SemaDeclCXX.cpp revision 9b7d6701dabc24387cc152e4d13bf9aec6aa461a
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
128  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
129                                                           EqualLoc);
130  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
131  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
132                                          MultiExprArg(*this, (void**)&Arg, 1));
133  if (Result.isInvalid())
134    return true;
135  Arg = Result.takeAs<Expr>();
136
137  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
138
139  // Okay: add the default argument to the parameter
140  Param->setDefaultArg(Arg);
141
142  DefaultArg.release();
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
152                                ExprArg defarg) {
153  if (!param || !defarg.get())
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
157  UnparsedDefaultArgLocs.erase(Param);
158
159  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
160
161  // Default arguments are only permitted in C++
162  if (!getLangOptions().CPlusPlus) {
163    Diag(EqualLoc, diag::err_param_default_argument)
164      << DefaultArg->getSourceRange();
165    Param->setInvalidDecl();
166    return;
167  }
168
169  // Check that the default argument is well-formed
170  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
171  if (DefaultArgChecker.Visit(DefaultArg.get())) {
172    Param->setInvalidDecl();
173    return;
174  }
175
176  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
177}
178
179/// ActOnParamUnparsedDefaultArgument - We've seen a default
180/// argument for a function parameter, but we can't parse it yet
181/// because we're inside a class definition. Note that this default
182/// argument will be parsed later.
183void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
184                                             SourceLocation EqualLoc,
185                                             SourceLocation ArgLoc) {
186  if (!param)
187    return;
188
189  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
190  if (Param)
191    Param->setUnparsedDefaultArg();
192
193  UnparsedDefaultArgLocs[Param] = ArgLoc;
194}
195
196/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
197/// the default argument for the parameter param failed.
198void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
199  if (!param)
200    return;
201
202  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
203
204  Param->setInvalidDecl();
205
206  UnparsedDefaultArgLocs.erase(Param);
207}
208
209/// CheckExtraCXXDefaultArguments - Check for any extra default
210/// arguments in the declarator, which is not a function declaration
211/// or definition and therefore is not permitted to have default
212/// arguments. This routine should be invoked for every declarator
213/// that is not a function declaration or definition.
214void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
215  // C++ [dcl.fct.default]p3
216  //   A default argument expression shall be specified only in the
217  //   parameter-declaration-clause of a function declaration or in a
218  //   template-parameter (14.1). It shall not be specified for a
219  //   parameter pack. If it is specified in a
220  //   parameter-declaration-clause, it shall not occur within a
221  //   declarator or abstract-declarator of a parameter-declaration.
222  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
223    DeclaratorChunk &chunk = D.getTypeObject(i);
224    if (chunk.Kind == DeclaratorChunk::Function) {
225      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
226        ParmVarDecl *Param =
227          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
228        if (Param->hasUnparsedDefaultArg()) {
229          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
232          delete Toks;
233          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
234        } else if (Param->getDefaultArg()) {
235          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
236            << Param->getDefaultArg()->getSourceRange();
237          Param->setDefaultArg(0);
238        }
239      }
240    }
241  }
242}
243
244// MergeCXXFunctionDecl - Merge two declarations of the same C++
245// function, once we already know that they have the same
246// type. Subroutine of MergeFunctionDecl. Returns true if there was an
247// error, false otherwise.
248bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
249  bool Invalid = false;
250
251  // C++ [dcl.fct.default]p4:
252  //   For non-template functions, default arguments can be added in
253  //   later declarations of a function in the same
254  //   scope. Declarations in different scopes have completely
255  //   distinct sets of default arguments. That is, declarations in
256  //   inner scopes do not acquire default arguments from
257  //   declarations in outer scopes, and vice versa. In a given
258  //   function declaration, all parameters subsequent to a
259  //   parameter with a default argument shall have default
260  //   arguments supplied in this or previous declarations. A
261  //   default argument shall not be redefined by a later
262  //   declaration (not even to the same value).
263  //
264  // C++ [dcl.fct.default]p6:
265  //   Except for member functions of class templates, the default arguments
266  //   in a member function definition that appears outside of the class
267  //   definition are added to the set of default arguments provided by the
268  //   member function declaration in the class definition.
269  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
270    ParmVarDecl *OldParam = Old->getParamDecl(p);
271    ParmVarDecl *NewParam = New->getParamDecl(p);
272
273    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
274      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
275      // hint here. Alternatively, we could walk the type-source information
276      // for NewParam to find the last source location in the type... but it
277      // isn't worth the effort right now. This is the kind of test case that
278      // is hard to get right:
279
280      //   int f(int);
281      //   void g(int (*fp)(int) = f);
282      //   void g(int (*fp)(int) = &f);
283      Diag(NewParam->getLocation(),
284           diag::err_param_default_argument_redefinition)
285        << NewParam->getDefaultArgRange();
286
287      // Look for the function declaration where the default argument was
288      // actually written, which may be a declaration prior to Old.
289      for (FunctionDecl *Older = Old->getPreviousDeclaration();
290           Older; Older = Older->getPreviousDeclaration()) {
291        if (!Older->getParamDecl(p)->hasDefaultArg())
292          break;
293
294        OldParam = Older->getParamDecl(p);
295      }
296
297      Diag(OldParam->getLocation(), diag::note_previous_definition)
298        << OldParam->getDefaultArgRange();
299      Invalid = true;
300    } else if (OldParam->hasDefaultArg()) {
301      // Merge the old default argument into the new parameter.
302      // It's important to use getInit() here;  getDefaultArg()
303      // strips off any top-level CXXExprWithTemporaries.
304      NewParam->setHasInheritedDefaultArg();
305      if (OldParam->hasUninstantiatedDefaultArg())
306        NewParam->setUninstantiatedDefaultArg(
307                                      OldParam->getUninstantiatedDefaultArg());
308      else
309        NewParam->setDefaultArg(OldParam->getInit());
310    } else if (NewParam->hasDefaultArg()) {
311      if (New->getDescribedFunctionTemplate()) {
312        // Paragraph 4, quoted above, only applies to non-template functions.
313        Diag(NewParam->getLocation(),
314             diag::err_param_default_argument_template_redecl)
315          << NewParam->getDefaultArgRange();
316        Diag(Old->getLocation(), diag::note_template_prev_declaration)
317          << false;
318      } else if (New->getTemplateSpecializationKind()
319                   != TSK_ImplicitInstantiation &&
320                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
321        // C++ [temp.expr.spec]p21:
322        //   Default function arguments shall not be specified in a declaration
323        //   or a definition for one of the following explicit specializations:
324        //     - the explicit specialization of a function template;
325        //     - the explicit specialization of a member function template;
326        //     - the explicit specialization of a member function of a class
327        //       template where the class template specialization to which the
328        //       member function specialization belongs is implicitly
329        //       instantiated.
330        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
331          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
332          << New->getDeclName()
333          << NewParam->getDefaultArgRange();
334      } else if (New->getDeclContext()->isDependentContext()) {
335        // C++ [dcl.fct.default]p6 (DR217):
336        //   Default arguments for a member function of a class template shall
337        //   be specified on the initial declaration of the member function
338        //   within the class template.
339        //
340        // Reading the tea leaves a bit in DR217 and its reference to DR205
341        // leads me to the conclusion that one cannot add default function
342        // arguments for an out-of-line definition of a member function of a
343        // dependent type.
344        int WhichKind = 2;
345        if (CXXRecordDecl *Record
346              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
347          if (Record->getDescribedClassTemplate())
348            WhichKind = 0;
349          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
350            WhichKind = 1;
351          else
352            WhichKind = 2;
353        }
354
355        Diag(NewParam->getLocation(),
356             diag::err_param_default_argument_member_template_redecl)
357          << WhichKind
358          << NewParam->getDefaultArgRange();
359      }
360    }
361  }
362
363  if (CheckEquivalentExceptionSpec(Old, New))
364    Invalid = true;
365
366  return Invalid;
367}
368
369/// CheckCXXDefaultArguments - Verify that the default arguments for a
370/// function declaration are well-formed according to C++
371/// [dcl.fct.default].
