SemaDeclCXX.cpp revision 97c6abfe83841772974aedb2ec59f17b190bffc0
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_iterator I = Node->child_begin(),
67         E = Node->child_end(); I != E; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isBlockVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                            MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
140
141  // Okay: add the default argument to the parameter
142  Param->setDefaultArg(Arg);
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
152                                Expr *DefaultArg) {
153  if (!param || !DefaultArg)
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param);
157  UnparsedDefaultArgLocs.erase(Param);
158
159  // Default arguments are only permitted in C++
160  if (!getLangOptions().CPlusPlus) {
161    Diag(EqualLoc, diag::err_param_default_argument)
162      << DefaultArg->getSourceRange();
163    Param->setInvalidDecl();
164    return;
165  }
166
167  // Check that the default argument is well-formed
168  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
169  if (DefaultArgChecker.Visit(DefaultArg)) {
170    Param->setInvalidDecl();
171    return;
172  }
173
174  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
175}
176
177/// ActOnParamUnparsedDefaultArgument - We've seen a default
178/// argument for a function parameter, but we can't parse it yet
179/// because we're inside a class definition. Note that this default
180/// argument will be parsed later.
181void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
182                                             SourceLocation EqualLoc,
183                                             SourceLocation ArgLoc) {
184  if (!param)
185    return;
186
187  ParmVarDecl *Param = cast<ParmVarDecl>(param);
188  if (Param)
189    Param->setUnparsedDefaultArg();
190
191  UnparsedDefaultArgLocs[Param] = ArgLoc;
192}
193
194/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
195/// the default argument for the parameter param failed.
196void Sema::ActOnParamDefaultArgumentError(Decl *param) {
197  if (!param)
198    return;
199
200  ParmVarDecl *Param = cast<ParmVarDecl>(param);
201
202  Param->setInvalidDecl();
203
204  UnparsedDefaultArgLocs.erase(Param);
205}
206
207/// CheckExtraCXXDefaultArguments - Check for any extra default
208/// arguments in the declarator, which is not a function declaration
209/// or definition and therefore is not permitted to have default
210/// arguments. This routine should be invoked for every declarator
211/// that is not a function declaration or definition.
212void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
213  // C++ [dcl.fct.default]p3
214  //   A default argument expression shall be specified only in the
215  //   parameter-declaration-clause of a function declaration or in a
216  //   template-parameter (14.1). It shall not be specified for a
217  //   parameter pack. If it is specified in a
218  //   parameter-declaration-clause, it shall not occur within a
219  //   declarator or abstract-declarator of a parameter-declaration.
220  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
221    DeclaratorChunk &chunk = D.getTypeObject(i);
222    if (chunk.Kind == DeclaratorChunk::Function) {
223      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
224        ParmVarDecl *Param =
225          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
226        if (Param->hasUnparsedDefaultArg()) {
227          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
228          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
229            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
230          delete Toks;
231          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
232        } else if (Param->getDefaultArg()) {
233          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
234            << Param->getDefaultArg()->getSourceRange();
235          Param->setDefaultArg(0);
236        }
237      }
238    }
239  }
240}
241
242// MergeCXXFunctionDecl - Merge two declarations of the same C++
243// function, once we already know that they have the same
244// type. Subroutine of MergeFunctionDecl. Returns true if there was an
245// error, false otherwise.
246bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
247  bool Invalid = false;
248
249  // C++ [dcl.fct.default]p4:
250  //   For non-template functions, default arguments can be added in
251  //   later declarations of a function in the same
252  //   scope. Declarations in different scopes have completely
253  //   distinct sets of default arguments. That is, declarations in
254  //   inner scopes do not acquire default arguments from
255  //   declarations in outer scopes, and vice versa. In a given
256  //   function declaration, all parameters subsequent to a
257  //   parameter with a default argument shall have default
258  //   arguments supplied in this or previous declarations. A
259  //   default argument shall not be redefined by a later
260  //   declaration (not even to the same value).
261  //
262  // C++ [dcl.fct.default]p6:
263  //   Except for member functions of class templates, the default arguments
264  //   in a member function definition that appears outside of the class
265  //   definition are added to the set of default arguments provided by the
266  //   member function declaration in the class definition.
267  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
268    ParmVarDecl *OldParam = Old->getParamDecl(p);
269    ParmVarDecl *NewParam = New->getParamDecl(p);
270
271    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
272      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
273      // hint here. Alternatively, we could walk the type-source information
274      // for NewParam to find the last source location in the type... but it
275      // isn't worth the effort right now. This is the kind of test case that
276      // is hard to get right:
277
278      //   int f(int);
279      //   void g(int (*fp)(int) = f);
280      //   void g(int (*fp)(int) = &f);
281      Diag(NewParam->getLocation(),
282           diag::err_param_default_argument_redefinition)
283        << NewParam->getDefaultArgRange();
284
285      // Look for the function declaration where the default argument was
286      // actually written, which may be a declaration prior to Old.
287      for (FunctionDecl *Older = Old->getPreviousDeclaration();
288           Older; Older = Older->getPreviousDeclaration()) {
289        if (!Older->getParamDecl(p)->hasDefaultArg())
290          break;
291
292        OldParam = Older->getParamDecl(p);
293      }
294
295      Diag(OldParam->getLocation(), diag::note_previous_definition)
296        << OldParam->getDefaultArgRange();
297      Invalid = true;
298    } else if (OldParam->hasDefaultArg()) {
299      // Merge the old default argument into the new parameter.
300      // It's important to use getInit() here;  getDefaultArg()
301      // strips off any top-level CXXExprWithTemporaries.
302      NewParam->setHasInheritedDefaultArg();
303      if (OldParam->hasUninstantiatedDefaultArg())
304        NewParam->setUninstantiatedDefaultArg(
305                                      OldParam->getUninstantiatedDefaultArg());
306      else
307        NewParam->setDefaultArg(OldParam->getInit());
308    } else if (NewParam->hasDefaultArg()) {
309      if (New->getDescribedFunctionTemplate()) {
310        // Paragraph 4, quoted above, only applies to non-template functions.
311        Diag(NewParam->getLocation(),
312             diag::err_param_default_argument_template_redecl)
313          << NewParam->getDefaultArgRange();
314        Diag(Old->getLocation(), diag::note_template_prev_declaration)
315          << false;
316      } else if (New->getTemplateSpecializationKind()
317                   != TSK_ImplicitInstantiation &&
318                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
319        // C++ [temp.expr.spec]p21:
320        //   Default function arguments shall not be specified in a declaration
321        //   or a definition for one of the following explicit specializations:
322        //     - the explicit specialization of a function template;
323        //     - the explicit specialization of a member function template;
324        //     - the explicit specialization of a member function of a class
325        //       template where the class template specialization to which the
326        //       member function specialization belongs is implicitly
327        //       instantiated.
328        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
329          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
330          << New->getDeclName()
331          << NewParam->getDefaultArgRange();
332      } else if (New->getDeclContext()->isDependentContext()) {
333        // C++ [dcl.fct.default]p6 (DR217):
334        //   Default arguments for a member function of a class template shall
335        //   be specified on the initial declaration of the member function
336        //   within the class template.
337        //
338        // Reading the tea leaves a bit in DR217 and its reference to DR205
339        // leads me to the conclusion that one cannot add default function
340        // arguments for an out-of-line definition of a member function of a
341        // dependent type.
342        int WhichKind = 2;
343        if (CXXRecordDecl *Record
344              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
345          if (Record->getDescribedClassTemplate())
346            WhichKind = 0;
347          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
348            WhichKind = 1;
349          else
350            WhichKind = 2;
351        }
352
353        Diag(NewParam->getLocation(),
354             diag::err_param_default_argument_member_template_redecl)
355          << WhichKind
356          << NewParam->getDefaultArgRange();
357      }
358    }
359  }
360
361  if (CheckEquivalentExceptionSpec(Old, New))
362    Invalid = true;
363
364  return Invalid;
365}
366
367/// CheckCXXDefaultArguments - Verify that the default arguments for a
368/// function declaration are well-formed according to C++
369/// [dcl.fct.default].
370void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
371  unsigned NumParams = FD->getNumParams();
372  unsigned p;
373
374  // Find first parameter with a default argument
375  for (p = 0; p < NumParams; ++p) {
376    ParmVarDecl *Param = FD->getParamDecl(p);
377    if (Param->hasDefaultArg())
378      break;
379  }
380
381  // C++ [dcl.fct.default]p4:
382  //   In a given function declaration, all parameters
383  //   subsequent to a parameter with a default argument shall
384  //   have default arguments supplied in this or previous
385  //   declarations. A default argument shall not be redefined
386  //   by a later declaration (not even to the same value).
387  unsigned LastMissingDefaultArg = 0;
388  for (; p < NumParams; ++p) {
389    ParmVarDecl *Param = FD->getParamDecl(p);
390    if (!Param->hasDefaultArg()) {
391      if (Param->isInvalidDecl())
392        /* We already complained about this parameter. */;
393      else if (Param->getIdentifier())
394        Diag(Param->getLocation(),
395             diag::err_param_default_argument_missing_name)
396          << Param->getIdentifier();
397      else
398        Diag(Param->getLocation(),
399             diag::err_param_default_argument_missing);
400
401      LastMissingDefaultArg = p;
402    }
403  }
404
405  if (LastMissingDefaultArg > 0) {
406    // Some default arguments were missing. Clear out all of the
407    // default arguments up to (and including) the last missing
408    // default argument, so that we leave the function parameters
409    // in a semantically valid state.
410    for (p = 0; p <= LastMissingDefaultArg; ++p) {
411      ParmVarDecl *Param = FD->getParamDecl(p);
412      if (Param->hasDefaultArg()) {
413        Param->setDefaultArg(0);
414      }
415    }
416  }
417}
418
419/// isCurrentClassName - Determine whether the identifier II is the
420/// name of the class type currently being defined. In the case of
421/// nested classes, this will only return true if II is the name of
422/// the innermost class.
423bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
424                              const CXXScopeSpec *SS) {
425  assert(getLangOptions().CPlusPlus && "No class names in C!");
426
427  CXXRecordDecl *CurDecl;
428  if (SS && SS->isSet() && !SS->isInvalid()) {
429    DeclContext *DC = computeDeclContext(*SS, true);
430    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
431  } else
432    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
433
434  if (CurDecl && CurDecl->getIdentifier())
435    return &II == CurDecl->getIdentifier();
436  else
437    return false;
438}
439
440/// \brief Check the validity of a C++ base class specifier.
441///
442/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
443/// and returns NULL otherwise.
444CXXBaseSpecifier *
445Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
446                         SourceRange SpecifierRange,
447                         bool Virtual, AccessSpecifier Access,
448                         TypeSourceInfo *TInfo) {
449  QualType BaseType = TInfo->getType();
450
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                          Class->getTagKind() == TTK_Class,
462                                          Access, TInfo);
463
464  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
465
466  // Base specifiers must be record types.
467  if (!BaseType->isRecordType()) {
468    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
469    return 0;
470  }
471
472  // C++ [class.union]p1:
473  //   A union shall not be used as a base class.
474  if (BaseType->isUnionType()) {
475    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
476    return 0;
477  }
478
479  // C++ [class.derived]p2:
480  //   The class-name in a base-specifier shall not be an incompletely
481  //   defined class.
482  if (RequireCompleteType(BaseLoc, BaseType,
483                          PDiag(diag::err_incomplete_base_class)
484                            << SpecifierRange)) {
485    Class->setInvalidDecl();
486    return 0;
487  }
488
489  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
490  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
491  assert(BaseDecl && "Record type has no declaration");
492  BaseDecl = BaseDecl->getDefinition();
493  assert(BaseDecl && "Base type is not incomplete, but has no definition");
494  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
495  assert(CXXBaseDecl && "Base type is not a C++ type");
496
497  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
498  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
499    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
500    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
501      << BaseType;
502    return 0;
503  }
504
505  if (BaseDecl->isInvalidDecl())
506    Class->setInvalidDecl();
507
508  // Create the base specifier.
509  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
510                                        Class->getTagKind() == TTK_Class,
511                                        Access, TInfo);
512}
513
514/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
515/// one entry in the base class list of a class specifier, for
516/// example:
517///    class foo : public bar, virtual private baz {
518/// 'public bar' and 'virtual private baz' are each base-specifiers.
519BaseResult
520Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
521                         bool Virtual, AccessSpecifier Access,
522                         ParsedType basetype, SourceLocation BaseLoc) {
523  if (!classdecl)
524    return true;
525
526  AdjustDeclIfTemplate(classdecl);
527  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
528  if (!Class)
529    return true;
530
531  TypeSourceInfo *TInfo = 0;
532  GetTypeFromParser(basetype, &TInfo);
533  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
534                                                      Virtual, Access, TInfo))
535    return BaseSpec;
536
537  return true;
538}
539
540/// \brief Performs the actual work of attaching the given base class
541/// specifiers to a C++ class.
542bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
543                                unsigned NumBases) {
544 if (NumBases == 0)
545    return false;
546
547  // Used to keep track of which base types we have already seen, so
548  // that we can properly diagnose redundant direct base types. Note
549  // that the key is always the unqualified canonical type of the base
550  // class.
551  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
552
553  // Copy non-redundant base specifiers into permanent storage.
554  unsigned NumGoodBases = 0;
555  bool Invalid = false;
556  for (unsigned idx = 0; idx < NumBases; ++idx) {
557    QualType NewBaseType
558      = Context.getCanonicalType(Bases[idx]->getType());
559    NewBaseType = NewBaseType.getLocalUnqualifiedType();
560    if (!Class->hasObjectMember()) {
561      if (const RecordType *FDTTy =
562            NewBaseType.getTypePtr()->getAs<RecordType>())
563        if (FDTTy->getDecl()->hasObjectMember())
564          Class->setHasObjectMember(true);
565    }
566
567    if (KnownBaseTypes[NewBaseType]) {
568      // C++ [class.mi]p3:
569      //   A class shall not be specified as a direct base class of a
570      //   derived class more than once.
571      Diag(Bases[idx]->getSourceRange().getBegin(),
572           diag::err_duplicate_base_class)
573        << KnownBaseTypes[NewBaseType]->getType()
574        << Bases[idx]->getSourceRange();
575
576      // Delete the duplicate base class specifier; we're going to
577      // overwrite its pointer later.
578      Context.Deallocate(Bases[idx]);
579
580      Invalid = true;
581    } else {
582      // Okay, add this new base class.
583      KnownBaseTypes[NewBaseType] = Bases[idx];
584      Bases[NumGoodBases++] = Bases[idx];
585    }
586  }
587
588  // Attach the remaining base class specifiers to the derived class.
589  Class->setBases(Bases, NumGoodBases);
590
591  // Delete the remaining (good) base class specifiers, since their
592  // data has been copied into the CXXRecordDecl.
593  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
594    Context.Deallocate(Bases[idx]);
595
596  return Invalid;
597}
598
599/// ActOnBaseSpecifiers - Attach the given base specifiers to the
600/// class, after checking whether there are any duplicate base
601/// classes.
602void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
603                               unsigned NumBases) {
604  if (!ClassDecl || !Bases || !NumBases)
605    return;
606
607  AdjustDeclIfTemplate(ClassDecl);
608  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
609                       (CXXBaseSpecifier**)(Bases), NumBases);
610}
611
612static CXXRecordDecl *GetClassForType(QualType T) {
613  if (const RecordType *RT = T->getAs<RecordType>())
614    return cast<CXXRecordDecl>(RT->getDecl());
615  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
616    return ICT->getDecl();
617  else
618    return 0;
619}
620
621/// \brief Determine whether the type \p Derived is a C++ class that is
622/// derived from the type \p Base.
623bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
624  if (!getLangOptions().CPlusPlus)
625    return false;
626
627  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
628  if (!DerivedRD)
629    return false;
630
631  CXXRecordDecl *BaseRD = GetClassForType(Base);
632  if (!BaseRD)
633    return false;
634
635  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
636  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
637}
638
639/// \brief Determine whether the type \p Derived is a C++ class that is
640/// derived from the type \p Base.
641bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
642  if (!getLangOptions().CPlusPlus)
643    return false;
644
645  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
646  if (!DerivedRD)
647    return false;
648
649  CXXRecordDecl *BaseRD = GetClassForType(Base);
650  if (!BaseRD)
651    return false;
652
653  return DerivedRD->isDerivedFrom(BaseRD, Paths);
654}
655
656void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
657                              CXXCastPath &BasePathArray) {
658  assert(BasePathArray.empty() && "Base path array must be empty!");
659  assert(Paths.isRecordingPaths() && "Must record paths!");
660
661  const CXXBasePath &Path = Paths.front();
662
663  // We first go backward and check if we have a virtual base.
664  // FIXME: It would be better if CXXBasePath had the base specifier for
665  // the nearest virtual base.
666  unsigned Start = 0;
667  for (unsigned I = Path.size(); I != 0; --I) {
668    if (Path[I - 1].Base->isVirtual()) {
669      Start = I - 1;
670      break;
671    }
672  }
673
674  // Now add all bases.
675  for (unsigned I = Start, E = Path.size(); I != E; ++I)
676    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
677}
678
679/// \brief Determine whether the given base path includes a virtual
680/// base class.
681bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
682  for (CXXCastPath::const_iterator B = BasePath.begin(),
683                                BEnd = BasePath.end();
684       B != BEnd; ++B)
685    if ((*B)->isVirtual())
686      return true;
687
688  return false;
689}
690
691/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
692/// conversion (where Derived and Base are class types) is
693/// well-formed, meaning that the conversion is unambiguous (and
694/// that all of the base classes are accessible). Returns true
695/// and emits a diagnostic if the code is ill-formed, returns false
696/// otherwise. Loc is the location where this routine should point to
697/// if there is an error, and Range is the source range to highlight
698/// if there is an error.
699bool
700Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
701                                   unsigned InaccessibleBaseID,
702                                   unsigned AmbigiousBaseConvID,
703                                   SourceLocation Loc, SourceRange Range,
704                                   DeclarationName Name,
705                                   CXXCastPath *BasePath) {
706  // First, determine whether the path from Derived to Base is
707  // ambiguous. This is slightly more expensive than checking whether
708  // the Derived to Base conversion exists, because here we need to
709  // explore multiple paths to determine if there is an ambiguity.
710  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
711                     /*DetectVirtual=*/false);
712  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
713  assert(DerivationOkay &&
714         "Can only be used with a derived-to-base conversion");
715  (void)DerivationOkay;
716
717  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
718    if (InaccessibleBaseID) {
719      // Check that the base class can be accessed.
720      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
721                                   InaccessibleBaseID)) {
722        case AR_inaccessible:
723          return true;
724        case AR_accessible:
725        case AR_dependent:
726        case AR_delayed:
727          break;
728      }
729    }
730
731    // Build a base path if necessary.
732    if (BasePath)
733      BuildBasePathArray(Paths, *BasePath);
734    return false;
735  }
736
737  // We know that the derived-to-base conversion is ambiguous, and
738  // we're going to produce a diagnostic. Perform the derived-to-base
739  // search just one more time to compute all of the possible paths so
740  // that we can print them out. This is more expensive than any of
741  // the previous derived-to-base checks we've done, but at this point
742  // performance isn't as much of an issue.
743  Paths.clear();
744  Paths.setRecordingPaths(true);
745  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
746  assert(StillOkay && "Can only be used with a derived-to-base conversion");
747  (void)StillOkay;
748
749  // Build up a textual representation of the ambiguous paths, e.g.,
750  // D -> B -> A, that will be used to illustrate the ambiguous
751  // conversions in the diagnostic. We only print one of the paths
752  // to each base class subobject.
753  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
754
755  Diag(Loc, AmbigiousBaseConvID)
756  << Derived << Base << PathDisplayStr << Range << Name;
757  return true;
758}
759
760bool
761Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
762                                   SourceLocation Loc, SourceRange Range,
763                                   CXXCastPath *BasePath,
764                                   bool IgnoreAccess) {
765  return CheckDerivedToBaseConversion(Derived, Base,
766                                      IgnoreAccess ? 0
767                                       : diag::err_upcast_to_inaccessible_base,
768                                      diag::err_ambiguous_derived_to_base_conv,
769                                      Loc, Range, DeclarationName(),
770                                      BasePath);
771}
772
773
774/// @brief Builds a string representing ambiguous paths from a
775/// specific derived class to different subobjects of the same base
776/// class.
777///
778/// This function builds a string that can be used in error messages
779/// to show the different paths that one can take through the
780/// inheritance hierarchy to go from the derived class to different
781/// subobjects of a base class. The result looks something like this:
782/// @code
783/// struct D -> struct B -> struct A
784/// struct D -> struct C -> struct A
785/// @endcode
786std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
787  std::string PathDisplayStr;
788  std::set<unsigned> DisplayedPaths;
789  for (CXXBasePaths::paths_iterator Path = Paths.begin();
790       Path != Paths.end(); ++Path) {
791    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
792      // We haven't displayed a path to this particular base
793      // class subobject yet.
794      PathDisplayStr += "\n    ";
795      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
796      for (CXXBasePath::const_iterator Element = Path->begin();
797           Element != Path->end(); ++Element)
798        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
799    }
800  }
801
802  return PathDisplayStr;
803}
804
805//===----------------------------------------------------------------------===//
806// C++ class member Handling
807//===----------------------------------------------------------------------===//
808
809/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
810Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
811                                 SourceLocation ASLoc,
812                                 SourceLocation ColonLoc) {
813  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
814  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
815                                                  ASLoc, ColonLoc);
816  CurContext->addHiddenDecl(ASDecl);
817  return ASDecl;
818}
819
820/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
821/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
822/// bitfield width if there is one and 'InitExpr' specifies the initializer if
823/// any.
824Decl *
825Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
826                               MultiTemplateParamsArg TemplateParameterLists,
827                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
828                               bool Deleted) {
829  const DeclSpec &DS = D.getDeclSpec();
830  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
831  DeclarationName Name = NameInfo.getName();
832  SourceLocation Loc = NameInfo.getLoc();
833  Expr *BitWidth = static_cast<Expr*>(BW);
834  Expr *Init = static_cast<Expr*>(InitExpr);
835
836  assert(isa<CXXRecordDecl>(CurContext));
837  assert(!DS.isFriendSpecified());
838
839  bool isFunc = false;
840  if (D.isFunctionDeclarator())
841    isFunc = true;
842  else if (D.getNumTypeObjects() == 0 &&
843           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
844    QualType TDType = GetTypeFromParser(DS.getRepAsType());
845    isFunc = TDType->isFunctionType();
846  }
847
848  // C++ 9.2p6: A member shall not be declared to have automatic storage
849  // duration (auto, register) or with the extern storage-class-specifier.
850  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
851  // data members and cannot be applied to names declared const or static,
852  // and cannot be applied to reference members.
853  switch (DS.getStorageClassSpec()) {
854    case DeclSpec::SCS_unspecified:
855    case DeclSpec::SCS_typedef:
856    case DeclSpec::SCS_static:
857      // FALL THROUGH.
858      break;
859    case DeclSpec::SCS_mutable:
860      if (isFunc) {
861        if (DS.getStorageClassSpecLoc().isValid())
862          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
863        else
864          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
865
866        // FIXME: It would be nicer if the keyword was ignored only for this
867        // declarator. Otherwise we could get follow-up errors.
868        D.getMutableDeclSpec().ClearStorageClassSpecs();
869      }
870      break;
871    default:
872      if (DS.getStorageClassSpecLoc().isValid())
873        Diag(DS.getStorageClassSpecLoc(),
874             diag::err_storageclass_invalid_for_member);
875      else
876        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
877      D.getMutableDeclSpec().ClearStorageClassSpecs();
878  }
879
880  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
881                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
882                      !isFunc);
883
884  Decl *Member;
885  if (isInstField) {
886    // FIXME: Check for template parameters!
887    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
888                         AS);
889    assert(Member && "HandleField never returns null");
890  } else {
891    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
892    if (!Member) {
893      return 0;
894    }
895
896    // Non-instance-fields can't have a bitfield.
897    if (BitWidth) {
898      if (Member->isInvalidDecl()) {
899        // don't emit another diagnostic.
900      } else if (isa<VarDecl>(Member)) {
901        // C++ 9.6p3: A bit-field shall not be a static member.
902        // "static member 'A' cannot be a bit-field"
903        Diag(Loc, diag::err_static_not_bitfield)
904          << Name << BitWidth->getSourceRange();
905      } else if (isa<TypedefDecl>(Member)) {
906        // "typedef member 'x' cannot be a bit-field"
907        Diag(Loc, diag::err_typedef_not_bitfield)
908          << Name << BitWidth->getSourceRange();
909      } else {
910        // A function typedef ("typedef int f(); f a;").
911        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
912        Diag(Loc, diag::err_not_integral_type_bitfield)
913          << Name << cast<ValueDecl>(Member)->getType()
914          << BitWidth->getSourceRange();
915      }
916
917      BitWidth = 0;
918      Member->setInvalidDecl();
919    }
920
921    Member->setAccess(AS);
922
923    // If we have declared a member function template, set the access of the
924    // templated declaration as well.
925    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
926      FunTmpl->getTemplatedDecl()->setAccess(AS);
927  }
928
929  assert((Name || isInstField) && "No identifier for non-field ?");
930
931  if (Init)
932    AddInitializerToDecl(Member, Init, false);
933  if (Deleted) // FIXME: Source location is not very good.
934    SetDeclDeleted(Member, D.getSourceRange().getBegin());
935
936  if (isInstField) {
937    FieldCollector->Add(cast<FieldDecl>(Member));
938    return 0;
939  }
940  return Member;
941}
942
943/// \brief Find the direct and/or virtual base specifiers that
944/// correspond to the given base type, for use in base initialization
945/// within a constructor.
946static bool FindBaseInitializer(Sema &SemaRef,
947                                CXXRecordDecl *ClassDecl,
948                                QualType BaseType,
949                                const CXXBaseSpecifier *&DirectBaseSpec,
950                                const CXXBaseSpecifier *&VirtualBaseSpec) {
951  // First, check for a direct base class.
952  DirectBaseSpec = 0;
953  for (CXXRecordDecl::base_class_const_iterator Base
954         = ClassDecl->bases_begin();
955       Base != ClassDecl->bases_end(); ++Base) {
956    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
957      // We found a direct base of this type. That's what we're
958      // initializing.
959      DirectBaseSpec = &*Base;
960      break;
961    }
962  }
963
964  // Check for a virtual base class.
965  // FIXME: We might be able to short-circuit this if we know in advance that
966  // there are no virtual bases.
967  VirtualBaseSpec = 0;
968  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
969    // We haven't found a base yet; search the class hierarchy for a
970    // virtual base class.
971    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
972                       /*DetectVirtual=*/false);
973    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
974                              BaseType, Paths)) {
975      for (CXXBasePaths::paths_iterator Path = Paths.begin();
976           Path != Paths.end(); ++Path) {
977        if (Path->back().Base->isVirtual()) {
978          VirtualBaseSpec = Path->back().Base;
979          break;
980        }
981      }
982    }
983  }
984
985  return DirectBaseSpec || VirtualBaseSpec;
986}
987
988/// ActOnMemInitializer - Handle a C++ member initializer.
