    }
2227
2228    //     -- for all the nonstatic data members of X that are of a
2229    //        class type M (or array thereof), each such class type
2230    //        has a copy constructor whose first parameter is of type
2231    //        const M& or const volatile M&.
2232    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2233         HasConstCopyConstructor && Field != ClassDecl->field_end();
2234         ++Field) {
2235      QualType FieldType = (*Field)->getType();
2236      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2237        FieldType = Array->getElementType();
2238      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2239        const CXXRecordDecl *FieldClassDecl
2240          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2241        HasConstCopyConstructor
2242          = FieldClassDecl->hasConstCopyConstructor(Context);
2243      }
2244    }
2245
2246    //   Otherwise, the implicitly declared copy constructor will have
2247    //   the form
2248    //
2249    //       X::X(X&)
2250    QualType ArgType = ClassType;
2251    if (HasConstCopyConstructor)
2252      ArgType = ArgType.withConst();
2253    ArgType = Context.getLValueReferenceType(ArgType);
2254
2255    //   An implicitly-declared copy constructor is an inline public
2256    //   member of its class.
2257    DeclarationName Name
2258      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2259    CXXConstructorDecl *CopyConstructor
2260      = CXXConstructorDecl::Create(Context, ClassDecl,
2261                                   ClassDecl->getLocation(), Name,
2262                                   Context.getFunctionType(Context.VoidTy,
2263                                                           &ArgType, 1,
2264                                                           false, 0,
2265                                                           /*FIXME:*/false,
2266                                                           false, 0, 0,
2267                                                       FunctionType::ExtInfo()),
2268                                   /*TInfo=*/0,
2269                                   /*isExplicit=*/false,
2270                                   /*isInline=*/true,
2271                                   /*isImplicitlyDeclared=*/true);
2272    CopyConstructor->setAccess(AS_public);
2273    CopyConstructor->setImplicit();
2274    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2275
2276    // Add the parameter to the constructor.
2277    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2278                                                 ClassDecl->getLocation(),
2279                                                 /*IdentifierInfo=*/0,
2280                                                 ArgType, /*TInfo=*/0,
2281                                                 VarDecl::None, 0);
2282    CopyConstructor->setParams(&FromParam, 1);
2283    ClassDecl->addDecl(CopyConstructor);
2284  }
2285
2286  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2287    // Note: The following rules are largely analoguous to the copy
2288    // constructor rules. Note that virtual bases are not taken into account
2289    // for determining the argument type of the operator. Note also that
2290    // operators taking an object instead of a reference are allowed.
2291    //
2292    // C++ [class.copy]p10:
2293    //   If the class definition does not explicitly declare a copy
2294    //   assignment operator, one is declared implicitly.
2295    //   The implicitly-defined copy assignment operator for a class X
2296    //   will have the form
2297    //
2298    //       X& X::operator=(const X&)
2299    //
2300    //   if
2301    bool HasConstCopyAssignment = true;
2302
2303    //       -- each direct base class B of X has a copy assignment operator
2304    //          whose parameter is of type const B&, const volatile B& or B,
2305    //          and
2306    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2307         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2308      assert(!Base->getType()->isDependentType() &&
2309            "Cannot generate implicit members for class with dependent bases.");
2310      const CXXRecordDecl *BaseClassDecl
2311        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2312      const CXXMethodDecl *MD = 0;
2313      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2314                                                                     MD);
2315    }
2316
2317    //       -- for all the nonstatic data members of X that are of a class
2318    //          type M (or array thereof), each such class type has a copy
2319    //          assignment operator whose parameter is of type const M&,
2320    //          const volatile M& or M.
2321    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2322         HasConstCopyAssignment && Field != ClassDecl->field_end();
2323         ++Field) {
2324      QualType FieldType = (*Field)->getType();
2325      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2326        FieldType = Array->getElementType();
2327      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2328        const CXXRecordDecl *FieldClassDecl
2329          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2330        const CXXMethodDecl *MD = 0;
2331        HasConstCopyAssignment
2332          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2333      }
2334    }
2335
2336    //   Otherwise, the implicitly declared copy assignment operator will
2337    //   have the form
2338    //
2339    //       X& X::operator=(X&)
2340    QualType ArgType = ClassType;
2341    QualType RetType = Context.getLValueReferenceType(ArgType);
2342    if (HasConstCopyAssignment)
2343      ArgType = ArgType.withConst();
2344    ArgType = Context.getLValueReferenceType(ArgType);
2345
2346    //   An implicitly-declared copy assignment operator is an inline public
2347    //   member of its class.
2348    DeclarationName Name =
2349      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2350    CXXMethodDecl *CopyAssignment =
2351      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2352                            Context.getFunctionType(RetType, &ArgType, 1,
2353                                                    false, 0,
2354                                                    /*FIXME:*/false,
2355                                                    false, 0, 0,
2356                                                    FunctionType::ExtInfo()),
2357                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2358    CopyAssignment->setAccess(AS_public);
2359    CopyAssignment->setImplicit();
2360    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2361    CopyAssignment->setCopyAssignment(true);
2362
2363    // Add the parameter to the operator.
2364    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2365                                                 ClassDecl->getLocation(),
2366                                                 /*IdentifierInfo=*/0,
2367                                                 ArgType, /*TInfo=*/0,
2368                                                 VarDecl::None, 0);
2369    CopyAssignment->setParams(&FromParam, 1);
2370
2371    // Don't call addedAssignmentOperator. There is no way to distinguish an
2372    // implicit from an explicit assignment operator.
2373    ClassDecl->addDecl(CopyAssignment);
2374    AddOverriddenMethods(ClassDecl, CopyAssignment);
2375  }
2376
2377  if (!ClassDecl->hasUserDeclaredDestructor()) {
2378    // C++ [class.dtor]p2:
2379    //   If a class has no user-declared destructor, a destructor is
2380    //   declared implicitly. An implicitly-declared destructor is an
2381    //   inline public member of its class.
2382    QualType Ty = Context.getFunctionType(Context.VoidTy,
2383                                          0, 0, false, 0,
2384                                          /*FIXME:*/false,
2385                                          false, 0, 0, FunctionType::ExtInfo());
2386
2387    DeclarationName Name
2388      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2389    CXXDestructorDecl *Destructor
2390      = CXXDestructorDecl::Create(Context, ClassDecl,
2391                                  ClassDecl->getLocation(), Name, Ty,
2392                                  /*isInline=*/true,
2393                                  /*isImplicitlyDeclared=*/true);
2394    Destructor->setAccess(AS_public);
2395    Destructor->setImplicit();
2396    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2397    ClassDecl->addDecl(Destructor);
2398
2399    // This could be uniqued if it ever proves significant.
2400    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2401
2402    AddOverriddenMethods(ClassDecl, Destructor);
2403  }
2404}
2405
2406void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2407  Decl *D = TemplateD.getAs<Decl>();
2408  if (!D)
2409    return;
2410
2411  TemplateParameterList *Params = 0;
2412  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2413    Params = Template->getTemplateParameters();
2414  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2415           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2416    Params = PartialSpec->getTemplateParameters();
2417  else
2418    return;
2419
2420  for (TemplateParameterList::iterator Param = Params->begin(),
2421                                    ParamEnd = Params->end();
2422       Param != ParamEnd; ++Param) {
2423    NamedDecl *Named = cast<NamedDecl>(*Param);
2424    if (Named->getDeclName()) {
2425      S->AddDecl(DeclPtrTy::make(Named));
2426      IdResolver.AddDecl(Named);
2427    }
2428  }
2429}
2430
2431void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2432  if (!RecordD) return;
2433  AdjustDeclIfTemplate(RecordD);
2434  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2435  PushDeclContext(S, Record);
2436}
2437
2438void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2439  if (!RecordD) return;
2440  PopDeclContext();
2441}
2442
2443/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2444/// parsing a top-level (non-nested) C++ class, and we are now
2445/// parsing those parts of the given Method declaration that could
2446/// not be parsed earlier (C++ [class.mem]p2), such as default
2447/// arguments. This action should enter the scope of the given
2448/// Method declaration as if we had just parsed the qualified method
2449/// name. However, it should not bring the parameters into scope;
2450/// that will be performed by ActOnDelayedCXXMethodParameter.
2451void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2452}
2453
2454/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2455/// C++ method declaration. We're (re-)introducing the given
2456/// function parameter into scope for use in parsing later parts of
2457/// the method declaration. For example, we could see an
2458/// ActOnParamDefaultArgument event for this parameter.
2459void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2460  if (!ParamD)
2461    return;
2462
2463  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2464
2465  // If this parameter has an unparsed default argument, clear it out
2466  // to make way for the parsed default argument.
2467  if (Param->hasUnparsedDefaultArg())
2468    Param->setDefaultArg(0);
2469
2470  S->AddDecl(DeclPtrTy::make(Param));
2471  if (Param->getDeclName())
2472    IdResolver.AddDecl(Param);
2473}
2474
2475/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2476/// processing the delayed method declaration for Method. The method
2477/// declaration is now considered finished. There may be a separate
2478/// ActOnStartOfFunctionDef action later (not necessarily
2479/// immediately!) for this method, if it was also defined inside the
2480/// class body.
2481void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2482  if (!MethodD)
2483    return;
2484
2485  AdjustDeclIfTemplate(MethodD);
2486
2487  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2488
2489  // Now that we have our default arguments, check the constructor
2490  // again. It could produce additional diagnostics or affect whether
2491  // the class has implicitly-declared destructors, among other
2492  // things.
2493  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2494    CheckConstructor(Constructor);
2495
2496  // Check the default arguments, which we may have added.
2497  if (!Method->isInvalidDecl())
2498    CheckCXXDefaultArguments(Method);
2499}
2500
2501/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2502/// the well-formedness of the constructor declarator @p D with type @p
2503/// R. If there are any errors in the declarator, this routine will
2504/// emit diagnostics and set the invalid bit to true.  In any case, the type
2505/// will be updated to reflect a well-formed type for the constructor and
2506/// returned.
2507QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2508                                          FunctionDecl::StorageClass &SC) {
2509  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2510
2511  // C++ [class.ctor]p3:
2512  //   A constructor shall not be virtual (10.3) or static (9.4). A
2513  //   constructor can be invoked for a const, volatile or const
2514  //   volatile object. A constructor shall not be declared const,
2515  //   volatile, or const volatile (9.3.2).
2516  if (isVirtual) {
2517    if (!D.isInvalidType())
2518      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2519        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2520        << SourceRange(D.getIdentifierLoc());
2521    D.setInvalidType();
2522  }
2523  if (SC == FunctionDecl::Static) {
2524    if (!D.isInvalidType())
2525      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2526        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2527        << SourceRange(D.getIdentifierLoc());
2528    D.setInvalidType();
2529    SC = FunctionDecl::None;
2530  }
2531
2532  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2533  if (FTI.TypeQuals != 0) {
2534    if (FTI.TypeQuals & Qualifiers::Const)
2535      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2536        << "const" << SourceRange(D.getIdentifierLoc());
2537    if (FTI.TypeQuals & Qualifiers::Volatile)
2538      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2539        << "volatile" << SourceRange(D.getIdentifierLoc());
2540    if (FTI.TypeQuals & Qualifiers::Restrict)
2541      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2542        << "restrict" << SourceRange(D.getIdentifierLoc());
2543  }
2544
2545  // Rebuild the function type "R" without any type qualifiers (in
2546  // case any of the errors above fired) and with "void" as the
2547  // return type, since constructors don't have return types. We
2548  // *always* have to do this, because GetTypeForDeclarator will
2549  // put in a result type of "int" when none was specified.
2550  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2551  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2552                                 Proto->getNumArgs(),
2553                                 Proto->isVariadic(), 0,
2554                                 Proto->hasExceptionSpec(),
2555                                 Proto->hasAnyExceptionSpec(),
2556                                 Proto->getNumExceptions(),
2557                                 Proto->exception_begin(),
2558                                 Proto->getExtInfo());
2559}
2560
2561/// CheckConstructor - Checks a fully-formed constructor for
2562/// well-formedness, issuing any diagnostics required. Returns true if
2563/// the constructor declarator is invalid.
2564void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2565  CXXRecordDecl *ClassDecl
2566    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2567  if (!ClassDecl)
2568    return Constructor->setInvalidDecl();
2569
2570  // C++ [class.copy]p3:
2571  //   A declaration of a constructor for a class X is ill-formed if
2572  //   its first parameter is of type (optionally cv-qualified) X and
2573  //   either there are no other parameters or else all other
2574  //   parameters have default arguments.
2575  if (!Constructor->isInvalidDecl() &&
2576      ((Constructor->getNumParams() == 1) ||
2577       (Constructor->getNumParams() > 1 &&
2578        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2579      Constructor->getTemplateSpecializationKind()
2580                                              != TSK_ImplicitInstantiation) {
2581    QualType ParamType = Constructor->getParamDecl(0)->getType();
2582    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2583    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2584      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2585      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2586        << FixItHint::CreateInsertion(ParamLoc, " const &");
2587
2588      // FIXME: Rather that making the constructor invalid, we should endeavor
2589      // to fix the type.
2590      Constructor->setInvalidDecl();
2591    }
2592  }
2593
2594  // Notify the class that we've added a constructor.
2595  ClassDecl->addedConstructor(Context, Constructor);
2596}
2597
2598/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2599/// issuing any diagnostics required. Returns true on error.
2600bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2601  CXXRecordDecl *RD = Destructor->getParent();
2602
2603  if (Destructor->isVirtual()) {
2604    SourceLocation Loc;
2605
2606    if (!Destructor->isImplicit())
2607      Loc = Destructor->getLocation();
2608    else
2609      Loc = RD->getLocation();
2610
2611    // If we have a virtual destructor, look up the deallocation function
2612    FunctionDecl *OperatorDelete = 0;
2613    DeclarationName Name =
2614    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2615    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2616      return true;
2617
2618    Destructor->setOperatorDelete(OperatorDelete);
2619  }
2620
2621  return false;
2622}
2623
2624static inline bool
2625FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2626  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2627          FTI.ArgInfo[0].Param &&
2628          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2629}
2630
2631/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2632/// the well-formednes of the destructor declarator @p D with type @p
2633/// R. If there are any errors in the declarator, this routine will
2634/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2635/// will be updated to reflect a well-formed type for the destructor and
2636/// returned.
2637QualType Sema::CheckDestructorDeclarator(Declarator &D,
2638                                         FunctionDecl::StorageClass& SC) {
2639  // C++ [class.dtor]p1:
2640  //   [...] A typedef-name that names a class is a class-name
2641  //   (7.1.3); however, a typedef-name that names a class shall not
2642  //   be used as the identifier in the declarator for a destructor
2643  //   declaration.
2644  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2645  if (isa<TypedefType>(DeclaratorType)) {
2646    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2647      << DeclaratorType;
2648    D.setInvalidType();
2649  }
2650
2651  // C++ [class.dtor]p2:
2652  //   A destructor is used to destroy objects of its class type. A
2653  //   destructor takes no parameters, and no return type can be
2654  //   specified for it (not even void). The address of a destructor
2655  //   shall not be taken. A destructor shall not be static. A
2656  //   destructor can be invoked for a const, volatile or const
2657  //   volatile object. A destructor shall not be declared const,
2658  //   volatile or const volatile (9.3.2).
2659  if (SC == FunctionDecl::Static) {
2660    if (!D.isInvalidType())
2661      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2662        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2663        << SourceRange(D.getIdentifierLoc());
2664    SC = FunctionDecl::None;
2665    D.setInvalidType();
2666  }
2667  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2668    // Destructors don't have return types, but the parser will
2669    // happily parse something like:
2670    //
2671    //   class X {
2672    //     float ~X();
2673    //   };
2674    //
2675    // The return type will be eliminated later.