372void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
373  unsigned NumParams = FD->getNumParams();
374  unsigned p;
375
376  // Find first parameter with a default argument
377  for (p = 0; p < NumParams; ++p) {
378    ParmVarDecl *Param = FD->getParamDecl(p);
379    if (Param->hasDefaultArg())
380      break;
381  }
382
383  // C++ [dcl.fct.default]p4:
384  //   In a given function declaration, all parameters
385  //   subsequent to a parameter with a default argument shall
386  //   have default arguments supplied in this or previous
387  //   declarations. A default argument shall not be redefined
388  //   by a later declaration (not even to the same value).
389  unsigned LastMissingDefaultArg = 0;
390  for (; p < NumParams; ++p) {
391    ParmVarDecl *Param = FD->getParamDecl(p);
392    if (!Param->hasDefaultArg()) {
393      if (Param->isInvalidDecl())
394        /* We already complained about this parameter. */;
395      else if (Param->getIdentifier())
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing_name)
398          << Param->getIdentifier();
399      else
400        Diag(Param->getLocation(),
401             diag::err_param_default_argument_missing);
402
403      LastMissingDefaultArg = p;
404    }
405  }
406
407  if (LastMissingDefaultArg > 0) {
408    // Some default arguments were missing. Clear out all of the
409    // default arguments up to (and including) the last missing
410    // default argument, so that we leave the function parameters
411    // in a semantically valid state.
412    for (p = 0; p <= LastMissingDefaultArg; ++p) {
413      ParmVarDecl *Param = FD->getParamDecl(p);
414      if (Param->hasDefaultArg()) {
415        Param->setDefaultArg(0);
416      }
417    }
418  }
419}
420
421/// isCurrentClassName - Determine whether the identifier II is the
422/// name of the class type currently being defined. In the case of
423/// nested classes, this will only return true if II is the name of
424/// the innermost class.
425bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
426                              const CXXScopeSpec *SS) {
427  assert(getLangOptions().CPlusPlus && "No class names in C!");
428
429  CXXRecordDecl *CurDecl;
430  if (SS && SS->isSet() && !SS->isInvalid()) {
431    DeclContext *DC = computeDeclContext(*SS, true);
432    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
433  } else
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
435
436  if (CurDecl && CurDecl->getIdentifier())
437    return &II == CurDecl->getIdentifier();
438  else
439    return false;
440}
441
442/// \brief Check the validity of a C++ base class specifier.
443///
444/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
445/// and returns NULL otherwise.
446CXXBaseSpecifier *
447Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
448                         SourceRange SpecifierRange,
449                         bool Virtual, AccessSpecifier Access,
450                         TypeSourceInfo *TInfo) {
451  QualType BaseType = TInfo->getType();
452
453  // C++ [class.union]p1:
454  //   A union shall not have base classes.
455  if (Class->isUnion()) {
456    Diag(Class->getLocation(), diag::err_base_clause_on_union)
457      << SpecifierRange;
458    return 0;
459  }
460
461  if (BaseType->isDependentType())
462    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
463                                          Class->getTagKind() == TTK_Class,
464                                          Access, TInfo);
465
466  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
467
468  // Base specifiers must be record types.
469  if (!BaseType->isRecordType()) {
470    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
471    return 0;
472  }
473
474  // C++ [class.union]p1:
475  //   A union shall not be used as a base class.
476  if (BaseType->isUnionType()) {
477    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
478    return 0;
479  }
480
481  // C++ [class.derived]p2:
482  //   The class-name in a base-specifier shall not be an incompletely
483  //   defined class.
484  if (RequireCompleteType(BaseLoc, BaseType,
485                          PDiag(diag::err_incomplete_base_class)
486                            << SpecifierRange)) {
487    Class->setInvalidDecl();
488    return 0;
489  }
490
491  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
492  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
493  assert(BaseDecl && "Record type has no declaration");
494  BaseDecl = BaseDecl->getDefinition();
495  assert(BaseDecl && "Base type is not incomplete, but has no definition");
496  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
497  assert(CXXBaseDecl && "Base type is not a C++ type");
498
499  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
500  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
501    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
502    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
503      << BaseType;
504    return 0;
505  }
506
507  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
508
509  if (BaseDecl->isInvalidDecl())
510    Class->setInvalidDecl();
511
512  // Create the base specifier.
513  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
514                                        Class->getTagKind() == TTK_Class,
515                                        Access, TInfo);
516}
517
518void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
519                                          const CXXRecordDecl *BaseClass,
520                                          bool BaseIsVirtual) {
521  // A class with a non-empty base class is not empty.
522  // FIXME: Standard ref?
523  if (!BaseClass->isEmpty())
524    Class->setEmpty(false);
525
526  // C++ [class.virtual]p1:
527  //   A class that [...] inherits a virtual function is called a polymorphic
528  //   class.
529  if (BaseClass->isPolymorphic())
530    Class->setPolymorphic(true);
531
532  // C++ [dcl.init.aggr]p1:
533  //   An aggregate is [...] a class with [...] no base classes [...].
534  Class->setAggregate(false);
535
536  // C++ [class]p4:
537  //   A POD-struct is an aggregate class...
538  Class->setPOD(false);
539
540  if (BaseIsVirtual) {
541    // C++ [class.ctor]p5:
542    //   A constructor is trivial if its class has no virtual base classes.
543    Class->setHasTrivialConstructor(false);
544
545    // C++ [class.copy]p6:
546    //   A copy constructor is trivial if its class has no virtual base classes.
547    Class->setHasTrivialCopyConstructor(false);
548
549    // C++ [class.copy]p11:
550    //   A copy assignment operator is trivial if its class has no virtual
551    //   base classes.
552    Class->setHasTrivialCopyAssignment(false);
553
554    // C++0x [meta.unary.prop] is_empty:
555    //    T is a class type, but not a union type, with ... no virtual base
556    //    classes
557    Class->setEmpty(false);
558  } else {
559    // C++ [class.ctor]p5:
560    //   A constructor is trivial if all the direct base classes of its
561    //   class have trivial constructors.
562    if (!BaseClass->hasTrivialConstructor())
563      Class->setHasTrivialConstructor(false);
564
565    // C++ [class.copy]p6:
566    //   A copy constructor is trivial if all the direct base classes of its
567    //   class have trivial copy constructors.
568    if (!BaseClass->hasTrivialCopyConstructor())
569      Class->setHasTrivialCopyConstructor(false);
570
571    // C++ [class.copy]p11:
572    //   A copy assignment operator is trivial if all the direct base classes
573    //   of its class have trivial copy assignment operators.
574    if (!BaseClass->hasTrivialCopyAssignment())
575      Class->setHasTrivialCopyAssignment(false);
576  }
577
578  // C++ [class.ctor]p3:
579  //   A destructor is trivial if all the direct base classes of its class
580  //   have trivial destructors.
581  if (!BaseClass->hasTrivialDestructor())
582    Class->setHasTrivialDestructor(false);
583}
584
585/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
586/// one entry in the base class list of a class specifier, for
587/// example:
588///    class foo : public bar, virtual private baz {
589/// 'public bar' and 'virtual private baz' are each base-specifiers.
590Sema::BaseResult
591Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
592                         bool Virtual, AccessSpecifier Access,
593                         TypeTy *basetype, SourceLocation BaseLoc) {
594  if (!classdecl)
595    return true;
596
597  AdjustDeclIfTemplate(classdecl);
598  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
599  if (!Class)
600    return true;
601
602  TypeSourceInfo *TInfo = 0;
603  GetTypeFromParser(basetype, &TInfo);
604  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
605                                                      Virtual, Access, TInfo))
606    return BaseSpec;
607
608  return true;
609}
610
611/// \brief Performs the actual work of attaching the given base class
612/// specifiers to a C++ class.
613bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
614                                unsigned NumBases) {
615 if (NumBases == 0)
616    return false;
617
618  // Used to keep track of which base types we have already seen, so
619  // that we can properly diagnose redundant direct base types. Note
620  // that the key is always the unqualified canonical type of the base
621  // class.
622  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
623
624  // Copy non-redundant base specifiers into permanent storage.