989MemInitResult
990Sema::ActOnMemInitializer(Decl *ConstructorD,
991                          Scope *S,
992                          CXXScopeSpec &SS,
993                          IdentifierInfo *MemberOrBase,
994                          ParsedType TemplateTypeTy,
995                          SourceLocation IdLoc,
996                          SourceLocation LParenLoc,
997                          ExprTy **Args, unsigned NumArgs,
998                          SourceLocation RParenLoc) {
999  if (!ConstructorD)
1000    return true;
1001
1002  AdjustDeclIfTemplate(ConstructorD);
1003
1004  CXXConstructorDecl *Constructor
1005    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1006  if (!Constructor) {
1007    // The user wrote a constructor initializer on a function that is
1008    // not a C++ constructor. Ignore the error for now, because we may
1009    // have more member initializers coming; we'll diagnose it just
1010    // once in ActOnMemInitializers.
1011    return true;
1012  }
1013
1014  CXXRecordDecl *ClassDecl = Constructor->getParent();
1015
1016  // C++ [class.base.init]p2:
1017  //   Names in a mem-initializer-id are looked up in the scope of the
1018  //   constructor’s class and, if not found in that scope, are looked
1019  //   up in the scope containing the constructor’s
1020  //   definition. [Note: if the constructor’s class contains a member
1021  //   with the same name as a direct or virtual base class of the
1022  //   class, a mem-initializer-id naming the member or base class and
1023  //   composed of a single identifier refers to the class member. A
1024  //   mem-initializer-id for the hidden base class may be specified
1025  //   using a qualified name. ]
1026  if (!SS.getScopeRep() && !TemplateTypeTy) {
1027    // Look for a member, first.
1028    FieldDecl *Member = 0;
1029    DeclContext::lookup_result Result
1030      = ClassDecl->lookup(MemberOrBase);
1031    if (Result.first != Result.second)
1032      Member = dyn_cast<FieldDecl>(*Result.first);
1033
1034    // FIXME: Handle members of an anonymous union.
1035
1036    if (Member)
1037      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1038                                    LParenLoc, RParenLoc);
1039  }
1040  // It didn't name a member, so see if it names a class.
1041  QualType BaseType;
1042  TypeSourceInfo *TInfo = 0;
1043
1044  if (TemplateTypeTy) {
1045    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1046  } else {
1047    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1048    LookupParsedName(R, S, &SS);
1049
1050    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1051    if (!TyD) {
1052      if (R.isAmbiguous()) return true;
1053
1054      // We don't want access-control diagnostics here.
1055      R.suppressDiagnostics();
1056
1057      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1058        bool NotUnknownSpecialization = false;
1059        DeclContext *DC = computeDeclContext(SS, false);
1060        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1061          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1062
1063        if (!NotUnknownSpecialization) {
1064          // When the scope specifier can refer to a member of an unknown
1065          // specialization, we take it as a type name.
1066          BaseType = CheckTypenameType(ETK_None,
1067                                       (NestedNameSpecifier *)SS.getScopeRep(),
1068                                       *MemberOrBase, SourceLocation(),
1069                                       SS.getRange(), IdLoc);
1070          if (BaseType.isNull())
1071            return true;
1072
1073          R.clear();
1074          R.setLookupName(MemberOrBase);
1075        }
1076      }
1077
1078      // If no results were found, try to correct typos.
1079      if (R.empty() && BaseType.isNull() &&
1080          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1081          R.isSingleResult()) {
1082        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1083          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1084            // We have found a non-static data member with a similar
1085            // name to what was typed; complain and initialize that
1086            // member.
1087            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1088              << MemberOrBase << true << R.getLookupName()
1089              << FixItHint::CreateReplacement(R.getNameLoc(),
1090                                              R.getLookupName().getAsString());
1091            Diag(Member->getLocation(), diag::note_previous_decl)
1092              << Member->getDeclName();
1093
1094            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1095                                          LParenLoc, RParenLoc);
1096          }
1097        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1098          const CXXBaseSpecifier *DirectBaseSpec;
1099          const CXXBaseSpecifier *VirtualBaseSpec;
1100          if (FindBaseInitializer(*this, ClassDecl,
1101                                  Context.getTypeDeclType(Type),
1102                                  DirectBaseSpec, VirtualBaseSpec)) {
1103            // We have found a direct or virtual base class with a
1104            // similar name to what was typed; complain and initialize
1105            // that base class.
1106            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1107              << MemberOrBase << false << R.getLookupName()
1108              << FixItHint::CreateReplacement(R.getNameLoc(),
1109                                              R.getLookupName().getAsString());
1110
1111            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1112                                                             : VirtualBaseSpec;
1113            Diag(BaseSpec->getSourceRange().getBegin(),
1114                 diag::note_base_class_specified_here)
1115              << BaseSpec->getType()
1116              << BaseSpec->getSourceRange();
1117
1118            TyD = Type;
1119          }
1120        }
1121      }
1122
1123      if (!TyD && BaseType.isNull()) {
1124        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1125          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1126        return true;
1127      }
1128    }
1129
1130    if (BaseType.isNull()) {
1131      BaseType = Context.getTypeDeclType(TyD);
1132      if (SS.isSet()) {
1133        NestedNameSpecifier *Qualifier =
1134          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1135
1136        // FIXME: preserve source range information
1137        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1138      }
1139    }
1140  }
1141
1142  if (!TInfo)
1143    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1144
1145  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1146                              LParenLoc, RParenLoc, ClassDecl);
1147}
1148
1149/// Checks an initializer expression for use of uninitialized fields, such as
1150/// containing the field that is being initialized. Returns true if there is an
1151/// uninitialized field was used an updates the SourceLocation parameter; false
1152/// otherwise.
1153static bool InitExprContainsUninitializedFields(const Stmt *S,
1154                                                const FieldDecl *LhsField,
1155                                                SourceLocation *L) {
1156  if (isa<CallExpr>(S)) {
1157    // Do not descend into function calls or constructors, as the use
1158    // of an uninitialized field may be valid. One would have to inspect
1159    // the contents of the function/ctor to determine if it is safe or not.
1160    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1161    // may be safe, depending on what the function/ctor does.
1162    return false;
1163  }
1164  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1165    const NamedDecl *RhsField = ME->getMemberDecl();
1166
1167    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1168      // The member expression points to a static data member.
1169      assert(VD->isStaticDataMember() &&
1170             "Member points to non-static data member!");
1171      return false;
1172    }
1173
1174    if (isa<EnumConstantDecl>(RhsField)) {
1175      // The member expression points to an enum.
1176      return false;
1177    }
1178
1179    if (RhsField == LhsField) {
1180      // Initializing a field with itself. Throw a warning.
1181      // But wait; there are exceptions!
1182      // Exception #1:  The field may not belong to this record.
1183      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1184      const Expr *base = ME->getBase();
1185      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1186        // Even though the field matches, it does not belong to this record.
1187        return false;
1188      }
1189      // None of the exceptions triggered; return true to indicate an
1190      // uninitialized field was used.
1191      *L = ME->getMemberLoc();
1192      return true;
1193    }
1194  } else if (isa<SizeOfAlignOfExpr>(S)) {
1195    // sizeof/alignof doesn't reference contents, do not warn.
1196    return false;
1197  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1198    // address-of doesn't reference contents (the pointer may be dereferenced
1199    // in the same expression but it would be rare; and weird).
1200    if (UOE->getOpcode() == UO_AddrOf)
1201      return false;
1202  }
1203  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1204       it != e; ++it) {
1205    if (!*it) {
1206      // An expression such as 'member(arg ?: "")' may trigger this.
1207      continue;
1208    }
1209    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1210      return true;
1211  }
1212  return false;
1213}
1214
1215MemInitResult
1216Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1217                             unsigned NumArgs, SourceLocation IdLoc,
1218                             SourceLocation LParenLoc,
1219                             SourceLocation RParenLoc) {
1220  // Diagnose value-uses of fields to initialize themselves, e.g.
1221  //   foo(foo)
1222  // where foo is not also a parameter to the constructor.
1223  // TODO: implement -Wuninitialized and fold this into that framework.
1224  for (unsigned i = 0; i < NumArgs; ++i) {
1225    SourceLocation L;
1226    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1227      // FIXME: Return true in the case when other fields are used before being
1228      // uninitialized. For example, let this field be the i'th field. When
1229      // initializing the i'th field, throw a warning if any of the >= i'th
1230      // fields are used, as they are not yet initialized.
1231      // Right now we are only handling the case where the i'th field uses
1232      // itself in its initializer.
1233      Diag(L, diag::warn_field_is_uninit);
1234    }
1235  }
1236
1237  bool HasDependentArg = false;
1238  for (unsigned i = 0; i < NumArgs; i++)
1239    HasDependentArg |= Args[i]->isTypeDependent();
1240
1241  if (Member->getType()->isDependentType() || HasDependentArg) {
1242    // Can't check initialization for a member of dependent type or when
1243    // any of the arguments are type-dependent expressions.
1244    Expr *Init
1245      = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1246                                    RParenLoc);
1247
1248    // Erase any temporaries within this evaluation context; we're not
1249    // going to track them in the AST, since we'll be rebuilding the
1250    // ASTs during template instantiation.
1251    ExprTemporaries.erase(
1252              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1253                          ExprTemporaries.end());
1254
1255    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1256                                                    LParenLoc,
1257                                                    Init,
1258                                                    RParenLoc);
1259
1260  }
1261
1262  if (Member->isInvalidDecl())
1263    return true;
1264
1265  // Initialize the member.
1266  InitializedEntity MemberEntity =
1267    InitializedEntity::InitializeMember(Member, 0);
1268  InitializationKind Kind =
1269    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1270
1271  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1272
1273  ExprResult MemberInit =
1274    InitSeq.Perform(*this, MemberEntity, Kind,
1275                    MultiExprArg(*this, Args, NumArgs), 0);
1276  if (MemberInit.isInvalid())
1277    return true;
1278
1279  // C++0x [class.base.init]p7:
1280  //   The initialization of each base and member constitutes a
1281  //   full-expression.
1282  MemberInit = MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1283  if (MemberInit.isInvalid())
1284    return true;
1285
1286  // If we are in a dependent context, template instantiation will
1287  // perform this type-checking again. Just save the arguments that we
1288  // received in a ParenListExpr.
1289  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1290  // of the information that we have about the member
1291  // initializer. However, deconstructing the ASTs is a dicey process,
1292  // and this approach is far more likely to get the corner cases right.
1293  if (CurContext->isDependentContext()) {
1294    // Bump the reference count of all of the arguments.
1295    for (unsigned I = 0; I != NumArgs; ++I)
1296      Args[I]->Retain();
1297
1298    Expr *Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1299                                             RParenLoc);
1300    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1301                                                    LParenLoc,
1302                                                    Init,
1303                                                    RParenLoc);
1304  }
1305
1306  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1307                                                  LParenLoc,
1308                                                  MemberInit.get(),
1309                                                  RParenLoc);
1310}
1311
1312MemInitResult
1313Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1314                           Expr **Args, unsigned NumArgs,
1315                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1316                           CXXRecordDecl *ClassDecl) {
1317  bool HasDependentArg = false;
1318  for (unsigned i = 0; i < NumArgs; i++)
1319    HasDependentArg |= Args[i]->isTypeDependent();
1320
1321  SourceLocation BaseLoc
1322    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1323
1324  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1325    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1326             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1327
1328  // C++ [class.base.init]p2:
1329  //   [...] Unless the mem-initializer-id names a nonstatic data
1330  //   member of the constructor’s class or a direct or virtual base
1331  //   of that class, the mem-initializer is ill-formed. A
1332  //   mem-initializer-list can initialize a base class using any
1333  //   name that denotes that base class type.
1334  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1335
1336  // Check for direct and virtual base classes.
1337  const CXXBaseSpecifier *DirectBaseSpec = 0;
1338  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1339  if (!Dependent) {
1340    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1341                        VirtualBaseSpec);
1342
1343    // C++ [base.class.init]p2:
1344    // Unless the mem-initializer-id names a nonstatic data member of the
1345    // constructor's class or a direct or virtual base of that class, the
1346    // mem-initializer is ill-formed.
1347    if (!DirectBaseSpec && !VirtualBaseSpec) {
1348      // If the class has any dependent bases, then it's possible that
1349      // one of those types will resolve to the same type as
1350      // BaseType. Therefore, just treat this as a dependent base
1351      // class initialization.  FIXME: Should we try to check the
1352      // initialization anyway? It seems odd.
1353      if (ClassDecl->hasAnyDependentBases())
1354        Dependent = true;
1355      else
1356        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1357          << BaseType << Context.getTypeDeclType(ClassDecl)
1358          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1359    }
1360  }
1361
1362  if (Dependent) {
1363    // Can't check initialization for a base of dependent type or when
1364    // any of the arguments are type-dependent expressions.
1365    ExprResult BaseInit
1366      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1367                                          RParenLoc));
1368
1369    // Erase any temporaries within this evaluation context; we're not
1370    // going to track them in the AST, since we'll be rebuilding the
1371    // ASTs during template instantiation.
1372    ExprTemporaries.erase(
1373              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1374                          ExprTemporaries.end());
1375
1376    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1377                                                    /*IsVirtual=*/false,
1378                                                    LParenLoc,
1379                                                    BaseInit.takeAs<Expr>(),
1380                                                    RParenLoc);
1381  }
1382
1383  // C++ [base.class.init]p2:
1384  //   If a mem-initializer-id is ambiguous because it designates both
1385  //   a direct non-virtual base class and an inherited virtual base
1386  //   class, the mem-initializer is ill-formed.
1387  if (DirectBaseSpec && VirtualBaseSpec)
1388    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1389      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1390
1391  CXXBaseSpecifier *BaseSpec
1392    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1393  if (!BaseSpec)
1394    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1395
1396  // Initialize the base.
1397  InitializedEntity BaseEntity =
1398    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1399  InitializationKind Kind =
1400    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1401
1402  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1403
1404  ExprResult BaseInit =
1405    InitSeq.Perform(*this, BaseEntity, Kind,
1406                    MultiExprArg(*this, Args, NumArgs), 0);
1407  if (BaseInit.isInvalid())
1408    return true;
1409
1410  // C++0x [class.base.init]p7:
1411  //   The initialization of each base and member constitutes a
1412  //   full-expression.
1413  BaseInit = MaybeCreateCXXExprWithTemporaries(BaseInit.get());
1414  if (BaseInit.isInvalid())
1415    return true;
1416
1417  // If we are in a dependent context, template instantiation will
1418  // perform this type-checking again. Just save the arguments that we
1419  // received in a ParenListExpr.
1420  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1421  // of the information that we have about the base
1422  // initializer. However, deconstructing the ASTs is a dicey process,
1423  // and this approach is far more likely to get the corner cases right.
1424  if (CurContext->isDependentContext()) {
1425    // Bump the reference count of all of the arguments.
1426    for (unsigned I = 0; I != NumArgs; ++I)
1427      Args[I]->Retain();
1428
1429    ExprResult Init
1430      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1431                                          RParenLoc));
1432    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1433                                                    BaseSpec->isVirtual(),
1434                                                    LParenLoc,
1435                                                    Init.takeAs<Expr>(),
1436                                                    RParenLoc);
1437  }
1438
1439  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1440                                                  BaseSpec->isVirtual(),
1441                                                  LParenLoc,
1442                                                  BaseInit.takeAs<Expr>(),
1443                                                  RParenLoc);
1444}
1445
1446/// ImplicitInitializerKind - How an implicit base or member initializer should
1447/// initialize its base or member.
1448enum ImplicitInitializerKind {
1449  IIK_Default,
1450  IIK_Copy,
1451  IIK_Move
1452};
1453
1454static bool
1455BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1456                             ImplicitInitializerKind ImplicitInitKind,
1457                             CXXBaseSpecifier *BaseSpec,
1458                             bool IsInheritedVirtualBase,
1459                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1460  InitializedEntity InitEntity
1461    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1462                                        IsInheritedVirtualBase);
1463
1464  ExprResult BaseInit;
1465
1466  switch (ImplicitInitKind) {
1467  case IIK_Default: {
1468    InitializationKind InitKind
1469      = InitializationKind::CreateDefault(Constructor->getLocation());
1470    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1471    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1472                               MultiExprArg(SemaRef, 0, 0));
1473    break;
1474  }
1475
1476  case IIK_Copy: {
1477    ParmVarDecl *Param = Constructor->getParamDecl(0);
1478    QualType ParamType = Param->getType().getNonReferenceType();
1479
1480    Expr *CopyCtorArg =
1481      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1482                          Constructor->getLocation(), ParamType, 0);
1483
1484    // Cast to the base class to avoid ambiguities.
1485    QualType ArgTy =
1486      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1487                                       ParamType.getQualifiers());
1488
1489    CXXCastPath BasePath;
1490    BasePath.push_back(BaseSpec);
1491    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1492                              CK_UncheckedDerivedToBase,
1493                              VK_LValue, &BasePath);
1494
1495    InitializationKind InitKind
1496      = InitializationKind::CreateDirect(Constructor->getLocation(),
1497                                         SourceLocation(), SourceLocation());
1498    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1499                                   &CopyCtorArg, 1);
1500    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1501                               MultiExprArg(&CopyCtorArg, 1));
1502    break;
1503  }
1504
1505  case IIK_Move:
1506    assert(false && "Unhandled initializer kind!");
1507  }
1508
1509  if (BaseInit.isInvalid())
1510    return true;
1511
1512  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(BaseInit.get());
1513  if (BaseInit.isInvalid())
1514    return true;
1515
1516  CXXBaseInit =
1517    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1518               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1519                                                        SourceLocation()),
1520                                             BaseSpec->isVirtual(),
1521                                             SourceLocation(),
1522                                             BaseInit.takeAs<Expr>(),
1523                                             SourceLocation());
1524
1525  return false;
1526}
1527
1528static bool
1529BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1530                               ImplicitInitializerKind ImplicitInitKind,
1531                               FieldDecl *Field,
1532                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1533  if (Field->isInvalidDecl())
1534    return true;
1535
1536  SourceLocation Loc = Constructor->getLocation();
1537
1538  if (ImplicitInitKind == IIK_Copy) {
1539    ParmVarDecl *Param = Constructor->getParamDecl(0);
1540    QualType ParamType = Param->getType().getNonReferenceType();
1541
1542    Expr *MemberExprBase =
1543      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1544                          Loc, ParamType, 0);
1545
1546    // Build a reference to this field within the parameter.
1547    CXXScopeSpec SS;
1548    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1549                              Sema::LookupMemberName);
1550    MemberLookup.addDecl(Field, AS_public);
1551    MemberLookup.resolveKind();
1552    ExprResult CopyCtorArg
1553      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1554                                         ParamType, Loc,
1555                                         /*IsArrow=*/false,
1556                                         SS,
1557                                         /*FirstQualifierInScope=*/0,
1558                                         MemberLookup,
1559                                         /*TemplateArgs=*/0);
1560    if (CopyCtorArg.isInvalid())
1561      return true;
1562
1563    // When the field we are copying is an array, create index variables for
1564    // each dimension of the array. We use these index variables to subscript
1565    // the source array, and other clients (e.g., CodeGen) will perform the
1566    // necessary iteration with these index variables.
1567    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1568    QualType BaseType = Field->getType();
1569    QualType SizeType = SemaRef.Context.getSizeType();
1570    while (const ConstantArrayType *Array
1571                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1572      // Create the iteration variable for this array index.
1573      IdentifierInfo *IterationVarName = 0;
1574      {
1575        llvm::SmallString<8> Str;
1576        llvm::raw_svector_ostream OS(Str);
1577        OS << "__i" << IndexVariables.size();
1578        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1579      }
1580      VarDecl *IterationVar
1581        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1582                          IterationVarName, SizeType,
1583                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1584                          SC_None, SC_None);
1585      IndexVariables.push_back(IterationVar);
1586
1587      // Create a reference to the iteration variable.
1588      ExprResult IterationVarRef
1589        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1590      assert(!IterationVarRef.isInvalid() &&
1591             "Reference to invented variable cannot fail!");
1592
1593      // Subscript the array with this iteration variable.
1594      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1595                                                            Loc,
1596                                                        IterationVarRef.take(),
1597                                                            Loc);
1598      if (CopyCtorArg.isInvalid())
1599        return true;
1600
1601      BaseType = Array->getElementType();
1602    }
1603
1604    // Construct the entity that we will be initializing. For an array, this
1605    // will be first element in the array, which may require several levels
1606    // of array-subscript entities.
1607    llvm::SmallVector<InitializedEntity, 4> Entities;
1608    Entities.reserve(1 + IndexVariables.size());
1609    Entities.push_back(InitializedEntity::InitializeMember(Field));
1610    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1611      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1612                                                              0,
1613                                                              Entities.back()));
1614
1615    // Direct-initialize to use the copy constructor.
1616    InitializationKind InitKind =
1617      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1618
1619    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1620    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1621                                   &CopyCtorArgE, 1);
1622
1623    ExprResult MemberInit
1624      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1625                        MultiExprArg(&CopyCtorArgE, 1));
1626    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1627    if (MemberInit.isInvalid())
1628      return true;
1629
1630    CXXMemberInit
1631      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1632                                           MemberInit.takeAs<Expr>(), Loc,
1633                                           IndexVariables.data(),
1634                                           IndexVariables.size());
1635    return false;
1636  }
1637
1638  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1639
1640  QualType FieldBaseElementType =
1641    SemaRef.Context.getBaseElementType(Field->getType());
1642
1643  if (FieldBaseElementType->isRecordType()) {
1644    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1645    InitializationKind InitKind =
1646      InitializationKind::CreateDefault(Loc);
1647
1648    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1649    ExprResult MemberInit =
1650      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1651    if (MemberInit.isInvalid())
1652      return true;
1653
1654    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(MemberInit.get());
1655    if (MemberInit.isInvalid())
1656      return true;
1657
1658    CXXMemberInit =
1659      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1660                                                       Field, Loc, Loc,
1661                                                       MemberInit.get(),
1662                                                       Loc);
1663    return false;
1664  }
1665
1666  if (FieldBaseElementType->isReferenceType()) {
1667    SemaRef.Diag(Constructor->getLocation(),
1668                 diag::err_uninitialized_member_in_ctor)
1669    << (int)Constructor->isImplicit()
1670    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1671    << 0 << Field->getDeclName();
1672    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1673    return true;
1674  }
1675
1676  if (FieldBaseElementType.isConstQualified()) {
1677    SemaRef.Diag(Constructor->getLocation(),
1678                 diag::err_uninitialized_member_in_ctor)
1679    << (int)Constructor->isImplicit()
1680    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1681    << 1 << Field->getDeclName();
1682    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1683    return true;
1684  }
1685
1686  // Nothing to initialize.
1687  CXXMemberInit = 0;
1688  return false;
1689}
1690
1691namespace {
1692struct BaseAndFieldInfo {
1693  Sema &S;
1694  CXXConstructorDecl *Ctor;
1695  bool AnyErrorsInInits;
1696  ImplicitInitializerKind IIK;
1697  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1698  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1699
1700  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1701    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1702    // FIXME: Handle implicit move constructors.
1703    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1704      IIK = IIK_Copy;
1705    else
1706      IIK = IIK_Default;
1707  }
1708};
1709}
1710
1711static void RecordFieldInitializer(BaseAndFieldInfo &Info,
1712                                   FieldDecl *Top, FieldDecl *Field,
1713                                   CXXBaseOrMemberInitializer *Init) {
1714  // If the member doesn't need to be initialized, Init will still be null.
1715  if (!Init)
1716    return;
1717
1718  Info.AllToInit.push_back(Init);
1719  if (Field != Top) {
1720    Init->setMember(Top);
1721    Init->setAnonUnionMember(Field);
1722  }
1723}
1724
1725static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1726                                    FieldDecl *Top, FieldDecl *Field) {
1727
1728  // Overwhelmingly common case: we have a direct initializer for this field.
1729  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1730    RecordFieldInitializer(Info, Top, Field, Init);
1731    return false;
1732  }
1733
1734  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1735    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1736    assert(FieldClassType && "anonymous struct/union without record type");
1737    CXXRecordDecl *FieldClassDecl
1738      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1739
1740    // Even though union members never have non-trivial default
1741    // constructions in C++03, we still build member initializers for aggregate
1742    // record types which can be union members, and C++0x allows non-trivial
1743    // default constructors for union members, so we ensure that only one
1744    // member is initialized for these.
1745    if (FieldClassDecl->isUnion()) {
1746      // First check for an explicit initializer for one field.
1747      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1748           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1749        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1750          RecordFieldInitializer(Info, Top, *FA, Init);
1751
1752          // Once we've initialized a field of an anonymous union, the union
1753          // field in the class is also initialized, so exit immediately.
1754          return false;
1755        } else if ((*FA)->isAnonymousStructOrUnion()) {
1756          if (CollectFieldInitializer(Info, Top, *FA))
1757            return true;
1758        }
1759      }
1760
1761      // Fallthrough and construct a default initializer for the union as
1762      // a whole, which can call its default constructor if such a thing exists
1763      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1764      // behavior going forward with C++0x, when anonymous unions there are
1765      // finalized, we should revisit this.
1766    } else {
1767      // For structs, we simply descend through to initialize all members where
1768      // necessary.
1769      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1770           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1771        if (CollectFieldInitializer(Info, Top, *FA))
1772          return true;
1773      }
1774    }
1775  }
1776
1777  // Don't try to build an implicit initializer if there were semantic
1778  // errors in any of the initializers (and therefore we might be
1779  // missing some that the user actually wrote).
1780  if (Info.AnyErrorsInInits)
1781    return false;
1782
1783  CXXBaseOrMemberInitializer *Init = 0;
1784  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1785    return true;
1786
1787  RecordFieldInitializer(Info, Top, Field, Init);
1788  return false;
1789}
1790
1791bool
1792Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1793                                  CXXBaseOrMemberInitializer **Initializers,
1794                                  unsigned NumInitializers,
1795                                  bool AnyErrors) {
1796  if (Constructor->getDeclContext()->isDependentContext()) {
1797    // Just store the initializers as written, they will be checked during
1798    // instantiation.
1799    if (NumInitializers > 0) {
1800      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1801      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1802        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1803      memcpy(baseOrMemberInitializers, Initializers,
1804             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1805      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1806    }
1807
1808    return false;
1809  }
1810
1811  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1812
1813  // We need to build the initializer AST according to order of construction
1814  // and not what user specified in the Initializers list.
1815  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1816  if (!ClassDecl)
1817    return true;
1818
1819  bool HadError = false;
1820
1821  for (unsigned i = 0; i < NumInitializers; i++) {
1822    CXXBaseOrMemberInitializer *Member = Initializers[i];
1823
1824    if (Member->isBaseInitializer())
1825      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1826    else
1827      Info.AllBaseFields[Member->getMember()] = Member;
1828  }
1829
1830  // Keep track of the direct virtual bases.