2676    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2677      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2678      << SourceRange(D.getIdentifierLoc());
2679  }
2680
2681  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2682  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2683    if (FTI.TypeQuals & Qualifiers::Const)
2684      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2685        << "const" << SourceRange(D.getIdentifierLoc());
2686    if (FTI.TypeQuals & Qualifiers::Volatile)
2687      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2688        << "volatile" << SourceRange(D.getIdentifierLoc());
2689    if (FTI.TypeQuals & Qualifiers::Restrict)
2690      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2691        << "restrict" << SourceRange(D.getIdentifierLoc());
2692    D.setInvalidType();
2693  }
2694
2695  // Make sure we don't have any parameters.
2696  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2697    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2698
2699    // Delete the parameters.
2700    FTI.freeArgs();
2701    D.setInvalidType();
2702  }
2703
2704  // Make sure the destructor isn't variadic.
2705  if (FTI.isVariadic) {
2706    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2707    D.setInvalidType();
2708  }
2709
2710  // Rebuild the function type "R" without any type qualifiers or
2711  // parameters (in case any of the errors above fired) and with
2712  // "void" as the return type, since destructors don't have return
2713  // types. We *always* have to do this, because GetTypeForDeclarator
2714  // will put in a result type of "int" when none was specified.
2715  // FIXME: Exceptions!
2716  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2717                                 false, false, 0, 0, FunctionType::ExtInfo());
2718}
2719
2720/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2721/// well-formednes of the conversion function declarator @p D with
2722/// type @p R. If there are any errors in the declarator, this routine
2723/// will emit diagnostics and return true. Otherwise, it will return
2724/// false. Either way, the type @p R will be updated to reflect a
2725/// well-formed type for the conversion operator.
2726void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2727                                     FunctionDecl::StorageClass& SC) {
2728  // C++ [class.conv.fct]p1:
2729  //   Neither parameter types nor return type can be specified. The
2730  //   type of a conversion function (8.3.5) is "function taking no
2731  //   parameter returning conversion-type-id."
2732  if (SC == FunctionDecl::Static) {
2733    if (!D.isInvalidType())
2734      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2735        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2736        << SourceRange(D.getIdentifierLoc());
2737    D.setInvalidType();
2738    SC = FunctionDecl::None;
2739  }
2740  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2741    // Conversion functions don't have return types, but the parser will
2742    // happily parse something like:
2743    //
2744    //   class X {
2745    //     float operator bool();
2746    //   };
2747    //
2748    // The return type will be changed later anyway.
2749    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2750      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2751      << SourceRange(D.getIdentifierLoc());
2752  }
2753
2754  // Make sure we don't have any parameters.
2755  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2756    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2757
2758    // Delete the parameters.
2759    D.getTypeObject(0).Fun.freeArgs();
2760    D.setInvalidType();
2761  }
2762
2763  // Make sure the conversion function isn't variadic.
2764  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2765    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2766    D.setInvalidType();
2767  }
2768
2769  // C++ [class.conv.fct]p4:
2770  //   The conversion-type-id shall not represent a function type nor
2771  //   an array type.
2772  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2773  if (ConvType->isArrayType()) {
2774    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2775    ConvType = Context.getPointerType(ConvType);
2776    D.setInvalidType();
2777  } else if (ConvType->isFunctionType()) {
2778    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2779    ConvType = Context.getPointerType(ConvType);
2780    D.setInvalidType();
2781  }
2782
2783  // Rebuild the function type "R" without any parameters (in case any
2784  // of the errors above fired) and with the conversion type as the
2785  // return type.
2786  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2787  R = Context.getFunctionType(ConvType, 0, 0, false,
2788                              Proto->getTypeQuals(),
2789                              Proto->hasExceptionSpec(),
2790                              Proto->hasAnyExceptionSpec(),
2791                              Proto->getNumExceptions(),
2792                              Proto->exception_begin(),
2793                              Proto->getExtInfo());
2794
2795  // C++0x explicit conversion operators.
2796  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2797    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2798         diag::warn_explicit_conversion_functions)
2799      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2800}
2801
2802/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2803/// the declaration of the given C++ conversion function. This routine
2804/// is responsible for recording the conversion function in the C++
2805/// class, if possible.
2806Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2807  assert(Conversion && "Expected to receive a conversion function declaration");
2808
2809  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2810
2811  // Make sure we aren't redeclaring the conversion function.
2812  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2813
2814  // C++ [class.conv.fct]p1:
2815  //   [...] A conversion function is never used to convert a
2816  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2817  //   same object type (or a reference to it), to a (possibly
2818  //   cv-qualified) base class of that type (or a reference to it),
2819  //   or to (possibly cv-qualified) void.
2820  // FIXME: Suppress this warning if the conversion function ends up being a
2821  // virtual function that overrides a virtual function in a base class.
2822  QualType ClassType
2823    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2824  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2825    ConvType = ConvTypeRef->getPointeeType();
2826  if (ConvType->isRecordType()) {
2827    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2828    if (ConvType == ClassType)
2829      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2830        << ClassType;
2831    else if (IsDerivedFrom(ClassType, ConvType))
2832      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2833        <<  ClassType << ConvType;
2834  } else if (ConvType->isVoidType()) {
2835    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2836      << ClassType << ConvType;
2837  }
2838
2839  if (Conversion->getPrimaryTemplate()) {
2840    // ignore specializations
2841  } else if (Conversion->getPreviousDeclaration()) {
2842    if (FunctionTemplateDecl *ConversionTemplate
2843                                  = Conversion->getDescribedFunctionTemplate()) {
2844      if (ClassDecl->replaceConversion(
2845                                   ConversionTemplate->getPreviousDeclaration(),
2846                                       ConversionTemplate))
2847        return DeclPtrTy::make(ConversionTemplate);
2848    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
2849                                            Conversion))
2850      return DeclPtrTy::make(Conversion);
2851    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2852  } else if (FunctionTemplateDecl *ConversionTemplate
2853               = Conversion->getDescribedFunctionTemplate())
2854    ClassDecl->addConversionFunction(ConversionTemplate);
2855  else
2856    ClassDecl->addConversionFunction(Conversion);
2857
2858  return DeclPtrTy::make(Conversion);
2859}
2860
2861//===----------------------------------------------------------------------===//
2862// Namespace Handling
2863//===----------------------------------------------------------------------===//
2864
2865/// ActOnStartNamespaceDef - This is called at the start of a namespace
2866/// definition.
2867Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2868                                             SourceLocation IdentLoc,
2869                                             IdentifierInfo *II,
2870                                             SourceLocation LBrace,
2871                                             AttributeList *AttrList) {
2872  NamespaceDecl *Namespc =
2873      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2874  Namespc->setLBracLoc(LBrace);
2875
2876  Scope *DeclRegionScope = NamespcScope->getParent();
2877
2878  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
2879
2880  if (II) {
2881    // C++ [namespace.def]p2:
2882    // The identifier in an original-namespace-definition shall not have been
2883    // previously defined in the declarative region in which the
2884    // original-namespace-definition appears. The identifier in an
2885    // original-namespace-definition is the name of the namespace. Subsequently
2886    // in that declarative region, it is treated as an original-namespace-name.
2887
2888    NamedDecl *PrevDecl
2889      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2890                         ForRedeclaration);
2891
2892    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2893      // This is an extended namespace definition.
2894      // Attach this namespace decl to the chain of extended namespace
2895      // definitions.
2896      OrigNS->setNextNamespace(Namespc);
2897      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2898
2899      // Remove the previous declaration from the scope.
2900      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2901        IdResolver.RemoveDecl(OrigNS);
2902        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2903      }
2904    } else if (PrevDecl) {
2905      // This is an invalid name redefinition.
2906      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2907       << Namespc->getDeclName();
2908      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2909      Namespc->setInvalidDecl();
2910      // Continue on to push Namespc as current DeclContext and return it.
2911    } else if (II->isStr("std") &&
2912               CurContext->getLookupContext()->isTranslationUnit()) {
2913      // This is the first "real" definition of the namespace "std", so update
2914      // our cache of the "std" namespace to point at this definition.
2915      if (StdNamespace) {
2916        // We had already defined a dummy namespace "std". Link this new
2917        // namespace definition to the dummy namespace "std".
2918        StdNamespace->setNextNamespace(Namespc);
2919        StdNamespace->setLocation(IdentLoc);
2920        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2921      }
2922
2923      // Make our StdNamespace cache point at the first real definition of the
2924      // "std" namespace.
2925      StdNamespace = Namespc;
2926    }
2927
2928    PushOnScopeChains(Namespc, DeclRegionScope);
2929  } else {
2930    // Anonymous namespaces.
2931    assert(Namespc->isAnonymousNamespace());
2932
2933    // Link the anonymous namespace into its parent.
2934    NamespaceDecl *PrevDecl;
2935    DeclContext *Parent = CurContext->getLookupContext();
2936    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
2937      PrevDecl = TU->getAnonymousNamespace();
2938      TU->setAnonymousNamespace(Namespc);
2939    } else {
2940      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
2941      PrevDecl = ND->getAnonymousNamespace();
2942      ND->setAnonymousNamespace(Namespc);
2943    }
2944
2945    // Link the anonymous namespace with its previous declaration.
2946    if (PrevDecl) {
2947      assert(PrevDecl->isAnonymousNamespace());
2948      assert(!PrevDecl->getNextNamespace());
2949      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
2950      PrevDecl->setNextNamespace(Namespc);
2951    }
2952
2953    CurContext->addDecl(Namespc);
2954
2955    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2956    //   behaves as if it were replaced by
2957    //     namespace unique { /* empty body */ }
2958    //     using namespace unique;
2959    //     namespace unique { namespace-body }
2960    //   where all occurrences of 'unique' in a translation unit are
2961    //   replaced by the same identifier and this identifier differs
2962    //   from all other identifiers in the entire program.
2963
2964    // We just create the namespace with an empty name and then add an
2965    // implicit using declaration, just like the standard suggests.
2966    //
2967    // CodeGen enforces the "universally unique" aspect by giving all
2968    // declarations semantically contained within an anonymous
2969    // namespace internal linkage.
2970
2971    if (!PrevDecl) {
2972      UsingDirectiveDecl* UD
2973        = UsingDirectiveDecl::Create(Context, CurContext,
2974                                     /* 'using' */ LBrace,
2975                                     /* 'namespace' */ SourceLocation(),
2976                                     /* qualifier */ SourceRange(),
2977                                     /* NNS */ NULL,
2978                                     /* identifier */ SourceLocation(),
2979                                     Namespc,
2980                                     /* Ancestor */ CurContext);
2981      UD->setImplicit();
2982      CurContext->addDecl(UD);
2983    }
2984  }
2985
2986  // Although we could have an invalid decl (i.e. the namespace name is a
2987  // redefinition), push it as current DeclContext and try to continue parsing.
2988  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2989  // for the namespace has the declarations that showed up in that particular
2990  // namespace definition.
2991  PushDeclContext(NamespcScope, Namespc);
2992  return DeclPtrTy::make(Namespc);
2993}
2994
2995/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2996/// is a namespace alias, returns the namespace it points to.
2997static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2998  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2999    return AD->getNamespace();
3000  return dyn_cast_or_null<NamespaceDecl>(D);
3001}
3002
3003/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3004/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3005void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3006  Decl *Dcl = D.getAs<Decl>();
3007  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3008  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3009  Namespc->setRBracLoc(RBrace);
3010  PopDeclContext();
3011}
3012
3013Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3014                                          SourceLocation UsingLoc,
3015                                          SourceLocation NamespcLoc,
3016                                          const CXXScopeSpec &SS,
3017                                          SourceLocation IdentLoc,
3018                                          IdentifierInfo *NamespcName,
3019                                          AttributeList *AttrList) {
3020  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3021  assert(NamespcName && "Invalid NamespcName.");
3022  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3023  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3024
3025  UsingDirectiveDecl *UDir = 0;
3026
3027  // Lookup namespace name.
3028  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3029  LookupParsedName(R, S, &SS);
3030  if (R.isAmbiguous())
3031    return DeclPtrTy();
3032
3033  if (!R.empty()) {
3034    NamedDecl *Named = R.getFoundDecl();
3035    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3036        && "expected namespace decl");
3037    // C++ [namespace.udir]p1:
3038    //   A using-directive specifies that the names in the nominated
3039    //   namespace can be used in the scope in which the
3040    //   using-directive appears after the using-directive. During
3041    //   unqualified name lookup (3.4.1), the names appear as if they
3042    //   were declared in the nearest enclosing namespace which
3043    //   contains both the using-directive and the nominated
3044    //   namespace. [Note: in this context, "contains" means "contains
3045    //   directly or indirectly". ]
3046
3047    // Find enclosing context containing both using-directive and
3048    // nominated namespace.
3049    NamespaceDecl *NS = getNamespaceDecl(Named);
3050    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3051    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3052      CommonAncestor = CommonAncestor->getParent();
3053
3054    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3055                                      SS.getRange(),
3056                                      (NestedNameSpecifier *)SS.getScopeRep(),
3057                                      IdentLoc, Named, CommonAncestor);
3058    PushUsingDirective(S, UDir);
3059  } else {
3060    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3061  }
3062
3063  // FIXME: We ignore attributes for now.
3064  delete AttrList;
3065  return DeclPtrTy::make(UDir);
3066}
3067
3068void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3069  // If scope has associated entity, then using directive is at namespace
3070  // or translation unit scope. We add UsingDirectiveDecls, into
3071  // it's lookup structure.
3072  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3073    Ctx->addDecl(UDir);
3074  else
3075    // Otherwise it is block-sope. using-directives will affect lookup
3076    // only to the end of scope.
3077    S->PushUsingDirective(DeclPtrTy::make(UDir));
3078}
3079
3080
3081Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3082                                            AccessSpecifier AS,
3083                                            bool HasUsingKeyword,
3084                                            SourceLocation UsingLoc,
3085                                            const CXXScopeSpec &SS,
3086                                            UnqualifiedId &Name,
3087                                            AttributeList *AttrList,
3088                                            bool IsTypeName,
3089                                            SourceLocation TypenameLoc) {
3090  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3091
3092  switch (Name.getKind()) {
3093  case UnqualifiedId::IK_Identifier:
3094  case UnqualifiedId::IK_OperatorFunctionId:
3095  case UnqualifiedId::IK_LiteralOperatorId:
3096  case UnqualifiedId::IK_ConversionFunctionId:
3097    break;
3098
3099  case UnqualifiedId::IK_ConstructorName:
3100  case UnqualifiedId::IK_ConstructorTemplateId:
3101    // C++0x inherited constructors.
3102    if (getLangOptions().CPlusPlus0x) break;
3103
3104    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3105      << SS.getRange();
3106    return DeclPtrTy();
3107
3108  case UnqualifiedId::IK_DestructorName:
3109    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3110      << SS.getRange();
3111    return DeclPtrTy();
3112
3113  case UnqualifiedId::IK_TemplateId:
3114    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3115      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3116    return DeclPtrTy();
3117  }
3118
3119  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3120  if (!TargetName)
3121    return DeclPtrTy();
3122
3123  // Warn about using declarations.
3124  // TODO: store that the declaration was written without 'using' and
3125  // talk about access decls instead of using decls in the
3126  // diagnostics.
3127  if (!HasUsingKeyword) {
3128    UsingLoc = Name.getSourceRange().getBegin();
3129
3130    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3131      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3132  }
3133
3134  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3135                                        Name.getSourceRange().getBegin(),
3136                                        TargetName, AttrList,
3137                                        /* IsInstantiation */ false,
3138                                        IsTypeName, TypenameLoc);
3139  if (UD)
3140    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3141
3142  return DeclPtrTy::make(UD);
3143}
3144
3145/// Determines whether to create a using shadow decl for a particular
3146/// decl, given the set of decls existing prior to this using lookup.
