SemaDeclCXX.cpp revision 987c03085558277a5fe8cef8e1b628cabcc626dc
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclVisitor.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallString.h"
40#include <map>
41#include <set>
42
43using namespace clang;
44
45//===----------------------------------------------------------------------===//
46// CheckDefaultArgumentVisitor
47//===----------------------------------------------------------------------===//
48
49namespace {
50  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
51  /// the default argument of a parameter to determine whether it
52  /// contains any ill-formed subexpressions. For example, this will
53  /// diagnose the use of local variables or parameters within the
54  /// default argument expression.
55  class CheckDefaultArgumentVisitor
56    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
57    Expr *DefaultArg;
58    Sema *S;
59
60  public:
61    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
62      : DefaultArg(defarg), S(s) {}
63
64    bool VisitExpr(Expr *Node);
65    bool VisitDeclRefExpr(DeclRefExpr *DRE);
66    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
67    bool VisitLambdaExpr(LambdaExpr *Lambda);
68    bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
69  };
70
71  /// VisitExpr - Visit all of the children of this expression.
72  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
73    bool IsInvalid = false;
74    for (Stmt::child_range I = Node->children(); I; ++I)
75      IsInvalid |= Visit(*I);
76    return IsInvalid;
77  }
78
79  /// VisitDeclRefExpr - Visit a reference to a declaration, to
80  /// determine whether this declaration can be used in the default
81  /// argument expression.
82  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
83    NamedDecl *Decl = DRE->getDecl();
84    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
85      // C++ [dcl.fct.default]p9
86      //   Default arguments are evaluated each time the function is
87      //   called. The order of evaluation of function arguments is
88      //   unspecified. Consequently, parameters of a function shall not
89      //   be used in default argument expressions, even if they are not
90      //   evaluated. Parameters of a function declared before a default
91      //   argument expression are in scope and can hide namespace and
92      //   class member names.
93      return S->Diag(DRE->getLocStart(),
94                     diag::err_param_default_argument_references_param)
95         << Param->getDeclName() << DefaultArg->getSourceRange();
96    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
97      // C++ [dcl.fct.default]p7
98      //   Local variables shall not be used in default argument
99      //   expressions.
100      if (VDecl->isLocalVarDecl())
101        return S->Diag(DRE->getLocStart(),
102                       diag::err_param_default_argument_references_local)
103          << VDecl->getDeclName() << DefaultArg->getSourceRange();
104    }
105
106    return false;
107  }
108
109  /// VisitCXXThisExpr - Visit a C++ "this" expression.
110  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
111    // C++ [dcl.fct.default]p8:
112    //   The keyword this shall not be used in a default argument of a
113    //   member function.
114    return S->Diag(ThisE->getLocStart(),
115                   diag::err_param_default_argument_references_this)
116               << ThisE->getSourceRange();
117  }
118
119  bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
120    bool Invalid = false;
121    for (PseudoObjectExpr::semantics_iterator
122           i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
123      Expr *E = *i;
124
125      // Look through bindings.
126      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
127        E = OVE->getSourceExpr();
128        assert(E && "pseudo-object binding without source expression?");
129      }
130
131      Invalid |= Visit(E);
132    }
133    return Invalid;
134  }
135
136  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
137    // C++11 [expr.lambda.prim]p13:
138    //   A lambda-expression appearing in a default argument shall not
139    //   implicitly or explicitly capture any entity.
140    if (Lambda->capture_begin() == Lambda->capture_end())
141      return false;
142
143    return S->Diag(Lambda->getLocStart(),
144                   diag::err_lambda_capture_default_arg);
145  }
146}
147
148void
149Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
150                                                 const CXXMethodDecl *Method) {
151  // If we have an MSAny spec already, don't bother.
152  if (!Method || ComputedEST == EST_MSAny)
153    return;
154
155  const FunctionProtoType *Proto
156    = Method->getType()->getAs<FunctionProtoType>();
157  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
158  if (!Proto)
159    return;
160
161  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
162
163  // If this function can throw any exceptions, make a note of that.
164  if (EST == EST_MSAny || EST == EST_None) {
165    ClearExceptions();
166    ComputedEST = EST;
167    return;
168  }
169
170  // FIXME: If the call to this decl is using any of its default arguments, we
171  // need to search them for potentially-throwing calls.
172
173  // If this function has a basic noexcept, it doesn't affect the outcome.
174  if (EST == EST_BasicNoexcept)
175    return;
176
177  // If we have a throw-all spec at this point, ignore the function.
178  if (ComputedEST == EST_None)
179    return;
180
181  // If we're still at noexcept(true) and there's a nothrow() callee,
182  // change to that specification.
183  if (EST == EST_DynamicNone) {
184    if (ComputedEST == EST_BasicNoexcept)
185      ComputedEST = EST_DynamicNone;
186    return;
187  }
188
189  // Check out noexcept specs.
190  if (EST == EST_ComputedNoexcept) {
191    FunctionProtoType::NoexceptResult NR =
192        Proto->getNoexceptSpec(Self->Context);
193    assert(NR != FunctionProtoType::NR_NoNoexcept &&
194           "Must have noexcept result for EST_ComputedNoexcept.");
195    assert(NR != FunctionProtoType::NR_Dependent &&
196           "Should not generate implicit declarations for dependent cases, "
197           "and don't know how to handle them anyway.");
198
199    // noexcept(false) -> no spec on the new function
200    if (NR == FunctionProtoType::NR_Throw) {
201      ClearExceptions();
202      ComputedEST = EST_None;
203    }
204    // noexcept(true) won't change anything either.
205    return;
206  }
207
208  assert(EST == EST_Dynamic && "EST case not considered earlier.");
209  assert(ComputedEST != EST_None &&
210         "Shouldn't collect exceptions when throw-all is guaranteed.");
211  ComputedEST = EST_Dynamic;
212  // Record the exceptions in this function's exception specification.
213  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
214                                          EEnd = Proto->exception_end();
215       E != EEnd; ++E)
216    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
217      Exceptions.push_back(*E);
218}
219
220void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
221  if (!E || ComputedEST == EST_MSAny)
222    return;
223
224  // FIXME:
225  //
226  // C++0x [except.spec]p14:
227  //   [An] implicit exception-specification specifies the type-id T if and
228  // only if T is allowed by the exception-specification of a function directly
229  // invoked by f's implicit definition; f shall allow all exceptions if any
230  // function it directly invokes allows all exceptions, and f shall allow no
231  // exceptions if every function it directly invokes allows no exceptions.
232  //
233  // Note in particular that if an implicit exception-specification is generated
234  // for a function containing a throw-expression, that specification can still
235  // be noexcept(true).
236  //
237  // Note also that 'directly invoked' is not defined in the standard, and there
238  // is no indication that we should only consider potentially-evaluated calls.
239  //
240  // Ultimately we should implement the intent of the standard: the exception
241  // specification should be the set of exceptions which can be thrown by the
242  // implicit definition. For now, we assume that any non-nothrow expression can
243  // throw any exception.
244
245  if (Self->canThrow(E))
246    ComputedEST = EST_None;
247}
248
249bool
250Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
251                              SourceLocation EqualLoc) {
252  if (RequireCompleteType(Param->getLocation(), Param->getType(),
253                          diag::err_typecheck_decl_incomplete_type)) {
254    Param->setInvalidDecl();
255    return true;
256  }
257
258  // C++ [dcl.fct.default]p5
259  //   A default argument expression is implicitly converted (clause
260  //   4) to the parameter type. The default argument expression has
261  //   the same semantic constraints as the initializer expression in
262  //   a declaration of a variable of the parameter type, using the
263  //   copy-initialization semantics (8.5).
264  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
265                                                                    Param);
266  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
267                                                           EqualLoc);
268  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
269  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
270  if (Result.isInvalid())
271    return true;
272  Arg = Result.takeAs<Expr>();
273
274  CheckCompletedExpr(Arg, EqualLoc);
275  Arg = MaybeCreateExprWithCleanups(Arg);
276
277  // Okay: add the default argument to the parameter
278  Param->setDefaultArg(Arg);
279
280  // We have already instantiated this parameter; provide each of the
281  // instantiations with the uninstantiated default argument.
282  UnparsedDefaultArgInstantiationsMap::iterator InstPos
283    = UnparsedDefaultArgInstantiations.find(Param);
284  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
285    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
286      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
287
288    // We're done tracking this parameter's instantiations.
289    UnparsedDefaultArgInstantiations.erase(InstPos);
290  }
291
292  return false;
293}
294
295/// ActOnParamDefaultArgument - Check whether the default argument
296/// provided for a function parameter is well-formed. If so, attach it
297/// to the parameter declaration.
298void
299Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
300                                Expr *DefaultArg) {
301  if (!param || !DefaultArg)
302    return;
303
304  ParmVarDecl *Param = cast<ParmVarDecl>(param);
305  UnparsedDefaultArgLocs.erase(Param);
306
307  // Default arguments are only permitted in C++
308  if (!getLangOpts().CPlusPlus) {
309    Diag(EqualLoc, diag::err_param_default_argument)
310      << DefaultArg->getSourceRange();
311    Param->setInvalidDecl();
312    return;
313  }
314
315  // Check for unexpanded parameter packs.
316  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
317    Param->setInvalidDecl();
318    return;
319  }
320
321  // Check that the default argument is well-formed
322  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
323  if (DefaultArgChecker.Visit(DefaultArg)) {
324    Param->setInvalidDecl();
325    return;
326  }
327
328  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
329}
330
331/// ActOnParamUnparsedDefaultArgument - We've seen a default
332/// argument for a function parameter, but we can't parse it yet
333/// because we're inside a class definition. Note that this default
334/// argument will be parsed later.
335void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
336                                             SourceLocation EqualLoc,
337                                             SourceLocation ArgLoc) {
338  if (!param)
339    return;
340
341  ParmVarDecl *Param = cast<ParmVarDecl>(param);
342  if (Param)
343    Param->setUnparsedDefaultArg();
344
345  UnparsedDefaultArgLocs[Param] = ArgLoc;
346}
347
348/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
349/// the default argument for the parameter param failed.
350void Sema::ActOnParamDefaultArgumentError(Decl *param) {
351  if (!param)
352    return;
353
354  ParmVarDecl *Param = cast<ParmVarDecl>(param);
355
356  Param->setInvalidDecl();
357
358  UnparsedDefaultArgLocs.erase(Param);
359}
360
361/// CheckExtraCXXDefaultArguments - Check for any extra default
362/// arguments in the declarator, which is not a function declaration
363/// or definition and therefore is not permitted to have default
364/// arguments. This routine should be invoked for every declarator
365/// that is not a function declaration or definition.
366void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
367  // C++ [dcl.fct.default]p3
368  //   A default argument expression shall be specified only in the
369  //   parameter-declaration-clause of a function declaration or in a
370  //   template-parameter (14.1). It shall not be specified for a
371  //   parameter pack. If it is specified in a
372  //   parameter-declaration-clause, it shall not occur within a
373  //   declarator or abstract-declarator of a parameter-declaration.
374  bool MightBeFunction = D.isFunctionDeclarationContext();
375  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
376    DeclaratorChunk &chunk = D.getTypeObject(i);
377    if (chunk.Kind == DeclaratorChunk::Function) {
378      if (MightBeFunction) {
379        // This is a function declaration. It can have default arguments, but
380        // keep looking in case its return type is a function type with default
381        // arguments.
382        MightBeFunction = false;
383        continue;
384      }
385      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
386        ParmVarDecl *Param =
387          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
388        if (Param->hasUnparsedDefaultArg()) {
389          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
390          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
391            << SourceRange((*Toks)[1].getLocation(),
392                           Toks->back().getLocation());
393          delete Toks;
394          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
395        } else if (Param->getDefaultArg()) {
396          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
397            << Param->getDefaultArg()->getSourceRange();
398          Param->setDefaultArg(0);
399        }
400      }
401    } else if (chunk.Kind != DeclaratorChunk::Paren) {
402      MightBeFunction = false;
403    }
404  }
405}
406
407/// MergeCXXFunctionDecl - Merge two declarations of the same C++
408/// function, once we already know that they have the same
409/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
410/// error, false otherwise.
411bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
412                                Scope *S) {
413  bool Invalid = false;
414
415  // C++ [dcl.fct.default]p4:
416  //   For non-template functions, default arguments can be added in
417  //   later declarations of a function in the same
418  //   scope. Declarations in different scopes have completely
419  //   distinct sets of default arguments. That is, declarations in
420  //   inner scopes do not acquire default arguments from
421  //   declarations in outer scopes, and vice versa. In a given
422  //   function declaration, all parameters subsequent to a
423  //   parameter with a default argument shall have default
424  //   arguments supplied in this or previous declarations. A
425  //   default argument shall not be redefined by a later
426  //   declaration (not even to the same value).
427  //
428  // C++ [dcl.fct.default]p6:
429  //   Except for member functions of class templates, the default arguments
430  //   in a member function definition that appears outside of the class
431  //   definition are added to the set of default arguments provided by the
432  //   member function declaration in the class definition.
433  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
434    ParmVarDecl *OldParam = Old->getParamDecl(p);
435    ParmVarDecl *NewParam = New->getParamDecl(p);
436
437    bool OldParamHasDfl = OldParam->hasDefaultArg();
438    bool NewParamHasDfl = NewParam->hasDefaultArg();
439
440    NamedDecl *ND = Old;
441    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
442      // Ignore default parameters of old decl if they are not in
443      // the same scope.
444      OldParamHasDfl = false;
445
446    if (OldParamHasDfl && NewParamHasDfl) {
447
448      unsigned DiagDefaultParamID =
449        diag::err_param_default_argument_redefinition;
450
451      // MSVC accepts that default parameters be redefined for member functions
452      // of template class. The new default parameter's value is ignored.
453      Invalid = true;
454      if (getLangOpts().MicrosoftExt) {
455        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
456        if (MD && MD->getParent()->getDescribedClassTemplate()) {
457          // Merge the old default argument into the new parameter.
458          NewParam->setHasInheritedDefaultArg();
459          if (OldParam->hasUninstantiatedDefaultArg())
460            NewParam->setUninstantiatedDefaultArg(
461                                      OldParam->getUninstantiatedDefaultArg());
462          else
463            NewParam->setDefaultArg(OldParam->getInit());
464          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
465          Invalid = false;
466        }
467      }
468
469      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
470      // hint here. Alternatively, we could walk the type-source information
471      // for NewParam to find the last source location in the type... but it
472      // isn't worth the effort right now. This is the kind of test case that
473      // is hard to get right:
474      //   int f(int);
475      //   void g(int (*fp)(int) = f);
476      //   void g(int (*fp)(int) = &f);
477      Diag(NewParam->getLocation(), DiagDefaultParamID)
478        << NewParam->getDefaultArgRange();
479
480      // Look for the function declaration where the default argument was
481      // actually written, which may be a declaration prior to Old.
482      for (FunctionDecl *Older = Old->getPreviousDecl();
483           Older; Older = Older->getPreviousDecl()) {
484        if (!Older->getParamDecl(p)->hasDefaultArg())
485          break;
486
487        OldParam = Older->getParamDecl(p);
488      }
489
490      Diag(OldParam->getLocation(), diag::note_previous_definition)
491        << OldParam->getDefaultArgRange();
492    } else if (OldParamHasDfl) {
493      // Merge the old default argument into the new parameter.
494      // It's important to use getInit() here;  getDefaultArg()
495      // strips off any top-level ExprWithCleanups.
496      NewParam->setHasInheritedDefaultArg();
497      if (OldParam->hasUninstantiatedDefaultArg())
498        NewParam->setUninstantiatedDefaultArg(
499                                      OldParam->getUninstantiatedDefaultArg());
500      else
501        NewParam->setDefaultArg(OldParam->getInit());
502    } else if (NewParamHasDfl) {
503      if (New->getDescribedFunctionTemplate()) {
504        // Paragraph 4, quoted above, only applies to non-template functions.
505        Diag(NewParam->getLocation(),
506             diag::err_param_default_argument_template_redecl)
507          << NewParam->getDefaultArgRange();
508        Diag(Old->getLocation(), diag::note_template_prev_declaration)
509          << false;
510      } else if (New->getTemplateSpecializationKind()
511                   != TSK_ImplicitInstantiation &&
512                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
513        // C++ [temp.expr.spec]p21:
514        //   Default function arguments shall not be specified in a declaration
515        //   or a definition for one of the following explicit specializations:
516        //     - the explicit specialization of a function template;
517        //     - the explicit specialization of a member function template;
518        //     - the explicit specialization of a member function of a class
519        //       template where the class template specialization to which the
520        //       member function specialization belongs is implicitly
521        //       instantiated.
522        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
523          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
524          << New->getDeclName()
525          << NewParam->getDefaultArgRange();
526      } else if (New->getDeclContext()->isDependentContext()) {
527        // C++ [dcl.fct.default]p6 (DR217):
528        //   Default arguments for a member function of a class template shall
529        //   be specified on the initial declaration of the member function
530        //   within the class template.
531        //
532        // Reading the tea leaves a bit in DR217 and its reference to DR205
533        // leads me to the conclusion that one cannot add default function
534        // arguments for an out-of-line definition of a member function of a
535        // dependent type.
536        int WhichKind = 2;
537        if (CXXRecordDecl *Record
538              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
539          if (Record->getDescribedClassTemplate())
540            WhichKind = 0;
541          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
542            WhichKind = 1;
543          else
544            WhichKind = 2;
545        }
546
547        Diag(NewParam->getLocation(),
548             diag::err_param_default_argument_member_template_redecl)
549          << WhichKind
550          << NewParam->getDefaultArgRange();
551      }
552    }
553  }
554
555  // DR1344: If a default argument is added outside a class definition and that
556  // default argument makes the function a special member function, the program
557  // is ill-formed. This can only happen for constructors.
558  if (isa<CXXConstructorDecl>(New) &&
559      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
560    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
561                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
562    if (NewSM != OldSM) {
563      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
564      assert(NewParam->hasDefaultArg());
565      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
566        << NewParam->getDefaultArgRange() << NewSM;
567      Diag(Old->getLocation(), diag::note_previous_declaration);
568    }
569  }
570
571  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
572  // template has a constexpr specifier then all its declarations shall
573  // contain the constexpr specifier.
574  if (New->isConstexpr() != Old->isConstexpr()) {
575    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
576      << New << New->isConstexpr();
577    Diag(Old->getLocation(), diag::note_previous_declaration);
578    Invalid = true;
579  }
580
581  if (CheckEquivalentExceptionSpec(Old, New))
582    Invalid = true;
583
584  return Invalid;
585}
586
587/// \brief Merge the exception specifications of two variable declarations.
588///
589/// This is called when there's a redeclaration of a VarDecl. The function
590/// checks if the redeclaration might have an exception specification and
591/// validates compatibility and merges the specs if necessary.
592void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
593  // Shortcut if exceptions are disabled.
594  if (!getLangOpts().CXXExceptions)
595    return;
596
597  assert(Context.hasSameType(New->getType(), Old->getType()) &&
598         "Should only be called if types are otherwise the same.");
599
600  QualType NewType = New->getType();
601  QualType OldType = Old->getType();
602
603  // We're only interested in pointers and references to functions, as well
604  // as pointers to member functions.
605  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
606    NewType = R->getPointeeType();
607    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
608  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
609    NewType = P->getPointeeType();
610    OldType = OldType->getAs<PointerType>()->getPointeeType();
611  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
612    NewType = M->getPointeeType();
613    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
614  }
615
616  if (!NewType->isFunctionProtoType())
617    return;
618
619  // There's lots of special cases for functions. For function pointers, system
620  // libraries are hopefully not as broken so that we don't need these
621  // workarounds.
622  if (CheckEquivalentExceptionSpec(
623        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
624        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
625    New->setInvalidDecl();
626  }
627}
628
629/// CheckCXXDefaultArguments - Verify that the default arguments for a
630/// function declaration are well-formed according to C++
631/// [dcl.fct.default].
632void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
633  unsigned NumParams = FD->getNumParams();
634  unsigned p;
635
636  // Find first parameter with a default argument
637  for (p = 0; p < NumParams; ++p) {
638    ParmVarDecl *Param = FD->getParamDecl(p);
639    if (Param->hasDefaultArg())
640      break;
641  }
642
643  // C++ [dcl.fct.default]p4:
644  //   In a given function declaration, all parameters
645  //   subsequent to a parameter with a default argument shall
646  //   have default arguments supplied in this or previous
647  //   declarations. A default argument shall not be redefined
648  //   by a later declaration (not even to the same value).
649  unsigned LastMissingDefaultArg = 0;
650  for (; p < NumParams; ++p) {
651    ParmVarDecl *Param = FD->getParamDecl(p);
652    if (!Param->hasDefaultArg()) {
653      if (Param->isInvalidDecl())
654        /* We already complained about this parameter. */;
655      else if (Param->getIdentifier())
656        Diag(Param->getLocation(),
657             diag::err_param_default_argument_missing_name)
658          << Param->getIdentifier();
659      else
660        Diag(Param->getLocation(),
661             diag::err_param_default_argument_missing);
662
663      LastMissingDefaultArg = p;
664    }
665  }
666
667  if (LastMissingDefaultArg > 0) {
668    // Some default arguments were missing. Clear out all of the
669    // default arguments up to (and including) the last missing
670    // default argument, so that we leave the function parameters
671    // in a semantically valid state.
672    for (p = 0; p <= LastMissingDefaultArg; ++p) {
673      ParmVarDecl *Param = FD->getParamDecl(p);
674      if (Param->hasDefaultArg()) {
675        Param->setDefaultArg(0);
676      }
677    }
678  }
679}
680
681// CheckConstexprParameterTypes - Check whether a function's parameter types
682// are all literal types. If so, return true. If not, produce a suitable
683// diagnostic and return false.
684static bool CheckConstexprParameterTypes(Sema &SemaRef,
685                                         const FunctionDecl *FD) {
686  unsigned ArgIndex = 0;
687  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
688  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
689       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
690    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
691    SourceLocation ParamLoc = PD->getLocation();
692    if (!(*i)->isDependentType() &&
693        SemaRef.RequireLiteralType(ParamLoc, *i,
694                                   diag::err_constexpr_non_literal_param,
695                                   ArgIndex+1, PD->getSourceRange(),
696                                   isa<CXXConstructorDecl>(FD)))
697      return false;
698  }
699  return true;
700}
701
702/// \brief Get diagnostic %select index for tag kind for
703/// record diagnostic message.
704/// WARNING: Indexes apply to particular diagnostics only!
705///
706/// \returns diagnostic %select index.
707static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
708  switch (Tag) {
709  case TTK_Struct: return 0;
710  case TTK_Interface: return 1;
711  case TTK_Class:  return 2;
712  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
713  }
714}
715
716// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
717// the requirements of a constexpr function definition or a constexpr
718// constructor definition. If so, return true. If not, produce appropriate
719// diagnostics and return false.
720//
721// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
722bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
723  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
724  if (MD && MD->isInstance()) {
725    // C++11 [dcl.constexpr]p4:
726    //  The definition of a constexpr constructor shall satisfy the following
727    //  constraints:
728    //  - the class shall not have any virtual base classes;
729    const CXXRecordDecl *RD = MD->getParent();
730    if (RD->getNumVBases()) {
731      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
732        << isa<CXXConstructorDecl>(NewFD)
733        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
734      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
735             E = RD->vbases_end(); I != E; ++I)
736        Diag(I->getLocStart(),
737             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
738      return false;
739    }
740  }
741
742  if (!isa<CXXConstructorDecl>(NewFD)) {
743    // C++11 [dcl.constexpr]p3:
744    //  The definition of a constexpr function shall satisfy the following
745    //  constraints:
746    // - it shall not be virtual;
747    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
748    if (Method && Method->isVirtual()) {
749      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
750
751      // If it's not obvious why this function is virtual, find an overridden
752      // function which uses the 'virtual' keyword.
753      const CXXMethodDecl *WrittenVirtual = Method;
754      while (!WrittenVirtual->isVirtualAsWritten())
755        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
756      if (WrittenVirtual != Method)
757        Diag(WrittenVirtual->getLocation(),
758             diag::note_overridden_virtual_function);
759      return false;
760    }
761
762    // - its return type shall be a literal type;
763    QualType RT = NewFD->getResultType();
764    if (!RT->isDependentType() &&
765        RequireLiteralType(NewFD->getLocation(), RT,
766                           diag::err_constexpr_non_literal_return))
767      return false;
768  }
769
770  // - each of its parameter types shall be a literal type;
771  if (!CheckConstexprParameterTypes(*this, NewFD))
772    return false;
773
774  return true;
775}
776
777/// Check the given declaration statement is legal within a constexpr function
778/// body. C++0x [dcl.constexpr]p3,p4.
779///
780/// \return true if the body is OK, false if we have diagnosed a problem.
781static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
782                                   DeclStmt *DS) {
783  // C++0x [dcl.constexpr]p3 and p4:
784  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
785  //  contain only
786  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
787         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
788    switch ((*DclIt)->getKind()) {
789    case Decl::StaticAssert:
790    case Decl::Using:
791    case Decl::UsingShadow:
792    case Decl::UsingDirective:
793    case Decl::UnresolvedUsingTypename:
794      //   - static_assert-declarations
795      //   - using-declarations,
796      //   - using-directives,
797      continue;
798
799    case Decl::Typedef:
800    case Decl::TypeAlias: {
801      //   - typedef declarations and alias-declarations that do not define
802      //     classes or enumerations,
803      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
804      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
805        // Don't allow variably-modified types in constexpr functions.
806        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
807        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
808          << TL.getSourceRange() << TL.getType()
809          << isa<CXXConstructorDecl>(Dcl);
810        return false;
811      }
812      continue;
813    }
814
815    case Decl::Enum:
816    case Decl::CXXRecord:
817      // As an extension, we allow the declaration (but not the definition) of
818      // classes and enumerations in all declarations, not just in typedef and
819      // alias declarations.
820      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
821        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
822          << isa<CXXConstructorDecl>(Dcl);
823        return false;
824      }
825      continue;
826
827    case Decl::Var:
828      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
829        << isa<CXXConstructorDecl>(Dcl);
830      return false;
831
832    default:
833      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
834        << isa<CXXConstructorDecl>(Dcl);
835      return false;
836    }
837  }
838
839  return true;
840}
841
842/// Check that the given field is initialized within a constexpr constructor.
843///
844/// \param Dcl The constexpr constructor being checked.
845/// \param Field The field being checked. This may be a member of an anonymous
846///        struct or union nested within the class being checked.
847/// \param Inits All declarations, including anonymous struct/union members and
848///        indirect members, for which any initialization was provided.
849/// \param Diagnosed Set to true if an error is produced.
850static void CheckConstexprCtorInitializer(Sema &SemaRef,
851                                          const FunctionDecl *Dcl,
852                                          FieldDecl *Field,
853                                          llvm::SmallSet<Decl*, 16> &Inits,
854                                          bool &Diagnosed) {
855  if (Field->isUnnamedBitfield())
856    return;
857
858  if (Field->isAnonymousStructOrUnion() &&
859      Field->getType()->getAsCXXRecordDecl()->isEmpty())
860    return;
861
862  if (!Inits.count(Field)) {
863    if (!Diagnosed) {
864      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
865      Diagnosed = true;
866    }
867    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
868  } else if (Field->isAnonymousStructOrUnion()) {
869    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
870    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
871         I != E; ++I)
872      // If an anonymous union contains an anonymous struct of which any member
873      // is initialized, all members must be initialized.
874      if (!RD->isUnion() || Inits.count(*I))
875        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
876  }
877}
878
879/// Check the body for the given constexpr function declaration only contains
880/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
881///
882/// \return true if the body is OK, false if we have diagnosed a problem.
883bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
884  if (isa<CXXTryStmt>(Body)) {
885    // C++11 [dcl.constexpr]p3:
886    //  The definition of a constexpr function shall satisfy the following
887    //  constraints: [...]
888    // - its function-body shall be = delete, = default, or a
889    //   compound-statement
890    //
891    // C++11 [dcl.constexpr]p4:
892    //  In the definition of a constexpr constructor, [...]
893    // - its function-body shall not be a function-try-block;
894    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
895      << isa<CXXConstructorDecl>(Dcl);
896    return false;
897  }
898
899  // - its function-body shall be [...] a compound-statement that contains only
900  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
901
902  SmallVector<SourceLocation, 4> ReturnStmts;
903  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
904         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
905    switch ((*BodyIt)->getStmtClass()) {
906    case Stmt::NullStmtClass:
907      //   - null statements,
908      continue;
909
910    case Stmt::DeclStmtClass:
911      //   - static_assert-declarations
912      //   - using-declarations,
913      //   - using-directives,
914      //   - typedef declarations and alias-declarations that do not define
915      //     classes or enumerations,
916      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
917        return false;
918      continue;
919
920    case Stmt::ReturnStmtClass:
921      //   - and exactly one return statement;
922      if (isa<CXXConstructorDecl>(Dcl))
923        break;
924
925      ReturnStmts.push_back((*BodyIt)->getLocStart());
926      continue;
927
928    default:
929      break;
930    }
931
932    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
933      << isa<CXXConstructorDecl>(Dcl);
934    return false;
935  }
936
937  if (const CXXConstructorDecl *Constructor
938        = dyn_cast<CXXConstructorDecl>(Dcl)) {
939    const CXXRecordDecl *RD = Constructor->getParent();
940    // DR1359:
941    // - every non-variant non-static data member and base class sub-object
942    //   shall be initialized;
943    // - if the class is a non-empty union, or for each non-empty anonymous
944    //   union member of a non-union class, exactly one non-static data member
945    //   shall be initialized;
946    if (RD->isUnion()) {
947      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
948        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
949        return false;
950      }
951    } else if (!Constructor->isDependentContext() &&
952               !Constructor->isDelegatingConstructor()) {
953      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
954
955      // Skip detailed checking if we have enough initializers, and we would
956      // allow at most one initializer per member.
957      bool AnyAnonStructUnionMembers = false;
958      unsigned Fields = 0;
959      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
960           E = RD->field_end(); I != E; ++I, ++Fields) {
961        if (I->isAnonymousStructOrUnion()) {
962          AnyAnonStructUnionMembers = true;
963          break;
964        }
965      }
966      if (AnyAnonStructUnionMembers ||
967          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
968        // Check initialization of non-static data members. Base classes are
969        // always initialized so do not need to be checked. Dependent bases
970        // might not have initializers in the member initializer list.
971        llvm::SmallSet<Decl*, 16> Inits;
972        for (CXXConstructorDecl::init_const_iterator
973               I = Constructor->init_begin(), E = Constructor->init_end();
974             I != E; ++I) {
975          if (FieldDecl *FD = (*I)->getMember())
976            Inits.insert(FD);
977          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
978            Inits.insert(ID->chain_begin(), ID->chain_end());
979        }
980
981        bool Diagnosed = false;
982        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
983             E = RD->field_end(); I != E; ++I)
984          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
985        if (Diagnosed)
986          return false;
987      }
988    }
989  } else {
990    if (ReturnStmts.empty()) {
991      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
992      return false;
993    }
994    if (ReturnStmts.size() > 1) {
995      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
996      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
997        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
998      return false;
999    }
1000  }
1001
1002  // C++11 [dcl.constexpr]p5:
1003  //   if no function argument values exist such that the function invocation
1004  //   substitution would produce a constant expression, the program is
1005  //   ill-formed; no diagnostic required.
1006  // C++11 [dcl.constexpr]p3:
1007  //   - every constructor call and implicit conversion used in initializing the
1008  //     return value shall be one of those allowed in a constant expression.
1009  // C++11 [dcl.constexpr]p4:
1010  //   - every constructor involved in initializing non-static data members and
1011  //     base class sub-objects shall be a constexpr constructor.
1012  SmallVector<PartialDiagnosticAt, 8> Diags;
1013  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1014    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1015      << isa<CXXConstructorDecl>(Dcl);
1016    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1017      Diag(Diags[I].first, Diags[I].second);
1018    // Don't return false here: we allow this for compatibility in
1019    // system headers.
1020  }
1021
1022  return true;
1023}
1024
1025/// isCurrentClassName - Determine whether the identifier II is the
1026/// name of the class type currently being defined. In the case of
1027/// nested classes, this will only return true if II is the name of
1028/// the innermost class.
1029bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1030                              const CXXScopeSpec *SS) {
1031  assert(getLangOpts().CPlusPlus && "No class names in C!");
1032
1033  CXXRecordDecl *CurDecl;
1034  if (SS && SS->isSet() && !SS->isInvalid()) {
1035    DeclContext *DC = computeDeclContext(*SS, true);
1036    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1037  } else
1038    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1039
1040  if (CurDecl && CurDecl->getIdentifier())
1041    return &II == CurDecl->getIdentifier();
1042  else
1043    return false;
1044}
1045
1046/// \brief Determine whether the given class is a base class of the given
1047/// class, including looking at dependent bases.
1048static bool findCircularInheritance(const CXXRecordDecl *Class,
1049                                    const CXXRecordDecl *Current) {
1050  SmallVector<const CXXRecordDecl*, 8> Queue;
1051
1052  Class = Class->getCanonicalDecl();
1053  while (true) {
1054    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1055                                                  E = Current->bases_end();
1056         I != E; ++I) {
1057      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1058      if (!Base)
1059        continue;
1060
1061      Base = Base->getDefinition();
1062      if (!Base)
1063        continue;
1064
1065      if (Base->getCanonicalDecl() == Class)
1066        return true;
1067
1068      Queue.push_back(Base);
1069    }
1070
1071    if (Queue.empty())
1072      return false;
1073
1074    Current = Queue.back();
1075    Queue.pop_back();
1076  }
1077
1078  return false;
1079}
1080
1081/// \brief Check the validity of a C++ base class specifier.
1082///
1083/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1084/// and returns NULL otherwise.
1085CXXBaseSpecifier *
1086Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1087                         SourceRange SpecifierRange,
1088                         bool Virtual, AccessSpecifier Access,
1089                         TypeSourceInfo *TInfo,
1090                         SourceLocation EllipsisLoc) {
1091  QualType BaseType = TInfo->getType();
1092
1093  // C++ [class.union]p1:
1094  //   A union shall not have base classes.
1095  if (Class->isUnion()) {
1096    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1097      << SpecifierRange;
1098    return 0;
1099  }
1100
1101  if (EllipsisLoc.isValid() &&
1102      !TInfo->getType()->containsUnexpandedParameterPack()) {
1103    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1104      << TInfo->getTypeLoc().getSourceRange();
1105    EllipsisLoc = SourceLocation();
1106  }
1107
1108  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1109
1110  if (BaseType->isDependentType()) {
1111    // Make sure that we don't have circular inheritance among our dependent
1112    // bases. For non-dependent bases, the check for completeness below handles
1113    // this.
1114    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1115      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1116          ((BaseDecl = BaseDecl->getDefinition()) &&
1117           findCircularInheritance(Class, BaseDecl))) {
1118        Diag(BaseLoc, diag::err_circular_inheritance)
1119          << BaseType << Context.getTypeDeclType(Class);
1120
1121        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1122          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1123            << BaseType;
1124
1125        return 0;
1126      }
1127    }
1128
1129    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1130                                          Class->getTagKind() == TTK_Class,
1131                                          Access, TInfo, EllipsisLoc);
1132  }
1133
1134  // Base specifiers must be record types.
1135  if (!BaseType->isRecordType()) {
1136    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1137    return 0;
1138  }
1139
1140  // C++ [class.union]p1:
1141  //   A union shall not be used as a base class.
1142  if (BaseType->isUnionType()) {
1143    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1144    return 0;
1145  }
1146
1147  // C++ [class.derived]p2:
1148  //   The class-name in a base-specifier shall not be an incompletely
1149  //   defined class.
1150  if (RequireCompleteType(BaseLoc, BaseType,
1151                          diag::err_incomplete_base_class, SpecifierRange)) {
1152    Class->setInvalidDecl();
1153    return 0;
1154  }
1155
1156  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1157  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1158  assert(BaseDecl && "Record type has no declaration");
1159  BaseDecl = BaseDecl->getDefinition();
1160  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1161  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1162  assert(CXXBaseDecl && "Base type is not a C++ type");
1163
1164  // C++ [class]p3:
1165  //   If a class is marked final and it appears as a base-type-specifier in
1166  //   base-clause, the program is ill-formed.
1167  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1168    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1169      << CXXBaseDecl->getDeclName();
1170    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1171      << CXXBaseDecl->getDeclName();
1172    return 0;
1173  }
1174
1175  if (BaseDecl->isInvalidDecl())
1176    Class->setInvalidDecl();
1177
1178  // Create the base specifier.
1179  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1180                                        Class->getTagKind() == TTK_Class,
1181                                        Access, TInfo, EllipsisLoc);
1182}
1183
1184/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1185/// one entry in the base class list of a class specifier, for
1186/// example:
1187///    class foo : public bar, virtual private baz {
1188/// 'public bar' and 'virtual private baz' are each base-specifiers.
1189BaseResult
1190Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1191                         ParsedAttributes &Attributes,
1192                         bool Virtual, AccessSpecifier Access,
1193                         ParsedType basetype, SourceLocation BaseLoc,
1194                         SourceLocation EllipsisLoc) {
1195  if (!classdecl)
1196    return true;
1197
1198  AdjustDeclIfTemplate(classdecl);
1199  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1200  if (!Class)
1201    return true;
1202
1203  // We do not support any C++11 attributes on base-specifiers yet.
1204  // Diagnose any attributes we see.
1205  if (!Attributes.empty()) {
1206    for (AttributeList *Attr = Attributes.getList(); Attr;
1207         Attr = Attr->getNext()) {
1208      if (Attr->isInvalid() ||
1209          Attr->getKind() == AttributeList::IgnoredAttribute)
1210        continue;
1211      Diag(Attr->getLoc(),
1212           Attr->getKind() == AttributeList::UnknownAttribute
1213             ? diag::warn_unknown_attribute_ignored
1214             : diag::err_base_specifier_attribute)
1215        << Attr->getName();
1216    }
1217  }
1218
1219  TypeSourceInfo *TInfo = 0;
1220  GetTypeFromParser(basetype, &TInfo);
1221
1222  if (EllipsisLoc.isInvalid() &&
1223      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1224                                      UPPC_BaseType))
1225    return true;
1226
1227  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1228                                                      Virtual, Access, TInfo,
1229                                                      EllipsisLoc))
1230    return BaseSpec;
1231  else
1232    Class->setInvalidDecl();
1233
1234  return true;
1235}
1236
1237/// \brief Performs the actual work of attaching the given base class
1238/// specifiers to a C++ class.
1239bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1240                                unsigned NumBases) {
1241 if (NumBases == 0)
1242    return false;
1243
1244  // Used to keep track of which base types we have already seen, so
1245  // that we can properly diagnose redundant direct base types. Note
1246  // that the key is always the unqualified canonical type of the base
1247  // class.
1248  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1249
1250  // Copy non-redundant base specifiers into permanent storage.
1251  unsigned NumGoodBases = 0;
1252  bool Invalid = false;
1253  for (unsigned idx = 0; idx < NumBases; ++idx) {
1254    QualType NewBaseType
1255      = Context.getCanonicalType(Bases[idx]->getType());
1256    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1257
1258    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1259    if (KnownBase) {
1260      // C++ [class.mi]p3:
1261      //   A class shall not be specified as a direct base class of a
1262      //   derived class more than once.
1263      Diag(Bases[idx]->getLocStart(),
1264           diag::err_duplicate_base_class)
1265        << KnownBase->getType()
1266        << Bases[idx]->getSourceRange();
1267
1268      // Delete the duplicate base class specifier; we're going to
1269      // overwrite its pointer later.
1270      Context.Deallocate(Bases[idx]);
1271
1272      Invalid = true;
1273    } else {
1274      // Okay, add this new base class.
1275      KnownBase = Bases[idx];
1276      Bases[NumGoodBases++] = Bases[idx];
1277      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1278        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1279        if (Class->isInterface() &&
1280              (!RD->isInterface() ||
1281               KnownBase->getAccessSpecifier() != AS_public)) {
1282          // The Microsoft extension __interface does not permit bases that
1283          // are not themselves public interfaces.
1284          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1285            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1286            << RD->getSourceRange();
1287          Invalid = true;
1288        }
1289        if (RD->hasAttr<WeakAttr>())
1290          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1291      }
1292    }
1293  }
1294
1295  // Attach the remaining base class specifiers to the derived class.
1296  Class->setBases(Bases, NumGoodBases);
1297
1298  // Delete the remaining (good) base class specifiers, since their
1299  // data has been copied into the CXXRecordDecl.
1300  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1301    Context.Deallocate(Bases[idx]);
1302
1303  return Invalid;
1304}
1305
1306/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1307/// class, after checking whether there are any duplicate base
1308/// classes.
1309void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1310                               unsigned NumBases) {
1311  if (!ClassDecl || !Bases || !NumBases)
1312    return;
1313
1314  AdjustDeclIfTemplate(ClassDecl);
1315  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1316                       (CXXBaseSpecifier**)(Bases), NumBases);
1317}
1318
1319/// \brief Determine whether the type \p Derived is a C++ class that is
1320/// derived from the type \p Base.
1321bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1322  if (!getLangOpts().CPlusPlus)
1323    return false;
1324
1325  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1326  if (!DerivedRD)
1327    return false;
1328
1329  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1330  if (!BaseRD)
1331    return false;
1332
1333  // If either the base or the derived type is invalid, don't try to
1334  // check whether one is derived from the other.
1335  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1336    return false;
1337
1338  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1339  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1340}
1341
1342/// \brief Determine whether the type \p Derived is a C++ class that is
1343/// derived from the type \p Base.
1344bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1345  if (!getLangOpts().CPlusPlus)
1346    return false;
1347
1348  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1349  if (!DerivedRD)
1350    return false;
1351
1352  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1353  if (!BaseRD)
1354    return false;
1355
1356  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1357}
1358
1359void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1360                              CXXCastPath &BasePathArray) {
1361  assert(BasePathArray.empty() && "Base path array must be empty!");
1362  assert(Paths.isRecordingPaths() && "Must record paths!");
1363
1364  const CXXBasePath &Path = Paths.front();
1365
1366  // We first go backward and check if we have a virtual base.
1367  // FIXME: It would be better if CXXBasePath had the base specifier for
1368  // the nearest virtual base.
1369  unsigned Start = 0;
1370  for (unsigned I = Path.size(); I != 0; --I) {
1371    if (Path[I - 1].Base->isVirtual()) {
1372      Start = I - 1;
1373      break;
1374    }
1375  }
1376
1377  // Now add all bases.
1378  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1379    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1380}
1381
1382/// \brief Determine whether the given base path includes a virtual
1383/// base class.
1384bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1385  for (CXXCastPath::const_iterator B = BasePath.begin(),
1386                                BEnd = BasePath.end();
1387       B != BEnd; ++B)
1388    if ((*B)->isVirtual())
1389      return true;
1390
1391  return false;
1392}
1393
1394/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1395/// conversion (where Derived and Base are class types) is
1396/// well-formed, meaning that the conversion is unambiguous (and
1397/// that all of the base classes are accessible). Returns true
1398/// and emits a diagnostic if the code is ill-formed, returns false
1399/// otherwise. Loc is the location where this routine should point to
1400/// if there is an error, and Range is the source range to highlight
1401/// if there is an error.
1402bool
1403Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1404                                   unsigned InaccessibleBaseID,
1405                                   unsigned AmbigiousBaseConvID,
1406                                   SourceLocation Loc, SourceRange Range,
1407                                   DeclarationName Name,
1408                                   CXXCastPath *BasePath) {
1409  // First, determine whether the path from Derived to Base is
1410  // ambiguous. This is slightly more expensive than checking whether
1411  // the Derived to Base conversion exists, because here we need to
1412  // explore multiple paths to determine if there is an ambiguity.
1413  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1414                     /*DetectVirtual=*/false);
1415  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1416  assert(DerivationOkay &&
1417         "Can only be used with a derived-to-base conversion");
1418  (void)DerivationOkay;
1419
1420  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1421    if (InaccessibleBaseID) {
1422      // Check that the base class can be accessed.
1423      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1424                                   InaccessibleBaseID)) {
1425        case AR_inaccessible:
1426          return true;
1427        case AR_accessible:
1428        case AR_dependent:
1429        case AR_delayed:
1430          break;
1431      }
1432    }
1433
1434    // Build a base path if necessary.
1435    if (BasePath)
1436      BuildBasePathArray(Paths, *BasePath);
1437    return false;
1438  }
1439
1440  // We know that the derived-to-base conversion is ambiguous, and
1441  // we're going to produce a diagnostic. Perform the derived-to-base
1442  // search just one more time to compute all of the possible paths so
1443  // that we can print them out. This is more expensive than any of
1444  // the previous derived-to-base checks we've done, but at this point
1445  // performance isn't as much of an issue.
1446  Paths.clear();
1447  Paths.setRecordingPaths(true);
1448  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1449  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1450  (void)StillOkay;
1451
1452  // Build up a textual representation of the ambiguous paths, e.g.,
1453  // D -> B -> A, that will be used to illustrate the ambiguous
1454  // conversions in the diagnostic. We only print one of the paths
1455  // to each base class subobject.
1456  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1457
1458  Diag(Loc, AmbigiousBaseConvID)
1459  << Derived << Base << PathDisplayStr << Range << Name;
1460  return true;
1461}
1462
1463bool
1464Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1465                                   SourceLocation Loc, SourceRange Range,
1466                                   CXXCastPath *BasePath,
1467                                   bool IgnoreAccess) {
1468  return CheckDerivedToBaseConversion(Derived, Base,
1469                                      IgnoreAccess ? 0
1470                                       : diag::err_upcast_to_inaccessible_base,
1471                                      diag::err_ambiguous_derived_to_base_conv,
1472                                      Loc, Range, DeclarationName(),
1473                                      BasePath);
1474}
1475
1476
1477/// @brief Builds a string representing ambiguous paths from a
1478/// specific derived class to different subobjects of the same base
1479/// class.
1480///
1481/// This function builds a string that can be used in error messages
1482/// to show the different paths that one can take through the
1483/// inheritance hierarchy to go from the derived class to different
1484/// subobjects of a base class. The result looks something like this:
1485/// @code
1486/// struct D -> struct B -> struct A
1487/// struct D -> struct C -> struct A
1488/// @endcode
1489std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1490  std::string PathDisplayStr;
1491  std::set<unsigned> DisplayedPaths;
1492  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1493       Path != Paths.end(); ++Path) {
1494    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1495      // We haven't displayed a path to this particular base
1496      // class subobject yet.
1497      PathDisplayStr += "\n    ";
1498      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1499      for (CXXBasePath::const_iterator Element = Path->begin();
1500           Element != Path->end(); ++Element)
1501        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1502    }
1503  }
1504
1505  return PathDisplayStr;
1506}
1507
1508//===----------------------------------------------------------------------===//
1509// C++ class member Handling
1510//===----------------------------------------------------------------------===//
1511
1512/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1513bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1514                                SourceLocation ASLoc,
1515                                SourceLocation ColonLoc,
1516                                AttributeList *Attrs) {
1517  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1518  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1519                                                  ASLoc, ColonLoc);
1520  CurContext->addHiddenDecl(ASDecl);
1521  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1522}
1523
1524/// CheckOverrideControl - Check C++11 override control semantics.
1525void Sema::CheckOverrideControl(Decl *D) {
1526  if (D->isInvalidDecl())
1527    return;
1528
1529  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1530
1531  // Do we know which functions this declaration might be overriding?
1532  bool OverridesAreKnown = !MD ||
1533      (!MD->getParent()->hasAnyDependentBases() &&
1534       !MD->getType()->isDependentType());
1535
1536  if (!MD || !MD->isVirtual()) {
1537    if (OverridesAreKnown) {
1538      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1539        Diag(OA->getLocation(),
1540             diag::override_keyword_only_allowed_on_virtual_member_functions)
1541          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1542        D->dropAttr<OverrideAttr>();
1543      }
1544      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1545        Diag(FA->getLocation(),
1546             diag::override_keyword_only_allowed_on_virtual_member_functions)
1547          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1548        D->dropAttr<FinalAttr>();
1549      }
1550    }
1551    return;
1552  }
1553
1554  if (!OverridesAreKnown)
1555    return;
1556
1557  // C++11 [class.virtual]p5:
1558  //   If a virtual function is marked with the virt-specifier override and
1559  //   does not override a member function of a base class, the program is
1560  //   ill-formed.
1561  bool HasOverriddenMethods =
1562    MD->begin_overridden_methods() != MD->end_overridden_methods();
1563  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1564    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1565      << MD->getDeclName();
1566}
1567
1568/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1569/// function overrides a virtual member function marked 'final', according to
1570/// C++11 [class.virtual]p4.