625  unsigned NumGoodBases = 0;
626  bool Invalid = false;
627  for (unsigned idx = 0; idx < NumBases; ++idx) {
628    QualType NewBaseType
629      = Context.getCanonicalType(Bases[idx]->getType());
630    NewBaseType = NewBaseType.getLocalUnqualifiedType();
631    if (!Class->hasObjectMember()) {
632      if (const RecordType *FDTTy =
633            NewBaseType.getTypePtr()->getAs<RecordType>())
634        if (FDTTy->getDecl()->hasObjectMember())
635          Class->setHasObjectMember(true);
636    }
637
638    if (KnownBaseTypes[NewBaseType]) {
639      // C++ [class.mi]p3:
640      //   A class shall not be specified as a direct base class of a
641      //   derived class more than once.
642      Diag(Bases[idx]->getSourceRange().getBegin(),
643           diag::err_duplicate_base_class)
644        << KnownBaseTypes[NewBaseType]->getType()
645        << Bases[idx]->getSourceRange();
646
647      // Delete the duplicate base class specifier; we're going to
648      // overwrite its pointer later.
649      Context.Deallocate(Bases[idx]);
650
651      Invalid = true;
652    } else {
653      // Okay, add this new base class.
654      KnownBaseTypes[NewBaseType] = Bases[idx];
655      Bases[NumGoodBases++] = Bases[idx];
656    }
657  }
658
659  // Attach the remaining base class specifiers to the derived class.
660  Class->setBases(Bases, NumGoodBases);
661
662  // Delete the remaining (good) base class specifiers, since their
663  // data has been copied into the CXXRecordDecl.
664  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
665    Context.Deallocate(Bases[idx]);
666
667  return Invalid;
668}
669
670/// ActOnBaseSpecifiers - Attach the given base specifiers to the
671/// class, after checking whether there are any duplicate base
672/// classes.
673void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
674                               unsigned NumBases) {
675  if (!ClassDecl || !Bases || !NumBases)
676    return;
677
678  AdjustDeclIfTemplate(ClassDecl);
679  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
680                       (CXXBaseSpecifier**)(Bases), NumBases);
681}
682
683static CXXRecordDecl *GetClassForType(QualType T) {
684  if (const RecordType *RT = T->getAs<RecordType>())
685    return cast<CXXRecordDecl>(RT->getDecl());
686  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
687    return ICT->getDecl();
688  else
689    return 0;
690}
691
692/// \brief Determine whether the type \p Derived is a C++ class that is
693/// derived from the type \p Base.
694bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
695  if (!getLangOptions().CPlusPlus)
696    return false;
697
698  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
699  if (!DerivedRD)
700    return false;
701
702  CXXRecordDecl *BaseRD = GetClassForType(Base);
703  if (!BaseRD)
704    return false;
705
706  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
707  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
708}
709
710/// \brief Determine whether the type \p Derived is a C++ class that is
711/// derived from the type \p Base.
712bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
713  if (!getLangOptions().CPlusPlus)
714    return false;
715
716  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
717  if (!DerivedRD)
718    return false;
719
720  CXXRecordDecl *BaseRD = GetClassForType(Base);
721  if (!BaseRD)
722    return false;
723
724  return DerivedRD->isDerivedFrom(BaseRD, Paths);
725}
726
727void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
728                              CXXCastPath &BasePathArray) {
729  assert(BasePathArray.empty() && "Base path array must be empty!");
730  assert(Paths.isRecordingPaths() && "Must record paths!");
731
732  const CXXBasePath &Path = Paths.front();
733
734  // We first go backward and check if we have a virtual base.
735  // FIXME: It would be better if CXXBasePath had the base specifier for
736  // the nearest virtual base.
737  unsigned Start = 0;
738  for (unsigned I = Path.size(); I != 0; --I) {
739    if (Path[I - 1].Base->isVirtual()) {
740      Start = I - 1;
741      break;
742    }
743  }
744
745  // Now add all bases.
746  for (unsigned I = Start, E = Path.size(); I != E; ++I)
747    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
748}
749
750/// \brief Determine whether the given base path includes a virtual
751/// base class.
752bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
753  for (CXXCastPath::const_iterator B = BasePath.begin(),
754                                BEnd = BasePath.end();
755       B != BEnd; ++B)
756    if ((*B)->isVirtual())
757      return true;
758
759  return false;
760}
761
762/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
763/// conversion (where Derived and Base are class types) is
764/// well-formed, meaning that the conversion is unambiguous (and
765/// that all of the base classes are accessible). Returns true
766/// and emits a diagnostic if the code is ill-formed, returns false
767/// otherwise. Loc is the location where this routine should point to
768/// if there is an error, and Range is the source range to highlight
769/// if there is an error.
770bool
771Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
772                                   unsigned InaccessibleBaseID,
773                                   unsigned AmbigiousBaseConvID,
774                                   SourceLocation Loc, SourceRange Range,
775                                   DeclarationName Name,
776                                   CXXCastPath *BasePath) {
777  // First, determine whether the path from Derived to Base is
778  // ambiguous. This is slightly more expensive than checking whether
779  // the Derived to Base conversion exists, because here we need to
780  // explore multiple paths to determine if there is an ambiguity.
781  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
782                     /*DetectVirtual=*/false);
783  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
784  assert(DerivationOkay &&
785         "Can only be used with a derived-to-base conversion");
786  (void)DerivationOkay;
787
788  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
789    if (InaccessibleBaseID) {
790      // Check that the base class can be accessed.
791      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
792                                   InaccessibleBaseID)) {
793        case AR_inaccessible:
794          return true;
795        case AR_accessible:
796        case AR_dependent:
797        case AR_delayed:
798          break;
799      }
800    }
801
802    // Build a base path if necessary.
803    if (BasePath)
804      BuildBasePathArray(Paths, *BasePath);
805    return false;
806  }
807
808  // We know that the derived-to-base conversion is ambiguous, and
809  // we're going to produce a diagnostic. Perform the derived-to-base
810  // search just one more time to compute all of the possible paths so
811  // that we can print them out. This is more expensive than any of
812  // the previous derived-to-base checks we've done, but at this point
813  // performance isn't as much of an issue.
814  Paths.clear();
815  Paths.setRecordingPaths(true);
816  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
817  assert(StillOkay && "Can only be used with a derived-to-base conversion");
818  (void)StillOkay;
819
820  // Build up a textual representation of the ambiguous paths, e.g.,
821  // D -> B -> A, that will be used to illustrate the ambiguous
822  // conversions in the diagnostic. We only print one of the paths
823  // to each base class subobject.
824  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
825
826  Diag(Loc, AmbigiousBaseConvID)
827  << Derived << Base << PathDisplayStr << Range << Name;
828  return true;
829}
830
831bool
832Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
833                                   SourceLocation Loc, SourceRange Range,
834                                   CXXCastPath *BasePath,
835                                   bool IgnoreAccess) {
836  return CheckDerivedToBaseConversion(Derived, Base,
837                                      IgnoreAccess ? 0
838                                       : diag::err_upcast_to_inaccessible_base,
839                                      diag::err_ambiguous_derived_to_base_conv,
840                                      Loc, Range, DeclarationName(),
841                                      BasePath);
842}
843
844
845/// @brief Builds a string representing ambiguous paths from a
846/// specific derived class to different subobjects of the same base
847/// class.
848///
849/// This function builds a string that can be used in error messages
850/// to show the different paths that one can take through the
851/// inheritance hierarchy to go from the derived class to different
852/// subobjects of a base class. The result looks something like this:
853/// @code
854/// struct D -> struct B -> struct A
855/// struct D -> struct C -> struct A
856/// @endcode
857std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
858  std::string PathDisplayStr;
859  std::set<unsigned> DisplayedPaths;
860  for (CXXBasePaths::paths_iterator Path = Paths.begin();
861       Path != Paths.end(); ++Path) {
862    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
863      // We haven't displayed a path to this particular base
864      // class subobject yet.