1831  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1832  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1833       E = ClassDecl->bases_end(); I != E; ++I) {
1834    if (I->isVirtual())
1835      DirectVBases.insert(I);
1836  }
1837
1838  // Push virtual bases before others.
1839  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1840       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1841
1842    if (CXXBaseOrMemberInitializer *Value
1843        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1844      Info.AllToInit.push_back(Value);
1845    } else if (!AnyErrors) {
1846      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1847      CXXBaseOrMemberInitializer *CXXBaseInit;
1848      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1849                                       VBase, IsInheritedVirtualBase,
1850                                       CXXBaseInit)) {
1851        HadError = true;
1852        continue;
1853      }
1854
1855      Info.AllToInit.push_back(CXXBaseInit);
1856    }
1857  }
1858
1859  // Non-virtual bases.
1860  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1861       E = ClassDecl->bases_end(); Base != E; ++Base) {
1862    // Virtuals are in the virtual base list and already constructed.
1863    if (Base->isVirtual())
1864      continue;
1865
1866    if (CXXBaseOrMemberInitializer *Value
1867          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1868      Info.AllToInit.push_back(Value);
1869    } else if (!AnyErrors) {
1870      CXXBaseOrMemberInitializer *CXXBaseInit;
1871      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1872                                       Base, /*IsInheritedVirtualBase=*/false,
1873                                       CXXBaseInit)) {
1874        HadError = true;
1875        continue;
1876      }
1877
1878      Info.AllToInit.push_back(CXXBaseInit);
1879    }
1880  }
1881
1882  // Fields.
1883  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1884       E = ClassDecl->field_end(); Field != E; ++Field) {
1885    if ((*Field)->getType()->isIncompleteArrayType()) {
1886      assert(ClassDecl->hasFlexibleArrayMember() &&
1887             "Incomplete array type is not valid");
1888      continue;
1889    }
1890    if (CollectFieldInitializer(Info, *Field, *Field))
1891      HadError = true;
1892  }
1893
1894  NumInitializers = Info.AllToInit.size();
1895  if (NumInitializers > 0) {
1896    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1897    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1898      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1899    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1900           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1901    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1902
1903    // Constructors implicitly reference the base and member
1904    // destructors.
1905    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1906                                           Constructor->getParent());
1907  }
1908
1909  return HadError;
1910}
1911
1912static void *GetKeyForTopLevelField(FieldDecl *Field) {
1913  // For anonymous unions, use the class declaration as the key.
1914  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1915    if (RT->getDecl()->isAnonymousStructOrUnion())
1916      return static_cast<void *>(RT->getDecl());
1917  }
1918  return static_cast<void *>(Field);
1919}
1920
1921static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1922  return Context.getCanonicalType(BaseType).getTypePtr();
1923}
1924
1925static void *GetKeyForMember(ASTContext &Context,
1926                             CXXBaseOrMemberInitializer *Member,
1927                             bool MemberMaybeAnon = false) {
1928  if (!Member->isMemberInitializer())
1929    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1930
1931  // For fields injected into the class via declaration of an anonymous union,
1932  // use its anonymous union class declaration as the unique key.
1933  FieldDecl *Field = Member->getMember();
1934
1935  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1936  // data member of the class. Data member used in the initializer list is
1937  // in AnonUnionMember field.
1938  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1939    Field = Member->getAnonUnionMember();
1940
1941  // If the field is a member of an anonymous struct or union, our key
1942  // is the anonymous record decl that's a direct child of the class.
1943  RecordDecl *RD = Field->getParent();
1944  if (RD->isAnonymousStructOrUnion()) {
1945    while (true) {
1946      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1947      if (Parent->isAnonymousStructOrUnion())
1948        RD = Parent;
1949      else
1950        break;
1951    }
1952
1953    return static_cast<void *>(RD);
1954  }
1955
1956  return static_cast<void *>(Field);
1957}
1958
1959static void
1960DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1961                                  const CXXConstructorDecl *Constructor,
1962                                  CXXBaseOrMemberInitializer **Inits,
1963                                  unsigned NumInits) {
1964  if (Constructor->getDeclContext()->isDependentContext())
1965    return;
1966
1967  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1968        == Diagnostic::Ignored)
1969    return;
1970
1971  // Build the list of bases and members in the order that they'll
1972  // actually be initialized.  The explicit initializers should be in
1973  // this same order but may be missing things.
1974  llvm::SmallVector<const void*, 32> IdealInitKeys;
1975
1976  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1977
1978  // 1. Virtual bases.
1979  for (CXXRecordDecl::base_class_const_iterator VBase =
1980       ClassDecl->vbases_begin(),
1981       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1982    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
1983
1984  // 2. Non-virtual bases.
1985  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1986       E = ClassDecl->bases_end(); Base != E; ++Base) {
1987    if (Base->isVirtual())
1988      continue;
1989    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
1990  }
1991
1992  // 3. Direct fields.
1993  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1994       E = ClassDecl->field_end(); Field != E; ++Field)
1995    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
1996
1997  unsigned NumIdealInits = IdealInitKeys.size();
1998  unsigned IdealIndex = 0;
1999
2000  CXXBaseOrMemberInitializer *PrevInit = 0;
2001  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2002    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2003    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2004
2005    // Scan forward to try to find this initializer in the idealized
2006    // initializers list.
2007    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2008      if (InitKey == IdealInitKeys[IdealIndex])
2009        break;
2010
2011    // If we didn't find this initializer, it must be because we
2012    // scanned past it on a previous iteration.  That can only
2013    // happen if we're out of order;  emit a warning.
2014    if (IdealIndex == NumIdealInits && PrevInit) {
2015      Sema::SemaDiagnosticBuilder D =
2016        SemaRef.Diag(PrevInit->getSourceLocation(),
2017                     diag::warn_initializer_out_of_order);
2018
2019      if (PrevInit->isMemberInitializer())
2020        D << 0 << PrevInit->getMember()->getDeclName();
2021      else
2022        D << 1 << PrevInit->getBaseClassInfo()->getType();
2023
2024      if (Init->isMemberInitializer())
2025        D << 0 << Init->getMember()->getDeclName();
2026      else
2027        D << 1 << Init->getBaseClassInfo()->getType();
2028
2029      // Move back to the initializer's location in the ideal list.
2030      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2031        if (InitKey == IdealInitKeys[IdealIndex])
2032          break;
2033
2034      assert(IdealIndex != NumIdealInits &&
2035             "initializer not found in initializer list");
2036    }
2037
2038    PrevInit = Init;
2039  }
2040}
2041
2042namespace {
2043bool CheckRedundantInit(Sema &S,
2044                        CXXBaseOrMemberInitializer *Init,
2045                        CXXBaseOrMemberInitializer *&PrevInit) {
2046  if (!PrevInit) {
2047    PrevInit = Init;
2048    return false;
2049  }
2050
2051  if (FieldDecl *Field = Init->getMember())
2052    S.Diag(Init->getSourceLocation(),
2053           diag::err_multiple_mem_initialization)
2054      << Field->getDeclName()
2055      << Init->getSourceRange();
2056  else {
2057    Type *BaseClass = Init->getBaseClass();
2058    assert(BaseClass && "neither field nor base");
2059    S.Diag(Init->getSourceLocation(),
2060           diag::err_multiple_base_initialization)
2061      << QualType(BaseClass, 0)
2062      << Init->getSourceRange();
2063  }
2064  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2065    << 0 << PrevInit->getSourceRange();
2066
2067  return true;
2068}
2069
2070typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2071typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2072
2073bool CheckRedundantUnionInit(Sema &S,
2074                             CXXBaseOrMemberInitializer *Init,
2075                             RedundantUnionMap &Unions) {
2076  FieldDecl *Field = Init->getMember();
2077  RecordDecl *Parent = Field->getParent();
2078  if (!Parent->isAnonymousStructOrUnion())
2079    return false;
2080
2081  NamedDecl *Child = Field;
2082  do {
2083    if (Parent->isUnion()) {
2084      UnionEntry &En = Unions[Parent];
2085      if (En.first && En.first != Child) {
2086        S.Diag(Init->getSourceLocation(),
2087               diag::err_multiple_mem_union_initialization)
2088          << Field->getDeclName()
2089          << Init->getSourceRange();
2090        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2091          << 0 << En.second->getSourceRange();
2092        return true;
2093      } else if (!En.first) {
2094        En.first = Child;
2095        En.second = Init;
2096      }
2097    }
2098
2099    Child = Parent;
2100    Parent = cast<RecordDecl>(Parent->getDeclContext());
2101  } while (Parent->isAnonymousStructOrUnion());
2102
2103  return false;
2104}
2105}
2106
2107/// ActOnMemInitializers - Handle the member initializers for a constructor.
2108void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2109                                SourceLocation ColonLoc,
2110                                MemInitTy **meminits, unsigned NumMemInits,
2111                                bool AnyErrors) {
2112  if (!ConstructorDecl)
2113    return;
2114
2115  AdjustDeclIfTemplate(ConstructorDecl);
2116
2117  CXXConstructorDecl *Constructor
2118    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2119
2120  if (!Constructor) {
2121    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2122    return;
2123  }
2124
2125  CXXBaseOrMemberInitializer **MemInits =
2126    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2127
2128  // Mapping for the duplicate initializers check.
2129  // For member initializers, this is keyed with a FieldDecl*.
2130  // For base initializers, this is keyed with a Type*.
2131  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2132
2133  // Mapping for the inconsistent anonymous-union initializers check.
2134  RedundantUnionMap MemberUnions;
2135
2136  bool HadError = false;
2137  for (unsigned i = 0; i < NumMemInits; i++) {
2138    CXXBaseOrMemberInitializer *Init = MemInits[i];
2139
2140    // Set the source order index.
2141    Init->setSourceOrder(i);
2142
2143    if (Init->isMemberInitializer()) {
2144      FieldDecl *Field = Init->getMember();
2145      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2146          CheckRedundantUnionInit(*this, Init, MemberUnions))
2147        HadError = true;
2148    } else {
2149      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2150      if (CheckRedundantInit(*this, Init, Members[Key]))
2151        HadError = true;
2152    }
2153  }
2154
2155  if (HadError)
2156    return;
2157
2158  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2159
2160  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2161}
2162
2163void
2164Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2165                                             CXXRecordDecl *ClassDecl) {
2166  // Ignore dependent contexts.
2167  if (ClassDecl->isDependentContext())
2168    return;
2169
2170  // FIXME: all the access-control diagnostics are positioned on the
2171  // field/base declaration.  That's probably good; that said, the
2172  // user might reasonably want to know why the destructor is being
2173  // emitted, and we currently don't say.
2174
2175  // Non-static data members.
2176  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2177       E = ClassDecl->field_end(); I != E; ++I) {
2178    FieldDecl *Field = *I;
2179    if (Field->isInvalidDecl())
2180      continue;
2181    QualType FieldType = Context.getBaseElementType(Field->getType());
2182
2183    const RecordType* RT = FieldType->getAs<RecordType>();
2184    if (!RT)
2185      continue;
2186
2187    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2188    if (FieldClassDecl->hasTrivialDestructor())
2189      continue;
2190
2191    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2192    CheckDestructorAccess(Field->getLocation(), Dtor,
2193                          PDiag(diag::err_access_dtor_field)
2194                            << Field->getDeclName()
2195                            << FieldType);
2196
2197    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2198  }
2199
2200  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2201
2202  // Bases.
2203  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2204       E = ClassDecl->bases_end(); Base != E; ++Base) {
2205    // Bases are always records in a well-formed non-dependent class.
2206    const RecordType *RT = Base->getType()->getAs<RecordType>();
2207
2208    // Remember direct virtual bases.
2209    if (Base->isVirtual())
2210      DirectVirtualBases.insert(RT);
2211
2212    // Ignore trivial destructors.
2213    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2214    if (BaseClassDecl->hasTrivialDestructor())
2215      continue;
2216
2217    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2218
2219    // FIXME: caret should be on the start of the class name
2220    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2221                          PDiag(diag::err_access_dtor_base)
2222                            << Base->getType()
2223                            << Base->getSourceRange());
2224
2225    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2226  }
2227
2228  // Virtual bases.
2229  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2230       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2231
2232    // Bases are always records in a well-formed non-dependent class.
2233    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2234
2235    // Ignore direct virtual bases.
2236    if (DirectVirtualBases.count(RT))
2237      continue;
2238
2239    // Ignore trivial destructors.
2240    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2241    if (BaseClassDecl->hasTrivialDestructor())
2242      continue;
2243
2244    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2245    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2246                          PDiag(diag::err_access_dtor_vbase)
2247                            << VBase->getType());
2248
2249    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2250  }
2251}
2252
2253void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2254  if (!CDtorDecl)
2255    return;
2256
2257  if (CXXConstructorDecl *Constructor
2258      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2259    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2260}
2261
2262bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2263                                  unsigned DiagID, AbstractDiagSelID SelID) {
2264  if (SelID == -1)
2265    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2266  else
2267    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2268}
2269
2270bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2271                                  const PartialDiagnostic &PD) {
2272  if (!getLangOptions().CPlusPlus)
2273    return false;
2274
2275  if (const ArrayType *AT = Context.getAsArrayType(T))
2276    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2277
2278  if (const PointerType *PT = T->getAs<PointerType>()) {
2279    // Find the innermost pointer type.
2280    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2281      PT = T;
2282
2283    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2284      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2285  }
2286
2287  const RecordType *RT = T->getAs<RecordType>();
2288  if (!RT)
2289    return false;
2290
2291  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2292
2293  // We can't answer whether something is abstract until it has a
2294  // definition.  If it's currently being defined, we'll walk back
2295  // over all the declarations when we have a full definition.
2296  const CXXRecordDecl *Def = RD->getDefinition();
2297  if (!Def || Def->isBeingDefined())
2298    return false;
2299
2300  if (!RD->isAbstract())
2301    return false;
2302
2303  Diag(Loc, PD) << RD->getDeclName();
2304  DiagnoseAbstractType(RD);
2305
2306  return true;
2307}
2308
2309void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2310  // Check if we've already emitted the list of pure virtual functions
2311  // for this class.
2312  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2313    return;
2314
2315  CXXFinalOverriderMap FinalOverriders;
2316  RD->getFinalOverriders(FinalOverriders);
2317
2318  // Keep a set of seen pure methods so we won't diagnose the same method
2319  // more than once.
2320  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2321
2322  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2323                                   MEnd = FinalOverriders.end();
2324       M != MEnd;
2325       ++M) {
2326    for (OverridingMethods::iterator SO = M->second.begin(),
2327                                  SOEnd = M->second.end();
2328         SO != SOEnd; ++SO) {
2329      // C++ [class.abstract]p4:
2330      //   A class is abstract if it contains or inherits at least one
2331      //   pure virtual function for which the final overrider is pure
2332      //   virtual.
2333
2334      //
2335      if (SO->second.size() != 1)
2336        continue;
2337
2338      if (!SO->second.front().Method->isPure())
2339        continue;
2340
2341      if (!SeenPureMethods.insert(SO->second.front().Method))
2342        continue;
2343
2344      Diag(SO->second.front().Method->getLocation(),
2345           diag::note_pure_virtual_function)
2346        << SO->second.front().Method->getDeclName();
2347    }
2348  }
2349
2350  if (!PureVirtualClassDiagSet)
2351    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2352  PureVirtualClassDiagSet->insert(RD);
2353}
2354
2355namespace {
2356struct AbstractUsageInfo {
2357  Sema &S;
2358  CXXRecordDecl *Record;
2359  CanQualType AbstractType;
2360  bool Invalid;
2361
2362  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2363    : S(S), Record(Record),
2364      AbstractType(S.Context.getCanonicalType(
2365                   S.Context.getTypeDeclType(Record))),
2366      Invalid(false) {}
2367
2368  void DiagnoseAbstractType() {
2369    if (Invalid) return;
2370    S.DiagnoseAbstractType(Record);
2371    Invalid = true;
2372  }
2373
2374  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2375};
2376
2377struct CheckAbstractUsage {
2378  AbstractUsageInfo &Info;
2379  const NamedDecl *Ctx;
2380
2381  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2382    : Info(Info), Ctx(Ctx) {}
2383
2384  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2385    switch (TL.getTypeLocClass()) {
2386#define ABSTRACT_TYPELOC(CLASS, PARENT)
2387#define TYPELOC(CLASS, PARENT) \
2388    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2389#include "clang/AST/TypeLocNodes.def"
2390    }
2391  }
2392
2393  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2394    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2395    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2396      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2397      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2398    }
2399  }
2400
2401  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2402    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2403  }
2404
2405  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2406    // Visit the type parameters from a permissive context.
2407    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2408      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2409      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2410        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2411          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2412      // TODO: other template argument types?
2413    }
2414  }
2415
2416  // Visit pointee types from a permissive context.
2417#define CheckPolymorphic(Type) \
2418  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2419    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2420  }
2421  CheckPolymorphic(PointerTypeLoc)
2422  CheckPolymorphic(ReferenceTypeLoc)
2423  CheckPolymorphic(MemberPointerTypeLoc)
2424  CheckPolymorphic(BlockPointerTypeLoc)
2425
2426  /// Handle all the types we haven't given a more specific
2427  /// implementation for above.
2428  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2429    // Every other kind of type that we haven't called out already
2430    // that has an inner type is either (1) sugar or (2) contains that
2431    // inner type in some way as a subobject.
2432    if (TypeLoc Next = TL.getNextTypeLoc())
2433      return Visit(Next, Sel);
2434
2435    // If there's no inner type and we're in a permissive context,
2436    // don't diagnose.
2437    if (Sel == Sema::AbstractNone) return;
2438
2439    // Check whether the type matches the abstract type.
2440    QualType T = TL.getType();
2441    if (T->isArrayType()) {
2442      Sel = Sema::AbstractArrayType;
2443      T = Info.S.Context.getBaseElementType(T);
2444    }
2445    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2446    if (CT != Info.AbstractType) return;
2447
2448    // It matched; do some magic.
2449    if (Sel == Sema::AbstractArrayType) {
2450      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2451        << T << TL.getSourceRange();
2452    } else {
2453      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2454        << Sel << T << TL.getSourceRange();
2455    }
2456    Info.DiagnoseAbstractType();
2457  }
2458};
2459
2460void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2461                                  Sema::AbstractDiagSelID Sel) {
2462  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2463}
2464
2465}
2466
2467/// Check for invalid uses of an abstract type in a method declaration.
2468static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2469                                    CXXMethodDecl *MD) {
2470  // No need to do the check on definitions, which require that
2471  // the return/param types be complete.
2472  if (MD->isThisDeclarationADefinition())
2473    return;
2474
2475  // For safety's sake, just ignore it if we don't have type source
2476  // information.  This should never happen for non-implicit methods,
2477  // but...
2478  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2479    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2480}
2481
2482/// Check for invalid uses of an abstract type within a class definition.
2483static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2484                                    CXXRecordDecl *RD) {
2485  for (CXXRecordDecl::decl_iterator
2486         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2487    Decl *D = *I;
2488    if (D->isImplicit()) continue;
2489
2490    // Methods and method templates.
2491    if (isa<CXXMethodDecl>(D)) {
2492      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2493    } else if (isa<FunctionTemplateDecl>(D)) {
2494      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2495      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2496
2497    // Fields and static variables.
2498    } else if (isa<FieldDecl>(D)) {
2499      FieldDecl *FD = cast<FieldDecl>(D);
2500      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2501        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2502    } else if (isa<VarDecl>(D)) {
2503      VarDecl *VD = cast<VarDecl>(D);
2504      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2505        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2506
2507    // Nested classes and class templates.
2508    } else if (isa<CXXRecordDecl>(D)) {
2509      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2510    } else if (isa<ClassTemplateDecl>(D)) {
2511      CheckAbstractClassUsage(Info,
2512                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2513    }
2514  }
2515}
2516
2517/// \brief Perform semantic checks on a class definition that has been
2518/// completing, introducing implicitly-declared members, checking for
2519/// abstract types, etc.
2520void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2521  if (!Record)
2522    return;
2523
2524  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2525    AbstractUsageInfo Info(*this, Record);
2526    CheckAbstractClassUsage(Info, Record);
2527  }
2528
2529  // If this is not an aggregate type and has no user-declared constructor,
2530  // complain about any non-static data members of reference or const scalar
2531  // type, since they will never get initializers.
2532  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2533      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2534    bool Complained = false;
2535    for (RecordDecl::field_iterator F = Record->field_begin(),
2536                                 FEnd = Record->field_end();
2537         F != FEnd; ++F) {
2538      if (F->getType()->isReferenceType() ||
2539          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2540        if (!Complained) {
2541          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2542            << Record->getTagKind() << Record;
2543          Complained = true;
2544        }
2545
2546        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2547          << F->getType()->isReferenceType()
2548          << F->getDeclName();
2549      }
2550    }
2551  }
2552
2553  if (Record->isDynamicClass())
2554    DynamicClasses.push_back(Record);
2555}
2556
2557void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2558                                             Decl *TagDecl,
2559                                             SourceLocation LBrac,
2560                                             SourceLocation RBrac,
2561                                             AttributeList *AttrList) {
2562  if (!TagDecl)
2563    return;
2564
2565  AdjustDeclIfTemplate(TagDecl);
2566
2567  ActOnFields(S, RLoc, TagDecl,
2568              // strict aliasing violation!
2569              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2570              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2571
2572  CheckCompletedCXXClass(
2573                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2574}
2575
2576namespace {
2577  /// \brief Helper class that collects exception specifications for
2578  /// implicitly-declared special member functions.
2579  class ImplicitExceptionSpecification {
2580    ASTContext &Context;
2581    bool AllowsAllExceptions;
2582    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2583    llvm::SmallVector<QualType, 4> Exceptions;
2584
2585  public:
2586    explicit ImplicitExceptionSpecification(ASTContext &Context)
2587      : Context(Context), AllowsAllExceptions(false) { }
2588
2589    /// \brief Whether the special member function should have any
2590    /// exception specification at all.
2591    bool hasExceptionSpecification() const {
2592      return !AllowsAllExceptions;
2593    }
2594
2595    /// \brief Whether the special member function should have a
2596    /// throw(...) exception specification (a Microsoft extension).
2597    bool hasAnyExceptionSpecification() const {
2598      return false;
2599    }
2600
2601    /// \brief The number of exceptions in the exception specification.
2602    unsigned size() const { return Exceptions.size(); }
2603
2604    /// \brief The set of exceptions in the exception specification.
2605    const QualType *data() const { return Exceptions.data(); }
2606
2607    /// \brief Note that
2608    void CalledDecl(CXXMethodDecl *Method) {
2609      // If we already know that we allow all exceptions, do nothing.
2610      if (AllowsAllExceptions || !Method)
2611        return;
2612
2613      const FunctionProtoType *Proto
2614        = Method->getType()->getAs<FunctionProtoType>();
2615
2616      // If this function can throw any exceptions, make a note of that.
2617      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2618        AllowsAllExceptions = true;
2619        ExceptionsSeen.clear();
2620        Exceptions.clear();
2621        return;
2622      }
2623
2624      // Record the exceptions in this function's exception specification.
2625      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2626                                              EEnd = Proto->exception_end();
2627           E != EEnd; ++E)
2628        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2629          Exceptions.push_back(*E);
2630    }
2631  };
2632}
2633
2634
2635/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2636/// special functions, such as the default constructor, copy
2637/// constructor, or destructor, to the given C++ class (C++
2638/// [special]p1).  This routine can only be executed just before the
2639/// definition of the class is complete.
2640void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2641  if (!ClassDecl->hasUserDeclaredConstructor())
2642    ++ASTContext::NumImplicitDefaultConstructors;
2643
2644  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2645    ++ASTContext::NumImplicitCopyConstructors;
2646
2647  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2648    ++ASTContext::NumImplicitCopyAssignmentOperators;
2649
2650    // If we have a dynamic class, then the copy assignment operator may be
2651    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2652    // it shows up in the right place in the vtable and that we diagnose
2653    // problems with the implicit exception specification.
2654    if (ClassDecl->isDynamicClass())
2655      DeclareImplicitCopyAssignment(ClassDecl);
2656  }
2657
2658  if (!ClassDecl->hasUserDeclaredDestructor()) {
2659    ++ASTContext::NumImplicitDestructors;
2660
2661    // If we have a dynamic class, then the destructor may be virtual, so we
2662    // have to declare the destructor immediately. This ensures that, e.g., it
2663    // shows up in the right place in the vtable and that we diagnose problems
2664    // with the implicit exception specification.
2665    if (ClassDecl->isDynamicClass())
2666      DeclareImplicitDestructor(ClassDecl);
2667  }
2668}
2669
2670void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
2671  if (!D)
2672    return;
2673
2674  TemplateParameterList *Params = 0;
2675  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2676    Params = Template->getTemplateParameters();
2677  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2678           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2679    Params = PartialSpec->getTemplateParameters();
2680  else
2681    return;
2682
2683  for (TemplateParameterList::iterator Param = Params->begin(),
2684                                    ParamEnd = Params->end();
2685       Param != ParamEnd; ++Param) {
2686    NamedDecl *Named = cast<NamedDecl>(*Param);
2687    if (Named->getDeclName()) {
2688      S->AddDecl(Named);
2689      IdResolver.AddDecl(Named);
2690    }
2691  }
2692}
2693
2694void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2695  if (!RecordD) return;
2696  AdjustDeclIfTemplate(RecordD);
2697  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
2698  PushDeclContext(S, Record);
2699}
2700
2701void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2702  if (!RecordD) return;
2703  PopDeclContext();
2704}
2705
2706/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2707/// parsing a top-level (non-nested) C++ class, and we are now
2708/// parsing those parts of the given Method declaration that could
2709/// not be parsed earlier (C++ [class.mem]p2), such as default
2710/// arguments. This action should enter the scope of the given
2711/// Method declaration as if we had just parsed the qualified method
2712/// name. However, it should not bring the parameters into scope;
2713/// that will be performed by ActOnDelayedCXXMethodParameter.
2714void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2715}
2716
2717/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2718/// C++ method declaration. We're (re-)introducing the given
2719/// function parameter into scope for use in parsing later parts of
2720/// the method declaration. For example, we could see an
2721/// ActOnParamDefaultArgument event for this parameter.
2722void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
2723  if (!ParamD)
2724    return;
2725
2726  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
2727
2728  // If this parameter has an unparsed default argument, clear it out
2729  // to make way for the parsed default argument.
2730  if (Param->hasUnparsedDefaultArg())
2731    Param->setDefaultArg(0);
2732
2733  S->AddDecl(Param);
2734  if (Param->getDeclName())
2735    IdResolver.AddDecl(Param);
2736}
2737
2738/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2739/// processing the delayed method declaration for Method. The method
2740/// declaration is now considered finished. There may be a separate
2741/// ActOnStartOfFunctionDef action later (not necessarily
2742/// immediately!) for this method, if it was also defined inside the
2743/// class body.