1571bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1572                                                  const CXXMethodDecl *Old) {
1573  if (!Old->hasAttr<FinalAttr>())
1574    return false;
1575
1576  Diag(New->getLocation(), diag::err_final_function_overridden)
1577    << New->getDeclName();
1578  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1579  return true;
1580}
1581
1582static bool InitializationHasSideEffects(const FieldDecl &FD) {
1583  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1584  // FIXME: Destruction of ObjC lifetime types has side-effects.
1585  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1586    return !RD->isCompleteDefinition() ||
1587           !RD->hasTrivialDefaultConstructor() ||
1588           !RD->hasTrivialDestructor();
1589  return false;
1590}
1591
1592static AttributeList *getMSPropertyAttr(AttributeList *list) {
1593  for (AttributeList* it = list; it != 0; it = it->getNext())
1594    if (it->isDeclspecPropertyAttribute())
1595      return it;
1596  return 0;
1597}
1598
1599/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1600/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1601/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1602/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1603/// present (but parsing it has been deferred).
1604NamedDecl *
1605Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1606                               MultiTemplateParamsArg TemplateParameterLists,
1607                               Expr *BW, const VirtSpecifiers &VS,
1608                               InClassInitStyle InitStyle) {
1609  const DeclSpec &DS = D.getDeclSpec();
1610  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1611  DeclarationName Name = NameInfo.getName();
1612  SourceLocation Loc = NameInfo.getLoc();
1613
1614  // For anonymous bitfields, the location should point to the type.
1615  if (Loc.isInvalid())
1616    Loc = D.getLocStart();
1617
1618  Expr *BitWidth = static_cast<Expr*>(BW);
1619
1620  assert(isa<CXXRecordDecl>(CurContext));
1621  assert(!DS.isFriendSpecified());
1622
1623  bool isFunc = D.isDeclarationOfFunction();
1624
1625  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1626    // The Microsoft extension __interface only permits public member functions
1627    // and prohibits constructors, destructors, operators, non-public member
1628    // functions, static methods and data members.
1629    unsigned InvalidDecl;
1630    bool ShowDeclName = true;
1631    if (!isFunc)
1632      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1633    else if (AS != AS_public)
1634      InvalidDecl = 2;
1635    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1636      InvalidDecl = 3;
1637    else switch (Name.getNameKind()) {
1638      case DeclarationName::CXXConstructorName:
1639        InvalidDecl = 4;
1640        ShowDeclName = false;
1641        break;
1642
1643      case DeclarationName::CXXDestructorName:
1644        InvalidDecl = 5;
1645        ShowDeclName = false;
1646        break;
1647
1648      case DeclarationName::CXXOperatorName:
1649      case DeclarationName::CXXConversionFunctionName:
1650        InvalidDecl = 6;
1651        break;
1652
1653      default:
1654        InvalidDecl = 0;
1655        break;
1656    }
1657
1658    if (InvalidDecl) {
1659      if (ShowDeclName)
1660        Diag(Loc, diag::err_invalid_member_in_interface)
1661          << (InvalidDecl-1) << Name;
1662      else
1663        Diag(Loc, diag::err_invalid_member_in_interface)
1664          << (InvalidDecl-1) << "";
1665      return 0;
1666    }
1667  }
1668
1669  // C++ 9.2p6: A member shall not be declared to have automatic storage
1670  // duration (auto, register) or with the extern storage-class-specifier.
1671  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1672  // data members and cannot be applied to names declared const or static,
1673  // and cannot be applied to reference members.
1674  switch (DS.getStorageClassSpec()) {
1675  case DeclSpec::SCS_unspecified:
1676  case DeclSpec::SCS_typedef:
1677  case DeclSpec::SCS_static:
1678    break;
1679  case DeclSpec::SCS_mutable:
1680    if (isFunc) {
1681      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1682
1683      // FIXME: It would be nicer if the keyword was ignored only for this
1684      // declarator. Otherwise we could get follow-up errors.
1685      D.getMutableDeclSpec().ClearStorageClassSpecs();
1686    }
1687    break;
1688  default:
1689    Diag(DS.getStorageClassSpecLoc(),
1690         diag::err_storageclass_invalid_for_member);
1691    D.getMutableDeclSpec().ClearStorageClassSpecs();
1692    break;
1693  }
1694
1695  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1696                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1697                      !isFunc);
1698
1699  if (DS.isConstexprSpecified() && isInstField) {
1700    SemaDiagnosticBuilder B =
1701        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1702    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1703    if (InitStyle == ICIS_NoInit) {
1704      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1705      D.getMutableDeclSpec().ClearConstexprSpec();
1706      const char *PrevSpec;
1707      unsigned DiagID;
1708      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1709                                         PrevSpec, DiagID, getLangOpts());
1710      (void)Failed;
1711      assert(!Failed && "Making a constexpr member const shouldn't fail");
1712    } else {
1713      B << 1;
1714      const char *PrevSpec;
1715      unsigned DiagID;
1716      if (D.getMutableDeclSpec().SetStorageClassSpec(
1717          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1718        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1719               "This is the only DeclSpec that should fail to be applied");
1720        B << 1;
1721      } else {
1722        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1723        isInstField = false;
1724      }
1725    }
1726  }
1727
1728  NamedDecl *Member;
1729  if (isInstField) {
1730    CXXScopeSpec &SS = D.getCXXScopeSpec();
1731
1732    // Data members must have identifiers for names.
1733    if (!Name.isIdentifier()) {
1734      Diag(Loc, diag::err_bad_variable_name)
1735        << Name;
1736      return 0;
1737    }
1738
1739    IdentifierInfo *II = Name.getAsIdentifierInfo();
1740
1741    // Member field could not be with "template" keyword.
1742    // So TemplateParameterLists should be empty in this case.
1743    if (TemplateParameterLists.size()) {
1744      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1745      if (TemplateParams->size()) {
1746        // There is no such thing as a member field template.
1747        Diag(D.getIdentifierLoc(), diag::err_template_member)
1748            << II
1749            << SourceRange(TemplateParams->getTemplateLoc(),
1750                TemplateParams->getRAngleLoc());
1751      } else {
1752        // There is an extraneous 'template<>' for this member.
1753        Diag(TemplateParams->getTemplateLoc(),
1754            diag::err_template_member_noparams)
1755            << II
1756            << SourceRange(TemplateParams->getTemplateLoc(),
1757                TemplateParams->getRAngleLoc());
1758      }
1759      return 0;
1760    }
1761
1762    if (SS.isSet() && !SS.isInvalid()) {
1763      // The user provided a superfluous scope specifier inside a class
1764      // definition:
1765      //
1766      // class X {
1767      //   int X::member;
1768      // };
1769      if (DeclContext *DC = computeDeclContext(SS, false))
1770        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1771      else
1772        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1773          << Name << SS.getRange();
1774
1775      SS.clear();
1776    }
1777
1778    AttributeList *MSPropertyAttr =
1779      getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
1780    if (MSPropertyAttr) {
1781      Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1782                                BitWidth, InitStyle, AS, MSPropertyAttr);
1783      isInstField = false;
1784    } else {
1785      Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1786                                BitWidth, InitStyle, AS);
1787    }
1788    assert(Member && "HandleField never returns null");
1789  } else {
1790    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
1791
1792    Member = HandleDeclarator(S, D, TemplateParameterLists);
1793    if (!Member) {
1794      return 0;
1795    }
1796
1797    // Non-instance-fields can't have a bitfield.
1798    if (BitWidth) {
1799      if (Member->isInvalidDecl()) {
1800        // don't emit another diagnostic.
1801      } else if (isa<VarDecl>(Member)) {
1802        // C++ 9.6p3: A bit-field shall not be a static member.
1803        // "static member 'A' cannot be a bit-field"
1804        Diag(Loc, diag::err_static_not_bitfield)
1805          << Name << BitWidth->getSourceRange();
1806      } else if (isa<TypedefDecl>(Member)) {
1807        // "typedef member 'x' cannot be a bit-field"
1808        Diag(Loc, diag::err_typedef_not_bitfield)
1809          << Name << BitWidth->getSourceRange();
1810      } else {
1811        // A function typedef ("typedef int f(); f a;").
1812        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1813        Diag(Loc, diag::err_not_integral_type_bitfield)
1814          << Name << cast<ValueDecl>(Member)->getType()
1815          << BitWidth->getSourceRange();
1816      }
1817
1818      BitWidth = 0;
1819      Member->setInvalidDecl();
1820    }
1821
1822    Member->setAccess(AS);
1823
1824    // If we have declared a member function template, set the access of the
1825    // templated declaration as well.
1826    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1827      FunTmpl->getTemplatedDecl()->setAccess(AS);
1828  }
1829
1830  if (VS.isOverrideSpecified())
1831    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1832  if (VS.isFinalSpecified())
1833    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1834
1835  if (VS.getLastLocation().isValid()) {
1836    // Update the end location of a method that has a virt-specifiers.
1837    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1838      MD->setRangeEnd(VS.getLastLocation());
1839  }
1840
1841  CheckOverrideControl(Member);
1842
1843  assert((Name || isInstField) && "No identifier for non-field ?");
1844
1845  if (isInstField) {
1846    FieldDecl *FD = cast<FieldDecl>(Member);
1847    FieldCollector->Add(FD);
1848
1849    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1850                                 FD->getLocation())
1851          != DiagnosticsEngine::Ignored) {
1852      // Remember all explicit private FieldDecls that have a name, no side
1853      // effects and are not part of a dependent type declaration.
1854      if (!FD->isImplicit() && FD->getDeclName() &&
1855          FD->getAccess() == AS_private &&
1856          !FD->hasAttr<UnusedAttr>() &&
1857          !FD->getParent()->isDependentContext() &&
1858          !InitializationHasSideEffects(*FD))
1859        UnusedPrivateFields.insert(FD);
1860    }
1861  }
1862
1863  return Member;
1864}
1865
1866namespace {
1867  class UninitializedFieldVisitor
1868      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
1869    Sema &S;
1870    ValueDecl *VD;
1871  public:
1872    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
1873    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
1874                                                        S(S) {
1875      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
1876        this->VD = IFD->getAnonField();
1877      else
1878        this->VD = VD;
1879    }
1880
1881    void HandleExpr(Expr *E) {
1882      if (!E) return;
1883
1884      // Expressions like x(x) sometimes lack the surrounding expressions
1885      // but need to be checked anyways.
1886      HandleValue(E);
1887      Visit(E);
1888    }
1889
1890    void HandleValue(Expr *E) {
1891      E = E->IgnoreParens();
1892
1893      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1894        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
1895          return;
1896
1897        // FieldME is the inner-most MemberExpr that is not an anonymous struct
1898        // or union.
1899        MemberExpr *FieldME = ME;
1900
1901        Expr *Base = E;
1902        while (isa<MemberExpr>(Base)) {
1903          ME = cast<MemberExpr>(Base);
1904
1905          if (isa<VarDecl>(ME->getMemberDecl()))
1906            return;
1907
1908          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1909            if (!FD->isAnonymousStructOrUnion())
1910              FieldME = ME;
1911
1912          Base = ME->getBase();
1913        }
1914
1915        if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
1916          unsigned diag = VD->getType()->isReferenceType()
1917              ? diag::warn_reference_field_is_uninit
1918              : diag::warn_field_is_uninit;
1919          S.Diag(FieldME->getExprLoc(), diag) << VD;
1920        }
1921        return;
1922      }
1923
1924      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1925        HandleValue(CO->getTrueExpr());
1926        HandleValue(CO->getFalseExpr());
1927        return;
1928      }
1929
1930      if (BinaryConditionalOperator *BCO =
1931              dyn_cast<BinaryConditionalOperator>(E)) {
1932        HandleValue(BCO->getCommon());
1933        HandleValue(BCO->getFalseExpr());
1934        return;
1935      }
1936
1937      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1938        switch (BO->getOpcode()) {
1939        default:
1940          return;
1941        case(BO_PtrMemD):
1942        case(BO_PtrMemI):
1943          HandleValue(BO->getLHS());
1944          return;
1945        case(BO_Comma):
1946          HandleValue(BO->getRHS());
1947          return;
1948        }
1949      }
1950    }
1951
1952    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
1953      if (E->getCastKind() == CK_LValueToRValue)
1954        HandleValue(E->getSubExpr());
1955
1956      Inherited::VisitImplicitCastExpr(E);
1957    }
1958
1959    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1960      Expr *Callee = E->getCallee();
1961      if (isa<MemberExpr>(Callee))
1962        HandleValue(Callee);
1963
1964      Inherited::VisitCXXMemberCallExpr(E);
1965    }
1966  };
1967  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
1968                                                       ValueDecl *VD) {
1969    UninitializedFieldVisitor(S, VD).HandleExpr(E);
1970  }
1971} // namespace
1972
1973/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1974/// in-class initializer for a non-static C++ class member, and after
1975/// instantiating an in-class initializer in a class template. Such actions
1976/// are deferred until the class is complete.
1977void
1978Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1979                                       Expr *InitExpr) {
1980  FieldDecl *FD = cast<FieldDecl>(D);
1981  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1982         "must set init style when field is created");
1983
1984  if (!InitExpr) {
1985    FD->setInvalidDecl();
1986    FD->removeInClassInitializer();
1987    return;
1988  }
1989
1990  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1991    FD->setInvalidDecl();
1992    FD->removeInClassInitializer();
1993    return;
1994  }
1995
1996  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
1997      != DiagnosticsEngine::Ignored) {
1998    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
1999  }
2000
2001  ExprResult Init = InitExpr;
2002  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2003    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
2004      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
2005        << /*at end of ctor*/1 << InitExpr->getSourceRange();
2006    }
2007    Expr **Inits = &InitExpr;
2008    unsigned NumInits = 1;
2009    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2010    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2011        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2012        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2013    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
2014    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
2015    if (Init.isInvalid()) {
2016      FD->setInvalidDecl();
2017      return;
2018    }
2019  }
2020
2021  // C++11 [class.base.init]p7:
2022  //   The initialization of each base and member constitutes a
2023  //   full-expression.
2024  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2025  if (Init.isInvalid()) {
2026    FD->setInvalidDecl();
2027    return;
2028  }
2029
2030  InitExpr = Init.release();
2031
2032  FD->setInClassInitializer(InitExpr);
2033}
2034
2035/// \brief Find the direct and/or virtual base specifiers that
2036/// correspond to the given base type, for use in base initialization
2037/// within a constructor.
2038static bool FindBaseInitializer(Sema &SemaRef,
2039                                CXXRecordDecl *ClassDecl,
2040                                QualType BaseType,
2041                                const CXXBaseSpecifier *&DirectBaseSpec,
2042                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2043  // First, check for a direct base class.
2044  DirectBaseSpec = 0;
2045  for (CXXRecordDecl::base_class_const_iterator Base
2046         = ClassDecl->bases_begin();
2047       Base != ClassDecl->bases_end(); ++Base) {
2048    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2049      // We found a direct base of this type. That's what we're
2050      // initializing.
2051      DirectBaseSpec = &*Base;
2052      break;
2053    }
2054  }
2055
2056  // Check for a virtual base class.
2057  // FIXME: We might be able to short-circuit this if we know in advance that
2058  // there are no virtual bases.
2059  VirtualBaseSpec = 0;
2060  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2061    // We haven't found a base yet; search the class hierarchy for a
2062    // virtual base class.
2063    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2064                       /*DetectVirtual=*/false);
2065    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2066                              BaseType, Paths)) {
2067      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2068           Path != Paths.end(); ++Path) {
2069        if (Path->back().Base->isVirtual()) {
2070          VirtualBaseSpec = Path->back().Base;
2071          break;
2072        }
2073      }
2074    }
2075  }
2076
2077  return DirectBaseSpec || VirtualBaseSpec;
2078}
2079
2080/// \brief Handle a C++ member initializer using braced-init-list syntax.
2081MemInitResult
2082Sema::ActOnMemInitializer(Decl *ConstructorD,
2083                          Scope *S,
2084                          CXXScopeSpec &SS,
2085                          IdentifierInfo *MemberOrBase,
2086                          ParsedType TemplateTypeTy,
2087                          const DeclSpec &DS,
2088                          SourceLocation IdLoc,
2089                          Expr *InitList,
2090                          SourceLocation EllipsisLoc) {
2091  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2092                             DS, IdLoc, InitList,
2093                             EllipsisLoc);
2094}
2095
2096/// \brief Handle a C++ member initializer using parentheses syntax.
2097MemInitResult
2098Sema::ActOnMemInitializer(Decl *ConstructorD,
2099                          Scope *S,
2100                          CXXScopeSpec &SS,
2101                          IdentifierInfo *MemberOrBase,
2102                          ParsedType TemplateTypeTy,
2103                          const DeclSpec &DS,
2104                          SourceLocation IdLoc,
2105                          SourceLocation LParenLoc,
2106                          Expr **Args, unsigned NumArgs,
2107                          SourceLocation RParenLoc,
2108                          SourceLocation EllipsisLoc) {
2109  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2110                                           llvm::makeArrayRef(Args, NumArgs),
2111                                           RParenLoc);
2112  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2113                             DS, IdLoc, List, EllipsisLoc);
2114}
2115
2116namespace {
2117
2118// Callback to only accept typo corrections that can be a valid C++ member
2119// intializer: either a non-static field member or a base class.
2120class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2121 public:
2122  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2123      : ClassDecl(ClassDecl) {}
2124
2125  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
2126    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2127      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2128        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2129      else
2130        return isa<TypeDecl>(ND);
2131    }
2132    return false;
2133  }
2134
2135 private:
2136  CXXRecordDecl *ClassDecl;
2137};
2138
2139}
2140
2141/// \brief Handle a C++ member initializer.
2142MemInitResult
2143Sema::BuildMemInitializer(Decl *ConstructorD,
2144                          Scope *S,
2145                          CXXScopeSpec &SS,
2146                          IdentifierInfo *MemberOrBase,
2147                          ParsedType TemplateTypeTy,
2148                          const DeclSpec &DS,
2149                          SourceLocation IdLoc,
2150                          Expr *Init,
2151                          SourceLocation EllipsisLoc) {
2152  if (!ConstructorD)
2153    return true;
2154
2155  AdjustDeclIfTemplate(ConstructorD);
2156
2157  CXXConstructorDecl *Constructor
2158    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2159  if (!Constructor) {
2160    // The user wrote a constructor initializer on a function that is
2161    // not a C++ constructor. Ignore the error for now, because we may
2162    // have more member initializers coming; we'll diagnose it just
2163    // once in ActOnMemInitializers.
2164    return true;
2165  }
2166
2167  CXXRecordDecl *ClassDecl = Constructor->getParent();
2168
2169  // C++ [class.base.init]p2:
2170  //   Names in a mem-initializer-id are looked up in the scope of the
2171  //   constructor's class and, if not found in that scope, are looked
2172  //   up in the scope containing the constructor's definition.
2173  //   [Note: if the constructor's class contains a member with the
2174  //   same name as a direct or virtual base class of the class, a
2175  //   mem-initializer-id naming the member or base class and composed
2176  //   of a single identifier refers to the class member. A
2177  //   mem-initializer-id for the hidden base class may be specified
2178  //   using a qualified name. ]
2179  if (!SS.getScopeRep() && !TemplateTypeTy) {
2180    // Look for a member, first.
2181    DeclContext::lookup_result Result
2182      = ClassDecl->lookup(MemberOrBase);
2183    if (!Result.empty()) {
2184      ValueDecl *Member;
2185      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2186          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2187        if (EllipsisLoc.isValid())
2188          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2189            << MemberOrBase
2190            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2191
2192        return BuildMemberInitializer(Member, Init, IdLoc);
2193      }
2194    }
2195  }
2196  // It didn't name a member, so see if it names a class.
2197  QualType BaseType;
2198  TypeSourceInfo *TInfo = 0;
2199
2200  if (TemplateTypeTy) {
2201    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2202  } else if (DS.getTypeSpecType() == TST_decltype) {
2203    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2204  } else {
2205    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2206    LookupParsedName(R, S, &SS);
2207
2208    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2209    if (!TyD) {
2210      if (R.isAmbiguous()) return true;
2211
2212      // We don't want access-control diagnostics here.
2213      R.suppressDiagnostics();
2214
2215      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2216        bool NotUnknownSpecialization = false;
2217        DeclContext *DC = computeDeclContext(SS, false);
2218        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2219          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2220
2221        if (!NotUnknownSpecialization) {
2222          // When the scope specifier can refer to a member of an unknown
2223          // specialization, we take it as a type name.
2224          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2225                                       SS.getWithLocInContext(Context),
2226                                       *MemberOrBase, IdLoc);
2227          if (BaseType.isNull())
2228            return true;
2229
2230          R.clear();
2231          R.setLookupName(MemberOrBase);
2232        }
2233      }
2234
2235      // If no results were found, try to correct typos.
2236      TypoCorrection Corr;
2237      MemInitializerValidatorCCC Validator(ClassDecl);
2238      if (R.empty() && BaseType.isNull() &&
2239          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2240                              Validator, ClassDecl))) {
2241        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2242        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2243        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2244          // We have found a non-static data member with a similar
2245          // name to what was typed; complain and initialize that
2246          // member.
2247          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2248            << MemberOrBase << true << CorrectedQuotedStr
2249            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2250          Diag(Member->getLocation(), diag::note_previous_decl)
2251            << CorrectedQuotedStr;
2252
2253          return BuildMemberInitializer(Member, Init, IdLoc);
2254        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2255          const CXXBaseSpecifier *DirectBaseSpec;
2256          const CXXBaseSpecifier *VirtualBaseSpec;
2257          if (FindBaseInitializer(*this, ClassDecl,
2258                                  Context.getTypeDeclType(Type),
2259                                  DirectBaseSpec, VirtualBaseSpec)) {
2260            // We have found a direct or virtual base class with a
2261            // similar name to what was typed; complain and initialize
2262            // that base class.
2263            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2264              << MemberOrBase << false << CorrectedQuotedStr
2265              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2266
2267            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2268                                                             : VirtualBaseSpec;
2269            Diag(BaseSpec->getLocStart(),
2270                 diag::note_base_class_specified_here)
2271              << BaseSpec->getType()
2272              << BaseSpec->getSourceRange();
2273
2274            TyD = Type;
2275          }
2276        }
2277      }
2278
2279      if (!TyD && BaseType.isNull()) {
2280        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2281          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2282        return true;
2283      }
2284    }
2285
2286    if (BaseType.isNull()) {
2287      BaseType = Context.getTypeDeclType(TyD);
2288      if (SS.isSet()) {
2289        NestedNameSpecifier *Qualifier =
2290          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2291
2292        // FIXME: preserve source range information
2293        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2294      }
2295    }
2296  }
2297
2298  if (!TInfo)
2299    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2300
2301  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2302}
2303
2304/// Checks a member initializer expression for cases where reference (or
2305/// pointer) members are bound to by-value parameters (or their addresses).
2306static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2307                                               Expr *Init,
2308                                               SourceLocation IdLoc) {
2309  QualType MemberTy = Member->getType();
2310
2311  // We only handle pointers and references currently.
2312  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2313  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2314    return;
2315
2316  const bool IsPointer = MemberTy->isPointerType();
2317  if (IsPointer) {
2318    if (const UnaryOperator *Op
2319          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2320      // The only case we're worried about with pointers requires taking the
2321      // address.
2322      if (Op->getOpcode() != UO_AddrOf)
2323        return;
2324
2325      Init = Op->getSubExpr();
2326    } else {
2327      // We only handle address-of expression initializers for pointers.
2328      return;
2329    }
2330  }
2331
2332  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2333    // Taking the address of a temporary will be diagnosed as a hard error.
2334    if (IsPointer)
2335      return;
2336
2337    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2338      << Member << Init->getSourceRange();
2339  } else if (const DeclRefExpr *DRE
2340               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2341    // We only warn when referring to a non-reference parameter declaration.
2342    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2343    if (!Parameter || Parameter->getType()->isReferenceType())
2344      return;
2345
2346    S.Diag(Init->getExprLoc(),
2347           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2348                     : diag::warn_bind_ref_member_to_parameter)
2349      << Member << Parameter << Init->getSourceRange();
2350  } else {
2351    // Other initializers are fine.
2352    return;
2353  }
2354
2355  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2356    << (unsigned)IsPointer;
2357}
2358
2359MemInitResult
2360Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2361                             SourceLocation IdLoc) {
2362  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2363  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2364  assert((DirectMember || IndirectMember) &&
2365         "Member must be a FieldDecl or IndirectFieldDecl");
2366
2367  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2368    return true;
2369
2370  if (Member->isInvalidDecl())
2371    return true;
2372
2373  // Diagnose value-uses of fields to initialize themselves, e.g.
2374  //   foo(foo)
2375  // where foo is not also a parameter to the constructor.
2376  // TODO: implement -Wuninitialized and fold this into that framework.
2377  Expr **Args;
2378  unsigned NumArgs;
2379  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2380    Args = ParenList->getExprs();
2381    NumArgs = ParenList->getNumExprs();
2382  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2383    Args = InitList->getInits();
2384    NumArgs = InitList->getNumInits();
2385  } else {
2386    // Template instantiation doesn't reconstruct ParenListExprs for us.
2387    Args = &Init;
2388    NumArgs = 1;
2389  }
2390
2391  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2392        != DiagnosticsEngine::Ignored)
2393    for (unsigned i = 0; i < NumArgs; ++i)
2394      // FIXME: Warn about the case when other fields are used before being
2395      // initialized. For example, let this field be the i'th field. When
2396      // initializing the i'th field, throw a warning if any of the >= i'th
2397      // fields are used, as they are not yet initialized.
2398      // Right now we are only handling the case where the i'th field uses
2399      // itself in its initializer.
2400      // Also need to take into account that some fields may be initialized by
2401      // in-class initializers, see C++11 [class.base.init]p9.
2402      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2403
2404  SourceRange InitRange = Init->getSourceRange();
2405
2406  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2407    // Can't check initialization for a member of dependent type or when
2408    // any of the arguments are type-dependent expressions.
2409    DiscardCleanupsInEvaluationContext();
2410  } else {
2411    bool InitList = false;
2412    if (isa<InitListExpr>(Init)) {
2413      InitList = true;
2414      Args = &Init;
2415      NumArgs = 1;
2416
2417      if (isStdInitializerList(Member->getType(), 0)) {
2418        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2419            << /*at end of ctor*/1 << InitRange;
2420      }
2421    }
2422
2423    // Initialize the member.
2424    InitializedEntity MemberEntity =
2425      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2426                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2427    InitializationKind Kind =
2428      InitList ? InitializationKind::CreateDirectList(IdLoc)
2429               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2430                                                  InitRange.getEnd());
2431
2432    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2433    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2434                                            MultiExprArg(Args, NumArgs),
2435                                            0);
2436    if (MemberInit.isInvalid())
2437      return true;
2438
2439    // C++11 [class.base.init]p7:
2440    //   The initialization of each base and member constitutes a
2441    //   full-expression.
2442    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2443    if (MemberInit.isInvalid())
2444      return true;
2445
2446    Init = MemberInit.get();
2447    CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2448  }
2449
2450  if (DirectMember) {
2451    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2452                                            InitRange.getBegin(), Init,
2453                                            InitRange.getEnd());
2454  } else {
2455    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2456                                            InitRange.getBegin(), Init,
2457                                            InitRange.getEnd());
2458  }
2459}
2460
2461MemInitResult
2462Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2463                                 CXXRecordDecl *ClassDecl) {
2464  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2465  if (!LangOpts.CPlusPlus11)
2466    return Diag(NameLoc, diag::err_delegating_ctor)
2467      << TInfo->getTypeLoc().getLocalSourceRange();
2468  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2469
2470  bool InitList = true;
2471  Expr **Args = &Init;
2472  unsigned NumArgs = 1;
2473  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2474    InitList = false;
2475    Args = ParenList->getExprs();
2476    NumArgs = ParenList->getNumExprs();
2477  }
2478
2479  SourceRange InitRange = Init->getSourceRange();
2480  // Initialize the object.
2481  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2482                                     QualType(ClassDecl->getTypeForDecl(), 0));
2483  InitializationKind Kind =
2484    InitList ? InitializationKind::CreateDirectList(NameLoc)
2485             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2486                                                InitRange.getEnd());
2487  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2488  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2489                                              MultiExprArg(Args, NumArgs),
2490                                              0);
2491  if (DelegationInit.isInvalid())
2492    return true;
2493
2494  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2495         "Delegating constructor with no target?");
2496
2497  // C++11 [class.base.init]p7:
2498  //   The initialization of each base and member constitutes a
2499  //   full-expression.
2500  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2501                                       InitRange.getBegin());
2502  if (DelegationInit.isInvalid())
2503    return true;
2504
2505  // If we are in a dependent context, template instantiation will
2506  // perform this type-checking again. Just save the arguments that we
2507  // received in a ParenListExpr.
2508  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2509  // of the information that we have about the base
2510  // initializer. However, deconstructing the ASTs is a dicey process,
2511  // and this approach is far more likely to get the corner cases right.
2512  if (CurContext->isDependentContext())
2513    DelegationInit = Owned(Init);
2514
2515  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2516                                          DelegationInit.takeAs<Expr>(),
2517                                          InitRange.getEnd());
2518}
2519
2520MemInitResult
2521Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2522                           Expr *Init, CXXRecordDecl *ClassDecl,
2523                           SourceLocation EllipsisLoc) {
2524  SourceLocation BaseLoc
2525    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2526
2527  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2528    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2529             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2530
2531  // C++ [class.base.init]p2:
2532  //   [...] Unless the mem-initializer-id names a nonstatic data
2533  //   member of the constructor's class or a direct or virtual base
2534  //   of that class, the mem-initializer is ill-formed. A
2535  //   mem-initializer-list can initialize a base class using any
2536  //   name that denotes that base class type.
2537  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2538
2539  SourceRange InitRange = Init->getSourceRange();
2540  if (EllipsisLoc.isValid()) {
2541    // This is a pack expansion.
2542    if (!BaseType->containsUnexpandedParameterPack())  {
2543      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2544        << SourceRange(BaseLoc, InitRange.getEnd());
2545
2546      EllipsisLoc = SourceLocation();
2547    }
2548  } else {
2549    // Check for any unexpanded parameter packs.
2550    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2551      return true;
2552
2553    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2554      return true;
2555  }
2556
2557  // Check for direct and virtual base classes.
2558  const CXXBaseSpecifier *DirectBaseSpec = 0;
2559  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2560  if (!Dependent) {
2561    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2562                                       BaseType))
2563      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2564
2565    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2566                        VirtualBaseSpec);
2567
2568    // C++ [base.class.init]p2:
2569    // Unless the mem-initializer-id names a nonstatic data member of the
2570    // constructor's class or a direct or virtual base of that class, the
2571    // mem-initializer is ill-formed.
2572    if (!DirectBaseSpec && !VirtualBaseSpec) {
2573      // If the class has any dependent bases, then it's possible that
2574      // one of those types will resolve to the same type as
2575      // BaseType. Therefore, just treat this as a dependent base
2576      // class initialization.  FIXME: Should we try to check the
2577      // initialization anyway? It seems odd.
2578      if (ClassDecl->hasAnyDependentBases())
2579        Dependent = true;
2580      else
2581        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2582          << BaseType << Context.getTypeDeclType(ClassDecl)
2583          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2584    }
2585  }
2586
2587  if (Dependent) {
2588    DiscardCleanupsInEvaluationContext();
2589
2590    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2591                                            /*IsVirtual=*/false,
2592                                            InitRange.getBegin(), Init,
2593                                            InitRange.getEnd(), EllipsisLoc);
2594  }
2595
2596  // C++ [base.class.init]p2:
2597  //   If a mem-initializer-id is ambiguous because it designates both
2598  //   a direct non-virtual base class and an inherited virtual base
2599  //   class, the mem-initializer is ill-formed.
2600  if (DirectBaseSpec && VirtualBaseSpec)
2601    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2602      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2603
2604  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2605  if (!BaseSpec)
2606    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2607
2608  // Initialize the base.
2609  bool InitList = true;
2610  Expr **Args = &Init;
2611  unsigned NumArgs = 1;
2612  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2613    InitList = false;
2614    Args = ParenList->getExprs();
2615    NumArgs = ParenList->getNumExprs();
2616  }
2617
2618  InitializedEntity BaseEntity =
2619    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2620  InitializationKind Kind =
2621    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2622             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2623                                                InitRange.getEnd());
2624  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2625  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2626                                        MultiExprArg(Args, NumArgs), 0);
2627  if (BaseInit.isInvalid())
2628    return true;
2629
2630  // C++11 [class.base.init]p7:
2631  //   The initialization of each base and member constitutes a
2632  //   full-expression.
2633  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2634  if (BaseInit.isInvalid())
2635    return true;
2636
2637  // If we are in a dependent context, template instantiation will
2638  // perform this type-checking again. Just save the arguments that we
2639  // received in a ParenListExpr.
2640  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2641  // of the information that we have about the base
2642  // initializer. However, deconstructing the ASTs is a dicey process,
2643  // and this approach is far more likely to get the corner cases right.
2644  if (CurContext->isDependentContext())
2645    BaseInit = Owned(Init);
2646
2647  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2648                                          BaseSpec->isVirtual(),
2649                                          InitRange.getBegin(),
2650                                          BaseInit.takeAs<Expr>(),
2651                                          InitRange.getEnd(), EllipsisLoc);
2652}
2653
2654// Create a static_cast\<T&&>(expr).
2655static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2656  if (T.isNull()) T = E->getType();
2657  QualType TargetType = SemaRef.BuildReferenceType(
2658      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2659  SourceLocation ExprLoc = E->getLocStart();
2660  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2661      TargetType, ExprLoc);
2662
2663  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2664                                   SourceRange(ExprLoc, ExprLoc),
2665                                   E->getSourceRange()).take();
2666}
2667
2668/// ImplicitInitializerKind - How an implicit base or member initializer should
2669/// initialize its base or member.
2670enum ImplicitInitializerKind {
2671  IIK_Default,
2672  IIK_Copy,
2673  IIK_Move,
2674  IIK_Inherit
2675};
2676
2677static bool
2678BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2679                             ImplicitInitializerKind ImplicitInitKind,
2680                             CXXBaseSpecifier *BaseSpec,
2681                             bool IsInheritedVirtualBase,
2682                             CXXCtorInitializer *&CXXBaseInit) {
2683  InitializedEntity InitEntity
2684    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2685                                        IsInheritedVirtualBase);
2686
2687  ExprResult BaseInit;
2688
2689  switch (ImplicitInitKind) {
2690  case IIK_Inherit: {
2691    const CXXRecordDecl *Inherited =
2692        Constructor->getInheritedConstructor()->getParent();
2693    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2694    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2695      // C++11 [class.inhctor]p8:
2696      //   Each expression in the expression-list is of the form
2697      //   static_cast<T&&>(p), where p is the name of the corresponding
2698      //   constructor parameter and T is the declared type of p.
2699      SmallVector<Expr*, 16> Args;
2700      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
2701        ParmVarDecl *PD = Constructor->getParamDecl(I);
2702        ExprResult ArgExpr =
2703            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
2704                                     VK_LValue, SourceLocation());
2705        if (ArgExpr.isInvalid())
2706          return true;
2707        Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
2708      }
2709
2710      InitializationKind InitKind = InitializationKind::CreateDirect(
2711          Constructor->getLocation(), SourceLocation(), SourceLocation());
2712      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2713                                     Args.data(), Args.size());
2714      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
2715      break;
2716    }
2717  }
2718  // Fall through.
2719  case IIK_Default: {
2720    InitializationKind InitKind
2721      = InitializationKind::CreateDefault(Constructor->getLocation());
2722    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2723    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2724    break;
2725  }
2726
2727  case IIK_Move:
2728  case IIK_Copy: {
2729    bool Moving = ImplicitInitKind == IIK_Move;
2730    ParmVarDecl *Param = Constructor->getParamDecl(0);
2731    QualType ParamType = Param->getType().getNonReferenceType();
2732
2733    Expr *CopyCtorArg =
2734      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2735                          SourceLocation(), Param, false,
2736                          Constructor->getLocation(), ParamType,
2737                          VK_LValue, 0);
2738
2739    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2740
2741    // Cast to the base class to avoid ambiguities.
2742    QualType ArgTy =
2743      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2744                                       ParamType.getQualifiers());
2745
2746    if (Moving) {
2747      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2748    }
2749
2750    CXXCastPath BasePath;
2751    BasePath.push_back(BaseSpec);
2752    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2753                                            CK_UncheckedDerivedToBase,
2754                                            Moving ? VK_XValue : VK_LValue,
2755                                            &BasePath).take();
2756
2757    InitializationKind InitKind
2758      = InitializationKind::CreateDirect(Constructor->getLocation(),
2759                                         SourceLocation(), SourceLocation());
2760    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2761                                   &CopyCtorArg, 1);
2762    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2763                               MultiExprArg(&CopyCtorArg, 1));
2764    break;
2765  }
2766  }
2767
2768  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2769  if (BaseInit.isInvalid())
2770    return true;
2771
2772  CXXBaseInit =
2773    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2774               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2775                                                        SourceLocation()),
2776                                             BaseSpec->isVirtual(),
2777                                             SourceLocation(),
2778                                             BaseInit.takeAs<Expr>(),
2779                                             SourceLocation(),
2780                                             SourceLocation());
2781
2782  return false;
2783}
2784
2785static bool RefersToRValueRef(Expr *MemRef) {
2786  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2787  return Referenced->getType()->isRValueReferenceType();
2788}
2789
2790static bool
2791BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2792                               ImplicitInitializerKind ImplicitInitKind,
2793                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2794                               CXXCtorInitializer *&CXXMemberInit) {
2795  if (Field->isInvalidDecl())
2796    return true;
2797
2798  SourceLocation Loc = Constructor->getLocation();
2799
2800  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2801    bool Moving = ImplicitInitKind == IIK_Move;
2802    ParmVarDecl *Param = Constructor->getParamDecl(0);
2803    QualType ParamType = Param->getType().getNonReferenceType();
2804
2805    // Suppress copying zero-width bitfields.
2806    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2807      return false;
2808
2809    Expr *MemberExprBase =
2810      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2811                          SourceLocation(), Param, false,
2812                          Loc, ParamType, VK_LValue, 0);
2813
2814    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2815
2816    if (Moving) {
2817      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2818    }
2819
2820    // Build a reference to this field within the parameter.
2821    CXXScopeSpec SS;
2822    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2823                              Sema::LookupMemberName);
2824    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2825                                  : cast<ValueDecl>(Field), AS_public);
2826    MemberLookup.resolveKind();
2827    ExprResult CtorArg
2828      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2829                                         ParamType, Loc,
2830                                         /*IsArrow=*/false,
2831                                         SS,
2832                                         /*TemplateKWLoc=*/SourceLocation(),
2833                                         /*FirstQualifierInScope=*/0,
2834                                         MemberLookup,
2835                                         /*TemplateArgs=*/0);
2836    if (CtorArg.isInvalid())
2837      return true;
2838
2839    // C++11 [class.copy]p15:
2840    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2841    //     with static_cast<T&&>(x.m);
2842    if (RefersToRValueRef(CtorArg.get())) {
2843      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2844    }
2845
2846    // When the field we are copying is an array, create index variables for
2847    // each dimension of the array. We use these index variables to subscript
2848    // the source array, and other clients (e.g., CodeGen) will perform the
2849    // necessary iteration with these index variables.
2850    SmallVector<VarDecl *, 4> IndexVariables;
2851    QualType BaseType = Field->getType();
2852    QualType SizeType = SemaRef.Context.getSizeType();
2853    bool InitializingArray = false;
2854    while (const ConstantArrayType *Array
2855                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2856      InitializingArray = true;
2857      // Create the iteration variable for this array index.
2858      IdentifierInfo *IterationVarName = 0;
2859      {
2860        SmallString<8> Str;
2861        llvm::raw_svector_ostream OS(Str);
2862        OS << "__i" << IndexVariables.size();
2863        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2864      }
2865      VarDecl *IterationVar
2866        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2867                          IterationVarName, SizeType,
2868                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2869                          SC_None);
2870      IndexVariables.push_back(IterationVar);
2871
2872      // Create a reference to the iteration variable.
2873      ExprResult IterationVarRef
2874        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2875      assert(!IterationVarRef.isInvalid() &&
2876             "Reference to invented variable cannot fail!");
2877      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2878      assert(!IterationVarRef.isInvalid() &&
2879             "Conversion of invented variable cannot fail!");
2880
2881      // Subscript the array with this iteration variable.
2882      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2883                                                        IterationVarRef.take(),
2884                                                        Loc);
2885      if (CtorArg.isInvalid())
2886        return true;
2887
2888      BaseType = Array->getElementType();
2889    }
2890
2891    // The array subscript expression is an lvalue, which is wrong for moving.
2892    if (Moving && InitializingArray)
2893      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2894
2895    // Construct the entity that we will be initializing. For an array, this
2896    // will be first element in the array, which may require several levels
2897    // of array-subscript entities.
2898    SmallVector<InitializedEntity, 4> Entities;
2899    Entities.reserve(1 + IndexVariables.size());
2900    if (Indirect)
2901      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2902    else
2903      Entities.push_back(InitializedEntity::InitializeMember(Field));
2904    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2905      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2906                                                              0,
2907                                                              Entities.back()));
2908
2909    // Direct-initialize to use the copy constructor.
2910    InitializationKind InitKind =
2911      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2912
2913    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2914    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2915                                   &CtorArgE, 1);
2916
2917    ExprResult MemberInit
2918      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2919                        MultiExprArg(&CtorArgE, 1));
2920    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2921    if (MemberInit.isInvalid())
2922      return true;
2923
2924    if (Indirect) {
2925      assert(IndexVariables.size() == 0 &&
2926             "Indirect field improperly initialized");
2927      CXXMemberInit
2928        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2929                                                   Loc, Loc,
2930                                                   MemberInit.takeAs<Expr>(),
2931                                                   Loc);
2932    } else
2933      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2934                                                 Loc, MemberInit.takeAs<Expr>(),
2935                                                 Loc,
2936                                                 IndexVariables.data(),
2937                                                 IndexVariables.size());
2938    return false;
2939  }
2940
2941  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
2942         "Unhandled implicit init kind!");
2943
2944  QualType FieldBaseElementType =
2945    SemaRef.Context.getBaseElementType(Field->getType());
2946
2947  if (FieldBaseElementType->isRecordType()) {
2948    InitializedEntity InitEntity
2949      = Indirect? InitializedEntity::InitializeMember(Indirect)
2950                : InitializedEntity::InitializeMember(Field);
2951    InitializationKind InitKind =
2952      InitializationKind::CreateDefault(Loc);
2953
2954    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2955    ExprResult MemberInit =
2956      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2957
2958    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2959    if (MemberInit.isInvalid())
2960      return true;
2961
2962    if (Indirect)
2963      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2964                                                               Indirect, Loc,
2965                                                               Loc,
2966                                                               MemberInit.get(),
2967                                                               Loc);
2968    else
2969      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2970                                                               Field, Loc, Loc,
2971                                                               MemberInit.get(),
2972                                                               Loc);
2973    return false;
2974  }
2975
2976  if (!Field->getParent()->isUnion()) {
2977    if (FieldBaseElementType->isReferenceType()) {
2978      SemaRef.Diag(Constructor->getLocation(),
2979                   diag::err_uninitialized_member_in_ctor)
2980      << (int)Constructor->isImplicit()
2981      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2982      << 0 << Field->getDeclName();
2983      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2984      return true;
2985    }
2986
2987    if (FieldBaseElementType.isConstQualified()) {
2988      SemaRef.Diag(Constructor->getLocation(),
2989                   diag::err_uninitialized_member_in_ctor)
2990      << (int)Constructor->isImplicit()
2991      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2992      << 1 << Field->getDeclName();
2993      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2994      return true;
2995    }
2996  }
2997
2998  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2999      FieldBaseElementType->isObjCRetainableType() &&
3000      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3001      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3002    // ARC:
3003    //   Default-initialize Objective-C pointers to NULL.
3004    CXXMemberInit
3005      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3006                                                 Loc, Loc,
3007                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3008                                                 Loc);
3009    return false;
3010  }
3011
3012  // Nothing to initialize.
3013  CXXMemberInit = 0;
3014  return false;
3015}
3016
3017namespace {
3018struct BaseAndFieldInfo {
3019  Sema &S;
3020  CXXConstructorDecl *Ctor;
3021  bool AnyErrorsInInits;
3022  ImplicitInitializerKind IIK;
3023  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3024  SmallVector<CXXCtorInitializer*, 8> AllToInit;
3025
3026  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3027    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3028    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3029    if (Generated && Ctor->isCopyConstructor())
3030      IIK = IIK_Copy;
3031    else if (Generated && Ctor->isMoveConstructor())
3032      IIK = IIK_Move;
3033    else if (Ctor->getInheritedConstructor())
3034      IIK = IIK_Inherit;
3035    else
3036      IIK = IIK_Default;
3037  }
3038
3039  bool isImplicitCopyOrMove() const {
3040    switch (IIK) {
3041    case IIK_Copy:
3042    case IIK_Move:
3043      return true;
3044
3045    case IIK_Default:
3046    case IIK_Inherit:
3047      return false;
3048    }
3049
3050    llvm_unreachable("Invalid ImplicitInitializerKind!");
3051  }
3052
3053  bool addFieldInitializer(CXXCtorInitializer *Init) {
3054    AllToInit.push_back(Init);
3055
3056    // Check whether this initializer makes the field "used".
3057    if (Init->getInit() && Init->getInit()->HasSideEffects(S.Context))
3058      S.UnusedPrivateFields.remove(Init->getAnyMember());
3059
3060    return false;
3061  }
3062};
3063}
3064
3065/// \brief Determine whether the given indirect field declaration is somewhere
3066/// within an anonymous union.
3067static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3068  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3069                                      CEnd = F->chain_end();
3070       C != CEnd; ++C)
3071    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3072      if (Record->isUnion())
3073        return true;
3074
3075  return false;
3076}
3077
3078/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3079/// array type.
3080static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3081  if (T->isIncompleteArrayType())
3082    return true;
3083
3084  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3085    if (!ArrayT->getSize())
3086      return true;
3087
3088    T = ArrayT->getElementType();
3089  }
3090
3091  return false;
3092}
3093
3094static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3095                                    FieldDecl *Field,
3096                                    IndirectFieldDecl *Indirect = 0) {
3097
3098  // Overwhelmingly common case: we have a direct initializer for this field.
3099  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3100    return Info.addFieldInitializer(Init);
3101
3102  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3103  // has a brace-or-equal-initializer, the entity is initialized as specified
3104  // in [dcl.init].
3105  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3106    CXXCtorInitializer *Init;
3107    if (Indirect)
3108      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3109                                                      SourceLocation(),
3110                                                      SourceLocation(), 0,
3111                                                      SourceLocation());
3112    else
3113      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3114                                                      SourceLocation(),
3115                                                      SourceLocation(), 0,
3116                                                      SourceLocation());
3117    return Info.addFieldInitializer(Init);
3118  }
3119
3120  // Don't build an implicit initializer for union members if none was
3121  // explicitly specified.
3122  if (Field->getParent()->isUnion() ||
3123      (Indirect && isWithinAnonymousUnion(Indirect)))
3124    return false;
3125
3126  // Don't initialize incomplete or zero-length arrays.
3127  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3128    return false;
3129
3130  // Don't try to build an implicit initializer if there were semantic
3131  // errors in any of the initializers (and therefore we might be
3132  // missing some that the user actually wrote).
3133  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
3134    return false;
3135
3136  CXXCtorInitializer *Init = 0;
3137  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3138                                     Indirect, Init))
3139    return true;
3140
3141  if (!Init)
3142    return false;
3143
3144  return Info.addFieldInitializer(Init);
3145}
3146
3147bool
3148Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3149                               CXXCtorInitializer *Initializer) {
3150  assert(Initializer->isDelegatingInitializer());
3151  Constructor->setNumCtorInitializers(1);
3152  CXXCtorInitializer **initializer =
3153    new (Context) CXXCtorInitializer*[1];
3154  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3155  Constructor->setCtorInitializers(initializer);
3156
3157  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3158    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3159    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3160  }
3161
3162  DelegatingCtorDecls.push_back(Constructor);
3163
3164  return false;
3165}
3166
3167bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3168                               ArrayRef<CXXCtorInitializer *> Initializers) {
3169  if (Constructor->isDependentContext()) {
3170    // Just store the initializers as written, they will be checked during
3171    // instantiation.
3172    if (!Initializers.empty()) {
3173      Constructor->setNumCtorInitializers(Initializers.size());
3174      CXXCtorInitializer **baseOrMemberInitializers =
3175        new (Context) CXXCtorInitializer*[Initializers.size()];
3176      memcpy(baseOrMemberInitializers, Initializers.data(),
3177             Initializers.size() * sizeof(CXXCtorInitializer*));
3178      Constructor->setCtorInitializers(baseOrMemberInitializers);
3179    }
3180
3181    // Let template instantiation know whether we had errors.