865      PathDisplayStr += "\n    ";
866      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
867      for (CXXBasePath::const_iterator Element = Path->begin();
868           Element != Path->end(); ++Element)
869        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
870    }
871  }
872
873  return PathDisplayStr;
874}
875
876//===----------------------------------------------------------------------===//
877// C++ class member Handling
878//===----------------------------------------------------------------------===//
879
880/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
881Sema::DeclPtrTy
882Sema::ActOnAccessSpecifier(AccessSpecifier Access,
883                           SourceLocation ASLoc, SourceLocation ColonLoc) {
884  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
885  AccessSpecDecl* ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
886                                                  ASLoc, ColonLoc);
887  CurContext->addHiddenDecl(ASDecl);
888  return DeclPtrTy::make(ASDecl);
889}
890
891/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
892/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
893/// bitfield width if there is one and 'InitExpr' specifies the initializer if
894/// any.
895Sema::DeclPtrTy
896Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
897                               MultiTemplateParamsArg TemplateParameterLists,
898                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
899                               bool Deleted) {
900  const DeclSpec &DS = D.getDeclSpec();
901  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
902  DeclarationName Name = NameInfo.getName();
903  SourceLocation Loc = NameInfo.getLoc();
904  Expr *BitWidth = static_cast<Expr*>(BW);
905  Expr *Init = static_cast<Expr*>(InitExpr);
906
907  assert(isa<CXXRecordDecl>(CurContext));
908  assert(!DS.isFriendSpecified());
909
910  bool isFunc = false;
911  if (D.isFunctionDeclarator())
912    isFunc = true;
913  else if (D.getNumTypeObjects() == 0 &&
914           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
915    QualType TDType = GetTypeFromParser(DS.getTypeRep());
916    isFunc = TDType->isFunctionType();
917  }
918
919  // C++ 9.2p6: A member shall not be declared to have automatic storage
920  // duration (auto, register) or with the extern storage-class-specifier.
921  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
922  // data members and cannot be applied to names declared const or static,
923  // and cannot be applied to reference members.
924  switch (DS.getStorageClassSpec()) {
925    case DeclSpec::SCS_unspecified:
926    case DeclSpec::SCS_typedef:
927    case DeclSpec::SCS_static:
928      // FALL THROUGH.
929      break;
930    case DeclSpec::SCS_mutable:
931      if (isFunc) {
932        if (DS.getStorageClassSpecLoc().isValid())
933          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
934        else
935          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
936
937        // FIXME: It would be nicer if the keyword was ignored only for this
938        // declarator. Otherwise we could get follow-up errors.
939        D.getMutableDeclSpec().ClearStorageClassSpecs();
940      }
941      break;
942    default:
943      if (DS.getStorageClassSpecLoc().isValid())
944        Diag(DS.getStorageClassSpecLoc(),
945             diag::err_storageclass_invalid_for_member);
946      else
947        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
948      D.getMutableDeclSpec().ClearStorageClassSpecs();
949  }
950
951  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
952                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
953                      !isFunc);
954
955  Decl *Member;
956  if (isInstField) {
957    // FIXME: Check for template parameters!
958    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
959                         AS);
960    assert(Member && "HandleField never returns null");
961  } else {
962    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
963               .getAs<Decl>();
964    if (!Member) {
965      if (BitWidth) DeleteExpr(BitWidth);
966      return DeclPtrTy();
967    }
968
969    // Non-instance-fields can't have a bitfield.
970    if (BitWidth) {
971      if (Member->isInvalidDecl()) {
972        // don't emit another diagnostic.
973      } else if (isa<VarDecl>(Member)) {
974        // C++ 9.6p3: A bit-field shall not be a static member.
975        // "static member 'A' cannot be a bit-field"
976        Diag(Loc, diag::err_static_not_bitfield)
977          << Name << BitWidth->getSourceRange();
978      } else if (isa<TypedefDecl>(Member)) {
979        // "typedef member 'x' cannot be a bit-field"
980        Diag(Loc, diag::err_typedef_not_bitfield)
981          << Name << BitWidth->getSourceRange();
982      } else {
983        // A function typedef ("typedef int f(); f a;").
984        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
985        Diag(Loc, diag::err_not_integral_type_bitfield)
986          << Name << cast<ValueDecl>(Member)->getType()
987          << BitWidth->getSourceRange();
988      }
989
990      DeleteExpr(BitWidth);
991      BitWidth = 0;
992      Member->setInvalidDecl();
993    }
994
995    Member->setAccess(AS);
996
997    // If we have declared a member function template, set the access of the
998    // templated declaration as well.
999    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1000      FunTmpl->getTemplatedDecl()->setAccess(AS);
1001  }
1002
1003  assert((Name || isInstField) && "No identifier for non-field ?");
1004
1005  if (Init)
1006    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
1007  if (Deleted) // FIXME: Source location is not very good.
1008    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
1009
1010  if (isInstField) {
1011    FieldCollector->Add(cast<FieldDecl>(Member));
1012    return DeclPtrTy();
1013  }
1014  return DeclPtrTy::make(Member);
1015}
1016
1017/// \brief Find the direct and/or virtual base specifiers that
1018/// correspond to the given base type, for use in base initialization
1019/// within a constructor.
1020static bool FindBaseInitializer(Sema &SemaRef,
1021                                CXXRecordDecl *ClassDecl,
1022                                QualType BaseType,
1023                                const CXXBaseSpecifier *&DirectBaseSpec,
1024                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1025  // First, check for a direct base class.
1026  DirectBaseSpec = 0;
1027  for (CXXRecordDecl::base_class_const_iterator Base
1028         = ClassDecl->bases_begin();
1029       Base != ClassDecl->bases_end(); ++Base) {
1030    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1031      // We found a direct base of this type. That's what we're
1032      // initializing.
1033      DirectBaseSpec = &*Base;
1034      break;
1035    }
1036  }
1037
1038  // Check for a virtual base class.
1039  // FIXME: We might be able to short-circuit this if we know in advance that
1040  // there are no virtual bases.
1041  VirtualBaseSpec = 0;
1042  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1043    // We haven't found a base yet; search the class hierarchy for a
1044    // virtual base class.
1045    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1046                       /*DetectVirtual=*/false);
1047    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1048                              BaseType, Paths)) {
1049      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1050           Path != Paths.end(); ++Path) {
1051        if (Path->back().Base->isVirtual()) {
1052          VirtualBaseSpec = Path->back().Base;
1053          break;
1054        }
1055      }
1056    }
1057  }
1058
1059  return DirectBaseSpec || VirtualBaseSpec;
1060}
1061
1062/// ActOnMemInitializer - Handle a C++ member initializer.
1063Sema::MemInitResult
1064Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1065                          Scope *S,
1066                          CXXScopeSpec &SS,
1067                          IdentifierInfo *MemberOrBase,
1068                          TypeTy *TemplateTypeTy,
1069                          SourceLocation IdLoc,
1070                          SourceLocation LParenLoc,
1071                          ExprTy **Args, unsigned NumArgs,
1072                          SourceLocation *CommaLocs,
1073                          SourceLocation RParenLoc) {
1074  if (!ConstructorD)
1075    return true;
1076
1077  AdjustDeclIfTemplate(ConstructorD);
1078
1079  CXXConstructorDecl *Constructor
1080    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1081  if (!Constructor) {
1082    // The user wrote a constructor initializer on a function that is
1083    // not a C++ constructor. Ignore the error for now, because we may
1084    // have more member initializers coming; we'll diagnose it just
1085    // once in ActOnMemInitializers.
1086    return true;
1087  }
1088
1089  CXXRecordDecl *ClassDecl = Constructor->getParent();
1090
1091  // C++ [class.base.init]p2:
1092  //   Names in a mem-initializer-id are looked up in the scope of the
1093  //   constructor’s class and, if not found in that scope, are looked
1094  //   up in the scope containing the constructor’s
1095  //   definition. [Note: if the constructor’s class contains a member
1096  //   with the same name as a direct or virtual base class of the
1097  //   class, a mem-initializer-id naming the member or base class and
1098  //   composed of a single identifier refers to the class member. A
1099  //   mem-initializer-id for the hidden base class may be specified
1100  //   using a qualified name. ]
1101  if (!SS.getScopeRep() && !TemplateTypeTy) {
1102    // Look for a member, first.