2744void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2745  if (!MethodD)
2746    return;
2747
2748  AdjustDeclIfTemplate(MethodD);
2749
2750  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
2751
2752  // Now that we have our default arguments, check the constructor
2753  // again. It could produce additional diagnostics or affect whether
2754  // the class has implicitly-declared destructors, among other
2755  // things.
2756  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2757    CheckConstructor(Constructor);
2758
2759  // Check the default arguments, which we may have added.
2760  if (!Method->isInvalidDecl())
2761    CheckCXXDefaultArguments(Method);
2762}
2763
2764/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2765/// the well-formedness of the constructor declarator @p D with type @p
2766/// R. If there are any errors in the declarator, this routine will
2767/// emit diagnostics and set the invalid bit to true.  In any case, the type
2768/// will be updated to reflect a well-formed type for the constructor and
2769/// returned.
2770QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2771                                          StorageClass &SC) {
2772  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2773
2774  // C++ [class.ctor]p3:
2775  //   A constructor shall not be virtual (10.3) or static (9.4). A
2776  //   constructor can be invoked for a const, volatile or const
2777  //   volatile object. A constructor shall not be declared const,
2778  //   volatile, or const volatile (9.3.2).
2779  if (isVirtual) {
2780    if (!D.isInvalidType())
2781      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2782        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2783        << SourceRange(D.getIdentifierLoc());
2784    D.setInvalidType();
2785  }
2786  if (SC == SC_Static) {
2787    if (!D.isInvalidType())
2788      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2789        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2790        << SourceRange(D.getIdentifierLoc());
2791    D.setInvalidType();
2792    SC = SC_None;
2793  }
2794
2795  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2796  if (FTI.TypeQuals != 0) {
2797    if (FTI.TypeQuals & Qualifiers::Const)
2798      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2799        << "const" << SourceRange(D.getIdentifierLoc());
2800    if (FTI.TypeQuals & Qualifiers::Volatile)
2801      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2802        << "volatile" << SourceRange(D.getIdentifierLoc());
2803    if (FTI.TypeQuals & Qualifiers::Restrict)
2804      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2805        << "restrict" << SourceRange(D.getIdentifierLoc());
2806  }
2807
2808  // Rebuild the function type "R" without any type qualifiers (in
2809  // case any of the errors above fired) and with "void" as the
2810  // return type, since constructors don't have return types.
2811  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2812  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2813                                 Proto->getNumArgs(),
2814                                 Proto->isVariadic(), 0,
2815                                 Proto->hasExceptionSpec(),
2816                                 Proto->hasAnyExceptionSpec(),
2817                                 Proto->getNumExceptions(),
2818                                 Proto->exception_begin(),
2819                                 Proto->getExtInfo());
2820}
2821
2822/// CheckConstructor - Checks a fully-formed constructor for
2823/// well-formedness, issuing any diagnostics required. Returns true if
2824/// the constructor declarator is invalid.
2825void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2826  CXXRecordDecl *ClassDecl
2827    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2828  if (!ClassDecl)
2829    return Constructor->setInvalidDecl();
2830
2831  // C++ [class.copy]p3:
2832  //   A declaration of a constructor for a class X is ill-formed if
2833  //   its first parameter is of type (optionally cv-qualified) X and
2834  //   either there are no other parameters or else all other
2835  //   parameters have default arguments.
2836  if (!Constructor->isInvalidDecl() &&
2837      ((Constructor->getNumParams() == 1) ||
2838       (Constructor->getNumParams() > 1 &&
2839        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2840      Constructor->getTemplateSpecializationKind()
2841                                              != TSK_ImplicitInstantiation) {
2842    QualType ParamType = Constructor->getParamDecl(0)->getType();
2843    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2844    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2845      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2846      const char *ConstRef
2847        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2848                                                        : " const &";
2849      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2850        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2851
2852      // FIXME: Rather that making the constructor invalid, we should endeavor
2853      // to fix the type.
2854      Constructor->setInvalidDecl();
2855    }
2856  }
2857}
2858
2859/// CheckDestructor - Checks a fully-formed destructor definition for
2860/// well-formedness, issuing any diagnostics required.  Returns true
2861/// on error.
2862bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2863  CXXRecordDecl *RD = Destructor->getParent();
2864
2865  if (Destructor->isVirtual()) {
2866    SourceLocation Loc;
2867
2868    if (!Destructor->isImplicit())
2869      Loc = Destructor->getLocation();
2870    else
2871      Loc = RD->getLocation();
2872
2873    // If we have a virtual destructor, look up the deallocation function
2874    FunctionDecl *OperatorDelete = 0;
2875    DeclarationName Name =
2876    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2877    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2878      return true;
2879
2880    MarkDeclarationReferenced(Loc, OperatorDelete);
2881
2882    Destructor->setOperatorDelete(OperatorDelete);
2883  }
2884
2885  return false;
2886}
2887
2888static inline bool
2889FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2890  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2891          FTI.ArgInfo[0].Param &&
2892          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
2893}
2894
2895/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2896/// the well-formednes of the destructor declarator @p D with type @p
2897/// R. If there are any errors in the declarator, this routine will
2898/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2899/// will be updated to reflect a well-formed type for the destructor and
2900/// returned.
2901QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
2902                                         StorageClass& SC) {
2903  // C++ [class.dtor]p1:
2904  //   [...] A typedef-name that names a class is a class-name
2905  //   (7.1.3); however, a typedef-name that names a class shall not
2906  //   be used as the identifier in the declarator for a destructor
2907  //   declaration.
2908  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2909  if (isa<TypedefType>(DeclaratorType))
2910    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2911      << DeclaratorType;
2912
2913  // C++ [class.dtor]p2:
2914  //   A destructor is used to destroy objects of its class type. A
2915  //   destructor takes no parameters, and no return type can be
2916  //   specified for it (not even void). The address of a destructor
2917  //   shall not be taken. A destructor shall not be static. A
2918  //   destructor can be invoked for a const, volatile or const
2919  //   volatile object. A destructor shall not be declared const,
2920  //   volatile or const volatile (9.3.2).
2921  if (SC == SC_Static) {
2922    if (!D.isInvalidType())
2923      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2924        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2925        << SourceRange(D.getIdentifierLoc())
2926        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2927
2928    SC = SC_None;
2929  }
2930  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2931    // Destructors don't have return types, but the parser will
2932    // happily parse something like:
2933    //
2934    //   class X {
2935    //     float ~X();
2936    //   };
2937    //
2938    // The return type will be eliminated later.
2939    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2940      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2941      << SourceRange(D.getIdentifierLoc());
2942  }
2943
2944  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2945  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2946    if (FTI.TypeQuals & Qualifiers::Const)
2947      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2948        << "const" << SourceRange(D.getIdentifierLoc());
2949    if (FTI.TypeQuals & Qualifiers::Volatile)
2950      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2951        << "volatile" << SourceRange(D.getIdentifierLoc());
2952    if (FTI.TypeQuals & Qualifiers::Restrict)
2953      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2954        << "restrict" << SourceRange(D.getIdentifierLoc());
2955    D.setInvalidType();
2956  }
2957
2958  // Make sure we don't have any parameters.
2959  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2960    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2961
2962    // Delete the parameters.
2963    FTI.freeArgs();
2964    D.setInvalidType();
2965  }
2966
2967  // Make sure the destructor isn't variadic.
2968  if (FTI.isVariadic) {
2969    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2970    D.setInvalidType();
2971  }
2972
2973  // Rebuild the function type "R" without any type qualifiers or
2974  // parameters (in case any of the errors above fired) and with
2975  // "void" as the return type, since destructors don't have return
2976  // types.
2977  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2978  if (!Proto)
2979    return QualType();
2980
2981  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2982                                 Proto->hasExceptionSpec(),
2983                                 Proto->hasAnyExceptionSpec(),
2984                                 Proto->getNumExceptions(),
2985                                 Proto->exception_begin(),
2986                                 Proto->getExtInfo());
2987}
2988
2989/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2990/// well-formednes of the conversion function declarator @p D with
2991/// type @p R. If there are any errors in the declarator, this routine
2992/// will emit diagnostics and return true. Otherwise, it will return
2993/// false. Either way, the type @p R will be updated to reflect a
2994/// well-formed type for the conversion operator.
2995void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2996                                     StorageClass& SC) {
2997  // C++ [class.conv.fct]p1:
2998  //   Neither parameter types nor return type can be specified. The
2999  //   type of a conversion function (8.3.5) is "function taking no
3000  //   parameter returning conversion-type-id."
3001  if (SC == SC_Static) {
3002    if (!D.isInvalidType())
3003      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3004        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3005        << SourceRange(D.getIdentifierLoc());
3006    D.setInvalidType();
3007    SC = SC_None;
3008  }
3009
3010  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3011
3012  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3013    // Conversion functions don't have return types, but the parser will
3014    // happily parse something like:
3015    //
3016    //   class X {
3017    //     float operator bool();
3018    //   };
3019    //
3020    // The return type will be changed later anyway.
3021    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3022      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3023      << SourceRange(D.getIdentifierLoc());
3024    D.setInvalidType();
3025  }
3026
3027  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3028
3029  // Make sure we don't have any parameters.
3030  if (Proto->getNumArgs() > 0) {
3031    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3032
3033    // Delete the parameters.
3034    D.getTypeObject(0).Fun.freeArgs();
3035    D.setInvalidType();
3036  } else if (Proto->isVariadic()) {
3037    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3038    D.setInvalidType();
3039  }
3040
3041  // Diagnose "&operator bool()" and other such nonsense.  This
3042  // is actually a gcc extension which we don't support.
3043  if (Proto->getResultType() != ConvType) {
3044    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3045      << Proto->getResultType();
3046    D.setInvalidType();
3047    ConvType = Proto->getResultType();
3048  }
3049
3050  // C++ [class.conv.fct]p4:
3051  //   The conversion-type-id shall not represent a function type nor
3052  //   an array type.
3053  if (ConvType->isArrayType()) {
3054    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3055    ConvType = Context.getPointerType(ConvType);
3056    D.setInvalidType();
3057  } else if (ConvType->isFunctionType()) {
3058    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3059    ConvType = Context.getPointerType(ConvType);
3060    D.setInvalidType();
3061  }
3062
3063  // Rebuild the function type "R" without any parameters (in case any
3064  // of the errors above fired) and with the conversion type as the
3065  // return type.
3066  if (D.isInvalidType()) {
3067    R = Context.getFunctionType(ConvType, 0, 0, false,
3068                                Proto->getTypeQuals(),
3069                                Proto->hasExceptionSpec(),
3070                                Proto->hasAnyExceptionSpec(),
3071                                Proto->getNumExceptions(),
3072                                Proto->exception_begin(),
3073                                Proto->getExtInfo());
3074  }
3075
3076  // C++0x explicit conversion operators.
3077  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3078    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3079         diag::warn_explicit_conversion_functions)
3080      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3081}
3082
3083/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3084/// the declaration of the given C++ conversion function. This routine
3085/// is responsible for recording the conversion function in the C++
3086/// class, if possible.
3087Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3088  assert(Conversion && "Expected to receive a conversion function declaration");
3089
3090  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3091
3092  // Make sure we aren't redeclaring the conversion function.
3093  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3094
3095  // C++ [class.conv.fct]p1:
3096  //   [...] A conversion function is never used to convert a
3097  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3098  //   same object type (or a reference to it), to a (possibly
3099  //   cv-qualified) base class of that type (or a reference to it),
3100  //   or to (possibly cv-qualified) void.
3101  // FIXME: Suppress this warning if the conversion function ends up being a
3102  // virtual function that overrides a virtual function in a base class.
3103  QualType ClassType
3104    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3105  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3106    ConvType = ConvTypeRef->getPointeeType();
3107  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3108      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3109    /* Suppress diagnostics for instantiations. */;
3110  else if (ConvType->isRecordType()) {
3111    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3112    if (ConvType == ClassType)
3113      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3114        << ClassType;
3115    else if (IsDerivedFrom(ClassType, ConvType))
3116      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3117        <<  ClassType << ConvType;
3118  } else if (ConvType->isVoidType()) {
3119    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3120      << ClassType << ConvType;
3121  }
3122
3123  if (FunctionTemplateDecl *ConversionTemplate
3124                                = Conversion->getDescribedFunctionTemplate())
3125    return ConversionTemplate;
3126
3127  return Conversion;
3128}
3129
3130//===----------------------------------------------------------------------===//
3131// Namespace Handling
3132//===----------------------------------------------------------------------===//
3133
3134
3135
3136/// ActOnStartNamespaceDef - This is called at the start of a namespace
3137/// definition.
3138Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3139                                   SourceLocation InlineLoc,
3140                                   SourceLocation IdentLoc,
3141                                   IdentifierInfo *II,
3142                                   SourceLocation LBrace,
3143                                   AttributeList *AttrList) {
3144  // anonymous namespace starts at its left brace
3145  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3146    (II ? IdentLoc : LBrace) , II);
3147  Namespc->setLBracLoc(LBrace);
3148  Namespc->setInline(InlineLoc.isValid());
3149
3150  Scope *DeclRegionScope = NamespcScope->getParent();
3151
3152  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3153
3154  if (const VisibilityAttr *attr = Namespc->getAttr<VisibilityAttr>())
3155    PushVisibilityAttr(attr);
3156
3157  if (II) {
3158    // C++ [namespace.def]p2:
3159    // The identifier in an original-namespace-definition shall not have been
3160    // previously defined in the declarative region in which the
3161    // original-namespace-definition appears. The identifier in an
3162    // original-namespace-definition is the name of the namespace. Subsequently
3163    // in that declarative region, it is treated as an original-namespace-name.
3164
3165    NamedDecl *PrevDecl
3166      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3167                         ForRedeclaration);
3168
3169    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3170      // This is an extended namespace definition.
3171      if (Namespc->isInline() != OrigNS->isInline()) {
3172        // inline-ness must match
3173        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3174          << Namespc->isInline();
3175        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3176        Namespc->setInvalidDecl();
3177        // Recover by ignoring the new namespace's inline status.
3178        Namespc->setInline(OrigNS->isInline());
3179      }
3180
3181      // Attach this namespace decl to the chain of extended namespace
3182      // definitions.
3183      OrigNS->setNextNamespace(Namespc);
3184      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3185
3186      // Remove the previous declaration from the scope.
3187      if (DeclRegionScope->isDeclScope(OrigNS)) {
3188        IdResolver.RemoveDecl(OrigNS);
3189        DeclRegionScope->RemoveDecl(OrigNS);
3190      }
3191    } else if (PrevDecl) {
3192      // This is an invalid name redefinition.
3193      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3194       << Namespc->getDeclName();
3195      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3196      Namespc->setInvalidDecl();
3197      // Continue on to push Namespc as current DeclContext and return it.
3198    } else if (II->isStr("std") &&
3199               CurContext->getRedeclContext()->isTranslationUnit()) {
3200      // This is the first "real" definition of the namespace "std", so update
3201      // our cache of the "std" namespace to point at this definition.
3202      if (NamespaceDecl *StdNS = getStdNamespace()) {
3203        // We had already defined a dummy namespace "std". Link this new
3204        // namespace definition to the dummy namespace "std".
3205        StdNS->setNextNamespace(Namespc);
3206        StdNS->setLocation(IdentLoc);
3207        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3208      }
3209
3210      // Make our StdNamespace cache point at the first real definition of the
3211      // "std" namespace.
3212      StdNamespace = Namespc;
3213    }
3214
3215    PushOnScopeChains(Namespc, DeclRegionScope);
3216  } else {
3217    // Anonymous namespaces.
3218    assert(Namespc->isAnonymousNamespace());
3219
3220    // Link the anonymous namespace into its parent.
3221    NamespaceDecl *PrevDecl;
3222    DeclContext *Parent = CurContext->getRedeclContext();
3223    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3224      PrevDecl = TU->getAnonymousNamespace();
3225      TU->setAnonymousNamespace(Namespc);
3226    } else {
3227      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3228      PrevDecl = ND->getAnonymousNamespace();
3229      ND->setAnonymousNamespace(Namespc);
3230    }
3231
3232    // Link the anonymous namespace with its previous declaration.
3233    if (PrevDecl) {
3234      assert(PrevDecl->isAnonymousNamespace());
3235      assert(!PrevDecl->getNextNamespace());
3236      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3237      PrevDecl->setNextNamespace(Namespc);
3238
3239      if (Namespc->isInline() != PrevDecl->isInline()) {
3240        // inline-ness must match
3241        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3242          << Namespc->isInline();
3243        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3244        Namespc->setInvalidDecl();
3245        // Recover by ignoring the new namespace's inline status.
3246        Namespc->setInline(PrevDecl->isInline());
3247      }
3248    }
3249
3250    CurContext->addDecl(Namespc);
3251
3252    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3253    //   behaves as if it were replaced by
3254    //     namespace unique { /* empty body */ }
3255    //     using namespace unique;
3256    //     namespace unique { namespace-body }
3257    //   where all occurrences of 'unique' in a translation unit are
3258    //   replaced by the same identifier and this identifier differs
3259    //   from all other identifiers in the entire program.
3260
3261    // We just create the namespace with an empty name and then add an
3262    // implicit using declaration, just like the standard suggests.
3263    //
3264    // CodeGen enforces the "universally unique" aspect by giving all
3265    // declarations semantically contained within an anonymous
3266    // namespace internal linkage.
3267
3268    if (!PrevDecl) {
3269      UsingDirectiveDecl* UD
3270        = UsingDirectiveDecl::Create(Context, CurContext,
3271                                     /* 'using' */ LBrace,
3272                                     /* 'namespace' */ SourceLocation(),
3273                                     /* qualifier */ SourceRange(),
3274                                     /* NNS */ NULL,
3275                                     /* identifier */ SourceLocation(),
3276                                     Namespc,
3277                                     /* Ancestor */ CurContext);
3278      UD->setImplicit();
3279      CurContext->addDecl(UD);
3280    }
3281  }
3282
3283  // Although we could have an invalid decl (i.e. the namespace name is a
3284  // redefinition), push it as current DeclContext and try to continue parsing.
3285  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3286  // for the namespace has the declarations that showed up in that particular
3287  // namespace definition.
3288  PushDeclContext(NamespcScope, Namespc);
3289  return Namespc;
3290}
3291
3292/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3293/// is a namespace alias, returns the namespace it points to.
3294static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3295  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3296    return AD->getNamespace();
3297  return dyn_cast_or_null<NamespaceDecl>(D);
3298}
3299
3300/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3301/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3302void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3303  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3304  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3305  Namespc->setRBracLoc(RBrace);
3306  PopDeclContext();
3307  if (Namespc->hasAttr<VisibilityAttr>())
3308    PopPragmaVisibility();
3309}
3310
3311CXXRecordDecl *Sema::getStdBadAlloc() const {
3312  return cast_or_null<CXXRecordDecl>(
3313                                  StdBadAlloc.get(Context.getExternalSource()));
3314}
3315
3316NamespaceDecl *Sema::getStdNamespace() const {
3317  return cast_or_null<NamespaceDecl>(
3318                                 StdNamespace.get(Context.getExternalSource()));
3319}
3320
3321/// \brief Retrieve the special "std" namespace, which may require us to
3322/// implicitly define the namespace.
3323NamespaceDecl *Sema::getOrCreateStdNamespace() {
3324  if (!StdNamespace) {
3325    // The "std" namespace has not yet been defined, so build one implicitly.
3326    StdNamespace = NamespaceDecl::Create(Context,
3327                                         Context.getTranslationUnitDecl(),
3328                                         SourceLocation(),
3329                                         &PP.getIdentifierTable().get("std"));
3330    getStdNamespace()->setImplicit(true);
3331  }
3332
3333  return getStdNamespace();
3334}
3335
3336Decl *Sema::ActOnUsingDirective(Scope *S,
3337                                          SourceLocation UsingLoc,
3338                                          SourceLocation NamespcLoc,
3339                                          CXXScopeSpec &SS,
3340                                          SourceLocation IdentLoc,
3341                                          IdentifierInfo *NamespcName,
3342                                          AttributeList *AttrList) {
3343  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3344  assert(NamespcName && "Invalid NamespcName.");
3345  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3346  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3347
3348  UsingDirectiveDecl *UDir = 0;
3349  NestedNameSpecifier *Qualifier = 0;
3350  if (SS.isSet())
3351    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3352
3353  // Lookup namespace name.
3354  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3355  LookupParsedName(R, S, &SS);
3356  if (R.isAmbiguous())
3357    return 0;
3358
3359  if (R.empty()) {
3360    // Allow "using namespace std;" or "using namespace ::std;" even if
3361    // "std" hasn't been defined yet, for GCC compatibility.
3362    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3363        NamespcName->isStr("std")) {
3364      Diag(IdentLoc, diag::ext_using_undefined_std);
3365      R.addDecl(getOrCreateStdNamespace());
3366      R.resolveKind();
3367    }
3368    // Otherwise, attempt typo correction.
3369    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3370                                                       CTC_NoKeywords, 0)) {
3371      if (R.getAsSingle<NamespaceDecl>() ||
3372          R.getAsSingle<NamespaceAliasDecl>()) {
3373        if (DeclContext *DC = computeDeclContext(SS, false))
3374          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3375            << NamespcName << DC << Corrected << SS.getRange()
3376            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3377        else
3378          Diag(IdentLoc, diag::err_using_directive_suggest)
3379            << NamespcName << Corrected
3380            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3381        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3382          << Corrected;
3383
3384        NamespcName = Corrected.getAsIdentifierInfo();
3385      } else {
3386        R.clear();
3387        R.setLookupName(NamespcName);
3388      }
3389    }
3390  }
3391
3392  if (!R.empty()) {
3393    NamedDecl *Named = R.getFoundDecl();
3394    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3395        && "expected namespace decl");
3396    // C++ [namespace.udir]p1:
3397    //   A using-directive specifies that the names in the nominated
3398    //   namespace can be used in the scope in which the
3399    //   using-directive appears after the using-directive. During
3400    //   unqualified name lookup (3.4.1), the names appear as if they
3401    //   were declared in the nearest enclosing namespace which
3402    //   contains both the using-directive and the nominated
3403    //   namespace. [Note: in this context, "contains" means "contains
3404    //   directly or indirectly". ]
3405
3406    // Find enclosing context containing both using-directive and
3407    // nominated namespace.
3408    NamespaceDecl *NS = getNamespaceDecl(Named);
3409    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3410    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3411      CommonAncestor = CommonAncestor->getParent();
3412
3413    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3414                                      SS.getRange(),
3415                                      (NestedNameSpecifier *)SS.getScopeRep(),
3416                                      IdentLoc, Named, CommonAncestor);
3417    PushUsingDirective(S, UDir);
3418  } else {
3419    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3420  }
3421
3422  // FIXME: We ignore attributes for now.
3423  delete AttrList;
3424  return UDir;
3425}
3426
3427void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3428  // If scope has associated entity, then using directive is at namespace
3429  // or translation unit scope. We add UsingDirectiveDecls, into
3430  // it's lookup structure.
3431  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3432    Ctx->addDecl(UDir);
3433  else
3434    // Otherwise it is block-sope. using-directives will affect lookup
3435    // only to the end of scope.
3436    S->PushUsingDirective(UDir);
3437}
3438
3439
3440Decl *Sema::ActOnUsingDeclaration(Scope *S,
3441                                            AccessSpecifier AS,
3442                                            bool HasUsingKeyword,
3443                                            SourceLocation UsingLoc,
3444                                            CXXScopeSpec &SS,
3445                                            UnqualifiedId &Name,
3446                                            AttributeList *AttrList,
3447                                            bool IsTypeName,
3448                                            SourceLocation TypenameLoc) {
3449  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3450
3451  switch (Name.getKind()) {
3452  case UnqualifiedId::IK_Identifier:
3453  case UnqualifiedId::IK_OperatorFunctionId:
3454  case UnqualifiedId::IK_LiteralOperatorId:
3455  case UnqualifiedId::IK_ConversionFunctionId:
3456    break;
3457
3458  case UnqualifiedId::IK_ConstructorName:
3459  case UnqualifiedId::IK_ConstructorTemplateId:
3460    // C++0x inherited constructors.
3461    if (getLangOptions().CPlusPlus0x) break;
3462
3463    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3464      << SS.getRange();
3465    return 0;
3466
3467  case UnqualifiedId::IK_DestructorName:
3468    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3469      << SS.getRange();
3470    return 0;
3471
3472  case UnqualifiedId::IK_TemplateId:
3473    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3474      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3475    return 0;
3476  }
3477
3478  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3479  DeclarationName TargetName = TargetNameInfo.getName();
3480  if (!TargetName)
3481    return 0;
3482
3483  // Warn about using declarations.
3484  // TODO: store that the declaration was written without 'using' and
3485  // talk about access decls instead of using decls in the
3486  // diagnostics.
3487  if (!HasUsingKeyword) {
3488    UsingLoc = Name.getSourceRange().getBegin();
3489
3490    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3491      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3492  }
3493
3494  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3495                                        TargetNameInfo, AttrList,
3496                                        /* IsInstantiation */ false,
3497                                        IsTypeName, TypenameLoc);
3498  if (UD)
3499    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3500
3501  return UD;
3502}
3503
3504/// \brief Determine whether a using declaration considers the given
3505/// declarations as "equivalent", e.g., if they are redeclarations of
3506/// the same entity or are both typedefs of the same type.
3507static bool
3508IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3509                         bool &SuppressRedeclaration) {
3510  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3511    SuppressRedeclaration = false;
3512    return true;
3513  }
3514
3515  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3516    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3517      SuppressRedeclaration = true;
3518      return Context.hasSameType(TD1->getUnderlyingType(),
3519                                 TD2->getUnderlyingType());
3520    }
3521
3522  return false;
3523}
3524
3525
3526/// Determines whether to create a using shadow decl for a particular
3527/// decl, given the set of decls existing prior to this using lookup.
3528bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3529                                const LookupResult &Previous) {
3530  // Diagnose finding a decl which is not from a base class of the
3531  // current class.  We do this now because there are cases where this
3532  // function will silently decide not to build a shadow decl, which
3533  // will pre-empt further diagnostics.
3534  //
3535  // We don't need to do this in C++0x because we do the check once on
3536  // the qualifier.
3537  //
3538  // FIXME: diagnose the following if we care enough:
3539  //   struct A { int foo; };
3540  //   struct B : A { using A::foo; };
3541  //   template <class T> struct C : A {};
3542  //   template <class T> struct D : C<T> { using B::foo; } // <---
3543  // This is invalid (during instantiation) in C++03 because B::foo
3544  // resolves to the using decl in B, which is not a base class of D<T>.
3545  // We can't diagnose it immediately because C<T> is an unknown
3546  // specialization.  The UsingShadowDecl in D<T> then points directly
3547  // to A::foo, which will look well-formed when we instantiate.
3548  // The right solution is to not collapse the shadow-decl chain.