3182    if (AnyErrors)
3183      Constructor->setInvalidDecl();
3184
3185    return false;
3186  }
3187
3188  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3189
3190  // We need to build the initializer AST according to order of construction
3191  // and not what user specified in the Initializers list.
3192  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3193  if (!ClassDecl)
3194    return true;
3195
3196  bool HadError = false;
3197
3198  for (unsigned i = 0; i < Initializers.size(); i++) {
3199    CXXCtorInitializer *Member = Initializers[i];
3200
3201    if (Member->isBaseInitializer())
3202      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3203    else
3204      Info.AllBaseFields[Member->getAnyMember()] = Member;
3205  }
3206
3207  // Keep track of the direct virtual bases.
3208  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3209  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3210       E = ClassDecl->bases_end(); I != E; ++I) {
3211    if (I->isVirtual())
3212      DirectVBases.insert(I);
3213  }
3214
3215  // Push virtual bases before others.
3216  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3217       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3218
3219    if (CXXCtorInitializer *Value
3220        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3221      Info.AllToInit.push_back(Value);
3222    } else if (!AnyErrors) {
3223      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3224      CXXCtorInitializer *CXXBaseInit;
3225      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3226                                       VBase, IsInheritedVirtualBase,
3227                                       CXXBaseInit)) {
3228        HadError = true;
3229        continue;
3230      }
3231
3232      Info.AllToInit.push_back(CXXBaseInit);
3233    }
3234  }
3235
3236  // Non-virtual bases.
3237  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3238       E = ClassDecl->bases_end(); Base != E; ++Base) {
3239    // Virtuals are in the virtual base list and already constructed.
3240    if (Base->isVirtual())
3241      continue;
3242
3243    if (CXXCtorInitializer *Value
3244          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3245      Info.AllToInit.push_back(Value);
3246    } else if (!AnyErrors) {
3247      CXXCtorInitializer *CXXBaseInit;
3248      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3249                                       Base, /*IsInheritedVirtualBase=*/false,
3250                                       CXXBaseInit)) {
3251        HadError = true;
3252        continue;
3253      }
3254
3255      Info.AllToInit.push_back(CXXBaseInit);
3256    }
3257  }
3258
3259  // Fields.
3260  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3261                               MemEnd = ClassDecl->decls_end();
3262       Mem != MemEnd; ++Mem) {
3263    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3264      // C++ [class.bit]p2:
3265      //   A declaration for a bit-field that omits the identifier declares an
3266      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3267      //   initialized.
3268      if (F->isUnnamedBitfield())
3269        continue;
3270
3271      // If we're not generating the implicit copy/move constructor, then we'll
3272      // handle anonymous struct/union fields based on their individual
3273      // indirect fields.
3274      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3275        continue;
3276
3277      if (CollectFieldInitializer(*this, Info, F))
3278        HadError = true;
3279      continue;
3280    }
3281
3282    // Beyond this point, we only consider default initialization.
3283    if (Info.isImplicitCopyOrMove())
3284      continue;
3285
3286    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3287      if (F->getType()->isIncompleteArrayType()) {
3288        assert(ClassDecl->hasFlexibleArrayMember() &&
3289               "Incomplete array type is not valid");
3290        continue;
3291      }
3292
3293      // Initialize each field of an anonymous struct individually.
3294      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3295        HadError = true;
3296
3297      continue;
3298    }
3299  }
3300
3301  unsigned NumInitializers = Info.AllToInit.size();
3302  if (NumInitializers > 0) {
3303    Constructor->setNumCtorInitializers(NumInitializers);
3304    CXXCtorInitializer **baseOrMemberInitializers =
3305      new (Context) CXXCtorInitializer*[NumInitializers];
3306    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3307           NumInitializers * sizeof(CXXCtorInitializer*));
3308    Constructor->setCtorInitializers(baseOrMemberInitializers);
3309
3310    // Constructors implicitly reference the base and member
3311    // destructors.
3312    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3313                                           Constructor->getParent());
3314  }
3315
3316  return HadError;
3317}
3318
3319static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3320  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3321    const RecordDecl *RD = RT->getDecl();
3322    if (RD->isAnonymousStructOrUnion()) {
3323      for (RecordDecl::field_iterator Field = RD->field_begin(),
3324          E = RD->field_end(); Field != E; ++Field)
3325        PopulateKeysForFields(*Field, IdealInits);
3326      return;
3327    }
3328  }
3329  IdealInits.push_back(Field);
3330}
3331
3332static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3333  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3334}
3335
3336static void *GetKeyForMember(ASTContext &Context,
3337                             CXXCtorInitializer *Member) {
3338  if (!Member->isAnyMemberInitializer())
3339    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3340
3341  return Member->getAnyMember();
3342}
3343
3344static void DiagnoseBaseOrMemInitializerOrder(
3345    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3346    ArrayRef<CXXCtorInitializer *> Inits) {
3347  if (Constructor->getDeclContext()->isDependentContext())
3348    return;
3349
3350  // Don't check initializers order unless the warning is enabled at the
3351  // location of at least one initializer.
3352  bool ShouldCheckOrder = false;
3353  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3354    CXXCtorInitializer *Init = Inits[InitIndex];
3355    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3356                                         Init->getSourceLocation())
3357          != DiagnosticsEngine::Ignored) {
3358      ShouldCheckOrder = true;
3359      break;
3360    }
3361  }
3362  if (!ShouldCheckOrder)
3363    return;
3364
3365  // Build the list of bases and members in the order that they'll
3366  // actually be initialized.  The explicit initializers should be in
3367  // this same order but may be missing things.
3368  SmallVector<const void*, 32> IdealInitKeys;
3369
3370  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3371
3372  // 1. Virtual bases.
3373  for (CXXRecordDecl::base_class_const_iterator VBase =
3374       ClassDecl->vbases_begin(),
3375       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3376    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3377
3378  // 2. Non-virtual bases.
3379  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3380       E = ClassDecl->bases_end(); Base != E; ++Base) {
3381    if (Base->isVirtual())
3382      continue;
3383    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3384  }
3385
3386  // 3. Direct fields.
3387  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3388       E = ClassDecl->field_end(); Field != E; ++Field) {
3389    if (Field->isUnnamedBitfield())
3390      continue;
3391
3392    PopulateKeysForFields(*Field, IdealInitKeys);
3393  }
3394
3395  unsigned NumIdealInits = IdealInitKeys.size();
3396  unsigned IdealIndex = 0;
3397
3398  CXXCtorInitializer *PrevInit = 0;
3399  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3400    CXXCtorInitializer *Init = Inits[InitIndex];
3401    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3402
3403    // Scan forward to try to find this initializer in the idealized
3404    // initializers list.
3405    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3406      if (InitKey == IdealInitKeys[IdealIndex])
3407        break;
3408
3409    // If we didn't find this initializer, it must be because we
3410    // scanned past it on a previous iteration.  That can only
3411    // happen if we're out of order;  emit a warning.
3412    if (IdealIndex == NumIdealInits && PrevInit) {
3413      Sema::SemaDiagnosticBuilder D =
3414        SemaRef.Diag(PrevInit->getSourceLocation(),
3415                     diag::warn_initializer_out_of_order);
3416
3417      if (PrevInit->isAnyMemberInitializer())
3418        D << 0 << PrevInit->getAnyMember()->getDeclName();
3419      else
3420        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3421
3422      if (Init->isAnyMemberInitializer())
3423        D << 0 << Init->getAnyMember()->getDeclName();
3424      else
3425        D << 1 << Init->getTypeSourceInfo()->getType();
3426
3427      // Move back to the initializer's location in the ideal list.
3428      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3429        if (InitKey == IdealInitKeys[IdealIndex])
3430          break;
3431
3432      assert(IdealIndex != NumIdealInits &&
3433             "initializer not found in initializer list");
3434    }
3435
3436    PrevInit = Init;
3437  }
3438}
3439
3440namespace {
3441bool CheckRedundantInit(Sema &S,
3442                        CXXCtorInitializer *Init,
3443                        CXXCtorInitializer *&PrevInit) {
3444  if (!PrevInit) {
3445    PrevInit = Init;
3446    return false;
3447  }
3448
3449  if (FieldDecl *Field = Init->getAnyMember())
3450    S.Diag(Init->getSourceLocation(),
3451           diag::err_multiple_mem_initialization)
3452      << Field->getDeclName()
3453      << Init->getSourceRange();
3454  else {
3455    const Type *BaseClass = Init->getBaseClass();
3456    assert(BaseClass && "neither field nor base");
3457    S.Diag(Init->getSourceLocation(),
3458           diag::err_multiple_base_initialization)
3459      << QualType(BaseClass, 0)
3460      << Init->getSourceRange();
3461  }
3462  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3463    << 0 << PrevInit->getSourceRange();
3464
3465  return true;
3466}
3467
3468typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3469typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3470
3471bool CheckRedundantUnionInit(Sema &S,
3472                             CXXCtorInitializer *Init,
3473                             RedundantUnionMap &Unions) {
3474  FieldDecl *Field = Init->getAnyMember();
3475  RecordDecl *Parent = Field->getParent();
3476  NamedDecl *Child = Field;
3477
3478  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3479    if (Parent->isUnion()) {
3480      UnionEntry &En = Unions[Parent];
3481      if (En.first && En.first != Child) {
3482        S.Diag(Init->getSourceLocation(),
3483               diag::err_multiple_mem_union_initialization)
3484          << Field->getDeclName()
3485          << Init->getSourceRange();
3486        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3487          << 0 << En.second->getSourceRange();
3488        return true;
3489      }
3490      if (!En.first) {
3491        En.first = Child;
3492        En.second = Init;
3493      }
3494      if (!Parent->isAnonymousStructOrUnion())
3495        return false;
3496    }
3497
3498    Child = Parent;
3499    Parent = cast<RecordDecl>(Parent->getDeclContext());
3500  }
3501
3502  return false;
3503}
3504}
3505
3506/// ActOnMemInitializers - Handle the member initializers for a constructor.
3507void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3508                                SourceLocation ColonLoc,
3509                                ArrayRef<CXXCtorInitializer*> MemInits,
3510                                bool AnyErrors) {
3511  if (!ConstructorDecl)
3512    return;
3513
3514  AdjustDeclIfTemplate(ConstructorDecl);
3515
3516  CXXConstructorDecl *Constructor
3517    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3518
3519  if (!Constructor) {
3520    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3521    return;
3522  }
3523
3524  // Mapping for the duplicate initializers check.
3525  // For member initializers, this is keyed with a FieldDecl*.
3526  // For base initializers, this is keyed with a Type*.
3527  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3528
3529  // Mapping for the inconsistent anonymous-union initializers check.
3530  RedundantUnionMap MemberUnions;
3531
3532  bool HadError = false;
3533  for (unsigned i = 0; i < MemInits.size(); i++) {
3534    CXXCtorInitializer *Init = MemInits[i];
3535
3536    // Set the source order index.
3537    Init->setSourceOrder(i);
3538
3539    if (Init->isAnyMemberInitializer()) {
3540      FieldDecl *Field = Init->getAnyMember();
3541      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3542          CheckRedundantUnionInit(*this, Init, MemberUnions))
3543        HadError = true;
3544    } else if (Init->isBaseInitializer()) {
3545      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3546      if (CheckRedundantInit(*this, Init, Members[Key]))
3547        HadError = true;
3548    } else {
3549      assert(Init->isDelegatingInitializer());
3550      // This must be the only initializer
3551      if (MemInits.size() != 1) {
3552        Diag(Init->getSourceLocation(),
3553             diag::err_delegating_initializer_alone)
3554          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3555        // We will treat this as being the only initializer.
3556      }
3557      SetDelegatingInitializer(Constructor, MemInits[i]);
3558      // Return immediately as the initializer is set.
3559      return;
3560    }
3561  }
3562
3563  if (HadError)
3564    return;
3565
3566  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3567
3568  SetCtorInitializers(Constructor, AnyErrors, MemInits);
3569}
3570
3571void
3572Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3573                                             CXXRecordDecl *ClassDecl) {
3574  // Ignore dependent contexts. Also ignore unions, since their members never
3575  // have destructors implicitly called.
3576  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3577    return;
3578
3579  // FIXME: all the access-control diagnostics are positioned on the
3580  // field/base declaration.  That's probably good; that said, the
3581  // user might reasonably want to know why the destructor is being
3582  // emitted, and we currently don't say.
3583
3584  // Non-static data members.
3585  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3586       E = ClassDecl->field_end(); I != E; ++I) {
3587    FieldDecl *Field = *I;
3588    if (Field->isInvalidDecl())
3589      continue;
3590
3591    // Don't destroy incomplete or zero-length arrays.
3592    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3593      continue;
3594
3595    QualType FieldType = Context.getBaseElementType(Field->getType());
3596
3597    const RecordType* RT = FieldType->getAs<RecordType>();
3598    if (!RT)
3599      continue;
3600
3601    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3602    if (FieldClassDecl->isInvalidDecl())
3603      continue;
3604    if (FieldClassDecl->hasIrrelevantDestructor())
3605      continue;
3606    // The destructor for an implicit anonymous union member is never invoked.
3607    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3608      continue;
3609
3610    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3611    assert(Dtor && "No dtor found for FieldClassDecl!");
3612    CheckDestructorAccess(Field->getLocation(), Dtor,
3613                          PDiag(diag::err_access_dtor_field)
3614                            << Field->getDeclName()
3615                            << FieldType);
3616
3617    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3618    DiagnoseUseOfDecl(Dtor, Location);
3619  }
3620
3621  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3622
3623  // Bases.
3624  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3625       E = ClassDecl->bases_end(); Base != E; ++Base) {
3626    // Bases are always records in a well-formed non-dependent class.
3627    const RecordType *RT = Base->getType()->getAs<RecordType>();
3628
3629    // Remember direct virtual bases.
3630    if (Base->isVirtual())
3631      DirectVirtualBases.insert(RT);
3632
3633    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3634    // If our base class is invalid, we probably can't get its dtor anyway.
3635    if (BaseClassDecl->isInvalidDecl())
3636      continue;
3637    if (BaseClassDecl->hasIrrelevantDestructor())
3638      continue;
3639
3640    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3641    assert(Dtor && "No dtor found for BaseClassDecl!");
3642
3643    // FIXME: caret should be on the start of the class name
3644    CheckDestructorAccess(Base->getLocStart(), Dtor,
3645                          PDiag(diag::err_access_dtor_base)
3646                            << Base->getType()
3647                            << Base->getSourceRange(),
3648                          Context.getTypeDeclType(ClassDecl));
3649
3650    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3651    DiagnoseUseOfDecl(Dtor, Location);
3652  }
3653
3654  // Virtual bases.
3655  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3656       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3657
3658    // Bases are always records in a well-formed non-dependent class.
3659    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3660
3661    // Ignore direct virtual bases.
3662    if (DirectVirtualBases.count(RT))
3663      continue;
3664
3665    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3666    // If our base class is invalid, we probably can't get its dtor anyway.
3667    if (BaseClassDecl->isInvalidDecl())
3668      continue;
3669    if (BaseClassDecl->hasIrrelevantDestructor())
3670      continue;
3671
3672    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3673    assert(Dtor && "No dtor found for BaseClassDecl!");
3674    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3675                          PDiag(diag::err_access_dtor_vbase)
3676                            << VBase->getType(),
3677                          Context.getTypeDeclType(ClassDecl));
3678
3679    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3680    DiagnoseUseOfDecl(Dtor, Location);
3681  }
3682}
3683
3684void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3685  if (!CDtorDecl)
3686    return;
3687
3688  if (CXXConstructorDecl *Constructor
3689      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3690    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
3691}
3692
3693bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3694                                  unsigned DiagID, AbstractDiagSelID SelID) {
3695  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3696    unsigned DiagID;
3697    AbstractDiagSelID SelID;
3698
3699  public:
3700    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3701      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3702
3703    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3704      if (Suppressed) return;
3705      if (SelID == -1)
3706        S.Diag(Loc, DiagID) << T;
3707      else
3708        S.Diag(Loc, DiagID) << SelID << T;
3709    }
3710  } Diagnoser(DiagID, SelID);
3711
3712  return RequireNonAbstractType(Loc, T, Diagnoser);
3713}
3714
3715bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3716                                  TypeDiagnoser &Diagnoser) {
3717  if (!getLangOpts().CPlusPlus)
3718    return false;
3719
3720  if (const ArrayType *AT = Context.getAsArrayType(T))
3721    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3722
3723  if (const PointerType *PT = T->getAs<PointerType>()) {
3724    // Find the innermost pointer type.
3725    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3726      PT = T;
3727
3728    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3729      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3730  }
3731
3732  const RecordType *RT = T->getAs<RecordType>();
3733  if (!RT)
3734    return false;
3735
3736  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3737
3738  // We can't answer whether something is abstract until it has a
3739  // definition.  If it's currently being defined, we'll walk back
3740  // over all the declarations when we have a full definition.
3741  const CXXRecordDecl *Def = RD->getDefinition();
3742  if (!Def || Def->isBeingDefined())
3743    return false;
3744
3745  if (!RD->isAbstract())
3746    return false;
3747
3748  Diagnoser.diagnose(*this, Loc, T);
3749  DiagnoseAbstractType(RD);
3750
3751  return true;
3752}
3753
3754void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3755  // Check if we've already emitted the list of pure virtual functions
3756  // for this class.
3757  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3758    return;
3759
3760  CXXFinalOverriderMap FinalOverriders;
3761  RD->getFinalOverriders(FinalOverriders);
3762
3763  // Keep a set of seen pure methods so we won't diagnose the same method
3764  // more than once.
3765  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3766
3767  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3768                                   MEnd = FinalOverriders.end();
3769       M != MEnd;
3770       ++M) {
3771    for (OverridingMethods::iterator SO = M->second.begin(),
3772                                  SOEnd = M->second.end();
3773         SO != SOEnd; ++SO) {
3774      // C++ [class.abstract]p4:
3775      //   A class is abstract if it contains or inherits at least one
3776      //   pure virtual function for which the final overrider is pure
3777      //   virtual.
3778
3779      //
3780      if (SO->second.size() != 1)
3781        continue;
3782
3783      if (!SO->second.front().Method->isPure())
3784        continue;
3785
3786      if (!SeenPureMethods.insert(SO->second.front().Method))
3787        continue;
3788
3789      Diag(SO->second.front().Method->getLocation(),
3790           diag::note_pure_virtual_function)
3791        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3792    }
3793  }
3794
3795  if (!PureVirtualClassDiagSet)
3796    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3797  PureVirtualClassDiagSet->insert(RD);
3798}
3799
3800namespace {
3801struct AbstractUsageInfo {
3802  Sema &S;
3803  CXXRecordDecl *Record;
3804  CanQualType AbstractType;
3805  bool Invalid;
3806
3807  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3808    : S(S), Record(Record),
3809      AbstractType(S.Context.getCanonicalType(
3810                   S.Context.getTypeDeclType(Record))),
3811      Invalid(false) {}
3812
3813  void DiagnoseAbstractType() {
3814    if (Invalid) return;
3815    S.DiagnoseAbstractType(Record);
3816    Invalid = true;
3817  }
3818
3819  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3820};
3821
3822struct CheckAbstractUsage {
3823  AbstractUsageInfo &Info;
3824  const NamedDecl *Ctx;
3825
3826  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3827    : Info(Info), Ctx(Ctx) {}
3828
3829  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3830    switch (TL.getTypeLocClass()) {
3831#define ABSTRACT_TYPELOC(CLASS, PARENT)
3832#define TYPELOC(CLASS, PARENT) \
3833    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
3834#include "clang/AST/TypeLocNodes.def"
3835    }
3836  }
3837
3838  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3839    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3840    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3841      if (!TL.getArg(I))
3842        continue;
3843
3844      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3845      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3846    }
3847  }
3848
3849  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3850    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3851  }
3852
3853  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3854    // Visit the type parameters from a permissive context.
3855    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3856      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3857      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3858        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3859          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3860      // TODO: other template argument types?
3861    }
3862  }
3863
3864  // Visit pointee types from a permissive context.
3865#define CheckPolymorphic(Type) \
3866  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3867    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3868  }
3869  CheckPolymorphic(PointerTypeLoc)
3870  CheckPolymorphic(ReferenceTypeLoc)
3871  CheckPolymorphic(MemberPointerTypeLoc)
3872  CheckPolymorphic(BlockPointerTypeLoc)
3873  CheckPolymorphic(AtomicTypeLoc)
3874
3875  /// Handle all the types we haven't given a more specific
3876  /// implementation for above.
3877  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3878    // Every other kind of type that we haven't called out already
3879    // that has an inner type is either (1) sugar or (2) contains that
3880    // inner type in some way as a subobject.
3881    if (TypeLoc Next = TL.getNextTypeLoc())
3882      return Visit(Next, Sel);
3883
3884    // If there's no inner type and we're in a permissive context,
3885    // don't diagnose.
3886    if (Sel == Sema::AbstractNone) return;
3887
3888    // Check whether the type matches the abstract type.
3889    QualType T = TL.getType();
3890    if (T->isArrayType()) {
3891      Sel = Sema::AbstractArrayType;
3892      T = Info.S.Context.getBaseElementType(T);
3893    }
3894    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3895    if (CT != Info.AbstractType) return;
3896
3897    // It matched; do some magic.
3898    if (Sel == Sema::AbstractArrayType) {
3899      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3900        << T << TL.getSourceRange();
3901    } else {
3902      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3903        << Sel << T << TL.getSourceRange();
3904    }
3905    Info.DiagnoseAbstractType();
3906  }
3907};
3908
3909void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3910                                  Sema::AbstractDiagSelID Sel) {
3911  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3912}
3913
3914}
3915
3916/// Check for invalid uses of an abstract type in a method declaration.
3917static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3918                                    CXXMethodDecl *MD) {
3919  // No need to do the check on definitions, which require that
3920  // the return/param types be complete.
3921  if (MD->doesThisDeclarationHaveABody())
3922    return;
3923
3924  // For safety's sake, just ignore it if we don't have type source
3925  // information.  This should never happen for non-implicit methods,
3926  // but...
3927  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3928    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3929}
3930
3931/// Check for invalid uses of an abstract type within a class definition.
3932static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3933                                    CXXRecordDecl *RD) {
3934  for (CXXRecordDecl::decl_iterator
3935         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3936    Decl *D = *I;
3937    if (D->isImplicit()) continue;
3938
3939    // Methods and method templates.
3940    if (isa<CXXMethodDecl>(D)) {
3941      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3942    } else if (isa<FunctionTemplateDecl>(D)) {
3943      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3944      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3945
3946    // Fields and static variables.
3947    } else if (isa<FieldDecl>(D)) {
3948      FieldDecl *FD = cast<FieldDecl>(D);
3949      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3950        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3951    } else if (isa<VarDecl>(D)) {
3952      VarDecl *VD = cast<VarDecl>(D);
3953      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3954        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3955
3956    // Nested classes and class templates.
3957    } else if (isa<CXXRecordDecl>(D)) {
3958      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3959    } else if (isa<ClassTemplateDecl>(D)) {
3960      CheckAbstractClassUsage(Info,
3961                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3962    }
3963  }
3964}
3965
3966/// \brief Perform semantic checks on a class definition that has been
3967/// completing, introducing implicitly-declared members, checking for
3968/// abstract types, etc.
3969void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3970  if (!Record)
3971    return;
3972
3973  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3974    AbstractUsageInfo Info(*this, Record);
3975    CheckAbstractClassUsage(Info, Record);
3976  }
3977
3978  // If this is not an aggregate type and has no user-declared constructor,
3979  // complain about any non-static data members of reference or const scalar
3980  // type, since they will never get initializers.
3981  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3982      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3983      !Record->isLambda()) {
3984    bool Complained = false;
3985    for (RecordDecl::field_iterator F = Record->field_begin(),
3986                                 FEnd = Record->field_end();
3987         F != FEnd; ++F) {
3988      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3989        continue;
3990
3991      if (F->getType()->isReferenceType() ||
3992          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3993        if (!Complained) {
3994          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3995            << Record->getTagKind() << Record;
3996          Complained = true;
3997        }
3998
3999        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4000          << F->getType()->isReferenceType()
4001          << F->getDeclName();
4002      }
4003    }
4004  }
4005
4006  if (Record->isDynamicClass() && !Record->isDependentType())
4007    DynamicClasses.push_back(Record);
4008
4009  if (Record->getIdentifier()) {
4010    // C++ [class.mem]p13:
4011    //   If T is the name of a class, then each of the following shall have a
4012    //   name different from T:
4013    //     - every member of every anonymous union that is a member of class T.
4014    //
4015    // C++ [class.mem]p14:
4016    //   In addition, if class T has a user-declared constructor (12.1), every
4017    //   non-static data member of class T shall have a name different from T.
4018    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4019    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4020         ++I) {
4021      NamedDecl *D = *I;
4022      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4023          isa<IndirectFieldDecl>(D)) {
4024        Diag(D->getLocation(), diag::err_member_name_of_class)
4025          << D->getDeclName();
4026        break;
4027      }
4028    }
4029  }
4030
4031  // Warn if the class has virtual methods but non-virtual public destructor.
4032  if (Record->isPolymorphic() && !Record->isDependentType()) {
4033    CXXDestructorDecl *dtor = Record->getDestructor();
4034    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4035      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4036           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4037  }
4038
4039  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
4040    Diag(Record->getLocation(), diag::warn_abstract_final_class);
4041    DiagnoseAbstractType(Record);
4042  }
4043
4044  if (!Record->isDependentType()) {
4045    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4046                                     MEnd = Record->method_end();
4047         M != MEnd; ++M) {
4048      // See if a method overloads virtual methods in a base
4049      // class without overriding any.
4050      if (!M->isStatic())
4051        DiagnoseHiddenVirtualMethods(Record, *M);
4052
4053      // Check whether the explicitly-defaulted special members are valid.
4054      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4055        CheckExplicitlyDefaultedSpecialMember(*M);
4056
4057      // For an explicitly defaulted or deleted special member, we defer
4058      // determining triviality until the class is complete. That time is now!
4059      if (!M->isImplicit() && !M->isUserProvided()) {
4060        CXXSpecialMember CSM = getSpecialMember(*M);
4061        if (CSM != CXXInvalid) {
4062          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4063
4064          // Inform the class that we've finished declaring this member.
4065          Record->finishedDefaultedOrDeletedMember(*M);
4066        }
4067      }
4068    }
4069  }
4070
4071  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4072  // function that is not a constructor declares that member function to be
4073  // const. [...] The class of which that function is a member shall be
4074  // a literal type.
4075  //
4076  // If the class has virtual bases, any constexpr members will already have
4077  // been diagnosed by the checks performed on the member declaration, so
4078  // suppress this (less useful) diagnostic.
4079  //
4080  // We delay this until we know whether an explicitly-defaulted (or deleted)
4081  // destructor for the class is trivial.
4082  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4083      !Record->isLiteral() && !Record->getNumVBases()) {
4084    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4085                                     MEnd = Record->method_end();
4086         M != MEnd; ++M) {
4087      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4088        switch (Record->getTemplateSpecializationKind()) {
4089        case TSK_ImplicitInstantiation:
4090        case TSK_ExplicitInstantiationDeclaration:
4091        case TSK_ExplicitInstantiationDefinition:
4092          // If a template instantiates to a non-literal type, but its members
4093          // instantiate to constexpr functions, the template is technically
4094          // ill-formed, but we allow it for sanity.
4095          continue;
4096
4097        case TSK_Undeclared:
4098        case TSK_ExplicitSpecialization:
4099          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4100                             diag::err_constexpr_method_non_literal);
4101          break;
4102        }
4103
4104        // Only produce one error per class.
4105        break;
4106      }
4107    }
4108  }
4109
4110  // Declare inheriting constructors. We do this eagerly here because:
4111  // - The standard requires an eager diagnostic for conflicting inheriting
4112  //   constructors from different classes.
4113  // - The lazy declaration of the other implicit constructors is so as to not
4114  //   waste space and performance on classes that are not meant to be
4115  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4116  //   have inheriting constructors.
4117  DeclareInheritingConstructors(Record);
4118}
4119
4120/// Is the special member function which would be selected to perform the
4121/// specified operation on the specified class type a constexpr constructor?
4122static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4123                                     Sema::CXXSpecialMember CSM,
4124                                     bool ConstArg) {
4125  Sema::SpecialMemberOverloadResult *SMOR =
4126      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4127                            false, false, false, false);
4128  if (!SMOR || !SMOR->getMethod())
4129    // A constructor we wouldn't select can't be "involved in initializing"
4130    // anything.
4131    return true;
4132  return SMOR->getMethod()->isConstexpr();
4133}
4134
4135/// Determine whether the specified special member function would be constexpr
4136/// if it were implicitly defined.
4137static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4138                                              Sema::CXXSpecialMember CSM,
4139                                              bool ConstArg) {
4140  if (!S.getLangOpts().CPlusPlus11)
4141    return false;
4142
4143  // C++11 [dcl.constexpr]p4:
4144  // In the definition of a constexpr constructor [...]
4145  switch (CSM) {
4146  case Sema::CXXDefaultConstructor:
4147    // Since default constructor lookup is essentially trivial (and cannot
4148    // involve, for instance, template instantiation), we compute whether a
4149    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4150    //
4151    // This is important for performance; we need to know whether the default
4152    // constructor is constexpr to determine whether the type is a literal type.
4153    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4154
4155  case Sema::CXXCopyConstructor:
4156  case Sema::CXXMoveConstructor:
4157    // For copy or move constructors, we need to perform overload resolution.
4158    break;
4159
4160  case Sema::CXXCopyAssignment:
4161  case Sema::CXXMoveAssignment:
4162  case Sema::CXXDestructor:
4163  case Sema::CXXInvalid:
4164    return false;
4165  }
4166
4167  //   -- if the class is a non-empty union, or for each non-empty anonymous
4168  //      union member of a non-union class, exactly one non-static data member
4169  //      shall be initialized; [DR1359]
4170  //
4171  // If we squint, this is guaranteed, since exactly one non-static data member
4172  // will be initialized (if the constructor isn't deleted), we just don't know
4173  // which one.
4174  if (ClassDecl->isUnion())
4175    return true;
4176
4177  //   -- the class shall not have any virtual base classes;
4178  if (ClassDecl->getNumVBases())
4179    return false;
4180
4181  //   -- every constructor involved in initializing [...] base class
4182  //      sub-objects shall be a constexpr constructor;
4183  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4184                                       BEnd = ClassDecl->bases_end();
4185       B != BEnd; ++B) {
4186    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4187    if (!BaseType) continue;
4188
4189    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4190    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4191      return false;
4192  }
4193
4194  //   -- every constructor involved in initializing non-static data members
4195  //      [...] shall be a constexpr constructor;
4196  //   -- every non-static data member and base class sub-object shall be
4197  //      initialized
4198  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4199                               FEnd = ClassDecl->field_end();
4200       F != FEnd; ++F) {
4201    if (F->isInvalidDecl())
4202      continue;
4203    if (const RecordType *RecordTy =
4204            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4205      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4206      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4207        return false;
4208    }
4209  }
4210
4211  // All OK, it's constexpr!
4212  return true;
4213}
4214
4215static Sema::ImplicitExceptionSpecification
4216computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4217  switch (S.getSpecialMember(MD)) {
4218  case Sema::CXXDefaultConstructor:
4219    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4220  case Sema::CXXCopyConstructor:
4221    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4222  case Sema::CXXCopyAssignment:
4223    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4224  case Sema::CXXMoveConstructor:
4225    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4226  case Sema::CXXMoveAssignment:
4227    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4228  case Sema::CXXDestructor:
4229    return S.ComputeDefaultedDtorExceptionSpec(MD);
4230  case Sema::CXXInvalid:
4231    break;
4232  }
4233  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4234         "only special members have implicit exception specs");
4235  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4236}
4237
4238static void
4239updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4240                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4241  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4242  ExceptSpec.getEPI(EPI);
4243  FD->setType(S.Context.getFunctionType(FPT->getResultType(),
4244                                        FPT->getArgTypes(), EPI));
4245}
4246
4247void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4248  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4249  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4250    return;
4251
4252  // Evaluate the exception specification.
4253  ImplicitExceptionSpecification ExceptSpec =
4254      computeImplicitExceptionSpec(*this, Loc, MD);
4255
4256  // Update the type of the special member to use it.
4257  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4258
4259  // A user-provided destructor can be defined outside the class. When that
4260  // happens, be sure to update the exception specification on both
4261  // declarations.
4262  const FunctionProtoType *CanonicalFPT =
4263    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4264  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4265    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4266                        CanonicalFPT, ExceptSpec);
4267}
4268
4269void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4270  CXXRecordDecl *RD = MD->getParent();
4271  CXXSpecialMember CSM = getSpecialMember(MD);
4272
4273  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4274         "not an explicitly-defaulted special member");
4275
4276  // Whether this was the first-declared instance of the constructor.
4277  // This affects whether we implicitly add an exception spec and constexpr.
4278  bool First = MD == MD->getCanonicalDecl();
4279
4280  bool HadError = false;
4281
4282  // C++11 [dcl.fct.def.default]p1:
4283  //   A function that is explicitly defaulted shall
4284  //     -- be a special member function (checked elsewhere),
4285  //     -- have the same type (except for ref-qualifiers, and except that a
4286  //        copy operation can take a non-const reference) as an implicit
4287  //        declaration, and
4288  //     -- not have default arguments.
4289  unsigned ExpectedParams = 1;
4290  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4291    ExpectedParams = 0;
4292  if (MD->getNumParams() != ExpectedParams) {
4293    // This also checks for default arguments: a copy or move constructor with a
4294    // default argument is classified as a default constructor, and assignment
4295    // operations and destructors can't have default arguments.
4296    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4297      << CSM << MD->getSourceRange();
4298    HadError = true;
4299  } else if (MD->isVariadic()) {
4300    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4301      << CSM << MD->getSourceRange();
4302    HadError = true;
4303  }
4304
4305  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4306
4307  bool CanHaveConstParam = false;
4308  if (CSM == CXXCopyConstructor)
4309    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4310  else if (CSM == CXXCopyAssignment)
4311    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4312
4313  QualType ReturnType = Context.VoidTy;
4314  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4315    // Check for return type matching.
4316    ReturnType = Type->getResultType();
4317    QualType ExpectedReturnType =
4318        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4319    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4320      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4321        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4322      HadError = true;
4323    }
4324
4325    // A defaulted special member cannot have cv-qualifiers.
4326    if (Type->getTypeQuals()) {
4327      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4328        << (CSM == CXXMoveAssignment);
4329      HadError = true;
4330    }
4331  }
4332
4333  // Check for parameter type matching.
4334  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4335  bool HasConstParam = false;
4336  if (ExpectedParams && ArgType->isReferenceType()) {
4337    // Argument must be reference to possibly-const T.
4338    QualType ReferentType = ArgType->getPointeeType();
4339    HasConstParam = ReferentType.isConstQualified();
4340
4341    if (ReferentType.isVolatileQualified()) {
4342      Diag(MD->getLocation(),
4343           diag::err_defaulted_special_member_volatile_param) << CSM;
4344      HadError = true;
4345    }
4346
4347    if (HasConstParam && !CanHaveConstParam) {
4348      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4349        Diag(MD->getLocation(),
4350             diag::err_defaulted_special_member_copy_const_param)
4351          << (CSM == CXXCopyAssignment);
4352        // FIXME: Explain why this special member can't be const.
4353      } else {
4354        Diag(MD->getLocation(),
4355             diag::err_defaulted_special_member_move_const_param)
4356          << (CSM == CXXMoveAssignment);
4357      }
4358      HadError = true;
4359    }
4360  } else if (ExpectedParams) {
4361    // A copy assignment operator can take its argument by value, but a
4362    // defaulted one cannot.
4363    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4364    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4365    HadError = true;
4366  }
4367
4368  // C++11 [dcl.fct.def.default]p2:
4369  //   An explicitly-defaulted function may be declared constexpr only if it
4370  //   would have been implicitly declared as constexpr,
4371  // Do not apply this rule to members of class templates, since core issue 1358
4372  // makes such functions always instantiate to constexpr functions. For
4373  // non-constructors, this is checked elsewhere.
4374  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4375                                                     HasConstParam);
4376  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4377      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4378    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4379    // FIXME: Explain why the constructor can't be constexpr.
4380    HadError = true;
4381  }
4382
4383  //   and may have an explicit exception-specification only if it is compatible
4384  //   with the exception-specification on the implicit declaration.
4385  if (Type->hasExceptionSpec()) {
4386    // Delay the check if this is the first declaration of the special member,
4387    // since we may not have parsed some necessary in-class initializers yet.
4388    if (First) {
4389      // If the exception specification needs to be instantiated, do so now,
4390      // before we clobber it with an EST_Unevaluated specification below.
4391      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4392        InstantiateExceptionSpec(MD->getLocStart(), MD);
4393        Type = MD->getType()->getAs<FunctionProtoType>();
4394      }
4395      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4396    } else
4397      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4398  }
4399
4400  //   If a function is explicitly defaulted on its first declaration,
4401  if (First) {
4402    //  -- it is implicitly considered to be constexpr if the implicit
4403    //     definition would be,
4404    MD->setConstexpr(Constexpr);
4405
4406    //  -- it is implicitly considered to have the same exception-specification
4407    //     as if it had been implicitly declared,
4408    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4409    EPI.ExceptionSpecType = EST_Unevaluated;
4410    EPI.ExceptionSpecDecl = MD;
4411    MD->setType(Context.getFunctionType(ReturnType,
4412                                        ArrayRef<QualType>(&ArgType,
4413                                                           ExpectedParams),
4414                                        EPI));
4415  }
4416
4417  if (ShouldDeleteSpecialMember(MD, CSM)) {
4418    if (First) {
4419      SetDeclDeleted(MD, MD->getLocation());
4420    } else {
4421      // C++11 [dcl.fct.def.default]p4:
4422      //   [For a] user-provided explicitly-defaulted function [...] if such a
4423      //   function is implicitly defined as deleted, the program is ill-formed.
4424      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4425      HadError = true;
4426    }
4427  }
4428
4429  if (HadError)
4430    MD->setInvalidDecl();
4431}
4432
4433/// Check whether the exception specification provided for an
4434/// explicitly-defaulted special member matches the exception specification
4435/// that would have been generated for an implicit special member, per
4436/// C++11 [dcl.fct.def.default]p2.
4437void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4438    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4439  // Compute the implicit exception specification.
4440  FunctionProtoType::ExtProtoInfo EPI;
4441  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4442  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4443    Context.getFunctionType(Context.VoidTy, ArrayRef<QualType>(), EPI));
4444
4445  // Ensure that it matches.
4446  CheckEquivalentExceptionSpec(
4447    PDiag(diag::err_incorrect_defaulted_exception_spec)
4448      << getSpecialMember(MD), PDiag(),
4449    ImplicitType, SourceLocation(),
4450    SpecifiedType, MD->getLocation());
4451}
4452
4453void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
4454  for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
4455       I != N; ++I)
4456    CheckExplicitlyDefaultedMemberExceptionSpec(
4457      DelayedDefaultedMemberExceptionSpecs[I].first,
4458      DelayedDefaultedMemberExceptionSpecs[I].second);
4459
4460  DelayedDefaultedMemberExceptionSpecs.clear();
4461}
4462
4463namespace {
4464struct SpecialMemberDeletionInfo {
4465  Sema &S;
4466  CXXMethodDecl *MD;
4467  Sema::CXXSpecialMember CSM;
4468  bool Diagnose;
4469
4470  // Properties of the special member, computed for convenience.
4471  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4472  SourceLocation Loc;
4473
4474  bool AllFieldsAreConst;
4475
4476  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4477                            Sema::CXXSpecialMember CSM, bool Diagnose)
4478    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4479      IsConstructor(false), IsAssignment(false), IsMove(false),
4480      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4481      AllFieldsAreConst(true) {
4482    switch (CSM) {
4483      case Sema::CXXDefaultConstructor:
4484      case Sema::CXXCopyConstructor:
4485        IsConstructor = true;
4486        break;
4487      case Sema::CXXMoveConstructor:
4488        IsConstructor = true;
4489        IsMove = true;
4490        break;
4491      case Sema::CXXCopyAssignment:
4492        IsAssignment = true;
4493        break;
4494      case Sema::CXXMoveAssignment:
4495        IsAssignment = true;
4496        IsMove = true;
4497        break;
4498      case Sema::CXXDestructor:
4499        break;
4500      case Sema::CXXInvalid:
4501        llvm_unreachable("invalid special member kind");
4502    }
4503
4504    if (MD->getNumParams()) {
4505      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4506      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4507    }
4508  }
4509
4510  bool inUnion() const { return MD->getParent()->isUnion(); }
4511
4512  /// Look up the corresponding special member in the given class.
4513  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4514                                              unsigned Quals) {
4515    unsigned TQ = MD->getTypeQualifiers();
4516    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4517    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4518      Quals = 0;
4519    return S.LookupSpecialMember(Class, CSM,
4520                                 ConstArg || (Quals & Qualifiers::Const),
4521                                 VolatileArg || (Quals & Qualifiers::Volatile),
4522                                 MD->getRefQualifier() == RQ_RValue,
4523                                 TQ & Qualifiers::Const,
4524                                 TQ & Qualifiers::Volatile);
4525  }
4526
4527  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4528
4529  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4530  bool shouldDeleteForField(FieldDecl *FD);
4531  bool shouldDeleteForAllConstMembers();
4532
4533  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4534                                     unsigned Quals);
4535  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4536                                    Sema::SpecialMemberOverloadResult *SMOR,
4537                                    bool IsDtorCallInCtor);
4538
4539  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4540};
4541}
4542
4543/// Is the given special member inaccessible when used on the given
4544/// sub-object.
4545bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4546                                             CXXMethodDecl *target) {
4547  /// If we're operating on a base class, the object type is the
4548  /// type of this special member.
4549  QualType objectTy;
4550  AccessSpecifier access = target->getAccess();
4551  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4552    objectTy = S.Context.getTypeDeclType(MD->getParent());
4553    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4554
4555  // If we're operating on a field, the object type is the type of the field.
4556  } else {
4557    objectTy = S.Context.getTypeDeclType(target->getParent());
4558  }
4559
4560  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4561}
4562
4563/// Check whether we should delete a special member due to the implicit
4564/// definition containing a call to a special member of a subobject.
4565bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4566    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4567    bool IsDtorCallInCtor) {
4568  CXXMethodDecl *Decl = SMOR->getMethod();
4569  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4570
4571  int DiagKind = -1;
4572
4573  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4574    DiagKind = !Decl ? 0 : 1;
4575  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4576    DiagKind = 2;
4577  else if (!isAccessible(Subobj, Decl))
4578    DiagKind = 3;
4579  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4580           !Decl->isTrivial()) {
4581    // A member of a union must have a trivial corresponding special member.
4582    // As a weird special case, a destructor call from a union's constructor
4583    // must be accessible and non-deleted, but need not be trivial. Such a
4584    // destructor is never actually called, but is semantically checked as
4585    // if it were.
4586    DiagKind = 4;
4587  }
4588
4589  if (DiagKind == -1)
4590    return false;
4591
4592  if (Diagnose) {
4593    if (Field) {
4594      S.Diag(Field->getLocation(),
4595             diag::note_deleted_special_member_class_subobject)
4596        << CSM << MD->getParent() << /*IsField*/true
4597        << Field << DiagKind << IsDtorCallInCtor;
4598    } else {
4599      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4600      S.Diag(Base->getLocStart(),
4601             diag::note_deleted_special_member_class_subobject)
4602        << CSM << MD->getParent() << /*IsField*/false
4603        << Base->getType() << DiagKind << IsDtorCallInCtor;
4604    }
4605
4606    if (DiagKind == 1)
4607      S.NoteDeletedFunction(Decl);
4608    // FIXME: Explain inaccessibility if DiagKind == 3.
4609  }
4610
4611  return true;
4612}
4613
4614/// Check whether we should delete a special member function due to having a
4615/// direct or virtual base class or non-static data member of class type M.
4616bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4617    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4618  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4619
4620  // C++11 [class.ctor]p5:
4621  // -- any direct or virtual base class, or non-static data member with no
4622  //    brace-or-equal-initializer, has class type M (or array thereof) and
4623  //    either M has no default constructor or overload resolution as applied
4624  //    to M's default constructor results in an ambiguity or in a function
4625  //    that is deleted or inaccessible
4626  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4627  // -- a direct or virtual base class B that cannot be copied/moved because
4628  //    overload resolution, as applied to B's corresponding special member,
4629  //    results in an ambiguity or a function that is deleted or inaccessible
4630  //    from the defaulted special member
4631  // C++11 [class.dtor]p5:
4632  // -- any direct or virtual base class [...] has a type with a destructor
4633  //    that is deleted or inaccessible
4634  if (!(CSM == Sema::CXXDefaultConstructor &&
4635        Field && Field->hasInClassInitializer()) &&
4636      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4637    return true;
4638
4639  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4640  // -- any direct or virtual base class or non-static data member has a
4641  //    type with a destructor that is deleted or inaccessible
4642  if (IsConstructor) {
4643    Sema::SpecialMemberOverloadResult *SMOR =
4644        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4645                              false, false, false, false, false);
4646    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4647      return true;
4648  }
4649
4650  return false;
4651}
4652
4653/// Check whether we should delete a special member function due to the class
4654/// having a particular direct or virtual base class.
4655bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4656  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4657  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4658}
4659
4660/// Check whether we should delete a special member function due to the class
4661/// having a particular non-static data member.
4662bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4663  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4664  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4665
4666  if (CSM == Sema::CXXDefaultConstructor) {
4667    // For a default constructor, all references must be initialized in-class
4668    // and, if a union, it must have a non-const member.
4669    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4670      if (Diagnose)
4671        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4672          << MD->getParent() << FD << FieldType << /*Reference*/0;
4673      return true;
4674    }
4675    // C++11 [class.ctor]p5: any non-variant non-static data member of
4676    // const-qualified type (or array thereof) with no
4677    // brace-or-equal-initializer does not have a user-provided default
4678    // constructor.
4679    if (!inUnion() && FieldType.isConstQualified() &&
4680        !FD->hasInClassInitializer() &&
4681        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4682      if (Diagnose)
4683        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4684          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4685      return true;
4686    }
4687
4688    if (inUnion() && !FieldType.isConstQualified())
4689      AllFieldsAreConst = false;
4690  } else if (CSM == Sema::CXXCopyConstructor) {
4691    // For a copy constructor, data members must not be of rvalue reference
4692    // type.
4693    if (FieldType->isRValueReferenceType()) {
4694      if (Diagnose)
4695        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4696          << MD->getParent() << FD << FieldType;
4697      return true;
4698    }
4699  } else if (IsAssignment) {
4700    // For an assignment operator, data members must not be of reference type.
4701    if (FieldType->isReferenceType()) {
4702      if (Diagnose)
4703        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4704          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4705      return true;
4706    }
4707    if (!FieldRecord && FieldType.isConstQualified()) {
4708      // C++11 [class.copy]p23:
4709      // -- a non-static data member of const non-class type (or array thereof)
4710      if (Diagnose)
4711        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4712          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4713      return true;
4714    }
4715  }
4716
4717  if (FieldRecord) {
4718    // Some additional restrictions exist on the variant members.
4719    if (!inUnion() && FieldRecord->isUnion() &&
4720        FieldRecord->isAnonymousStructOrUnion()) {
4721      bool AllVariantFieldsAreConst = true;
4722
4723      // FIXME: Handle anonymous unions declared within anonymous unions.
4724      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4725                                         UE = FieldRecord->field_end();
4726           UI != UE; ++UI) {
4727        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4728
4729        if (!UnionFieldType.isConstQualified())
4730          AllVariantFieldsAreConst = false;
4731
4732        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4733        if (UnionFieldRecord &&
4734            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4735                                          UnionFieldType.getCVRQualifiers()))
4736          return true;
4737      }
4738
4739      // At least one member in each anonymous union must be non-const
4740      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4741          FieldRecord->field_begin() != FieldRecord->field_end()) {
4742        if (Diagnose)
4743          S.Diag(FieldRecord->getLocation(),
4744                 diag::note_deleted_default_ctor_all_const)
4745            << MD->getParent() << /*anonymous union*/1;
4746        return true;
4747      }
4748
4749      // Don't check the implicit member of the anonymous union type.
4750      // This is technically non-conformant, but sanity demands it.