3147bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3148                                const LookupResult &Previous) {
3149  // Diagnose finding a decl which is not from a base class of the
3150  // current class.  We do this now because there are cases where this
3151  // function will silently decide not to build a shadow decl, which
3152  // will pre-empt further diagnostics.
3153  //
3154  // We don't need to do this in C++0x because we do the check once on
3155  // the qualifier.
3156  //
3157  // FIXME: diagnose the following if we care enough:
3158  //   struct A { int foo; };
3159  //   struct B : A { using A::foo; };
3160  //   template <class T> struct C : A {};
3161  //   template <class T> struct D : C<T> { using B::foo; } // <---
3162  // This is invalid (during instantiation) in C++03 because B::foo
3163  // resolves to the using decl in B, which is not a base class of D<T>.
3164  // We can't diagnose it immediately because C<T> is an unknown
3165  // specialization.  The UsingShadowDecl in D<T> then points directly
3166  // to A::foo, which will look well-formed when we instantiate.
3167  // The right solution is to not collapse the shadow-decl chain.
3168  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3169    DeclContext *OrigDC = Orig->getDeclContext();
3170
3171    // Handle enums and anonymous structs.
3172    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3173    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3174    while (OrigRec->isAnonymousStructOrUnion())
3175      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3176
3177    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3178      if (OrigDC == CurContext) {
3179        Diag(Using->getLocation(),
3180             diag::err_using_decl_nested_name_specifier_is_current_class)
3181          << Using->getNestedNameRange();
3182        Diag(Orig->getLocation(), diag::note_using_decl_target);
3183        return true;
3184      }
3185
3186      Diag(Using->getNestedNameRange().getBegin(),
3187           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3188        << Using->getTargetNestedNameDecl()
3189        << cast<CXXRecordDecl>(CurContext)
3190        << Using->getNestedNameRange();
3191      Diag(Orig->getLocation(), diag::note_using_decl_target);
3192      return true;
3193    }
3194  }
3195
3196  if (Previous.empty()) return false;
3197
3198  NamedDecl *Target = Orig;
3199  if (isa<UsingShadowDecl>(Target))
3200    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3201
3202  // If the target happens to be one of the previous declarations, we
3203  // don't have a conflict.
3204  //
3205  // FIXME: but we might be increasing its access, in which case we
3206  // should redeclare it.
3207  NamedDecl *NonTag = 0, *Tag = 0;
3208  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3209         I != E; ++I) {
3210    NamedDecl *D = (*I)->getUnderlyingDecl();
3211    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3212      return false;
3213
3214    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3215  }
3216
3217  if (Target->isFunctionOrFunctionTemplate()) {
3218    FunctionDecl *FD;
3219    if (isa<FunctionTemplateDecl>(Target))
3220      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3221    else
3222      FD = cast<FunctionDecl>(Target);
3223
3224    NamedDecl *OldDecl = 0;
3225    switch (CheckOverload(FD, Previous, OldDecl)) {
3226    case Ovl_Overload:
3227      return false;
3228
3229    case Ovl_NonFunction:
3230      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3231      break;
3232
3233    // We found a decl with the exact signature.
3234    case Ovl_Match:
3235      if (isa<UsingShadowDecl>(OldDecl)) {
3236        // Silently ignore the possible conflict.
3237        return false;
3238      }
3239
3240      // If we're in a record, we want to hide the target, so we
3241      // return true (without a diagnostic) to tell the caller not to
3242      // build a shadow decl.
3243      if (CurContext->isRecord())
3244        return true;
3245
3246      // If we're not in a record, this is an error.
3247      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3248      break;
3249    }
3250
3251    Diag(Target->getLocation(), diag::note_using_decl_target);
3252    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3253    return true;
3254  }
3255
3256  // Target is not a function.
3257
3258  if (isa<TagDecl>(Target)) {
3259    // No conflict between a tag and a non-tag.
3260    if (!Tag) return false;
3261
3262    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3263    Diag(Target->getLocation(), diag::note_using_decl_target);
3264    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3265    return true;
3266  }
3267
3268  // No conflict between a tag and a non-tag.
3269  if (!NonTag) return false;
3270
3271  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3272  Diag(Target->getLocation(), diag::note_using_decl_target);
3273  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3274  return true;
3275}
3276
3277/// Builds a shadow declaration corresponding to a 'using' declaration.
3278UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3279                                            UsingDecl *UD,
3280                                            NamedDecl *Orig) {
3281
3282  // If we resolved to another shadow declaration, just coalesce them.
3283  NamedDecl *Target = Orig;
3284  if (isa<UsingShadowDecl>(Target)) {
3285    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3286    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3287  }
3288
3289  UsingShadowDecl *Shadow
3290    = UsingShadowDecl::Create(Context, CurContext,
3291                              UD->getLocation(), UD, Target);
3292  UD->addShadowDecl(Shadow);
3293
3294  if (S)
3295    PushOnScopeChains(Shadow, S);
3296  else
3297    CurContext->addDecl(Shadow);
3298  Shadow->setAccess(UD->getAccess());
3299
3300  // Register it as a conversion if appropriate.
3301  if (Shadow->getDeclName().getNameKind()
3302        == DeclarationName::CXXConversionFunctionName)
3303    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3304
3305  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3306    Shadow->setInvalidDecl();
3307
3308  return Shadow;
3309}
3310
3311/// Hides a using shadow declaration.  This is required by the current
3312/// using-decl implementation when a resolvable using declaration in a
3313/// class is followed by a declaration which would hide or override
3314/// one or more of the using decl's targets; for example:
3315///
3316///   struct Base { void foo(int); };
3317///   struct Derived : Base {
3318///     using Base::foo;
3319///     void foo(int);
3320///   };
3321///
3322/// The governing language is C++03 [namespace.udecl]p12:
3323///
3324///   When a using-declaration brings names from a base class into a
3325///   derived class scope, member functions in the derived class
3326///   override and/or hide member functions with the same name and
3327///   parameter types in a base class (rather than conflicting).
3328///
3329/// There are two ways to implement this:
3330///   (1) optimistically create shadow decls when they're not hidden
3331///       by existing declarations, or
3332///   (2) don't create any shadow decls (or at least don't make them
3333///       visible) until we've fully parsed/instantiated the class.
3334/// The problem with (1) is that we might have to retroactively remove
3335/// a shadow decl, which requires several O(n) operations because the
3336/// decl structures are (very reasonably) not designed for removal.
3337/// (2) avoids this but is very fiddly and phase-dependent.
3338void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3339  if (Shadow->getDeclName().getNameKind() ==
3340        DeclarationName::CXXConversionFunctionName)
3341    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3342
3343  // Remove it from the DeclContext...
3344  Shadow->getDeclContext()->removeDecl(Shadow);
3345
3346  // ...and the scope, if applicable...
3347  if (S) {
3348    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3349    IdResolver.RemoveDecl(Shadow);
3350  }
3351
3352  // ...and the using decl.
3353  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3354
3355  // TODO: complain somehow if Shadow was used.  It shouldn't
3356  // be possible for this to happen, because...?
3357}
3358
3359/// Builds a using declaration.
3360///
3361/// \param IsInstantiation - Whether this call arises from an
3362///   instantiation of an unresolved using declaration.  We treat
3363///   the lookup differently for these declarations.
3364NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3365                                       SourceLocation UsingLoc,
3366                                       const CXXScopeSpec &SS,
3367                                       SourceLocation IdentLoc,
3368                                       DeclarationName Name,
3369                                       AttributeList *AttrList,
3370                                       bool IsInstantiation,
3371                                       bool IsTypeName,
3372                                       SourceLocation TypenameLoc) {
3373  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3374  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3375
3376  // FIXME: We ignore attributes for now.
3377  delete AttrList;
3378
3379  if (SS.isEmpty()) {
3380    Diag(IdentLoc, diag::err_using_requires_qualname);
3381    return 0;
3382  }
3383
3384  // Do the redeclaration lookup in the current scope.
3385  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3386                        ForRedeclaration);
3387  Previous.setHideTags(false);
3388  if (S) {
3389    LookupName(Previous, S);
3390
3391    // It is really dumb that we have to do this.
3392    LookupResult::Filter F = Previous.makeFilter();
3393    while (F.hasNext()) {
3394      NamedDecl *D = F.next();
3395      if (!isDeclInScope(D, CurContext, S))
3396        F.erase();
3397    }
3398    F.done();
3399  } else {
3400    assert(IsInstantiation && "no scope in non-instantiation");
3401    assert(CurContext->isRecord() && "scope not record in instantiation");
3402    LookupQualifiedName(Previous, CurContext);
3403  }
3404
3405  NestedNameSpecifier *NNS =
3406    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3407
3408  // Check for invalid redeclarations.
3409  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3410    return 0;
3411
3412  // Check for bad qualifiers.
3413  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3414    return 0;
3415
3416  DeclContext *LookupContext = computeDeclContext(SS);
3417  NamedDecl *D;
3418  if (!LookupContext) {
3419    if (IsTypeName) {
3420      // FIXME: not all declaration name kinds are legal here
3421      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3422                                              UsingLoc, TypenameLoc,
3423                                              SS.getRange(), NNS,
3424                                              IdentLoc, Name);
3425    } else {
3426      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3427                                           UsingLoc, SS.getRange(), NNS,
3428                                           IdentLoc, Name);
3429    }
3430  } else {
3431    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3432                          SS.getRange(), UsingLoc, NNS, Name,
3433                          IsTypeName);
3434  }
3435  D->setAccess(AS);
3436  CurContext->addDecl(D);
3437
3438  if (!LookupContext) return D;
3439  UsingDecl *UD = cast<UsingDecl>(D);
3440
3441  if (RequireCompleteDeclContext(SS)) {
3442    UD->setInvalidDecl();
3443    return UD;
3444  }
3445
3446  // Look up the target name.
3447
3448  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3449
3450  // Unlike most lookups, we don't always want to hide tag
3451  // declarations: tag names are visible through the using declaration
3452  // even if hidden by ordinary names, *except* in a dependent context
3453  // where it's important for the sanity of two-phase lookup.
3454  if (!IsInstantiation)
3455    R.setHideTags(false);
3456
3457  LookupQualifiedName(R, LookupContext);
3458
3459  if (R.empty()) {
3460    Diag(IdentLoc, diag::err_no_member)
3461      << Name << LookupContext << SS.getRange();
3462    UD->setInvalidDecl();
3463    return UD;
3464  }
3465
3466  if (R.isAmbiguous()) {
3467    UD->setInvalidDecl();
3468    return UD;
3469  }
3470
3471  if (IsTypeName) {
3472    // If we asked for a typename and got a non-type decl, error out.
3473    if (!R.getAsSingle<TypeDecl>()) {
3474      Diag(IdentLoc, diag::err_using_typename_non_type);
3475      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3476        Diag((*I)->getUnderlyingDecl()->getLocation(),
3477             diag::note_using_decl_target);
3478      UD->setInvalidDecl();
3479      return UD;
3480    }
3481  } else {
3482    // If we asked for a non-typename and we got a type, error out,
3483    // but only if this is an instantiation of an unresolved using
3484    // decl.  Otherwise just silently find the type name.
3485    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3486      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3487      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3488      UD->setInvalidDecl();
3489      return UD;
3490    }
3491  }
3492
3493  // C++0x N2914 [namespace.udecl]p6:
3494  // A using-declaration shall not name a namespace.
3495  if (R.getAsSingle<NamespaceDecl>()) {
3496    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3497      << SS.getRange();
3498    UD->setInvalidDecl();
3499    return UD;
3500  }
3501
3502  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3503    if (!CheckUsingShadowDecl(UD, *I, Previous))
3504      BuildUsingShadowDecl(S, UD, *I);
3505  }
3506
3507  return UD;
3508}
3509
3510/// Checks that the given using declaration is not an invalid
3511/// redeclaration.  Note that this is checking only for the using decl
3512/// itself, not for any ill-formedness among the UsingShadowDecls.
3513bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3514                                       bool isTypeName,
3515                                       const CXXScopeSpec &SS,
3516                                       SourceLocation NameLoc,
3517                                       const LookupResult &Prev) {
3518  // C++03 [namespace.udecl]p8:
3519  // C++0x [namespace.udecl]p10:
3520  //   A using-declaration is a declaration and can therefore be used
3521  //   repeatedly where (and only where) multiple declarations are
3522  //   allowed.
3523  // That's only in file contexts.
3524  if (CurContext->getLookupContext()->isFileContext())
3525    return false;
3526
3527  NestedNameSpecifier *Qual
3528    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3529
3530  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3531    NamedDecl *D = *I;
3532
3533    bool DTypename;
3534    NestedNameSpecifier *DQual;
3535    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3536      DTypename = UD->isTypeName();
3537      DQual = UD->getTargetNestedNameDecl();
3538    } else if (UnresolvedUsingValueDecl *UD
3539                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3540      DTypename = false;
3541      DQual = UD->getTargetNestedNameSpecifier();
3542    } else if (UnresolvedUsingTypenameDecl *UD
3543                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3544      DTypename = true;
3545      DQual = UD->getTargetNestedNameSpecifier();
3546    } else continue;
3547
3548    // using decls differ if one says 'typename' and the other doesn't.
3549    // FIXME: non-dependent using decls?
3550    if (isTypeName != DTypename) continue;
3551
3552    // using decls differ if they name different scopes (but note that
3553    // template instantiation can cause this check to trigger when it
3554    // didn't before instantiation).
3555    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3556        Context.getCanonicalNestedNameSpecifier(DQual))
3557      continue;
3558
3559    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3560    Diag(D->getLocation(), diag::note_using_decl) << 1;
3561    return true;
3562  }
3563
3564  return false;
3565}
3566
3567
3568/// Checks that the given nested-name qualifier used in a using decl
3569/// in the current context is appropriately related to the current
3570/// scope.  If an error is found, diagnoses it and returns true.
3571bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3572                                   const CXXScopeSpec &SS,
3573                                   SourceLocation NameLoc) {
3574  DeclContext *NamedContext = computeDeclContext(SS);
3575
3576  if (!CurContext->isRecord()) {
3577    // C++03 [namespace.udecl]p3:
3578    // C++0x [namespace.udecl]p8:
3579    //   A using-declaration for a class member shall be a member-declaration.
3580
3581    // If we weren't able to compute a valid scope, it must be a
3582    // dependent class scope.
3583    if (!NamedContext || NamedContext->isRecord()) {
3584      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3585        << SS.getRange();
3586      return true;
3587    }
3588
3589    // Otherwise, everything is known to be fine.
3590    return false;
3591  }
3592
3593  // The current scope is a record.
3594
3595  // If the named context is dependent, we can't decide much.
3596  if (!NamedContext) {
3597    // FIXME: in C++0x, we can diagnose if we can prove that the
3598    // nested-name-specifier does not refer to a base class, which is
3599    // still possible in some cases.
3600
3601    // Otherwise we have to conservatively report that things might be
3602    // okay.
3603    return false;
3604  }
3605
3606  if (!NamedContext->isRecord()) {
3607    // Ideally this would point at the last name in the specifier,
3608    // but we don't have that level of source info.
3609    Diag(SS.getRange().getBegin(),
3610         diag::err_using_decl_nested_name_specifier_is_not_class)
3611      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3612    return true;
3613  }
3614
3615  if (getLangOptions().CPlusPlus0x) {
3616    // C++0x [namespace.udecl]p3:
3617    //   In a using-declaration used as a member-declaration, the
3618    //   nested-name-specifier shall name a base class of the class
3619    //   being defined.