1103    FieldDecl *Member = 0;
1104    DeclContext::lookup_result Result
1105      = ClassDecl->lookup(MemberOrBase);
1106    if (Result.first != Result.second)
1107      Member = dyn_cast<FieldDecl>(*Result.first);
1108
1109    // FIXME: Handle members of an anonymous union.
1110
1111    if (Member)
1112      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1113                                    LParenLoc, RParenLoc);
1114  }
1115  // It didn't name a member, so see if it names a class.
1116  QualType BaseType;
1117  TypeSourceInfo *TInfo = 0;
1118
1119  if (TemplateTypeTy) {
1120    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1121  } else {
1122    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1123    LookupParsedName(R, S, &SS);
1124
1125    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1126    if (!TyD) {
1127      if (R.isAmbiguous()) return true;
1128
1129      // We don't want access-control diagnostics here.
1130      R.suppressDiagnostics();
1131
1132      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1133        bool NotUnknownSpecialization = false;
1134        DeclContext *DC = computeDeclContext(SS, false);
1135        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1136          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1137
1138        if (!NotUnknownSpecialization) {
1139          // When the scope specifier can refer to a member of an unknown
1140          // specialization, we take it as a type name.
1141          BaseType = CheckTypenameType(ETK_None,
1142                                       (NestedNameSpecifier *)SS.getScopeRep(),
1143                                       *MemberOrBase, SourceLocation(),
1144                                       SS.getRange(), IdLoc);
1145          if (BaseType.isNull())
1146            return true;
1147
1148          R.clear();
1149          R.setLookupName(MemberOrBase);
1150        }
1151      }
1152
1153      // If no results were found, try to correct typos.
1154      if (R.empty() && BaseType.isNull() &&
1155          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1156          R.isSingleResult()) {
1157        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1158          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1159            // We have found a non-static data member with a similar
1160            // name to what was typed; complain and initialize that
1161            // member.
1162            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1163              << MemberOrBase << true << R.getLookupName()
1164              << FixItHint::CreateReplacement(R.getNameLoc(),
1165                                              R.getLookupName().getAsString());
1166            Diag(Member->getLocation(), diag::note_previous_decl)
1167              << Member->getDeclName();
1168
1169            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1170                                          LParenLoc, RParenLoc);
1171          }
1172        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1173          const CXXBaseSpecifier *DirectBaseSpec;
1174          const CXXBaseSpecifier *VirtualBaseSpec;
1175          if (FindBaseInitializer(*this, ClassDecl,
1176                                  Context.getTypeDeclType(Type),
1177                                  DirectBaseSpec, VirtualBaseSpec)) {
1178            // We have found a direct or virtual base class with a
1179            // similar name to what was typed; complain and initialize
1180            // that base class.
1181            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1182              << MemberOrBase << false << R.getLookupName()
1183              << FixItHint::CreateReplacement(R.getNameLoc(),
1184                                              R.getLookupName().getAsString());
1185
1186            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1187                                                             : VirtualBaseSpec;
1188            Diag(BaseSpec->getSourceRange().getBegin(),
1189                 diag::note_base_class_specified_here)
1190              << BaseSpec->getType()
1191              << BaseSpec->getSourceRange();
1192
1193            TyD = Type;
1194          }
1195        }
1196      }
1197
1198      if (!TyD && BaseType.isNull()) {
1199        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1200          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1201        return true;
1202      }
1203    }
1204
1205    if (BaseType.isNull()) {
1206      BaseType = Context.getTypeDeclType(TyD);
1207      if (SS.isSet()) {
1208        NestedNameSpecifier *Qualifier =
1209          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1210
1211        // FIXME: preserve source range information
1212        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1213      }
1214    }
1215  }
1216
1217  if (!TInfo)
1218    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1219
1220  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1221                              LParenLoc, RParenLoc, ClassDecl);
1222}
1223
1224/// Checks an initializer expression for use of uninitialized fields, such as
1225/// containing the field that is being initialized. Returns true if there is an
1226/// uninitialized field was used an updates the SourceLocation parameter; false
1227/// otherwise.
1228static bool InitExprContainsUninitializedFields(const Stmt *S,
1229                                                const FieldDecl *LhsField,
1230                                                SourceLocation *L) {
1231  if (isa<CallExpr>(S)) {
1232    // Do not descend into function calls or constructors, as the use
1233    // of an uninitialized field may be valid. One would have to inspect
1234    // the contents of the function/ctor to determine if it is safe or not.
1235    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1236    // may be safe, depending on what the function/ctor does.
1237    return false;
1238  }
1239  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1240    const NamedDecl *RhsField = ME->getMemberDecl();
1241    if (RhsField == LhsField) {
1242      // Initializing a field with itself. Throw a warning.
1243      // But wait; there are exceptions!
1244      // Exception #1:  The field may not belong to this record.
1245      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1246      const Expr *base = ME->getBase();
1247      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1248        // Even though the field matches, it does not belong to this record.
1249        return false;
1250      }
1251      // None of the exceptions triggered; return true to indicate an
1252      // uninitialized field was used.
1253      *L = ME->getMemberLoc();
1254      return true;
1255    }
1256  }
1257  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1258       it != e; ++it) {
1259    if (!*it) {
1260      // An expression such as 'member(arg ?: "")' may trigger this.
1261      continue;
1262    }
1263    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1264      return true;
1265  }
1266  return false;
1267}
1268
1269Sema::MemInitResult
1270Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1271                             unsigned NumArgs, SourceLocation IdLoc,
1272                             SourceLocation LParenLoc,
1273                             SourceLocation RParenLoc) {
1274  // Diagnose value-uses of fields to initialize themselves, e.g.
1275  //   foo(foo)
1276  // where foo is not also a parameter to the constructor.
1277  // TODO: implement -Wuninitialized and fold this into that framework.
1278  for (unsigned i = 0; i < NumArgs; ++i) {
1279    SourceLocation L;
1280    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1281      // FIXME: Return true in the case when other fields are used before being
1282      // uninitialized. For example, let this field be the i'th field. When
1283      // initializing the i'th field, throw a warning if any of the >= i'th
1284      // fields are used, as they are not yet initialized.
1285      // Right now we are only handling the case where the i'th field uses
1286      // itself in its initializer.
1287      Diag(L, diag::warn_field_is_uninit);
1288    }
1289  }
1290
1291  bool HasDependentArg = false;
1292  for (unsigned i = 0; i < NumArgs; i++)
1293    HasDependentArg |= Args[i]->isTypeDependent();
1294
1295  if (Member->getType()->isDependentType() || HasDependentArg) {
1296    // Can't check initialization for a member of dependent type or when
1297    // any of the arguments are type-dependent expressions.
1298    OwningExprResult Init
1299      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1300                                          RParenLoc));
1301
1302    // Erase any temporaries within this evaluation context; we're not
1303    // going to track them in the AST, since we'll be rebuilding the
1304    // ASTs during template instantiation.
1305    ExprTemporaries.erase(
1306              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1307                          ExprTemporaries.end());
1308
1309    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1310                                                    LParenLoc,
1311                                                    Init.takeAs<Expr>(),
1312                                                    RParenLoc);
1313
1314  }
1315
1316  if (Member->isInvalidDecl())
1317    return true;
1318
1319  // Initialize the member.
1320  InitializedEntity MemberEntity =
1321    InitializedEntity::InitializeMember(Member, 0);
1322  InitializationKind Kind =
1323    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1324
1325  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1326
1327  OwningExprResult MemberInit =
1328    InitSeq.Perform(*this, MemberEntity, Kind,
1329                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1330  if (MemberInit.isInvalid())
1331    return true;
1332
1333  // C++0x [class.base.init]p7:
1334  //   The initialization of each base and member constitutes a
1335  //   full-expression.
1336  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1337  if (MemberInit.isInvalid())
1338    return true;
1339
1340  // If we are in a dependent context, template instantiation will
1341  // perform this type-checking again. Just save the arguments that we
1342  // received in a ParenListExpr.