4751      return false;
4752    }
4753
4754    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4755                                      FieldType.getCVRQualifiers()))
4756      return true;
4757  }
4758
4759  return false;
4760}
4761
4762/// C++11 [class.ctor] p5:
4763///   A defaulted default constructor for a class X is defined as deleted if
4764/// X is a union and all of its variant members are of const-qualified type.
4765bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4766  // This is a silly definition, because it gives an empty union a deleted
4767  // default constructor. Don't do that.
4768  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4769      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4770    if (Diagnose)
4771      S.Diag(MD->getParent()->getLocation(),
4772             diag::note_deleted_default_ctor_all_const)
4773        << MD->getParent() << /*not anonymous union*/0;
4774    return true;
4775  }
4776  return false;
4777}
4778
4779/// Determine whether a defaulted special member function should be defined as
4780/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4781/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4782bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4783                                     bool Diagnose) {
4784  if (MD->isInvalidDecl())
4785    return false;
4786  CXXRecordDecl *RD = MD->getParent();
4787  assert(!RD->isDependentType() && "do deletion after instantiation");
4788  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
4789    return false;
4790
4791  // C++11 [expr.lambda.prim]p19:
4792  //   The closure type associated with a lambda-expression has a
4793  //   deleted (8.4.3) default constructor and a deleted copy
4794  //   assignment operator.
4795  if (RD->isLambda() &&
4796      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4797    if (Diagnose)
4798      Diag(RD->getLocation(), diag::note_lambda_decl);
4799    return true;
4800  }
4801
4802  // For an anonymous struct or union, the copy and assignment special members
4803  // will never be used, so skip the check. For an anonymous union declared at
4804  // namespace scope, the constructor and destructor are used.
4805  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4806      RD->isAnonymousStructOrUnion())
4807    return false;
4808
4809  // C++11 [class.copy]p7, p18:
4810  //   If the class definition declares a move constructor or move assignment
4811  //   operator, an implicitly declared copy constructor or copy assignment
4812  //   operator is defined as deleted.
4813  if (MD->isImplicit() &&
4814      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4815    CXXMethodDecl *UserDeclaredMove = 0;
4816
4817    // In Microsoft mode, a user-declared move only causes the deletion of the
4818    // corresponding copy operation, not both copy operations.
4819    if (RD->hasUserDeclaredMoveConstructor() &&
4820        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4821      if (!Diagnose) return true;
4822
4823      // Find any user-declared move constructor.
4824      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
4825                                        E = RD->ctor_end(); I != E; ++I) {
4826        if (I->isMoveConstructor()) {
4827          UserDeclaredMove = *I;
4828          break;
4829        }
4830      }
4831      assert(UserDeclaredMove);
4832    } else if (RD->hasUserDeclaredMoveAssignment() &&
4833               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4834      if (!Diagnose) return true;
4835
4836      // Find any user-declared move assignment operator.
4837      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
4838                                          E = RD->method_end(); I != E; ++I) {
4839        if (I->isMoveAssignmentOperator()) {
4840          UserDeclaredMove = *I;
4841          break;
4842        }
4843      }
4844      assert(UserDeclaredMove);
4845    }
4846
4847    if (UserDeclaredMove) {
4848      Diag(UserDeclaredMove->getLocation(),
4849           diag::note_deleted_copy_user_declared_move)
4850        << (CSM == CXXCopyAssignment) << RD
4851        << UserDeclaredMove->isMoveAssignmentOperator();
4852      return true;
4853    }
4854  }
4855
4856  // Do access control from the special member function
4857  ContextRAII MethodContext(*this, MD);
4858
4859  // C++11 [class.dtor]p5:
4860  // -- for a virtual destructor, lookup of the non-array deallocation function
4861  //    results in an ambiguity or in a function that is deleted or inaccessible
4862  if (CSM == CXXDestructor && MD->isVirtual()) {
4863    FunctionDecl *OperatorDelete = 0;
4864    DeclarationName Name =
4865      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4866    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4867                                 OperatorDelete, false)) {
4868      if (Diagnose)
4869        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4870      return true;
4871    }
4872  }
4873
4874  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4875
4876  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4877                                          BE = RD->bases_end(); BI != BE; ++BI)
4878    if (!BI->isVirtual() &&
4879        SMI.shouldDeleteForBase(BI))
4880      return true;
4881
4882  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4883                                          BE = RD->vbases_end(); BI != BE; ++BI)
4884    if (SMI.shouldDeleteForBase(BI))
4885      return true;
4886
4887  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4888                                     FE = RD->field_end(); FI != FE; ++FI)
4889    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4890        SMI.shouldDeleteForField(*FI))
4891      return true;
4892
4893  if (SMI.shouldDeleteForAllConstMembers())
4894    return true;
4895
4896  return false;
4897}
4898
4899/// Perform lookup for a special member of the specified kind, and determine
4900/// whether it is trivial. If the triviality can be determined without the
4901/// lookup, skip it. This is intended for use when determining whether a
4902/// special member of a containing object is trivial, and thus does not ever
4903/// perform overload resolution for default constructors.
4904///
4905/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
4906/// member that was most likely to be intended to be trivial, if any.
4907static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
4908                                     Sema::CXXSpecialMember CSM, unsigned Quals,
4909                                     CXXMethodDecl **Selected) {
4910  if (Selected)
4911    *Selected = 0;
4912
4913  switch (CSM) {
4914  case Sema::CXXInvalid:
4915    llvm_unreachable("not a special member");
4916
4917  case Sema::CXXDefaultConstructor:
4918    // C++11 [class.ctor]p5:
4919    //   A default constructor is trivial if:
4920    //    - all the [direct subobjects] have trivial default constructors
4921    //
4922    // Note, no overload resolution is performed in this case.
4923    if (RD->hasTrivialDefaultConstructor())
4924      return true;
4925
4926    if (Selected) {
4927      // If there's a default constructor which could have been trivial, dig it
4928      // out. Otherwise, if there's any user-provided default constructor, point
4929      // to that as an example of why there's not a trivial one.
4930      CXXConstructorDecl *DefCtor = 0;
4931      if (RD->needsImplicitDefaultConstructor())
4932        S.DeclareImplicitDefaultConstructor(RD);
4933      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
4934                                        CE = RD->ctor_end(); CI != CE; ++CI) {
4935        if (!CI->isDefaultConstructor())
4936          continue;
4937        DefCtor = *CI;
4938        if (!DefCtor->isUserProvided())
4939          break;
4940      }
4941
4942      *Selected = DefCtor;
4943    }
4944
4945    return false;
4946
4947  case Sema::CXXDestructor:
4948    // C++11 [class.dtor]p5:
4949    //   A destructor is trivial if:
4950    //    - all the direct [subobjects] have trivial destructors
4951    if (RD->hasTrivialDestructor())
4952      return true;
4953
4954    if (Selected) {
4955      if (RD->needsImplicitDestructor())
4956        S.DeclareImplicitDestructor(RD);
4957      *Selected = RD->getDestructor();
4958    }
4959
4960    return false;
4961
4962  case Sema::CXXCopyConstructor:
4963    // C++11 [class.copy]p12:
4964    //   A copy constructor is trivial if:
4965    //    - the constructor selected to copy each direct [subobject] is trivial
4966    if (RD->hasTrivialCopyConstructor()) {
4967      if (Quals == Qualifiers::Const)
4968        // We must either select the trivial copy constructor or reach an
4969        // ambiguity; no need to actually perform overload resolution.
4970        return true;
4971    } else if (!Selected) {
4972      return false;
4973    }
4974    // In C++98, we are not supposed to perform overload resolution here, but we
4975    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
4976    // cases like B as having a non-trivial copy constructor:
4977    //   struct A { template<typename T> A(T&); };
4978    //   struct B { mutable A a; };
4979    goto NeedOverloadResolution;
4980
4981  case Sema::CXXCopyAssignment:
4982    // C++11 [class.copy]p25:
4983    //   A copy assignment operator is trivial if:
4984    //    - the assignment operator selected to copy each direct [subobject] is
4985    //      trivial
4986    if (RD->hasTrivialCopyAssignment()) {
4987      if (Quals == Qualifiers::Const)
4988        return true;
4989    } else if (!Selected) {
4990      return false;
4991    }
4992    // In C++98, we are not supposed to perform overload resolution here, but we
4993    // treat that as a language defect.
4994    goto NeedOverloadResolution;
4995
4996  case Sema::CXXMoveConstructor:
4997  case Sema::CXXMoveAssignment:
4998  NeedOverloadResolution:
4999    Sema::SpecialMemberOverloadResult *SMOR =
5000      S.LookupSpecialMember(RD, CSM,
5001                            Quals & Qualifiers::Const,
5002                            Quals & Qualifiers::Volatile,
5003                            /*RValueThis*/false, /*ConstThis*/false,
5004                            /*VolatileThis*/false);
5005
5006    // The standard doesn't describe how to behave if the lookup is ambiguous.
5007    // We treat it as not making the member non-trivial, just like the standard
5008    // mandates for the default constructor. This should rarely matter, because
5009    // the member will also be deleted.
5010    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5011      return true;
5012
5013    if (!SMOR->getMethod()) {
5014      assert(SMOR->getKind() ==
5015             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5016      return false;
5017    }
5018
5019    // We deliberately don't check if we found a deleted special member. We're
5020    // not supposed to!
5021    if (Selected)
5022      *Selected = SMOR->getMethod();
5023    return SMOR->getMethod()->isTrivial();
5024  }
5025
5026  llvm_unreachable("unknown special method kind");
5027}
5028
5029static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5030  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5031       CI != CE; ++CI)
5032    if (!CI->isImplicit())
5033      return *CI;
5034
5035  // Look for constructor templates.
5036  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5037  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5038    if (CXXConstructorDecl *CD =
5039          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5040      return CD;
5041  }
5042
5043  return 0;
5044}
5045
5046/// The kind of subobject we are checking for triviality. The values of this
5047/// enumeration are used in diagnostics.
5048enum TrivialSubobjectKind {
5049  /// The subobject is a base class.
5050  TSK_BaseClass,
5051  /// The subobject is a non-static data member.
5052  TSK_Field,
5053  /// The object is actually the complete object.
5054  TSK_CompleteObject
5055};
5056
5057/// Check whether the special member selected for a given type would be trivial.
5058static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5059                                      QualType SubType,
5060                                      Sema::CXXSpecialMember CSM,
5061                                      TrivialSubobjectKind Kind,
5062                                      bool Diagnose) {
5063  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5064  if (!SubRD)
5065    return true;
5066
5067  CXXMethodDecl *Selected;
5068  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5069                               Diagnose ? &Selected : 0))
5070    return true;
5071
5072  if (Diagnose) {
5073    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5074      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5075        << Kind << SubType.getUnqualifiedType();
5076      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5077        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5078    } else if (!Selected)
5079      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5080        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5081    else if (Selected->isUserProvided()) {
5082      if (Kind == TSK_CompleteObject)
5083        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5084          << Kind << SubType.getUnqualifiedType() << CSM;
5085      else {
5086        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5087          << Kind << SubType.getUnqualifiedType() << CSM;
5088        S.Diag(Selected->getLocation(), diag::note_declared_at);
5089      }
5090    } else {
5091      if (Kind != TSK_CompleteObject)
5092        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5093          << Kind << SubType.getUnqualifiedType() << CSM;
5094
5095      // Explain why the defaulted or deleted special member isn't trivial.
5096      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5097    }
5098  }
5099
5100  return false;
5101}
5102
5103/// Check whether the members of a class type allow a special member to be
5104/// trivial.
5105static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5106                                     Sema::CXXSpecialMember CSM,
5107                                     bool ConstArg, bool Diagnose) {
5108  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5109                                     FE = RD->field_end(); FI != FE; ++FI) {
5110    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5111      continue;
5112
5113    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5114
5115    // Pretend anonymous struct or union members are members of this class.
5116    if (FI->isAnonymousStructOrUnion()) {
5117      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5118                                    CSM, ConstArg, Diagnose))
5119        return false;
5120      continue;
5121    }
5122
5123    // C++11 [class.ctor]p5:
5124    //   A default constructor is trivial if [...]
5125    //    -- no non-static data member of its class has a
5126    //       brace-or-equal-initializer
5127    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5128      if (Diagnose)
5129        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5130      return false;
5131    }
5132
5133    // Objective C ARC 4.3.5:
5134    //   [...] nontrivally ownership-qualified types are [...] not trivially
5135    //   default constructible, copy constructible, move constructible, copy
5136    //   assignable, move assignable, or destructible [...]
5137    if (S.getLangOpts().ObjCAutoRefCount &&
5138        FieldType.hasNonTrivialObjCLifetime()) {
5139      if (Diagnose)
5140        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5141          << RD << FieldType.getObjCLifetime();
5142      return false;
5143    }
5144
5145    if (ConstArg && !FI->isMutable())
5146      FieldType.addConst();
5147    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5148                                   TSK_Field, Diagnose))
5149      return false;
5150  }
5151
5152  return true;
5153}
5154
5155/// Diagnose why the specified class does not have a trivial special member of
5156/// the given kind.
5157void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5158  QualType Ty = Context.getRecordType(RD);
5159  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5160    Ty.addConst();
5161
5162  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5163                            TSK_CompleteObject, /*Diagnose*/true);
5164}
5165
5166/// Determine whether a defaulted or deleted special member function is trivial,
5167/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5168/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5169bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5170                                  bool Diagnose) {
5171  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5172
5173  CXXRecordDecl *RD = MD->getParent();
5174
5175  bool ConstArg = false;
5176
5177  // C++11 [class.copy]p12, p25:
5178  //   A [special member] is trivial if its declared parameter type is the same
5179  //   as if it had been implicitly declared [...]
5180  switch (CSM) {
5181  case CXXDefaultConstructor:
5182  case CXXDestructor:
5183    // Trivial default constructors and destructors cannot have parameters.
5184    break;
5185
5186  case CXXCopyConstructor:
5187  case CXXCopyAssignment: {
5188    // Trivial copy operations always have const, non-volatile parameter types.
5189    ConstArg = true;
5190    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5191    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5192    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5193      if (Diagnose)
5194        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5195          << Param0->getSourceRange() << Param0->getType()
5196          << Context.getLValueReferenceType(
5197               Context.getRecordType(RD).withConst());
5198      return false;
5199    }
5200    break;
5201  }
5202
5203  case CXXMoveConstructor:
5204  case CXXMoveAssignment: {
5205    // Trivial move operations always have non-cv-qualified parameters.
5206    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5207    const RValueReferenceType *RT =
5208      Param0->getType()->getAs<RValueReferenceType>();
5209    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5210      if (Diagnose)
5211        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5212          << Param0->getSourceRange() << Param0->getType()
5213          << Context.getRValueReferenceType(Context.getRecordType(RD));
5214      return false;
5215    }
5216    break;
5217  }
5218
5219  case CXXInvalid:
5220    llvm_unreachable("not a special member");
5221  }
5222
5223  // FIXME: We require that the parameter-declaration-clause is equivalent to
5224  // that of an implicit declaration, not just that the declared parameter type
5225  // matches, in order to prevent absuridities like a function simultaneously
5226  // being a trivial copy constructor and a non-trivial default constructor.
5227  // This issue has not yet been assigned a core issue number.
5228  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5229    if (Diagnose)
5230      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5231           diag::note_nontrivial_default_arg)
5232        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5233    return false;
5234  }
5235  if (MD->isVariadic()) {
5236    if (Diagnose)
5237      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5238    return false;
5239  }
5240
5241  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5242  //   A copy/move [constructor or assignment operator] is trivial if
5243  //    -- the [member] selected to copy/move each direct base class subobject
5244  //       is trivial
5245  //
5246  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5247  //   A [default constructor or destructor] is trivial if
5248  //    -- all the direct base classes have trivial [default constructors or
5249  //       destructors]
5250  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5251                                          BE = RD->bases_end(); BI != BE; ++BI)
5252    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5253                                   ConstArg ? BI->getType().withConst()
5254                                            : BI->getType(),
5255                                   CSM, TSK_BaseClass, Diagnose))
5256      return false;
5257
5258  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5259  //   A copy/move [constructor or assignment operator] for a class X is
5260  //   trivial if
5261  //    -- for each non-static data member of X that is of class type (or array
5262  //       thereof), the constructor selected to copy/move that member is
5263  //       trivial
5264  //
5265  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5266  //   A [default constructor or destructor] is trivial if
5267  //    -- for all of the non-static data members of its class that are of class
5268  //       type (or array thereof), each such class has a trivial [default
5269  //       constructor or destructor]
5270  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5271    return false;
5272
5273  // C++11 [class.dtor]p5:
5274  //   A destructor is trivial if [...]
5275  //    -- the destructor is not virtual
5276  if (CSM == CXXDestructor && MD->isVirtual()) {
5277    if (Diagnose)
5278      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5279    return false;
5280  }
5281
5282  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5283  //   A [special member] for class X is trivial if [...]
5284  //    -- class X has no virtual functions and no virtual base classes
5285  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5286    if (!Diagnose)
5287      return false;
5288
5289    if (RD->getNumVBases()) {
5290      // Check for virtual bases. We already know that the corresponding
5291      // member in all bases is trivial, so vbases must all be direct.
5292      CXXBaseSpecifier &BS = *RD->vbases_begin();
5293      assert(BS.isVirtual());
5294      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5295      return false;
5296    }
5297
5298    // Must have a virtual method.
5299    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5300                                        ME = RD->method_end(); MI != ME; ++MI) {
5301      if (MI->isVirtual()) {
5302        SourceLocation MLoc = MI->getLocStart();
5303        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5304        return false;
5305      }
5306    }
5307
5308    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5309  }
5310
5311  // Looks like it's trivial!
5312  return true;
5313}
5314
5315/// \brief Data used with FindHiddenVirtualMethod
5316namespace {
5317  struct FindHiddenVirtualMethodData {
5318    Sema *S;
5319    CXXMethodDecl *Method;
5320    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5321    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5322  };
5323}
5324
5325/// \brief Check whether any most overriden method from MD in Methods
5326static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5327                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5328  if (MD->size_overridden_methods() == 0)
5329    return Methods.count(MD->getCanonicalDecl());
5330  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5331                                      E = MD->end_overridden_methods();
5332       I != E; ++I)
5333    if (CheckMostOverridenMethods(*I, Methods))
5334      return true;
5335  return false;
5336}
5337
5338/// \brief Member lookup function that determines whether a given C++
5339/// method overloads virtual methods in a base class without overriding any,
5340/// to be used with CXXRecordDecl::lookupInBases().
5341static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5342                                    CXXBasePath &Path,
5343                                    void *UserData) {
5344  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5345
5346  FindHiddenVirtualMethodData &Data
5347    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5348
5349  DeclarationName Name = Data.Method->getDeclName();
5350  assert(Name.getNameKind() == DeclarationName::Identifier);
5351
5352  bool foundSameNameMethod = false;
5353  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5354  for (Path.Decls = BaseRecord->lookup(Name);
5355       !Path.Decls.empty();
5356       Path.Decls = Path.Decls.slice(1)) {
5357    NamedDecl *D = Path.Decls.front();
5358    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5359      MD = MD->getCanonicalDecl();
5360      foundSameNameMethod = true;
5361      // Interested only in hidden virtual methods.
5362      if (!MD->isVirtual())
5363        continue;
5364      // If the method we are checking overrides a method from its base
5365      // don't warn about the other overloaded methods.
5366      if (!Data.S->IsOverload(Data.Method, MD, false))
5367        return true;
5368      // Collect the overload only if its hidden.
5369      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5370        overloadedMethods.push_back(MD);
5371    }
5372  }
5373
5374  if (foundSameNameMethod)
5375    Data.OverloadedMethods.append(overloadedMethods.begin(),
5376                                   overloadedMethods.end());
5377  return foundSameNameMethod;
5378}
5379
5380/// \brief Add the most overriden methods from MD to Methods
5381static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5382                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5383  if (MD->size_overridden_methods() == 0)
5384    Methods.insert(MD->getCanonicalDecl());
5385  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5386                                      E = MD->end_overridden_methods();
5387       I != E; ++I)
5388    AddMostOverridenMethods(*I, Methods);
5389}
5390
5391/// \brief See if a method overloads virtual methods in a base class without
5392/// overriding any.
5393void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5394  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5395                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5396    return;
5397  if (!MD->getDeclName().isIdentifier())
5398    return;
5399
5400  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5401                     /*bool RecordPaths=*/false,
5402                     /*bool DetectVirtual=*/false);
5403  FindHiddenVirtualMethodData Data;
5404  Data.Method = MD;
5405  Data.S = this;
5406
5407  // Keep the base methods that were overriden or introduced in the subclass
5408  // by 'using' in a set. A base method not in this set is hidden.
5409  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5410  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5411    NamedDecl *ND = *I;
5412    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5413      ND = shad->getTargetDecl();
5414    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5415      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5416  }
5417
5418  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5419      !Data.OverloadedMethods.empty()) {
5420    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5421      << MD << (Data.OverloadedMethods.size() > 1);
5422
5423    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5424      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5425      PartialDiagnostic PD = PDiag(
5426           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5427      HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
5428      Diag(overloadedMD->getLocation(), PD);
5429    }
5430  }
5431}
5432
5433void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5434                                             Decl *TagDecl,
5435                                             SourceLocation LBrac,
5436                                             SourceLocation RBrac,
5437                                             AttributeList *AttrList) {
5438  if (!TagDecl)
5439    return;
5440
5441  AdjustDeclIfTemplate(TagDecl);
5442
5443  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5444    if (l->getKind() != AttributeList::AT_Visibility)
5445      continue;
5446    l->setInvalid();
5447    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5448      l->getName();
5449  }
5450
5451  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5452              // strict aliasing violation!
5453              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5454              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5455
5456  CheckCompletedCXXClass(
5457                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5458}
5459
5460/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5461/// special functions, such as the default constructor, copy
5462/// constructor, or destructor, to the given C++ class (C++
5463/// [special]p1).  This routine can only be executed just before the
5464/// definition of the class is complete.
5465void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5466  if (!ClassDecl->hasUserDeclaredConstructor())
5467    ++ASTContext::NumImplicitDefaultConstructors;
5468
5469  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5470    ++ASTContext::NumImplicitCopyConstructors;
5471
5472    // If the properties or semantics of the copy constructor couldn't be
5473    // determined while the class was being declared, force a declaration
5474    // of it now.
5475    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5476      DeclareImplicitCopyConstructor(ClassDecl);
5477  }
5478
5479  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5480    ++ASTContext::NumImplicitMoveConstructors;
5481
5482    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5483      DeclareImplicitMoveConstructor(ClassDecl);
5484  }
5485
5486  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5487    ++ASTContext::NumImplicitCopyAssignmentOperators;
5488
5489    // If we have a dynamic class, then the copy assignment operator may be
5490    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5491    // it shows up in the right place in the vtable and that we diagnose
5492    // problems with the implicit exception specification.
5493    if (ClassDecl->isDynamicClass() ||
5494        ClassDecl->needsOverloadResolutionForCopyAssignment())
5495      DeclareImplicitCopyAssignment(ClassDecl);
5496  }
5497
5498  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5499    ++ASTContext::NumImplicitMoveAssignmentOperators;
5500
5501    // Likewise for the move assignment operator.
5502    if (ClassDecl->isDynamicClass() ||
5503        ClassDecl->needsOverloadResolutionForMoveAssignment())
5504      DeclareImplicitMoveAssignment(ClassDecl);
5505  }
5506
5507  if (!ClassDecl->hasUserDeclaredDestructor()) {
5508    ++ASTContext::NumImplicitDestructors;
5509
5510    // If we have a dynamic class, then the destructor may be virtual, so we
5511    // have to declare the destructor immediately. This ensures that, e.g., it
5512    // shows up in the right place in the vtable and that we diagnose problems
5513    // with the implicit exception specification.
5514    if (ClassDecl->isDynamicClass() ||
5515        ClassDecl->needsOverloadResolutionForDestructor())
5516      DeclareImplicitDestructor(ClassDecl);
5517  }
5518}
5519
5520void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5521  if (!D)
5522    return;
5523
5524  int NumParamList = D->getNumTemplateParameterLists();
5525  for (int i = 0; i < NumParamList; i++) {
5526    TemplateParameterList* Params = D->getTemplateParameterList(i);
5527    for (TemplateParameterList::iterator Param = Params->begin(),
5528                                      ParamEnd = Params->end();
5529          Param != ParamEnd; ++Param) {
5530      NamedDecl *Named = cast<NamedDecl>(*Param);
5531      if (Named->getDeclName()) {
5532        S->AddDecl(Named);
5533        IdResolver.AddDecl(Named);
5534      }
5535    }
5536  }
5537}
5538
5539void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5540  if (!D)
5541    return;
5542
5543  TemplateParameterList *Params = 0;
5544  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5545    Params = Template->getTemplateParameters();
5546  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5547           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5548    Params = PartialSpec->getTemplateParameters();
5549  else
5550    return;
5551
5552  for (TemplateParameterList::iterator Param = Params->begin(),
5553                                    ParamEnd = Params->end();
5554       Param != ParamEnd; ++Param) {
5555    NamedDecl *Named = cast<NamedDecl>(*Param);
5556    if (Named->getDeclName()) {
5557      S->AddDecl(Named);
5558      IdResolver.AddDecl(Named);
5559    }
5560  }
5561}
5562
5563void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5564  if (!RecordD) return;
5565  AdjustDeclIfTemplate(RecordD);
5566  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5567  PushDeclContext(S, Record);
5568}
5569
5570void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5571  if (!RecordD) return;
5572  PopDeclContext();
5573}
5574
5575/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5576/// parsing a top-level (non-nested) C++ class, and we are now
5577/// parsing those parts of the given Method declaration that could
5578/// not be parsed earlier (C++ [class.mem]p2), such as default
5579/// arguments. This action should enter the scope of the given
5580/// Method declaration as if we had just parsed the qualified method
5581/// name. However, it should not bring the parameters into scope;
5582/// that will be performed by ActOnDelayedCXXMethodParameter.
5583void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5584}
5585
5586/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5587/// C++ method declaration. We're (re-)introducing the given
5588/// function parameter into scope for use in parsing later parts of
5589/// the method declaration. For example, we could see an
5590/// ActOnParamDefaultArgument event for this parameter.
5591void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5592  if (!ParamD)
5593    return;
5594
5595  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5596
5597  // If this parameter has an unparsed default argument, clear it out
5598  // to make way for the parsed default argument.
5599  if (Param->hasUnparsedDefaultArg())
5600    Param->setDefaultArg(0);
5601
5602  S->AddDecl(Param);
5603  if (Param->getDeclName())
5604    IdResolver.AddDecl(Param);
5605}
5606
5607/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5608/// processing the delayed method declaration for Method. The method
5609/// declaration is now considered finished. There may be a separate
5610/// ActOnStartOfFunctionDef action later (not necessarily
5611/// immediately!) for this method, if it was also defined inside the
5612/// class body.
5613void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5614  if (!MethodD)
5615    return;
5616
5617  AdjustDeclIfTemplate(MethodD);
5618
5619  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5620
5621  // Now that we have our default arguments, check the constructor
5622  // again. It could produce additional diagnostics or affect whether
5623  // the class has implicitly-declared destructors, among other
5624  // things.
5625  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5626    CheckConstructor(Constructor);
5627
5628  // Check the default arguments, which we may have added.
5629  if (!Method->isInvalidDecl())
5630    CheckCXXDefaultArguments(Method);
5631}
5632
5633/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5634/// the well-formedness of the constructor declarator @p D with type @p
5635/// R. If there are any errors in the declarator, this routine will
5636/// emit diagnostics and set the invalid bit to true.  In any case, the type
5637/// will be updated to reflect a well-formed type for the constructor and
5638/// returned.
5639QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5640                                          StorageClass &SC) {
5641  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5642
5643  // C++ [class.ctor]p3:
5644  //   A constructor shall not be virtual (10.3) or static (9.4). A
5645  //   constructor can be invoked for a const, volatile or const
5646  //   volatile object. A constructor shall not be declared const,
5647  //   volatile, or const volatile (9.3.2).
5648  if (isVirtual) {
5649    if (!D.isInvalidType())
5650      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5651        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5652        << SourceRange(D.getIdentifierLoc());
5653    D.setInvalidType();
5654  }
5655  if (SC == SC_Static) {
5656    if (!D.isInvalidType())
5657      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5658        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5659        << SourceRange(D.getIdentifierLoc());
5660    D.setInvalidType();
5661    SC = SC_None;
5662  }
5663
5664  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5665  if (FTI.TypeQuals != 0) {
5666    if (FTI.TypeQuals & Qualifiers::Const)
5667      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5668        << "const" << SourceRange(D.getIdentifierLoc());
5669    if (FTI.TypeQuals & Qualifiers::Volatile)
5670      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5671        << "volatile" << SourceRange(D.getIdentifierLoc());
5672    if (FTI.TypeQuals & Qualifiers::Restrict)
5673      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5674        << "restrict" << SourceRange(D.getIdentifierLoc());
5675    D.setInvalidType();
5676  }
5677
5678  // C++0x [class.ctor]p4:
5679  //   A constructor shall not be declared with a ref-qualifier.
5680  if (FTI.hasRefQualifier()) {
5681    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5682      << FTI.RefQualifierIsLValueRef
5683      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5684    D.setInvalidType();
5685  }
5686
5687  // Rebuild the function type "R" without any type qualifiers (in
5688  // case any of the errors above fired) and with "void" as the
5689  // return type, since constructors don't have return types.
5690  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5691  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5692    return R;
5693
5694  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5695  EPI.TypeQuals = 0;
5696  EPI.RefQualifier = RQ_None;
5697
5698  return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
5699}
5700
5701/// CheckConstructor - Checks a fully-formed constructor for
5702/// well-formedness, issuing any diagnostics required. Returns true if
5703/// the constructor declarator is invalid.
5704void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5705  CXXRecordDecl *ClassDecl
5706    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5707  if (!ClassDecl)
5708    return Constructor->setInvalidDecl();
5709
5710  // C++ [class.copy]p3:
5711  //   A declaration of a constructor for a class X is ill-formed if
5712  //   its first parameter is of type (optionally cv-qualified) X and
5713  //   either there are no other parameters or else all other
5714  //   parameters have default arguments.
5715  if (!Constructor->isInvalidDecl() &&
5716      ((Constructor->getNumParams() == 1) ||
5717       (Constructor->getNumParams() > 1 &&
5718        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5719      Constructor->getTemplateSpecializationKind()
5720                                              != TSK_ImplicitInstantiation) {
5721    QualType ParamType = Constructor->getParamDecl(0)->getType();
5722    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5723    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5724      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5725      const char *ConstRef
5726        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5727                                                        : " const &";
5728      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5729        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5730
5731      // FIXME: Rather that making the constructor invalid, we should endeavor
5732      // to fix the type.
5733      Constructor->setInvalidDecl();
5734    }
5735  }
5736}
5737
5738/// CheckDestructor - Checks a fully-formed destructor definition for
5739/// well-formedness, issuing any diagnostics required.  Returns true
5740/// on error.
5741bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5742  CXXRecordDecl *RD = Destructor->getParent();
5743
5744  if (Destructor->isVirtual()) {
5745    SourceLocation Loc;
5746
5747    if (!Destructor->isImplicit())
5748      Loc = Destructor->getLocation();
5749    else
5750      Loc = RD->getLocation();
5751
5752    // If we have a virtual destructor, look up the deallocation function
5753    FunctionDecl *OperatorDelete = 0;
5754    DeclarationName Name =
5755    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5756    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5757      return true;
5758
5759    MarkFunctionReferenced(Loc, OperatorDelete);
5760
5761    Destructor->setOperatorDelete(OperatorDelete);
5762  }
5763
5764  return false;
5765}
5766
5767static inline bool
5768FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5769  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5770          FTI.ArgInfo[0].Param &&
5771          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5772}
5773
5774/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5775/// the well-formednes of the destructor declarator @p D with type @p
5776/// R. If there are any errors in the declarator, this routine will
5777/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5778/// will be updated to reflect a well-formed type for the destructor and
5779/// returned.
5780QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5781                                         StorageClass& SC) {
5782  // C++ [class.dtor]p1:
5783  //   [...] A typedef-name that names a class is a class-name
5784  //   (7.1.3); however, a typedef-name that names a class shall not
5785  //   be used as the identifier in the declarator for a destructor
5786  //   declaration.
5787  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5788  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5789    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5790      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5791  else if (const TemplateSpecializationType *TST =
5792             DeclaratorType->getAs<TemplateSpecializationType>())
5793    if (TST->isTypeAlias())
5794      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5795        << DeclaratorType << 1;
5796
5797  // C++ [class.dtor]p2:
5798  //   A destructor is used to destroy objects of its class type. A
5799  //   destructor takes no parameters, and no return type can be
5800  //   specified for it (not even void). The address of a destructor
5801  //   shall not be taken. A destructor shall not be static. A
5802  //   destructor can be invoked for a const, volatile or const
5803  //   volatile object. A destructor shall not be declared const,
5804  //   volatile or const volatile (9.3.2).
5805  if (SC == SC_Static) {
5806    if (!D.isInvalidType())
5807      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5808        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5809        << SourceRange(D.getIdentifierLoc())
5810        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5811
5812    SC = SC_None;
5813  }
5814  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5815    // Destructors don't have return types, but the parser will
5816    // happily parse something like:
5817    //
5818    //   class X {
5819    //     float ~X();
5820    //   };
5821    //
5822    // The return type will be eliminated later.
5823    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5824      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5825      << SourceRange(D.getIdentifierLoc());
5826  }
5827
5828  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5829  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5830    if (FTI.TypeQuals & Qualifiers::Const)
5831      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5832        << "const" << SourceRange(D.getIdentifierLoc());
5833    if (FTI.TypeQuals & Qualifiers::Volatile)
5834      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5835        << "volatile" << SourceRange(D.getIdentifierLoc());
5836    if (FTI.TypeQuals & Qualifiers::Restrict)
5837      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5838        << "restrict" << SourceRange(D.getIdentifierLoc());
5839    D.setInvalidType();
5840  }
5841
5842  // C++0x [class.dtor]p2:
5843  //   A destructor shall not be declared with a ref-qualifier.
5844  if (FTI.hasRefQualifier()) {
5845    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5846      << FTI.RefQualifierIsLValueRef
5847      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5848    D.setInvalidType();
5849  }
5850
5851  // Make sure we don't have any parameters.
5852  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5853    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5854
5855    // Delete the parameters.
5856    FTI.freeArgs();
5857    D.setInvalidType();
5858  }
5859
5860  // Make sure the destructor isn't variadic.
5861  if (FTI.isVariadic) {
5862    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5863    D.setInvalidType();
5864  }
5865
5866  // Rebuild the function type "R" without any type qualifiers or
5867  // parameters (in case any of the errors above fired) and with
5868  // "void" as the return type, since destructors don't have return
5869  // types.
5870  if (!D.isInvalidType())
5871    return R;
5872
5873  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5874  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5875  EPI.Variadic = false;
5876  EPI.TypeQuals = 0;
5877  EPI.RefQualifier = RQ_None;
5878  return Context.getFunctionType(Context.VoidTy, ArrayRef<QualType>(), EPI);
5879}
5880
5881/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5882/// well-formednes of the conversion function declarator @p D with
5883/// type @p R. If there are any errors in the declarator, this routine
5884/// will emit diagnostics and return true. Otherwise, it will return
5885/// false. Either way, the type @p R will be updated to reflect a
5886/// well-formed type for the conversion operator.
5887void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5888                                     StorageClass& SC) {
5889  // C++ [class.conv.fct]p1:
5890  //   Neither parameter types nor return type can be specified. The
5891  //   type of a conversion function (8.3.5) is "function taking no
5892  //   parameter returning conversion-type-id."
5893  if (SC == SC_Static) {
5894    if (!D.isInvalidType())
5895      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5896        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5897        << SourceRange(D.getIdentifierLoc());
5898    D.setInvalidType();
5899    SC = SC_None;
5900  }
5901
5902  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5903
5904  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5905    // Conversion functions don't have return types, but the parser will
5906    // happily parse something like:
5907    //
5908    //   class X {
5909    //     float operator bool();
5910    //   };
5911    //
5912    // The return type will be changed later anyway.
5913    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5914      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5915      << SourceRange(D.getIdentifierLoc());
5916    D.setInvalidType();
5917  }
5918
5919  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5920
5921  // Make sure we don't have any parameters.
5922  if (Proto->getNumArgs() > 0) {
5923    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5924
5925    // Delete the parameters.
5926    D.getFunctionTypeInfo().freeArgs();
5927    D.setInvalidType();
5928  } else if (Proto->isVariadic()) {
5929    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5930    D.setInvalidType();
5931  }
5932
5933  // Diagnose "&operator bool()" and other such nonsense.  This
5934  // is actually a gcc extension which we don't support.
5935  if (Proto->getResultType() != ConvType) {
5936    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5937      << Proto->getResultType();
5938    D.setInvalidType();
5939    ConvType = Proto->getResultType();
5940  }
5941
5942  // C++ [class.conv.fct]p4:
5943  //   The conversion-type-id shall not represent a function type nor
5944  //   an array type.
5945  if (ConvType->isArrayType()) {
5946    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5947    ConvType = Context.getPointerType(ConvType);
5948    D.setInvalidType();
5949  } else if (ConvType->isFunctionType()) {
5950    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5951    ConvType = Context.getPointerType(ConvType);
5952    D.setInvalidType();
5953  }
5954
5955  // Rebuild the function type "R" without any parameters (in case any
5956  // of the errors above fired) and with the conversion type as the
5957  // return type.
5958  if (D.isInvalidType())
5959    R = Context.getFunctionType(ConvType, ArrayRef<QualType>(),
5960                                Proto->getExtProtoInfo());
5961
5962  // C++0x explicit conversion operators.
5963  if (D.getDeclSpec().isExplicitSpecified())
5964    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5965         getLangOpts().CPlusPlus11 ?
5966           diag::warn_cxx98_compat_explicit_conversion_functions :
5967           diag::ext_explicit_conversion_functions)
5968      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5969}
5970
5971/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5972/// the declaration of the given C++ conversion function. This routine
5973/// is responsible for recording the conversion function in the C++
5974/// class, if possible.
5975Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5976  assert(Conversion && "Expected to receive a conversion function declaration");
5977
5978  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5979
5980  // Make sure we aren't redeclaring the conversion function.
5981  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5982
5983  // C++ [class.conv.fct]p1:
5984  //   [...] A conversion function is never used to convert a
5985  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5986  //   same object type (or a reference to it), to a (possibly
5987  //   cv-qualified) base class of that type (or a reference to it),
5988  //   or to (possibly cv-qualified) void.
5989  // FIXME: Suppress this warning if the conversion function ends up being a
5990  // virtual function that overrides a virtual function in a base class.
5991  QualType ClassType
5992    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5993  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5994    ConvType = ConvTypeRef->getPointeeType();
5995  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5996      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5997    /* Suppress diagnostics for instantiations. */;
5998  else if (ConvType->isRecordType()) {
5999    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6000    if (ConvType == ClassType)
6001      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6002        << ClassType;
6003    else if (IsDerivedFrom(ClassType, ConvType))
6004      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6005        <<  ClassType << ConvType;
6006  } else if (ConvType->isVoidType()) {
6007    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6008      << ClassType << ConvType;
6009  }
6010
6011  if (FunctionTemplateDecl *ConversionTemplate
6012                                = Conversion->getDescribedFunctionTemplate())
6013    return ConversionTemplate;
6014
6015  return Conversion;
6016}
6017
6018//===----------------------------------------------------------------------===//
6019// Namespace Handling
6020//===----------------------------------------------------------------------===//
6021
6022/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6023/// reopened.
6024static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6025                                            SourceLocation Loc,
6026                                            IdentifierInfo *II, bool *IsInline,
6027                                            NamespaceDecl *PrevNS) {
6028  assert(*IsInline != PrevNS->isInline());
6029
6030  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6031  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6032  // inline namespaces, with the intention of bringing names into namespace std.
6033  //
6034  // We support this just well enough to get that case working; this is not
6035  // sufficient to support reopening namespaces as inline in general.
6036  if (*IsInline && II && II->getName().startswith("__atomic") &&
6037      S.getSourceManager().isInSystemHeader(Loc)) {
6038    // Mark all prior declarations of the namespace as inline.
6039    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6040         NS = NS->getPreviousDecl())
6041      NS->setInline(*IsInline);
6042    // Patch up the lookup table for the containing namespace. This isn't really
6043    // correct, but it's good enough for this particular case.
6044    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6045                                    E = PrevNS->decls_end(); I != E; ++I)
6046      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6047        PrevNS->getParent()->makeDeclVisibleInContext(ND);
6048    return;
6049  }
6050
6051  if (PrevNS->isInline())
6052    // The user probably just forgot the 'inline', so suggest that it
6053    // be added back.
6054    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6055      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6056  else
6057    S.Diag(Loc, diag::err_inline_namespace_mismatch)
6058      << IsInline;
6059
6060  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6061  *IsInline = PrevNS->isInline();
6062}
6063
6064/// ActOnStartNamespaceDef - This is called at the start of a namespace
6065/// definition.
6066Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6067                                   SourceLocation InlineLoc,
6068                                   SourceLocation NamespaceLoc,
6069                                   SourceLocation IdentLoc,
6070                                   IdentifierInfo *II,
6071                                   SourceLocation LBrace,
6072                                   AttributeList *AttrList) {
6073  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6074  // For anonymous namespace, take the location of the left brace.
6075  SourceLocation Loc = II ? IdentLoc : LBrace;
6076  bool IsInline = InlineLoc.isValid();
6077  bool IsInvalid = false;
6078  bool IsStd = false;
6079  bool AddToKnown = false;
6080  Scope *DeclRegionScope = NamespcScope->getParent();
6081
6082  NamespaceDecl *PrevNS = 0;
6083  if (II) {
6084    // C++ [namespace.def]p2:
6085    //   The identifier in an original-namespace-definition shall not
6086    //   have been previously defined in the declarative region in
6087    //   which the original-namespace-definition appears. The
6088    //   identifier in an original-namespace-definition is the name of
6089    //   the namespace. Subsequently in that declarative region, it is
6090    //   treated as an original-namespace-name.
6091    //
6092    // Since namespace names are unique in their scope, and we don't
6093    // look through using directives, just look for any ordinary names.
6094
6095    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6096    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6097    Decl::IDNS_Namespace;
6098    NamedDecl *PrevDecl = 0;
6099    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6100    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6101         ++I) {
6102      if ((*I)->getIdentifierNamespace() & IDNS) {
6103        PrevDecl = *I;
6104        break;
6105      }
6106    }
6107
6108    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6109
6110    if (PrevNS) {
6111      // This is an extended namespace definition.
6112      if (IsInline != PrevNS->isInline())
6113        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6114                                        &IsInline, PrevNS);
6115    } else if (PrevDecl) {
6116      // This is an invalid name redefinition.
6117      Diag(Loc, diag::err_redefinition_different_kind)
6118        << II;
6119      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6120      IsInvalid = true;
6121      // Continue on to push Namespc as current DeclContext and return it.
6122    } else if (II->isStr("std") &&
6123               CurContext->getRedeclContext()->isTranslationUnit()) {
6124      // This is the first "real" definition of the namespace "std", so update
6125      // our cache of the "std" namespace to point at this definition.
6126      PrevNS = getStdNamespace();
6127      IsStd = true;
6128      AddToKnown = !IsInline;
6129    } else {
6130      // We've seen this namespace for the first time.
6131      AddToKnown = !IsInline;
6132    }
6133  } else {
6134    // Anonymous namespaces.
6135
6136    // Determine whether the parent already has an anonymous namespace.
6137    DeclContext *Parent = CurContext->getRedeclContext();
6138    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6139      PrevNS = TU->getAnonymousNamespace();
6140    } else {
6141      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6142      PrevNS = ND->getAnonymousNamespace();
6143    }
6144
6145    if (PrevNS && IsInline != PrevNS->isInline())
6146      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6147                                      &IsInline, PrevNS);
6148  }
6149
6150  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6151                                                 StartLoc, Loc, II, PrevNS);
6152  if (IsInvalid)
6153    Namespc->setInvalidDecl();
6154
6155  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6156
6157  // FIXME: Should we be merging attributes?
6158  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6159    PushNamespaceVisibilityAttr(Attr, Loc);
6160
6161  if (IsStd)
6162    StdNamespace = Namespc;
6163  if (AddToKnown)
6164    KnownNamespaces[Namespc] = false;
6165
6166  if (II) {
6167    PushOnScopeChains(Namespc, DeclRegionScope);
6168  } else {
6169    // Link the anonymous namespace into its parent.
6170    DeclContext *Parent = CurContext->getRedeclContext();
6171    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6172      TU->setAnonymousNamespace(Namespc);
6173    } else {
6174      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6175    }
6176
6177    CurContext->addDecl(Namespc);
6178
6179    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6180    //   behaves as if it were replaced by
6181    //     namespace unique { /* empty body */ }
6182    //     using namespace unique;
6183    //     namespace unique { namespace-body }
6184    //   where all occurrences of 'unique' in a translation unit are
6185    //   replaced by the same identifier and this identifier differs
6186    //   from all other identifiers in the entire program.
6187
6188    // We just create the namespace with an empty name and then add an
6189    // implicit using declaration, just like the standard suggests.
6190    //
6191    // CodeGen enforces the "universally unique" aspect by giving all
6192    // declarations semantically contained within an anonymous
6193    // namespace internal linkage.
6194
6195    if (!PrevNS) {
6196      UsingDirectiveDecl* UD
6197        = UsingDirectiveDecl::Create(Context, Parent,
6198                                     /* 'using' */ LBrace,
6199                                     /* 'namespace' */ SourceLocation(),
6200                                     /* qualifier */ NestedNameSpecifierLoc(),
6201                                     /* identifier */ SourceLocation(),
6202                                     Namespc,
6203                                     /* Ancestor */ Parent);
6204      UD->setImplicit();
6205      Parent->addDecl(UD);
6206    }
6207  }
6208
6209  ActOnDocumentableDecl(Namespc);
6210
6211  // Although we could have an invalid decl (i.e. the namespace name is a
6212  // redefinition), push it as current DeclContext and try to continue parsing.
6213  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6214  // for the namespace has the declarations that showed up in that particular
6215  // namespace definition.
6216  PushDeclContext(NamespcScope, Namespc);
6217  return Namespc;
6218}
6219
6220/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6221/// is a namespace alias, returns the namespace it points to.
6222static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6223  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6224    return AD->getNamespace();
6225  return dyn_cast_or_null<NamespaceDecl>(D);
6226}
6227
6228/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6229/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6230void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6231  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6232  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6233  Namespc->setRBraceLoc(RBrace);
6234  PopDeclContext();
6235  if (Namespc->hasAttr<VisibilityAttr>())
6236    PopPragmaVisibility(true, RBrace);
6237}
6238
6239CXXRecordDecl *Sema::getStdBadAlloc() const {
6240  return cast_or_null<CXXRecordDecl>(
6241                                  StdBadAlloc.get(Context.getExternalSource()));
6242}
6243
6244NamespaceDecl *Sema::getStdNamespace() const {
6245  return cast_or_null<NamespaceDecl>(
6246                                 StdNamespace.get(Context.getExternalSource()));
6247}
6248
6249/// \brief Retrieve the special "std" namespace, which may require us to
6250/// implicitly define the namespace.
6251NamespaceDecl *Sema::getOrCreateStdNamespace() {
6252  if (!StdNamespace) {
6253    // The "std" namespace has not yet been defined, so build one implicitly.
6254    StdNamespace = NamespaceDecl::Create(Context,
6255                                         Context.getTranslationUnitDecl(),
6256                                         /*Inline=*/false,
6257                                         SourceLocation(), SourceLocation(),
6258                                         &PP.getIdentifierTable().get("std"),
6259                                         /*PrevDecl=*/0);
6260    getStdNamespace()->setImplicit(true);
6261  }
6262
6263  return getStdNamespace();
6264}
6265
6266bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6267  assert(getLangOpts().CPlusPlus &&
6268         "Looking for std::initializer_list outside of C++.");
6269
6270  // We're looking for implicit instantiations of
6271  // template <typename E> class std::initializer_list.
6272
6273  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6274    return false;
6275
6276  ClassTemplateDecl *Template = 0;
6277  const TemplateArgument *Arguments = 0;
6278
6279  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6280
6281    ClassTemplateSpecializationDecl *Specialization =
6282        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6283    if (!Specialization)
6284      return false;
6285
6286    Template = Specialization->getSpecializedTemplate();
6287    Arguments = Specialization->getTemplateArgs().data();
6288  } else if (const TemplateSpecializationType *TST =
6289                 Ty->getAs<TemplateSpecializationType>()) {
6290    Template = dyn_cast_or_null<ClassTemplateDecl>(
6291        TST->getTemplateName().getAsTemplateDecl());
6292    Arguments = TST->getArgs();
6293  }
6294  if (!Template)
6295    return false;
6296
6297  if (!StdInitializerList) {
6298    // Haven't recognized std::initializer_list yet, maybe this is it.