3549  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3550    DeclContext *OrigDC = Orig->getDeclContext();
3551
3552    // Handle enums and anonymous structs.
3553    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3554    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3555    while (OrigRec->isAnonymousStructOrUnion())
3556      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3557
3558    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3559      if (OrigDC == CurContext) {
3560        Diag(Using->getLocation(),
3561             diag::err_using_decl_nested_name_specifier_is_current_class)
3562          << Using->getNestedNameRange();
3563        Diag(Orig->getLocation(), diag::note_using_decl_target);
3564        return true;
3565      }
3566
3567      Diag(Using->getNestedNameRange().getBegin(),
3568           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3569        << Using->getTargetNestedNameDecl()
3570        << cast<CXXRecordDecl>(CurContext)
3571        << Using->getNestedNameRange();
3572      Diag(Orig->getLocation(), diag::note_using_decl_target);
3573      return true;
3574    }
3575  }
3576
3577  if (Previous.empty()) return false;
3578
3579  NamedDecl *Target = Orig;
3580  if (isa<UsingShadowDecl>(Target))
3581    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3582
3583  // If the target happens to be one of the previous declarations, we
3584  // don't have a conflict.
3585  //
3586  // FIXME: but we might be increasing its access, in which case we
3587  // should redeclare it.
3588  NamedDecl *NonTag = 0, *Tag = 0;
3589  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3590         I != E; ++I) {
3591    NamedDecl *D = (*I)->getUnderlyingDecl();
3592    bool Result;
3593    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3594      return Result;
3595
3596    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3597  }
3598
3599  if (Target->isFunctionOrFunctionTemplate()) {
3600    FunctionDecl *FD;
3601    if (isa<FunctionTemplateDecl>(Target))
3602      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3603    else
3604      FD = cast<FunctionDecl>(Target);
3605
3606    NamedDecl *OldDecl = 0;
3607    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3608    case Ovl_Overload:
3609      return false;
3610
3611    case Ovl_NonFunction:
3612      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3613      break;
3614
3615    // We found a decl with the exact signature.
3616    case Ovl_Match:
3617      // If we're in a record, we want to hide the target, so we
3618      // return true (without a diagnostic) to tell the caller not to
3619      // build a shadow decl.
3620      if (CurContext->isRecord())
3621        return true;
3622
3623      // If we're not in a record, this is an error.
3624      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3625      break;
3626    }
3627
3628    Diag(Target->getLocation(), diag::note_using_decl_target);
3629    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3630    return true;
3631  }
3632
3633  // Target is not a function.
3634
3635  if (isa<TagDecl>(Target)) {
3636    // No conflict between a tag and a non-tag.
3637    if (!Tag) return false;
3638
3639    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3640    Diag(Target->getLocation(), diag::note_using_decl_target);
3641    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3642    return true;
3643  }
3644
3645  // No conflict between a tag and a non-tag.
3646  if (!NonTag) return false;
3647
3648  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3649  Diag(Target->getLocation(), diag::note_using_decl_target);
3650  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3651  return true;
3652}
3653
3654/// Builds a shadow declaration corresponding to a 'using' declaration.
3655UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3656                                            UsingDecl *UD,
3657                                            NamedDecl *Orig) {
3658
3659  // If we resolved to another shadow declaration, just coalesce them.
3660  NamedDecl *Target = Orig;
3661  if (isa<UsingShadowDecl>(Target)) {
3662    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3663    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3664  }
3665
3666  UsingShadowDecl *Shadow
3667    = UsingShadowDecl::Create(Context, CurContext,
3668                              UD->getLocation(), UD, Target);
3669  UD->addShadowDecl(Shadow);
3670
3671  Shadow->setAccess(UD->getAccess());
3672  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3673    Shadow->setInvalidDecl();
3674
3675  if (S)
3676    PushOnScopeChains(Shadow, S);
3677  else
3678    CurContext->addDecl(Shadow);
3679
3680
3681  return Shadow;
3682}
3683
3684/// Hides a using shadow declaration.  This is required by the current
3685/// using-decl implementation when a resolvable using declaration in a
3686/// class is followed by a declaration which would hide or override
3687/// one or more of the using decl's targets; for example:
3688///
3689///   struct Base { void foo(int); };
3690///   struct Derived : Base {
3691///     using Base::foo;
3692///     void foo(int);
3693///   };
3694///
3695/// The governing language is C++03 [namespace.udecl]p12:
3696///
3697///   When a using-declaration brings names from a base class into a
3698///   derived class scope, member functions in the derived class
3699///   override and/or hide member functions with the same name and
3700///   parameter types in a base class (rather than conflicting).
3701///
3702/// There are two ways to implement this:
3703///   (1) optimistically create shadow decls when they're not hidden
3704///       by existing declarations, or
3705///   (2) don't create any shadow decls (or at least don't make them
3706///       visible) until we've fully parsed/instantiated the class.
3707/// The problem with (1) is that we might have to retroactively remove
3708/// a shadow decl, which requires several O(n) operations because the
3709/// decl structures are (very reasonably) not designed for removal.
3710/// (2) avoids this but is very fiddly and phase-dependent.
3711void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3712  if (Shadow->getDeclName().getNameKind() ==
3713        DeclarationName::CXXConversionFunctionName)
3714    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3715
3716  // Remove it from the DeclContext...
3717  Shadow->getDeclContext()->removeDecl(Shadow);
3718
3719  // ...and the scope, if applicable...
3720  if (S) {
3721    S->RemoveDecl(Shadow);
3722    IdResolver.RemoveDecl(Shadow);
3723  }
3724
3725  // ...and the using decl.
3726  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3727
3728  // TODO: complain somehow if Shadow was used.  It shouldn't
3729  // be possible for this to happen, because...?
3730}
3731
3732/// Builds a using declaration.
3733///
3734/// \param IsInstantiation - Whether this call arises from an
3735///   instantiation of an unresolved using declaration.  We treat
3736///   the lookup differently for these declarations.
3737NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3738                                       SourceLocation UsingLoc,
3739                                       CXXScopeSpec &SS,
3740                                       const DeclarationNameInfo &NameInfo,
3741                                       AttributeList *AttrList,
3742                                       bool IsInstantiation,
3743                                       bool IsTypeName,
3744                                       SourceLocation TypenameLoc) {
3745  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3746  SourceLocation IdentLoc = NameInfo.getLoc();
3747  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3748
3749  // FIXME: We ignore attributes for now.
3750  delete AttrList;
3751
3752  if (SS.isEmpty()) {
3753    Diag(IdentLoc, diag::err_using_requires_qualname);
3754    return 0;
3755  }
3756
3757  // Do the redeclaration lookup in the current scope.
3758  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
3759                        ForRedeclaration);
3760  Previous.setHideTags(false);
3761  if (S) {
3762    LookupName(Previous, S);
3763
3764    // It is really dumb that we have to do this.
3765    LookupResult::Filter F = Previous.makeFilter();
3766    while (F.hasNext()) {
3767      NamedDecl *D = F.next();
3768      if (!isDeclInScope(D, CurContext, S))
3769        F.erase();
3770    }
3771    F.done();
3772  } else {
3773    assert(IsInstantiation && "no scope in non-instantiation");
3774    assert(CurContext->isRecord() && "scope not record in instantiation");
3775    LookupQualifiedName(Previous, CurContext);
3776  }
3777
3778  NestedNameSpecifier *NNS =
3779    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3780
3781  // Check for invalid redeclarations.
3782  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3783    return 0;
3784
3785  // Check for bad qualifiers.
3786  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3787    return 0;
3788
3789  DeclContext *LookupContext = computeDeclContext(SS);
3790  NamedDecl *D;
3791  if (!LookupContext) {
3792    if (IsTypeName) {
3793      // FIXME: not all declaration name kinds are legal here
3794      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3795                                              UsingLoc, TypenameLoc,
3796                                              SS.getRange(), NNS,
3797                                              IdentLoc, NameInfo.getName());
3798    } else {
3799      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3800                                           UsingLoc, SS.getRange(),
3801                                           NNS, NameInfo);
3802    }
3803  } else {
3804    D = UsingDecl::Create(Context, CurContext,
3805                          SS.getRange(), UsingLoc, NNS, NameInfo,
3806                          IsTypeName);
3807  }
3808  D->setAccess(AS);
3809  CurContext->addDecl(D);
3810
3811  if (!LookupContext) return D;
3812  UsingDecl *UD = cast<UsingDecl>(D);
3813
3814  if (RequireCompleteDeclContext(SS, LookupContext)) {
3815    UD->setInvalidDecl();
3816    return UD;
3817  }
3818
3819  // Look up the target name.
3820
3821  LookupResult R(*this, NameInfo, LookupOrdinaryName);
3822
3823  // Unlike most lookups, we don't always want to hide tag
3824  // declarations: tag names are visible through the using declaration
3825  // even if hidden by ordinary names, *except* in a dependent context
3826  // where it's important for the sanity of two-phase lookup.
3827  if (!IsInstantiation)
3828    R.setHideTags(false);
3829
3830  LookupQualifiedName(R, LookupContext);
3831
3832  if (R.empty()) {
3833    Diag(IdentLoc, diag::err_no_member)
3834      << NameInfo.getName() << LookupContext << SS.getRange();
3835    UD->setInvalidDecl();
3836    return UD;
3837  }
3838
3839  if (R.isAmbiguous()) {
3840    UD->setInvalidDecl();
3841    return UD;
3842  }
3843
3844  if (IsTypeName) {
3845    // If we asked for a typename and got a non-type decl, error out.
3846    if (!R.getAsSingle<TypeDecl>()) {
3847      Diag(IdentLoc, diag::err_using_typename_non_type);
3848      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3849        Diag((*I)->getUnderlyingDecl()->getLocation(),
3850             diag::note_using_decl_target);
3851      UD->setInvalidDecl();
3852      return UD;
3853    }
3854  } else {
3855    // If we asked for a non-typename and we got a type, error out,
3856    // but only if this is an instantiation of an unresolved using
3857    // decl.  Otherwise just silently find the type name.
3858    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3859      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3860      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3861      UD->setInvalidDecl();
3862      return UD;
3863    }
3864  }
3865
3866  // C++0x N2914 [namespace.udecl]p6:
3867  // A using-declaration shall not name a namespace.
3868  if (R.getAsSingle<NamespaceDecl>()) {
3869    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3870      << SS.getRange();
3871    UD->setInvalidDecl();
3872    return UD;
3873  }
3874
3875  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3876    if (!CheckUsingShadowDecl(UD, *I, Previous))
3877      BuildUsingShadowDecl(S, UD, *I);
3878  }
3879
3880  return UD;
3881}
3882
3883/// Checks that the given using declaration is not an invalid
3884/// redeclaration.  Note that this is checking only for the using decl
3885/// itself, not for any ill-formedness among the UsingShadowDecls.
3886bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3887                                       bool isTypeName,
3888                                       const CXXScopeSpec &SS,
3889                                       SourceLocation NameLoc,
3890                                       const LookupResult &Prev) {
3891  // C++03 [namespace.udecl]p8:
3892  // C++0x [namespace.udecl]p10:
3893  //   A using-declaration is a declaration and can therefore be used
3894  //   repeatedly where (and only where) multiple declarations are
3895  //   allowed.
3896  //
3897  // That's in non-member contexts.
3898  if (!CurContext->getRedeclContext()->isRecord())
3899    return false;
3900
3901  NestedNameSpecifier *Qual
3902    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3903
3904  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3905    NamedDecl *D = *I;
3906
3907    bool DTypename;
3908    NestedNameSpecifier *DQual;
3909    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3910      DTypename = UD->isTypeName();
3911      DQual = UD->getTargetNestedNameDecl();
3912    } else if (UnresolvedUsingValueDecl *UD
3913                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3914      DTypename = false;
3915      DQual = UD->getTargetNestedNameSpecifier();
3916    } else if (UnresolvedUsingTypenameDecl *UD
3917                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3918      DTypename = true;
3919      DQual = UD->getTargetNestedNameSpecifier();
3920    } else continue;
3921
3922    // using decls differ if one says 'typename' and the other doesn't.
3923    // FIXME: non-dependent using decls?
3924    if (isTypeName != DTypename) continue;
3925
3926    // using decls differ if they name different scopes (but note that
3927    // template instantiation can cause this check to trigger when it
3928    // didn't before instantiation).
3929    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3930        Context.getCanonicalNestedNameSpecifier(DQual))
3931      continue;
3932
3933    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3934    Diag(D->getLocation(), diag::note_using_decl) << 1;
3935    return true;
3936  }
3937
3938  return false;
3939}
3940
3941
3942/// Checks that the given nested-name qualifier used in a using decl
3943/// in the current context is appropriately related to the current
3944/// scope.  If an error is found, diagnoses it and returns true.
3945bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3946                                   const CXXScopeSpec &SS,
3947                                   SourceLocation NameLoc) {
3948  DeclContext *NamedContext = computeDeclContext(SS);
3949
3950  if (!CurContext->isRecord()) {
3951    // C++03 [namespace.udecl]p3:
3952    // C++0x [namespace.udecl]p8:
3953    //   A using-declaration for a class member shall be a member-declaration.
3954
3955    // If we weren't able to compute a valid scope, it must be a
3956    // dependent class scope.
3957    if (!NamedContext || NamedContext->isRecord()) {
3958      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3959        << SS.getRange();
3960      return true;
3961    }
3962
3963    // Otherwise, everything is known to be fine.
3964    return false;
3965  }
3966
3967  // The current scope is a record.
3968
3969  // If the named context is dependent, we can't decide much.
3970  if (!NamedContext) {
3971    // FIXME: in C++0x, we can diagnose if we can prove that the
3972    // nested-name-specifier does not refer to a base class, which is
3973    // still possible in some cases.
3974
3975    // Otherwise we have to conservatively report that things might be
3976    // okay.
3977    return false;
3978  }
3979
3980  if (!NamedContext->isRecord()) {
3981    // Ideally this would point at the last name in the specifier,
3982    // but we don't have that level of source info.
3983    Diag(SS.getRange().getBegin(),
3984         diag::err_using_decl_nested_name_specifier_is_not_class)
3985      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3986    return true;
3987  }
3988
3989  if (getLangOptions().CPlusPlus0x) {
3990    // C++0x [namespace.udecl]p3:
3991    //   In a using-declaration used as a member-declaration, the
3992    //   nested-name-specifier shall name a base class of the class
3993    //   being defined.
3994
3995    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3996                                 cast<CXXRecordDecl>(NamedContext))) {
3997      if (CurContext == NamedContext) {
3998        Diag(NameLoc,
3999             diag::err_using_decl_nested_name_specifier_is_current_class)
4000          << SS.getRange();
4001        return true;
4002      }
4003
4004      Diag(SS.getRange().getBegin(),
4005           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4006        << (NestedNameSpecifier*) SS.getScopeRep()
4007        << cast<CXXRecordDecl>(CurContext)
4008        << SS.getRange();
4009      return true;
4010    }
4011
4012    return false;
4013  }
4014
4015  // C++03 [namespace.udecl]p4:
4016  //   A using-declaration used as a member-declaration shall refer
4017  //   to a member of a base class of the class being defined [etc.].
4018
4019  // Salient point: SS doesn't have to name a base class as long as
4020  // lookup only finds members from base classes.  Therefore we can
4021  // diagnose here only if we can prove that that can't happen,
4022  // i.e. if the class hierarchies provably don't intersect.
4023
4024  // TODO: it would be nice if "definitely valid" results were cached
4025  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4026  // need to be repeated.
4027
4028  struct UserData {
4029    llvm::DenseSet<const CXXRecordDecl*> Bases;
4030
4031    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4032      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4033      Data->Bases.insert(Base);
4034      return true;
4035    }
4036
4037    bool hasDependentBases(const CXXRecordDecl *Class) {
4038      return !Class->forallBases(collect, this);
4039    }
4040
4041    /// Returns true if the base is dependent or is one of the
4042    /// accumulated base classes.
4043    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4044      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4045      return !Data->Bases.count(Base);
4046    }
4047
4048    bool mightShareBases(const CXXRecordDecl *Class) {
4049      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4050    }
4051  };
4052
4053  UserData Data;
4054
4055  // Returns false if we find a dependent base.
4056  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4057    return false;
4058
4059  // Returns false if the class has a dependent base or if it or one
4060  // of its bases is present in the base set of the current context.
4061  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4062    return false;
4063
4064  Diag(SS.getRange().getBegin(),
4065       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4066    << (NestedNameSpecifier*) SS.getScopeRep()
4067    << cast<CXXRecordDecl>(CurContext)
4068    << SS.getRange();
4069
4070  return true;
4071}
4072
4073Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4074                                             SourceLocation NamespaceLoc,
4075                                             SourceLocation AliasLoc,
4076                                             IdentifierInfo *Alias,
4077                                             CXXScopeSpec &SS,
4078                                             SourceLocation IdentLoc,
4079                                             IdentifierInfo *Ident) {
4080
4081  // Lookup the namespace name.
4082  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4083  LookupParsedName(R, S, &SS);
4084
4085  // Check if we have a previous declaration with the same name.
4086  NamedDecl *PrevDecl
4087    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4088                       ForRedeclaration);
4089  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4090    PrevDecl = 0;
4091
4092  if (PrevDecl) {
4093    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4094      // We already have an alias with the same name that points to the same
4095      // namespace, so don't create a new one.
4096      // FIXME: At some point, we'll want to create the (redundant)
4097      // declaration to maintain better source information.
4098      if (!R.isAmbiguous() && !R.empty() &&
4099          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4100        return 0;
4101    }
4102
4103    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4104      diag::err_redefinition_different_kind;
4105    Diag(AliasLoc, DiagID) << Alias;
4106    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4107    return 0;
4108  }
4109
4110  if (R.isAmbiguous())
4111    return 0;
4112
4113  if (R.empty()) {
4114    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4115                                                CTC_NoKeywords, 0)) {
4116      if (R.getAsSingle<NamespaceDecl>() ||
4117          R.getAsSingle<NamespaceAliasDecl>()) {
4118        if (DeclContext *DC = computeDeclContext(SS, false))
4119          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4120            << Ident << DC << Corrected << SS.getRange()
4121            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4122        else
4123          Diag(IdentLoc, diag::err_using_directive_suggest)
4124            << Ident << Corrected
4125            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4126
4127        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4128          << Corrected;
4129
4130        Ident = Corrected.getAsIdentifierInfo();
4131      } else {
4132        R.clear();
4133        R.setLookupName(Ident);
4134      }
4135    }
4136
4137    if (R.empty()) {
4138      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4139      return 0;
4140    }
4141  }
4142
4143  NamespaceAliasDecl *AliasDecl =
4144    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4145                               Alias, SS.getRange(),
4146                               (NestedNameSpecifier *)SS.getScopeRep(),
4147                               IdentLoc, R.getFoundDecl());
4148
4149  PushOnScopeChains(AliasDecl, S);
4150  return AliasDecl;
4151}
4152
4153namespace {
4154  /// \brief Scoped object used to handle the state changes required in Sema
4155  /// to implicitly define the body of a C++ member function;
4156  class ImplicitlyDefinedFunctionScope {
4157    Sema &S;
4158    DeclContext *PreviousContext;
4159
4160  public:
4161    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4162      : S(S), PreviousContext(S.CurContext)
4163    {
4164      S.CurContext = Method;
4165      S.PushFunctionScope();
4166      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4167    }
4168
4169    ~ImplicitlyDefinedFunctionScope() {
4170      S.PopExpressionEvaluationContext();
4171      S.PopFunctionOrBlockScope();
4172      S.CurContext = PreviousContext;
4173    }
4174  };
4175}
4176
4177static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4178                                                       CXXRecordDecl *D) {
4179  ASTContext &Context = Self.Context;
4180  QualType ClassType = Context.getTypeDeclType(D);
4181  DeclarationName ConstructorName
4182    = Context.DeclarationNames.getCXXConstructorName(
4183                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4184
4185  DeclContext::lookup_const_iterator Con, ConEnd;
4186  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4187       Con != ConEnd; ++Con) {
4188    // FIXME: In C++0x, a constructor template can be a default constructor.
4189    if (isa<FunctionTemplateDecl>(*Con))
4190      continue;
4191
4192    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4193    if (Constructor->isDefaultConstructor())
4194      return Constructor;
4195  }
4196  return 0;
4197}
4198
4199CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4200                                                     CXXRecordDecl *ClassDecl) {
4201  // C++ [class.ctor]p5:
4202  //   A default constructor for a class X is a constructor of class X
4203  //   that can be called without an argument. If there is no
4204  //   user-declared constructor for class X, a default constructor is
4205  //   implicitly declared. An implicitly-declared default constructor
4206  //   is an inline public member of its class.
4207  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4208         "Should not build implicit default constructor!");
4209
4210  // C++ [except.spec]p14:
4211  //   An implicitly declared special member function (Clause 12) shall have an
4212  //   exception-specification. [...]
4213  ImplicitExceptionSpecification ExceptSpec(Context);
4214
4215  // Direct base-class destructors.
4216  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4217                                       BEnd = ClassDecl->bases_end();
4218       B != BEnd; ++B) {
4219    if (B->isVirtual()) // Handled below.
4220      continue;
4221
4222    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4223      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4224      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4225        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4226      else if (CXXConstructorDecl *Constructor
4227                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4228        ExceptSpec.CalledDecl(Constructor);
4229    }
4230  }
4231
4232  // Virtual base-class destructors.
4233  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4234                                       BEnd = ClassDecl->vbases_end();
4235       B != BEnd; ++B) {
4236    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4237      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4238      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4239        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4240      else if (CXXConstructorDecl *Constructor
4241                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4242        ExceptSpec.CalledDecl(Constructor);
4243    }
4244  }
4245
4246  // Field destructors.
4247  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4248                               FEnd = ClassDecl->field_end();
4249       F != FEnd; ++F) {
4250    if (const RecordType *RecordTy
4251              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4252      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4253      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4254        ExceptSpec.CalledDecl(
4255                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4256      else if (CXXConstructorDecl *Constructor
4257                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4258        ExceptSpec.CalledDecl(Constructor);
4259    }
4260  }
4261
4262
4263  // Create the actual constructor declaration.
4264  CanQualType ClassType
4265    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4266  DeclarationName Name
4267    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4268  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4269  CXXConstructorDecl *DefaultCon
4270    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4271                                 Context.getFunctionType(Context.VoidTy,
4272                                                         0, 0, false, 0,
4273                                       ExceptSpec.hasExceptionSpecification(),
4274                                     ExceptSpec.hasAnyExceptionSpecification(),
4275                                                         ExceptSpec.size(),
4276                                                         ExceptSpec.data(),
4277                                                       FunctionType::ExtInfo()),
4278                                 /*TInfo=*/0,
4279                                 /*isExplicit=*/false,
4280                                 /*isInline=*/true,
4281                                 /*isImplicitlyDeclared=*/true);
4282  DefaultCon->setAccess(AS_public);
4283  DefaultCon->setImplicit();
4284  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4285
4286  // Note that we have declared this constructor.
4287  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4288
4289  if (Scope *S = getScopeForContext(ClassDecl))
4290    PushOnScopeChains(DefaultCon, S, false);
4291  ClassDecl->addDecl(DefaultCon);
4292
4293  return DefaultCon;
4294}
4295
4296void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4297                                            CXXConstructorDecl *Constructor) {
4298  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4299          !Constructor->isUsed(false)) &&
4300    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4301
4302  CXXRecordDecl *ClassDecl = Constructor->getParent();
4303  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4304
4305  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4306  ErrorTrap Trap(*this);
4307  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4308      Trap.hasErrorOccurred()) {
4309    Diag(CurrentLocation, diag::note_member_synthesized_at)
4310      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4311    Constructor->setInvalidDecl();
4312    return;
4313  }
4314
4315  SourceLocation Loc = Constructor->getLocation();
4316  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4317
4318  Constructor->setUsed();
4319  MarkVTableUsed(CurrentLocation, ClassDecl);
4320}
4321
4322CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4323  // C++ [class.dtor]p2:
4324  //   If a class has no user-declared destructor, a destructor is
4325  //   declared implicitly. An implicitly-declared destructor is an
4326  //   inline public member of its class.
4327
4328  // C++ [except.spec]p14:
4329  //   An implicitly declared special member function (Clause 12) shall have
4330  //   an exception-specification.
4331  ImplicitExceptionSpecification ExceptSpec(Context);
4332
4333  // Direct base-class destructors.
4334  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4335                                       BEnd = ClassDecl->bases_end();
4336       B != BEnd; ++B) {
4337    if (B->isVirtual()) // Handled below.
4338      continue;
4339
4340    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4341      ExceptSpec.CalledDecl(
4342                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4343  }
4344
4345  // Virtual base-class destructors.
4346  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4347                                       BEnd = ClassDecl->vbases_end();
4348       B != BEnd; ++B) {
4349    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4350      ExceptSpec.CalledDecl(
4351                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4352  }
4353
4354  // Field destructors.
4355  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4356                               FEnd = ClassDecl->field_end();
4357       F != FEnd; ++F) {
4358    if (const RecordType *RecordTy
4359        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4360      ExceptSpec.CalledDecl(
4361                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4362  }
4363
4364  // Create the actual destructor declaration.
4365  QualType Ty = Context.getFunctionType(Context.VoidTy,
4366                                        0, 0, false, 0,
4367                                        ExceptSpec.hasExceptionSpecification(),
4368                                    ExceptSpec.hasAnyExceptionSpecification(),
4369                                        ExceptSpec.size(),
4370                                        ExceptSpec.data(),
4371                                        FunctionType::ExtInfo());
4372
4373  CanQualType ClassType
4374    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4375  DeclarationName Name
4376    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4377  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4378  CXXDestructorDecl *Destructor
4379    = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty,
4380                                /*isInline=*/true,
4381                                /*isImplicitlyDeclared=*/true);
4382  Destructor->setAccess(AS_public);
4383  Destructor->setImplicit();
4384  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4385
4386  // Note that we have declared this destructor.
4387  ++ASTContext::NumImplicitDestructorsDeclared;
4388
4389  // Introduce this destructor into its scope.
4390  if (Scope *S = getScopeForContext(ClassDecl))
4391    PushOnScopeChains(Destructor, S, false);
4392  ClassDecl->addDecl(Destructor);
4393
4394  // This could be uniqued if it ever proves significant.
4395  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4396
4397  AddOverriddenMethods(ClassDecl, Destructor);
4398
4399  return Destructor;
4400}
4401
4402void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4403                                    CXXDestructorDecl *Destructor) {
4404  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4405         "DefineImplicitDestructor - call it for implicit default dtor");
4406  CXXRecordDecl *ClassDecl = Destructor->getParent();
4407  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4408
4409  if (Destructor->isInvalidDecl())
4410    return;
4411
4412  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4413
4414  ErrorTrap Trap(*this);
4415  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4416                                         Destructor->getParent());
4417
4418  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4419    Diag(CurrentLocation, diag::note_member_synthesized_at)
4420      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4421
4422    Destructor->setInvalidDecl();
4423    return;
4424  }
4425
4426  SourceLocation Loc = Destructor->getLocation();
4427  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4428
4429  Destructor->setUsed();
4430  MarkVTableUsed(CurrentLocation, ClassDecl);
4431}
4432
4433/// \brief Builds a statement that copies the given entity from \p From to
4434/// \c To.