1343  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1344  // of the information that we have about the member
1345  // initializer. However, deconstructing the ASTs is a dicey process,
1346  // and this approach is far more likely to get the corner cases right.
1347  if (CurContext->isDependentContext()) {
1348    // Bump the reference count of all of the arguments.
1349    for (unsigned I = 0; I != NumArgs; ++I)
1350      Args[I]->Retain();
1351
1352    OwningExprResult Init
1353      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1354                                          RParenLoc));
1355    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1356                                                    LParenLoc,
1357                                                    Init.takeAs<Expr>(),
1358                                                    RParenLoc);
1359  }
1360
1361  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1362                                                  LParenLoc,
1363                                                  MemberInit.takeAs<Expr>(),
1364                                                  RParenLoc);
1365}
1366
1367Sema::MemInitResult
1368Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1369                           Expr **Args, unsigned NumArgs,
1370                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1371                           CXXRecordDecl *ClassDecl) {
1372  bool HasDependentArg = false;
1373  for (unsigned i = 0; i < NumArgs; i++)
1374    HasDependentArg |= Args[i]->isTypeDependent();
1375
1376  SourceLocation BaseLoc
1377    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1378
1379  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1380    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1381             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1382
1383  // C++ [class.base.init]p2:
1384  //   [...] Unless the mem-initializer-id names a nonstatic data
1385  //   member of the constructor’s class or a direct or virtual base
1386  //   of that class, the mem-initializer is ill-formed. A
1387  //   mem-initializer-list can initialize a base class using any
1388  //   name that denotes that base class type.
1389  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1390
1391  // Check for direct and virtual base classes.
1392  const CXXBaseSpecifier *DirectBaseSpec = 0;
1393  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1394  if (!Dependent) {
1395    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1396                        VirtualBaseSpec);
1397
1398    // C++ [base.class.init]p2:
1399    // Unless the mem-initializer-id names a nonstatic data member of the
1400    // constructor's class or a direct or virtual base of that class, the
1401    // mem-initializer is ill-formed.
1402    if (!DirectBaseSpec && !VirtualBaseSpec) {
1403      // If the class has any dependent bases, then it's possible that
1404      // one of those types will resolve to the same type as
1405      // BaseType. Therefore, just treat this as a dependent base
1406      // class initialization.  FIXME: Should we try to check the
1407      // initialization anyway? It seems odd.
1408      if (ClassDecl->hasAnyDependentBases())
1409        Dependent = true;
1410      else
1411        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1412          << BaseType << Context.getTypeDeclType(ClassDecl)
1413          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1414    }
1415  }
1416
1417  if (Dependent) {
1418    // Can't check initialization for a base of dependent type or when
1419    // any of the arguments are type-dependent expressions.
1420    OwningExprResult BaseInit
1421      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1422                                          RParenLoc));
1423
1424    // Erase any temporaries within this evaluation context; we're not
1425    // going to track them in the AST, since we'll be rebuilding the
1426    // ASTs during template instantiation.
1427    ExprTemporaries.erase(
1428              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1429                          ExprTemporaries.end());
1430
1431    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1432                                                    /*IsVirtual=*/false,
1433                                                    LParenLoc,
1434                                                    BaseInit.takeAs<Expr>(),
1435                                                    RParenLoc);
1436  }
1437
1438  // C++ [base.class.init]p2:
1439  //   If a mem-initializer-id is ambiguous because it designates both
1440  //   a direct non-virtual base class and an inherited virtual base
1441  //   class, the mem-initializer is ill-formed.
1442  if (DirectBaseSpec && VirtualBaseSpec)
1443    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1444      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1445
1446  CXXBaseSpecifier *BaseSpec
1447    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1448  if (!BaseSpec)
1449    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1450
1451  // Initialize the base.
1452  InitializedEntity BaseEntity =
1453    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1454  InitializationKind Kind =
1455    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1456
1457  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1458
1459  OwningExprResult BaseInit =
1460    InitSeq.Perform(*this, BaseEntity, Kind,
1461                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1462  if (BaseInit.isInvalid())
1463    return true;
1464
1465  // C++0x [class.base.init]p7:
1466  //   The initialization of each base and member constitutes a
1467  //   full-expression.
1468  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1469  if (BaseInit.isInvalid())
1470    return true;
1471
1472  // If we are in a dependent context, template instantiation will
1473  // perform this type-checking again. Just save the arguments that we
1474  // received in a ParenListExpr.
1475  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1476  // of the information that we have about the base
1477  // initializer. However, deconstructing the ASTs is a dicey process,
1478  // and this approach is far more likely to get the corner cases right.
1479  if (CurContext->isDependentContext()) {
1480    // Bump the reference count of all of the arguments.
1481    for (unsigned I = 0; I != NumArgs; ++I)
1482      Args[I]->Retain();
1483
1484    OwningExprResult Init
1485      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1486                                          RParenLoc));
1487    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1488                                                    BaseSpec->isVirtual(),
1489                                                    LParenLoc,
1490                                                    Init.takeAs<Expr>(),
1491                                                    RParenLoc);
1492  }
1493
1494  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1495                                                  BaseSpec->isVirtual(),
1496                                                  LParenLoc,
1497                                                  BaseInit.takeAs<Expr>(),
1498                                                  RParenLoc);
1499}
1500
1501/// ImplicitInitializerKind - How an implicit base or member initializer should
1502/// initialize its base or member.
1503enum ImplicitInitializerKind {
1504  IIK_Default,
1505  IIK_Copy,
1506  IIK_Move
1507};
1508
1509static bool
1510BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1511                             ImplicitInitializerKind ImplicitInitKind,
1512                             CXXBaseSpecifier *BaseSpec,
1513                             bool IsInheritedVirtualBase,
1514                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1515  InitializedEntity InitEntity
1516    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1517                                        IsInheritedVirtualBase);
1518
1519  Sema::OwningExprResult BaseInit(SemaRef);
1520
1521  switch (ImplicitInitKind) {
1522  case IIK_Default: {
1523    InitializationKind InitKind
1524      = InitializationKind::CreateDefault(Constructor->getLocation());
1525    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1526    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1527                               Sema::MultiExprArg(SemaRef, 0, 0));
1528    break;
1529  }
1530
1531  case IIK_Copy: {
1532    ParmVarDecl *Param = Constructor->getParamDecl(0);
1533    QualType ParamType = Param->getType().getNonReferenceType();
1534
1535    Expr *CopyCtorArg =
1536      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1537                          Constructor->getLocation(), ParamType, 0);
1538
1539    // Cast to the base class to avoid ambiguities.
1540    QualType ArgTy =
1541      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1542                                       ParamType.getQualifiers());
1543
1544    CXXCastPath BasePath;
1545    BasePath.push_back(BaseSpec);
1546    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1547                              CastExpr::CK_UncheckedDerivedToBase,
1548                              ImplicitCastExpr::LValue, &BasePath);
1549
1550    InitializationKind InitKind
1551      = InitializationKind::CreateDirect(Constructor->getLocation(),
1552                                         SourceLocation(), SourceLocation());
1553    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1554                                   &CopyCtorArg, 1);
1555    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1556                               Sema::MultiExprArg(SemaRef,
1557                                                  (void**)&CopyCtorArg, 1));
1558    break;
1559  }
1560
1561  case IIK_Move:
1562    assert(false && "Unhandled initializer kind!");
1563  }
1564
1565  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1566  if (BaseInit.isInvalid())
1567    return true;
1568
1569  CXXBaseInit =
1570    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1571               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1572                                                        SourceLocation()),
1573                                             BaseSpec->isVirtual(),
1574                                             SourceLocation(),
1575                                             BaseInit.takeAs<Expr>(),
1576                                             SourceLocation());
1577
1578  return false;
1579}
1580
1581static bool
1582BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1583                               ImplicitInitializerKind ImplicitInitKind,
1584                               FieldDecl *Field,
1585                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1586  if (Field->isInvalidDecl())
1587    return true;
1588
1589  SourceLocation Loc = Constructor->getLocation();
1590
1591  if (ImplicitInitKind == IIK_Copy) {
1592    ParmVarDecl *Param = Constructor->getParamDecl(0);
1593    QualType ParamType = Param->getType().getNonReferenceType();
1594
1595    Expr *MemberExprBase =
1596      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1597                          Loc, ParamType, 0);
1598
1599    // Build a reference to this field within the parameter.