6299    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6300    if (TemplateClass->getIdentifier() !=
6301            &PP.getIdentifierTable().get("initializer_list") ||
6302        !getStdNamespace()->InEnclosingNamespaceSetOf(
6303            TemplateClass->getDeclContext()))
6304      return false;
6305    // This is a template called std::initializer_list, but is it the right
6306    // template?
6307    TemplateParameterList *Params = Template->getTemplateParameters();
6308    if (Params->getMinRequiredArguments() != 1)
6309      return false;
6310    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6311      return false;
6312
6313    // It's the right template.
6314    StdInitializerList = Template;
6315  }
6316
6317  if (Template != StdInitializerList)
6318    return false;
6319
6320  // This is an instance of std::initializer_list. Find the argument type.
6321  if (Element)
6322    *Element = Arguments[0].getAsType();
6323  return true;
6324}
6325
6326static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6327  NamespaceDecl *Std = S.getStdNamespace();
6328  if (!Std) {
6329    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6330    return 0;
6331  }
6332
6333  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6334                      Loc, Sema::LookupOrdinaryName);
6335  if (!S.LookupQualifiedName(Result, Std)) {
6336    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6337    return 0;
6338  }
6339  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6340  if (!Template) {
6341    Result.suppressDiagnostics();
6342    // We found something weird. Complain about the first thing we found.
6343    NamedDecl *Found = *Result.begin();
6344    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6345    return 0;
6346  }
6347
6348  // We found some template called std::initializer_list. Now verify that it's
6349  // correct.
6350  TemplateParameterList *Params = Template->getTemplateParameters();
6351  if (Params->getMinRequiredArguments() != 1 ||
6352      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6353    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6354    return 0;
6355  }
6356
6357  return Template;
6358}
6359
6360QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6361  if (!StdInitializerList) {
6362    StdInitializerList = LookupStdInitializerList(*this, Loc);
6363    if (!StdInitializerList)
6364      return QualType();
6365  }
6366
6367  TemplateArgumentListInfo Args(Loc, Loc);
6368  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6369                                       Context.getTrivialTypeSourceInfo(Element,
6370                                                                        Loc)));
6371  return Context.getCanonicalType(
6372      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6373}
6374
6375bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6376  // C++ [dcl.init.list]p2:
6377  //   A constructor is an initializer-list constructor if its first parameter
6378  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6379  //   std::initializer_list<E> for some type E, and either there are no other
6380  //   parameters or else all other parameters have default arguments.
6381  if (Ctor->getNumParams() < 1 ||
6382      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6383    return false;
6384
6385  QualType ArgType = Ctor->getParamDecl(0)->getType();
6386  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6387    ArgType = RT->getPointeeType().getUnqualifiedType();
6388
6389  return isStdInitializerList(ArgType, 0);
6390}
6391
6392/// \brief Determine whether a using statement is in a context where it will be
6393/// apply in all contexts.
6394static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6395  switch (CurContext->getDeclKind()) {
6396    case Decl::TranslationUnit:
6397      return true;
6398    case Decl::LinkageSpec:
6399      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6400    default:
6401      return false;
6402  }
6403}
6404
6405namespace {
6406
6407// Callback to only accept typo corrections that are namespaces.
6408class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6409 public:
6410  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
6411    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
6412      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6413    }
6414    return false;
6415  }
6416};
6417
6418}
6419
6420static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6421                                       CXXScopeSpec &SS,
6422                                       SourceLocation IdentLoc,
6423                                       IdentifierInfo *Ident) {
6424  NamespaceValidatorCCC Validator;
6425  R.clear();
6426  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6427                                               R.getLookupKind(), Sc, &SS,
6428                                               Validator)) {
6429    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6430    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
6431    if (DeclContext *DC = S.computeDeclContext(SS, false))
6432      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6433        << Ident << DC << CorrectedQuotedStr << SS.getRange()
6434        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
6435                                        CorrectedStr);
6436    else
6437      S.Diag(IdentLoc, diag::err_using_directive_suggest)
6438        << Ident << CorrectedQuotedStr
6439        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6440
6441    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6442         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6443
6444    R.addDecl(Corrected.getCorrectionDecl());
6445    return true;
6446  }
6447  return false;
6448}
6449
6450Decl *Sema::ActOnUsingDirective(Scope *S,
6451                                          SourceLocation UsingLoc,
6452                                          SourceLocation NamespcLoc,
6453                                          CXXScopeSpec &SS,
6454                                          SourceLocation IdentLoc,
6455                                          IdentifierInfo *NamespcName,
6456                                          AttributeList *AttrList) {
6457  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6458  assert(NamespcName && "Invalid NamespcName.");
6459  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6460
6461  // This can only happen along a recovery path.
6462  while (S->getFlags() & Scope::TemplateParamScope)
6463    S = S->getParent();
6464  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6465
6466  UsingDirectiveDecl *UDir = 0;
6467  NestedNameSpecifier *Qualifier = 0;
6468  if (SS.isSet())
6469    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6470
6471  // Lookup namespace name.
6472  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6473  LookupParsedName(R, S, &SS);
6474  if (R.isAmbiguous())
6475    return 0;
6476
6477  if (R.empty()) {
6478    R.clear();
6479    // Allow "using namespace std;" or "using namespace ::std;" even if
6480    // "std" hasn't been defined yet, for GCC compatibility.
6481    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6482        NamespcName->isStr("std")) {
6483      Diag(IdentLoc, diag::ext_using_undefined_std);
6484      R.addDecl(getOrCreateStdNamespace());
6485      R.resolveKind();
6486    }
6487    // Otherwise, attempt typo correction.
6488    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6489  }
6490
6491  if (!R.empty()) {
6492    NamedDecl *Named = R.getFoundDecl();
6493    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6494        && "expected namespace decl");
6495    // C++ [namespace.udir]p1:
6496    //   A using-directive specifies that the names in the nominated
6497    //   namespace can be used in the scope in which the
6498    //   using-directive appears after the using-directive. During
6499    //   unqualified name lookup (3.4.1), the names appear as if they
6500    //   were declared in the nearest enclosing namespace which
6501    //   contains both the using-directive and the nominated
6502    //   namespace. [Note: in this context, "contains" means "contains
6503    //   directly or indirectly". ]
6504
6505    // Find enclosing context containing both using-directive and
6506    // nominated namespace.
6507    NamespaceDecl *NS = getNamespaceDecl(Named);
6508    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6509    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6510      CommonAncestor = CommonAncestor->getParent();
6511
6512    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6513                                      SS.getWithLocInContext(Context),
6514                                      IdentLoc, Named, CommonAncestor);
6515
6516    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6517        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6518      Diag(IdentLoc, diag::warn_using_directive_in_header);
6519    }
6520
6521    PushUsingDirective(S, UDir);
6522  } else {
6523    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6524  }
6525
6526  if (UDir)
6527    ProcessDeclAttributeList(S, UDir, AttrList);
6528
6529  return UDir;
6530}
6531
6532void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6533  // If the scope has an associated entity and the using directive is at
6534  // namespace or translation unit scope, add the UsingDirectiveDecl into
6535  // its lookup structure so qualified name lookup can find it.
6536  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6537  if (Ctx && !Ctx->isFunctionOrMethod())
6538    Ctx->addDecl(UDir);
6539  else
6540    // Otherwise, it is at block sope. The using-directives will affect lookup
6541    // only to the end of the scope.
6542    S->PushUsingDirective(UDir);
6543}
6544
6545
6546Decl *Sema::ActOnUsingDeclaration(Scope *S,
6547                                  AccessSpecifier AS,
6548                                  bool HasUsingKeyword,
6549                                  SourceLocation UsingLoc,
6550                                  CXXScopeSpec &SS,
6551                                  UnqualifiedId &Name,
6552                                  AttributeList *AttrList,
6553                                  bool IsTypeName,
6554                                  SourceLocation TypenameLoc) {
6555  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6556
6557  switch (Name.getKind()) {
6558  case UnqualifiedId::IK_ImplicitSelfParam:
6559  case UnqualifiedId::IK_Identifier:
6560  case UnqualifiedId::IK_OperatorFunctionId:
6561  case UnqualifiedId::IK_LiteralOperatorId:
6562  case UnqualifiedId::IK_ConversionFunctionId:
6563    break;
6564
6565  case UnqualifiedId::IK_ConstructorName:
6566  case UnqualifiedId::IK_ConstructorTemplateId:
6567    // C++11 inheriting constructors.
6568    Diag(Name.getLocStart(),
6569         getLangOpts().CPlusPlus11 ?
6570           diag::warn_cxx98_compat_using_decl_constructor :
6571           diag::err_using_decl_constructor)
6572      << SS.getRange();
6573
6574    if (getLangOpts().CPlusPlus11) break;
6575
6576    return 0;
6577
6578  case UnqualifiedId::IK_DestructorName:
6579    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6580      << SS.getRange();
6581    return 0;
6582
6583  case UnqualifiedId::IK_TemplateId:
6584    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6585      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6586    return 0;
6587  }
6588
6589  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6590  DeclarationName TargetName = TargetNameInfo.getName();
6591  if (!TargetName)
6592    return 0;
6593
6594  // Warn about access declarations.
6595  // TODO: store that the declaration was written without 'using' and
6596  // talk about access decls instead of using decls in the
6597  // diagnostics.
6598  if (!HasUsingKeyword) {
6599    UsingLoc = Name.getLocStart();
6600
6601    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6602      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6603  }
6604
6605  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6606      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6607    return 0;
6608
6609  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6610                                        TargetNameInfo, AttrList,
6611                                        /* IsInstantiation */ false,
6612                                        IsTypeName, TypenameLoc);
6613  if (UD)
6614    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6615
6616  return UD;
6617}
6618
6619/// \brief Determine whether a using declaration considers the given
6620/// declarations as "equivalent", e.g., if they are redeclarations of
6621/// the same entity or are both typedefs of the same type.
6622static bool
6623IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6624                         bool &SuppressRedeclaration) {
6625  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6626    SuppressRedeclaration = false;
6627    return true;
6628  }
6629
6630  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6631    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6632      SuppressRedeclaration = true;
6633      return Context.hasSameType(TD1->getUnderlyingType(),
6634                                 TD2->getUnderlyingType());
6635    }
6636
6637  return false;
6638}
6639
6640
6641/// Determines whether to create a using shadow decl for a particular
6642/// decl, given the set of decls existing prior to this using lookup.
6643bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6644                                const LookupResult &Previous) {
6645  // Diagnose finding a decl which is not from a base class of the
6646  // current class.  We do this now because there are cases where this
6647  // function will silently decide not to build a shadow decl, which
6648  // will pre-empt further diagnostics.
6649  //
6650  // We don't need to do this in C++0x because we do the check once on
6651  // the qualifier.
6652  //
6653  // FIXME: diagnose the following if we care enough:
6654  //   struct A { int foo; };
6655  //   struct B : A { using A::foo; };
6656  //   template <class T> struct C : A {};
6657  //   template <class T> struct D : C<T> { using B::foo; } // <---
6658  // This is invalid (during instantiation) in C++03 because B::foo
6659  // resolves to the using decl in B, which is not a base class of D<T>.
6660  // We can't diagnose it immediately because C<T> is an unknown
6661  // specialization.  The UsingShadowDecl in D<T> then points directly
6662  // to A::foo, which will look well-formed when we instantiate.
6663  // The right solution is to not collapse the shadow-decl chain.
6664  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
6665    DeclContext *OrigDC = Orig->getDeclContext();
6666
6667    // Handle enums and anonymous structs.
6668    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6669    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6670    while (OrigRec->isAnonymousStructOrUnion())
6671      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6672
6673    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6674      if (OrigDC == CurContext) {
6675        Diag(Using->getLocation(),
6676             diag::err_using_decl_nested_name_specifier_is_current_class)
6677          << Using->getQualifierLoc().getSourceRange();
6678        Diag(Orig->getLocation(), diag::note_using_decl_target);
6679        return true;
6680      }
6681
6682      Diag(Using->getQualifierLoc().getBeginLoc(),
6683           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6684        << Using->getQualifier()
6685        << cast<CXXRecordDecl>(CurContext)
6686        << Using->getQualifierLoc().getSourceRange();
6687      Diag(Orig->getLocation(), diag::note_using_decl_target);
6688      return true;
6689    }
6690  }
6691
6692  if (Previous.empty()) return false;
6693
6694  NamedDecl *Target = Orig;
6695  if (isa<UsingShadowDecl>(Target))
6696    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6697
6698  // If the target happens to be one of the previous declarations, we
6699  // don't have a conflict.
6700  //
6701  // FIXME: but we might be increasing its access, in which case we
6702  // should redeclare it.
6703  NamedDecl *NonTag = 0, *Tag = 0;
6704  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6705         I != E; ++I) {
6706    NamedDecl *D = (*I)->getUnderlyingDecl();
6707    bool Result;
6708    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6709      return Result;
6710
6711    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6712  }
6713
6714  if (Target->isFunctionOrFunctionTemplate()) {
6715    FunctionDecl *FD;
6716    if (isa<FunctionTemplateDecl>(Target))
6717      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6718    else
6719      FD = cast<FunctionDecl>(Target);
6720
6721    NamedDecl *OldDecl = 0;
6722    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6723    case Ovl_Overload:
6724      return false;
6725
6726    case Ovl_NonFunction:
6727      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6728      break;
6729
6730    // We found a decl with the exact signature.
6731    case Ovl_Match:
6732      // If we're in a record, we want to hide the target, so we
6733      // return true (without a diagnostic) to tell the caller not to
6734      // build a shadow decl.
6735      if (CurContext->isRecord())
6736        return true;
6737
6738      // If we're not in a record, this is an error.
6739      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6740      break;
6741    }
6742
6743    Diag(Target->getLocation(), diag::note_using_decl_target);
6744    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6745    return true;
6746  }
6747
6748  // Target is not a function.
6749
6750  if (isa<TagDecl>(Target)) {
6751    // No conflict between a tag and a non-tag.
6752    if (!Tag) return false;
6753
6754    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6755    Diag(Target->getLocation(), diag::note_using_decl_target);
6756    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6757    return true;
6758  }
6759
6760  // No conflict between a tag and a non-tag.
6761  if (!NonTag) return false;
6762
6763  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6764  Diag(Target->getLocation(), diag::note_using_decl_target);
6765  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6766  return true;
6767}
6768
6769/// Builds a shadow declaration corresponding to a 'using' declaration.
6770UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6771                                            UsingDecl *UD,
6772                                            NamedDecl *Orig) {
6773
6774  // If we resolved to another shadow declaration, just coalesce them.
6775  NamedDecl *Target = Orig;
6776  if (isa<UsingShadowDecl>(Target)) {
6777    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6778    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6779  }
6780
6781  UsingShadowDecl *Shadow
6782    = UsingShadowDecl::Create(Context, CurContext,
6783                              UD->getLocation(), UD, Target);
6784  UD->addShadowDecl(Shadow);
6785
6786  Shadow->setAccess(UD->getAccess());
6787  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6788    Shadow->setInvalidDecl();
6789
6790  if (S)
6791    PushOnScopeChains(Shadow, S);
6792  else
6793    CurContext->addDecl(Shadow);
6794
6795
6796  return Shadow;
6797}
6798
6799/// Hides a using shadow declaration.  This is required by the current
6800/// using-decl implementation when a resolvable using declaration in a
6801/// class is followed by a declaration which would hide or override
6802/// one or more of the using decl's targets; for example:
6803///
6804///   struct Base { void foo(int); };
6805///   struct Derived : Base {
6806///     using Base::foo;
6807///     void foo(int);
6808///   };
6809///
6810/// The governing language is C++03 [namespace.udecl]p12:
6811///
6812///   When a using-declaration brings names from a base class into a
6813///   derived class scope, member functions in the derived class
6814///   override and/or hide member functions with the same name and
6815///   parameter types in a base class (rather than conflicting).
6816///
6817/// There are two ways to implement this:
6818///   (1) optimistically create shadow decls when they're not hidden
6819///       by existing declarations, or
6820///   (2) don't create any shadow decls (or at least don't make them
6821///       visible) until we've fully parsed/instantiated the class.
6822/// The problem with (1) is that we might have to retroactively remove
6823/// a shadow decl, which requires several O(n) operations because the
6824/// decl structures are (very reasonably) not designed for removal.
6825/// (2) avoids this but is very fiddly and phase-dependent.
6826void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6827  if (Shadow->getDeclName().getNameKind() ==
6828        DeclarationName::CXXConversionFunctionName)
6829    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6830
6831  // Remove it from the DeclContext...
6832  Shadow->getDeclContext()->removeDecl(Shadow);
6833
6834  // ...and the scope, if applicable...
6835  if (S) {
6836    S->RemoveDecl(Shadow);
6837    IdResolver.RemoveDecl(Shadow);
6838  }
6839
6840  // ...and the using decl.
6841  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6842
6843  // TODO: complain somehow if Shadow was used.  It shouldn't
6844  // be possible for this to happen, because...?
6845}
6846
6847/// Builds a using declaration.
6848///
6849/// \param IsInstantiation - Whether this call arises from an
6850///   instantiation of an unresolved using declaration.  We treat
6851///   the lookup differently for these declarations.
6852NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6853                                       SourceLocation UsingLoc,
6854                                       CXXScopeSpec &SS,
6855                                       const DeclarationNameInfo &NameInfo,
6856                                       AttributeList *AttrList,
6857                                       bool IsInstantiation,
6858                                       bool IsTypeName,
6859                                       SourceLocation TypenameLoc) {
6860  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6861  SourceLocation IdentLoc = NameInfo.getLoc();
6862  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6863
6864  // FIXME: We ignore attributes for now.
6865
6866  if (SS.isEmpty()) {
6867    Diag(IdentLoc, diag::err_using_requires_qualname);
6868    return 0;
6869  }
6870
6871  // Do the redeclaration lookup in the current scope.
6872  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6873                        ForRedeclaration);
6874  Previous.setHideTags(false);
6875  if (S) {
6876    LookupName(Previous, S);
6877
6878    // It is really dumb that we have to do this.
6879    LookupResult::Filter F = Previous.makeFilter();
6880    while (F.hasNext()) {
6881      NamedDecl *D = F.next();
6882      if (!isDeclInScope(D, CurContext, S))
6883        F.erase();
6884    }
6885    F.done();
6886  } else {
6887    assert(IsInstantiation && "no scope in non-instantiation");
6888    assert(CurContext->isRecord() && "scope not record in instantiation");
6889    LookupQualifiedName(Previous, CurContext);
6890  }
6891
6892  // Check for invalid redeclarations.
6893  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6894    return 0;
6895
6896  // Check for bad qualifiers.
6897  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6898    return 0;
6899
6900  DeclContext *LookupContext = computeDeclContext(SS);
6901  NamedDecl *D;
6902  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6903  if (!LookupContext) {
6904    if (IsTypeName) {
6905      // FIXME: not all declaration name kinds are legal here
6906      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6907                                              UsingLoc, TypenameLoc,
6908                                              QualifierLoc,
6909                                              IdentLoc, NameInfo.getName());
6910    } else {
6911      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6912                                           QualifierLoc, NameInfo);
6913    }
6914  } else {
6915    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6916                          NameInfo, IsTypeName);
6917  }
6918  D->setAccess(AS);
6919  CurContext->addDecl(D);
6920
6921  if (!LookupContext) return D;
6922  UsingDecl *UD = cast<UsingDecl>(D);
6923
6924  if (RequireCompleteDeclContext(SS, LookupContext)) {
6925    UD->setInvalidDecl();
6926    return UD;
6927  }
6928
6929  // The normal rules do not apply to inheriting constructor declarations.
6930  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6931    if (CheckInheritingConstructorUsingDecl(UD))
6932      UD->setInvalidDecl();
6933    return UD;
6934  }
6935
6936  // Otherwise, look up the target name.
6937
6938  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6939
6940  // Unlike most lookups, we don't always want to hide tag
6941  // declarations: tag names are visible through the using declaration
6942  // even if hidden by ordinary names, *except* in a dependent context
6943  // where it's important for the sanity of two-phase lookup.
6944  if (!IsInstantiation)
6945    R.setHideTags(false);
6946
6947  // For the purposes of this lookup, we have a base object type
6948  // equal to that of the current context.
6949  if (CurContext->isRecord()) {
6950    R.setBaseObjectType(
6951                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6952  }
6953
6954  LookupQualifiedName(R, LookupContext);
6955
6956  if (R.empty()) {
6957    Diag(IdentLoc, diag::err_no_member)
6958      << NameInfo.getName() << LookupContext << SS.getRange();
6959    UD->setInvalidDecl();
6960    return UD;
6961  }
6962
6963  if (R.isAmbiguous()) {
6964    UD->setInvalidDecl();
6965    return UD;
6966  }
6967
6968  if (IsTypeName) {
6969    // If we asked for a typename and got a non-type decl, error out.
6970    if (!R.getAsSingle<TypeDecl>()) {
6971      Diag(IdentLoc, diag::err_using_typename_non_type);
6972      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6973        Diag((*I)->getUnderlyingDecl()->getLocation(),
6974             diag::note_using_decl_target);
6975      UD->setInvalidDecl();
6976      return UD;
6977    }
6978  } else {
6979    // If we asked for a non-typename and we got a type, error out,
6980    // but only if this is an instantiation of an unresolved using
6981    // decl.  Otherwise just silently find the type name.
6982    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6983      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6984      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6985      UD->setInvalidDecl();
6986      return UD;
6987    }
6988  }
6989
6990  // C++0x N2914 [namespace.udecl]p6:
6991  // A using-declaration shall not name a namespace.
6992  if (R.getAsSingle<NamespaceDecl>()) {
6993    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6994      << SS.getRange();
6995    UD->setInvalidDecl();
6996    return UD;
6997  }
6998
6999  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7000    if (!CheckUsingShadowDecl(UD, *I, Previous))
7001      BuildUsingShadowDecl(S, UD, *I);
7002  }
7003
7004  return UD;
7005}
7006
7007/// Additional checks for a using declaration referring to a constructor name.
7008bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7009  assert(!UD->isTypeName() && "expecting a constructor name");
7010
7011  const Type *SourceType = UD->getQualifier()->getAsType();
7012  assert(SourceType &&
7013         "Using decl naming constructor doesn't have type in scope spec.");
7014  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7015
7016  // Check whether the named type is a direct base class.
7017  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7018  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7019  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7020       BaseIt != BaseE; ++BaseIt) {
7021    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7022    if (CanonicalSourceType == BaseType)
7023      break;
7024    if (BaseIt->getType()->isDependentType())
7025      break;
7026  }
7027
7028  if (BaseIt == BaseE) {
7029    // Did not find SourceType in the bases.
7030    Diag(UD->getUsingLocation(),
7031         diag::err_using_decl_constructor_not_in_direct_base)
7032      << UD->getNameInfo().getSourceRange()
7033      << QualType(SourceType, 0) << TargetClass;
7034    return true;
7035  }
7036
7037  if (!CurContext->isDependentContext())
7038    BaseIt->setInheritConstructors();
7039
7040  return false;
7041}
7042
7043/// Checks that the given using declaration is not an invalid
7044/// redeclaration.  Note that this is checking only for the using decl
7045/// itself, not for any ill-formedness among the UsingShadowDecls.
7046bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7047                                       bool isTypeName,
7048                                       const CXXScopeSpec &SS,
7049                                       SourceLocation NameLoc,
7050                                       const LookupResult &Prev) {
7051  // C++03 [namespace.udecl]p8:
7052  // C++0x [namespace.udecl]p10:
7053  //   A using-declaration is a declaration and can therefore be used
7054  //   repeatedly where (and only where) multiple declarations are
7055  //   allowed.
7056  //
7057  // That's in non-member contexts.
7058  if (!CurContext->getRedeclContext()->isRecord())
7059    return false;
7060
7061  NestedNameSpecifier *Qual
7062    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7063
7064  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7065    NamedDecl *D = *I;
7066
7067    bool DTypename;
7068    NestedNameSpecifier *DQual;
7069    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7070      DTypename = UD->isTypeName();
7071      DQual = UD->getQualifier();
7072    } else if (UnresolvedUsingValueDecl *UD
7073                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7074      DTypename = false;
7075      DQual = UD->getQualifier();
7076    } else if (UnresolvedUsingTypenameDecl *UD
7077                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7078      DTypename = true;
7079      DQual = UD->getQualifier();
7080    } else continue;
7081
7082    // using decls differ if one says 'typename' and the other doesn't.
7083    // FIXME: non-dependent using decls?
7084    if (isTypeName != DTypename) continue;
7085
7086    // using decls differ if they name different scopes (but note that
7087    // template instantiation can cause this check to trigger when it
7088    // didn't before instantiation).
7089    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7090        Context.getCanonicalNestedNameSpecifier(DQual))
7091      continue;
7092
7093    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7094    Diag(D->getLocation(), diag::note_using_decl) << 1;
7095    return true;
7096  }
7097
7098  return false;
7099}
7100
7101
7102/// Checks that the given nested-name qualifier used in a using decl
7103/// in the current context is appropriately related to the current
7104/// scope.  If an error is found, diagnoses it and returns true.
7105bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7106                                   const CXXScopeSpec &SS,
7107                                   SourceLocation NameLoc) {
7108  DeclContext *NamedContext = computeDeclContext(SS);
7109
7110  if (!CurContext->isRecord()) {
7111    // C++03 [namespace.udecl]p3:
7112    // C++0x [namespace.udecl]p8:
7113    //   A using-declaration for a class member shall be a member-declaration.
7114
7115    // If we weren't able to compute a valid scope, it must be a
7116    // dependent class scope.
7117    if (!NamedContext || NamedContext->isRecord()) {
7118      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7119        << SS.getRange();
7120      return true;
7121    }
7122
7123    // Otherwise, everything is known to be fine.
7124    return false;
7125  }
7126
7127  // The current scope is a record.
7128
7129  // If the named context is dependent, we can't decide much.
7130  if (!NamedContext) {
7131    // FIXME: in C++0x, we can diagnose if we can prove that the
7132    // nested-name-specifier does not refer to a base class, which is
7133    // still possible in some cases.
7134
7135    // Otherwise we have to conservatively report that things might be
7136    // okay.
7137    return false;
7138  }
7139
7140  if (!NamedContext->isRecord()) {
7141    // Ideally this would point at the last name in the specifier,
7142    // but we don't have that level of source info.
7143    Diag(SS.getRange().getBegin(),
7144         diag::err_using_decl_nested_name_specifier_is_not_class)
7145      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7146    return true;
7147  }
7148
7149  if (!NamedContext->isDependentContext() &&
7150      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7151    return true;
7152
7153  if (getLangOpts().CPlusPlus11) {
7154    // C++0x [namespace.udecl]p3:
7155    //   In a using-declaration used as a member-declaration, the
7156    //   nested-name-specifier shall name a base class of the class
7157    //   being defined.
7158
7159    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7160                                 cast<CXXRecordDecl>(NamedContext))) {
7161      if (CurContext == NamedContext) {
7162        Diag(NameLoc,
7163             diag::err_using_decl_nested_name_specifier_is_current_class)
7164          << SS.getRange();
7165        return true;
7166      }
7167
7168      Diag(SS.getRange().getBegin(),
7169           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7170        << (NestedNameSpecifier*) SS.getScopeRep()
7171        << cast<CXXRecordDecl>(CurContext)
7172        << SS.getRange();
7173      return true;
7174    }
7175
7176    return false;
7177  }
7178
7179  // C++03 [namespace.udecl]p4:
7180  //   A using-declaration used as a member-declaration shall refer
7181  //   to a member of a base class of the class being defined [etc.].
7182
7183  // Salient point: SS doesn't have to name a base class as long as
7184  // lookup only finds members from base classes.  Therefore we can
7185  // diagnose here only if we can prove that that can't happen,
7186  // i.e. if the class hierarchies provably don't intersect.
7187
7188  // TODO: it would be nice if "definitely valid" results were cached
7189  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7190  // need to be repeated.
7191
7192  struct UserData {
7193    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7194
7195    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7196      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7197      Data->Bases.insert(Base);
7198      return true;
7199    }
7200
7201    bool hasDependentBases(const CXXRecordDecl *Class) {
7202      return !Class->forallBases(collect, this);
7203    }
7204
7205    /// Returns true if the base is dependent or is one of the
7206    /// accumulated base classes.
7207    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7208      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7209      return !Data->Bases.count(Base);
7210    }
7211
7212    bool mightShareBases(const CXXRecordDecl *Class) {
7213      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7214    }
7215  };
7216
7217  UserData Data;
7218
7219  // Returns false if we find a dependent base.
7220  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7221    return false;
7222
7223  // Returns false if the class has a dependent base or if it or one
7224  // of its bases is present in the base set of the current context.
7225  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7226    return false;
7227
7228  Diag(SS.getRange().getBegin(),
7229       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7230    << (NestedNameSpecifier*) SS.getScopeRep()
7231    << cast<CXXRecordDecl>(CurContext)
7232    << SS.getRange();
7233
7234  return true;
7235}
7236
7237Decl *Sema::ActOnAliasDeclaration(Scope *S,
7238                                  AccessSpecifier AS,
7239                                  MultiTemplateParamsArg TemplateParamLists,
7240                                  SourceLocation UsingLoc,
7241                                  UnqualifiedId &Name,
7242                                  AttributeList *AttrList,
7243                                  TypeResult Type) {
7244  // Skip up to the relevant declaration scope.
7245  while (S->getFlags() & Scope::TemplateParamScope)
7246    S = S->getParent();
7247  assert((S->getFlags() & Scope::DeclScope) &&
7248         "got alias-declaration outside of declaration scope");
7249
7250  if (Type.isInvalid())
7251    return 0;
7252
7253  bool Invalid = false;
7254  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7255  TypeSourceInfo *TInfo = 0;
7256  GetTypeFromParser(Type.get(), &TInfo);
7257
7258  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7259    return 0;
7260
7261  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7262                                      UPPC_DeclarationType)) {
7263    Invalid = true;
7264    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7265                                             TInfo->getTypeLoc().getBeginLoc());
7266  }
7267
7268  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7269  LookupName(Previous, S);
7270
7271  // Warn about shadowing the name of a template parameter.
7272  if (Previous.isSingleResult() &&
7273      Previous.getFoundDecl()->isTemplateParameter()) {
7274    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7275    Previous.clear();
7276  }
7277
7278  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7279         "name in alias declaration must be an identifier");
7280  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7281                                               Name.StartLocation,
7282                                               Name.Identifier, TInfo);
7283
7284  NewTD->setAccess(AS);
7285
7286  if (Invalid)
7287    NewTD->setInvalidDecl();
7288
7289  ProcessDeclAttributeList(S, NewTD, AttrList);
7290
7291  CheckTypedefForVariablyModifiedType(S, NewTD);
7292  Invalid |= NewTD->isInvalidDecl();
7293
7294  bool Redeclaration = false;
7295
7296  NamedDecl *NewND;
7297  if (TemplateParamLists.size()) {
7298    TypeAliasTemplateDecl *OldDecl = 0;
7299    TemplateParameterList *OldTemplateParams = 0;
7300
7301    if (TemplateParamLists.size() != 1) {
7302      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7303        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7304         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7305    }
7306    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7307
7308    // Only consider previous declarations in the same scope.
7309    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7310                         /*ExplicitInstantiationOrSpecialization*/false);
7311    if (!Previous.empty()) {
7312      Redeclaration = true;
7313
7314      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7315      if (!OldDecl && !Invalid) {
7316        Diag(UsingLoc, diag::err_redefinition_different_kind)
7317          << Name.Identifier;
7318
7319        NamedDecl *OldD = Previous.getRepresentativeDecl();
7320        if (OldD->getLocation().isValid())
7321          Diag(OldD->getLocation(), diag::note_previous_definition);
7322
7323        Invalid = true;
7324      }
7325
7326      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7327        if (TemplateParameterListsAreEqual(TemplateParams,
7328                                           OldDecl->getTemplateParameters(),
7329                                           /*Complain=*/true,
7330                                           TPL_TemplateMatch))
7331          OldTemplateParams = OldDecl->getTemplateParameters();
7332        else
7333          Invalid = true;
7334
7335        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7336        if (!Invalid &&
7337            !Context.hasSameType(OldTD->getUnderlyingType(),
7338                                 NewTD->getUnderlyingType())) {
7339          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7340          // but we can't reasonably accept it.
7341          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7342            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7343          if (OldTD->getLocation().isValid())
7344            Diag(OldTD->getLocation(), diag::note_previous_definition);
7345          Invalid = true;
7346        }
7347      }
7348    }
7349
7350    // Merge any previous default template arguments into our parameters,
7351    // and check the parameter list.
7352    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7353                                   TPC_TypeAliasTemplate))
7354      return 0;
7355
7356    TypeAliasTemplateDecl *NewDecl =
7357      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7358                                    Name.Identifier, TemplateParams,
7359                                    NewTD);
7360
7361    NewDecl->setAccess(AS);
7362
7363    if (Invalid)
7364      NewDecl->setInvalidDecl();
7365    else if (OldDecl)
7366      NewDecl->setPreviousDeclaration(OldDecl);
7367
7368    NewND = NewDecl;
7369  } else {
7370    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7371    NewND = NewTD;
7372  }
7373
7374  if (!Redeclaration)
7375    PushOnScopeChains(NewND, S);
7376
7377  ActOnDocumentableDecl(NewND);
7378  return NewND;
7379}
7380
7381Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7382                                             SourceLocation NamespaceLoc,
7383                                             SourceLocation AliasLoc,
7384                                             IdentifierInfo *Alias,
7385                                             CXXScopeSpec &SS,
7386                                             SourceLocation IdentLoc,
7387                                             IdentifierInfo *Ident) {
7388
7389  // Lookup the namespace name.
7390  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7391  LookupParsedName(R, S, &SS);
7392
7393  // Check if we have a previous declaration with the same name.
7394  NamedDecl *PrevDecl
7395    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7396                       ForRedeclaration);
7397  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7398    PrevDecl = 0;
7399
7400  if (PrevDecl) {
7401    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7402      // We already have an alias with the same name that points to the same
7403      // namespace, so don't create a new one.
7404      // FIXME: At some point, we'll want to create the (redundant)
7405      // declaration to maintain better source information.
7406      if (!R.isAmbiguous() && !R.empty() &&
7407          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7408        return 0;
7409    }
7410
7411    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7412      diag::err_redefinition_different_kind;
7413    Diag(AliasLoc, DiagID) << Alias;
7414    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7415    return 0;
7416  }
7417
7418  if (R.isAmbiguous())
7419    return 0;
7420
7421  if (R.empty()) {
7422    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7423      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7424      return 0;
7425    }
7426  }
7427
7428  NamespaceAliasDecl *AliasDecl =
7429    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7430                               Alias, SS.getWithLocInContext(Context),
7431                               IdentLoc, R.getFoundDecl());
7432
7433  PushOnScopeChains(AliasDecl, S);
7434  return AliasDecl;
7435}
7436
7437Sema::ImplicitExceptionSpecification
7438Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7439                                               CXXMethodDecl *MD) {
7440  CXXRecordDecl *ClassDecl = MD->getParent();
7441
7442  // C++ [except.spec]p14:
7443  //   An implicitly declared special member function (Clause 12) shall have an
7444  //   exception-specification. [...]
7445  ImplicitExceptionSpecification ExceptSpec(*this);
7446  if (ClassDecl->isInvalidDecl())
7447    return ExceptSpec;
7448
7449  // Direct base-class constructors.
7450  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7451                                       BEnd = ClassDecl->bases_end();
7452       B != BEnd; ++B) {
7453    if (B->isVirtual()) // Handled below.
7454      continue;
7455
7456    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7457      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7458      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7459      // If this is a deleted function, add it anyway. This might be conformant
7460      // with the standard. This might not. I'm not sure. It might not matter.
7461      if (Constructor)
7462        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7463    }
7464  }
7465
7466  // Virtual base-class constructors.
7467  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7468                                       BEnd = ClassDecl->vbases_end();
7469       B != BEnd; ++B) {
7470    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7471      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7472      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7473      // If this is a deleted function, add it anyway. This might be conformant
7474      // with the standard. This might not. I'm not sure. It might not matter.
7475      if (Constructor)
7476        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7477    }
7478  }
7479
7480  // Field constructors.
7481  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7482                               FEnd = ClassDecl->field_end();
7483       F != FEnd; ++F) {
7484    if (F->hasInClassInitializer()) {
7485      if (Expr *E = F->getInClassInitializer())
7486        ExceptSpec.CalledExpr(E);
7487      else if (!F->isInvalidDecl())
7488        // DR1351:
7489        //   If the brace-or-equal-initializer of a non-static data member
7490        //   invokes a defaulted default constructor of its class or of an
7491        //   enclosing class in a potentially evaluated subexpression, the
7492        //   program is ill-formed.
7493        //
7494        // This resolution is unworkable: the exception specification of the
7495        // default constructor can be needed in an unevaluated context, in
7496        // particular, in the operand of a noexcept-expression, and we can be
7497        // unable to compute an exception specification for an enclosed class.
7498        //
7499        // We do not allow an in-class initializer to require the evaluation
7500        // of the exception specification for any in-class initializer whose
7501        // definition is not lexically complete.
7502        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7503    } else if (const RecordType *RecordTy
7504              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7505      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7506      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7507      // If this is a deleted function, add it anyway. This might be conformant
7508      // with the standard. This might not. I'm not sure. It might not matter.
7509      // In particular, the problem is that this function never gets called. It
7510      // might just be ill-formed because this function attempts to refer to
7511      // a deleted function here.
7512      if (Constructor)
7513        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7514    }
7515  }
7516
7517  return ExceptSpec;
7518}
7519
7520Sema::ImplicitExceptionSpecification
7521Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
7522  CXXRecordDecl *ClassDecl = CD->getParent();
7523
7524  // C++ [except.spec]p14:
7525  //   An inheriting constructor [...] shall have an exception-specification. [...]
7526  ImplicitExceptionSpecification ExceptSpec(*this);
7527  if (ClassDecl->isInvalidDecl())
7528    return ExceptSpec;
7529
7530  // Inherited constructor.
7531  const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
7532  const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
7533  // FIXME: Copying or moving the parameters could add extra exceptions to the
7534  // set, as could the default arguments for the inherited constructor. This
7535  // will be addressed when we implement the resolution of core issue 1351.
7536  ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
7537
7538  // Direct base-class constructors.
7539  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7540                                       BEnd = ClassDecl->bases_end();
7541       B != BEnd; ++B) {
7542    if (B->isVirtual()) // Handled below.
7543      continue;
7544
7545    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7546      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7547      if (BaseClassDecl == InheritedDecl)
7548        continue;
7549      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7550      if (Constructor)
7551        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7552    }
7553  }
7554
7555  // Virtual base-class constructors.
7556  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7557                                       BEnd = ClassDecl->vbases_end();
7558       B != BEnd; ++B) {
7559    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7560      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7561      if (BaseClassDecl == InheritedDecl)
7562        continue;
7563      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7564      if (Constructor)
7565        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7566    }
7567  }
7568
7569  // Field constructors.
7570  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7571                               FEnd = ClassDecl->field_end();
7572       F != FEnd; ++F) {
7573    if (F->hasInClassInitializer()) {
7574      if (Expr *E = F->getInClassInitializer())
7575        ExceptSpec.CalledExpr(E);
7576      else if (!F->isInvalidDecl())
7577        Diag(CD->getLocation(),
7578             diag::err_in_class_initializer_references_def_ctor) << CD;
7579    } else if (const RecordType *RecordTy
7580              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7581      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7582      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7583      if (Constructor)
7584        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7585    }
7586  }
7587
7588  return ExceptSpec;
7589}
7590
7591namespace {
7592/// RAII object to register a special member as being currently declared.
7593struct DeclaringSpecialMember {
7594  Sema &S;
7595  Sema::SpecialMemberDecl D;
7596  bool WasAlreadyBeingDeclared;
7597
7598  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
7599    : S(S), D(RD, CSM) {
7600    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
7601    if (WasAlreadyBeingDeclared)
7602      // This almost never happens, but if it does, ensure that our cache
7603      // doesn't contain a stale result.
7604      S.SpecialMemberCache.clear();
7605
7606    // FIXME: Register a note to be produced if we encounter an error while
7607    // declaring the special member.
7608  }
7609  ~DeclaringSpecialMember() {
7610    if (!WasAlreadyBeingDeclared)
7611      S.SpecialMembersBeingDeclared.erase(D);
7612  }
7613
7614  /// \brief Are we already trying to declare this special member?
7615  bool isAlreadyBeingDeclared() const {
7616    return WasAlreadyBeingDeclared;
7617  }
7618};
7619}
7620
7621CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7622                                                     CXXRecordDecl *ClassDecl) {
7623  // C++ [class.ctor]p5:
7624  //   A default constructor for a class X is a constructor of class X
7625  //   that can be called without an argument. If there is no
7626  //   user-declared constructor for class X, a default constructor is
7627  //   implicitly declared. An implicitly-declared default constructor
7628  //   is an inline public member of its class.
7629  assert(ClassDecl->needsImplicitDefaultConstructor() &&
7630         "Should not build implicit default constructor!");
7631
7632  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
7633  if (DSM.isAlreadyBeingDeclared())
7634    return 0;
7635
7636  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
7637                                                     CXXDefaultConstructor,
7638                                                     false);
7639
7640  // Create the actual constructor declaration.
7641  CanQualType ClassType
7642    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7643  SourceLocation ClassLoc = ClassDecl->getLocation();
7644  DeclarationName Name
7645    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7646  DeclarationNameInfo NameInfo(Name, ClassLoc);
7647  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7648      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
7649      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7650      Constexpr);
7651  DefaultCon->setAccess(AS_public);
7652  DefaultCon->setDefaulted();
7653  DefaultCon->setImplicit();
7654
7655  // Build an exception specification pointing back at this constructor.
7656  FunctionProtoType::ExtProtoInfo EPI;
7657  EPI.ExceptionSpecType = EST_Unevaluated;
7658  EPI.ExceptionSpecDecl = DefaultCon;
7659  DefaultCon->setType(Context.getFunctionType(Context.VoidTy,
7660                                              ArrayRef<QualType>(),
7661                                              EPI));
7662
7663  // We don't need to use SpecialMemberIsTrivial here; triviality for default
7664  // constructors is easy to compute.
7665  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7666
7667  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7668    SetDeclDeleted(DefaultCon, ClassLoc);
7669
7670  // Note that we have declared this constructor.
7671  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7672
7673  if (Scope *S = getScopeForContext(ClassDecl))
7674    PushOnScopeChains(DefaultCon, S, false);
7675  ClassDecl->addDecl(DefaultCon);
7676
7677  return DefaultCon;
7678}
7679
7680void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7681                                            CXXConstructorDecl *Constructor) {
7682  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7683          !Constructor->doesThisDeclarationHaveABody() &&
7684          !Constructor->isDeleted()) &&
7685    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7686
7687  CXXRecordDecl *ClassDecl = Constructor->getParent();
7688  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7689
7690  SynthesizedFunctionScope Scope(*this, Constructor);
7691  DiagnosticErrorTrap Trap(Diags);
7692  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7693      Trap.hasErrorOccurred()) {
7694    Diag(CurrentLocation, diag::note_member_synthesized_at)
7695      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7696    Constructor->setInvalidDecl();
7697    return;
7698  }
7699
7700  SourceLocation Loc = Constructor->getLocation();
7701  Constructor->setBody(new (Context) CompoundStmt(Loc));
7702
7703  Constructor->setUsed();
7704  MarkVTableUsed(CurrentLocation, ClassDecl);
7705
7706  if (ASTMutationListener *L = getASTMutationListener()) {
7707    L->CompletedImplicitDefinition(Constructor);
7708  }
7709}
7710
7711void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7712  // Check that any explicitly-defaulted methods have exception specifications
7713  // compatible with their implicit exception specifications.
7714  CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
7715}
7716
7717namespace {
7718/// Information on inheriting constructors to declare.
7719class InheritingConstructorInfo {
7720public:
7721  InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
7722      : SemaRef(SemaRef), Derived(Derived) {
7723    // Mark the constructors that we already have in the derived class.
7724    //
7725    // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7726    //   unless there is a user-declared constructor with the same signature in
7727    //   the class where the using-declaration appears.
7728    visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
7729  }
7730
7731  void inheritAll(CXXRecordDecl *RD) {
7732    visitAll(RD, &InheritingConstructorInfo::inherit);
7733  }
7734
7735private:
7736  /// Information about an inheriting constructor.
7737  struct InheritingConstructor {
7738    InheritingConstructor()
7739      : DeclaredInDerived(false), BaseCtor(0), DerivedCtor(0) {}
7740
7741    /// If \c true, a constructor with this signature is already declared
7742    /// in the derived class.
7743    bool DeclaredInDerived;
7744
7745    /// The constructor which is inherited.
7746    const CXXConstructorDecl *BaseCtor;
7747
7748    /// The derived constructor we declared.
7749    CXXConstructorDecl *DerivedCtor;
7750  };
7751
7752  /// Inheriting constructors with a given canonical type. There can be at
7753  /// most one such non-template constructor, and any number of templated
7754  /// constructors.
7755  struct InheritingConstructorsForType {
7756    InheritingConstructor NonTemplate;
7757    llvm::SmallVector<
7758      std::pair<TemplateParameterList*, InheritingConstructor>, 4> Templates;
7759
7760    InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
7761      if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
7762        TemplateParameterList *ParamList = FTD->getTemplateParameters();
7763        for (unsigned I = 0, N = Templates.size(); I != N; ++I)
7764          if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
7765                                               false, S.TPL_TemplateMatch))
7766            return Templates[I].second;
7767        Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
7768        return Templates.back().second;
7769      }
7770
7771      return NonTemplate;
7772    }
7773  };
7774
7775  /// Get or create the inheriting constructor record for a constructor.
7776  InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
7777                                  QualType CtorType) {
7778    return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
7779        .getEntry(SemaRef, Ctor);
7780  }
7781
7782  typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
7783
7784  /// Process all constructors for a class.
7785  void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
7786    for (CXXRecordDecl::ctor_iterator CtorIt = RD->ctor_begin(),
7787                                      CtorE = RD->ctor_end();
7788         CtorIt != CtorE; ++CtorIt)
7789      (this->*Callback)(*CtorIt);
7790    for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
7791             I(RD->decls_begin()), E(RD->decls_end());
7792         I != E; ++I) {
7793      const FunctionDecl *FD = (*I)->getTemplatedDecl();
7794      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
7795        (this->*Callback)(CD);
7796    }
7797  }
7798
7799  /// Note that a constructor (or constructor template) was declared in Derived.
7800  void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
7801    getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
7802  }
7803
7804  /// Inherit a single constructor.
7805  void inherit(const CXXConstructorDecl *Ctor) {
7806    const FunctionProtoType *CtorType =
7807        Ctor->getType()->castAs<FunctionProtoType>();
7808    ArrayRef<QualType> ArgTypes(CtorType->getArgTypes());
7809    FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
7810
7811    SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
7812
7813    // Core issue (no number yet): the ellipsis is always discarded.
7814    if (EPI.Variadic) {
7815      SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
7816      SemaRef.Diag(Ctor->getLocation(),
7817                   diag::note_using_decl_constructor_ellipsis);
7818      EPI.Variadic = false;
7819    }
7820
7821    // Declare a constructor for each number of parameters.
7822    //
7823    // C++11 [class.inhctor]p1:
7824    //   The candidate set of inherited constructors from the class X named in
7825    //   the using-declaration consists of [... modulo defects ...] for each
7826    //   constructor or constructor template of X, the set of constructors or
7827    //   constructor templates that results from omitting any ellipsis parameter
7828    //   specification and successively omitting parameters with a default
7829    //   argument from the end of the parameter-type-list
7830    unsigned MinParams = minParamsToInherit(Ctor);
7831    unsigned Params = Ctor->getNumParams();
7832    if (Params >= MinParams) {
7833      do
7834        declareCtor(UsingLoc, Ctor,
7835                    SemaRef.Context.getFunctionType(
7836                        Ctor->getResultType(), ArgTypes.slice(0, Params), EPI));
7837      while (Params > MinParams &&
7838             Ctor->getParamDecl(--Params)->hasDefaultArg());
7839    }
7840  }
7841
7842  /// Find the using-declaration which specified that we should inherit the
7843  /// constructors of \p Base.
7844  SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
7845    // No fancy lookup required; just look for the base constructor name
7846    // directly within the derived class.