3620
3621    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3622                                 cast<CXXRecordDecl>(NamedContext))) {
3623      if (CurContext == NamedContext) {
3624        Diag(NameLoc,
3625             diag::err_using_decl_nested_name_specifier_is_current_class)
3626          << SS.getRange();
3627        return true;
3628      }
3629
3630      Diag(SS.getRange().getBegin(),
3631           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3632        << (NestedNameSpecifier*) SS.getScopeRep()
3633        << cast<CXXRecordDecl>(CurContext)
3634        << SS.getRange();
3635      return true;
3636    }
3637
3638    return false;
3639  }
3640
3641  // C++03 [namespace.udecl]p4:
3642  //   A using-declaration used as a member-declaration shall refer
3643  //   to a member of a base class of the class being defined [etc.].
3644
3645  // Salient point: SS doesn't have to name a base class as long as
3646  // lookup only finds members from base classes.  Therefore we can
3647  // diagnose here only if we can prove that that can't happen,
3648  // i.e. if the class hierarchies provably don't intersect.
3649
3650  // TODO: it would be nice if "definitely valid" results were cached
3651  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3652  // need to be repeated.
3653
3654  struct UserData {
3655    llvm::DenseSet<const CXXRecordDecl*> Bases;
3656
3657    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3658      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3659      Data->Bases.insert(Base);
3660      return true;
3661    }
3662
3663    bool hasDependentBases(const CXXRecordDecl *Class) {
3664      return !Class->forallBases(collect, this);
3665    }
3666
3667    /// Returns true if the base is dependent or is one of the
3668    /// accumulated base classes.
3669    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3670      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3671      return !Data->Bases.count(Base);
3672    }
3673
3674    bool mightShareBases(const CXXRecordDecl *Class) {
3675      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3676    }
3677  };
3678
3679  UserData Data;
3680
3681  // Returns false if we find a dependent base.
3682  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3683    return false;
3684
3685  // Returns false if the class has a dependent base or if it or one
3686  // of its bases is present in the base set of the current context.
3687  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3688    return false;
3689
3690  Diag(SS.getRange().getBegin(),
3691       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3692    << (NestedNameSpecifier*) SS.getScopeRep()
3693    << cast<CXXRecordDecl>(CurContext)
3694    << SS.getRange();
3695
3696  return true;
3697}
3698
3699Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3700                                             SourceLocation NamespaceLoc,
3701                                             SourceLocation AliasLoc,
3702                                             IdentifierInfo *Alias,
3703                                             const CXXScopeSpec &SS,
3704                                             SourceLocation IdentLoc,
3705                                             IdentifierInfo *Ident) {
3706
3707  // Lookup the namespace name.
3708  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3709  LookupParsedName(R, S, &SS);
3710
3711  // Check if we have a previous declaration with the same name.
3712  if (NamedDecl *PrevDecl
3713        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3714    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3715      // We already have an alias with the same name that points to the same
3716      // namespace, so don't create a new one.
3717      // FIXME: At some point, we'll want to create the (redundant)
3718      // declaration to maintain better source information.
3719      if (!R.isAmbiguous() && !R.empty() &&
3720          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
3721        return DeclPtrTy();
3722    }
3723
3724    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3725      diag::err_redefinition_different_kind;
3726    Diag(AliasLoc, DiagID) << Alias;
3727    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3728    return DeclPtrTy();
3729  }
3730
3731  if (R.isAmbiguous())
3732    return DeclPtrTy();
3733
3734  if (R.empty()) {
3735    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3736    return DeclPtrTy();
3737  }
3738
3739  NamespaceAliasDecl *AliasDecl =
3740    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3741                               Alias, SS.getRange(),
3742                               (NestedNameSpecifier *)SS.getScopeRep(),
3743                               IdentLoc, R.getFoundDecl());
3744
3745  PushOnScopeChains(AliasDecl, S);
3746  return DeclPtrTy::make(AliasDecl);
3747}
3748
3749void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3750                                            CXXConstructorDecl *Constructor) {
3751  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3752          !Constructor->isUsed()) &&
3753    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3754
3755  CXXRecordDecl *ClassDecl
3756    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3757  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3758
3759  DeclContext *PreviousContext = CurContext;
3760  CurContext = Constructor;
3761  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false)) {
3762    Diag(CurrentLocation, diag::note_member_synthesized_at)
3763      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3764    Constructor->setInvalidDecl();
3765  } else {
3766    Constructor->setUsed();
3767  }
3768  CurContext = PreviousContext;
3769}
3770
3771void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3772                                    CXXDestructorDecl *Destructor) {
3773  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3774         "DefineImplicitDestructor - call it for implicit default dtor");
3775  CXXRecordDecl *ClassDecl = Destructor->getParent();
3776  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3777
3778  DeclContext *PreviousContext = CurContext;
3779  CurContext = Destructor;
3780
3781  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
3782                                         Destructor->getParent());
3783
3784  // FIXME: If CheckDestructor fails, we should emit a note about where the
3785  // implicit destructor was needed.
3786  if (CheckDestructor(Destructor)) {
3787    Diag(CurrentLocation, diag::note_member_synthesized_at)
3788      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3789
3790    Destructor->setInvalidDecl();
3791    CurContext = PreviousContext;
3792
3793    return;
3794  }
3795  CurContext = PreviousContext;
3796
3797  Destructor->setUsed();
3798}
3799
3800void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3801                                          CXXMethodDecl *MethodDecl) {
3802  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3803          MethodDecl->getOverloadedOperator() == OO_Equal &&
3804          !MethodDecl->isUsed()) &&
3805         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3806
3807  CXXRecordDecl *ClassDecl
3808    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3809
3810  DeclContext *PreviousContext = CurContext;
3811  CurContext = MethodDecl;
3812
3813  // C++[class.copy] p12
3814  // Before the implicitly-declared copy assignment operator for a class is
3815  // implicitly defined, all implicitly-declared copy assignment operators
3816  // for its direct base classes and its nonstatic data members shall have
3817  // been implicitly defined.
3818  bool err = false;
3819  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3820       E = ClassDecl->bases_end(); Base != E; ++Base) {
3821    CXXRecordDecl *BaseClassDecl
3822      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3823    if (CXXMethodDecl *BaseAssignOpMethod =
3824          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3825                                  BaseClassDecl)) {
3826      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3827                              BaseAssignOpMethod,
3828                              PDiag(diag::err_access_assign_base)
3829                                << Base->getType());
3830
3831      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3832    }
3833  }
3834  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3835       E = ClassDecl->field_end(); Field != E; ++Field) {
3836    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3837    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3838      FieldType = Array->getElementType();
3839    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3840      CXXRecordDecl *FieldClassDecl
3841        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3842      if (CXXMethodDecl *FieldAssignOpMethod =
3843          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3844                                  FieldClassDecl)) {
3845        CheckDirectMemberAccess(Field->getLocation(),
3846                                FieldAssignOpMethod,
3847                                PDiag(diag::err_access_assign_field)
3848                                  << Field->getDeclName() << Field->getType());
3849
3850        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3851      }
3852    } else if (FieldType->isReferenceType()) {
3853      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3854      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3855      Diag(Field->getLocation(), diag::note_declared_at);
3856      Diag(CurrentLocation, diag::note_first_required_here);
3857      err = true;
3858    } else if (FieldType.isConstQualified()) {
3859      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3860      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3861      Diag(Field->getLocation(), diag::note_declared_at);
3862      Diag(CurrentLocation, diag::note_first_required_here);
3863      err = true;
3864    }
3865  }
3866  if (!err)
3867    MethodDecl->setUsed();
3868
3869  CurContext = PreviousContext;
3870}
3871
3872CXXMethodDecl *
3873Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3874                              ParmVarDecl *ParmDecl,
3875                              CXXRecordDecl *ClassDecl) {
3876  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3877  QualType RHSType(LHSType);
3878  // If class's assignment operator argument is const/volatile qualified,
3879  // look for operator = (const/volatile B&). Otherwise, look for
3880  // operator = (B&).
3881  RHSType = Context.getCVRQualifiedType(RHSType,
3882                                     ParmDecl->getType().getCVRQualifiers());
3883  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3884                                                           LHSType,
3885                                                           SourceLocation()));
3886  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3887                                                           RHSType,
3888                                                           CurrentLocation));
3889  Expr *Args[2] = { &*LHS, &*RHS };
3890  OverloadCandidateSet CandidateSet(CurrentLocation);
3891  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3892                              CandidateSet);
3893  OverloadCandidateSet::iterator Best;
3894  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3895    return cast<CXXMethodDecl>(Best->Function);
3896  assert(false &&
3897         "getAssignOperatorMethod - copy assignment operator method not found");
3898  return 0;
3899}
3900
3901void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3902                                   CXXConstructorDecl *CopyConstructor,
3903                                   unsigned TypeQuals) {
3904  assert((CopyConstructor->isImplicit() &&
3905          CopyConstructor->isCopyConstructor(TypeQuals) &&
3906          !CopyConstructor->isUsed()) &&
3907         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3908
3909  CXXRecordDecl *ClassDecl
3910    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3911  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3912
3913  DeclContext *PreviousContext = CurContext;
3914  CurContext = CopyConstructor;
3915
3916  // C++ [class.copy] p209
3917  // Before the implicitly-declared copy constructor for a class is
3918  // implicitly defined, all the implicitly-declared copy constructors
3919  // for its base class and its non-static data members shall have been
3920  // implicitly defined.
3921  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3922       Base != ClassDecl->bases_end(); ++Base) {
3923    CXXRecordDecl *BaseClassDecl
3924      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3925    if (CXXConstructorDecl *BaseCopyCtor =
3926        BaseClassDecl->getCopyConstructor(Context, TypeQuals)) {
3927      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3928                              BaseCopyCtor,
3929                              PDiag(diag::err_access_copy_base)
3930                                << Base->getType());
3931
3932      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3933    }
3934  }
3935  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3936                                  FieldEnd = ClassDecl->field_end();
3937       Field != FieldEnd; ++Field) {
3938    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3939    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3940      FieldType = Array->getElementType();
3941    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3942      CXXRecordDecl *FieldClassDecl
3943        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3944      if (CXXConstructorDecl *FieldCopyCtor =
3945          FieldClassDecl->getCopyConstructor(Context, TypeQuals)) {
3946        CheckDirectMemberAccess(Field->getLocation(),
3947                                FieldCopyCtor,
3948                                PDiag(diag::err_access_copy_field)
3949                                  << Field->getDeclName() << Field->getType());
3950
3951        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3952      }
3953    }
3954  }
3955  CopyConstructor->setUsed();
3956
3957  CurContext = PreviousContext;
3958}
3959
3960Sema::OwningExprResult
3961Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3962                            CXXConstructorDecl *Constructor,
3963                            MultiExprArg ExprArgs,
3964                            bool RequiresZeroInit,
3965                            bool BaseInitialization) {
3966  bool Elidable = false;
3967
3968  // C++ [class.copy]p15:
3969  //   Whenever a temporary class object is copied using a copy constructor, and
3970  //   this object and the copy have the same cv-unqualified type, an
3971  //   implementation is permitted to treat the original and the copy as two
3972  //   different ways of referring to the same object and not perform a copy at
3973  //   all, even if the class copy constructor or destructor have side effects.
3974
3975  // FIXME: Is this enough?
3976  if (Constructor->isCopyConstructor()) {
3977    Expr *E = ((Expr **)ExprArgs.get())[0];
3978    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3979      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3980        E = ICE->getSubExpr();
3981    if (CXXFunctionalCastExpr *FCE = dyn_cast<CXXFunctionalCastExpr>(E))
3982      E = FCE->getSubExpr();
3983    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3984      E = BE->getSubExpr();
3985    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3986      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3987        E = ICE->getSubExpr();
3988
3989    if (CallExpr *CE = dyn_cast<CallExpr>(E))
3990      Elidable = !CE->getCallReturnType()->isReferenceType();
3991    else if (isa<CXXTemporaryObjectExpr>(E))
3992      Elidable = true;
3993    else if (isa<CXXConstructExpr>(E))
3994      Elidable = true;
3995  }
3996
3997  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3998                               Elidable, move(ExprArgs), RequiresZeroInit,
3999                               BaseInitialization);
4000}
4001
4002/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4003/// including handling of its default argument expressions.
4004Sema::OwningExprResult
4005Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4006                            CXXConstructorDecl *Constructor, bool Elidable,
4007                            MultiExprArg ExprArgs,
4008                            bool RequiresZeroInit,
4009                            bool BaseInitialization) {
4010  unsigned NumExprs = ExprArgs.size();
4011  Expr **Exprs = (Expr **)ExprArgs.release();
4012
4013  MarkDeclarationReferenced(ConstructLoc, Constructor);
4014  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4015                                        Constructor, Elidable, Exprs, NumExprs,
4016                                        RequiresZeroInit, BaseInitialization));
4017}
4018
4019bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4020                                        CXXConstructorDecl *Constructor,
4021                                        MultiExprArg Exprs) {
4022  OwningExprResult TempResult =
4023    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4024                          move(Exprs));
4025  if (TempResult.isInvalid())
4026    return true;
4027
4028  Expr *Temp = TempResult.takeAs<Expr>();
4029  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4030  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4031  VD->setInit(Temp);
4032
4033  return false;
4034}
4035
4036void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4037  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4038  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4039      !ClassDecl->hasTrivialDestructor()) {
4040    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4041    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4042    CheckDestructorAccess(VD->getLocation(), Destructor,
4043                          PDiag(diag::err_access_dtor_var)
4044                            << VD->getDeclName()
4045                            << VD->getType());
4046  }
4047}
4048
4049/// AddCXXDirectInitializerToDecl - This action is called immediately after
4050/// ActOnDeclarator, when a C++ direct initializer is present.
4051/// e.g: "int x(1);"
4052void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4053                                         SourceLocation LParenLoc,
4054                                         MultiExprArg Exprs,
4055                                         SourceLocation *CommaLocs,
4056                                         SourceLocation RParenLoc) {
4057  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4058  Decl *RealDecl = Dcl.getAs<Decl>();
4059
4060  // If there is no declaration, there was an error parsing it.  Just ignore
4061  // the initializer.
4062  if (RealDecl == 0)
4063    return;
4064
4065  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4066  if (!VDecl) {
4067    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4068    RealDecl->setInvalidDecl();
4069    return;
4070  }
4071
4072  // We will represent direct-initialization similarly to copy-initialization:
4073  //    int x(1);  -as-> int x = 1;
4074  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4075  //
4076  // Clients that want to distinguish between the two forms, can check for
4077  // direct initializer using VarDecl::hasCXXDirectInitializer().
4078  // A major benefit is that clients that don't particularly care about which
4079  // exactly form was it (like the CodeGen) can handle both cases without
4080  // special case code.
4081
4082  // C++ 8.5p11:
4083  // The form of initialization (using parentheses or '=') is generally
4084  // insignificant, but does matter when the entity being initialized has a
4085  // class type.
4086  QualType DeclInitType = VDecl->getType();
4087  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4088    DeclInitType = Context.getBaseElementType(Array);
4089
4090  if (!VDecl->getType()->isDependentType() &&
4091      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4092                          diag::err_typecheck_decl_incomplete_type)) {
4093    VDecl->setInvalidDecl();
4094    return;
4095  }
4096
4097  // The variable can not have an abstract class type.
4098  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4099                             diag::err_abstract_type_in_decl,
4100                             AbstractVariableType))
4101    VDecl->setInvalidDecl();
4102
4103  const VarDecl *Def;
4104  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4105    Diag(VDecl->getLocation(), diag::err_redefinition)
4106    << VDecl->getDeclName();
4107    Diag(Def->getLocation(), diag::note_previous_definition);
4108    VDecl->setInvalidDecl();
4109    return;
4110  }
4111
4112  // If either the declaration has a dependent type or if any of the
4113  // expressions is type-dependent, we represent the initialization
4114  // via a ParenListExpr for later use during template instantiation.