4435///
4436/// This routine is used to copy the members of a class with an
4437/// implicitly-declared copy assignment operator. When the entities being
4438/// copied are arrays, this routine builds for loops to copy them.
4439///
4440/// \param S The Sema object used for type-checking.
4441///
4442/// \param Loc The location where the implicit copy is being generated.
4443///
4444/// \param T The type of the expressions being copied. Both expressions must
4445/// have this type.
4446///
4447/// \param To The expression we are copying to.
4448///
4449/// \param From The expression we are copying from.
4450///
4451/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4452/// Otherwise, it's a non-static member subobject.
4453///
4454/// \param Depth Internal parameter recording the depth of the recursion.
4455///
4456/// \returns A statement or a loop that copies the expressions.
4457static StmtResult
4458BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4459                      Expr *To, Expr *From,
4460                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4461  // C++0x [class.copy]p30:
4462  //   Each subobject is assigned in the manner appropriate to its type:
4463  //
4464  //     - if the subobject is of class type, the copy assignment operator
4465  //       for the class is used (as if by explicit qualification; that is,
4466  //       ignoring any possible virtual overriding functions in more derived
4467  //       classes);
4468  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4469    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4470
4471    // Look for operator=.
4472    DeclarationName Name
4473      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4474    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4475    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4476
4477    // Filter out any result that isn't a copy-assignment operator.
4478    LookupResult::Filter F = OpLookup.makeFilter();
4479    while (F.hasNext()) {
4480      NamedDecl *D = F.next();
4481      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4482        if (Method->isCopyAssignmentOperator())
4483          continue;
4484
4485      F.erase();
4486    }
4487    F.done();
4488
4489    // Suppress the protected check (C++ [class.protected]) for each of the
4490    // assignment operators we found. This strange dance is required when
4491    // we're assigning via a base classes's copy-assignment operator. To
4492    // ensure that we're getting the right base class subobject (without
4493    // ambiguities), we need to cast "this" to that subobject type; to
4494    // ensure that we don't go through the virtual call mechanism, we need
4495    // to qualify the operator= name with the base class (see below). However,
4496    // this means that if the base class has a protected copy assignment
4497    // operator, the protected member access check will fail. So, we
4498    // rewrite "protected" access to "public" access in this case, since we
4499    // know by construction that we're calling from a derived class.
4500    if (CopyingBaseSubobject) {
4501      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4502           L != LEnd; ++L) {
4503        if (L.getAccess() == AS_protected)
4504          L.setAccess(AS_public);
4505      }
4506    }
4507
4508    // Create the nested-name-specifier that will be used to qualify the
4509    // reference to operator=; this is required to suppress the virtual
4510    // call mechanism.
4511    CXXScopeSpec SS;
4512    SS.setRange(Loc);
4513    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4514                                               T.getTypePtr()));
4515
4516    // Create the reference to operator=.
4517    ExprResult OpEqualRef
4518      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
4519                                   /*FirstQualifierInScope=*/0, OpLookup,
4520                                   /*TemplateArgs=*/0,
4521                                   /*SuppressQualifierCheck=*/true);
4522    if (OpEqualRef.isInvalid())
4523      return StmtError();
4524
4525    // Build the call to the assignment operator.
4526
4527    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4528                                                  OpEqualRef.takeAs<Expr>(),
4529                                                  Loc, &From, 1, Loc);
4530    if (Call.isInvalid())
4531      return StmtError();
4532
4533    return S.Owned(Call.takeAs<Stmt>());
4534  }
4535
4536  //     - if the subobject is of scalar type, the built-in assignment
4537  //       operator is used.
4538  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4539  if (!ArrayTy) {
4540    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
4541    if (Assignment.isInvalid())
4542      return StmtError();
4543
4544    return S.Owned(Assignment.takeAs<Stmt>());
4545  }
4546
4547  //     - if the subobject is an array, each element is assigned, in the
4548  //       manner appropriate to the element type;
4549
4550  // Construct a loop over the array bounds, e.g.,
4551  //
4552  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4553  //
4554  // that will copy each of the array elements.
4555  QualType SizeType = S.Context.getSizeType();
4556
4557  // Create the iteration variable.
4558  IdentifierInfo *IterationVarName = 0;
4559  {
4560    llvm::SmallString<8> Str;
4561    llvm::raw_svector_ostream OS(Str);
4562    OS << "__i" << Depth;
4563    IterationVarName = &S.Context.Idents.get(OS.str());
4564  }
4565  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4566                                          IterationVarName, SizeType,
4567                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4568                                          SC_None, SC_None);
4569
4570  // Initialize the iteration variable to zero.
4571  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4572  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
4573
4574  // Create a reference to the iteration variable; we'll use this several
4575  // times throughout.
4576  Expr *IterationVarRef
4577    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4578  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4579
4580  // Create the DeclStmt that holds the iteration variable.
4581  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4582
4583  // Create the comparison against the array bound.
4584  llvm::APInt Upper = ArrayTy->getSize();
4585  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4586  Expr *Comparison
4587    = new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4588                           IntegerLiteral::Create(S.Context,
4589                                                  Upper, SizeType, Loc),
4590                                                  BO_NE, S.Context.BoolTy, Loc);
4591
4592  // Create the pre-increment of the iteration variable.
4593  Expr *Increment
4594    = new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4595                                    UO_PreInc,
4596                                    SizeType, Loc);
4597
4598  // Subscript the "from" and "to" expressions with the iteration variable.
4599  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
4600                                                         IterationVarRef, Loc));
4601  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
4602                                                       IterationVarRef, Loc));
4603
4604  // Build the copy for an individual element of the array.
4605  StmtResult Copy = BuildSingleCopyAssign(S, Loc,
4606                                                ArrayTy->getElementType(),
4607                                                To, From,
4608                                                CopyingBaseSubobject, Depth+1);
4609  if (Copy.isInvalid())
4610    return StmtError();
4611
4612  // Construct the loop that copies all elements of this array.
4613  return S.ActOnForStmt(Loc, Loc, InitStmt,
4614                        S.MakeFullExpr(Comparison),
4615                        0, S.MakeFullExpr(Increment),
4616                        Loc, Copy.take());
4617}
4618
4619/// \brief Determine whether the given class has a copy assignment operator
4620/// that accepts a const-qualified argument.
4621static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4622  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4623
4624  if (!Class->hasDeclaredCopyAssignment())
4625    S.DeclareImplicitCopyAssignment(Class);
4626
4627  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4628  DeclarationName OpName
4629    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4630
4631  DeclContext::lookup_const_iterator Op, OpEnd;
4632  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4633    // C++ [class.copy]p9:
4634    //   A user-declared copy assignment operator is a non-static non-template
4635    //   member function of class X with exactly one parameter of type X, X&,
4636    //   const X&, volatile X& or const volatile X&.
4637    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4638    if (!Method)
4639      continue;
4640
4641    if (Method->isStatic())
4642      continue;
4643    if (Method->getPrimaryTemplate())
4644      continue;
4645    const FunctionProtoType *FnType =
4646    Method->getType()->getAs<FunctionProtoType>();
4647    assert(FnType && "Overloaded operator has no prototype.");
4648    // Don't assert on this; an invalid decl might have been left in the AST.
4649    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4650      continue;
4651    bool AcceptsConst = true;
4652    QualType ArgType = FnType->getArgType(0);
4653    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4654      ArgType = Ref->getPointeeType();
4655      // Is it a non-const lvalue reference?
4656      if (!ArgType.isConstQualified())
4657        AcceptsConst = false;
4658    }
4659    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4660      continue;
4661
4662    // We have a single argument of type cv X or cv X&, i.e. we've found the
4663    // copy assignment operator. Return whether it accepts const arguments.
4664    return AcceptsConst;
4665  }
4666  assert(Class->isInvalidDecl() &&
4667         "No copy assignment operator declared in valid code.");
4668  return false;
4669}
4670
4671CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4672  // Note: The following rules are largely analoguous to the copy
4673  // constructor rules. Note that virtual bases are not taken into account
4674  // for determining the argument type of the operator. Note also that
4675  // operators taking an object instead of a reference are allowed.
4676
4677
4678  // C++ [class.copy]p10:
4679  //   If the class definition does not explicitly declare a copy
4680  //   assignment operator, one is declared implicitly.
4681  //   The implicitly-defined copy assignment operator for a class X
4682  //   will have the form
4683  //
4684  //       X& X::operator=(const X&)
4685  //
4686  //   if
4687  bool HasConstCopyAssignment = true;
4688
4689  //       -- each direct base class B of X has a copy assignment operator
4690  //          whose parameter is of type const B&, const volatile B& or B,
4691  //          and
4692  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4693                                       BaseEnd = ClassDecl->bases_end();
4694       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4695    assert(!Base->getType()->isDependentType() &&
4696           "Cannot generate implicit members for class with dependent bases.");
4697    const CXXRecordDecl *BaseClassDecl
4698      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4699    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4700  }
4701
4702  //       -- for all the nonstatic data members of X that are of a class
4703  //          type M (or array thereof), each such class type has a copy
4704  //          assignment operator whose parameter is of type const M&,
4705  //          const volatile M& or M.
4706  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4707                                  FieldEnd = ClassDecl->field_end();
4708       HasConstCopyAssignment && Field != FieldEnd;
4709       ++Field) {
4710    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4711    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4712      const CXXRecordDecl *FieldClassDecl
4713        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4714      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4715    }
4716  }
4717
4718  //   Otherwise, the implicitly declared copy assignment operator will
4719  //   have the form
4720  //
4721  //       X& X::operator=(X&)
4722  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4723  QualType RetType = Context.getLValueReferenceType(ArgType);
4724  if (HasConstCopyAssignment)
4725    ArgType = ArgType.withConst();
4726  ArgType = Context.getLValueReferenceType(ArgType);
4727
4728  // C++ [except.spec]p14:
4729  //   An implicitly declared special member function (Clause 12) shall have an
4730  //   exception-specification. [...]
4731  ImplicitExceptionSpecification ExceptSpec(Context);
4732  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4733                                       BaseEnd = ClassDecl->bases_end();
4734       Base != BaseEnd; ++Base) {
4735    CXXRecordDecl *BaseClassDecl
4736      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4737
4738    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4739      DeclareImplicitCopyAssignment(BaseClassDecl);
4740
4741    if (CXXMethodDecl *CopyAssign
4742           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4743      ExceptSpec.CalledDecl(CopyAssign);
4744  }
4745  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4746                                  FieldEnd = ClassDecl->field_end();
4747       Field != FieldEnd;
4748       ++Field) {
4749    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4750    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4751      CXXRecordDecl *FieldClassDecl
4752        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4753
4754      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4755        DeclareImplicitCopyAssignment(FieldClassDecl);
4756
4757      if (CXXMethodDecl *CopyAssign
4758            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4759        ExceptSpec.CalledDecl(CopyAssign);
4760    }
4761  }
4762
4763  //   An implicitly-declared copy assignment operator is an inline public
4764  //   member of its class.
4765  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4766  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4767  CXXMethodDecl *CopyAssignment
4768    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
4769                            Context.getFunctionType(RetType, &ArgType, 1,
4770                                                    false, 0,
4771                                         ExceptSpec.hasExceptionSpecification(),
4772                                      ExceptSpec.hasAnyExceptionSpecification(),
4773                                                    ExceptSpec.size(),
4774                                                    ExceptSpec.data(),
4775                                                    FunctionType::ExtInfo()),
4776                            /*TInfo=*/0, /*isStatic=*/false,
4777                            /*StorageClassAsWritten=*/SC_None,
4778                            /*isInline=*/true);
4779  CopyAssignment->setAccess(AS_public);
4780  CopyAssignment->setImplicit();
4781  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4782
4783  // Add the parameter to the operator.
4784  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4785                                               ClassDecl->getLocation(),
4786                                               /*Id=*/0,
4787                                               ArgType, /*TInfo=*/0,
4788                                               SC_None,
4789                                               SC_None, 0);
4790  CopyAssignment->setParams(&FromParam, 1);
4791
4792  // Note that we have added this copy-assignment operator.
4793  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4794
4795  if (Scope *S = getScopeForContext(ClassDecl))
4796    PushOnScopeChains(CopyAssignment, S, false);
4797  ClassDecl->addDecl(CopyAssignment);
4798
4799  AddOverriddenMethods(ClassDecl, CopyAssignment);
4800  return CopyAssignment;
4801}
4802
4803void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4804                                        CXXMethodDecl *CopyAssignOperator) {
4805  assert((CopyAssignOperator->isImplicit() &&
4806          CopyAssignOperator->isOverloadedOperator() &&
4807          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4808          !CopyAssignOperator->isUsed(false)) &&
4809         "DefineImplicitCopyAssignment called for wrong function");
4810
4811  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4812
4813  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4814    CopyAssignOperator->setInvalidDecl();
4815    return;
4816  }
4817
4818  CopyAssignOperator->setUsed();
4819
4820  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4821  ErrorTrap Trap(*this);
4822
4823  // C++0x [class.copy]p30:
4824  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4825  //   for a non-union class X performs memberwise copy assignment of its
4826  //   subobjects. The direct base classes of X are assigned first, in the
4827  //   order of their declaration in the base-specifier-list, and then the
4828  //   immediate non-static data members of X are assigned, in the order in
4829  //   which they were declared in the class definition.
4830
4831  // The statements that form the synthesized function body.
4832  ASTOwningVector<Stmt*> Statements(*this);
4833
4834  // The parameter for the "other" object, which we are copying from.
4835  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4836  Qualifiers OtherQuals = Other->getType().getQualifiers();
4837  QualType OtherRefType = Other->getType();
4838  if (const LValueReferenceType *OtherRef
4839                                = OtherRefType->getAs<LValueReferenceType>()) {
4840    OtherRefType = OtherRef->getPointeeType();
4841    OtherQuals = OtherRefType.getQualifiers();
4842  }
4843
4844  // Our location for everything implicitly-generated.
4845  SourceLocation Loc = CopyAssignOperator->getLocation();
4846
4847  // Construct a reference to the "other" object. We'll be using this
4848  // throughout the generated ASTs.
4849  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4850  assert(OtherRef && "Reference to parameter cannot fail!");
4851
4852  // Construct the "this" pointer. We'll be using this throughout the generated
4853  // ASTs.
4854  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4855  assert(This && "Reference to this cannot fail!");
4856
4857  // Assign base classes.
4858  bool Invalid = false;
4859  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4860       E = ClassDecl->bases_end(); Base != E; ++Base) {
4861    // Form the assignment:
4862    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4863    QualType BaseType = Base->getType().getUnqualifiedType();
4864    CXXRecordDecl *BaseClassDecl = 0;
4865    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4866      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4867    else {
4868      Invalid = true;
4869      continue;
4870    }
4871
4872    CXXCastPath BasePath;
4873    BasePath.push_back(Base);
4874
4875    // Construct the "from" expression, which is an implicit cast to the
4876    // appropriately-qualified base type.
4877    Expr *From = OtherRef->Retain();
4878    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4879                      CK_UncheckedDerivedToBase,
4880                      VK_LValue, &BasePath);
4881
4882    // Dereference "this".
4883    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
4884
4885    // Implicitly cast "this" to the appropriately-qualified base type.
4886    Expr *ToE = To.takeAs<Expr>();
4887    ImpCastExprToType(ToE,
4888                      Context.getCVRQualifiedType(BaseType,
4889                                      CopyAssignOperator->getTypeQualifiers()),
4890                      CK_UncheckedDerivedToBase,
4891                      VK_LValue, &BasePath);
4892    To = Owned(ToE);
4893
4894    // Build the copy.
4895    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4896                                            To.get(), From,
4897                                            /*CopyingBaseSubobject=*/true);
4898    if (Copy.isInvalid()) {
4899      Diag(CurrentLocation, diag::note_member_synthesized_at)
4900        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4901      CopyAssignOperator->setInvalidDecl();
4902      return;
4903    }
4904
4905    // Success! Record the copy.
4906    Statements.push_back(Copy.takeAs<Expr>());
4907  }
4908
4909  // \brief Reference to the __builtin_memcpy function.
4910  Expr *BuiltinMemCpyRef = 0;
4911  // \brief Reference to the __builtin_objc_memmove_collectable function.
4912  Expr *CollectableMemCpyRef = 0;
4913
4914  // Assign non-static members.
4915  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4916                                  FieldEnd = ClassDecl->field_end();
4917       Field != FieldEnd; ++Field) {
4918    // Check for members of reference type; we can't copy those.
4919    if (Field->getType()->isReferenceType()) {
4920      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4921        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4922      Diag(Field->getLocation(), diag::note_declared_at);
4923      Diag(CurrentLocation, diag::note_member_synthesized_at)
4924        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4925      Invalid = true;
4926      continue;
4927    }
4928
4929    // Check for members of const-qualified, non-class type.
4930    QualType BaseType = Context.getBaseElementType(Field->getType());
4931    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4932      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4933        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4934      Diag(Field->getLocation(), diag::note_declared_at);
4935      Diag(CurrentLocation, diag::note_member_synthesized_at)
4936        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4937      Invalid = true;
4938      continue;
4939    }
4940
4941    QualType FieldType = Field->getType().getNonReferenceType();
4942    if (FieldType->isIncompleteArrayType()) {
4943      assert(ClassDecl->hasFlexibleArrayMember() &&
4944             "Incomplete array type is not valid");
4945      continue;
4946    }
4947
4948    // Build references to the field in the object we're copying from and to.
4949    CXXScopeSpec SS; // Intentionally empty
4950    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4951                              LookupMemberName);
4952    MemberLookup.addDecl(*Field);
4953    MemberLookup.resolveKind();
4954    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
4955                                                     Loc, /*IsArrow=*/false,
4956                                                     SS, 0, MemberLookup, 0);
4957    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
4958                                                   Loc, /*IsArrow=*/true,
4959                                                   SS, 0, MemberLookup, 0);
4960    assert(!From.isInvalid() && "Implicit field reference cannot fail");
4961    assert(!To.isInvalid() && "Implicit field reference cannot fail");
4962
4963    // If the field should be copied with __builtin_memcpy rather than via
4964    // explicit assignments, do so. This optimization only applies for arrays
4965    // of scalars and arrays of class type with trivial copy-assignment
4966    // operators.
4967    if (FieldType->isArrayType() &&
4968        (!BaseType->isRecordType() ||
4969         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
4970           ->hasTrivialCopyAssignment())) {
4971      // Compute the size of the memory buffer to be copied.
4972      QualType SizeType = Context.getSizeType();
4973      llvm::APInt Size(Context.getTypeSize(SizeType),
4974                       Context.getTypeSizeInChars(BaseType).getQuantity());
4975      for (const ConstantArrayType *Array
4976              = Context.getAsConstantArrayType(FieldType);
4977           Array;
4978           Array = Context.getAsConstantArrayType(Array->getElementType())) {
4979        llvm::APInt ArraySize = Array->getSize();
4980        ArraySize.zextOrTrunc(Size.getBitWidth());
4981        Size *= ArraySize;
4982      }
4983
4984      // Take the address of the field references for "from" and "to".
4985      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
4986      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
4987
4988      bool NeedsCollectableMemCpy =
4989          (BaseType->isRecordType() &&
4990           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
4991
4992      if (NeedsCollectableMemCpy) {
4993        if (!CollectableMemCpyRef) {
4994          // Create a reference to the __builtin_objc_memmove_collectable function.
4995          LookupResult R(*this,
4996                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
4997                         Loc, LookupOrdinaryName);
4998          LookupName(R, TUScope, true);
4999
5000          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5001          if (!CollectableMemCpy) {
5002            // Something went horribly wrong earlier, and we will have
5003            // complained about it.
5004            Invalid = true;
5005            continue;
5006          }
5007
5008          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5009                                                  CollectableMemCpy->getType(),
5010                                                  Loc, 0).takeAs<Expr>();
5011          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5012        }
5013      }
5014      // Create a reference to the __builtin_memcpy builtin function.
5015      else if (!BuiltinMemCpyRef) {
5016        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5017                       LookupOrdinaryName);
5018        LookupName(R, TUScope, true);
5019
5020        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5021        if (!BuiltinMemCpy) {
5022          // Something went horribly wrong earlier, and we will have complained
5023          // about it.
5024          Invalid = true;
5025          continue;
5026        }
5027
5028        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5029                                            BuiltinMemCpy->getType(),
5030                                            Loc, 0).takeAs<Expr>();
5031        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5032      }
5033
5034      ASTOwningVector<Expr*> CallArgs(*this);
5035      CallArgs.push_back(To.takeAs<Expr>());
5036      CallArgs.push_back(From.takeAs<Expr>());
5037      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5038      ExprResult Call = ExprError();
5039      if (NeedsCollectableMemCpy)
5040        Call = ActOnCallExpr(/*Scope=*/0,
5041                             CollectableMemCpyRef,
5042                             Loc, move_arg(CallArgs),
5043                             Loc);
5044      else
5045        Call = ActOnCallExpr(/*Scope=*/0,
5046                             BuiltinMemCpyRef,
5047                             Loc, move_arg(CallArgs),
5048                             Loc);
5049
5050      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5051      Statements.push_back(Call.takeAs<Expr>());
5052      continue;
5053    }
5054
5055    // Build the copy of this field.
5056    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5057                                                  To.get(), From.get(),
5058                                              /*CopyingBaseSubobject=*/false);
5059    if (Copy.isInvalid()) {
5060      Diag(CurrentLocation, diag::note_member_synthesized_at)
5061        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5062      CopyAssignOperator->setInvalidDecl();
5063      return;
5064    }
5065
5066    // Success! Record the copy.
5067    Statements.push_back(Copy.takeAs<Stmt>());
5068  }
5069
5070  if (!Invalid) {
5071    // Add a "return *this;"
5072    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5073
5074    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5075    if (Return.isInvalid())
5076      Invalid = true;
5077    else {
5078      Statements.push_back(Return.takeAs<Stmt>());
5079
5080      if (Trap.hasErrorOccurred()) {
5081        Diag(CurrentLocation, diag::note_member_synthesized_at)
5082          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5083        Invalid = true;
5084      }
5085    }
5086  }
5087
5088  if (Invalid) {
5089    CopyAssignOperator->setInvalidDecl();
5090    return;
5091  }
5092
5093  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5094                                            /*isStmtExpr=*/false);
5095  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5096  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5097}
5098
5099CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5100                                                    CXXRecordDecl *ClassDecl) {
5101  // C++ [class.copy]p4:
5102  //   If the class definition does not explicitly declare a copy
5103  //   constructor, one is declared implicitly.
5104
5105  // C++ [class.copy]p5:
5106  //   The implicitly-declared copy constructor for a class X will
5107  //   have the form
5108  //
5109  //       X::X(const X&)
5110  //
5111  //   if
5112  bool HasConstCopyConstructor = true;
5113
5114  //     -- each direct or virtual base class B of X has a copy
5115  //        constructor whose first parameter is of type const B& or
5116  //        const volatile B&, and
5117  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5118                                       BaseEnd = ClassDecl->bases_end();
5119       HasConstCopyConstructor && Base != BaseEnd;
5120       ++Base) {
5121    // Virtual bases are handled below.
5122    if (Base->isVirtual())
5123      continue;
5124
5125    CXXRecordDecl *BaseClassDecl
5126      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5127    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5128      DeclareImplicitCopyConstructor(BaseClassDecl);
5129
5130    HasConstCopyConstructor
5131      = BaseClassDecl->hasConstCopyConstructor(Context);
5132  }
5133
5134  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5135                                       BaseEnd = ClassDecl->vbases_end();
5136       HasConstCopyConstructor && Base != BaseEnd;
5137       ++Base) {
5138    CXXRecordDecl *BaseClassDecl
5139      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5140    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5141      DeclareImplicitCopyConstructor(BaseClassDecl);
5142
5143    HasConstCopyConstructor
5144      = BaseClassDecl->hasConstCopyConstructor(Context);
5145  }
5146
5147  //     -- for all the nonstatic data members of X that are of a
5148  //        class type M (or array thereof), each such class type
5149  //        has a copy constructor whose first parameter is of type
5150  //        const M& or const volatile M&.
5151  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5152                                  FieldEnd = ClassDecl->field_end();
5153       HasConstCopyConstructor && Field != FieldEnd;
5154       ++Field) {
5155    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5156    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5157      CXXRecordDecl *FieldClassDecl
5158        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5159      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5160        DeclareImplicitCopyConstructor(FieldClassDecl);
5161
5162      HasConstCopyConstructor
5163        = FieldClassDecl->hasConstCopyConstructor(Context);
5164    }
5165  }
5166
5167  //   Otherwise, the implicitly declared copy constructor will have
5168  //   the form
5169  //
5170  //       X::X(X&)
5171  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5172  QualType ArgType = ClassType;
5173  if (HasConstCopyConstructor)
5174    ArgType = ArgType.withConst();
5175  ArgType = Context.getLValueReferenceType(ArgType);
5176
5177  // C++ [except.spec]p14:
5178  //   An implicitly declared special member function (Clause 12) shall have an
5179  //   exception-specification. [...]
5180  ImplicitExceptionSpecification ExceptSpec(Context);
5181  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5182  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5183                                       BaseEnd = ClassDecl->bases_end();
5184       Base != BaseEnd;
5185       ++Base) {
5186    // Virtual bases are handled below.
5187    if (Base->isVirtual())
5188      continue;
5189
5190    CXXRecordDecl *BaseClassDecl
5191      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5192    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5193      DeclareImplicitCopyConstructor(BaseClassDecl);
5194
5195    if (CXXConstructorDecl *CopyConstructor
5196                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5197      ExceptSpec.CalledDecl(CopyConstructor);
5198  }
5199  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5200                                       BaseEnd = ClassDecl->vbases_end();
5201       Base != BaseEnd;
5202       ++Base) {
5203    CXXRecordDecl *BaseClassDecl
5204      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5205    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5206      DeclareImplicitCopyConstructor(BaseClassDecl);
5207
5208    if (CXXConstructorDecl *CopyConstructor
5209                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5210      ExceptSpec.CalledDecl(CopyConstructor);
5211  }
5212  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5213                                  FieldEnd = ClassDecl->field_end();
5214       Field != FieldEnd;
5215       ++Field) {
5216    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5217    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5218      CXXRecordDecl *FieldClassDecl
5219        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5220      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5221        DeclareImplicitCopyConstructor(FieldClassDecl);
5222
5223      if (CXXConstructorDecl *CopyConstructor
5224                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5225        ExceptSpec.CalledDecl(CopyConstructor);
5226    }
5227  }
5228
5229  //   An implicitly-declared copy constructor is an inline public
5230  //   member of its class.