7847    ASTContext &Context = SemaRef.Context;
7848    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
7849        Context.getCanonicalType(Context.getRecordType(Base)));
7850    DeclContext::lookup_const_result Decls = Derived->lookup(Name);
7851    return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
7852  }
7853
7854  unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
7855    // C++11 [class.inhctor]p3:
7856    //   [F]or each constructor template in the candidate set of inherited
7857    //   constructors, a constructor template is implicitly declared
7858    if (Ctor->getDescribedFunctionTemplate())
7859      return 0;
7860
7861    //   For each non-template constructor in the candidate set of inherited
7862    //   constructors other than a constructor having no parameters or a
7863    //   copy/move constructor having a single parameter, a constructor is
7864    //   implicitly declared [...]
7865    if (Ctor->getNumParams() == 0)
7866      return 1;
7867    if (Ctor->isCopyOrMoveConstructor())
7868      return 2;
7869
7870    // Per discussion on core reflector, never inherit a constructor which
7871    // would become a default, copy, or move constructor of Derived either.
7872    const ParmVarDecl *PD = Ctor->getParamDecl(0);
7873    const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
7874    return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
7875  }
7876
7877  /// Declare a single inheriting constructor, inheriting the specified
7878  /// constructor, with the given type.
7879  void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
7880                   QualType DerivedType) {
7881    InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
7882
7883    // C++11 [class.inhctor]p3:
7884    //   ... a constructor is implicitly declared with the same constructor
7885    //   characteristics unless there is a user-declared constructor with
7886    //   the same signature in the class where the using-declaration appears
7887    if (Entry.DeclaredInDerived)
7888      return;
7889
7890    // C++11 [class.inhctor]p7:
7891    //   If two using-declarations declare inheriting constructors with the
7892    //   same signature, the program is ill-formed
7893    if (Entry.DerivedCtor) {
7894      if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
7895        // Only diagnose this once per constructor.
7896        if (Entry.DerivedCtor->isInvalidDecl())
7897          return;
7898        Entry.DerivedCtor->setInvalidDecl();
7899
7900        SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7901        SemaRef.Diag(BaseCtor->getLocation(),
7902                     diag::note_using_decl_constructor_conflict_current_ctor);
7903        SemaRef.Diag(Entry.BaseCtor->getLocation(),
7904                     diag::note_using_decl_constructor_conflict_previous_ctor);
7905        SemaRef.Diag(Entry.DerivedCtor->getLocation(),
7906                     diag::note_using_decl_constructor_conflict_previous_using);
7907      } else {
7908        // Core issue (no number): if the same inheriting constructor is
7909        // produced by multiple base class constructors from the same base
7910        // class, the inheriting constructor is defined as deleted.
7911        SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
7912      }
7913
7914      return;
7915    }
7916
7917    ASTContext &Context = SemaRef.Context;
7918    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
7919        Context.getCanonicalType(Context.getRecordType(Derived)));
7920    DeclarationNameInfo NameInfo(Name, UsingLoc);
7921
7922    TemplateParameterList *TemplateParams = 0;
7923    if (const FunctionTemplateDecl *FTD =
7924            BaseCtor->getDescribedFunctionTemplate()) {
7925      TemplateParams = FTD->getTemplateParameters();
7926      // We're reusing template parameters from a different DeclContext. This
7927      // is questionable at best, but works out because the template depth in
7928      // both places is guaranteed to be 0.
7929      // FIXME: Rebuild the template parameters in the new context, and
7930      // transform the function type to refer to them.
7931    }
7932
7933    // Build type source info pointing at the using-declaration. This is
7934    // required by template instantiation.
7935    TypeSourceInfo *TInfo =
7936        Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
7937    FunctionProtoTypeLoc ProtoLoc =
7938        TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
7939
7940    CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
7941        Context, Derived, UsingLoc, NameInfo, DerivedType,
7942        TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
7943        /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
7944
7945    // Build an unevaluated exception specification for this constructor.
7946    const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
7947    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7948    EPI.ExceptionSpecType = EST_Unevaluated;
7949    EPI.ExceptionSpecDecl = DerivedCtor;
7950    DerivedCtor->setType(Context.getFunctionType(FPT->getResultType(),
7951                                                 FPT->getArgTypes(), EPI));
7952
7953    // Build the parameter declarations.
7954    SmallVector<ParmVarDecl *, 16> ParamDecls;
7955    for (unsigned I = 0, N = FPT->getNumArgs(); I != N; ++I) {
7956      TypeSourceInfo *TInfo =
7957          Context.getTrivialTypeSourceInfo(FPT->getArgType(I), UsingLoc);
7958      ParmVarDecl *PD = ParmVarDecl::Create(
7959          Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/0,
7960          FPT->getArgType(I), TInfo, SC_None, /*DefaultArg=*/0);
7961      PD->setScopeInfo(0, I);
7962      PD->setImplicit();
7963      ParamDecls.push_back(PD);
7964      ProtoLoc.setArg(I, PD);
7965    }
7966
7967    // Set up the new constructor.
7968    DerivedCtor->setAccess(BaseCtor->getAccess());
7969    DerivedCtor->setParams(ParamDecls);
7970    DerivedCtor->setInheritedConstructor(BaseCtor);
7971    if (BaseCtor->isDeleted())
7972      SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
7973
7974    // If this is a constructor template, build the template declaration.
7975    if (TemplateParams) {
7976      FunctionTemplateDecl *DerivedTemplate =
7977          FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
7978                                       TemplateParams, DerivedCtor);
7979      DerivedTemplate->setAccess(BaseCtor->getAccess());
7980      DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
7981      Derived->addDecl(DerivedTemplate);
7982    } else {
7983      Derived->addDecl(DerivedCtor);
7984    }
7985
7986    Entry.BaseCtor = BaseCtor;
7987    Entry.DerivedCtor = DerivedCtor;
7988  }
7989
7990  Sema &SemaRef;
7991  CXXRecordDecl *Derived;
7992  typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
7993  MapType Map;
7994};
7995}
7996
7997void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
7998  // Defer declaring the inheriting constructors until the class is
7999  // instantiated.
8000  if (ClassDecl->isDependentContext())
8001    return;
8002
8003  // Find base classes from which we might inherit constructors.
8004  SmallVector<CXXRecordDecl*, 4> InheritedBases;
8005  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
8006                                          BaseE = ClassDecl->bases_end();
8007       BaseIt != BaseE; ++BaseIt)
8008    if (BaseIt->getInheritConstructors())
8009      InheritedBases.push_back(BaseIt->getType()->getAsCXXRecordDecl());
8010
8011  // Go no further if we're not inheriting any constructors.
8012  if (InheritedBases.empty())
8013    return;
8014
8015  // Declare the inherited constructors.
8016  InheritingConstructorInfo ICI(*this, ClassDecl);
8017  for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
8018    ICI.inheritAll(InheritedBases[I]);
8019}
8020
8021void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
8022                                       CXXConstructorDecl *Constructor) {
8023  CXXRecordDecl *ClassDecl = Constructor->getParent();
8024  assert(Constructor->getInheritedConstructor() &&
8025         !Constructor->doesThisDeclarationHaveABody() &&
8026         !Constructor->isDeleted());
8027
8028  SynthesizedFunctionScope Scope(*this, Constructor);
8029  DiagnosticErrorTrap Trap(Diags);
8030  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8031      Trap.hasErrorOccurred()) {
8032    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
8033      << Context.getTagDeclType(ClassDecl);
8034    Constructor->setInvalidDecl();
8035    return;
8036  }
8037
8038  SourceLocation Loc = Constructor->getLocation();
8039  Constructor->setBody(new (Context) CompoundStmt(Loc));
8040
8041  Constructor->setUsed();
8042  MarkVTableUsed(CurrentLocation, ClassDecl);
8043
8044  if (ASTMutationListener *L = getASTMutationListener()) {
8045    L->CompletedImplicitDefinition(Constructor);
8046  }
8047}
8048
8049
8050Sema::ImplicitExceptionSpecification
8051Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
8052  CXXRecordDecl *ClassDecl = MD->getParent();
8053
8054  // C++ [except.spec]p14:
8055  //   An implicitly declared special member function (Clause 12) shall have
8056  //   an exception-specification.
8057  ImplicitExceptionSpecification ExceptSpec(*this);
8058  if (ClassDecl->isInvalidDecl())
8059    return ExceptSpec;
8060
8061  // Direct base-class destructors.
8062  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8063                                       BEnd = ClassDecl->bases_end();
8064       B != BEnd; ++B) {
8065    if (B->isVirtual()) // Handled below.
8066      continue;
8067
8068    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8069      ExceptSpec.CalledDecl(B->getLocStart(),
8070                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8071  }
8072
8073  // Virtual base-class destructors.
8074  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8075                                       BEnd = ClassDecl->vbases_end();
8076       B != BEnd; ++B) {
8077    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8078      ExceptSpec.CalledDecl(B->getLocStart(),
8079                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8080  }
8081
8082  // Field destructors.
8083  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8084                               FEnd = ClassDecl->field_end();
8085       F != FEnd; ++F) {
8086    if (const RecordType *RecordTy
8087        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
8088      ExceptSpec.CalledDecl(F->getLocation(),
8089                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
8090  }
8091
8092  return ExceptSpec;
8093}
8094
8095CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
8096  // C++ [class.dtor]p2:
8097  //   If a class has no user-declared destructor, a destructor is
8098  //   declared implicitly. An implicitly-declared destructor is an
8099  //   inline public member of its class.
8100  assert(ClassDecl->needsImplicitDestructor());
8101
8102  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
8103  if (DSM.isAlreadyBeingDeclared())
8104    return 0;
8105
8106  // Create the actual destructor declaration.
8107  CanQualType ClassType
8108    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8109  SourceLocation ClassLoc = ClassDecl->getLocation();
8110  DeclarationName Name
8111    = Context.DeclarationNames.getCXXDestructorName(ClassType);
8112  DeclarationNameInfo NameInfo(Name, ClassLoc);
8113  CXXDestructorDecl *Destructor
8114      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8115                                  QualType(), 0, /*isInline=*/true,
8116                                  /*isImplicitlyDeclared=*/true);
8117  Destructor->setAccess(AS_public);
8118  Destructor->setDefaulted();
8119  Destructor->setImplicit();
8120
8121  // Build an exception specification pointing back at this destructor.
8122  FunctionProtoType::ExtProtoInfo EPI;
8123  EPI.ExceptionSpecType = EST_Unevaluated;
8124  EPI.ExceptionSpecDecl = Destructor;
8125  Destructor->setType(Context.getFunctionType(Context.VoidTy,
8126                                              ArrayRef<QualType>(),
8127                                              EPI));
8128
8129  AddOverriddenMethods(ClassDecl, Destructor);
8130
8131  // We don't need to use SpecialMemberIsTrivial here; triviality for
8132  // destructors is easy to compute.
8133  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
8134
8135  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
8136    SetDeclDeleted(Destructor, ClassLoc);
8137
8138  // Note that we have declared this destructor.
8139  ++ASTContext::NumImplicitDestructorsDeclared;
8140
8141  // Introduce this destructor into its scope.
8142  if (Scope *S = getScopeForContext(ClassDecl))
8143    PushOnScopeChains(Destructor, S, false);
8144  ClassDecl->addDecl(Destructor);
8145
8146  return Destructor;
8147}
8148
8149void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
8150                                    CXXDestructorDecl *Destructor) {
8151  assert((Destructor->isDefaulted() &&
8152          !Destructor->doesThisDeclarationHaveABody() &&
8153          !Destructor->isDeleted()) &&
8154         "DefineImplicitDestructor - call it for implicit default dtor");
8155  CXXRecordDecl *ClassDecl = Destructor->getParent();
8156  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
8157
8158  if (Destructor->isInvalidDecl())
8159    return;
8160
8161  SynthesizedFunctionScope Scope(*this, Destructor);
8162
8163  DiagnosticErrorTrap Trap(Diags);
8164  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8165                                         Destructor->getParent());
8166
8167  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8168    Diag(CurrentLocation, diag::note_member_synthesized_at)
8169      << CXXDestructor << Context.getTagDeclType(ClassDecl);
8170
8171    Destructor->setInvalidDecl();
8172    return;
8173  }
8174
8175  SourceLocation Loc = Destructor->getLocation();
8176  Destructor->setBody(new (Context) CompoundStmt(Loc));
8177  Destructor->setImplicitlyDefined(true);
8178  Destructor->setUsed();
8179  MarkVTableUsed(CurrentLocation, ClassDecl);
8180
8181  if (ASTMutationListener *L = getASTMutationListener()) {
8182    L->CompletedImplicitDefinition(Destructor);
8183  }
8184}
8185
8186/// \brief Perform any semantic analysis which needs to be delayed until all
8187/// pending class member declarations have been parsed.
8188void Sema::ActOnFinishCXXMemberDecls() {
8189  // If the context is an invalid C++ class, just suppress these checks.
8190  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8191    if (Record->isInvalidDecl()) {
8192      DelayedDestructorExceptionSpecChecks.clear();
8193      return;
8194    }
8195  }
8196
8197  // Perform any deferred checking of exception specifications for virtual
8198  // destructors.
8199  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
8200       i != e; ++i) {
8201    const CXXDestructorDecl *Dtor =
8202        DelayedDestructorExceptionSpecChecks[i].first;
8203    assert(!Dtor->getParent()->isDependentType() &&
8204           "Should not ever add destructors of templates into the list.");
8205    CheckOverridingFunctionExceptionSpec(Dtor,
8206        DelayedDestructorExceptionSpecChecks[i].second);
8207  }
8208  DelayedDestructorExceptionSpecChecks.clear();
8209}
8210
8211void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8212                                         CXXDestructorDecl *Destructor) {
8213  assert(getLangOpts().CPlusPlus11 &&
8214         "adjusting dtor exception specs was introduced in c++11");
8215
8216  // C++11 [class.dtor]p3:
8217  //   A declaration of a destructor that does not have an exception-
8218  //   specification is implicitly considered to have the same exception-
8219  //   specification as an implicit declaration.
8220  const FunctionProtoType *DtorType = Destructor->getType()->
8221                                        getAs<FunctionProtoType>();
8222  if (DtorType->hasExceptionSpec())
8223    return;
8224
8225  // Replace the destructor's type, building off the existing one. Fortunately,
8226  // the only thing of interest in the destructor type is its extended info.
8227  // The return and arguments are fixed.
8228  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8229  EPI.ExceptionSpecType = EST_Unevaluated;
8230  EPI.ExceptionSpecDecl = Destructor;
8231  Destructor->setType(Context.getFunctionType(Context.VoidTy,
8232                                              ArrayRef<QualType>(),
8233                                              EPI));
8234
8235  // FIXME: If the destructor has a body that could throw, and the newly created
8236  // spec doesn't allow exceptions, we should emit a warning, because this
8237  // change in behavior can break conforming C++03 programs at runtime.
8238  // However, we don't have a body or an exception specification yet, so it
8239  // needs to be done somewhere else.
8240}
8241
8242/// When generating a defaulted copy or move assignment operator, if a field
8243/// should be copied with __builtin_memcpy rather than via explicit assignments,
8244/// do so. This optimization only applies for arrays of scalars, and for arrays
8245/// of class type where the selected copy/move-assignment operator is trivial.
8246static StmtResult
8247buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8248                           Expr *To, Expr *From) {
8249  // Compute the size of the memory buffer to be copied.
8250  QualType SizeType = S.Context.getSizeType();
8251  llvm::APInt Size(S.Context.getTypeSize(SizeType),
8252                   S.Context.getTypeSizeInChars(T).getQuantity());
8253
8254  // Take the address of the field references for "from" and "to". We
8255  // directly construct UnaryOperators here because semantic analysis
8256  // does not permit us to take the address of an xvalue.
8257  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8258                         S.Context.getPointerType(From->getType()),
8259                         VK_RValue, OK_Ordinary, Loc);
8260  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8261                       S.Context.getPointerType(To->getType()),
8262                       VK_RValue, OK_Ordinary, Loc);
8263
8264  const Type *E = T->getBaseElementTypeUnsafe();
8265  bool NeedsCollectableMemCpy =
8266    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8267
8268  // Create a reference to the __builtin_objc_memmove_collectable function
8269  StringRef MemCpyName = NeedsCollectableMemCpy ?
8270    "__builtin_objc_memmove_collectable" :
8271    "__builtin_memcpy";
8272  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8273                 Sema::LookupOrdinaryName);
8274  S.LookupName(R, S.TUScope, true);
8275
8276  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8277  if (!MemCpy)
8278    // Something went horribly wrong earlier, and we will have complained
8279    // about it.
8280    return StmtError();
8281
8282  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8283                                            VK_RValue, Loc, 0);
8284  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8285
8286  Expr *CallArgs[] = {
8287    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8288  };
8289  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8290                                    Loc, CallArgs, Loc);
8291
8292  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8293  return S.Owned(Call.takeAs<Stmt>());
8294}
8295
8296/// \brief Builds a statement that copies/moves the given entity from \p From to
8297/// \c To.
8298///
8299/// This routine is used to copy/move the members of a class with an
8300/// implicitly-declared copy/move assignment operator. When the entities being
8301/// copied are arrays, this routine builds for loops to copy them.
8302///
8303/// \param S The Sema object used for type-checking.
8304///
8305/// \param Loc The location where the implicit copy/move is being generated.
8306///
8307/// \param T The type of the expressions being copied/moved. Both expressions
8308/// must have this type.
8309///
8310/// \param To The expression we are copying/moving to.
8311///
8312/// \param From The expression we are copying/moving from.
8313///
8314/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8315/// Otherwise, it's a non-static member subobject.
8316///
8317/// \param Copying Whether we're copying or moving.
8318///
8319/// \param Depth Internal parameter recording the depth of the recursion.
8320///
8321/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8322/// if a memcpy should be used instead.
8323static StmtResult
8324buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8325                                 Expr *To, Expr *From,
8326                                 bool CopyingBaseSubobject, bool Copying,
8327                                 unsigned Depth = 0) {
8328  // C++11 [class.copy]p28:
8329  //   Each subobject is assigned in the manner appropriate to its type:
8330  //
8331  //     - if the subobject is of class type, as if by a call to operator= with
8332  //       the subobject as the object expression and the corresponding
8333  //       subobject of x as a single function argument (as if by explicit
8334  //       qualification; that is, ignoring any possible virtual overriding
8335  //       functions in more derived classes);
8336  //
8337  // C++03 [class.copy]p13:
8338  //     - if the subobject is of class type, the copy assignment operator for
8339  //       the class is used (as if by explicit qualification; that is,
8340  //       ignoring any possible virtual overriding functions in more derived
8341  //       classes);
8342  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8343    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8344
8345    // Look for operator=.
8346    DeclarationName Name
8347      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8348    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8349    S.LookupQualifiedName(OpLookup, ClassDecl, false);
8350
8351    // Prior to C++11, filter out any result that isn't a copy/move-assignment
8352    // operator.
8353    if (!S.getLangOpts().CPlusPlus11) {
8354      LookupResult::Filter F = OpLookup.makeFilter();
8355      while (F.hasNext()) {
8356        NamedDecl *D = F.next();
8357        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8358          if (Method->isCopyAssignmentOperator() ||
8359              (!Copying && Method->isMoveAssignmentOperator()))
8360            continue;
8361
8362        F.erase();
8363      }
8364      F.done();
8365    }
8366
8367    // Suppress the protected check (C++ [class.protected]) for each of the
8368    // assignment operators we found. This strange dance is required when
8369    // we're assigning via a base classes's copy-assignment operator. To
8370    // ensure that we're getting the right base class subobject (without
8371    // ambiguities), we need to cast "this" to that subobject type; to
8372    // ensure that we don't go through the virtual call mechanism, we need
8373    // to qualify the operator= name with the base class (see below). However,
8374    // this means that if the base class has a protected copy assignment
8375    // operator, the protected member access check will fail. So, we
8376    // rewrite "protected" access to "public" access in this case, since we
8377    // know by construction that we're calling from a derived class.
8378    if (CopyingBaseSubobject) {
8379      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8380           L != LEnd; ++L) {
8381        if (L.getAccess() == AS_protected)
8382          L.setAccess(AS_public);
8383      }
8384    }
8385
8386    // Create the nested-name-specifier that will be used to qualify the
8387    // reference to operator=; this is required to suppress the virtual
8388    // call mechanism.
8389    CXXScopeSpec SS;
8390    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
8391    SS.MakeTrivial(S.Context,
8392                   NestedNameSpecifier::Create(S.Context, 0, false,
8393                                               CanonicalT),
8394                   Loc);
8395
8396    // Create the reference to operator=.
8397    ExprResult OpEqualRef
8398      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
8399                                   /*TemplateKWLoc=*/SourceLocation(),
8400                                   /*FirstQualifierInScope=*/0,
8401                                   OpLookup,
8402                                   /*TemplateArgs=*/0,
8403                                   /*SuppressQualifierCheck=*/true);
8404    if (OpEqualRef.isInvalid())
8405      return StmtError();
8406
8407    // Build the call to the assignment operator.
8408
8409    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
8410                                                  OpEqualRef.takeAs<Expr>(),
8411                                                  Loc, &From, 1, Loc);
8412    if (Call.isInvalid())
8413      return StmtError();
8414
8415    // If we built a call to a trivial 'operator=' while copying an array,
8416    // bail out. We'll replace the whole shebang with a memcpy.
8417    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
8418    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
8419      return StmtResult((Stmt*)0);
8420
8421    // Convert to an expression-statement, and clean up any produced
8422    // temporaries.
8423    return S.ActOnExprStmt(Call);
8424  }
8425
8426  //     - if the subobject is of scalar type, the built-in assignment
8427  //       operator is used.
8428  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
8429  if (!ArrayTy) {
8430    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
8431    if (Assignment.isInvalid())
8432      return StmtError();
8433    return S.ActOnExprStmt(Assignment);
8434  }
8435
8436  //     - if the subobject is an array, each element is assigned, in the
8437  //       manner appropriate to the element type;
8438
8439  // Construct a loop over the array bounds, e.g.,
8440  //
8441  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
8442  //
8443  // that will copy each of the array elements.
8444  QualType SizeType = S.Context.getSizeType();
8445
8446  // Create the iteration variable.
8447  IdentifierInfo *IterationVarName = 0;
8448  {
8449    SmallString<8> Str;
8450    llvm::raw_svector_ostream OS(Str);
8451    OS << "__i" << Depth;
8452    IterationVarName = &S.Context.Idents.get(OS.str());
8453  }
8454  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
8455                                          IterationVarName, SizeType,
8456                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
8457                                          SC_None);
8458
8459  // Initialize the iteration variable to zero.
8460  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8461  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8462
8463  // Create a reference to the iteration variable; we'll use this several
8464  // times throughout.
8465  Expr *IterationVarRef
8466    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
8467  assert(IterationVarRef && "Reference to invented variable cannot fail!");
8468  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
8469  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
8470
8471  // Create the DeclStmt that holds the iteration variable.
8472  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
8473
8474  // Subscript the "from" and "to" expressions with the iteration variable.
8475  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
8476                                                         IterationVarRefRVal,
8477                                                         Loc));
8478  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
8479                                                       IterationVarRefRVal,
8480                                                       Loc));
8481  if (!Copying) // Cast to rvalue
8482    From = CastForMoving(S, From);
8483
8484  // Build the copy/move for an individual element of the array.
8485  StmtResult Copy =
8486    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
8487                                     To, From, CopyingBaseSubobject,
8488                                     Copying, Depth + 1);
8489  // Bail out if copying fails or if we determined that we should use memcpy.
8490  if (Copy.isInvalid() || !Copy.get())
8491    return Copy;
8492
8493  // Create the comparison against the array bound.
8494  llvm::APInt Upper
8495    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
8496  Expr *Comparison
8497    = new (S.Context) BinaryOperator(IterationVarRefRVal,
8498                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
8499                                     BO_NE, S.Context.BoolTy,
8500                                     VK_RValue, OK_Ordinary, Loc, false);
8501
8502  // Create the pre-increment of the iteration variable.
8503  Expr *Increment
8504    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
8505                                    VK_LValue, OK_Ordinary, Loc);
8506
8507  // Construct the loop that copies all elements of this array.
8508  return S.ActOnForStmt(Loc, Loc, InitStmt,
8509                        S.MakeFullExpr(Comparison),
8510                        0, S.MakeFullDiscardedValueExpr(Increment),
8511                        Loc, Copy.take());
8512}
8513
8514static StmtResult
8515buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
8516                      Expr *To, Expr *From,
8517                      bool CopyingBaseSubobject, bool Copying) {
8518  // Maybe we should use a memcpy?
8519  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
8520      T.isTriviallyCopyableType(S.Context))
8521    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8522
8523  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
8524                                                     CopyingBaseSubobject,
8525                                                     Copying, 0));
8526
8527  // If we ended up picking a trivial assignment operator for an array of a
8528  // non-trivially-copyable class type, just emit a memcpy.
8529  if (!Result.isInvalid() && !Result.get())
8530    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8531
8532  return Result;
8533}
8534
8535Sema::ImplicitExceptionSpecification
8536Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
8537  CXXRecordDecl *ClassDecl = MD->getParent();
8538
8539  ImplicitExceptionSpecification ExceptSpec(*this);
8540  if (ClassDecl->isInvalidDecl())
8541    return ExceptSpec;
8542
8543  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8544  assert(T->getNumArgs() == 1 && "not a copy assignment op");
8545  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8546
8547  // C++ [except.spec]p14:
8548  //   An implicitly declared special member function (Clause 12) shall have an
8549  //   exception-specification. [...]
8550
8551  // It is unspecified whether or not an implicit copy assignment operator
8552  // attempts to deduplicate calls to assignment operators of virtual bases are
8553  // made. As such, this exception specification is effectively unspecified.
8554  // Based on a similar decision made for constness in C++0x, we're erring on
8555  // the side of assuming such calls to be made regardless of whether they
8556  // actually happen.
8557  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8558                                       BaseEnd = ClassDecl->bases_end();
8559       Base != BaseEnd; ++Base) {
8560    if (Base->isVirtual())
8561      continue;
8562
8563    CXXRecordDecl *BaseClassDecl
8564      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8565    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8566                                                            ArgQuals, false, 0))
8567      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8568  }
8569
8570  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8571                                       BaseEnd = ClassDecl->vbases_end();
8572       Base != BaseEnd; ++Base) {
8573    CXXRecordDecl *BaseClassDecl
8574      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8575    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8576                                                            ArgQuals, false, 0))
8577      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8578  }
8579
8580  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8581                                  FieldEnd = ClassDecl->field_end();
8582       Field != FieldEnd;
8583       ++Field) {
8584    QualType FieldType = Context.getBaseElementType(Field->getType());
8585    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8586      if (CXXMethodDecl *CopyAssign =
8587          LookupCopyingAssignment(FieldClassDecl,
8588                                  ArgQuals | FieldType.getCVRQualifiers(),
8589                                  false, 0))
8590        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
8591    }
8592  }
8593
8594  return ExceptSpec;
8595}
8596
8597CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
8598  // Note: The following rules are largely analoguous to the copy
8599  // constructor rules. Note that virtual bases are not taken into account
8600  // for determining the argument type of the operator. Note also that
8601  // operators taking an object instead of a reference are allowed.
8602  assert(ClassDecl->needsImplicitCopyAssignment());
8603
8604  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
8605  if (DSM.isAlreadyBeingDeclared())
8606    return 0;
8607
8608  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8609  QualType RetType = Context.getLValueReferenceType(ArgType);
8610  if (ClassDecl->implicitCopyAssignmentHasConstParam())
8611    ArgType = ArgType.withConst();
8612  ArgType = Context.getLValueReferenceType(ArgType);
8613
8614  //   An implicitly-declared copy assignment operator is an inline public
8615  //   member of its class.
8616  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8617  SourceLocation ClassLoc = ClassDecl->getLocation();
8618  DeclarationNameInfo NameInfo(Name, ClassLoc);
8619  CXXMethodDecl *CopyAssignment
8620    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8621                            /*TInfo=*/0,
8622                            /*StorageClass=*/SC_None,
8623                            /*isInline=*/true, /*isConstexpr=*/false,
8624                            SourceLocation());
8625  CopyAssignment->setAccess(AS_public);
8626  CopyAssignment->setDefaulted();
8627  CopyAssignment->setImplicit();
8628
8629  // Build an exception specification pointing back at this member.
8630  FunctionProtoType::ExtProtoInfo EPI;
8631  EPI.ExceptionSpecType = EST_Unevaluated;
8632  EPI.ExceptionSpecDecl = CopyAssignment;
8633  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
8634
8635  // Add the parameter to the operator.
8636  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
8637                                               ClassLoc, ClassLoc, /*Id=*/0,
8638                                               ArgType, /*TInfo=*/0,
8639                                               SC_None, 0);
8640  CopyAssignment->setParams(FromParam);
8641
8642  AddOverriddenMethods(ClassDecl, CopyAssignment);
8643
8644  CopyAssignment->setTrivial(
8645    ClassDecl->needsOverloadResolutionForCopyAssignment()
8646      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
8647      : ClassDecl->hasTrivialCopyAssignment());
8648
8649  // C++0x [class.copy]p19:
8650  //   ....  If the class definition does not explicitly declare a copy
8651  //   assignment operator, there is no user-declared move constructor, and
8652  //   there is no user-declared move assignment operator, a copy assignment
8653  //   operator is implicitly declared as defaulted.
8654  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
8655    SetDeclDeleted(CopyAssignment, ClassLoc);
8656
8657  // Note that we have added this copy-assignment operator.
8658  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
8659
8660  if (Scope *S = getScopeForContext(ClassDecl))
8661    PushOnScopeChains(CopyAssignment, S, false);
8662  ClassDecl->addDecl(CopyAssignment);
8663
8664  return CopyAssignment;
8665}
8666
8667void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
8668                                        CXXMethodDecl *CopyAssignOperator) {
8669  assert((CopyAssignOperator->isDefaulted() &&
8670          CopyAssignOperator->isOverloadedOperator() &&
8671          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
8672          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
8673          !CopyAssignOperator->isDeleted()) &&
8674         "DefineImplicitCopyAssignment called for wrong function");
8675
8676  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
8677
8678  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
8679    CopyAssignOperator->setInvalidDecl();
8680    return;
8681  }
8682
8683  CopyAssignOperator->setUsed();
8684
8685  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
8686  DiagnosticErrorTrap Trap(Diags);
8687
8688  // C++0x [class.copy]p30:
8689  //   The implicitly-defined or explicitly-defaulted copy assignment operator
8690  //   for a non-union class X performs memberwise copy assignment of its
8691  //   subobjects. The direct base classes of X are assigned first, in the
8692  //   order of their declaration in the base-specifier-list, and then the
8693  //   immediate non-static data members of X are assigned, in the order in
8694  //   which they were declared in the class definition.
8695
8696  // The statements that form the synthesized function body.
8697  SmallVector<Stmt*, 8> Statements;
8698
8699  // The parameter for the "other" object, which we are copying from.
8700  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
8701  Qualifiers OtherQuals = Other->getType().getQualifiers();
8702  QualType OtherRefType = Other->getType();
8703  if (const LValueReferenceType *OtherRef
8704                                = OtherRefType->getAs<LValueReferenceType>()) {
8705    OtherRefType = OtherRef->getPointeeType();
8706    OtherQuals = OtherRefType.getQualifiers();
8707  }
8708
8709  // Our location for everything implicitly-generated.
8710  SourceLocation Loc = CopyAssignOperator->getLocation();
8711
8712  // Construct a reference to the "other" object. We'll be using this
8713  // throughout the generated ASTs.
8714  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8715  assert(OtherRef && "Reference to parameter cannot fail!");
8716
8717  // Construct the "this" pointer. We'll be using this throughout the generated
8718  // ASTs.
8719  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8720  assert(This && "Reference to this cannot fail!");
8721
8722  // Assign base classes.
8723  bool Invalid = false;
8724  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8725       E = ClassDecl->bases_end(); Base != E; ++Base) {
8726    // Form the assignment:
8727    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
8728    QualType BaseType = Base->getType().getUnqualifiedType();
8729    if (!BaseType->isRecordType()) {
8730      Invalid = true;
8731      continue;
8732    }
8733
8734    CXXCastPath BasePath;
8735    BasePath.push_back(Base);
8736
8737    // Construct the "from" expression, which is an implicit cast to the
8738    // appropriately-qualified base type.
8739    Expr *From = OtherRef;
8740    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
8741                             CK_UncheckedDerivedToBase,
8742                             VK_LValue, &BasePath).take();
8743
8744    // Dereference "this".
8745    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8746
8747    // Implicitly cast "this" to the appropriately-qualified base type.
8748    To = ImpCastExprToType(To.take(),
8749                           Context.getCVRQualifiedType(BaseType,
8750                                     CopyAssignOperator->getTypeQualifiers()),
8751                           CK_UncheckedDerivedToBase,
8752                           VK_LValue, &BasePath);
8753
8754    // Build the copy.
8755    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
8756                                            To.get(), From,
8757                                            /*CopyingBaseSubobject=*/true,
8758                                            /*Copying=*/true);
8759    if (Copy.isInvalid()) {
8760      Diag(CurrentLocation, diag::note_member_synthesized_at)
8761        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8762      CopyAssignOperator->setInvalidDecl();
8763      return;
8764    }
8765
8766    // Success! Record the copy.
8767    Statements.push_back(Copy.takeAs<Expr>());
8768  }
8769
8770  // Assign non-static members.
8771  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8772                                  FieldEnd = ClassDecl->field_end();
8773       Field != FieldEnd; ++Field) {
8774    if (Field->isUnnamedBitfield())
8775      continue;
8776
8777    // Check for members of reference type; we can't copy those.
8778    if (Field->getType()->isReferenceType()) {
8779      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8780        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8781      Diag(Field->getLocation(), diag::note_declared_at);
8782      Diag(CurrentLocation, diag::note_member_synthesized_at)
8783        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8784      Invalid = true;
8785      continue;
8786    }
8787
8788    // Check for members of const-qualified, non-class type.
8789    QualType BaseType = Context.getBaseElementType(Field->getType());
8790    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8791      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8792        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8793      Diag(Field->getLocation(), diag::note_declared_at);
8794      Diag(CurrentLocation, diag::note_member_synthesized_at)
8795        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8796      Invalid = true;
8797      continue;
8798    }
8799
8800    // Suppress assigning zero-width bitfields.
8801    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8802      continue;
8803
8804    QualType FieldType = Field->getType().getNonReferenceType();
8805    if (FieldType->isIncompleteArrayType()) {
8806      assert(ClassDecl->hasFlexibleArrayMember() &&
8807             "Incomplete array type is not valid");
8808      continue;
8809    }
8810
8811    // Build references to the field in the object we're copying from and to.
8812    CXXScopeSpec SS; // Intentionally empty
8813    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8814                              LookupMemberName);
8815    MemberLookup.addDecl(*Field);
8816    MemberLookup.resolveKind();
8817    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8818                                               Loc, /*IsArrow=*/false,
8819                                               SS, SourceLocation(), 0,
8820                                               MemberLookup, 0);
8821    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8822                                             Loc, /*IsArrow=*/true,
8823                                             SS, SourceLocation(), 0,
8824                                             MemberLookup, 0);
8825    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8826    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8827
8828    // Build the copy of this field.
8829    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
8830                                            To.get(), From.get(),
8831                                            /*CopyingBaseSubobject=*/false,
8832                                            /*Copying=*/true);
8833    if (Copy.isInvalid()) {
8834      Diag(CurrentLocation, diag::note_member_synthesized_at)
8835        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8836      CopyAssignOperator->setInvalidDecl();
8837      return;
8838    }
8839
8840    // Success! Record the copy.
8841    Statements.push_back(Copy.takeAs<Stmt>());
8842  }
8843
8844  if (!Invalid) {
8845    // Add a "return *this;"
8846    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8847
8848    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8849    if (Return.isInvalid())
8850      Invalid = true;
8851    else {
8852      Statements.push_back(Return.takeAs<Stmt>());
8853
8854      if (Trap.hasErrorOccurred()) {
8855        Diag(CurrentLocation, diag::note_member_synthesized_at)
8856          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8857        Invalid = true;
8858      }
8859    }
8860  }
8861
8862  if (Invalid) {
8863    CopyAssignOperator->setInvalidDecl();
8864    return;
8865  }
8866
8867  StmtResult Body;
8868  {
8869    CompoundScopeRAII CompoundScope(*this);
8870    Body = ActOnCompoundStmt(Loc, Loc, Statements,
8871                             /*isStmtExpr=*/false);
8872    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8873  }
8874  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8875
8876  if (ASTMutationListener *L = getASTMutationListener()) {
8877    L->CompletedImplicitDefinition(CopyAssignOperator);
8878  }
8879}
8880
8881Sema::ImplicitExceptionSpecification
8882Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
8883  CXXRecordDecl *ClassDecl = MD->getParent();
8884
8885  ImplicitExceptionSpecification ExceptSpec(*this);
8886  if (ClassDecl->isInvalidDecl())
8887    return ExceptSpec;
8888
8889  // C++0x [except.spec]p14:
8890  //   An implicitly declared special member function (Clause 12) shall have an
8891  //   exception-specification. [...]
8892
8893  // It is unspecified whether or not an implicit move assignment operator
8894  // attempts to deduplicate calls to assignment operators of virtual bases are
8895  // made. As such, this exception specification is effectively unspecified.
8896  // Based on a similar decision made for constness in C++0x, we're erring on
8897  // the side of assuming such calls to be made regardless of whether they
8898  // actually happen.
8899  // Note that a move constructor is not implicitly declared when there are
8900  // virtual bases, but it can still be user-declared and explicitly defaulted.
8901  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8902                                       BaseEnd = ClassDecl->bases_end();
8903       Base != BaseEnd; ++Base) {
8904    if (Base->isVirtual())
8905      continue;
8906
8907    CXXRecordDecl *BaseClassDecl
8908      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8909    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8910                                                           0, false, 0))
8911      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8912  }
8913
8914  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8915                                       BaseEnd = ClassDecl->vbases_end();
8916       Base != BaseEnd; ++Base) {
8917    CXXRecordDecl *BaseClassDecl
8918      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8919    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8920                                                           0, false, 0))
8921      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8922  }
8923
8924  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8925                                  FieldEnd = ClassDecl->field_end();
8926       Field != FieldEnd;
8927       ++Field) {
8928    QualType FieldType = Context.getBaseElementType(Field->getType());
8929    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8930      if (CXXMethodDecl *MoveAssign =
8931              LookupMovingAssignment(FieldClassDecl,
8932                                     FieldType.getCVRQualifiers(),
8933                                     false, 0))
8934        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8935    }
8936  }
8937
8938  return ExceptSpec;
8939}
8940
8941/// Determine whether the class type has any direct or indirect virtual base
8942/// classes which have a non-trivial move assignment operator.
8943static bool
8944hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8945  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8946                                          BaseEnd = ClassDecl->vbases_end();
8947       Base != BaseEnd; ++Base) {
8948    CXXRecordDecl *BaseClass =
8949        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8950
8951    // Try to declare the move assignment. If it would be deleted, then the
8952    // class does not have a non-trivial move assignment.
8953    if (BaseClass->needsImplicitMoveAssignment())
8954      S.DeclareImplicitMoveAssignment(BaseClass);
8955
8956    if (BaseClass->hasNonTrivialMoveAssignment())
8957      return true;
8958  }
8959
8960  return false;
8961}
8962
8963/// Determine whether the given type either has a move constructor or is
8964/// trivially copyable.
8965static bool
8966hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8967  Type = S.Context.getBaseElementType(Type);
8968
8969  // FIXME: Technically, non-trivially-copyable non-class types, such as
8970  // reference types, are supposed to return false here, but that appears
8971  // to be a standard defect.
8972  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8973  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
8974    return true;
8975
8976  if (Type.isTriviallyCopyableType(S.Context))
8977    return true;
8978
8979  if (IsConstructor) {
8980    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
8981    // give the right answer.
8982    if (ClassDecl->needsImplicitMoveConstructor())
8983      S.DeclareImplicitMoveConstructor(ClassDecl);
8984    return ClassDecl->hasMoveConstructor();
8985  }
8986
8987  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
8988  // give the right answer.
8989  if (ClassDecl->needsImplicitMoveAssignment())
8990    S.DeclareImplicitMoveAssignment(ClassDecl);
8991  return ClassDecl->hasMoveAssignment();
8992}
8993
8994/// Determine whether all non-static data members and direct or virtual bases
8995/// of class \p ClassDecl have either a move operation, or are trivially
8996/// copyable.
8997static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8998                                            bool IsConstructor) {
8999  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9000                                          BaseEnd = ClassDecl->bases_end();
9001       Base != BaseEnd; ++Base) {
9002    if (Base->isVirtual())
9003      continue;
9004
9005    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9006      return false;
9007  }
9008
9009  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9010                                          BaseEnd = ClassDecl->vbases_end();
9011       Base != BaseEnd; ++Base) {
9012    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9013      return false;
9014  }
9015
9016  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9017                                     FieldEnd = ClassDecl->field_end();
9018       Field != FieldEnd; ++Field) {
9019    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
9020      return false;
9021  }
9022
9023  return true;
9024}
9025
9026CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
9027  // C++11 [class.copy]p20:
9028  //   If the definition of a class X does not explicitly declare a move
9029  //   assignment operator, one will be implicitly declared as defaulted
9030  //   if and only if:
9031  //
9032  //   - [first 4 bullets]
9033  assert(ClassDecl->needsImplicitMoveAssignment());
9034
9035  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
9036  if (DSM.isAlreadyBeingDeclared())
9037    return 0;
9038
9039  // [Checked after we build the declaration]
9040  //   - the move assignment operator would not be implicitly defined as
9041  //     deleted,
9042
9043  // [DR1402]:
9044  //   - X has no direct or indirect virtual base class with a non-trivial
9045  //     move assignment operator, and
9046  //   - each of X's non-static data members and direct or virtual base classes
9047  //     has a type that either has a move assignment operator or is trivially
9048  //     copyable.
9049  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
9050      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
9051    ClassDecl->setFailedImplicitMoveAssignment();
9052    return 0;
9053  }
9054
9055  // Note: The following rules are largely analoguous to the move
9056  // constructor rules.
9057
9058  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9059  QualType RetType = Context.getLValueReferenceType(ArgType);
9060  ArgType = Context.getRValueReferenceType(ArgType);
9061
9062  //   An implicitly-declared move assignment operator is an inline public
9063  //   member of its class.
9064  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9065  SourceLocation ClassLoc = ClassDecl->getLocation();
9066  DeclarationNameInfo NameInfo(Name, ClassLoc);
9067  CXXMethodDecl *MoveAssignment
9068    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9069                            /*TInfo=*/0,
9070                            /*StorageClass=*/SC_None,
9071                            /*isInline=*/true,
9072                            /*isConstexpr=*/false,
9073                            SourceLocation());
9074  MoveAssignment->setAccess(AS_public);
9075  MoveAssignment->setDefaulted();
9076  MoveAssignment->setImplicit();
9077
9078  // Build an exception specification pointing back at this member.
9079  FunctionProtoType::ExtProtoInfo EPI;
9080  EPI.ExceptionSpecType = EST_Unevaluated;
9081  EPI.ExceptionSpecDecl = MoveAssignment;
9082  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9083
9084  // Add the parameter to the operator.
9085  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
9086                                               ClassLoc, ClassLoc, /*Id=*/0,
9087                                               ArgType, /*TInfo=*/0,
9088                                               SC_None, 0);
9089  MoveAssignment->setParams(FromParam);
9090
9091  AddOverriddenMethods(ClassDecl, MoveAssignment);
9092
9093  MoveAssignment->setTrivial(
9094    ClassDecl->needsOverloadResolutionForMoveAssignment()
9095      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
9096      : ClassDecl->hasTrivialMoveAssignment());
9097
9098  // C++0x [class.copy]p9:
9099  //   If the definition of a class X does not explicitly declare a move
9100  //   assignment operator, one will be implicitly declared as defaulted if and
9101  //   only if:
9102  //   [...]
9103  //   - the move assignment operator would not be implicitly defined as
9104  //     deleted.
9105  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
9106    // Cache this result so that we don't try to generate this over and over
9107    // on every lookup, leaking memory and wasting time.
9108    ClassDecl->setFailedImplicitMoveAssignment();
9109    return 0;
9110  }
9111
9112  // Note that we have added this copy-assignment operator.
9113  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
9114
9115  if (Scope *S = getScopeForContext(ClassDecl))
9116    PushOnScopeChains(MoveAssignment, S, false);
9117  ClassDecl->addDecl(MoveAssignment);
9118
9119  return MoveAssignment;
9120}
9121
9122void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
9123                                        CXXMethodDecl *MoveAssignOperator) {
9124  assert((MoveAssignOperator->isDefaulted() &&
9125          MoveAssignOperator->isOverloadedOperator() &&
9126          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
9127          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
9128          !MoveAssignOperator->isDeleted()) &&
9129         "DefineImplicitMoveAssignment called for wrong function");
9130
9131  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
9132
9133  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
9134    MoveAssignOperator->setInvalidDecl();
9135    return;
9136  }
9137
9138  MoveAssignOperator->setUsed();
9139
9140  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
9141  DiagnosticErrorTrap Trap(Diags);
9142
9143  // C++0x [class.copy]p28:
9144  //   The implicitly-defined or move assignment operator for a non-union class
9145  //   X performs memberwise move assignment of its subobjects. The direct base
9146  //   classes of X are assigned first, in the order of their declaration in the
9147  //   base-specifier-list, and then the immediate non-static data members of X
9148  //   are assigned, in the order in which they were declared in the class
9149  //   definition.
9150
9151  // The statements that form the synthesized function body.
9152  SmallVector<Stmt*, 8> Statements;
9153
9154  // The parameter for the "other" object, which we are move from.
9155  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
9156  QualType OtherRefType = Other->getType()->
9157      getAs<RValueReferenceType>()->getPointeeType();
9158  assert(OtherRefType.getQualifiers() == 0 &&
9159         "Bad argument type of defaulted move assignment");
9160
9161  // Our location for everything implicitly-generated.
9162  SourceLocation Loc = MoveAssignOperator->getLocation();
9163
9164  // Construct a reference to the "other" object. We'll be using this
9165  // throughout the generated ASTs.
9166  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
9167  assert(OtherRef && "Reference to parameter cannot fail!");
9168  // Cast to rvalue.
9169  OtherRef = CastForMoving(*this, OtherRef);
9170
9171  // Construct the "this" pointer. We'll be using this throughout the generated
9172  // ASTs.
9173  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
9174  assert(This && "Reference to this cannot fail!");
9175
9176  // Assign base classes.
9177  bool Invalid = false;
9178  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9179       E = ClassDecl->bases_end(); Base != E; ++Base) {
9180    // Form the assignment:
9181    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9182    QualType BaseType = Base->getType().getUnqualifiedType();
9183    if (!BaseType->isRecordType()) {
9184      Invalid = true;
9185      continue;
9186    }
9187
9188    CXXCastPath BasePath;
9189    BasePath.push_back(Base);
9190
9191    // Construct the "from" expression, which is an implicit cast to the
9192    // appropriately-qualified base type.
9193    Expr *From = OtherRef;
9194    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
9195                             VK_XValue, &BasePath).take();
9196
9197    // Dereference "this".
9198    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9199
9200    // Implicitly cast "this" to the appropriately-qualified base type.
9201    To = ImpCastExprToType(To.take(),
9202                           Context.getCVRQualifiedType(BaseType,
9203                                     MoveAssignOperator->getTypeQualifiers()),
9204                           CK_UncheckedDerivedToBase,
9205                           VK_LValue, &BasePath);
9206
9207    // Build the move.
9208    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9209                                            To.get(), From,
9210                                            /*CopyingBaseSubobject=*/true,
9211                                            /*Copying=*/false);
9212    if (Move.isInvalid()) {
9213      Diag(CurrentLocation, diag::note_member_synthesized_at)
9214        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9215      MoveAssignOperator->setInvalidDecl();
9216      return;
9217    }
9218
9219    // Success! Record the move.
9220    Statements.push_back(Move.takeAs<Expr>());
9221  }
9222
9223  // Assign non-static members.
9224  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9225                                  FieldEnd = ClassDecl->field_end();
9226       Field != FieldEnd; ++Field) {
9227    if (Field->isUnnamedBitfield())
9228      continue;
9229
9230    // Check for members of reference type; we can't move those.
9231    if (Field->getType()->isReferenceType()) {
9232      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9233        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9234      Diag(Field->getLocation(), diag::note_declared_at);
9235      Diag(CurrentLocation, diag::note_member_synthesized_at)
9236        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9237      Invalid = true;
9238      continue;
9239    }
9240
9241    // Check for members of const-qualified, non-class type.