1600    CXXScopeSpec SS;
1601    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1602                              Sema::LookupMemberName);
1603    MemberLookup.addDecl(Field, AS_public);
1604    MemberLookup.resolveKind();
1605    Sema::OwningExprResult CopyCtorArg
1606      = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
1607                                         ParamType, Loc,
1608                                         /*IsArrow=*/false,
1609                                         SS,
1610                                         /*FirstQualifierInScope=*/0,
1611                                         MemberLookup,
1612                                         /*TemplateArgs=*/0);
1613    if (CopyCtorArg.isInvalid())
1614      return true;
1615
1616    // When the field we are copying is an array, create index variables for
1617    // each dimension of the array. We use these index variables to subscript
1618    // the source array, and other clients (e.g., CodeGen) will perform the
1619    // necessary iteration with these index variables.
1620    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1621    QualType BaseType = Field->getType();
1622    QualType SizeType = SemaRef.Context.getSizeType();
1623    while (const ConstantArrayType *Array
1624                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1625      // Create the iteration variable for this array index.
1626      IdentifierInfo *IterationVarName = 0;
1627      {
1628        llvm::SmallString<8> Str;
1629        llvm::raw_svector_ostream OS(Str);
1630        OS << "__i" << IndexVariables.size();
1631        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1632      }
1633      VarDecl *IterationVar
1634        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1635                          IterationVarName, SizeType,
1636                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1637                          VarDecl::None, VarDecl::None);
1638      IndexVariables.push_back(IterationVar);
1639
1640      // Create a reference to the iteration variable.
1641      Sema::OwningExprResult IterationVarRef
1642        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1643      assert(!IterationVarRef.isInvalid() &&
1644             "Reference to invented variable cannot fail!");
1645
1646      // Subscript the array with this iteration variable.
1647      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
1648                                                            Loc,
1649                                                          move(IterationVarRef),
1650                                                            Loc);
1651      if (CopyCtorArg.isInvalid())
1652        return true;
1653
1654      BaseType = Array->getElementType();
1655    }
1656
1657    // Construct the entity that we will be initializing. For an array, this
1658    // will be first element in the array, which may require several levels
1659    // of array-subscript entities.
1660    llvm::SmallVector<InitializedEntity, 4> Entities;
1661    Entities.reserve(1 + IndexVariables.size());
1662    Entities.push_back(InitializedEntity::InitializeMember(Field));
1663    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1664      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1665                                                              0,
1666                                                              Entities.back()));
1667
1668    // Direct-initialize to use the copy constructor.
1669    InitializationKind InitKind =
1670      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1671
1672    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1673    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1674                                   &CopyCtorArgE, 1);
1675
1676    Sema::OwningExprResult MemberInit
1677      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1678                        Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
1679    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1680    if (MemberInit.isInvalid())
1681      return true;
1682
1683    CXXMemberInit
1684      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1685                                           MemberInit.takeAs<Expr>(), Loc,
1686                                           IndexVariables.data(),
1687                                           IndexVariables.size());
1688    return false;
1689  }
1690
1691  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1692
1693  QualType FieldBaseElementType =
1694    SemaRef.Context.getBaseElementType(Field->getType());
1695
1696  if (FieldBaseElementType->isRecordType()) {
1697    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1698    InitializationKind InitKind =
1699      InitializationKind::CreateDefault(Loc);
1700
1701    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1702    Sema::OwningExprResult MemberInit =
1703      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1704                      Sema::MultiExprArg(SemaRef, 0, 0));
1705    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1706    if (MemberInit.isInvalid())
1707      return true;
1708
1709    CXXMemberInit =
1710      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1711                                                       Field, Loc, Loc,
1712                                                      MemberInit.takeAs<Expr>(),
1713                                                       Loc);
1714    return false;
1715  }
1716
1717  if (FieldBaseElementType->isReferenceType()) {
1718    SemaRef.Diag(Constructor->getLocation(),
1719                 diag::err_uninitialized_member_in_ctor)
1720    << (int)Constructor->isImplicit()
1721    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1722    << 0 << Field->getDeclName();
1723    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1724    return true;
1725  }
1726
1727  if (FieldBaseElementType.isConstQualified()) {
1728    SemaRef.Diag(Constructor->getLocation(),
1729                 diag::err_uninitialized_member_in_ctor)
1730    << (int)Constructor->isImplicit()
1731    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1732    << 1 << Field->getDeclName();
1733    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1734    return true;
1735  }
1736
1737  // Nothing to initialize.
1738  CXXMemberInit = 0;
1739  return false;
1740}
1741
1742namespace {
1743struct BaseAndFieldInfo {
1744  Sema &S;
1745  CXXConstructorDecl *Ctor;
1746  bool AnyErrorsInInits;
1747  ImplicitInitializerKind IIK;
1748  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1749  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1750
1751  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1752    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1753    // FIXME: Handle implicit move constructors.
1754    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1755      IIK = IIK_Copy;
1756    else
1757      IIK = IIK_Default;
1758  }
1759};
1760}
1761
1762static void RecordFieldInitializer(BaseAndFieldInfo &Info,
1763                                   FieldDecl *Top, FieldDecl *Field,
1764                                   CXXBaseOrMemberInitializer *Init) {
1765  // If the member doesn't need to be initialized, Init will still be null.
1766  if (!Init)
1767    return;
1768
1769  Info.AllToInit.push_back(Init);
1770  if (Field != Top) {
1771    Init->setMember(Top);
1772    Init->setAnonUnionMember(Field);
1773  }
1774}
1775
1776static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1777                                    FieldDecl *Top, FieldDecl *Field) {
1778
1779  // Overwhelmingly common case: we have a direct initializer for this field.
1780  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1781    RecordFieldInitializer(Info, Top, Field, Init);
1782    return false;
1783  }
1784
1785  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1786    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1787    assert(FieldClassType && "anonymous struct/union without record type");
1788    CXXRecordDecl *FieldClassDecl
1789      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1790
1791    // Even though union members never have non-trivial default
1792    // constructions in C++03, we still build member initializers for aggregate
1793    // record types which can be union members, and C++0x allows non-trivial
1794    // default constructors for union members, so we ensure that only one
1795    // member is initialized for these.
1796    if (FieldClassDecl->isUnion()) {
1797      // First check for an explicit initializer for one field.
1798      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1799           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1800        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1801          RecordFieldInitializer(Info, Top, *FA, Init);
1802
1803          // Once we've initialized a field of an anonymous union, the union
1804          // field in the class is also initialized, so exit immediately.
1805          return false;
1806        } else if ((*FA)->isAnonymousStructOrUnion()) {
1807          if (CollectFieldInitializer(Info, Top, *FA))
1808            return true;
1809        }
1810      }
1811
1812      // Fallthrough and construct a default initializer for the union as
1813      // a whole, which can call its default constructor if such a thing exists
1814      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1815      // behavior going forward with C++0x, when anonymous unions there are
1816      // finalized, we should revisit this.
1817    } else {
1818      // For structs, we simply descend through to initialize all members where
1819      // necessary.
1820      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1821           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1822        if (CollectFieldInitializer(Info, Top, *FA))
1823          return true;
1824      }
1825    }
1826  }
1827
1828  // Don't try to build an implicit initializer if there were semantic
1829  // errors in any of the initializers (and therefore we might be
1830  // missing some that the user actually wrote).
1831  if (Info.AnyErrorsInInits)
1832    return false;
1833
1834  CXXBaseOrMemberInitializer *Init = 0;
1835  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1836    return true;
1837
1838  RecordFieldInitializer(Info, Top, Field, Init);
1839  return false;
1840}
1841
1842bool
1843Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1844                                  CXXBaseOrMemberInitializer **Initializers,
1845                                  unsigned NumInitializers,
1846                                  bool AnyErrors) {
1847  if (Constructor->getDeclContext()->isDependentContext()) {
1848    // Just store the initializers as written, they will be checked during
1849    // instantiation.