4115  if (VDecl->getType()->isDependentType() ||
4116      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4117    // Let clients know that initialization was done with a direct initializer.
4118    VDecl->setCXXDirectInitializer(true);
4119
4120    // Store the initialization expressions as a ParenListExpr.
4121    unsigned NumExprs = Exprs.size();
4122    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4123                                               (Expr **)Exprs.release(),
4124                                               NumExprs, RParenLoc));
4125    return;
4126  }
4127
4128  // Capture the variable that is being initialized and the style of
4129  // initialization.
4130  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4131
4132  // FIXME: Poor source location information.
4133  InitializationKind Kind
4134    = InitializationKind::CreateDirect(VDecl->getLocation(),
4135                                       LParenLoc, RParenLoc);
4136
4137  InitializationSequence InitSeq(*this, Entity, Kind,
4138                                 (Expr**)Exprs.get(), Exprs.size());
4139  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4140  if (Result.isInvalid()) {
4141    VDecl->setInvalidDecl();
4142    return;
4143  }
4144
4145  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4146  VDecl->setInit(Result.takeAs<Expr>());
4147  VDecl->setCXXDirectInitializer(true);
4148
4149  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4150    FinalizeVarWithDestructor(VDecl, Record);
4151}
4152
4153/// \brief Add the applicable constructor candidates for an initialization
4154/// by constructor.
4155static void AddConstructorInitializationCandidates(Sema &SemaRef,
4156                                                   QualType ClassType,
4157                                                   Expr **Args,
4158                                                   unsigned NumArgs,
4159                                                   InitializationKind Kind,
4160                                           OverloadCandidateSet &CandidateSet) {
4161  // C++ [dcl.init]p14:
4162  //   If the initialization is direct-initialization, or if it is
4163  //   copy-initialization where the cv-unqualified version of the
4164  //   source type is the same class as, or a derived class of, the
4165  //   class of the destination, constructors are considered. The
4166  //   applicable constructors are enumerated (13.3.1.3), and the
4167  //   best one is chosen through overload resolution (13.3). The
4168  //   constructor so selected is called to initialize the object,
4169  //   with the initializer expression(s) as its argument(s). If no
4170  //   constructor applies, or the overload resolution is ambiguous,
4171  //   the initialization is ill-formed.
4172  const RecordType *ClassRec = ClassType->getAs<RecordType>();
4173  assert(ClassRec && "Can only initialize a class type here");
4174
4175  // FIXME: When we decide not to synthesize the implicitly-declared
4176  // constructors, we'll need to make them appear here.
4177
4178  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
4179  DeclarationName ConstructorName
4180    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
4181              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
4182  DeclContext::lookup_const_iterator Con, ConEnd;
4183  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
4184       Con != ConEnd; ++Con) {
4185    DeclAccessPair FoundDecl = DeclAccessPair::make(*Con, (*Con)->getAccess());
4186
4187    // Find the constructor (which may be a template).
4188    CXXConstructorDecl *Constructor = 0;
4189    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4190    if (ConstructorTmpl)
4191      Constructor
4192      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4193    else
4194      Constructor = cast<CXXConstructorDecl>(*Con);
4195
4196    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4197        (Kind.getKind() == InitializationKind::IK_Value) ||
4198        (Kind.getKind() == InitializationKind::IK_Copy &&
4199         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4200        ((Kind.getKind() == InitializationKind::IK_Default) &&
4201         Constructor->isDefaultConstructor())) {
4202      if (ConstructorTmpl)
4203        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4204                                             /*ExplicitArgs*/ 0,
4205                                             Args, NumArgs, CandidateSet);
4206      else
4207        SemaRef.AddOverloadCandidate(Constructor, FoundDecl,
4208                                     Args, NumArgs, CandidateSet);
4209    }
4210  }
4211}
4212
4213/// \brief Attempt to perform initialization by constructor
4214/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4215/// copy-initialization.
4216///
4217/// This routine determines whether initialization by constructor is possible,
4218/// but it does not emit any diagnostics in the case where the initialization
4219/// is ill-formed.
4220///
4221/// \param ClassType the type of the object being initialized, which must have
4222/// class type.
4223///
4224/// \param Args the arguments provided to initialize the object
4225///
4226/// \param NumArgs the number of arguments provided to initialize the object
4227///
4228/// \param Kind the type of initialization being performed
4229///
4230/// \returns the constructor used to initialize the object, if successful.
4231/// Otherwise, emits a diagnostic and returns NULL.
4232CXXConstructorDecl *
4233Sema::TryInitializationByConstructor(QualType ClassType,
4234                                     Expr **Args, unsigned NumArgs,
4235                                     SourceLocation Loc,
4236                                     InitializationKind Kind) {
4237  // Build the overload candidate set
4238  OverloadCandidateSet CandidateSet(Loc);
4239  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4240                                         CandidateSet);
4241
4242  // Determine whether we found a constructor we can use.
4243  OverloadCandidateSet::iterator Best;
4244  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4245    case OR_Success:
4246    case OR_Deleted:
4247      // We found a constructor. Return it.
4248      return cast<CXXConstructorDecl>(Best->Function);
4249
4250    case OR_No_Viable_Function:
4251    case OR_Ambiguous:
4252      // Overload resolution failed. Return nothing.
4253      return 0;
4254  }
4255
4256  // Silence GCC warning
4257  return 0;
4258}
4259
4260/// \brief Given a constructor and the set of arguments provided for the
4261/// constructor, convert the arguments and add any required default arguments
4262/// to form a proper call to this constructor.
4263///
4264/// \returns true if an error occurred, false otherwise.
4265bool
4266Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4267                              MultiExprArg ArgsPtr,
4268                              SourceLocation Loc,
4269                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4270  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4271  unsigned NumArgs = ArgsPtr.size();
4272  Expr **Args = (Expr **)ArgsPtr.get();
4273
4274  const FunctionProtoType *Proto
4275    = Constructor->getType()->getAs<FunctionProtoType>();
4276  assert(Proto && "Constructor without a prototype?");
4277  unsigned NumArgsInProto = Proto->getNumArgs();
4278
4279  // If too few arguments are available, we'll fill in the rest with defaults.
4280  if (NumArgs < NumArgsInProto)
4281    ConvertedArgs.reserve(NumArgsInProto);
4282  else
4283    ConvertedArgs.reserve(NumArgs);
4284
4285  VariadicCallType CallType =
4286    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4287  llvm::SmallVector<Expr *, 8> AllArgs;
4288  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4289                                        Proto, 0, Args, NumArgs, AllArgs,
4290                                        CallType);
4291  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4292    ConvertedArgs.push_back(AllArgs[i]);
4293  return Invalid;
4294}
4295
4296/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4297/// determine whether they are reference-related,
4298/// reference-compatible, reference-compatible with added
4299/// qualification, or incompatible, for use in C++ initialization by
4300/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4301/// type, and the first type (T1) is the pointee type of the reference
4302/// type being initialized.
4303Sema::ReferenceCompareResult
4304Sema::CompareReferenceRelationship(SourceLocation Loc,
4305                                   QualType OrigT1, QualType OrigT2,
4306                                   bool& DerivedToBase) {
4307  assert(!OrigT1->isReferenceType() &&
4308    "T1 must be the pointee type of the reference type");
4309  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4310
4311  QualType T1 = Context.getCanonicalType(OrigT1);
4312  QualType T2 = Context.getCanonicalType(OrigT2);
4313  Qualifiers T1Quals, T2Quals;
4314  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4315  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4316
4317  // C++ [dcl.init.ref]p4:
4318  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4319  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4320  //   T1 is a base class of T2.
4321  if (UnqualT1 == UnqualT2)
4322    DerivedToBase = false;
4323  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4324           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4325           IsDerivedFrom(UnqualT2, UnqualT1))
4326    DerivedToBase = true;
4327  else
4328    return Ref_Incompatible;
4329
4330  // At this point, we know that T1 and T2 are reference-related (at
4331  // least).
4332
4333  // If the type is an array type, promote the element qualifiers to the type
4334  // for comparison.
4335  if (isa<ArrayType>(T1) && T1Quals)
4336    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4337  if (isa<ArrayType>(T2) && T2Quals)
4338    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4339
4340  // C++ [dcl.init.ref]p4:
4341  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4342  //   reference-related to T2 and cv1 is the same cv-qualification
4343  //   as, or greater cv-qualification than, cv2. For purposes of
4344  //   overload resolution, cases for which cv1 is greater
4345  //   cv-qualification than cv2 are identified as
4346  //   reference-compatible with added qualification (see 13.3.3.2).
4347  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
4348    return Ref_Compatible;
4349  else if (T1.isMoreQualifiedThan(T2))
4350    return Ref_Compatible_With_Added_Qualification;
4351  else
4352    return Ref_Related;
4353}
4354
4355/// CheckReferenceInit - Check the initialization of a reference
4356/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4357/// the initializer (either a simple initializer or an initializer
4358/// list), and DeclType is the type of the declaration. When ICS is
4359/// non-null, this routine will compute the implicit conversion
4360/// sequence according to C++ [over.ics.ref] and will not produce any
4361/// diagnostics; when ICS is null, it will emit diagnostics when any
4362/// errors are found. Either way, a return value of true indicates
4363/// that there was a failure, a return value of false indicates that
4364/// the reference initialization succeeded.
4365///
4366/// When @p SuppressUserConversions, user-defined conversions are
4367/// suppressed.
4368/// When @p AllowExplicit, we also permit explicit user-defined
4369/// conversion functions.
4370/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4371/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4372/// This is used when this is called from a C-style cast.
4373bool
4374Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4375                         SourceLocation DeclLoc,
4376                         bool SuppressUserConversions,
4377                         bool AllowExplicit, bool ForceRValue,
4378                         ImplicitConversionSequence *ICS,
4379                         bool IgnoreBaseAccess) {
4380  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4381
4382  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4383  QualType T2 = Init->getType();
4384
4385  // If the initializer is the address of an overloaded function, try
4386  // to resolve the overloaded function. If all goes well, T2 is the
4387  // type of the resulting function.
4388  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4389    DeclAccessPair Found;
4390    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4391                                                          ICS != 0, Found);
4392    if (Fn) {
4393      // Since we're performing this reference-initialization for
4394      // real, update the initializer with the resulting function.
4395      if (!ICS) {
4396        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4397          return true;
4398
4399        CheckAddressOfMemberAccess(Init, Found);
4400        Init = FixOverloadedFunctionReference(Init, Found, Fn);
4401      }
4402
4403      T2 = Fn->getType();
4404    }
4405  }
4406
4407  // Compute some basic properties of the types and the initializer.
4408  bool isRValRef = DeclType->isRValueReferenceType();
4409  bool DerivedToBase = false;
4410  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4411                                                  Init->isLvalue(Context);
4412  ReferenceCompareResult RefRelationship
4413    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4414
4415  // Most paths end in a failed conversion.
4416  if (ICS) {
4417    ICS->setBad(BadConversionSequence::no_conversion, Init, DeclType);
4418  }
4419
4420  // C++ [dcl.init.ref]p5:
4421  //   A reference to type "cv1 T1" is initialized by an expression
4422  //   of type "cv2 T2" as follows:
4423
4424  //     -- If the initializer expression
4425
4426  // Rvalue references cannot bind to lvalues (N2812).
4427  // There is absolutely no situation where they can. In particular, note that
4428  // this is ill-formed, even if B has a user-defined conversion to A&&:
4429  //   B b;
4430  //   A&& r = b;
4431  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4432    if (!ICS)
4433      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4434        << Init->getSourceRange();
4435    return true;
4436  }
4437
4438  bool BindsDirectly = false;
4439  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4440  //          reference-compatible with "cv2 T2," or
4441  //
4442  // Note that the bit-field check is skipped if we are just computing
4443  // the implicit conversion sequence (C++ [over.best.ics]p2).
4444  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4445      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4446    BindsDirectly = true;
4447
4448    if (ICS) {
4449      // C++ [over.ics.ref]p1:
4450      //   When a parameter of reference type binds directly (8.5.3)
4451      //   to an argument expression, the implicit conversion sequence
4452      //   is the identity conversion, unless the argument expression
4453      //   has a type that is a derived class of the parameter type,
4454      //   in which case the implicit conversion sequence is a
4455      //   derived-to-base Conversion (13.3.3.1).
4456      ICS->setStandard();
4457      ICS->Standard.First = ICK_Identity;
4458      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4459      ICS->Standard.Third = ICK_Identity;
4460      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4461      ICS->Standard.setToType(0, T2);
4462      ICS->Standard.setToType(1, T1);
4463      ICS->Standard.setToType(2, T1);
4464      ICS->Standard.ReferenceBinding = true;
4465      ICS->Standard.DirectBinding = true;
4466      ICS->Standard.RRefBinding = false;
4467      ICS->Standard.CopyConstructor = 0;
4468
4469      // Nothing more to do: the inaccessibility/ambiguity check for
4470      // derived-to-base conversions is suppressed when we're
4471      // computing the implicit conversion sequence (C++
4472      // [over.best.ics]p2).
4473      return false;
4474    } else {
4475      // Perform the conversion.
4476      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4477      if (DerivedToBase)
4478        CK = CastExpr::CK_DerivedToBase;
4479      else if(CheckExceptionSpecCompatibility(Init, T1))
4480        return true;
4481      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4482    }
4483  }
4484
4485  //       -- has a class type (i.e., T2 is a class type) and can be
4486  //          implicitly converted to an lvalue of type "cv3 T3,"
4487  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4488  //          92) (this conversion is selected by enumerating the
4489  //          applicable conversion functions (13.3.1.6) and choosing
4490  //          the best one through overload resolution (13.3)),
4491  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4492      !RequireCompleteType(DeclLoc, T2, 0)) {
4493    CXXRecordDecl *T2RecordDecl
4494      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4495
4496    OverloadCandidateSet CandidateSet(DeclLoc);
4497    const UnresolvedSetImpl *Conversions
4498      = T2RecordDecl->getVisibleConversionFunctions();
4499    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4500           E = Conversions->end(); I != E; ++I) {
4501      NamedDecl *D = *I;
4502      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4503      if (isa<UsingShadowDecl>(D))
4504        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4505
4506      FunctionTemplateDecl *ConvTemplate
4507        = dyn_cast<FunctionTemplateDecl>(D);
4508      CXXConversionDecl *Conv;
4509      if (ConvTemplate)
4510        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4511      else
4512        Conv = cast<CXXConversionDecl>(D);
4513
4514      // If the conversion function doesn't return a reference type,
4515      // it can't be considered for this conversion.
4516      if (Conv->getConversionType()->isLValueReferenceType() &&
4517          (AllowExplicit || !Conv->isExplicit())) {
4518        if (ConvTemplate)
4519          AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4520                                         Init, DeclType, CandidateSet);
4521        else
4522          AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4523                                 DeclType, CandidateSet);
4524      }
4525    }
4526
4527    OverloadCandidateSet::iterator Best;
4528    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4529    case OR_Success:
4530      // C++ [over.ics.ref]p1:
4531      //
4532      //   [...] If the parameter binds directly to the result of
4533      //   applying a conversion function to the argument
4534      //   expression, the implicit conversion sequence is a
4535      //   user-defined conversion sequence (13.3.3.1.2), with the
4536      //   second standard conversion sequence either an identity
4537      //   conversion or, if the conversion function returns an
4538      //   entity of a type that is a derived class of the parameter
4539      //   type, a derived-to-base Conversion.
4540      if (!Best->FinalConversion.DirectBinding)
4541        break;
4542
4543      // This is a direct binding.