9242    QualType BaseType = Context.getBaseElementType(Field->getType());
9243    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9244      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9245        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9246      Diag(Field->getLocation(), diag::note_declared_at);
9247      Diag(CurrentLocation, diag::note_member_synthesized_at)
9248        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9249      Invalid = true;
9250      continue;
9251    }
9252
9253    // Suppress assigning zero-width bitfields.
9254    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9255      continue;
9256
9257    QualType FieldType = Field->getType().getNonReferenceType();
9258    if (FieldType->isIncompleteArrayType()) {
9259      assert(ClassDecl->hasFlexibleArrayMember() &&
9260             "Incomplete array type is not valid");
9261      continue;
9262    }
9263
9264    // Build references to the field in the object we're copying from and to.
9265    CXXScopeSpec SS; // Intentionally empty
9266    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9267                              LookupMemberName);
9268    MemberLookup.addDecl(*Field);
9269    MemberLookup.resolveKind();
9270    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9271                                               Loc, /*IsArrow=*/false,
9272                                               SS, SourceLocation(), 0,
9273                                               MemberLookup, 0);
9274    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9275                                             Loc, /*IsArrow=*/true,
9276                                             SS, SourceLocation(), 0,
9277                                             MemberLookup, 0);
9278    assert(!From.isInvalid() && "Implicit field reference cannot fail");
9279    assert(!To.isInvalid() && "Implicit field reference cannot fail");
9280
9281    assert(!From.get()->isLValue() && // could be xvalue or prvalue
9282        "Member reference with rvalue base must be rvalue except for reference "
9283        "members, which aren't allowed for move assignment.");
9284
9285    // Build the move of this field.
9286    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9287                                            To.get(), From.get(),
9288                                            /*CopyingBaseSubobject=*/false,
9289                                            /*Copying=*/false);
9290    if (Move.isInvalid()) {
9291      Diag(CurrentLocation, diag::note_member_synthesized_at)
9292        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9293      MoveAssignOperator->setInvalidDecl();
9294      return;
9295    }
9296
9297    // Success! Record the copy.
9298    Statements.push_back(Move.takeAs<Stmt>());
9299  }
9300
9301  if (!Invalid) {
9302    // Add a "return *this;"
9303    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9304
9305    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9306    if (Return.isInvalid())
9307      Invalid = true;
9308    else {
9309      Statements.push_back(Return.takeAs<Stmt>());
9310
9311      if (Trap.hasErrorOccurred()) {
9312        Diag(CurrentLocation, diag::note_member_synthesized_at)
9313          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9314        Invalid = true;
9315      }
9316    }
9317  }
9318
9319  if (Invalid) {
9320    MoveAssignOperator->setInvalidDecl();
9321    return;
9322  }
9323
9324  StmtResult Body;
9325  {
9326    CompoundScopeRAII CompoundScope(*this);
9327    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9328                             /*isStmtExpr=*/false);
9329    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9330  }
9331  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9332
9333  if (ASTMutationListener *L = getASTMutationListener()) {
9334    L->CompletedImplicitDefinition(MoveAssignOperator);
9335  }
9336}
9337
9338Sema::ImplicitExceptionSpecification
9339Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9340  CXXRecordDecl *ClassDecl = MD->getParent();
9341
9342  ImplicitExceptionSpecification ExceptSpec(*this);
9343  if (ClassDecl->isInvalidDecl())
9344    return ExceptSpec;
9345
9346  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9347  assert(T->getNumArgs() >= 1 && "not a copy ctor");
9348  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9349
9350  // C++ [except.spec]p14:
9351  //   An implicitly declared special member function (Clause 12) shall have an
9352  //   exception-specification. [...]
9353  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9354                                       BaseEnd = ClassDecl->bases_end();
9355       Base != BaseEnd;
9356       ++Base) {
9357    // Virtual bases are handled below.
9358    if (Base->isVirtual())
9359      continue;
9360
9361    CXXRecordDecl *BaseClassDecl
9362      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9363    if (CXXConstructorDecl *CopyConstructor =
9364          LookupCopyingConstructor(BaseClassDecl, Quals))
9365      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9366  }
9367  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9368                                       BaseEnd = ClassDecl->vbases_end();
9369       Base != BaseEnd;
9370       ++Base) {
9371    CXXRecordDecl *BaseClassDecl
9372      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9373    if (CXXConstructorDecl *CopyConstructor =
9374          LookupCopyingConstructor(BaseClassDecl, Quals))
9375      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9376  }
9377  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9378                                  FieldEnd = ClassDecl->field_end();
9379       Field != FieldEnd;
9380       ++Field) {
9381    QualType FieldType = Context.getBaseElementType(Field->getType());
9382    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9383      if (CXXConstructorDecl *CopyConstructor =
9384              LookupCopyingConstructor(FieldClassDecl,
9385                                       Quals | FieldType.getCVRQualifiers()))
9386      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
9387    }
9388  }
9389
9390  return ExceptSpec;
9391}
9392
9393CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
9394                                                    CXXRecordDecl *ClassDecl) {
9395  // C++ [class.copy]p4:
9396  //   If the class definition does not explicitly declare a copy
9397  //   constructor, one is declared implicitly.
9398  assert(ClassDecl->needsImplicitCopyConstructor());
9399
9400  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
9401  if (DSM.isAlreadyBeingDeclared())
9402    return 0;
9403
9404  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9405  QualType ArgType = ClassType;
9406  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
9407  if (Const)
9408    ArgType = ArgType.withConst();
9409  ArgType = Context.getLValueReferenceType(ArgType);
9410
9411  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9412                                                     CXXCopyConstructor,
9413                                                     Const);
9414
9415  DeclarationName Name
9416    = Context.DeclarationNames.getCXXConstructorName(
9417                                           Context.getCanonicalType(ClassType));
9418  SourceLocation ClassLoc = ClassDecl->getLocation();
9419  DeclarationNameInfo NameInfo(Name, ClassLoc);
9420
9421  //   An implicitly-declared copy constructor is an inline public
9422  //   member of its class.
9423  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
9424      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9425      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9426      Constexpr);
9427  CopyConstructor->setAccess(AS_public);
9428  CopyConstructor->setDefaulted();
9429
9430  // Build an exception specification pointing back at this member.
9431  FunctionProtoType::ExtProtoInfo EPI;
9432  EPI.ExceptionSpecType = EST_Unevaluated;
9433  EPI.ExceptionSpecDecl = CopyConstructor;
9434  CopyConstructor->setType(
9435      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9436
9437  // Add the parameter to the constructor.
9438  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
9439                                               ClassLoc, ClassLoc,
9440                                               /*IdentifierInfo=*/0,
9441                                               ArgType, /*TInfo=*/0,
9442                                               SC_None, 0);
9443  CopyConstructor->setParams(FromParam);
9444
9445  CopyConstructor->setTrivial(
9446    ClassDecl->needsOverloadResolutionForCopyConstructor()
9447      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
9448      : ClassDecl->hasTrivialCopyConstructor());
9449
9450  // C++11 [class.copy]p8:
9451  //   ... If the class definition does not explicitly declare a copy
9452  //   constructor, there is no user-declared move constructor, and there is no
9453  //   user-declared move assignment operator, a copy constructor is implicitly
9454  //   declared as defaulted.
9455  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
9456    SetDeclDeleted(CopyConstructor, ClassLoc);
9457
9458  // Note that we have declared this constructor.
9459  ++ASTContext::NumImplicitCopyConstructorsDeclared;
9460
9461  if (Scope *S = getScopeForContext(ClassDecl))
9462    PushOnScopeChains(CopyConstructor, S, false);
9463  ClassDecl->addDecl(CopyConstructor);
9464
9465  return CopyConstructor;
9466}
9467
9468void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
9469                                   CXXConstructorDecl *CopyConstructor) {
9470  assert((CopyConstructor->isDefaulted() &&
9471          CopyConstructor->isCopyConstructor() &&
9472          !CopyConstructor->doesThisDeclarationHaveABody() &&
9473          !CopyConstructor->isDeleted()) &&
9474         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
9475
9476  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
9477  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
9478
9479  SynthesizedFunctionScope Scope(*this, CopyConstructor);
9480  DiagnosticErrorTrap Trap(Diags);
9481
9482  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
9483      Trap.hasErrorOccurred()) {
9484    Diag(CurrentLocation, diag::note_member_synthesized_at)
9485      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
9486    CopyConstructor->setInvalidDecl();
9487  }  else {
9488    Sema::CompoundScopeRAII CompoundScope(*this);
9489    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
9490                                               CopyConstructor->getLocation(),
9491                                               MultiStmtArg(),
9492                                               /*isStmtExpr=*/false)
9493                                                              .takeAs<Stmt>());
9494    CopyConstructor->setImplicitlyDefined(true);
9495  }
9496
9497  CopyConstructor->setUsed();
9498  if (ASTMutationListener *L = getASTMutationListener()) {
9499    L->CompletedImplicitDefinition(CopyConstructor);
9500  }
9501}
9502
9503Sema::ImplicitExceptionSpecification
9504Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
9505  CXXRecordDecl *ClassDecl = MD->getParent();
9506
9507  // C++ [except.spec]p14:
9508  //   An implicitly declared special member function (Clause 12) shall have an
9509  //   exception-specification. [...]
9510  ImplicitExceptionSpecification ExceptSpec(*this);
9511  if (ClassDecl->isInvalidDecl())
9512    return ExceptSpec;
9513
9514  // Direct base-class constructors.
9515  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
9516                                       BEnd = ClassDecl->bases_end();
9517       B != BEnd; ++B) {
9518    if (B->isVirtual()) // Handled below.
9519      continue;
9520
9521    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9522      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9523      CXXConstructorDecl *Constructor =
9524          LookupMovingConstructor(BaseClassDecl, 0);
9525      // If this is a deleted function, add it anyway. This might be conformant
9526      // with the standard. This might not. I'm not sure. It might not matter.
9527      if (Constructor)
9528        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9529    }
9530  }
9531
9532  // Virtual base-class constructors.
9533  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
9534                                       BEnd = ClassDecl->vbases_end();
9535       B != BEnd; ++B) {
9536    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9537      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9538      CXXConstructorDecl *Constructor =
9539          LookupMovingConstructor(BaseClassDecl, 0);
9540      // If this is a deleted function, add it anyway. This might be conformant
9541      // with the standard. This might not. I'm not sure. It might not matter.
9542      if (Constructor)
9543        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9544    }
9545  }
9546
9547  // Field constructors.
9548  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
9549                               FEnd = ClassDecl->field_end();
9550       F != FEnd; ++F) {
9551    QualType FieldType = Context.getBaseElementType(F->getType());
9552    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
9553      CXXConstructorDecl *Constructor =
9554          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
9555      // If this is a deleted function, add it anyway. This might be conformant
9556      // with the standard. This might not. I'm not sure. It might not matter.
9557      // In particular, the problem is that this function never gets called. It
9558      // might just be ill-formed because this function attempts to refer to
9559      // a deleted function here.
9560      if (Constructor)
9561        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
9562    }
9563  }
9564
9565  return ExceptSpec;
9566}
9567
9568CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
9569                                                    CXXRecordDecl *ClassDecl) {
9570  // C++11 [class.copy]p9:
9571  //   If the definition of a class X does not explicitly declare a move
9572  //   constructor, one will be implicitly declared as defaulted if and only if:
9573  //
9574  //   - [first 4 bullets]
9575  assert(ClassDecl->needsImplicitMoveConstructor());
9576
9577  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
9578  if (DSM.isAlreadyBeingDeclared())
9579    return 0;
9580
9581  // [Checked after we build the declaration]
9582  //   - the move assignment operator would not be implicitly defined as
9583  //     deleted,
9584
9585  // [DR1402]:
9586  //   - each of X's non-static data members and direct or virtual base classes
9587  //     has a type that either has a move constructor or is trivially copyable.
9588  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
9589    ClassDecl->setFailedImplicitMoveConstructor();
9590    return 0;
9591  }
9592
9593  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9594  QualType ArgType = Context.getRValueReferenceType(ClassType);
9595
9596  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9597                                                     CXXMoveConstructor,
9598                                                     false);
9599
9600  DeclarationName Name
9601    = Context.DeclarationNames.getCXXConstructorName(
9602                                           Context.getCanonicalType(ClassType));
9603  SourceLocation ClassLoc = ClassDecl->getLocation();
9604  DeclarationNameInfo NameInfo(Name, ClassLoc);
9605
9606  // C++0x [class.copy]p11:
9607  //   An implicitly-declared copy/move constructor is an inline public
9608  //   member of its class.
9609  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
9610      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9611      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9612      Constexpr);
9613  MoveConstructor->setAccess(AS_public);
9614  MoveConstructor->setDefaulted();
9615
9616  // Build an exception specification pointing back at this member.
9617  FunctionProtoType::ExtProtoInfo EPI;
9618  EPI.ExceptionSpecType = EST_Unevaluated;
9619  EPI.ExceptionSpecDecl = MoveConstructor;
9620  MoveConstructor->setType(
9621      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9622
9623  // Add the parameter to the constructor.
9624  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
9625                                               ClassLoc, ClassLoc,
9626                                               /*IdentifierInfo=*/0,
9627                                               ArgType, /*TInfo=*/0,
9628                                               SC_None, 0);
9629  MoveConstructor->setParams(FromParam);
9630
9631  MoveConstructor->setTrivial(
9632    ClassDecl->needsOverloadResolutionForMoveConstructor()
9633      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
9634      : ClassDecl->hasTrivialMoveConstructor());
9635
9636  // C++0x [class.copy]p9:
9637  //   If the definition of a class X does not explicitly declare a move
9638  //   constructor, one will be implicitly declared as defaulted if and only if:
9639  //   [...]
9640  //   - the move constructor would not be implicitly defined as deleted.
9641  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9642    // Cache this result so that we don't try to generate this over and over
9643    // on every lookup, leaking memory and wasting time.
9644    ClassDecl->setFailedImplicitMoveConstructor();
9645    return 0;
9646  }
9647
9648  // Note that we have declared this constructor.
9649  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9650
9651  if (Scope *S = getScopeForContext(ClassDecl))
9652    PushOnScopeChains(MoveConstructor, S, false);
9653  ClassDecl->addDecl(MoveConstructor);
9654
9655  return MoveConstructor;
9656}
9657
9658void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9659                                   CXXConstructorDecl *MoveConstructor) {
9660  assert((MoveConstructor->isDefaulted() &&
9661          MoveConstructor->isMoveConstructor() &&
9662          !MoveConstructor->doesThisDeclarationHaveABody() &&
9663          !MoveConstructor->isDeleted()) &&
9664         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9665
9666  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9667  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9668
9669  SynthesizedFunctionScope Scope(*this, MoveConstructor);
9670  DiagnosticErrorTrap Trap(Diags);
9671
9672  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
9673      Trap.hasErrorOccurred()) {
9674    Diag(CurrentLocation, diag::note_member_synthesized_at)
9675      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9676    MoveConstructor->setInvalidDecl();
9677  }  else {
9678    Sema::CompoundScopeRAII CompoundScope(*this);
9679    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9680                                               MoveConstructor->getLocation(),
9681                                               MultiStmtArg(),
9682                                               /*isStmtExpr=*/false)
9683                                                              .takeAs<Stmt>());
9684    MoveConstructor->setImplicitlyDefined(true);
9685  }
9686
9687  MoveConstructor->setUsed();
9688
9689  if (ASTMutationListener *L = getASTMutationListener()) {
9690    L->CompletedImplicitDefinition(MoveConstructor);
9691  }
9692}
9693
9694bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
9695  return FD->isDeleted() &&
9696         (FD->isDefaulted() || FD->isImplicit()) &&
9697         isa<CXXMethodDecl>(FD);
9698}
9699
9700/// \brief Mark the call operator of the given lambda closure type as "used".
9701static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
9702  CXXMethodDecl *CallOperator
9703    = cast<CXXMethodDecl>(
9704        Lambda->lookup(
9705          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
9706  CallOperator->setReferenced();
9707  CallOperator->setUsed();
9708}
9709
9710void Sema::DefineImplicitLambdaToFunctionPointerConversion(
9711       SourceLocation CurrentLocation,
9712       CXXConversionDecl *Conv)
9713{
9714  CXXRecordDecl *Lambda = Conv->getParent();
9715
9716  // Make sure that the lambda call operator is marked used.
9717  markLambdaCallOperatorUsed(*this, Lambda);
9718
9719  Conv->setUsed();
9720
9721  SynthesizedFunctionScope Scope(*this, Conv);
9722  DiagnosticErrorTrap Trap(Diags);
9723
9724  // Return the address of the __invoke function.
9725  DeclarationName InvokeName = &Context.Idents.get("__invoke");
9726  CXXMethodDecl *Invoke
9727    = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
9728  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9729                                       VK_LValue, Conv->getLocation()).take();
9730  assert(FunctionRef && "Can't refer to __invoke function?");
9731  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9732  Conv->setBody(new (Context) CompoundStmt(Context, Return,
9733                                           Conv->getLocation(),
9734                                           Conv->getLocation()));
9735
9736  // Fill in the __invoke function with a dummy implementation. IR generation
9737  // will fill in the actual details.
9738  Invoke->setUsed();
9739  Invoke->setReferenced();
9740  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
9741
9742  if (ASTMutationListener *L = getASTMutationListener()) {
9743    L->CompletedImplicitDefinition(Conv);
9744    L->CompletedImplicitDefinition(Invoke);
9745  }
9746}
9747
9748void Sema::DefineImplicitLambdaToBlockPointerConversion(
9749       SourceLocation CurrentLocation,
9750       CXXConversionDecl *Conv)
9751{
9752  Conv->setUsed();
9753
9754  SynthesizedFunctionScope Scope(*this, Conv);
9755  DiagnosticErrorTrap Trap(Diags);
9756
9757  // Copy-initialize the lambda object as needed to capture it.
9758  Expr *This = ActOnCXXThis(CurrentLocation).take();
9759  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9760
9761  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9762                                                        Conv->getLocation(),
9763                                                        Conv, DerefThis);
9764
9765  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9766  // behavior.  Note that only the general conversion function does this
9767  // (since it's unusable otherwise); in the case where we inline the
9768  // block literal, it has block literal lifetime semantics.
9769  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9770    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9771                                          CK_CopyAndAutoreleaseBlockObject,
9772                                          BuildBlock.get(), 0, VK_RValue);
9773
9774  if (BuildBlock.isInvalid()) {
9775    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9776    Conv->setInvalidDecl();
9777    return;
9778  }
9779
9780  // Create the return statement that returns the block from the conversion
9781  // function.
9782  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9783  if (Return.isInvalid()) {
9784    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9785    Conv->setInvalidDecl();
9786    return;
9787  }
9788
9789  // Set the body of the conversion function.
9790  Stmt *ReturnS = Return.take();
9791  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
9792                                           Conv->getLocation(),
9793                                           Conv->getLocation()));
9794
9795  // We're done; notify the mutation listener, if any.
9796  if (ASTMutationListener *L = getASTMutationListener()) {
9797    L->CompletedImplicitDefinition(Conv);
9798  }
9799}
9800
9801/// \brief Determine whether the given list arguments contains exactly one
9802/// "real" (non-default) argument.
9803static bool hasOneRealArgument(MultiExprArg Args) {
9804  switch (Args.size()) {
9805  case 0:
9806    return false;
9807
9808  default:
9809    if (!Args[1]->isDefaultArgument())
9810      return false;
9811
9812    // fall through
9813  case 1:
9814    return !Args[0]->isDefaultArgument();
9815  }
9816
9817  return false;
9818}
9819
9820ExprResult
9821Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9822                            CXXConstructorDecl *Constructor,
9823                            MultiExprArg ExprArgs,
9824                            bool HadMultipleCandidates,
9825                            bool IsListInitialization,
9826                            bool RequiresZeroInit,
9827                            unsigned ConstructKind,
9828                            SourceRange ParenRange) {
9829  bool Elidable = false;
9830
9831  // C++0x [class.copy]p34:
9832  //   When certain criteria are met, an implementation is allowed to
9833  //   omit the copy/move construction of a class object, even if the
9834  //   copy/move constructor and/or destructor for the object have
9835  //   side effects. [...]
9836  //     - when a temporary class object that has not been bound to a
9837  //       reference (12.2) would be copied/moved to a class object
9838  //       with the same cv-unqualified type, the copy/move operation
9839  //       can be omitted by constructing the temporary object
9840  //       directly into the target of the omitted copy/move
9841  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9842      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9843    Expr *SubExpr = ExprArgs[0];
9844    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9845  }
9846
9847  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9848                               Elidable, ExprArgs, HadMultipleCandidates,
9849                               IsListInitialization, RequiresZeroInit,
9850                               ConstructKind, ParenRange);
9851}
9852
9853/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9854/// including handling of its default argument expressions.
9855ExprResult
9856Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9857                            CXXConstructorDecl *Constructor, bool Elidable,
9858                            MultiExprArg ExprArgs,
9859                            bool HadMultipleCandidates,
9860                            bool IsListInitialization,
9861                            bool RequiresZeroInit,
9862                            unsigned ConstructKind,
9863                            SourceRange ParenRange) {
9864  MarkFunctionReferenced(ConstructLoc, Constructor);
9865  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9866                                        Constructor, Elidable, ExprArgs,
9867                                        HadMultipleCandidates,
9868                                        IsListInitialization, RequiresZeroInit,
9869              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9870                                        ParenRange));
9871}
9872
9873void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9874  if (VD->isInvalidDecl()) return;
9875
9876  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9877  if (ClassDecl->isInvalidDecl()) return;
9878  if (ClassDecl->hasIrrelevantDestructor()) return;
9879  if (ClassDecl->isDependentContext()) return;
9880
9881  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9882  MarkFunctionReferenced(VD->getLocation(), Destructor);
9883  CheckDestructorAccess(VD->getLocation(), Destructor,
9884                        PDiag(diag::err_access_dtor_var)
9885                        << VD->getDeclName()
9886                        << VD->getType());
9887  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9888
9889  if (!VD->hasGlobalStorage()) return;
9890
9891  // Emit warning for non-trivial dtor in global scope (a real global,
9892  // class-static, function-static).
9893  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9894
9895  // TODO: this should be re-enabled for static locals by !CXAAtExit
9896  if (!VD->isStaticLocal())
9897    Diag(VD->getLocation(), diag::warn_global_destructor);
9898}
9899
9900/// \brief Given a constructor and the set of arguments provided for the
9901/// constructor, convert the arguments and add any required default arguments
9902/// to form a proper call to this constructor.
9903///
9904/// \returns true if an error occurred, false otherwise.
9905bool
9906Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9907                              MultiExprArg ArgsPtr,
9908                              SourceLocation Loc,
9909                              SmallVectorImpl<Expr*> &ConvertedArgs,
9910                              bool AllowExplicit,
9911                              bool IsListInitialization) {
9912  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9913  unsigned NumArgs = ArgsPtr.size();
9914  Expr **Args = ArgsPtr.data();
9915
9916  const FunctionProtoType *Proto
9917    = Constructor->getType()->getAs<FunctionProtoType>();
9918  assert(Proto && "Constructor without a prototype?");
9919  unsigned NumArgsInProto = Proto->getNumArgs();
9920
9921  // If too few arguments are available, we'll fill in the rest with defaults.
9922  if (NumArgs < NumArgsInProto)
9923    ConvertedArgs.reserve(NumArgsInProto);
9924  else
9925    ConvertedArgs.reserve(NumArgs);
9926
9927  VariadicCallType CallType =
9928    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9929  SmallVector<Expr *, 8> AllArgs;
9930  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9931                                        Proto, 0, Args, NumArgs, AllArgs,
9932                                        CallType, AllowExplicit,
9933                                        IsListInitialization);
9934  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9935
9936  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9937
9938  CheckConstructorCall(Constructor,
9939                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
9940                                                        AllArgs.size()),
9941                       Proto, Loc);
9942
9943  return Invalid;
9944}
9945
9946static inline bool
9947CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9948                                       const FunctionDecl *FnDecl) {
9949  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9950  if (isa<NamespaceDecl>(DC)) {
9951    return SemaRef.Diag(FnDecl->getLocation(),
9952                        diag::err_operator_new_delete_declared_in_namespace)
9953      << FnDecl->getDeclName();
9954  }
9955
9956  if (isa<TranslationUnitDecl>(DC) &&
9957      FnDecl->getStorageClass() == SC_Static) {
9958    return SemaRef.Diag(FnDecl->getLocation(),
9959                        diag::err_operator_new_delete_declared_static)
9960      << FnDecl->getDeclName();
9961  }
9962
9963  return false;
9964}
9965
9966static inline bool
9967CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9968                            CanQualType ExpectedResultType,
9969                            CanQualType ExpectedFirstParamType,
9970                            unsigned DependentParamTypeDiag,
9971                            unsigned InvalidParamTypeDiag) {
9972  QualType ResultType =
9973    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9974
9975  // Check that the result type is not dependent.
9976  if (ResultType->isDependentType())
9977    return SemaRef.Diag(FnDecl->getLocation(),
9978                        diag::err_operator_new_delete_dependent_result_type)
9979    << FnDecl->getDeclName() << ExpectedResultType;
9980
9981  // Check that the result type is what we expect.
9982  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9983    return SemaRef.Diag(FnDecl->getLocation(),
9984                        diag::err_operator_new_delete_invalid_result_type)
9985    << FnDecl->getDeclName() << ExpectedResultType;
9986
9987  // A function template must have at least 2 parameters.
9988  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9989    return SemaRef.Diag(FnDecl->getLocation(),
9990                      diag::err_operator_new_delete_template_too_few_parameters)
9991        << FnDecl->getDeclName();
9992
9993  // The function decl must have at least 1 parameter.
9994  if (FnDecl->getNumParams() == 0)
9995    return SemaRef.Diag(FnDecl->getLocation(),
9996                        diag::err_operator_new_delete_too_few_parameters)
9997      << FnDecl->getDeclName();
9998
9999  // Check the first parameter type is not dependent.
10000  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
10001  if (FirstParamType->isDependentType())
10002    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
10003      << FnDecl->getDeclName() << ExpectedFirstParamType;
10004
10005  // Check that the first parameter type is what we expect.
10006  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
10007      ExpectedFirstParamType)
10008    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
10009    << FnDecl->getDeclName() << ExpectedFirstParamType;
10010
10011  return false;
10012}
10013
10014static bool
10015CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
10016  // C++ [basic.stc.dynamic.allocation]p1:
10017  //   A program is ill-formed if an allocation function is declared in a
10018  //   namespace scope other than global scope or declared static in global
10019  //   scope.
10020  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10021    return true;
10022
10023  CanQualType SizeTy =
10024    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
10025
10026  // C++ [basic.stc.dynamic.allocation]p1:
10027  //  The return type shall be void*. The first parameter shall have type
10028  //  std::size_t.
10029  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
10030                                  SizeTy,
10031                                  diag::err_operator_new_dependent_param_type,
10032                                  diag::err_operator_new_param_type))
10033    return true;
10034
10035  // C++ [basic.stc.dynamic.allocation]p1:
10036  //  The first parameter shall not have an associated default argument.
10037  if (FnDecl->getParamDecl(0)->hasDefaultArg())
10038    return SemaRef.Diag(FnDecl->getLocation(),
10039                        diag::err_operator_new_default_arg)
10040      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
10041
10042  return false;
10043}
10044
10045static bool
10046CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
10047  // C++ [basic.stc.dynamic.deallocation]p1:
10048  //   A program is ill-formed if deallocation functions are declared in a
10049  //   namespace scope other than global scope or declared static in global
10050  //   scope.
10051  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10052    return true;
10053
10054  // C++ [basic.stc.dynamic.deallocation]p2:
10055  //   Each deallocation function shall return void and its first parameter
10056  //   shall be void*.
10057  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
10058                                  SemaRef.Context.VoidPtrTy,
10059                                 diag::err_operator_delete_dependent_param_type,
10060                                 diag::err_operator_delete_param_type))
10061    return true;
10062
10063  return false;
10064}
10065
10066/// CheckOverloadedOperatorDeclaration - Check whether the declaration
10067/// of this overloaded operator is well-formed. If so, returns false;
10068/// otherwise, emits appropriate diagnostics and returns true.
10069bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
10070  assert(FnDecl && FnDecl->isOverloadedOperator() &&
10071         "Expected an overloaded operator declaration");
10072
10073  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
10074
10075  // C++ [over.oper]p5:
10076  //   The allocation and deallocation functions, operator new,
10077  //   operator new[], operator delete and operator delete[], are
10078  //   described completely in 3.7.3. The attributes and restrictions
10079  //   found in the rest of this subclause do not apply to them unless
10080  //   explicitly stated in 3.7.3.
10081  if (Op == OO_Delete || Op == OO_Array_Delete)
10082    return CheckOperatorDeleteDeclaration(*this, FnDecl);
10083
10084  if (Op == OO_New || Op == OO_Array_New)
10085    return CheckOperatorNewDeclaration(*this, FnDecl);
10086
10087  // C++ [over.oper]p6:
10088  //   An operator function shall either be a non-static member
10089  //   function or be a non-member function and have at least one
10090  //   parameter whose type is a class, a reference to a class, an
10091  //   enumeration, or a reference to an enumeration.
10092  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
10093    if (MethodDecl->isStatic())
10094      return Diag(FnDecl->getLocation(),
10095                  diag::err_operator_overload_static) << FnDecl->getDeclName();
10096  } else {
10097    bool ClassOrEnumParam = false;
10098    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10099                                   ParamEnd = FnDecl->param_end();
10100         Param != ParamEnd; ++Param) {
10101      QualType ParamType = (*Param)->getType().getNonReferenceType();
10102      if (ParamType->isDependentType() || ParamType->isRecordType() ||
10103          ParamType->isEnumeralType()) {
10104        ClassOrEnumParam = true;
10105        break;
10106      }
10107    }
10108
10109    if (!ClassOrEnumParam)
10110      return Diag(FnDecl->getLocation(),
10111                  diag::err_operator_overload_needs_class_or_enum)
10112        << FnDecl->getDeclName();
10113  }
10114
10115  // C++ [over.oper]p8:
10116  //   An operator function cannot have default arguments (8.3.6),
10117  //   except where explicitly stated below.
10118  //
10119  // Only the function-call operator allows default arguments
10120  // (C++ [over.call]p1).
10121  if (Op != OO_Call) {
10122    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
10123         Param != FnDecl->param_end(); ++Param) {
10124      if ((*Param)->hasDefaultArg())
10125        return Diag((*Param)->getLocation(),
10126                    diag::err_operator_overload_default_arg)
10127          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
10128    }
10129  }
10130
10131  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
10132    { false, false, false }
10133#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
10134    , { Unary, Binary, MemberOnly }
10135#include "clang/Basic/OperatorKinds.def"
10136  };
10137
10138  bool CanBeUnaryOperator = OperatorUses[Op][0];
10139  bool CanBeBinaryOperator = OperatorUses[Op][1];
10140  bool MustBeMemberOperator = OperatorUses[Op][2];
10141
10142  // C++ [over.oper]p8:
10143  //   [...] Operator functions cannot have more or fewer parameters
10144  //   than the number required for the corresponding operator, as
10145  //   described in the rest of this subclause.
10146  unsigned NumParams = FnDecl->getNumParams()
10147                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
10148  if (Op != OO_Call &&
10149      ((NumParams == 1 && !CanBeUnaryOperator) ||
10150       (NumParams == 2 && !CanBeBinaryOperator) ||
10151       (NumParams < 1) || (NumParams > 2))) {
10152    // We have the wrong number of parameters.
10153    unsigned ErrorKind;
10154    if (CanBeUnaryOperator && CanBeBinaryOperator) {
10155      ErrorKind = 2;  // 2 -> unary or binary.
10156    } else if (CanBeUnaryOperator) {
10157      ErrorKind = 0;  // 0 -> unary
10158    } else {
10159      assert(CanBeBinaryOperator &&
10160             "All non-call overloaded operators are unary or binary!");
10161      ErrorKind = 1;  // 1 -> binary
10162    }
10163
10164    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
10165      << FnDecl->getDeclName() << NumParams << ErrorKind;
10166  }
10167
10168  // Overloaded operators other than operator() cannot be variadic.
10169  if (Op != OO_Call &&
10170      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
10171    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
10172      << FnDecl->getDeclName();
10173  }
10174
10175  // Some operators must be non-static member functions.
10176  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
10177    return Diag(FnDecl->getLocation(),
10178                diag::err_operator_overload_must_be_member)
10179      << FnDecl->getDeclName();
10180  }
10181
10182  // C++ [over.inc]p1:
10183  //   The user-defined function called operator++ implements the
10184  //   prefix and postfix ++ operator. If this function is a member
10185  //   function with no parameters, or a non-member function with one
10186  //   parameter of class or enumeration type, it defines the prefix
10187  //   increment operator ++ for objects of that type. If the function
10188  //   is a member function with one parameter (which shall be of type
10189  //   int) or a non-member function with two parameters (the second
10190  //   of which shall be of type int), it defines the postfix
10191  //   increment operator ++ for objects of that type.
10192  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10193    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10194    bool ParamIsInt = false;
10195    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10196      ParamIsInt = BT->getKind() == BuiltinType::Int;
10197
10198    if (!ParamIsInt)
10199      return Diag(LastParam->getLocation(),
10200                  diag::err_operator_overload_post_incdec_must_be_int)
10201        << LastParam->getType() << (Op == OO_MinusMinus);
10202  }
10203
10204  return false;
10205}
10206
10207/// CheckLiteralOperatorDeclaration - Check whether the declaration
10208/// of this literal operator function is well-formed. If so, returns
10209/// false; otherwise, emits appropriate diagnostics and returns true.
10210bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10211  if (isa<CXXMethodDecl>(FnDecl)) {
10212    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10213      << FnDecl->getDeclName();
10214    return true;
10215  }
10216
10217  if (FnDecl->isExternC()) {
10218    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10219    return true;
10220  }
10221
10222  bool Valid = false;
10223
10224  // This might be the definition of a literal operator template.
10225  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10226  // This might be a specialization of a literal operator template.
10227  if (!TpDecl)
10228    TpDecl = FnDecl->getPrimaryTemplate();
10229
10230  // template <char...> type operator "" name() is the only valid template
10231  // signature, and the only valid signature with no parameters.
10232  if (TpDecl) {
10233    if (FnDecl->param_size() == 0) {
10234      // Must have only one template parameter
10235      TemplateParameterList *Params = TpDecl->getTemplateParameters();
10236      if (Params->size() == 1) {
10237        NonTypeTemplateParmDecl *PmDecl =
10238          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10239
10240        // The template parameter must be a char parameter pack.
10241        if (PmDecl && PmDecl->isTemplateParameterPack() &&
10242            Context.hasSameType(PmDecl->getType(), Context.CharTy))
10243          Valid = true;
10244      }
10245    }
10246  } else if (FnDecl->param_size()) {
10247    // Check the first parameter
10248    FunctionDecl::param_iterator Param = FnDecl->param_begin();
10249
10250    QualType T = (*Param)->getType().getUnqualifiedType();
10251
10252    // unsigned long long int, long double, and any character type are allowed
10253    // as the only parameters.
10254    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
10255        Context.hasSameType(T, Context.LongDoubleTy) ||
10256        Context.hasSameType(T, Context.CharTy) ||
10257        Context.hasSameType(T, Context.WCharTy) ||
10258        Context.hasSameType(T, Context.Char16Ty) ||
10259        Context.hasSameType(T, Context.Char32Ty)) {
10260      if (++Param == FnDecl->param_end())
10261        Valid = true;
10262      goto FinishedParams;
10263    }
10264
10265    // Otherwise it must be a pointer to const; let's strip those qualifiers.
10266    const PointerType *PT = T->getAs<PointerType>();
10267    if (!PT)
10268      goto FinishedParams;
10269    T = PT->getPointeeType();
10270    if (!T.isConstQualified() || T.isVolatileQualified())
10271      goto FinishedParams;
10272    T = T.getUnqualifiedType();
10273
10274    // Move on to the second parameter;
10275    ++Param;
10276
10277    // If there is no second parameter, the first must be a const char *
10278    if (Param == FnDecl->param_end()) {
10279      if (Context.hasSameType(T, Context.CharTy))
10280        Valid = true;
10281      goto FinishedParams;
10282    }
10283
10284    // const char *, const wchar_t*, const char16_t*, and const char32_t*
10285    // are allowed as the first parameter to a two-parameter function
10286    if (!(Context.hasSameType(T, Context.CharTy) ||
10287          Context.hasSameType(T, Context.WCharTy) ||
10288          Context.hasSameType(T, Context.Char16Ty) ||
10289          Context.hasSameType(T, Context.Char32Ty)))
10290      goto FinishedParams;
10291
10292    // The second and final parameter must be an std::size_t
10293    T = (*Param)->getType().getUnqualifiedType();
10294    if (Context.hasSameType(T, Context.getSizeType()) &&
10295        ++Param == FnDecl->param_end())
10296      Valid = true;
10297  }
10298
10299  // FIXME: This diagnostic is absolutely terrible.
10300FinishedParams:
10301  if (!Valid) {
10302    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
10303      << FnDecl->getDeclName();
10304    return true;
10305  }
10306
10307  // A parameter-declaration-clause containing a default argument is not
10308  // equivalent to any of the permitted forms.
10309  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10310                                    ParamEnd = FnDecl->param_end();
10311       Param != ParamEnd; ++Param) {
10312    if ((*Param)->hasDefaultArg()) {
10313      Diag((*Param)->getDefaultArgRange().getBegin(),
10314           diag::err_literal_operator_default_argument)
10315        << (*Param)->getDefaultArgRange();
10316      break;
10317    }
10318  }
10319
10320  StringRef LiteralName
10321    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
10322  if (LiteralName[0] != '_') {
10323    // C++11 [usrlit.suffix]p1:
10324    //   Literal suffix identifiers that do not start with an underscore
10325    //   are reserved for future standardization.
10326    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
10327  }
10328
10329  return false;
10330}
10331
10332/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10333/// linkage specification, including the language and (if present)
10334/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10335/// the location of the language string literal, which is provided
10336/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10337/// the '{' brace. Otherwise, this linkage specification does not
10338/// have any braces.
10339Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10340                                           SourceLocation LangLoc,
10341                                           StringRef Lang,
10342                                           SourceLocation LBraceLoc) {
10343  LinkageSpecDecl::LanguageIDs Language;
10344  if (Lang == "\"C\"")
10345    Language = LinkageSpecDecl::lang_c;
10346  else if (Lang == "\"C++\"")
10347    Language = LinkageSpecDecl::lang_cxx;
10348  else {
10349    Diag(LangLoc, diag::err_bad_language);
10350    return 0;
10351  }
10352
10353  // FIXME: Add all the various semantics of linkage specifications
10354
10355  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
10356                                               ExternLoc, LangLoc, Language);
10357  CurContext->addDecl(D);
10358  PushDeclContext(S, D);
10359  return D;
10360}
10361
10362/// ActOnFinishLinkageSpecification - Complete the definition of
10363/// the C++ linkage specification LinkageSpec. If RBraceLoc is
10364/// valid, it's the position of the closing '}' brace in a linkage
10365/// specification that uses braces.
10366Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
10367                                            Decl *LinkageSpec,
10368                                            SourceLocation RBraceLoc) {
10369  if (LinkageSpec) {
10370    if (RBraceLoc.isValid()) {
10371      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
10372      LSDecl->setRBraceLoc(RBraceLoc);
10373    }
10374    PopDeclContext();
10375  }
10376  return LinkageSpec;
10377}
10378
10379Decl *Sema::ActOnEmptyDeclaration(Scope *S,
10380                                  AttributeList *AttrList,
10381                                  SourceLocation SemiLoc) {
10382  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
10383  // Attribute declarations appertain to empty declaration so we handle
10384  // them here.
10385  if (AttrList)
10386    ProcessDeclAttributeList(S, ED, AttrList);
10387
10388  CurContext->addDecl(ED);
10389  return ED;
10390}
10391
10392/// \brief Perform semantic analysis for the variable declaration that
10393/// occurs within a C++ catch clause, returning the newly-created
10394/// variable.
10395VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
10396                                         TypeSourceInfo *TInfo,
10397                                         SourceLocation StartLoc,
10398                                         SourceLocation Loc,
10399                                         IdentifierInfo *Name) {
10400  bool Invalid = false;
10401  QualType ExDeclType = TInfo->getType();
10402
10403  // Arrays and functions decay.
10404  if (ExDeclType->isArrayType())
10405    ExDeclType = Context.getArrayDecayedType(ExDeclType);
10406  else if (ExDeclType->isFunctionType())
10407    ExDeclType = Context.getPointerType(ExDeclType);
10408
10409  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
10410  // The exception-declaration shall not denote a pointer or reference to an
10411  // incomplete type, other than [cv] void*.
10412  // N2844 forbids rvalue references.
10413  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
10414    Diag(Loc, diag::err_catch_rvalue_ref);
10415    Invalid = true;
10416  }
10417
10418  QualType BaseType = ExDeclType;
10419  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
10420  unsigned DK = diag::err_catch_incomplete;
10421  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
10422    BaseType = Ptr->getPointeeType();
10423    Mode = 1;
10424    DK = diag::err_catch_incomplete_ptr;
10425  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
10426    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
10427    BaseType = Ref->getPointeeType();
10428    Mode = 2;
10429    DK = diag::err_catch_incomplete_ref;
10430  }
10431  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
10432      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
10433    Invalid = true;
10434
10435  if (!Invalid && !ExDeclType->isDependentType() &&
10436      RequireNonAbstractType(Loc, ExDeclType,
10437                             diag::err_abstract_type_in_decl,
10438                             AbstractVariableType))
10439    Invalid = true;
10440
10441  // Only the non-fragile NeXT runtime currently supports C++ catches
10442  // of ObjC types, and no runtime supports catching ObjC types by value.
10443  if (!Invalid && getLangOpts().ObjC1) {
10444    QualType T = ExDeclType;
10445    if (const ReferenceType *RT = T->getAs<ReferenceType>())
10446      T = RT->getPointeeType();
10447
10448    if (T->isObjCObjectType()) {
10449      Diag(Loc, diag::err_objc_object_catch);
10450      Invalid = true;
10451    } else if (T->isObjCObjectPointerType()) {
10452      // FIXME: should this be a test for macosx-fragile specifically?
10453      if (getLangOpts().ObjCRuntime.isFragile())
10454        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
10455    }
10456  }
10457
10458  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
10459                                    ExDeclType, TInfo, SC_None);
10460  ExDecl->setExceptionVariable(true);
10461
10462  // In ARC, infer 'retaining' for variables of retainable type.
10463  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
10464    Invalid = true;
10465
10466  if (!Invalid && !ExDeclType->isDependentType()) {
10467    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
10468      // Insulate this from anything else we might currently be parsing.
10469      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
10470
10471      // C++ [except.handle]p16:
10472      //   The object declared in an exception-declaration or, if the
10473      //   exception-declaration does not specify a name, a temporary (12.2) is
10474      //   copy-initialized (8.5) from the exception object. [...]
10475      //   The object is destroyed when the handler exits, after the destruction
10476      //   of any automatic objects initialized within the handler.
10477      //
10478      // We just pretend to initialize the object with itself, then make sure
10479      // it can be destroyed later.
10480      QualType initType = ExDeclType;
10481
10482      InitializedEntity entity =
10483        InitializedEntity::InitializeVariable(ExDecl);
10484      InitializationKind initKind =
10485        InitializationKind::CreateCopy(Loc, SourceLocation());
10486
10487      Expr *opaqueValue =
10488        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
10489      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
10490      ExprResult result = sequence.Perform(*this, entity, initKind,
10491                                           MultiExprArg(&opaqueValue, 1));
10492      if (result.isInvalid())
10493        Invalid = true;
10494      else {
10495        // If the constructor used was non-trivial, set this as the
10496        // "initializer".
10497        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
10498        if (!construct->getConstructor()->isTrivial()) {
10499          Expr *init = MaybeCreateExprWithCleanups(construct);
10500          ExDecl->setInit(init);
10501        }
10502
10503        // And make sure it's destructable.
10504        FinalizeVarWithDestructor(ExDecl, recordType);
10505      }
10506    }
10507  }
10508
10509  if (Invalid)
10510    ExDecl->setInvalidDecl();
10511
10512  return ExDecl;
10513}
10514
10515/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
10516/// handler.
10517Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
10518  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10519  bool Invalid = D.isInvalidType();
10520
10521  // Check for unexpanded parameter packs.
10522  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10523                                      UPPC_ExceptionType)) {
10524    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10525                                             D.getIdentifierLoc());
10526    Invalid = true;
10527  }
10528
10529  IdentifierInfo *II = D.getIdentifier();
10530  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
10531                                             LookupOrdinaryName,
10532                                             ForRedeclaration)) {
10533    // The scope should be freshly made just for us. There is just no way
10534    // it contains any previous declaration.
10535    assert(!S->isDeclScope(PrevDecl));
10536    if (PrevDecl->isTemplateParameter()) {
10537      // Maybe we will complain about the shadowed template parameter.
10538      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10539      PrevDecl = 0;
10540    }
10541  }
10542
10543  if (D.getCXXScopeSpec().isSet() && !Invalid) {
10544    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
10545      << D.getCXXScopeSpec().getRange();
10546    Invalid = true;
10547  }
10548
10549  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
10550                                              D.getLocStart(),
10551                                              D.getIdentifierLoc(),
10552                                              D.getIdentifier());
10553  if (Invalid)
10554    ExDecl->setInvalidDecl();
10555
10556  // Add the exception declaration into this scope.
10557  if (II)
10558    PushOnScopeChains(ExDecl, S);
10559  else
10560    CurContext->addDecl(ExDecl);
10561
10562  ProcessDeclAttributes(S, ExDecl, D);
10563  return ExDecl;
10564}
10565
10566Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10567                                         Expr *AssertExpr,
10568                                         Expr *AssertMessageExpr,
10569                                         SourceLocation RParenLoc) {
10570  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
10571
10572  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
10573    return 0;
10574
10575  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
10576                                      AssertMessage, RParenLoc, false);
10577}
10578
10579Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10580                                         Expr *AssertExpr,
10581                                         StringLiteral *AssertMessage,
10582                                         SourceLocation RParenLoc,
10583                                         bool Failed) {
10584  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
10585      !Failed) {
10586    // In a static_assert-declaration, the constant-expression shall be a
10587    // constant expression that can be contextually converted to bool.
10588    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
10589    if (Converted.isInvalid())
10590      Failed = true;
10591
10592    llvm::APSInt Cond;
10593    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
10594          diag::err_static_assert_expression_is_not_constant,
10595          /*AllowFold=*/false).isInvalid())
10596      Failed = true;
10597
10598    if (!Failed && !Cond) {
10599      SmallString<256> MsgBuffer;
10600      llvm::raw_svector_ostream Msg(MsgBuffer);
10601      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
10602      Diag(StaticAssertLoc, diag::err_static_assert_failed)
10603        << Msg.str() << AssertExpr->getSourceRange();
10604      Failed = true;
10605    }
10606  }
10607
10608  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
10609                                        AssertExpr, AssertMessage, RParenLoc,
10610                                        Failed);
10611
10612  CurContext->addDecl(Decl);
10613  return Decl;
10614}
10615
10616/// \brief Perform semantic analysis of the given friend type declaration.
10617///
10618/// \returns A friend declaration that.
10619FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
10620                                      SourceLocation FriendLoc,
10621                                      TypeSourceInfo *TSInfo) {
10622  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
10623
10624  QualType T = TSInfo->getType();
10625  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
10626
10627  // C++03 [class.friend]p2:
10628  //   An elaborated-type-specifier shall be used in a friend declaration
10629  //   for a class.*
10630  //
10631  //   * The class-key of the elaborated-type-specifier is required.
10632  if (!ActiveTemplateInstantiations.empty()) {
10633    // Do not complain about the form of friend template types during
10634    // template instantiation; we will already have complained when the
10635    // template was declared.
10636  } else {
10637    if (!T->isElaboratedTypeSpecifier()) {
10638      // If we evaluated the type to a record type, suggest putting
10639      // a tag in front.
10640      if (const RecordType *RT = T->getAs<RecordType>()) {
10641        RecordDecl *RD = RT->getDecl();
10642
10643        std::string InsertionText = std::string(" ") + RD->getKindName();
10644
10645        Diag(TypeRange.getBegin(),
10646             getLangOpts().CPlusPlus11 ?
10647               diag::warn_cxx98_compat_unelaborated_friend_type :
10648               diag::ext_unelaborated_friend_type)
10649          << (unsigned) RD->getTagKind()
10650          << T
10651          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10652                                        InsertionText);
10653      } else {
10654        Diag(FriendLoc,
10655             getLangOpts().CPlusPlus11 ?