5231  DeclarationName Name
5232    = Context.DeclarationNames.getCXXConstructorName(
5233                                           Context.getCanonicalType(ClassType));
5234  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5235  CXXConstructorDecl *CopyConstructor
5236    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5237                                 Context.getFunctionType(Context.VoidTy,
5238                                                         &ArgType, 1,
5239                                                         false, 0,
5240                                         ExceptSpec.hasExceptionSpecification(),
5241                                      ExceptSpec.hasAnyExceptionSpecification(),
5242                                                         ExceptSpec.size(),
5243                                                         ExceptSpec.data(),
5244                                                       FunctionType::ExtInfo()),
5245                                 /*TInfo=*/0,
5246                                 /*isExplicit=*/false,
5247                                 /*isInline=*/true,
5248                                 /*isImplicitlyDeclared=*/true);
5249  CopyConstructor->setAccess(AS_public);
5250  CopyConstructor->setImplicit();
5251  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5252
5253  // Note that we have declared this constructor.
5254  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5255
5256  // Add the parameter to the constructor.
5257  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5258                                               ClassDecl->getLocation(),
5259                                               /*IdentifierInfo=*/0,
5260                                               ArgType, /*TInfo=*/0,
5261                                               SC_None,
5262                                               SC_None, 0);
5263  CopyConstructor->setParams(&FromParam, 1);
5264  if (Scope *S = getScopeForContext(ClassDecl))
5265    PushOnScopeChains(CopyConstructor, S, false);
5266  ClassDecl->addDecl(CopyConstructor);
5267
5268  return CopyConstructor;
5269}
5270
5271void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5272                                   CXXConstructorDecl *CopyConstructor,
5273                                   unsigned TypeQuals) {
5274  assert((CopyConstructor->isImplicit() &&
5275          CopyConstructor->isCopyConstructor(TypeQuals) &&
5276          !CopyConstructor->isUsed(false)) &&
5277         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5278
5279  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5280  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5281
5282  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5283  ErrorTrap Trap(*this);
5284
5285  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5286      Trap.hasErrorOccurred()) {
5287    Diag(CurrentLocation, diag::note_member_synthesized_at)
5288      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5289    CopyConstructor->setInvalidDecl();
5290  }  else {
5291    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5292                                               CopyConstructor->getLocation(),
5293                                               MultiStmtArg(*this, 0, 0),
5294                                               /*isStmtExpr=*/false)
5295                                                              .takeAs<Stmt>());
5296  }
5297
5298  CopyConstructor->setUsed();
5299}
5300
5301ExprResult
5302Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5303                            CXXConstructorDecl *Constructor,
5304                            MultiExprArg ExprArgs,
5305                            bool RequiresZeroInit,
5306                            unsigned ConstructKind) {
5307  bool Elidable = false;
5308
5309  // C++0x [class.copy]p34:
5310  //   When certain criteria are met, an implementation is allowed to
5311  //   omit the copy/move construction of a class object, even if the
5312  //   copy/move constructor and/or destructor for the object have
5313  //   side effects. [...]
5314  //     - when a temporary class object that has not been bound to a
5315  //       reference (12.2) would be copied/moved to a class object
5316  //       with the same cv-unqualified type, the copy/move operation
5317  //       can be omitted by constructing the temporary object
5318  //       directly into the target of the omitted copy/move
5319  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5320      Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5321    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5322    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5323  }
5324
5325  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5326                               Elidable, move(ExprArgs), RequiresZeroInit,
5327                               ConstructKind);
5328}
5329
5330/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5331/// including handling of its default argument expressions.
5332ExprResult
5333Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5334                            CXXConstructorDecl *Constructor, bool Elidable,
5335                            MultiExprArg ExprArgs,
5336                            bool RequiresZeroInit,
5337                            unsigned ConstructKind) {
5338  unsigned NumExprs = ExprArgs.size();
5339  Expr **Exprs = (Expr **)ExprArgs.release();
5340
5341  MarkDeclarationReferenced(ConstructLoc, Constructor);
5342  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5343                                        Constructor, Elidable, Exprs, NumExprs,
5344                                        RequiresZeroInit,
5345              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind)));
5346}
5347
5348bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5349                                        CXXConstructorDecl *Constructor,
5350                                        MultiExprArg Exprs) {
5351  ExprResult TempResult =
5352    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5353                          move(Exprs), false, CXXConstructExpr::CK_Complete);
5354  if (TempResult.isInvalid())
5355    return true;
5356
5357  Expr *Temp = TempResult.takeAs<Expr>();
5358  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5359  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
5360  VD->setInit(Temp);
5361
5362  return false;
5363}
5364
5365void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5366  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5367  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5368      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5369    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5370    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5371    CheckDestructorAccess(VD->getLocation(), Destructor,
5372                          PDiag(diag::err_access_dtor_var)
5373                            << VD->getDeclName()
5374                            << VD->getType());
5375
5376    // TODO: this should be re-enabled for static locals by !CXAAtExit
5377    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5378      Diag(VD->getLocation(), diag::warn_global_destructor);
5379  }
5380}
5381
5382/// AddCXXDirectInitializerToDecl - This action is called immediately after
5383/// ActOnDeclarator, when a C++ direct initializer is present.
5384/// e.g: "int x(1);"
5385void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5386                                         SourceLocation LParenLoc,
5387                                         MultiExprArg Exprs,
5388                                         SourceLocation RParenLoc) {
5389  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5390
5391  // If there is no declaration, there was an error parsing it.  Just ignore
5392  // the initializer.
5393  if (RealDecl == 0)
5394    return;
5395
5396  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5397  if (!VDecl) {
5398    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5399    RealDecl->setInvalidDecl();
5400    return;
5401  }
5402
5403  // We will represent direct-initialization similarly to copy-initialization:
5404  //    int x(1);  -as-> int x = 1;
5405  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5406  //
5407  // Clients that want to distinguish between the two forms, can check for
5408  // direct initializer using VarDecl::hasCXXDirectInitializer().
5409  // A major benefit is that clients that don't particularly care about which
5410  // exactly form was it (like the CodeGen) can handle both cases without
5411  // special case code.
5412
5413  // C++ 8.5p11:
5414  // The form of initialization (using parentheses or '=') is generally
5415  // insignificant, but does matter when the entity being initialized has a
5416  // class type.
5417
5418  if (!VDecl->getType()->isDependentType() &&
5419      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5420                          diag::err_typecheck_decl_incomplete_type)) {
5421    VDecl->setInvalidDecl();
5422    return;
5423  }
5424
5425  // The variable can not have an abstract class type.
5426  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5427                             diag::err_abstract_type_in_decl,
5428                             AbstractVariableType))
5429    VDecl->setInvalidDecl();
5430
5431  const VarDecl *Def;
5432  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5433    Diag(VDecl->getLocation(), diag::err_redefinition)
5434    << VDecl->getDeclName();
5435    Diag(Def->getLocation(), diag::note_previous_definition);
5436    VDecl->setInvalidDecl();
5437    return;
5438  }
5439
5440  // C++ [class.static.data]p4
5441  //   If a static data member is of const integral or const
5442  //   enumeration type, its declaration in the class definition can
5443  //   specify a constant-initializer which shall be an integral
5444  //   constant expression (5.19). In that case, the member can appear
5445  //   in integral constant expressions. The member shall still be
5446  //   defined in a namespace scope if it is used in the program and the
5447  //   namespace scope definition shall not contain an initializer.
5448  //
5449  // We already performed a redefinition check above, but for static
5450  // data members we also need to check whether there was an in-class
5451  // declaration with an initializer.
5452  const VarDecl* PrevInit = 0;
5453  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5454    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5455    Diag(PrevInit->getLocation(), diag::note_previous_definition);
5456    return;
5457  }
5458
5459  // If either the declaration has a dependent type or if any of the
5460  // expressions is type-dependent, we represent the initialization
5461  // via a ParenListExpr for later use during template instantiation.
5462  if (VDecl->getType()->isDependentType() ||
5463      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5464    // Let clients know that initialization was done with a direct initializer.
5465    VDecl->setCXXDirectInitializer(true);
5466
5467    // Store the initialization expressions as a ParenListExpr.
5468    unsigned NumExprs = Exprs.size();
5469    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5470                                               (Expr **)Exprs.release(),
5471                                               NumExprs, RParenLoc));
5472    return;
5473  }
5474
5475  // Capture the variable that is being initialized and the style of
5476  // initialization.
5477  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5478
5479  // FIXME: Poor source location information.
5480  InitializationKind Kind
5481    = InitializationKind::CreateDirect(VDecl->getLocation(),
5482                                       LParenLoc, RParenLoc);
5483
5484  InitializationSequence InitSeq(*this, Entity, Kind,
5485                                 Exprs.get(), Exprs.size());
5486  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5487  if (Result.isInvalid()) {
5488    VDecl->setInvalidDecl();
5489    return;
5490  }
5491
5492  Result = MaybeCreateCXXExprWithTemporaries(Result.get());
5493  VDecl->setInit(Result.takeAs<Expr>());
5494  VDecl->setCXXDirectInitializer(true);
5495
5496    if (!VDecl->isInvalidDecl() &&
5497        !VDecl->getDeclContext()->isDependentContext() &&
5498        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
5499        !VDecl->getInit()->isConstantInitializer(Context,
5500                                        VDecl->getType()->isReferenceType()))
5501      Diag(VDecl->getLocation(), diag::warn_global_constructor)
5502        << VDecl->getInit()->getSourceRange();
5503
5504  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5505    FinalizeVarWithDestructor(VDecl, Record);
5506}
5507
5508/// \brief Given a constructor and the set of arguments provided for the
5509/// constructor, convert the arguments and add any required default arguments
5510/// to form a proper call to this constructor.
5511///
5512/// \returns true if an error occurred, false otherwise.
5513bool
5514Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5515                              MultiExprArg ArgsPtr,
5516                              SourceLocation Loc,
5517                              ASTOwningVector<Expr*> &ConvertedArgs) {
5518  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5519  unsigned NumArgs = ArgsPtr.size();
5520  Expr **Args = (Expr **)ArgsPtr.get();
5521
5522  const FunctionProtoType *Proto
5523    = Constructor->getType()->getAs<FunctionProtoType>();
5524  assert(Proto && "Constructor without a prototype?");
5525  unsigned NumArgsInProto = Proto->getNumArgs();
5526
5527  // If too few arguments are available, we'll fill in the rest with defaults.
5528  if (NumArgs < NumArgsInProto)
5529    ConvertedArgs.reserve(NumArgsInProto);
5530  else
5531    ConvertedArgs.reserve(NumArgs);
5532
5533  VariadicCallType CallType =
5534    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5535  llvm::SmallVector<Expr *, 8> AllArgs;
5536  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5537                                        Proto, 0, Args, NumArgs, AllArgs,
5538                                        CallType);
5539  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5540    ConvertedArgs.push_back(AllArgs[i]);
5541  return Invalid;
5542}
5543
5544static inline bool
5545CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5546                                       const FunctionDecl *FnDecl) {
5547  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
5548  if (isa<NamespaceDecl>(DC)) {
5549    return SemaRef.Diag(FnDecl->getLocation(),
5550                        diag::err_operator_new_delete_declared_in_namespace)
5551      << FnDecl->getDeclName();
5552  }
5553
5554  if (isa<TranslationUnitDecl>(DC) &&
5555      FnDecl->getStorageClass() == SC_Static) {
5556    return SemaRef.Diag(FnDecl->getLocation(),
5557                        diag::err_operator_new_delete_declared_static)
5558      << FnDecl->getDeclName();
5559  }
5560
5561  return false;
5562}
5563
5564static inline bool
5565CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5566                            CanQualType ExpectedResultType,
5567                            CanQualType ExpectedFirstParamType,
5568                            unsigned DependentParamTypeDiag,
5569                            unsigned InvalidParamTypeDiag) {
5570  QualType ResultType =
5571    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5572
5573  // Check that the result type is not dependent.
5574  if (ResultType->isDependentType())
5575    return SemaRef.Diag(FnDecl->getLocation(),
5576                        diag::err_operator_new_delete_dependent_result_type)
5577    << FnDecl->getDeclName() << ExpectedResultType;
5578
5579  // Check that the result type is what we expect.
5580  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5581    return SemaRef.Diag(FnDecl->getLocation(),
5582                        diag::err_operator_new_delete_invalid_result_type)
5583    << FnDecl->getDeclName() << ExpectedResultType;
5584
5585  // A function template must have at least 2 parameters.
5586  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5587    return SemaRef.Diag(FnDecl->getLocation(),
5588                      diag::err_operator_new_delete_template_too_few_parameters)
5589        << FnDecl->getDeclName();
5590
5591  // The function decl must have at least 1 parameter.
5592  if (FnDecl->getNumParams() == 0)
5593    return SemaRef.Diag(FnDecl->getLocation(),
5594                        diag::err_operator_new_delete_too_few_parameters)
5595      << FnDecl->getDeclName();
5596
5597  // Check the the first parameter type is not dependent.
5598  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5599  if (FirstParamType->isDependentType())
5600    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5601      << FnDecl->getDeclName() << ExpectedFirstParamType;
5602
5603  // Check that the first parameter type is what we expect.
5604  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5605      ExpectedFirstParamType)
5606    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5607    << FnDecl->getDeclName() << ExpectedFirstParamType;
5608
5609  return false;
5610}
5611
5612static bool
5613CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5614  // C++ [basic.stc.dynamic.allocation]p1:
5615  //   A program is ill-formed if an allocation function is declared in a
5616  //   namespace scope other than global scope or declared static in global
5617  //   scope.
5618  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5619    return true;
5620
5621  CanQualType SizeTy =
5622    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5623
5624  // C++ [basic.stc.dynamic.allocation]p1:
5625  //  The return type shall be void*. The first parameter shall have type
5626  //  std::size_t.
5627  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5628                                  SizeTy,
5629                                  diag::err_operator_new_dependent_param_type,
5630                                  diag::err_operator_new_param_type))
5631    return true;
5632
5633  // C++ [basic.stc.dynamic.allocation]p1:
5634  //  The first parameter shall not have an associated default argument.
5635  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5636    return SemaRef.Diag(FnDecl->getLocation(),
5637                        diag::err_operator_new_default_arg)
5638      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5639
5640  return false;
5641}
5642
5643static bool
5644CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5645  // C++ [basic.stc.dynamic.deallocation]p1:
5646  //   A program is ill-formed if deallocation functions are declared in a
5647  //   namespace scope other than global scope or declared static in global
5648  //   scope.
5649  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5650    return true;
5651
5652  // C++ [basic.stc.dynamic.deallocation]p2:
5653  //   Each deallocation function shall return void and its first parameter
5654  //   shall be void*.
5655  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5656                                  SemaRef.Context.VoidPtrTy,
5657                                 diag::err_operator_delete_dependent_param_type,
5658                                 diag::err_operator_delete_param_type))
5659    return true;
5660
5661  return false;
5662}
5663
5664/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5665/// of this overloaded operator is well-formed. If so, returns false;
5666/// otherwise, emits appropriate diagnostics and returns true.
5667bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5668  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5669         "Expected an overloaded operator declaration");
5670
5671  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5672
5673  // C++ [over.oper]p5:
5674  //   The allocation and deallocation functions, operator new,
5675  //   operator new[], operator delete and operator delete[], are
5676  //   described completely in 3.7.3. The attributes and restrictions
5677  //   found in the rest of this subclause do not apply to them unless
5678  //   explicitly stated in 3.7.3.
5679  if (Op == OO_Delete || Op == OO_Array_Delete)
5680    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5681
5682  if (Op == OO_New || Op == OO_Array_New)
5683    return CheckOperatorNewDeclaration(*this, FnDecl);
5684
5685  // C++ [over.oper]p6:
5686  //   An operator function shall either be a non-static member
5687  //   function or be a non-member function and have at least one
5688  //   parameter whose type is a class, a reference to a class, an
5689  //   enumeration, or a reference to an enumeration.
5690  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5691    if (MethodDecl->isStatic())
5692      return Diag(FnDecl->getLocation(),
5693                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5694  } else {
5695    bool ClassOrEnumParam = false;
5696    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5697                                   ParamEnd = FnDecl->param_end();
5698         Param != ParamEnd; ++Param) {
5699      QualType ParamType = (*Param)->getType().getNonReferenceType();
5700      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5701          ParamType->isEnumeralType()) {
5702        ClassOrEnumParam = true;
5703        break;
5704      }
5705    }
5706
5707    if (!ClassOrEnumParam)
5708      return Diag(FnDecl->getLocation(),
5709                  diag::err_operator_overload_needs_class_or_enum)
5710        << FnDecl->getDeclName();
5711  }
5712
5713  // C++ [over.oper]p8:
5714  //   An operator function cannot have default arguments (8.3.6),
5715  //   except where explicitly stated below.
5716  //
5717  // Only the function-call operator allows default arguments
5718  // (C++ [over.call]p1).
5719  if (Op != OO_Call) {
5720    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5721         Param != FnDecl->param_end(); ++Param) {
5722      if ((*Param)->hasDefaultArg())
5723        return Diag((*Param)->getLocation(),
5724                    diag::err_operator_overload_default_arg)
5725          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5726    }
5727  }
5728
5729  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5730    { false, false, false }
5731#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5732    , { Unary, Binary, MemberOnly }
5733#include "clang/Basic/OperatorKinds.def"
5734  };
5735
5736  bool CanBeUnaryOperator = OperatorUses[Op][0];
5737  bool CanBeBinaryOperator = OperatorUses[Op][1];
5738  bool MustBeMemberOperator = OperatorUses[Op][2];
5739
5740  // C++ [over.oper]p8:
5741  //   [...] Operator functions cannot have more or fewer parameters
5742  //   than the number required for the corresponding operator, as
5743  //   described in the rest of this subclause.
5744  unsigned NumParams = FnDecl->getNumParams()
5745                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5746  if (Op != OO_Call &&
5747      ((NumParams == 1 && !CanBeUnaryOperator) ||
5748       (NumParams == 2 && !CanBeBinaryOperator) ||
5749       (NumParams < 1) || (NumParams > 2))) {
5750    // We have the wrong number of parameters.
5751    unsigned ErrorKind;
5752    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5753      ErrorKind = 2;  // 2 -> unary or binary.
5754    } else if (CanBeUnaryOperator) {
5755      ErrorKind = 0;  // 0 -> unary
5756    } else {
5757      assert(CanBeBinaryOperator &&
5758             "All non-call overloaded operators are unary or binary!");
5759      ErrorKind = 1;  // 1 -> binary
5760    }
5761
5762    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5763      << FnDecl->getDeclName() << NumParams << ErrorKind;
5764  }
5765
5766  // Overloaded operators other than operator() cannot be variadic.
5767  if (Op != OO_Call &&
5768      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5769    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5770      << FnDecl->getDeclName();
5771  }
5772
5773  // Some operators must be non-static member functions.
5774  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5775    return Diag(FnDecl->getLocation(),
5776                diag::err_operator_overload_must_be_member)
5777      << FnDecl->getDeclName();
5778  }
5779
5780  // C++ [over.inc]p1:
5781  //   The user-defined function called operator++ implements the
5782  //   prefix and postfix ++ operator. If this function is a member
5783  //   function with no parameters, or a non-member function with one
5784  //   parameter of class or enumeration type, it defines the prefix
5785  //   increment operator ++ for objects of that type. If the function
5786  //   is a member function with one parameter (which shall be of type
5787  //   int) or a non-member function with two parameters (the second
5788  //   of which shall be of type int), it defines the postfix
5789  //   increment operator ++ for objects of that type.
5790  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5791    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5792    bool ParamIsInt = false;
5793    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5794      ParamIsInt = BT->getKind() == BuiltinType::Int;
5795
5796    if (!ParamIsInt)
5797      return Diag(LastParam->getLocation(),
5798                  diag::err_operator_overload_post_incdec_must_be_int)
5799        << LastParam->getType() << (Op == OO_MinusMinus);
5800  }
5801
5802  return false;
5803}
5804
5805/// CheckLiteralOperatorDeclaration - Check whether the declaration
5806/// of this literal operator function is well-formed. If so, returns
5807/// false; otherwise, emits appropriate diagnostics and returns true.
5808bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5809  DeclContext *DC = FnDecl->getDeclContext();
5810  Decl::Kind Kind = DC->getDeclKind();
5811  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5812      Kind != Decl::LinkageSpec) {
5813    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5814      << FnDecl->getDeclName();
5815    return true;
5816  }
5817
5818  bool Valid = false;
5819
5820  // template <char...> type operator "" name() is the only valid template
5821  // signature, and the only valid signature with no parameters.
5822  if (FnDecl->param_size() == 0) {
5823    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5824      // Must have only one template parameter
5825      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5826      if (Params->size() == 1) {
5827        NonTypeTemplateParmDecl *PmDecl =
5828          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5829
5830        // The template parameter must be a char parameter pack.
5831        // FIXME: This test will always fail because non-type parameter packs
5832        //   have not been implemented.
5833        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5834            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5835          Valid = true;
5836      }
5837    }
5838  } else {
5839    // Check the first parameter
5840    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5841
5842    QualType T = (*Param)->getType();
5843
5844    // unsigned long long int, long double, and any character type are allowed
5845    // as the only parameters.
5846    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5847        Context.hasSameType(T, Context.LongDoubleTy) ||
5848        Context.hasSameType(T, Context.CharTy) ||
5849        Context.hasSameType(T, Context.WCharTy) ||
5850        Context.hasSameType(T, Context.Char16Ty) ||
5851        Context.hasSameType(T, Context.Char32Ty)) {
5852      if (++Param == FnDecl->param_end())
5853        Valid = true;
5854      goto FinishedParams;
5855    }
5856
5857    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5858    const PointerType *PT = T->getAs<PointerType>();
5859    if (!PT)
5860      goto FinishedParams;
5861    T = PT->getPointeeType();
5862    if (!T.isConstQualified())
5863      goto FinishedParams;
5864    T = T.getUnqualifiedType();
5865
5866    // Move on to the second parameter;
5867    ++Param;
5868
5869    // If there is no second parameter, the first must be a const char *
5870    if (Param == FnDecl->param_end()) {
5871      if (Context.hasSameType(T, Context.CharTy))
5872        Valid = true;
5873      goto FinishedParams;
5874    }
5875
5876    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5877    // are allowed as the first parameter to a two-parameter function
5878    if (!(Context.hasSameType(T, Context.CharTy) ||
5879          Context.hasSameType(T, Context.WCharTy) ||
5880          Context.hasSameType(T, Context.Char16Ty) ||
5881          Context.hasSameType(T, Context.Char32Ty)))
5882      goto FinishedParams;
5883
5884    // The second and final parameter must be an std::size_t
5885    T = (*Param)->getType().getUnqualifiedType();
5886    if (Context.hasSameType(T, Context.getSizeType()) &&
5887        ++Param == FnDecl->param_end())
5888      Valid = true;
5889  }
5890
5891  // FIXME: This diagnostic is absolutely terrible.
5892FinishedParams:
5893  if (!Valid) {
5894    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5895      << FnDecl->getDeclName();
5896    return true;
5897  }
5898
5899  return false;
5900}
5901
5902/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5903/// linkage specification, including the language and (if present)
5904/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5905/// the location of the language string literal, which is provided
5906/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5907/// the '{' brace. Otherwise, this linkage specification does not
5908/// have any braces.
5909Decl *Sema::ActOnStartLinkageSpecification(Scope *S,
5910                                                     SourceLocation ExternLoc,
5911                                                     SourceLocation LangLoc,
5912                                                     llvm::StringRef Lang,
5913                                                     SourceLocation LBraceLoc) {
5914  LinkageSpecDecl::LanguageIDs Language;
5915  if (Lang == "\"C\"")
5916    Language = LinkageSpecDecl::lang_c;
5917  else if (Lang == "\"C++\"")
5918    Language = LinkageSpecDecl::lang_cxx;
5919  else {
5920    Diag(LangLoc, diag::err_bad_language);
5921    return 0;
5922  }
5923
5924  // FIXME: Add all the various semantics of linkage specifications
5925
5926  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5927                                               LangLoc, Language,
5928                                               LBraceLoc.isValid());
5929  CurContext->addDecl(D);
5930  PushDeclContext(S, D);
5931  return D;
5932}
5933
5934/// ActOnFinishLinkageSpecification - Complete the definition of
5935/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5936/// valid, it's the position of the closing '}' brace in a linkage
5937/// specification that uses braces.
5938Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
5939                                                      Decl *LinkageSpec,
5940                                                      SourceLocation RBraceLoc) {
5941  if (LinkageSpec)
5942    PopDeclContext();
5943  return LinkageSpec;
5944}
5945
5946/// \brief Perform semantic analysis for the variable declaration that
5947/// occurs within a C++ catch clause, returning the newly-created
5948/// variable.
5949VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
5950                                         TypeSourceInfo *TInfo,
5951                                         IdentifierInfo *Name,
5952                                         SourceLocation Loc) {
5953  bool Invalid = false;
5954  QualType ExDeclType = TInfo->getType();
5955
5956  // Arrays and functions decay.
5957  if (ExDeclType->isArrayType())
5958    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5959  else if (ExDeclType->isFunctionType())
5960    ExDeclType = Context.getPointerType(ExDeclType);
5961
5962  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5963  // The exception-declaration shall not denote a pointer or reference to an
5964  // incomplete type, other than [cv] void*.
5965  // N2844 forbids rvalue references.
5966  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5967    Diag(Loc, diag::err_catch_rvalue_ref);
5968    Invalid = true;
5969  }
5970
5971  // GCC allows catching pointers and references to incomplete types
5972  // as an extension; so do we, but we warn by default.
5973
5974  QualType BaseType = ExDeclType;
5975  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5976  unsigned DK = diag::err_catch_incomplete;
5977  bool IncompleteCatchIsInvalid = true;
5978  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5979    BaseType = Ptr->getPointeeType();
5980    Mode = 1;
5981    DK = diag::ext_catch_incomplete_ptr;
5982    IncompleteCatchIsInvalid = false;
5983  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5984    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5985    BaseType = Ref->getPointeeType();
5986    Mode = 2;
5987    DK = diag::ext_catch_incomplete_ref;
5988    IncompleteCatchIsInvalid = false;
5989  }
5990  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5991      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5992      IncompleteCatchIsInvalid)
5993    Invalid = true;
5994
5995  if (!Invalid && !ExDeclType->isDependentType() &&
5996      RequireNonAbstractType(Loc, ExDeclType,
5997                             diag::err_abstract_type_in_decl,
5998                             AbstractVariableType))
5999    Invalid = true;
6000
6001  // Only the non-fragile NeXT runtime currently supports C++ catches
6002  // of ObjC types, and no runtime supports catching ObjC types by value.