4544      BindsDirectly = true;
4545
4546      if (ICS) {
4547        ICS->setUserDefined();
4548        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4549        ICS->UserDefined.After = Best->FinalConversion;
4550        ICS->UserDefined.ConversionFunction = Best->Function;
4551        ICS->UserDefined.EllipsisConversion = false;
4552        assert(ICS->UserDefined.After.ReferenceBinding &&
4553               ICS->UserDefined.After.DirectBinding &&
4554               "Expected a direct reference binding!");
4555        return false;
4556      } else {
4557        OwningExprResult InitConversion =
4558          BuildCXXCastArgument(DeclLoc, QualType(),
4559                               CastExpr::CK_UserDefinedConversion,
4560                               cast<CXXMethodDecl>(Best->Function),
4561                               Owned(Init));
4562        Init = InitConversion.takeAs<Expr>();
4563
4564        if (CheckExceptionSpecCompatibility(Init, T1))
4565          return true;
4566        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4567                          /*isLvalue=*/true);
4568      }
4569      break;
4570
4571    case OR_Ambiguous:
4572      if (ICS) {
4573        ICS->setAmbiguous();
4574        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4575             Cand != CandidateSet.end(); ++Cand)
4576          if (Cand->Viable)
4577            ICS->Ambiguous.addConversion(Cand->Function);
4578        break;
4579      }
4580      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4581            << Init->getSourceRange();
4582      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Init, 1);
4583      return true;
4584
4585    case OR_No_Viable_Function:
4586    case OR_Deleted:
4587      // There was no suitable conversion, or we found a deleted
4588      // conversion; continue with other checks.
4589      break;
4590    }
4591  }
4592
4593  if (BindsDirectly) {
4594    // C++ [dcl.init.ref]p4:
4595    //   [...] In all cases where the reference-related or
4596    //   reference-compatible relationship of two types is used to
4597    //   establish the validity of a reference binding, and T1 is a
4598    //   base class of T2, a program that necessitates such a binding
4599    //   is ill-formed if T1 is an inaccessible (clause 11) or
4600    //   ambiguous (10.2) base class of T2.
4601    //
4602    // Note that we only check this condition when we're allowed to
4603    // complain about errors, because we should not be checking for
4604    // ambiguity (or inaccessibility) unless the reference binding
4605    // actually happens.
4606    if (DerivedToBase)
4607      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4608                                          Init->getSourceRange(),
4609                                          IgnoreBaseAccess);
4610    else
4611      return false;
4612  }
4613
4614  //     -- Otherwise, the reference shall be to a non-volatile const
4615  //        type (i.e., cv1 shall be const), or the reference shall be an
4616  //        rvalue reference and the initializer expression shall be an rvalue.
4617  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4618    if (!ICS)
4619      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4620        << T1.isVolatileQualified()
4621        << T1 << int(InitLvalue != Expr::LV_Valid)
4622        << T2 << Init->getSourceRange();
4623    return true;
4624  }
4625
4626  //       -- If the initializer expression is an rvalue, with T2 a
4627  //          class type, and "cv1 T1" is reference-compatible with
4628  //          "cv2 T2," the reference is bound in one of the
4629  //          following ways (the choice is implementation-defined):
4630  //
4631  //          -- The reference is bound to the object represented by
4632  //             the rvalue (see 3.10) or to a sub-object within that
4633  //             object.
4634  //
4635  //          -- A temporary of type "cv1 T2" [sic] is created, and
4636  //             a constructor is called to copy the entire rvalue
4637  //             object into the temporary. The reference is bound to
4638  //             the temporary or to a sub-object within the
4639  //             temporary.
4640  //
4641  //          The constructor that would be used to make the copy
4642  //          shall be callable whether or not the copy is actually
4643  //          done.
4644  //
4645  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4646  // freedom, so we will always take the first option and never build
4647  // a temporary in this case. FIXME: We will, however, have to check
4648  // for the presence of a copy constructor in C++98/03 mode.
4649  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4650      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4651    if (ICS) {
4652      ICS->setStandard();
4653      ICS->Standard.First = ICK_Identity;
4654      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4655      ICS->Standard.Third = ICK_Identity;
4656      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4657      ICS->Standard.setToType(0, T2);
4658      ICS->Standard.setToType(1, T1);
4659      ICS->Standard.setToType(2, T1);
4660      ICS->Standard.ReferenceBinding = true;
4661      ICS->Standard.DirectBinding = false;
4662      ICS->Standard.RRefBinding = isRValRef;
4663      ICS->Standard.CopyConstructor = 0;
4664    } else {
4665      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4666      if (DerivedToBase)
4667        CK = CastExpr::CK_DerivedToBase;
4668      else if(CheckExceptionSpecCompatibility(Init, T1))
4669        return true;
4670      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4671    }
4672    return false;
4673  }
4674
4675  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4676  //          initialized from the initializer expression using the
4677  //          rules for a non-reference copy initialization (8.5). The
4678  //          reference is then bound to the temporary. If T1 is
4679  //          reference-related to T2, cv1 must be the same
4680  //          cv-qualification as, or greater cv-qualification than,
4681  //          cv2; otherwise, the program is ill-formed.
4682  if (RefRelationship == Ref_Related) {
4683    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4684    // we would be reference-compatible or reference-compatible with
4685    // added qualification. But that wasn't the case, so the reference
4686    // initialization fails.
4687    if (!ICS)
4688      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4689        << T1 << int(InitLvalue != Expr::LV_Valid)
4690        << T2 << Init->getSourceRange();
4691    return true;
4692  }
4693
4694  // If at least one of the types is a class type, the types are not
4695  // related, and we aren't allowed any user conversions, the
4696  // reference binding fails. This case is important for breaking
4697  // recursion, since TryImplicitConversion below will attempt to
4698  // create a temporary through the use of a copy constructor.
4699  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4700      (T1->isRecordType() || T2->isRecordType())) {
4701    if (!ICS)
4702      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4703        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4704    return true;
4705  }
4706
4707  // Actually try to convert the initializer to T1.
4708  if (ICS) {
4709    // C++ [over.ics.ref]p2:
4710    //
4711    //   When a parameter of reference type is not bound directly to
4712    //   an argument expression, the conversion sequence is the one
4713    //   required to convert the argument expression to the
4714    //   underlying type of the reference according to
4715    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4716    //   to copy-initializing a temporary of the underlying type with
4717    //   the argument expression. Any difference in top-level
4718    //   cv-qualification is subsumed by the initialization itself
4719    //   and does not constitute a conversion.
4720    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4721                                 /*AllowExplicit=*/false,
4722                                 /*ForceRValue=*/false,
4723                                 /*InOverloadResolution=*/false);
4724
4725    // Of course, that's still a reference binding.
4726    if (ICS->isStandard()) {
4727      ICS->Standard.ReferenceBinding = true;
4728      ICS->Standard.RRefBinding = isRValRef;
4729    } else if (ICS->isUserDefined()) {
4730      ICS->UserDefined.After.ReferenceBinding = true;
4731      ICS->UserDefined.After.RRefBinding = isRValRef;
4732    }
4733    return ICS->isBad();
4734  } else {
4735    ImplicitConversionSequence Conversions;
4736    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4737                                                   false, false,
4738                                                   Conversions);
4739    if (badConversion) {
4740      if (Conversions.isAmbiguous()) {
4741        Diag(DeclLoc,
4742             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4743        for (int j = Conversions.Ambiguous.conversions().size()-1;
4744             j >= 0; j--) {
4745          FunctionDecl *Func = Conversions.Ambiguous.conversions()[j];
4746          NoteOverloadCandidate(Func);
4747        }
4748      }
4749      else {
4750        if (isRValRef)
4751          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4752            << Init->getSourceRange();
4753        else
4754          Diag(DeclLoc, diag::err_invalid_initialization)
4755            << DeclType << Init->getType() << Init->getSourceRange();
4756      }
4757    }
4758    return badConversion;
4759  }
4760}
4761
4762static inline bool
4763CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4764                                       const FunctionDecl *FnDecl) {
4765  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4766  if (isa<NamespaceDecl>(DC)) {
4767    return SemaRef.Diag(FnDecl->getLocation(),
4768                        diag::err_operator_new_delete_declared_in_namespace)
4769      << FnDecl->getDeclName();
4770  }
4771
4772  if (isa<TranslationUnitDecl>(DC) &&
4773      FnDecl->getStorageClass() == FunctionDecl::Static) {
4774    return SemaRef.Diag(FnDecl->getLocation(),
4775                        diag::err_operator_new_delete_declared_static)
4776      << FnDecl->getDeclName();
4777  }
4778
4779  return false;
4780}
4781
4782static inline bool
4783CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4784                            CanQualType ExpectedResultType,
4785                            CanQualType ExpectedFirstParamType,
4786                            unsigned DependentParamTypeDiag,
4787                            unsigned InvalidParamTypeDiag) {
4788  QualType ResultType =
4789    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4790
4791  // Check that the result type is not dependent.
4792  if (ResultType->isDependentType())
4793    return SemaRef.Diag(FnDecl->getLocation(),
4794                        diag::err_operator_new_delete_dependent_result_type)
4795    << FnDecl->getDeclName() << ExpectedResultType;
4796
4797  // Check that the result type is what we expect.
4798  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4799    return SemaRef.Diag(FnDecl->getLocation(),
4800                        diag::err_operator_new_delete_invalid_result_type)
4801    << FnDecl->getDeclName() << ExpectedResultType;
4802
4803  // A function template must have at least 2 parameters.
4804  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4805    return SemaRef.Diag(FnDecl->getLocation(),
4806                      diag::err_operator_new_delete_template_too_few_parameters)
4807        << FnDecl->getDeclName();
4808
4809  // The function decl must have at least 1 parameter.
4810  if (FnDecl->getNumParams() == 0)
4811    return SemaRef.Diag(FnDecl->getLocation(),
4812                        diag::err_operator_new_delete_too_few_parameters)
4813      << FnDecl->getDeclName();
4814
4815  // Check the the first parameter type is not dependent.
4816  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4817  if (FirstParamType->isDependentType())
4818    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4819      << FnDecl->getDeclName() << ExpectedFirstParamType;
4820
4821  // Check that the first parameter type is what we expect.
4822  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4823      ExpectedFirstParamType)
4824    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4825    << FnDecl->getDeclName() << ExpectedFirstParamType;
4826
4827  return false;
4828}
4829
4830static bool
4831CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4832  // C++ [basic.stc.dynamic.allocation]p1:
4833  //   A program is ill-formed if an allocation function is declared in a
4834  //   namespace scope other than global scope or declared static in global
4835  //   scope.
4836  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4837    return true;
4838
4839  CanQualType SizeTy =
4840    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4841
4842  // C++ [basic.stc.dynamic.allocation]p1:
4843  //  The return type shall be void*. The first parameter shall have type
4844  //  std::size_t.
4845  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4846                                  SizeTy,
4847                                  diag::err_operator_new_dependent_param_type,
4848                                  diag::err_operator_new_param_type))
4849    return true;
4850
4851  // C++ [basic.stc.dynamic.allocation]p1:
4852  //  The first parameter shall not have an associated default argument.
4853  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4854    return SemaRef.Diag(FnDecl->getLocation(),
4855                        diag::err_operator_new_default_arg)
4856      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4857
4858  return false;
4859}
4860
4861static bool
4862CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4863  // C++ [basic.stc.dynamic.deallocation]p1:
4864  //   A program is ill-formed if deallocation functions are declared in a
4865  //   namespace scope other than global scope or declared static in global
4866  //   scope.
4867  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4868    return true;
4869
4870  // C++ [basic.stc.dynamic.deallocation]p2:
4871  //   Each deallocation function shall return void and its first parameter
4872  //   shall be void*.
4873  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4874                                  SemaRef.Context.VoidPtrTy,
4875                                 diag::err_operator_delete_dependent_param_type,
4876                                 diag::err_operator_delete_param_type))
4877    return true;
4878
4879  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4880  if (FirstParamType->isDependentType())
4881    return SemaRef.Diag(FnDecl->getLocation(),
4882                        diag::err_operator_delete_dependent_param_type)
4883    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4884
4885  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4886      SemaRef.Context.VoidPtrTy)
4887    return SemaRef.Diag(FnDecl->getLocation(),
4888                        diag::err_operator_delete_param_type)
4889      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4890
4891  return false;
4892}
4893
4894/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4895/// of this overloaded operator is well-formed. If so, returns false;
4896/// otherwise, emits appropriate diagnostics and returns true.
4897bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4898  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4899         "Expected an overloaded operator declaration");
4900
4901  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4902
4903  // C++ [over.oper]p5:
4904  //   The allocation and deallocation functions, operator new,
4905  //   operator new[], operator delete and operator delete[], are
4906  //   described completely in 3.7.3. The attributes and restrictions
4907  //   found in the rest of this subclause do not apply to them unless
4908  //   explicitly stated in 3.7.3.
4909  if (Op == OO_Delete || Op == OO_Array_Delete)
4910    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4911
4912  if (Op == OO_New || Op == OO_Array_New)
4913    return CheckOperatorNewDeclaration(*this, FnDecl);
4914
4915  // C++ [over.oper]p6:
4916  //   An operator function shall either be a non-static member
4917  //   function or be a non-member function and have at least one
4918  //   parameter whose type is a class, a reference to a class, an
4919  //   enumeration, or a reference to an enumeration.
4920  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4921    if (MethodDecl->isStatic())
4922      return Diag(FnDecl->getLocation(),
4923                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4924  } else {
4925    bool ClassOrEnumParam = false;
4926    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4927                                   ParamEnd = FnDecl->param_end();
4928         Param != ParamEnd; ++Param) {
4929      QualType ParamType = (*Param)->getType().getNonReferenceType();
4930      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4931          ParamType->isEnumeralType()) {
4932        ClassOrEnumParam = true;
4933        break;
4934      }
4935    }
4936
4937    if (!ClassOrEnumParam)
4938      return Diag(FnDecl->getLocation(),
4939                  diag::err_operator_overload_needs_class_or_enum)
4940        << FnDecl->getDeclName();
4941  }
4942
4943  // C++ [over.oper]p8:
4944  //   An operator function cannot have default arguments (8.3.6),
4945  //   except where explicitly stated below.
4946  //
4947  // Only the function-call operator allows default arguments
4948  // (C++ [over.call]p1).
4949  if (Op != OO_Call) {
4950    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4951         Param != FnDecl->param_end(); ++Param) {
4952      if ((*Param)->hasDefaultArg())
4953        return Diag((*Param)->getLocation(),
4954                    diag::err_operator_overload_default_arg)
4955          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4956    }
4957  }
4958
4959  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4960    { false, false, false }
4961#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4962    , { Unary, Binary, MemberOnly }
4963#include "clang/Basic/OperatorKinds.def"
4964  };
4965
4966  bool CanBeUnaryOperator = OperatorUses[Op][0];
4967  bool CanBeBinaryOperator = OperatorUses[Op][1];
4968  bool MustBeMemberOperator = OperatorUses[Op][2];
4969
4970  // C++ [over.oper]p8:
4971  //   [...] Operator functions cannot have more or fewer parameters
4972  //   than the number required for the corresponding operator, as
4973  //   described in the rest of this subclause.
4974  unsigned NumParams = FnDecl->getNumParams()
4975                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4976  if (Op != OO_Call &&
4977      ((NumParams == 1 && !CanBeUnaryOperator) ||
4978       (NumParams == 2 && !CanBeBinaryOperator) ||
4979       (NumParams < 1) || (NumParams > 2))) {
4980    // We have the wrong number of parameters.
4981    unsigned ErrorKind;
4982    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4983      ErrorKind = 2;  // 2 -> unary or binary.
4984    } else if (CanBeUnaryOperator) {
4985      ErrorKind = 0;  // 0 -> unary
4986    } else {
4987      assert(CanBeBinaryOperator &&
4988             "All non-call overloaded operators are unary or binary!");
4989      ErrorKind = 1;  // 1 -> binary
4990    }
4991
4992    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4993      << FnDecl->getDeclName() << NumParams << ErrorKind;
4994  }
4995
4996  // Overloaded operators other than operator() cannot be variadic.