10656               diag::warn_cxx98_compat_nonclass_type_friend :
10657               diag::ext_nonclass_type_friend)
10658          << T
10659          << TypeRange;
10660      }
10661    } else if (T->getAs<EnumType>()) {
10662      Diag(FriendLoc,
10663           getLangOpts().CPlusPlus11 ?
10664             diag::warn_cxx98_compat_enum_friend :
10665             diag::ext_enum_friend)
10666        << T
10667        << TypeRange;
10668    }
10669
10670    // C++11 [class.friend]p3:
10671    //   A friend declaration that does not declare a function shall have one
10672    //   of the following forms:
10673    //     friend elaborated-type-specifier ;
10674    //     friend simple-type-specifier ;
10675    //     friend typename-specifier ;
10676    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
10677      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
10678  }
10679
10680  //   If the type specifier in a friend declaration designates a (possibly
10681  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10682  //   the friend declaration is ignored.
10683  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
10684}
10685
10686/// Handle a friend tag declaration where the scope specifier was
10687/// templated.
10688Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10689                                    unsigned TagSpec, SourceLocation TagLoc,
10690                                    CXXScopeSpec &SS,
10691                                    IdentifierInfo *Name,
10692                                    SourceLocation NameLoc,
10693                                    AttributeList *Attr,
10694                                    MultiTemplateParamsArg TempParamLists) {
10695  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10696
10697  bool isExplicitSpecialization = false;
10698  bool Invalid = false;
10699
10700  if (TemplateParameterList *TemplateParams
10701        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10702                                                  TempParamLists.data(),
10703                                                  TempParamLists.size(),
10704                                                  /*friend*/ true,
10705                                                  isExplicitSpecialization,
10706                                                  Invalid)) {
10707    if (TemplateParams->size() > 0) {
10708      // This is a declaration of a class template.
10709      if (Invalid)
10710        return 0;
10711
10712      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10713                                SS, Name, NameLoc, Attr,
10714                                TemplateParams, AS_public,
10715                                /*ModulePrivateLoc=*/SourceLocation(),
10716                                TempParamLists.size() - 1,
10717                                TempParamLists.data()).take();
10718    } else {
10719      // The "template<>" header is extraneous.
10720      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10721        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10722      isExplicitSpecialization = true;
10723    }
10724  }
10725
10726  if (Invalid) return 0;
10727
10728  bool isAllExplicitSpecializations = true;
10729  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10730    if (TempParamLists[I]->size()) {
10731      isAllExplicitSpecializations = false;
10732      break;
10733    }
10734  }
10735
10736  // FIXME: don't ignore attributes.
10737
10738  // If it's explicit specializations all the way down, just forget
10739  // about the template header and build an appropriate non-templated
10740  // friend.  TODO: for source fidelity, remember the headers.
10741  if (isAllExplicitSpecializations) {
10742    if (SS.isEmpty()) {
10743      bool Owned = false;
10744      bool IsDependent = false;
10745      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10746                      Attr, AS_public,
10747                      /*ModulePrivateLoc=*/SourceLocation(),
10748                      MultiTemplateParamsArg(), Owned, IsDependent,
10749                      /*ScopedEnumKWLoc=*/SourceLocation(),
10750                      /*ScopedEnumUsesClassTag=*/false,
10751                      /*UnderlyingType=*/TypeResult());
10752    }
10753
10754    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10755    ElaboratedTypeKeyword Keyword
10756      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10757    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10758                                   *Name, NameLoc);
10759    if (T.isNull())
10760      return 0;
10761
10762    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10763    if (isa<DependentNameType>(T)) {
10764      DependentNameTypeLoc TL =
10765          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10766      TL.setElaboratedKeywordLoc(TagLoc);
10767      TL.setQualifierLoc(QualifierLoc);
10768      TL.setNameLoc(NameLoc);
10769    } else {
10770      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
10771      TL.setElaboratedKeywordLoc(TagLoc);
10772      TL.setQualifierLoc(QualifierLoc);
10773      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
10774    }
10775
10776    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10777                                            TSI, FriendLoc, TempParamLists);
10778    Friend->setAccess(AS_public);
10779    CurContext->addDecl(Friend);
10780    return Friend;
10781  }
10782
10783  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10784
10785
10786
10787  // Handle the case of a templated-scope friend class.  e.g.
10788  //   template <class T> class A<T>::B;
10789  // FIXME: we don't support these right now.
10790  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10791  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10792  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10793  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10794  TL.setElaboratedKeywordLoc(TagLoc);
10795  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10796  TL.setNameLoc(NameLoc);
10797
10798  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10799                                          TSI, FriendLoc, TempParamLists);
10800  Friend->setAccess(AS_public);
10801  Friend->setUnsupportedFriend(true);
10802  CurContext->addDecl(Friend);
10803  return Friend;
10804}
10805
10806
10807/// Handle a friend type declaration.  This works in tandem with
10808/// ActOnTag.
10809///
10810/// Notes on friend class templates:
10811///
10812/// We generally treat friend class declarations as if they were
10813/// declaring a class.  So, for example, the elaborated type specifier
10814/// in a friend declaration is required to obey the restrictions of a
10815/// class-head (i.e. no typedefs in the scope chain), template
10816/// parameters are required to match up with simple template-ids, &c.
10817/// However, unlike when declaring a template specialization, it's
10818/// okay to refer to a template specialization without an empty
10819/// template parameter declaration, e.g.
10820///   friend class A<T>::B<unsigned>;
10821/// We permit this as a special case; if there are any template
10822/// parameters present at all, require proper matching, i.e.
10823///   template <> template \<class T> friend class A<int>::B;
10824Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10825                                MultiTemplateParamsArg TempParams) {
10826  SourceLocation Loc = DS.getLocStart();
10827
10828  assert(DS.isFriendSpecified());
10829  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10830
10831  // Try to convert the decl specifier to a type.  This works for
10832  // friend templates because ActOnTag never produces a ClassTemplateDecl
10833  // for a TUK_Friend.
10834  Declarator TheDeclarator(DS, Declarator::MemberContext);
10835  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10836  QualType T = TSI->getType();
10837  if (TheDeclarator.isInvalidType())
10838    return 0;
10839
10840  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10841    return 0;
10842
10843  // This is definitely an error in C++98.  It's probably meant to
10844  // be forbidden in C++0x, too, but the specification is just
10845  // poorly written.
10846  //
10847  // The problem is with declarations like the following:
10848  //   template <T> friend A<T>::foo;
10849  // where deciding whether a class C is a friend or not now hinges
10850  // on whether there exists an instantiation of A that causes
10851  // 'foo' to equal C.  There are restrictions on class-heads
10852  // (which we declare (by fiat) elaborated friend declarations to
10853  // be) that makes this tractable.
10854  //
10855  // FIXME: handle "template <> friend class A<T>;", which
10856  // is possibly well-formed?  Who even knows?
10857  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10858    Diag(Loc, diag::err_tagless_friend_type_template)
10859      << DS.getSourceRange();
10860    return 0;
10861  }
10862
10863  // C++98 [class.friend]p1: A friend of a class is a function
10864  //   or class that is not a member of the class . . .
10865  // This is fixed in DR77, which just barely didn't make the C++03
10866  // deadline.  It's also a very silly restriction that seriously
10867  // affects inner classes and which nobody else seems to implement;
10868  // thus we never diagnose it, not even in -pedantic.
10869  //
10870  // But note that we could warn about it: it's always useless to
10871  // friend one of your own members (it's not, however, worthless to
10872  // friend a member of an arbitrary specialization of your template).
10873
10874  Decl *D;
10875  if (unsigned NumTempParamLists = TempParams.size())
10876    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10877                                   NumTempParamLists,
10878                                   TempParams.data(),
10879                                   TSI,
10880                                   DS.getFriendSpecLoc());
10881  else
10882    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10883
10884  if (!D)
10885    return 0;
10886
10887  D->setAccess(AS_public);
10888  CurContext->addDecl(D);
10889
10890  return D;
10891}
10892
10893NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10894                                        MultiTemplateParamsArg TemplateParams) {
10895  const DeclSpec &DS = D.getDeclSpec();
10896
10897  assert(DS.isFriendSpecified());
10898  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10899
10900  SourceLocation Loc = D.getIdentifierLoc();
10901  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10902
10903  // C++ [class.friend]p1
10904  //   A friend of a class is a function or class....
10905  // Note that this sees through typedefs, which is intended.
10906  // It *doesn't* see through dependent types, which is correct
10907  // according to [temp.arg.type]p3:
10908  //   If a declaration acquires a function type through a
10909  //   type dependent on a template-parameter and this causes
10910  //   a declaration that does not use the syntactic form of a
10911  //   function declarator to have a function type, the program
10912  //   is ill-formed.
10913  if (!TInfo->getType()->isFunctionType()) {
10914    Diag(Loc, diag::err_unexpected_friend);
10915
10916    // It might be worthwhile to try to recover by creating an
10917    // appropriate declaration.
10918    return 0;
10919  }
10920
10921  // C++ [namespace.memdef]p3
10922  //  - If a friend declaration in a non-local class first declares a
10923  //    class or function, the friend class or function is a member
10924  //    of the innermost enclosing namespace.
10925  //  - The name of the friend is not found by simple name lookup
10926  //    until a matching declaration is provided in that namespace
10927  //    scope (either before or after the class declaration granting
10928  //    friendship).
10929  //  - If a friend function is called, its name may be found by the
10930  //    name lookup that considers functions from namespaces and
10931  //    classes associated with the types of the function arguments.
10932  //  - When looking for a prior declaration of a class or a function
10933  //    declared as a friend, scopes outside the innermost enclosing
10934  //    namespace scope are not considered.
10935
10936  CXXScopeSpec &SS = D.getCXXScopeSpec();
10937  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10938  DeclarationName Name = NameInfo.getName();
10939  assert(Name);
10940
10941  // Check for unexpanded parameter packs.
10942  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10943      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10944      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10945    return 0;
10946
10947  // The context we found the declaration in, or in which we should
10948  // create the declaration.
10949  DeclContext *DC;
10950  Scope *DCScope = S;
10951  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10952                        ForRedeclaration);
10953
10954  // FIXME: there are different rules in local classes
10955
10956  // There are four cases here.
10957  //   - There's no scope specifier, in which case we just go to the
10958  //     appropriate scope and look for a function or function template
10959  //     there as appropriate.
10960  // Recover from invalid scope qualifiers as if they just weren't there.
10961  if (SS.isInvalid() || !SS.isSet()) {
10962    // C++0x [namespace.memdef]p3:
10963    //   If the name in a friend declaration is neither qualified nor
10964    //   a template-id and the declaration is a function or an
10965    //   elaborated-type-specifier, the lookup to determine whether
10966    //   the entity has been previously declared shall not consider
10967    //   any scopes outside the innermost enclosing namespace.
10968    // C++0x [class.friend]p11:
10969    //   If a friend declaration appears in a local class and the name
10970    //   specified is an unqualified name, a prior declaration is
10971    //   looked up without considering scopes that are outside the
10972    //   innermost enclosing non-class scope. For a friend function
10973    //   declaration, if there is no prior declaration, the program is
10974    //   ill-formed.
10975    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10976    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10977
10978    // Find the appropriate context according to the above.
10979    DC = CurContext;
10980    while (true) {
10981      // Skip class contexts.  If someone can cite chapter and verse
10982      // for this behavior, that would be nice --- it's what GCC and
10983      // EDG do, and it seems like a reasonable intent, but the spec
10984      // really only says that checks for unqualified existing
10985      // declarations should stop at the nearest enclosing namespace,
10986      // not that they should only consider the nearest enclosing
10987      // namespace.
10988      while (DC->isRecord() || DC->isTransparentContext())
10989        DC = DC->getParent();
10990
10991      LookupQualifiedName(Previous, DC);
10992
10993      // TODO: decide what we think about using declarations.
10994      if (isLocal || !Previous.empty())
10995        break;
10996
10997      if (isTemplateId) {
10998        if (isa<TranslationUnitDecl>(DC)) break;
10999      } else {
11000        if (DC->isFileContext()) break;
11001      }
11002      DC = DC->getParent();
11003    }
11004
11005    DCScope = getScopeForDeclContext(S, DC);
11006
11007    // C++ [class.friend]p6:
11008    //   A function can be defined in a friend declaration of a class if and
11009    //   only if the class is a non-local class (9.8), the function name is
11010    //   unqualified, and the function has namespace scope.
11011    if (isLocal && D.isFunctionDefinition()) {
11012      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
11013    }
11014
11015  //   - There's a non-dependent scope specifier, in which case we
11016  //     compute it and do a previous lookup there for a function
11017  //     or function template.
11018  } else if (!SS.getScopeRep()->isDependent()) {
11019    DC = computeDeclContext(SS);
11020    if (!DC) return 0;
11021
11022    if (RequireCompleteDeclContext(SS, DC)) return 0;
11023
11024    LookupQualifiedName(Previous, DC);
11025
11026    // Ignore things found implicitly in the wrong scope.
11027    // TODO: better diagnostics for this case.  Suggesting the right
11028    // qualified scope would be nice...
11029    LookupResult::Filter F = Previous.makeFilter();
11030    while (F.hasNext()) {
11031      NamedDecl *D = F.next();
11032      if (!DC->InEnclosingNamespaceSetOf(
11033              D->getDeclContext()->getRedeclContext()))
11034        F.erase();
11035    }
11036    F.done();
11037
11038    if (Previous.empty()) {
11039      D.setInvalidType();
11040      Diag(Loc, diag::err_qualified_friend_not_found)
11041          << Name << TInfo->getType();
11042      return 0;
11043    }
11044
11045    // C++ [class.friend]p1: A friend of a class is a function or
11046    //   class that is not a member of the class . . .
11047    if (DC->Equals(CurContext))
11048      Diag(DS.getFriendSpecLoc(),
11049           getLangOpts().CPlusPlus11 ?
11050             diag::warn_cxx98_compat_friend_is_member :
11051             diag::err_friend_is_member);
11052
11053    if (D.isFunctionDefinition()) {
11054      // C++ [class.friend]p6:
11055      //   A function can be defined in a friend declaration of a class if and
11056      //   only if the class is a non-local class (9.8), the function name is
11057      //   unqualified, and the function has namespace scope.
11058      SemaDiagnosticBuilder DB
11059        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
11060
11061      DB << SS.getScopeRep();
11062      if (DC->isFileContext())
11063        DB << FixItHint::CreateRemoval(SS.getRange());
11064      SS.clear();
11065    }
11066
11067  //   - There's a scope specifier that does not match any template
11068  //     parameter lists, in which case we use some arbitrary context,
11069  //     create a method or method template, and wait for instantiation.
11070  //   - There's a scope specifier that does match some template
11071  //     parameter lists, which we don't handle right now.
11072  } else {
11073    if (D.isFunctionDefinition()) {
11074      // C++ [class.friend]p6:
11075      //   A function can be defined in a friend declaration of a class if and
11076      //   only if the class is a non-local class (9.8), the function name is
11077      //   unqualified, and the function has namespace scope.
11078      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
11079        << SS.getScopeRep();
11080    }
11081
11082    DC = CurContext;
11083    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
11084  }
11085
11086  if (!DC->isRecord()) {
11087    // This implies that it has to be an operator or function.
11088    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
11089        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
11090        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
11091      Diag(Loc, diag::err_introducing_special_friend) <<
11092        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
11093         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
11094      return 0;
11095    }
11096  }
11097
11098  // FIXME: This is an egregious hack to cope with cases where the scope stack
11099  // does not contain the declaration context, i.e., in an out-of-line
11100  // definition of a class.
11101  Scope FakeDCScope(S, Scope::DeclScope, Diags);
11102  if (!DCScope) {
11103    FakeDCScope.setEntity(DC);
11104    DCScope = &FakeDCScope;
11105  }
11106
11107  bool AddToScope = true;
11108  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
11109                                          TemplateParams, AddToScope);
11110  if (!ND) return 0;
11111
11112  assert(ND->getDeclContext() == DC);
11113  assert(ND->getLexicalDeclContext() == CurContext);
11114
11115  // Add the function declaration to the appropriate lookup tables,
11116  // adjusting the redeclarations list as necessary.  We don't
11117  // want to do this yet if the friending class is dependent.
11118  //
11119  // Also update the scope-based lookup if the target context's
11120  // lookup context is in lexical scope.
11121  if (!CurContext->isDependentContext()) {
11122    DC = DC->getRedeclContext();
11123    DC->makeDeclVisibleInContext(ND);
11124    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11125      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
11126  }
11127
11128  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
11129                                       D.getIdentifierLoc(), ND,
11130                                       DS.getFriendSpecLoc());
11131  FrD->setAccess(AS_public);
11132  CurContext->addDecl(FrD);
11133
11134  if (ND->isInvalidDecl()) {
11135    FrD->setInvalidDecl();
11136  } else {
11137    if (DC->isRecord()) CheckFriendAccess(ND);
11138
11139    FunctionDecl *FD;
11140    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
11141      FD = FTD->getTemplatedDecl();
11142    else
11143      FD = cast<FunctionDecl>(ND);
11144
11145    // Mark templated-scope function declarations as unsupported.
11146    if (FD->getNumTemplateParameterLists())
11147      FrD->setUnsupportedFriend(true);
11148  }
11149
11150  return ND;
11151}
11152
11153void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
11154  AdjustDeclIfTemplate(Dcl);
11155
11156  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
11157  if (!Fn) {
11158    Diag(DelLoc, diag::err_deleted_non_function);
11159    return;
11160  }
11161
11162  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
11163    // Don't consider the implicit declaration we generate for explicit
11164    // specializations. FIXME: Do not generate these implicit declarations.
11165    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
11166        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
11167      Diag(DelLoc, diag::err_deleted_decl_not_first);
11168      Diag(Prev->getLocation(), diag::note_previous_declaration);
11169    }
11170    // If the declaration wasn't the first, we delete the function anyway for
11171    // recovery.
11172    Fn = Fn->getCanonicalDecl();
11173  }
11174
11175  if (Fn->isDeleted())
11176    return;
11177
11178  // See if we're deleting a function which is already known to override a
11179  // non-deleted virtual function.
11180  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
11181    bool IssuedDiagnostic = false;
11182    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
11183                                        E = MD->end_overridden_methods();
11184         I != E; ++I) {
11185      if (!(*MD->begin_overridden_methods())->isDeleted()) {
11186        if (!IssuedDiagnostic) {
11187          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
11188          IssuedDiagnostic = true;
11189        }
11190        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
11191      }
11192    }
11193  }
11194
11195  Fn->setDeletedAsWritten();
11196}
11197
11198void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11199  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11200
11201  if (MD) {
11202    if (MD->getParent()->isDependentType()) {
11203      MD->setDefaulted();
11204      MD->setExplicitlyDefaulted();
11205      return;
11206    }
11207
11208    CXXSpecialMember Member = getSpecialMember(MD);
11209    if (Member == CXXInvalid) {
11210      Diag(DefaultLoc, diag::err_default_special_members);
11211      return;
11212    }
11213
11214    MD->setDefaulted();
11215    MD->setExplicitlyDefaulted();
11216
11217    // If this definition appears within the record, do the checking when
11218    // the record is complete.
11219    const FunctionDecl *Primary = MD;
11220    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
11221      // Find the uninstantiated declaration that actually had the '= default'
11222      // on it.
11223      Pattern->isDefined(Primary);
11224
11225    // If the method was defaulted on its first declaration, we will have
11226    // already performed the checking in CheckCompletedCXXClass. Such a
11227    // declaration doesn't trigger an implicit definition.
11228    if (Primary == Primary->getCanonicalDecl())
11229      return;
11230
11231    CheckExplicitlyDefaultedSpecialMember(MD);
11232
11233    // The exception specification is needed because we are defining the
11234    // function.
11235    ResolveExceptionSpec(DefaultLoc,
11236                         MD->getType()->castAs<FunctionProtoType>());
11237
11238    switch (Member) {
11239    case CXXDefaultConstructor: {
11240      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11241      if (!CD->isInvalidDecl())
11242        DefineImplicitDefaultConstructor(DefaultLoc, CD);
11243      break;
11244    }
11245
11246    case CXXCopyConstructor: {
11247      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11248      if (!CD->isInvalidDecl())
11249        DefineImplicitCopyConstructor(DefaultLoc, CD);
11250      break;
11251    }
11252
11253    case CXXCopyAssignment: {
11254      if (!MD->isInvalidDecl())
11255        DefineImplicitCopyAssignment(DefaultLoc, MD);
11256      break;
11257    }
11258
11259    case CXXDestructor: {
11260      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
11261      if (!DD->isInvalidDecl())
11262        DefineImplicitDestructor(DefaultLoc, DD);
11263      break;
11264    }
11265
11266    case CXXMoveConstructor: {
11267      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11268      if (!CD->isInvalidDecl())
11269        DefineImplicitMoveConstructor(DefaultLoc, CD);
11270      break;
11271    }
11272
11273    case CXXMoveAssignment: {
11274      if (!MD->isInvalidDecl())
11275        DefineImplicitMoveAssignment(DefaultLoc, MD);
11276      break;
11277    }
11278
11279    case CXXInvalid:
11280      llvm_unreachable("Invalid special member.");
11281    }
11282  } else {
11283    Diag(DefaultLoc, diag::err_default_special_members);
11284  }
11285}
11286
11287static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
11288  for (Stmt::child_range CI = S->children(); CI; ++CI) {
11289    Stmt *SubStmt = *CI;
11290    if (!SubStmt)
11291      continue;
11292    if (isa<ReturnStmt>(SubStmt))
11293      Self.Diag(SubStmt->getLocStart(),
11294           diag::err_return_in_constructor_handler);
11295    if (!isa<Expr>(SubStmt))
11296      SearchForReturnInStmt(Self, SubStmt);
11297  }
11298}
11299
11300void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
11301  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
11302    CXXCatchStmt *Handler = TryBlock->getHandler(I);
11303    SearchForReturnInStmt(*this, Handler);
11304  }
11305}
11306
11307bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
11308                                             const CXXMethodDecl *Old) {
11309  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
11310  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
11311
11312  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
11313
11314  // If the calling conventions match, everything is fine
11315  if (NewCC == OldCC)
11316    return false;
11317
11318  // If either of the calling conventions are set to "default", we need to pick
11319  // something more sensible based on the target. This supports code where the
11320  // one method explicitly sets thiscall, and another has no explicit calling
11321  // convention.
11322  CallingConv Default =
11323    Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
11324  if (NewCC == CC_Default)
11325    NewCC = Default;
11326  if (OldCC == CC_Default)
11327    OldCC = Default;
11328
11329  // If the calling conventions still don't match, then report the error
11330  if (NewCC != OldCC) {
11331    Diag(New->getLocation(),
11332         diag::err_conflicting_overriding_cc_attributes)
11333      << New->getDeclName() << New->getType() << Old->getType();
11334    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11335    return true;
11336  }
11337
11338  return false;
11339}
11340
11341bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
11342                                             const CXXMethodDecl *Old) {
11343  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
11344  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
11345
11346  if (Context.hasSameType(NewTy, OldTy) ||
11347      NewTy->isDependentType() || OldTy->isDependentType())
11348    return false;
11349
11350  // Check if the return types are covariant
11351  QualType NewClassTy, OldClassTy;
11352
11353  /// Both types must be pointers or references to classes.
11354  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
11355    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
11356      NewClassTy = NewPT->getPointeeType();
11357      OldClassTy = OldPT->getPointeeType();
11358    }
11359  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
11360    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
11361      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
11362        NewClassTy = NewRT->getPointeeType();
11363        OldClassTy = OldRT->getPointeeType();
11364      }
11365    }
11366  }
11367
11368  // The return types aren't either both pointers or references to a class type.
11369  if (NewClassTy.isNull()) {
11370    Diag(New->getLocation(),
11371         diag::err_different_return_type_for_overriding_virtual_function)
11372      << New->getDeclName() << NewTy << OldTy;
11373    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11374
11375    return true;
11376  }
11377
11378  // C++ [class.virtual]p6:
11379  //   If the return type of D::f differs from the return type of B::f, the
11380  //   class type in the return type of D::f shall be complete at the point of
11381  //   declaration of D::f or shall be the class type D.
11382  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
11383    if (!RT->isBeingDefined() &&
11384        RequireCompleteType(New->getLocation(), NewClassTy,
11385                            diag::err_covariant_return_incomplete,
11386                            New->getDeclName()))
11387    return true;
11388  }
11389
11390  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
11391    // Check if the new class derives from the old class.
11392    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
11393      Diag(New->getLocation(),
11394           diag::err_covariant_return_not_derived)
11395      << New->getDeclName() << NewTy << OldTy;
11396      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11397      return true;
11398    }
11399
11400    // Check if we the conversion from derived to base is valid.
11401    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
11402                    diag::err_covariant_return_inaccessible_base,
11403                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
11404                    // FIXME: Should this point to the return type?
11405                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
11406      // FIXME: this note won't trigger for delayed access control
11407      // diagnostics, and it's impossible to get an undelayed error
11408      // here from access control during the original parse because
11409      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
11410      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11411      return true;
11412    }
11413  }
11414
11415  // The qualifiers of the return types must be the same.
11416  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
11417    Diag(New->getLocation(),
11418         diag::err_covariant_return_type_different_qualifications)
11419    << New->getDeclName() << NewTy << OldTy;
11420    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11421    return true;
11422  };
11423
11424
11425  // The new class type must have the same or less qualifiers as the old type.
11426  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
11427    Diag(New->getLocation(),
11428         diag::err_covariant_return_type_class_type_more_qualified)
11429    << New->getDeclName() << NewTy << OldTy;
11430    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11431    return true;
11432  };
11433
11434  return false;
11435}
11436
11437/// \brief Mark the given method pure.
11438///
11439/// \param Method the method to be marked pure.
11440///
11441/// \param InitRange the source range that covers the "0" initializer.
11442bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
11443  SourceLocation EndLoc = InitRange.getEnd();
11444  if (EndLoc.isValid())
11445    Method->setRangeEnd(EndLoc);
11446
11447  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
11448    Method->setPure();
11449    return false;
11450  }
11451
11452  if (!Method->isInvalidDecl())
11453    Diag(Method->getLocation(), diag::err_non_virtual_pure)
11454      << Method->getDeclName() << InitRange;
11455  return true;
11456}
11457
11458/// \brief Determine whether the given declaration is a static data member.
11459static bool isStaticDataMember(Decl *D) {
11460  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
11461  if (!Var)
11462    return false;
11463
11464  return Var->isStaticDataMember();
11465}
11466/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
11467/// an initializer for the out-of-line declaration 'Dcl'.  The scope
11468/// is a fresh scope pushed for just this purpose.
11469///
11470/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
11471/// static data member of class X, names should be looked up in the scope of
11472/// class X.
11473void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
11474  // If there is no declaration, there was an error parsing it.
11475  if (D == 0 || D->isInvalidDecl()) return;
11476
11477  // We should only get called for declarations with scope specifiers, like:
11478  //   int foo::bar;
11479  assert(D->isOutOfLine());
11480  EnterDeclaratorContext(S, D->getDeclContext());
11481
11482  // If we are parsing the initializer for a static data member, push a
11483  // new expression evaluation context that is associated with this static
11484  // data member.
11485  if (isStaticDataMember(D))
11486    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
11487}
11488
11489/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
11490/// initializer for the out-of-line declaration 'D'.
11491void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
11492  // If there is no declaration, there was an error parsing it.
11493  if (D == 0 || D->isInvalidDecl()) return;
11494
11495  if (isStaticDataMember(D))
11496    PopExpressionEvaluationContext();
11497
11498  assert(D->isOutOfLine());
11499  ExitDeclaratorContext(S);
11500}
11501
11502/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
11503/// C++ if/switch/while/for statement.
11504/// e.g: "if (int x = f()) {...}"
11505DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
11506  // C++ 6.4p2:
11507  // The declarator shall not specify a function or an array.
11508  // The type-specifier-seq shall not contain typedef and shall not declare a
11509  // new class or enumeration.
11510  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
11511         "Parser allowed 'typedef' as storage class of condition decl.");
11512
11513  Decl *Dcl = ActOnDeclarator(S, D);
11514  if (!Dcl)
11515    return true;
11516
11517  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
11518    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
11519      << D.getSourceRange();
11520    return true;
11521  }
11522
11523  return Dcl;
11524}
11525
11526void Sema::LoadExternalVTableUses() {
11527  if (!ExternalSource)
11528    return;
11529
11530  SmallVector<ExternalVTableUse, 4> VTables;
11531  ExternalSource->ReadUsedVTables(VTables);
11532  SmallVector<VTableUse, 4> NewUses;
11533  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
11534    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
11535      = VTablesUsed.find(VTables[I].Record);
11536    // Even if a definition wasn't required before, it may be required now.
11537    if (Pos != VTablesUsed.end()) {
11538      if (!Pos->second && VTables[I].DefinitionRequired)
11539        Pos->second = true;
11540      continue;
11541    }
11542
11543    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
11544    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
11545  }
11546
11547  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
11548}
11549
11550void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
11551                          bool DefinitionRequired) {
11552  // Ignore any vtable uses in unevaluated operands or for classes that do
11553  // not have a vtable.
11554  if (!Class->isDynamicClass() || Class->isDependentContext() ||
11555      CurContext->isDependentContext() ||
11556      ExprEvalContexts.back().Context == Unevaluated)
11557    return;
11558
11559  // Try to insert this class into the map.
11560  LoadExternalVTableUses();
11561  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11562  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
11563    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
11564  if (!Pos.second) {
11565    // If we already had an entry, check to see if we are promoting this vtable
11566    // to required a definition. If so, we need to reappend to the VTableUses
11567    // list, since we may have already processed the first entry.
11568    if (DefinitionRequired && !Pos.first->second) {
11569      Pos.first->second = true;
11570    } else {
11571      // Otherwise, we can early exit.
11572      return;
11573    }
11574  }
11575
11576  // Local classes need to have their virtual members marked
11577  // immediately. For all other classes, we mark their virtual members
11578  // at the end of the translation unit.
11579  if (Class->isLocalClass())
11580    MarkVirtualMembersReferenced(Loc, Class);
11581  else
11582    VTableUses.push_back(std::make_pair(Class, Loc));
11583}
11584
11585bool Sema::DefineUsedVTables() {
11586  LoadExternalVTableUses();
11587  if (VTableUses.empty())
11588    return false;
11589
11590  // Note: The VTableUses vector could grow as a result of marking
11591  // the members of a class as "used", so we check the size each
11592  // time through the loop and prefer indices (which are stable) to
11593  // iterators (which are not).
11594  bool DefinedAnything = false;
11595  for (unsigned I = 0; I != VTableUses.size(); ++I) {
11596    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
11597    if (!Class)
11598      continue;
11599
11600    SourceLocation Loc = VTableUses[I].second;
11601
11602    bool DefineVTable = true;
11603
11604    // If this class has a key function, but that key function is
11605    // defined in another translation unit, we don't need to emit the
11606    // vtable even though we're using it.
11607    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
11608    if (KeyFunction && !KeyFunction->hasBody()) {
11609      switch (KeyFunction->getTemplateSpecializationKind()) {
11610      case TSK_Undeclared:
11611      case TSK_ExplicitSpecialization:
11612      case TSK_ExplicitInstantiationDeclaration:
11613        // The key function is in another translation unit.
11614        DefineVTable = false;
11615        break;
11616
11617      case TSK_ExplicitInstantiationDefinition:
11618      case TSK_ImplicitInstantiation:
11619        // We will be instantiating the key function.
11620        break;
11621      }
11622    } else if (!KeyFunction) {
11623      // If we have a class with no key function that is the subject
11624      // of an explicit instantiation declaration, suppress the
11625      // vtable; it will live with the explicit instantiation
11626      // definition.
11627      bool IsExplicitInstantiationDeclaration
11628        = Class->getTemplateSpecializationKind()
11629                                      == TSK_ExplicitInstantiationDeclaration;
11630      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
11631                                 REnd = Class->redecls_end();
11632           R != REnd; ++R) {
11633        TemplateSpecializationKind TSK
11634          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
11635        if (TSK == TSK_ExplicitInstantiationDeclaration)
11636          IsExplicitInstantiationDeclaration = true;
11637        else if (TSK == TSK_ExplicitInstantiationDefinition) {
11638          IsExplicitInstantiationDeclaration = false;
11639          break;
11640        }
11641      }
11642
11643      if (IsExplicitInstantiationDeclaration)
11644        DefineVTable = false;
11645    }
11646
11647    // The exception specifications for all virtual members may be needed even
11648    // if we are not providing an authoritative form of the vtable in this TU.
11649    // We may choose to emit it available_externally anyway.
11650    if (!DefineVTable) {
11651      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
11652      continue;
11653    }
11654
11655    // Mark all of the virtual members of this class as referenced, so
11656    // that we can build a vtable. Then, tell the AST consumer that a
11657    // vtable for this class is required.
11658    DefinedAnything = true;
11659    MarkVirtualMembersReferenced(Loc, Class);
11660    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11661    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
11662
11663    // Optionally warn if we're emitting a weak vtable.
11664    if (Class->hasExternalLinkage() &&
11665        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
11666      const FunctionDecl *KeyFunctionDef = 0;
11667      if (!KeyFunction ||
11668          (KeyFunction->hasBody(KeyFunctionDef) &&
11669           KeyFunctionDef->isInlined()))
11670        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
11671             TSK_ExplicitInstantiationDefinition
11672             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
11673          << Class;
11674    }
11675  }
11676  VTableUses.clear();
11677
11678  return DefinedAnything;
11679}
11680
11681void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
11682                                                 const CXXRecordDecl *RD) {
11683  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
11684                                      E = RD->method_end(); I != E; ++I)
11685    if ((*I)->isVirtual() && !(*I)->isPure())
11686      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
11687}
11688
11689void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
11690                                        const CXXRecordDecl *RD) {
11691  // Mark all functions which will appear in RD's vtable as used.
11692  CXXFinalOverriderMap FinalOverriders;
11693  RD->getFinalOverriders(FinalOverriders);
11694  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
11695                                            E = FinalOverriders.end();
11696       I != E; ++I) {
11697    for (OverridingMethods::const_iterator OI = I->second.begin(),
11698                                           OE = I->second.end();
11699         OI != OE; ++OI) {
11700      assert(OI->second.size() > 0 && "no final overrider");
11701      CXXMethodDecl *Overrider = OI->second.front().Method;
11702
11703      // C++ [basic.def.odr]p2:
11704      //   [...] A virtual member function is used if it is not pure. [...]
11705      if (!Overrider->isPure())
11706        MarkFunctionReferenced(Loc, Overrider);
11707    }
11708  }
11709
11710  // Only classes that have virtual bases need a VTT.
11711  if (RD->getNumVBases() == 0)
11712    return;
11713
11714  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
11715           e = RD->bases_end(); i != e; ++i) {
11716    const CXXRecordDecl *Base =
11717        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
11718    if (Base->getNumVBases() == 0)
11719      continue;
11720    MarkVirtualMembersReferenced(Loc, Base);
11721  }
11722}
11723
11724/// SetIvarInitializers - This routine builds initialization ASTs for the
11725/// Objective-C implementation whose ivars need be initialized.
11726void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
11727  if (!getLangOpts().CPlusPlus)
11728    return;
11729  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
11730    SmallVector<ObjCIvarDecl*, 8> ivars;
11731    CollectIvarsToConstructOrDestruct(OID, ivars);
11732    if (ivars.empty())
11733      return;
11734    SmallVector<CXXCtorInitializer*, 32> AllToInit;
11735    for (unsigned i = 0; i < ivars.size(); i++) {
11736      FieldDecl *Field = ivars[i];
11737      if (Field->isInvalidDecl())
11738        continue;
11739
11740      CXXCtorInitializer *Member;
11741      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
11742      InitializationKind InitKind =
11743        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
11744
11745      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
11746      ExprResult MemberInit =
11747        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
11748      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
11749      // Note, MemberInit could actually come back empty if no initialization
11750      // is required (e.g., because it would call a trivial default constructor)
11751      if (!MemberInit.get() || MemberInit.isInvalid())
11752        continue;
11753
11754      Member =
11755        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
11756                                         SourceLocation(),
11757                                         MemberInit.takeAs<Expr>(),
11758                                         SourceLocation());
11759      AllToInit.push_back(Member);
11760
11761      // Be sure that the destructor is accessible and is marked as referenced.
11762      if (const RecordType *RecordTy
11763                  = Context.getBaseElementType(Field->getType())
11764                                                        ->getAs<RecordType>()) {
11765                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
11766        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
11767          MarkFunctionReferenced(Field->getLocation(), Destructor);
11768          CheckDestructorAccess(Field->getLocation(), Destructor,
11769                            PDiag(diag::err_access_dtor_ivar)
11770                              << Context.getBaseElementType(Field->getType()));
11771        }
11772      }
11773    }
11774    ObjCImplementation->setIvarInitializers(Context,
11775                                            AllToInit.data(), AllToInit.size());
11776  }
11777}
11778
11779static
11780void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11781                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11782                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11783                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11784                           Sema &S) {
11785  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11786                                                   CE = Current.end();
11787  if (Ctor->isInvalidDecl())
11788    return;
11789
11790  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
11791
11792  // Target may not be determinable yet, for instance if this is a dependent
11793  // call in an uninstantiated template.
11794  if (Target) {
11795    const FunctionDecl *FNTarget = 0;
11796    (void)Target->hasBody(FNTarget);
11797    Target = const_cast<CXXConstructorDecl*>(
11798      cast_or_null<CXXConstructorDecl>(FNTarget));
11799  }
11800
11801  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11802                     // Avoid dereferencing a null pointer here.
11803                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11804
11805  if (!Current.insert(Canonical))
11806    return;
11807
11808  // We know that beyond here, we aren't chaining into a cycle.
11809  if (!Target || !Target->isDelegatingConstructor() ||
11810      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11811    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11812      Valid.insert(*CI);
11813    Current.clear();
11814  // We've hit a cycle.
11815  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11816             Current.count(TCanonical)) {
11817    // If we haven't diagnosed this cycle yet, do so now.
11818    if (!Invalid.count(TCanonical)) {
11819      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11820             diag::warn_delegating_ctor_cycle)
11821        << Ctor;
11822
11823      // Don't add a note for a function delegating directly to itself.
11824      if (TCanonical != Canonical)
11825        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11826
11827      CXXConstructorDecl *C = Target;
11828      while (C->getCanonicalDecl() != Canonical) {
11829        const FunctionDecl *FNTarget = 0;
11830        (void)C->getTargetConstructor()->hasBody(FNTarget);
11831        assert(FNTarget && "Ctor cycle through bodiless function");
11832
11833        C = const_cast<CXXConstructorDecl*>(
11834          cast<CXXConstructorDecl>(FNTarget));
11835        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11836      }
11837    }
11838
11839    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11840      Invalid.insert(*CI);
11841    Current.clear();
11842  } else {
11843    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11844  }
11845}
11846
11847
11848void Sema::CheckDelegatingCtorCycles() {
11849  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11850
11851  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11852                                                   CE = Current.end();
11853
11854  for (DelegatingCtorDeclsType::iterator
11855         I = DelegatingCtorDecls.begin(ExternalSource),
11856         E = DelegatingCtorDecls.end();
11857       I != E; ++I)
11858    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11859
11860  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11861    (*CI)->setInvalidDecl();
11862}
11863
11864namespace {
11865  /// \brief AST visitor that finds references to the 'this' expression.
11866  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11867    Sema &S;
11868
11869  public:
11870    explicit FindCXXThisExpr(Sema &S) : S(S) { }
11871
11872    bool VisitCXXThisExpr(CXXThisExpr *E) {
11873      S.Diag(E->getLocation(), diag::err_this_static_member_func)
11874        << E->isImplicit();
11875      return false;
11876    }
11877  };
11878}
11879
11880bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11881  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11882  if (!TSInfo)
11883    return false;
11884
11885  TypeLoc TL = TSInfo->getTypeLoc();
11886  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
11887  if (!ProtoTL)
11888    return false;
11889
11890  // C++11 [expr.prim.general]p3:
11891  //   [The expression this] shall not appear before the optional
11892  //   cv-qualifier-seq and it shall not appear within the declaration of a
11893  //   static member function (although its type and value category are defined
11894  //   within a static member function as they are within a non-static member
11895  //   function). [ Note: this is because declaration matching does not occur
11896  //  until the complete declarator is known. - end note ]
11897  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
11898  FindCXXThisExpr Finder(*this);
11899
11900  // If the return type came after the cv-qualifier-seq, check it now.
11901  if (Proto->hasTrailingReturn() &&
11902      !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
11903    return true;
11904
11905  // Check the exception specification.
11906  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11907    return true;
11908
11909  return checkThisInStaticMemberFunctionAttributes(Method);
11910}
11911
11912bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11913  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11914  if (!TSInfo)
11915    return false;
11916
11917  TypeLoc TL = TSInfo->getTypeLoc();
11918  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
11919  if (!ProtoTL)
11920    return false;
11921
11922  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
11923  FindCXXThisExpr Finder(*this);
11924
11925  switch (Proto->getExceptionSpecType()) {
11926  case EST_Uninstantiated:
11927  case EST_Unevaluated:
11928  case EST_BasicNoexcept:
11929  case EST_DynamicNone:
11930  case EST_MSAny:
11931  case EST_None:
11932    break;
11933
11934  case EST_ComputedNoexcept:
11935    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11936      return true;
11937
11938  case EST_Dynamic:
11939    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11940         EEnd = Proto->exception_end();
11941         E != EEnd; ++E) {
11942      if (!Finder.TraverseType(*E))
11943        return true;
11944    }
11945    break;
11946  }
11947
11948  return false;
11949}
11950
11951bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11952  FindCXXThisExpr Finder(*this);
11953
11954  // Check attributes.
11955  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11956       A != AEnd; ++A) {
11957    // FIXME: This should be emitted by tblgen.
11958    Expr *Arg = 0;
11959    ArrayRef<Expr *> Args;
11960    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11961      Arg = G->getArg();
11962    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11963      Arg = G->getArg();
11964    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11965      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11966    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11967      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11968    else if (ExclusiveLockFunctionAttr *ELF
11969               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11970      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11971    else if (SharedLockFunctionAttr *SLF
11972               = dyn_cast<SharedLockFunctionAttr>(*A))
11973      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11974    else if (ExclusiveTrylockFunctionAttr *ETLF
11975               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11976      Arg = ETLF->getSuccessValue();
11977      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11978    } else if (SharedTrylockFunctionAttr *STLF
11979                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11980      Arg = STLF->getSuccessValue();
11981      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11982    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11983      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11984    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11985      Arg = LR->getArg();
11986    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11987      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11988    else if (ExclusiveLocksRequiredAttr *ELR
11989               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11990      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11991    else if (SharedLocksRequiredAttr *SLR
11992               = dyn_cast<SharedLocksRequiredAttr>(*A))
11993      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11994
11995    if (Arg && !Finder.TraverseStmt(Arg))
11996      return true;
11997
11998    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11999      if (!Finder.TraverseStmt(Args[I]))
12000        return true;
12001    }
12002  }
12003
12004  return false;
12005}
12006
12007void
12008Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
12009                                  ArrayRef<ParsedType> DynamicExceptions,
12010                                  ArrayRef<SourceRange> DynamicExceptionRanges,
12011                                  Expr *NoexceptExpr,
12012                                  SmallVectorImpl<QualType> &Exceptions,
12013                                  FunctionProtoType::ExtProtoInfo &EPI) {
12014  Exceptions.clear();
12015  EPI.ExceptionSpecType = EST;
12016  if (EST == EST_Dynamic) {
12017    Exceptions.reserve(DynamicExceptions.size());
12018    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
12019      // FIXME: Preserve type source info.
12020      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
12021
12022      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12023      collectUnexpandedParameterPacks(ET, Unexpanded);
12024      if (!Unexpanded.empty()) {
12025        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
12026                                         UPPC_ExceptionType,
12027                                         Unexpanded);
12028        continue;
12029      }
12030
12031      // Check that the type is valid for an exception spec, and
12032      // drop it if not.
12033      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
12034        Exceptions.push_back(ET);
12035    }
12036    EPI.NumExceptions = Exceptions.size();
12037    EPI.Exceptions = Exceptions.data();
12038    return;
12039  }
12040
12041  if (EST == EST_ComputedNoexcept) {
12042    // If an error occurred, there's no expression here.
12043    if (NoexceptExpr) {
12044      assert((NoexceptExpr->isTypeDependent() ||
12045              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
12046              Context.BoolTy) &&
12047             "Parser should have made sure that the expression is boolean");
12048      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
12049        EPI.ExceptionSpecType = EST_BasicNoexcept;
12050        return;
12051      }
12052
12053      if (!NoexceptExpr->isValueDependent())
12054        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
12055                         diag::err_noexcept_needs_constant_expression,
12056                         /*AllowFold*/ false).take();
12057      EPI.NoexceptExpr = NoexceptExpr;
12058    }
12059    return;
12060  }
12061}
12062
12063/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
12064Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
12065  // Implicitly declared functions (e.g. copy constructors) are
12066  // __host__ __device__
12067  if (D->isImplicit())
12068    return CFT_HostDevice;
12069
12070  if (D->hasAttr<CUDAGlobalAttr>())
12071    return CFT_Global;
12072
12073  if (D->hasAttr<CUDADeviceAttr>()) {
12074    if (D->hasAttr<CUDAHostAttr>())
12075      return CFT_HostDevice;
12076    else
12077      return CFT_Device;
12078  }
12079
12080  return CFT_Host;
12081}
12082
12083bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
12084                           CUDAFunctionTarget CalleeTarget) {
12085  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
12086  // Callable from the device only."
12087  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
12088    return true;
12089
12090  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
12091  // Callable from the host only."
12092  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
12093  // Callable from the host only."
12094  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
12095      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
12096    return true;
12097
12098  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
12099    return true;
12100
12101  return false;
12102}
12103
12104/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
12105///
12106MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
12107                                       SourceLocation DeclStart,
12108                                       Declarator &D, Expr *BitWidth,
12109                                       InClassInitStyle InitStyle,
12110                                       AccessSpecifier AS,
12111                                       AttributeList *MSPropertyAttr) {
12112  IdentifierInfo *II = D.getIdentifier();
12113  if (!II) {
12114    Diag(DeclStart, diag::err_anonymous_property);
12115    return NULL;
12116  }
12117  SourceLocation Loc = D.getIdentifierLoc();
12118
12119  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12120  QualType T = TInfo->getType();
12121  if (getLangOpts().CPlusPlus) {
12122    CheckExtraCXXDefaultArguments(D);
12123
12124    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12125                                        UPPC_DataMemberType)) {
12126      D.setInvalidType();
12127      T = Context.IntTy;
12128      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12129    }
12130  }
12131
12132  DiagnoseFunctionSpecifiers(D.getDeclSpec());
12133
12134  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12135    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12136         diag::err_invalid_thread)
12137      << DeclSpec::getSpecifierName(TSCS);
12138
12139  // Check to see if this name was declared as a member previously
12140  NamedDecl *PrevDecl = 0;
12141  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12142  LookupName(Previous, S);
12143  switch (Previous.getResultKind()) {
12144  case LookupResult::Found:
12145  case LookupResult::FoundUnresolvedValue:
12146    PrevDecl = Previous.getAsSingle<NamedDecl>();
12147    break;
12148
12149  case LookupResult::FoundOverloaded:
12150    PrevDecl = Previous.getRepresentativeDecl();
12151    break;
12152
12153  case LookupResult::NotFound:
12154  case LookupResult::NotFoundInCurrentInstantiation:
12155  case LookupResult::Ambiguous:
12156    break;
12157  }
12158
12159  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12160    // Maybe we will complain about the shadowed template parameter.
12161    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12162    // Just pretend that we didn't see the previous declaration.
12163    PrevDecl = 0;
12164  }
12165
12166  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12167    PrevDecl = 0;
12168
12169  SourceLocation TSSL = D.getLocStart();
12170  MSPropertyDecl *NewPD;
12171  const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
12172  NewPD = new (Context) MSPropertyDecl(Record, Loc,
12173                                       II, T, TInfo, TSSL,
12174                                       Data.GetterId, Data.SetterId);
12175  ProcessDeclAttributes(TUScope, NewPD, D);
12176  NewPD->setAccess(AS);
12177
12178  if (NewPD->isInvalidDecl())
12179    Record->setInvalidDecl();
12180
12181  if (D.getDeclSpec().isModulePrivateSpecified())
12182    NewPD->setModulePrivate();
12183
12184  if (NewPD->isInvalidDecl() && PrevDecl) {
12185    // Don't introduce NewFD into scope; there's already something
12186    // with the same name in the same scope.
12187  } else if (II) {
12188    PushOnScopeChains(NewPD, S);
12189  } else
12190    Record->addDecl(NewPD);
12191
12192  return NewPD;
12193}
12194