6003  if (!Invalid && getLangOptions().ObjC1) {
6004    QualType T = ExDeclType;
6005    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6006      T = RT->getPointeeType();
6007
6008    if (T->isObjCObjectType()) {
6009      Diag(Loc, diag::err_objc_object_catch);
6010      Invalid = true;
6011    } else if (T->isObjCObjectPointerType()) {
6012      if (!getLangOptions().NeXTRuntime) {
6013        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6014        Invalid = true;
6015      } else if (!getLangOptions().ObjCNonFragileABI) {
6016        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6017        Invalid = true;
6018      }
6019    }
6020  }
6021
6022  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6023                                    Name, ExDeclType, TInfo, SC_None,
6024                                    SC_None);
6025  ExDecl->setExceptionVariable(true);
6026
6027  if (!Invalid) {
6028    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6029      // C++ [except.handle]p16:
6030      //   The object declared in an exception-declaration or, if the
6031      //   exception-declaration does not specify a name, a temporary (12.2) is
6032      //   copy-initialized (8.5) from the exception object. [...]
6033      //   The object is destroyed when the handler exits, after the destruction
6034      //   of any automatic objects initialized within the handler.
6035      //
6036      // We just pretend to initialize the object with itself, then make sure
6037      // it can be destroyed later.
6038      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6039      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6040                                            Loc, ExDeclType, 0);
6041      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6042                                                               SourceLocation());
6043      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6044      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6045                                         MultiExprArg(*this, &ExDeclRef, 1));
6046      if (Result.isInvalid())
6047        Invalid = true;
6048      else
6049        FinalizeVarWithDestructor(ExDecl, RecordTy);
6050    }
6051  }
6052
6053  if (Invalid)
6054    ExDecl->setInvalidDecl();
6055
6056  return ExDecl;
6057}
6058
6059/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6060/// handler.
6061Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6062  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6063  QualType ExDeclType = TInfo->getType();
6064
6065  bool Invalid = D.isInvalidType();
6066  IdentifierInfo *II = D.getIdentifier();
6067  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6068                                             LookupOrdinaryName,
6069                                             ForRedeclaration)) {
6070    // The scope should be freshly made just for us. There is just no way
6071    // it contains any previous declaration.
6072    assert(!S->isDeclScope(PrevDecl));
6073    if (PrevDecl->isTemplateParameter()) {
6074      // Maybe we will complain about the shadowed template parameter.
6075      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6076    }
6077  }
6078
6079  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6080    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6081      << D.getCXXScopeSpec().getRange();
6082    Invalid = true;
6083  }
6084
6085  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6086                                              D.getIdentifier(),
6087                                              D.getIdentifierLoc());
6088
6089  if (Invalid)
6090    ExDecl->setInvalidDecl();
6091
6092  // Add the exception declaration into this scope.
6093  if (II)
6094    PushOnScopeChains(ExDecl, S);
6095  else
6096    CurContext->addDecl(ExDecl);
6097
6098  ProcessDeclAttributes(S, ExDecl, D);
6099  return ExDecl;
6100}
6101
6102Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6103                                         Expr *AssertExpr,
6104                                         Expr *AssertMessageExpr_) {
6105  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6106
6107  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6108    llvm::APSInt Value(32);
6109    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6110      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6111        AssertExpr->getSourceRange();
6112      return 0;
6113    }
6114
6115    if (Value == 0) {
6116      Diag(AssertLoc, diag::err_static_assert_failed)
6117        << AssertMessage->getString() << AssertExpr->getSourceRange();
6118    }
6119  }
6120
6121  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6122                                        AssertExpr, AssertMessage);
6123
6124  CurContext->addDecl(Decl);
6125  return Decl;
6126}
6127
6128/// \brief Perform semantic analysis of the given friend type declaration.
6129///
6130/// \returns A friend declaration that.
6131FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6132                                      TypeSourceInfo *TSInfo) {
6133  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6134
6135  QualType T = TSInfo->getType();
6136  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6137
6138  if (!getLangOptions().CPlusPlus0x) {
6139    // C++03 [class.friend]p2:
6140    //   An elaborated-type-specifier shall be used in a friend declaration
6141    //   for a class.*
6142    //
6143    //   * The class-key of the elaborated-type-specifier is required.
6144    if (!ActiveTemplateInstantiations.empty()) {
6145      // Do not complain about the form of friend template types during
6146      // template instantiation; we will already have complained when the
6147      // template was declared.
6148    } else if (!T->isElaboratedTypeSpecifier()) {
6149      // If we evaluated the type to a record type, suggest putting
6150      // a tag in front.
6151      if (const RecordType *RT = T->getAs<RecordType>()) {
6152        RecordDecl *RD = RT->getDecl();
6153
6154        std::string InsertionText = std::string(" ") + RD->getKindName();
6155
6156        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6157          << (unsigned) RD->getTagKind()
6158          << T
6159          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6160                                        InsertionText);
6161      } else {
6162        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6163          << T
6164          << SourceRange(FriendLoc, TypeRange.getEnd());
6165      }
6166    } else if (T->getAs<EnumType>()) {
6167      Diag(FriendLoc, diag::ext_enum_friend)
6168        << T
6169        << SourceRange(FriendLoc, TypeRange.getEnd());
6170    }
6171  }
6172
6173  // C++0x [class.friend]p3:
6174  //   If the type specifier in a friend declaration designates a (possibly
6175  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6176  //   the friend declaration is ignored.
6177
6178  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6179  // in [class.friend]p3 that we do not implement.
6180
6181  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6182}
6183
6184/// Handle a friend type declaration.  This works in tandem with
6185/// ActOnTag.
6186///
6187/// Notes on friend class templates:
6188///
6189/// We generally treat friend class declarations as if they were
6190/// declaring a class.  So, for example, the elaborated type specifier
6191/// in a friend declaration is required to obey the restrictions of a
6192/// class-head (i.e. no typedefs in the scope chain), template
6193/// parameters are required to match up with simple template-ids, &c.
6194/// However, unlike when declaring a template specialization, it's
6195/// okay to refer to a template specialization without an empty
6196/// template parameter declaration, e.g.
6197///   friend class A<T>::B<unsigned>;
6198/// We permit this as a special case; if there are any template
6199/// parameters present at all, require proper matching, i.e.
6200///   template <> template <class T> friend class A<int>::B;
6201Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6202                                          MultiTemplateParamsArg TempParams) {
6203  SourceLocation Loc = DS.getSourceRange().getBegin();
6204
6205  assert(DS.isFriendSpecified());
6206  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6207
6208  // Try to convert the decl specifier to a type.  This works for
6209  // friend templates because ActOnTag never produces a ClassTemplateDecl
6210  // for a TUK_Friend.
6211  Declarator TheDeclarator(DS, Declarator::MemberContext);
6212  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6213  QualType T = TSI->getType();
6214  if (TheDeclarator.isInvalidType())
6215    return 0;
6216
6217  // This is definitely an error in C++98.  It's probably meant to
6218  // be forbidden in C++0x, too, but the specification is just
6219  // poorly written.
6220  //
6221  // The problem is with declarations like the following:
6222  //   template <T> friend A<T>::foo;
6223  // where deciding whether a class C is a friend or not now hinges
6224  // on whether there exists an instantiation of A that causes
6225  // 'foo' to equal C.  There are restrictions on class-heads
6226  // (which we declare (by fiat) elaborated friend declarations to
6227  // be) that makes this tractable.
6228  //
6229  // FIXME: handle "template <> friend class A<T>;", which
6230  // is possibly well-formed?  Who even knows?
6231  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6232    Diag(Loc, diag::err_tagless_friend_type_template)
6233      << DS.getSourceRange();
6234    return 0;
6235  }
6236
6237  // C++98 [class.friend]p1: A friend of a class is a function
6238  //   or class that is not a member of the class . . .
6239  // This is fixed in DR77, which just barely didn't make the C++03
6240  // deadline.  It's also a very silly restriction that seriously
6241  // affects inner classes and which nobody else seems to implement;
6242  // thus we never diagnose it, not even in -pedantic.
6243  //
6244  // But note that we could warn about it: it's always useless to
6245  // friend one of your own members (it's not, however, worthless to
6246  // friend a member of an arbitrary specialization of your template).
6247
6248  Decl *D;
6249  if (unsigned NumTempParamLists = TempParams.size())
6250    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6251                                   NumTempParamLists,
6252                                 (TemplateParameterList**) TempParams.release(),
6253                                   TSI,
6254                                   DS.getFriendSpecLoc());
6255  else
6256    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6257
6258  if (!D)
6259    return 0;
6260
6261  D->setAccess(AS_public);
6262  CurContext->addDecl(D);
6263
6264  return D;
6265}
6266
6267Decl *Sema::ActOnFriendFunctionDecl(Scope *S,
6268                                         Declarator &D,
6269                                         bool IsDefinition,
6270                              MultiTemplateParamsArg TemplateParams) {
6271  const DeclSpec &DS = D.getDeclSpec();
6272
6273  assert(DS.isFriendSpecified());
6274  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6275
6276  SourceLocation Loc = D.getIdentifierLoc();
6277  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6278  QualType T = TInfo->getType();
6279
6280  // C++ [class.friend]p1
6281  //   A friend of a class is a function or class....
6282  // Note that this sees through typedefs, which is intended.
6283  // It *doesn't* see through dependent types, which is correct
6284  // according to [temp.arg.type]p3:
6285  //   If a declaration acquires a function type through a
6286  //   type dependent on a template-parameter and this causes
6287  //   a declaration that does not use the syntactic form of a
6288  //   function declarator to have a function type, the program
6289  //   is ill-formed.
6290  if (!T->isFunctionType()) {
6291    Diag(Loc, diag::err_unexpected_friend);
6292
6293    // It might be worthwhile to try to recover by creating an
6294    // appropriate declaration.
6295    return 0;
6296  }
6297
6298  // C++ [namespace.memdef]p3
6299  //  - If a friend declaration in a non-local class first declares a
6300  //    class or function, the friend class or function is a member
6301  //    of the innermost enclosing namespace.
6302  //  - The name of the friend is not found by simple name lookup
6303  //    until a matching declaration is provided in that namespace
6304  //    scope (either before or after the class declaration granting
6305  //    friendship).
6306  //  - If a friend function is called, its name may be found by the
6307  //    name lookup that considers functions from namespaces and
6308  //    classes associated with the types of the function arguments.
6309  //  - When looking for a prior declaration of a class or a function
6310  //    declared as a friend, scopes outside the innermost enclosing
6311  //    namespace scope are not considered.
6312
6313  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
6314  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6315  DeclarationName Name = NameInfo.getName();
6316  assert(Name);
6317
6318  // The context we found the declaration in, or in which we should
6319  // create the declaration.
6320  DeclContext *DC;
6321
6322  // FIXME: handle local classes
6323
6324  // Recover from invalid scope qualifiers as if they just weren't there.
6325  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6326                        ForRedeclaration);
6327  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
6328    DC = computeDeclContext(ScopeQual);
6329
6330    // FIXME: handle dependent contexts
6331    if (!DC) return 0;
6332    if (RequireCompleteDeclContext(ScopeQual, DC)) return 0;
6333
6334    LookupQualifiedName(Previous, DC);
6335
6336    // Ignore things found implicitly in the wrong scope.
6337    // TODO: better diagnostics for this case.  Suggesting the right
6338    // qualified scope would be nice...
6339    LookupResult::Filter F = Previous.makeFilter();
6340    while (F.hasNext()) {
6341      NamedDecl *D = F.next();
6342      if (!DC->InEnclosingNamespaceSetOf(
6343              D->getDeclContext()->getRedeclContext()))
6344        F.erase();
6345    }
6346    F.done();
6347
6348    if (Previous.empty()) {
6349      D.setInvalidType();
6350      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6351      return 0;
6352    }
6353
6354    // C++ [class.friend]p1: A friend of a class is a function or
6355    //   class that is not a member of the class . . .
6356    if (DC->Equals(CurContext))
6357      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6358
6359  // Otherwise walk out to the nearest namespace scope looking for matches.
6360  } else {
6361    // TODO: handle local class contexts.
6362
6363    DC = CurContext;
6364    while (true) {
6365      // Skip class contexts.  If someone can cite chapter and verse
6366      // for this behavior, that would be nice --- it's what GCC and
6367      // EDG do, and it seems like a reasonable intent, but the spec
6368      // really only says that checks for unqualified existing
6369      // declarations should stop at the nearest enclosing namespace,
6370      // not that they should only consider the nearest enclosing
6371      // namespace.
6372      while (DC->isRecord())
6373        DC = DC->getParent();
6374
6375      LookupQualifiedName(Previous, DC);
6376
6377      // TODO: decide what we think about using declarations.
6378      if (!Previous.empty())
6379        break;
6380
6381      if (DC->isFileContext()) break;
6382      DC = DC->getParent();
6383    }
6384
6385    // C++ [class.friend]p1: A friend of a class is a function or
6386    //   class that is not a member of the class . . .
6387    // C++0x changes this for both friend types and functions.
6388    // Most C++ 98 compilers do seem to give an error here, so
6389    // we do, too.
6390    if (!Previous.empty() && DC->Equals(CurContext)
6391        && !getLangOptions().CPlusPlus0x)
6392      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6393  }
6394
6395  if (DC->isFileContext()) {
6396    // This implies that it has to be an operator or function.
6397    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6398        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6399        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6400      Diag(Loc, diag::err_introducing_special_friend) <<
6401        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6402         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6403      return 0;
6404    }
6405  }
6406
6407  bool Redeclaration = false;
6408  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
6409                                          move(TemplateParams),
6410                                          IsDefinition,
6411                                          Redeclaration);
6412  if (!ND) return 0;
6413
6414  assert(ND->getDeclContext() == DC);
6415  assert(ND->getLexicalDeclContext() == CurContext);
6416
6417  // Add the function declaration to the appropriate lookup tables,
6418  // adjusting the redeclarations list as necessary.  We don't
6419  // want to do this yet if the friending class is dependent.
6420  //
6421  // Also update the scope-based lookup if the target context's
6422  // lookup context is in lexical scope.
6423  if (!CurContext->isDependentContext()) {
6424    DC = DC->getRedeclContext();
6425    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6426    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6427      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6428  }
6429
6430  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6431                                       D.getIdentifierLoc(), ND,
6432                                       DS.getFriendSpecLoc());
6433  FrD->setAccess(AS_public);
6434  CurContext->addDecl(FrD);
6435
6436  return ND;
6437}
6438
6439void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
6440  AdjustDeclIfTemplate(Dcl);
6441
6442  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6443  if (!Fn) {
6444    Diag(DelLoc, diag::err_deleted_non_function);
6445    return;
6446  }
6447  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6448    Diag(DelLoc, diag::err_deleted_decl_not_first);
6449    Diag(Prev->getLocation(), diag::note_previous_declaration);
6450    // If the declaration wasn't the first, we delete the function anyway for
6451    // recovery.
6452  }
6453  Fn->setDeleted();
6454}
6455
6456static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6457  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6458       ++CI) {
6459    Stmt *SubStmt = *CI;
6460    if (!SubStmt)
6461      continue;
6462    if (isa<ReturnStmt>(SubStmt))
6463      Self.Diag(SubStmt->getSourceRange().getBegin(),
6464           diag::err_return_in_constructor_handler);
6465    if (!isa<Expr>(SubStmt))
6466      SearchForReturnInStmt(Self, SubStmt);
6467  }
6468}
6469
6470void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6471  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6472    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6473    SearchForReturnInStmt(*this, Handler);
6474  }
6475}
6476
6477bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6478                                             const CXXMethodDecl *Old) {
6479  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6480  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6481
6482  if (Context.hasSameType(NewTy, OldTy) ||
6483      NewTy->isDependentType() || OldTy->isDependentType())
6484    return false;
6485
6486  // Check if the return types are covariant
6487  QualType NewClassTy, OldClassTy;
6488
6489  /// Both types must be pointers or references to classes.
6490  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6491    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6492      NewClassTy = NewPT->getPointeeType();
6493      OldClassTy = OldPT->getPointeeType();
6494    }
6495  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6496    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6497      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6498        NewClassTy = NewRT->getPointeeType();
6499        OldClassTy = OldRT->getPointeeType();
6500      }
6501    }
6502  }
6503
6504  // The return types aren't either both pointers or references to a class type.
6505  if (NewClassTy.isNull()) {
6506    Diag(New->getLocation(),
6507         diag::err_different_return_type_for_overriding_virtual_function)
6508      << New->getDeclName() << NewTy << OldTy;
6509    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6510
6511    return true;
6512  }
6513
6514  // C++ [class.virtual]p6:
6515  //   If the return type of D::f differs from the return type of B::f, the
6516  //   class type in the return type of D::f shall be complete at the point of
6517  //   declaration of D::f or shall be the class type D.
6518  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6519    if (!RT->isBeingDefined() &&
6520        RequireCompleteType(New->getLocation(), NewClassTy,
6521                            PDiag(diag::err_covariant_return_incomplete)
6522                              << New->getDeclName()))
6523    return true;
6524  }
6525
6526  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6527    // Check if the new class derives from the old class.
6528    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6529      Diag(New->getLocation(),
6530           diag::err_covariant_return_not_derived)
6531      << New->getDeclName() << NewTy << OldTy;
6532      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6533      return true;
6534    }
6535
6536    // Check if we the conversion from derived to base is valid.
6537    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6538                    diag::err_covariant_return_inaccessible_base,
6539                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6540                    // FIXME: Should this point to the return type?
6541                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6542      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6543      return true;
6544    }
6545  }
6546
6547  // The qualifiers of the return types must be the same.
6548  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6549    Diag(New->getLocation(),
6550         diag::err_covariant_return_type_different_qualifications)
6551    << New->getDeclName() << NewTy << OldTy;
6552    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6553    return true;
6554  };
6555
6556
6557  // The new class type must have the same or less qualifiers as the old type.
6558  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6559    Diag(New->getLocation(),
6560         diag::err_covariant_return_type_class_type_more_qualified)
6561    << New->getDeclName() << NewTy << OldTy;
6562    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6563    return true;
6564  };
6565
6566  return false;
6567}
6568
6569bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6570                                             const CXXMethodDecl *Old)
6571{
6572  if (Old->hasAttr<FinalAttr>()) {
6573    Diag(New->getLocation(), diag::err_final_function_overridden)
6574      << New->getDeclName();
6575    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6576    return true;
6577  }
6578
6579  return false;
6580}
6581
6582/// \brief Mark the given method pure.
6583///
6584/// \param Method the method to be marked pure.
6585///
6586/// \param InitRange the source range that covers the "0" initializer.
6587bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6588  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6589    Method->setPure();
6590    return false;
6591  }
6592
6593  if (!Method->isInvalidDecl())
6594    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6595      << Method->getDeclName() << InitRange;
6596  return true;
6597}
6598
6599/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6600/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6601/// is a fresh scope pushed for just this purpose.
6602///
6603/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6604/// static data member of class X, names should be looked up in the scope of
6605/// class X.
6606void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
6607  // If there is no declaration, there was an error parsing it.
6608  if (D == 0) return;
6609
6610  // We should only get called for declarations with scope specifiers, like:
6611  //   int foo::bar;
6612  assert(D->isOutOfLine());
6613  EnterDeclaratorContext(S, D->getDeclContext());
6614}
6615
6616/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6617/// initializer for the out-of-line declaration 'D'.
6618void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
6619  // If there is no declaration, there was an error parsing it.
6620  if (D == 0) return;
6621
6622  assert(D->isOutOfLine());
6623  ExitDeclaratorContext(S);
6624}
6625
6626/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6627/// C++ if/switch/while/for statement.
6628/// e.g: "if (int x = f()) {...}"
6629DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6630  // C++ 6.4p2:
6631  // The declarator shall not specify a function or an array.
6632  // The type-specifier-seq shall not contain typedef and shall not declare a
6633  // new class or enumeration.
6634  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6635         "Parser allowed 'typedef' as storage class of condition decl.");
6636
6637  TagDecl *OwnedTag = 0;
6638  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6639  QualType Ty = TInfo->getType();
6640
6641  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6642                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6643                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6644    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6645      << D.getSourceRange();
6646    return DeclResult();
6647  } else if (OwnedTag && OwnedTag->isDefinition()) {
6648    // The type-specifier-seq shall not declare a new class or enumeration.
6649    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6650  }
6651
6652  Decl *Dcl = ActOnDeclarator(S, D);
6653  if (!Dcl)
6654    return DeclResult();
6655
6656  return Dcl;
6657}
6658
6659void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6660                          bool DefinitionRequired) {
6661  // Ignore any vtable uses in unevaluated operands or for classes that do
6662  // not have a vtable.
6663  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6664      CurContext->isDependentContext() ||
6665      ExprEvalContexts.back().Context == Unevaluated)
6666    return;
6667
6668  // Try to insert this class into the map.
6669  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6670  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6671    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6672  if (!Pos.second) {
6673    // If we already had an entry, check to see if we are promoting this vtable
6674    // to required a definition. If so, we need to reappend to the VTableUses
6675    // list, since we may have already processed the first entry.
6676    if (DefinitionRequired && !Pos.first->second) {
6677      Pos.first->second = true;
6678    } else {
6679      // Otherwise, we can early exit.
6680      return;
6681    }
6682  }
6683
6684  // Local classes need to have their virtual members marked
6685  // immediately. For all other classes, we mark their virtual members
6686  // at the end of the translation unit.
6687  if (Class->isLocalClass())
6688    MarkVirtualMembersReferenced(Loc, Class);
6689  else
6690    VTableUses.push_back(std::make_pair(Class, Loc));
6691}
6692
6693bool Sema::DefineUsedVTables() {
6694  // If any dynamic classes have their key function defined within
6695  // this translation unit, then those vtables are considered "used" and must
6696  // be emitted.
6697  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6698    if (const CXXMethodDecl *KeyFunction
6699                             = Context.getKeyFunction(DynamicClasses[I])) {
6700      const FunctionDecl *Definition = 0;
6701      if (KeyFunction->hasBody(Definition))
6702        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6703    }
6704  }
6705
6706  if (VTableUses.empty())
6707    return false;
6708
6709  // Note: The VTableUses vector could grow as a result of marking
6710  // the members of a class as "used", so we check the size each
6711  // time through the loop and prefer indices (with are stable) to
6712  // iterators (which are not).
6713  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6714    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6715    if (!Class)
6716      continue;
6717
6718    SourceLocation Loc = VTableUses[I].second;
6719
6720    // If this class has a key function, but that key function is
6721    // defined in another translation unit, we don't need to emit the
6722    // vtable even though we're using it.
6723    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6724    if (KeyFunction && !KeyFunction->hasBody()) {
6725      switch (KeyFunction->getTemplateSpecializationKind()) {
6726      case TSK_Undeclared:
6727      case TSK_ExplicitSpecialization:
6728      case TSK_ExplicitInstantiationDeclaration:
6729        // The key function is in another translation unit.
6730        continue;
6731
6732      case TSK_ExplicitInstantiationDefinition:
6733      case TSK_ImplicitInstantiation:
6734        // We will be instantiating the key function.
6735        break;
6736      }
6737    } else if (!KeyFunction) {
6738      // If we have a class with no key function that is the subject
6739      // of an explicit instantiation declaration, suppress the
6740      // vtable; it will live with the explicit instantiation
6741      // definition.
6742      bool IsExplicitInstantiationDeclaration
6743        = Class->getTemplateSpecializationKind()
6744                                      == TSK_ExplicitInstantiationDeclaration;
6745      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6746                                 REnd = Class->redecls_end();
6747           R != REnd; ++R) {
6748        TemplateSpecializationKind TSK
6749          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6750        if (TSK == TSK_ExplicitInstantiationDeclaration)
6751          IsExplicitInstantiationDeclaration = true;
6752        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6753          IsExplicitInstantiationDeclaration = false;
6754          break;
6755        }
6756      }
6757
6758      if (IsExplicitInstantiationDeclaration)
6759        continue;
6760    }
6761
6762    // Mark all of the virtual members of this class as referenced, so
6763    // that we can build a vtable. Then, tell the AST consumer that a
6764    // vtable for this class is required.
6765    MarkVirtualMembersReferenced(Loc, Class);
6766    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6767    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6768
6769    // Optionally warn if we're emitting a weak vtable.
6770    if (Class->getLinkage() == ExternalLinkage &&
6771        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6772      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
6773        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6774    }
6775  }
6776  VTableUses.clear();
6777
6778  return true;
6779}
6780
6781void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6782                                        const CXXRecordDecl *RD) {
6783  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6784       e = RD->method_end(); i != e; ++i) {
6785    CXXMethodDecl *MD = *i;
6786
6787    // C++ [basic.def.odr]p2:
6788    //   [...] A virtual member function is used if it is not pure. [...]
6789    if (MD->isVirtual() && !MD->isPure())
6790      MarkDeclarationReferenced(Loc, MD);
6791  }
6792
6793  // Only classes that have virtual bases need a VTT.
6794  if (RD->getNumVBases() == 0)
6795    return;
6796
6797  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6798           e = RD->bases_end(); i != e; ++i) {
6799    const CXXRecordDecl *Base =
6800        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6801    if (Base->getNumVBases() == 0)
6802      continue;
6803    MarkVirtualMembersReferenced(Loc, Base);
6804  }
6805}
6806
6807/// SetIvarInitializers - This routine builds initialization ASTs for the
6808/// Objective-C implementation whose ivars need be initialized.
6809void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6810  if (!getLangOptions().CPlusPlus)
6811    return;
6812  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6813    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6814    CollectIvarsToConstructOrDestruct(OID, ivars);
6815    if (ivars.empty())
6816      return;
6817    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6818    for (unsigned i = 0; i < ivars.size(); i++) {
6819      FieldDecl *Field = ivars[i];
6820      if (Field->isInvalidDecl())
6821        continue;
6822
6823      CXXBaseOrMemberInitializer *Member;
6824      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6825      InitializationKind InitKind =
6826        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6827
6828      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6829      ExprResult MemberInit =
6830        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
6831      MemberInit = MaybeCreateCXXExprWithTemporaries(MemberInit.get());
6832      // Note, MemberInit could actually come back empty if no initialization
6833      // is required (e.g., because it would call a trivial default constructor)
6834      if (!MemberInit.get() || MemberInit.isInvalid())
6835        continue;
6836
6837      Member =
6838        new (Context) CXXBaseOrMemberInitializer(Context,
6839                                                 Field, SourceLocation(),
6840                                                 SourceLocation(),
6841                                                 MemberInit.takeAs<Expr>(),
6842                                                 SourceLocation());
6843      AllToInit.push_back(Member);
6844
6845      // Be sure that the destructor is accessible and is marked as referenced.
6846      if (const RecordType *RecordTy
6847                  = Context.getBaseElementType(Field->getType())
6848                                                        ->getAs<RecordType>()) {
6849                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6850        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
6851          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6852          CheckDestructorAccess(Field->getLocation(), Destructor,
6853                            PDiag(diag::err_access_dtor_ivar)
6854                              << Context.getBaseElementType(Field->getType()));
6855        }
6856      }
6857    }
6858    ObjCImplementation->setIvarInitializers(Context,
6859                                            AllToInit.data(), AllToInit.size());
6860  }
6861}
6862