4997  if (Op != OO_Call &&
4998      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4999    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5000      << FnDecl->getDeclName();
5001  }
5002
5003  // Some operators must be non-static member functions.
5004  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5005    return Diag(FnDecl->getLocation(),
5006                diag::err_operator_overload_must_be_member)
5007      << FnDecl->getDeclName();
5008  }
5009
5010  // C++ [over.inc]p1:
5011  //   The user-defined function called operator++ implements the
5012  //   prefix and postfix ++ operator. If this function is a member
5013  //   function with no parameters, or a non-member function with one
5014  //   parameter of class or enumeration type, it defines the prefix
5015  //   increment operator ++ for objects of that type. If the function
5016  //   is a member function with one parameter (which shall be of type
5017  //   int) or a non-member function with two parameters (the second
5018  //   of which shall be of type int), it defines the postfix
5019  //   increment operator ++ for objects of that type.
5020  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5021    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5022    bool ParamIsInt = false;
5023    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5024      ParamIsInt = BT->getKind() == BuiltinType::Int;
5025
5026    if (!ParamIsInt)
5027      return Diag(LastParam->getLocation(),
5028                  diag::err_operator_overload_post_incdec_must_be_int)
5029        << LastParam->getType() << (Op == OO_MinusMinus);
5030  }
5031
5032  // Notify the class if it got an assignment operator.
5033  if (Op == OO_Equal) {
5034    // Would have returned earlier otherwise.
5035    assert(isa<CXXMethodDecl>(FnDecl) &&
5036      "Overloaded = not member, but not filtered.");
5037    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5038    Method->getParent()->addedAssignmentOperator(Context, Method);
5039  }
5040
5041  return false;
5042}
5043
5044/// CheckLiteralOperatorDeclaration - Check whether the declaration
5045/// of this literal operator function is well-formed. If so, returns
5046/// false; otherwise, emits appropriate diagnostics and returns true.
5047bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5048  DeclContext *DC = FnDecl->getDeclContext();
5049  Decl::Kind Kind = DC->getDeclKind();
5050  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5051      Kind != Decl::LinkageSpec) {
5052    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5053      << FnDecl->getDeclName();
5054    return true;
5055  }
5056
5057  bool Valid = false;
5058
5059  // FIXME: Check for the one valid template signature
5060  // template <char...> type operator "" name();
5061
5062  if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
5063    // Check the first parameter
5064    QualType T = (*Param)->getType();
5065
5066    // unsigned long long int and long double are allowed, but only
5067    // alone.
5068    // We also allow any character type; their omission seems to be a bug
5069    // in n3000
5070    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5071        Context.hasSameType(T, Context.LongDoubleTy) ||
5072        Context.hasSameType(T, Context.CharTy) ||
5073        Context.hasSameType(T, Context.WCharTy) ||
5074        Context.hasSameType(T, Context.Char16Ty) ||
5075        Context.hasSameType(T, Context.Char32Ty)) {
5076      if (++Param == FnDecl->param_end())
5077        Valid = true;
5078      goto FinishedParams;
5079    }
5080
5081    // Otherwise it must be a pointer to const; let's strip those.
5082    const PointerType *PT = T->getAs<PointerType>();
5083    if (!PT)
5084      goto FinishedParams;
5085    T = PT->getPointeeType();
5086    if (!T.isConstQualified())
5087      goto FinishedParams;
5088    T = T.getUnqualifiedType();
5089
5090    // Move on to the second parameter;
5091    ++Param;
5092
5093    // If there is no second parameter, the first must be a const char *
5094    if (Param == FnDecl->param_end()) {
5095      if (Context.hasSameType(T, Context.CharTy))
5096        Valid = true;
5097      goto FinishedParams;
5098    }
5099
5100    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5101    // are allowed as the first parameter to a two-parameter function
5102    if (!(Context.hasSameType(T, Context.CharTy) ||
5103          Context.hasSameType(T, Context.WCharTy) ||
5104          Context.hasSameType(T, Context.Char16Ty) ||
5105          Context.hasSameType(T, Context.Char32Ty)))
5106      goto FinishedParams;
5107
5108    // The second and final parameter must be an std::size_t
5109    T = (*Param)->getType().getUnqualifiedType();
5110    if (Context.hasSameType(T, Context.getSizeType()) &&
5111        ++Param == FnDecl->param_end())
5112      Valid = true;
5113  }
5114
5115  // FIXME: This diagnostic is absolutely terrible.
5116FinishedParams:
5117  if (!Valid) {
5118    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5119      << FnDecl->getDeclName();
5120    return true;
5121  }
5122
5123  return false;
5124}
5125
5126/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5127/// linkage specification, including the language and (if present)
5128/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5129/// the location of the language string literal, which is provided
5130/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5131/// the '{' brace. Otherwise, this linkage specification does not
5132/// have any braces.
5133Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5134                                                     SourceLocation ExternLoc,
5135                                                     SourceLocation LangLoc,
5136                                                     const char *Lang,
5137                                                     unsigned StrSize,
5138                                                     SourceLocation LBraceLoc) {
5139  LinkageSpecDecl::LanguageIDs Language;
5140  if (strncmp(Lang, "\"C\"", StrSize) == 0)
5141    Language = LinkageSpecDecl::lang_c;
5142  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
5143    Language = LinkageSpecDecl::lang_cxx;
5144  else {
5145    Diag(LangLoc, diag::err_bad_language);
5146    return DeclPtrTy();
5147  }
5148
5149  // FIXME: Add all the various semantics of linkage specifications
5150
5151  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5152                                               LangLoc, Language,
5153                                               LBraceLoc.isValid());
5154  CurContext->addDecl(D);
5155  PushDeclContext(S, D);
5156  return DeclPtrTy::make(D);
5157}
5158
5159/// ActOnFinishLinkageSpecification - Completely the definition of
5160/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5161/// valid, it's the position of the closing '}' brace in a linkage
5162/// specification that uses braces.
5163Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5164                                                      DeclPtrTy LinkageSpec,
5165                                                      SourceLocation RBraceLoc) {
5166  if (LinkageSpec)
5167    PopDeclContext();
5168  return LinkageSpec;
5169}
5170
5171/// \brief Perform semantic analysis for the variable declaration that
5172/// occurs within a C++ catch clause, returning the newly-created
5173/// variable.
5174VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5175                                         TypeSourceInfo *TInfo,
5176                                         IdentifierInfo *Name,
5177                                         SourceLocation Loc,
5178                                         SourceRange Range) {
5179  bool Invalid = false;
5180
5181  // Arrays and functions decay.
5182  if (ExDeclType->isArrayType())
5183    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5184  else if (ExDeclType->isFunctionType())
5185    ExDeclType = Context.getPointerType(ExDeclType);
5186
5187  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5188  // The exception-declaration shall not denote a pointer or reference to an
5189  // incomplete type, other than [cv] void*.
5190  // N2844 forbids rvalue references.
5191  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5192    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5193    Invalid = true;
5194  }
5195
5196  // GCC allows catching pointers and references to incomplete types
5197  // as an extension; so do we, but we warn by default.
5198
5199  QualType BaseType = ExDeclType;
5200  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5201  unsigned DK = diag::err_catch_incomplete;
5202  bool IncompleteCatchIsInvalid = true;
5203  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5204    BaseType = Ptr->getPointeeType();
5205    Mode = 1;
5206    DK = diag::ext_catch_incomplete_ptr;
5207    IncompleteCatchIsInvalid = false;
5208  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5209    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5210    BaseType = Ref->getPointeeType();
5211    Mode = 2;
5212    DK = diag::ext_catch_incomplete_ref;
5213    IncompleteCatchIsInvalid = false;
5214  }
5215  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5216      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5217      IncompleteCatchIsInvalid)
5218    Invalid = true;
5219
5220  if (!Invalid && !ExDeclType->isDependentType() &&
5221      RequireNonAbstractType(Loc, ExDeclType,
5222                             diag::err_abstract_type_in_decl,
5223                             AbstractVariableType))
5224    Invalid = true;
5225
5226  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5227                                    Name, ExDeclType, TInfo, VarDecl::None);
5228
5229  if (!Invalid) {
5230    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5231      // C++ [except.handle]p16:
5232      //   The object declared in an exception-declaration or, if the
5233      //   exception-declaration does not specify a name, a temporary (12.2) is
5234      //   copy-initialized (8.5) from the exception object. [...]
5235      //   The object is destroyed when the handler exits, after the destruction
5236      //   of any automatic objects initialized within the handler.
5237      //
5238      // We just pretend to initialize the object with itself, then make sure
5239      // it can be destroyed later.
5240      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5241      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5242                                            Loc, ExDeclType, 0);
5243      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5244                                                               SourceLocation());
5245      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5246      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5247                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5248      if (Result.isInvalid())
5249        Invalid = true;
5250      else
5251        FinalizeVarWithDestructor(ExDecl, RecordTy);
5252    }
5253  }
5254
5255  if (Invalid)
5256    ExDecl->setInvalidDecl();
5257
5258  return ExDecl;
5259}
5260
5261/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5262/// handler.
5263Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5264  TypeSourceInfo *TInfo = 0;
5265  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5266
5267  bool Invalid = D.isInvalidType();
5268  IdentifierInfo *II = D.getIdentifier();
5269  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5270    // The scope should be freshly made just for us. There is just no way
5271    // it contains any previous declaration.
5272    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5273    if (PrevDecl->isTemplateParameter()) {
5274      // Maybe we will complain about the shadowed template parameter.
5275      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5276    }
5277  }
5278
5279  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5280    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5281      << D.getCXXScopeSpec().getRange();
5282    Invalid = true;
5283  }
5284
5285  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5286                                              D.getIdentifier(),
5287                                              D.getIdentifierLoc(),
5288                                            D.getDeclSpec().getSourceRange());
5289
5290  if (Invalid)
5291    ExDecl->setInvalidDecl();
5292
5293  // Add the exception declaration into this scope.
5294  if (II)
5295    PushOnScopeChains(ExDecl, S);
5296  else
5297    CurContext->addDecl(ExDecl);
5298
5299  ProcessDeclAttributes(S, ExDecl, D);
5300  return DeclPtrTy::make(ExDecl);
5301}
5302
5303Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5304                                                   ExprArg assertexpr,
5305                                                   ExprArg assertmessageexpr) {
5306  Expr *AssertExpr = (Expr *)assertexpr.get();
5307  StringLiteral *AssertMessage =
5308    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5309
5310  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5311    llvm::APSInt Value(32);
5312    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5313      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5314        AssertExpr->getSourceRange();
5315      return DeclPtrTy();
5316    }
5317
5318    if (Value == 0) {
5319      Diag(AssertLoc, diag::err_static_assert_failed)
5320        << AssertMessage->getString() << AssertExpr->getSourceRange();
5321    }
5322  }
5323
5324  assertexpr.release();
5325  assertmessageexpr.release();
5326  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5327                                        AssertExpr, AssertMessage);
5328
5329  CurContext->addDecl(Decl);
5330  return DeclPtrTy::make(Decl);
5331}
5332
5333/// Handle a friend type declaration.  This works in tandem with
5334/// ActOnTag.
5335///
5336/// Notes on friend class templates:
5337///
5338/// We generally treat friend class declarations as if they were
5339/// declaring a class.  So, for example, the elaborated type specifier
5340/// in a friend declaration is required to obey the restrictions of a
5341/// class-head (i.e. no typedefs in the scope chain), template
5342/// parameters are required to match up with simple template-ids, &c.
5343/// However, unlike when declaring a template specialization, it's
5344/// okay to refer to a template specialization without an empty
5345/// template parameter declaration, e.g.
5346///   friend class A<T>::B<unsigned>;
5347/// We permit this as a special case; if there are any template
5348/// parameters present at all, require proper matching, i.e.
5349///   template <> template <class T> friend class A<int>::B;
5350Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5351                                          MultiTemplateParamsArg TempParams) {
5352  SourceLocation Loc = DS.getSourceRange().getBegin();
5353
5354  assert(DS.isFriendSpecified());
5355  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5356
5357  // Try to convert the decl specifier to a type.  This works for
5358  // friend templates because ActOnTag never produces a ClassTemplateDecl
5359  // for a TUK_Friend.
5360  Declarator TheDeclarator(DS, Declarator::MemberContext);
5361  TypeSourceInfo *TSI;
5362  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
5363  if (TheDeclarator.isInvalidType())
5364    return DeclPtrTy();
5365
5366  // This is definitely an error in C++98.  It's probably meant to
5367  // be forbidden in C++0x, too, but the specification is just
5368  // poorly written.
5369  //
5370  // The problem is with declarations like the following:
5371  //   template <T> friend A<T>::foo;
5372  // where deciding whether a class C is a friend or not now hinges
5373  // on whether there exists an instantiation of A that causes
5374  // 'foo' to equal C.  There are restrictions on class-heads
5375  // (which we declare (by fiat) elaborated friend declarations to
5376  // be) that makes this tractable.
5377  //
5378  // FIXME: handle "template <> friend class A<T>;", which
5379  // is possibly well-formed?  Who even knows?
5380  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5381    Diag(Loc, diag::err_tagless_friend_type_template)
5382      << DS.getSourceRange();
5383    return DeclPtrTy();
5384  }
5385
5386  // C++ [class.friend]p2:
5387  //   An elaborated-type-specifier shall be used in a friend declaration
5388  //   for a class.*
5389  //   * The class-key of the elaborated-type-specifier is required.
5390  // This is one of the rare places in Clang where it's legitimate to
5391  // ask about the "spelling" of the type.
5392  if (!getLangOptions().CPlusPlus0x && !T->isElaboratedTypeSpecifier()) {
5393    // If we evaluated the type to a record type, suggest putting
5394    // a tag in front.
5395    if (const RecordType *RT = T->getAs<RecordType>()) {
5396      RecordDecl *RD = RT->getDecl();
5397
5398      std::string InsertionText = std::string(" ") + RD->getKindName();
5399
5400      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
5401        << (unsigned) RD->getTagKind()
5402        << T
5403        << SourceRange(DS.getFriendSpecLoc())
5404        << FixItHint::CreateInsertion(DS.getTypeSpecTypeLoc(), InsertionText);
5405      return DeclPtrTy();
5406    }else {
5407      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
5408          << DS.getSourceRange();
5409      return DeclPtrTy();
5410    }
5411  }
5412
5413  // Enum types cannot be friends.
5414  if (T->getAs<EnumType>()) {
5415    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
5416      << SourceRange(DS.getFriendSpecLoc());
5417    return DeclPtrTy();
5418  }
5419
5420  // C++98 [class.friend]p1: A friend of a class is a function
5421  //   or class that is not a member of the class . . .
5422  // This is fixed in DR77, which just barely didn't make the C++03
5423  // deadline.  It's also a very silly restriction that seriously
5424  // affects inner classes and which nobody else seems to implement;
5425  // thus we never diagnose it, not even in -pedantic.
5426  //
5427  // But note that we could warn about it: it's always useless to
5428  // friend one of your own members (it's not, however, worthless to
5429  // friend a member of an arbitrary specialization of your template).
5430
5431  Decl *D;
5432  if (TempParams.size())
5433    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5434                                   TempParams.size(),
5435                                 (TemplateParameterList**) TempParams.release(),
5436                                   TSI,
5437                                   DS.getFriendSpecLoc());
5438  else
5439    D = FriendDecl::Create(Context, CurContext, Loc, TSI,
5440                           DS.getFriendSpecLoc());
5441  D->setAccess(AS_public);
5442  CurContext->addDecl(D);
5443
5444  return DeclPtrTy::make(D);
5445}
5446
5447Sema::DeclPtrTy
5448Sema::ActOnFriendFunctionDecl(Scope *S,
5449                              Declarator &D,
5450                              bool IsDefinition,
5451                              MultiTemplateParamsArg TemplateParams) {
5452  const DeclSpec &DS = D.getDeclSpec();
5453
5454  assert(DS.isFriendSpecified());
5455  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5456
5457  SourceLocation Loc = D.getIdentifierLoc();
5458  TypeSourceInfo *TInfo = 0;
5459  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5460
5461  // C++ [class.friend]p1
5462  //   A friend of a class is a function or class....
5463  // Note that this sees through typedefs, which is intended.
5464  // It *doesn't* see through dependent types, which is correct
5465  // according to [temp.arg.type]p3:
5466  //   If a declaration acquires a function type through a
5467  //   type dependent on a template-parameter and this causes
5468  //   a declaration that does not use the syntactic form of a
5469  //   function declarator to have a function type, the program
5470  //   is ill-formed.
5471  if (!T->isFunctionType()) {
5472    Diag(Loc, diag::err_unexpected_friend);
5473
5474    // It might be worthwhile to try to recover by creating an
5475    // appropriate declaration.
5476    return DeclPtrTy();
5477  }
5478
5479  // C++ [namespace.memdef]p3
5480  //  - If a friend declaration in a non-local class first declares a
5481  //    class or function, the friend class or function is a member
5482  //    of the innermost enclosing namespace.
5483  //  - The name of the friend is not found by simple name lookup
5484  //    until a matching declaration is provided in that namespace
5485  //    scope (either before or after the class declaration granting
5486  //    friendship).
5487  //  - If a friend function is called, its name may be found by the
5488  //    name lookup that considers functions from namespaces and
5489  //    classes associated with the types of the function arguments.
5490  //  - When looking for a prior declaration of a class or a function
5491  //    declared as a friend, scopes outside the innermost enclosing
5492  //    namespace scope are not considered.
5493
5494  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5495  DeclarationName Name = GetNameForDeclarator(D);
5496  assert(Name);
5497
5498  // The context we found the declaration in, or in which we should
5499  // create the declaration.
5500  DeclContext *DC;
5501
5502  // FIXME: handle local classes
5503
5504  // Recover from invalid scope qualifiers as if they just weren't there.
5505  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5506                        ForRedeclaration);
5507  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5508    // FIXME: RequireCompleteDeclContext
5509    DC = computeDeclContext(ScopeQual);
5510
5511    // FIXME: handle dependent contexts
5512    if (!DC) return DeclPtrTy();
5513
5514    LookupQualifiedName(Previous, DC);
5515
5516    // If searching in that context implicitly found a declaration in
5517    // a different context, treat it like it wasn't found at all.
5518    // TODO: better diagnostics for this case.  Suggesting the right
5519    // qualified scope would be nice...
5520    // FIXME: getRepresentativeDecl() is not right here at all
5521    if (Previous.empty() ||
5522        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5523      D.setInvalidType();
5524      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5525      return DeclPtrTy();
5526    }
5527
5528    // C++ [class.friend]p1: A friend of a class is a function or
5529    //   class that is not a member of the class . . .
5530    if (DC->Equals(CurContext))
5531      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5532
5533  // Otherwise walk out to the nearest namespace scope looking for matches.
5534  } else {
5535    // TODO: handle local class contexts.
5536
5537    DC = CurContext;
5538    while (true) {
5539      // Skip class contexts.  If someone can cite chapter and verse
5540      // for this behavior, that would be nice --- it's what GCC and
5541      // EDG do, and it seems like a reasonable intent, but the spec
5542      // really only says that checks for unqualified existing
5543      // declarations should stop at the nearest enclosing namespace,
5544      // not that they should only consider the nearest enclosing
5545      // namespace.
5546      while (DC->isRecord())
5547        DC = DC->getParent();
5548
5549      LookupQualifiedName(Previous, DC);
5550
5551      // TODO: decide what we think about using declarations.
5552      if (!Previous.empty())
5553        break;
5554
5555      if (DC->isFileContext()) break;
5556      DC = DC->getParent();
5557    }
5558
5559    // C++ [class.friend]p1: A friend of a class is a function or
5560    //   class that is not a member of the class . . .
5561    // C++0x changes this for both friend types and functions.
5562    // Most C++ 98 compilers do seem to give an error here, so
5563    // we do, too.
5564    if (!Previous.empty() && DC->Equals(CurContext)
5565        && !getLangOptions().CPlusPlus0x)
5566      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5567  }
5568
5569  if (DC->isFileContext()) {
5570    // This implies that it has to be an operator or function.
5571    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5572        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5573        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5574      Diag(Loc, diag::err_introducing_special_friend) <<
5575        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5576         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5577      return DeclPtrTy();
5578    }
5579  }
5580
5581  bool Redeclaration = false;
5582  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5583                                          move(TemplateParams),
5584                                          IsDefinition,
5585                                          Redeclaration);
5586  if (!ND) return DeclPtrTy();
5587
5588  assert(ND->getDeclContext() == DC);
5589  assert(ND->getLexicalDeclContext() == CurContext);
5590
5591  // Add the function declaration to the appropriate lookup tables,
5592  // adjusting the redeclarations list as necessary.  We don't
5593  // want to do this yet if the friending class is dependent.
5594  //
5595  // Also update the scope-based lookup if the target context's
5596  // lookup context is in lexical scope.
5597  if (!CurContext->isDependentContext()) {
5598    DC = DC->getLookupContext();
5599    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5600    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5601      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5602  }
5603
5604  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5605                                       D.getIdentifierLoc(), ND,
5606                                       DS.getFriendSpecLoc());
5607  FrD->setAccess(AS_public);
5608  CurContext->addDecl(FrD);
5609
5610  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId)
5611    FrD->setSpecialization(true);
5612
5613  return DeclPtrTy::make(ND);
5614}
5615
5616void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5617  AdjustDeclIfTemplate(dcl);
5618
5619  Decl *Dcl = dcl.getAs<Decl>();
5620  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5621  if (!Fn) {
5622    Diag(DelLoc, diag::err_deleted_non_function);
5623    return;
5624  }
5625  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5626    Diag(DelLoc, diag::err_deleted_decl_not_first);
5627    Diag(Prev->getLocation(), diag::note_previous_declaration);
5628    // If the declaration wasn't the first, we delete the function anyway for
5629    // recovery.
5630  }
5631  Fn->setDeleted();
5632}
5633
5634static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5635  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5636       ++CI) {
5637    Stmt *SubStmt = *CI;
5638    if (!SubStmt)
5639      continue;
5640    if (isa<ReturnStmt>(SubStmt))
5641      Self.Diag(SubStmt->getSourceRange().getBegin(),
5642           diag::err_return_in_constructor_handler);
5643    if (!isa<Expr>(SubStmt))
5644      SearchForReturnInStmt(Self, SubStmt);
5645  }
5646}
5647
5648void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5649  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5650    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5651    SearchForReturnInStmt(*this, Handler);
5652  }
5653}
5654
5655bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5656                                             const CXXMethodDecl *Old) {
5657  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5658  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5659
5660  if (Context.hasSameType(NewTy, OldTy) ||
5661      NewTy->isDependentType() || OldTy->isDependentType())
5662    return false;
5663
5664  // Check if the return types are covariant
5665  QualType NewClassTy, OldClassTy;
5666
5667  /// Both types must be pointers or references to classes.
5668  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5669    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5670      NewClassTy = NewPT->getPointeeType();
5671      OldClassTy = OldPT->getPointeeType();
5672    }
5673  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5674    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5675      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5676        NewClassTy = NewRT->getPointeeType();
5677        OldClassTy = OldRT->getPointeeType();
5678      }
5679    }
5680  }
5681
5682  // The return types aren't either both pointers or references to a class type.
5683  if (NewClassTy.isNull()) {
5684    Diag(New->getLocation(),
5685         diag::err_different_return_type_for_overriding_virtual_function)
5686      << New->getDeclName() << NewTy << OldTy;
5687    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5688
5689    return true;
5690  }
5691
5692  // C++ [class.virtual]p6:
5693  //   If the return type of D::f differs from the return type of B::f, the
5694  //   class type in the return type of D::f shall be complete at the point of
5695  //   declaration of D::f or shall be the class type D.
5696  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5697    if (!RT->isBeingDefined() &&
5698        RequireCompleteType(New->getLocation(), NewClassTy,
5699                            PDiag(diag::err_covariant_return_incomplete)
5700                              << New->getDeclName()))
5701    return true;
5702  }
5703
5704  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5705    // Check if the new class derives from the old class.
5706    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5707      Diag(New->getLocation(),
5708           diag::err_covariant_return_not_derived)
5709      << New->getDeclName() << NewTy << OldTy;
5710      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5711      return true;
5712    }
5713
5714    // Check if we the conversion from derived to base is valid.
5715    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5716                      diag::err_covariant_return_inaccessible_base,
5717                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5718                      // FIXME: Should this point to the return type?
5719                      New->getLocation(), SourceRange(), New->getDeclName())) {
5720      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5721      return true;
5722    }
5723  }
5724
5725  // The qualifiers of the return types must be the same.
5726  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5727    Diag(New->getLocation(),
5728         diag::err_covariant_return_type_different_qualifications)
5729    << New->getDeclName() << NewTy << OldTy;
5730    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5731    return true;
5732  };
5733
5734
5735  // The new class type must have the same or less qualifiers as the old type.
5736  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5737    Diag(New->getLocation(),
5738         diag::err_covariant_return_type_class_type_more_qualified)
5739    << New->getDeclName() << NewTy << OldTy;
5740    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5741    return true;
5742  };
5743
5744  return false;
5745}
5746
5747bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5748                                             const CXXMethodDecl *Old)
5749{
5750  if (Old->hasAttr<FinalAttr>()) {
5751    Diag(New->getLocation(), diag::err_final_function_overridden)
5752      << New->getDeclName();
5753    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5754    return true;
5755  }
5756
5757  return false;
5758}
5759
5760/// \brief Mark the given method pure.
5761///
5762/// \param Method the method to be marked pure.
5763///
5764/// \param InitRange the source range that covers the "0" initializer.
5765bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5766  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5767    Method->setPure();
5768
5769    // A class is abstract if at least one function is pure virtual.
5770    Method->getParent()->setAbstract(true);
5771    return false;
5772  }
5773
5774  if (!Method->isInvalidDecl())
5775    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5776      << Method->getDeclName() << InitRange;
5777  return true;
5778}
5779
5780/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5781/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5782/// is a fresh scope pushed for just this purpose.
5783///
5784/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5785/// static data member of class X, names should be looked up in the scope of
5786/// class X.
5787void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5788  // If there is no declaration, there was an error parsing it.
5789  Decl *D = Dcl.getAs<Decl>();
5790  if (D == 0) return;
5791
5792  // We should only get called for declarations with scope specifiers, like:
5793  //   int foo::bar;
5794  assert(D->isOutOfLine());
5795  EnterDeclaratorContext(S, D->getDeclContext());
5796}
5797
5798/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5799/// initializer for the out-of-line declaration 'Dcl'.
5800void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5801  // If there is no declaration, there was an error parsing it.
5802  Decl *D = Dcl.getAs<Decl>();
5803  if (D == 0) return;
5804
5805  assert(D->isOutOfLine());
5806  ExitDeclaratorContext(S);
5807}
5808
5809/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5810/// C++ if/switch/while/for statement.
5811/// e.g: "if (int x = f()) {...}"
5812Action::DeclResult
5813Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5814  // C++ 6.4p2:
5815  // The declarator shall not specify a function or an array.
5816  // The type-specifier-seq shall not contain typedef and shall not declare a
5817  // new class or enumeration.
5818  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5819         "Parser allowed 'typedef' as storage class of condition decl.");
5820
5821  TypeSourceInfo *TInfo = 0;
5822  TagDecl *OwnedTag = 0;
5823  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5824
5825  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5826                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5827                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5828    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5829      << D.getSourceRange();
5830    return DeclResult();
5831  } else if (OwnedTag && OwnedTag->isDefinition()) {
5832    // The type-specifier-seq shall not declare a new class or enumeration.
5833    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5834  }
5835
5836  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5837  if (!Dcl)
5838    return DeclResult();
5839
5840  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5841  VD->setDeclaredInCondition(true);
5842  return Dcl;
5843}
5844
5845static bool needsVtable(CXXMethodDecl *MD, ASTContext &Context) {
5846  // Ignore dependent types.
5847  if (MD->isDependentContext())
5848    return false;
5849
5850  // Ignore declarations that are not definitions.
5851  if (!MD->isThisDeclarationADefinition())
5852    return false;
5853
5854  CXXRecordDecl *RD = MD->getParent();
5855
5856  // Ignore classes without a vtable.
5857  if (!RD->isDynamicClass())
5858    return false;
5859
5860  switch (MD->getParent()->getTemplateSpecializationKind()) {
5861  case TSK_Undeclared:
5862  case TSK_ExplicitSpecialization:
5863    // Classes that aren't instantiations of templates don't need their
5864    // virtual methods marked until we see the definition of the key
5865    // function.
5866    break;
5867
5868  case TSK_ImplicitInstantiation:
5869    // This is a constructor of a class template; mark all of the virtual
5870    // members as referenced to ensure that they get instantiatied.
5871    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
5872      return true;
5873    break;
5874
5875  case TSK_ExplicitInstantiationDeclaration:
5876    return false;
5877
5878  case TSK_ExplicitInstantiationDefinition:
5879    // This is method of a explicit instantiation; mark all of the virtual
5880    // members as referenced to ensure that they get instantiatied.
5881    return true;
5882  }
5883
5884  // Consider only out-of-line definitions of member functions. When we see
5885  // an inline definition, it's too early to compute the key function.
5886  if (!MD->isOutOfLine())
5887    return false;
5888
5889  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5890
5891  // If there is no key function, we will need a copy of the vtable.
5892  if (!KeyFunction)
5893    return true;
5894
5895  // If this is the key function, we need to mark virtual members.
5896  if (KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
5897    return true;
5898
5899  return false;
5900}
5901
5902void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5903                                             CXXMethodDecl *MD) {
5904  CXXRecordDecl *RD = MD->getParent();
5905
5906  // We will need to mark all of the virtual members as referenced to build the
5907  // vtable.
5908  if (!needsVtable(MD, Context))
5909    return;
5910
5911  TemplateSpecializationKind kind = RD->getTemplateSpecializationKind();
5912  if (kind == TSK_ImplicitInstantiation)
5913    ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5914  else
5915    MarkVirtualMembersReferenced(Loc, RD);
5916}
5917
5918bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5919  if (ClassesWithUnmarkedVirtualMembers.empty())
5920    return false;
5921
5922  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5923    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5924    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5925    ClassesWithUnmarkedVirtualMembers.pop_back();
5926    MarkVirtualMembersReferenced(Loc, RD);
5927  }
5928
5929  return true;
5930}
5931
5932void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
5933                                        const CXXRecordDecl *RD) {
5934  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5935       e = RD->method_end(); i != e; ++i) {
5936    CXXMethodDecl *MD = *i;
5937
5938    // C++ [basic.def.odr]p2:
5939    //   [...] A virtual member function is used if it is not pure. [...]
5940    if (MD->isVirtual() && !MD->isPure())
5941      MarkDeclarationReferenced(Loc, MD);
5942  }
5943
5944  // Only classes that have virtual bases need a VTT.
5945  if (RD->getNumVBases() == 0)
5946    return;
5947
5948  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
5949           e = RD->bases_end(); i != e; ++i) {
5950    const CXXRecordDecl *Base =
5951        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
5952    if (i->isVirtual())
5953      continue;
5954    if (Base->getNumVBases() == 0)
5955      continue;
5956    MarkVirtualMembersReferenced(Loc, Base);
5957  }
5958}
5959