1850    if (NumInitializers > 0) {
1851      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1852      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1853        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1854      memcpy(baseOrMemberInitializers, Initializers,
1855             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1856      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1857    }
1858
1859    return false;
1860  }
1861
1862  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1863
1864  // We need to build the initializer AST according to order of construction
1865  // and not what user specified in the Initializers list.
1866  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1867  if (!ClassDecl)
1868    return true;
1869
1870  bool HadError = false;
1871
1872  for (unsigned i = 0; i < NumInitializers; i++) {
1873    CXXBaseOrMemberInitializer *Member = Initializers[i];
1874
1875    if (Member->isBaseInitializer())
1876      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1877    else
1878      Info.AllBaseFields[Member->getMember()] = Member;
1879  }
1880
1881  // Keep track of the direct virtual bases.
1882  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1883  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1884       E = ClassDecl->bases_end(); I != E; ++I) {
1885    if (I->isVirtual())
1886      DirectVBases.insert(I);
1887  }
1888
1889  // Push virtual bases before others.
1890  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1891       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1892
1893    if (CXXBaseOrMemberInitializer *Value
1894        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1895      Info.AllToInit.push_back(Value);
1896    } else if (!AnyErrors) {
1897      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1898      CXXBaseOrMemberInitializer *CXXBaseInit;
1899      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1900                                       VBase, IsInheritedVirtualBase,
1901                                       CXXBaseInit)) {
1902        HadError = true;
1903        continue;
1904      }
1905
1906      Info.AllToInit.push_back(CXXBaseInit);
1907    }
1908  }
1909
1910  // Non-virtual bases.
1911  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1912       E = ClassDecl->bases_end(); Base != E; ++Base) {
1913    // Virtuals are in the virtual base list and already constructed.
1914    if (Base->isVirtual())
1915      continue;
1916
1917    if (CXXBaseOrMemberInitializer *Value
1918          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1919      Info.AllToInit.push_back(Value);
1920    } else if (!AnyErrors) {
1921      CXXBaseOrMemberInitializer *CXXBaseInit;
1922      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1923                                       Base, /*IsInheritedVirtualBase=*/false,
1924                                       CXXBaseInit)) {
1925        HadError = true;
1926        continue;
1927      }
1928
1929      Info.AllToInit.push_back(CXXBaseInit);
1930    }
1931  }
1932
1933  // Fields.
1934  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1935       E = ClassDecl->field_end(); Field != E; ++Field) {
1936    if ((*Field)->getType()->isIncompleteArrayType()) {
1937      assert(ClassDecl->hasFlexibleArrayMember() &&
1938             "Incomplete array type is not valid");
1939      continue;
1940    }
1941    if (CollectFieldInitializer(Info, *Field, *Field))
1942      HadError = true;
1943  }
1944
1945  NumInitializers = Info.AllToInit.size();
1946  if (NumInitializers > 0) {
1947    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1948    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1949      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1950    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1951           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1952    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1953
1954    // Constructors implicitly reference the base and member
1955    // destructors.
1956    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1957                                           Constructor->getParent());
1958  }
1959
1960  return HadError;
1961}
1962
1963static void *GetKeyForTopLevelField(FieldDecl *Field) {
1964  // For anonymous unions, use the class declaration as the key.
1965  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1966    if (RT->getDecl()->isAnonymousStructOrUnion())
1967      return static_cast<void *>(RT->getDecl());
1968  }
1969  return static_cast<void *>(Field);
1970}
1971
1972static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1973  return Context.getCanonicalType(BaseType).getTypePtr();
1974}
1975
1976static void *GetKeyForMember(ASTContext &Context,
1977                             CXXBaseOrMemberInitializer *Member,
1978                             bool MemberMaybeAnon = false) {
1979  if (!Member->isMemberInitializer())
1980    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1981
1982  // For fields injected into the class via declaration of an anonymous union,
1983  // use its anonymous union class declaration as the unique key.
1984  FieldDecl *Field = Member->getMember();
1985
1986  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1987  // data member of the class. Data member used in the initializer list is
1988  // in AnonUnionMember field.
1989  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1990    Field = Member->getAnonUnionMember();
1991
1992  // If the field is a member of an anonymous struct or union, our key
1993  // is the anonymous record decl that's a direct child of the class.
1994  RecordDecl *RD = Field->getParent();
1995  if (RD->isAnonymousStructOrUnion()) {
1996    while (true) {
1997      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1998      if (Parent->isAnonymousStructOrUnion())
1999        RD = Parent;
2000      else
2001        break;
2002    }
2003
2004    return static_cast<void *>(RD);
2005  }
2006
2007  return static_cast<void *>(Field);
2008}
2009
2010static void
2011DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2012                                  const CXXConstructorDecl *Constructor,
2013                                  CXXBaseOrMemberInitializer **Inits,
2014                                  unsigned NumInits) {
2015  if (Constructor->getDeclContext()->isDependentContext())
2016    return;
2017
2018  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
2019        == Diagnostic::Ignored)
2020    return;
2021
2022  // Build the list of bases and members in the order that they'll
2023  // actually be initialized.  The explicit initializers should be in
2024  // this same order but may be missing things.
2025  llvm::SmallVector<const void*, 32> IdealInitKeys;
2026
2027  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2028
2029  // 1. Virtual bases.
2030  for (CXXRecordDecl::base_class_const_iterator VBase =
2031       ClassDecl->vbases_begin(),
2032       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2033    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2034
2035  // 2. Non-virtual bases.
2036  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2037       E = ClassDecl->bases_end(); Base != E; ++Base) {
2038    if (Base->isVirtual())
2039      continue;
2040    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2041  }
2042
2043  // 3. Direct fields.
2044  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2045       E = ClassDecl->field_end(); Field != E; ++Field)
2046    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2047
2048  unsigned NumIdealInits = IdealInitKeys.size();
2049  unsigned IdealIndex = 0;
2050
2051  CXXBaseOrMemberInitializer *PrevInit = 0;
2052  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2053    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2054    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2055
2056    // Scan forward to try to find this initializer in the idealized
2057    // initializers list.
2058    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2059      if (InitKey == IdealInitKeys[IdealIndex])
2060        break;
2061
2062    // If we didn't find this initializer, it must be because we
2063    // scanned past it on a previous iteration.  That can only
2064    // happen if we're out of order;  emit a warning.
2065    if (IdealIndex == NumIdealInits && PrevInit) {
2066      Sema::SemaDiagnosticBuilder D =
2067        SemaRef.Diag(PrevInit->getSourceLocation(),
2068                     diag::warn_initializer_out_of_order);
2069
2070      if (PrevInit->isMemberInitializer())
2071        D << 0 << PrevInit->getMember()->getDeclName();
2072      else
2073        D << 1 << PrevInit->getBaseClassInfo()->getType();
2074
2075      if (Init->isMemberInitializer())
2076        D << 0 << Init->getMember()->getDeclName();
2077      else
2078        D << 1 << Init->getBaseClassInfo()->getType();
2079
2080      // Move back to the initializer's location in the ideal list.
2081      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2082        if (InitKey == IdealInitKeys[IdealIndex])
2083          break;
2084
2085      assert(IdealIndex != NumIdealInits &&
2086             "initializer not found in initializer list");
2087    }
2088
2089    PrevInit = Init;
2090  }
2091}
2092
2093namespace {
2094bool CheckRedundantInit(Sema &S,
2095                        CXXBaseOrMemberInitializer *Init,
2096                        CXXBaseOrMemberInitializer *&PrevInit) {
2097  if (!PrevInit) {
2098    PrevInit = Init;
2099    return false;
2100  }
2101
2102  if (FieldDecl *Field = Init->getMember())
2103    S.Diag(Init->getSourceLocation(),
2104           diag::err_multiple_mem_initialization)
2105      << Field->getDeclName()
2106      << Init->getSourceRange();
2107  else {
2108    Type *BaseClass = Init->getBaseClass();
2109    assert(BaseClass && "neither field nor base");
2110    S.Diag(Init->getSourceLocation(),
2111           diag::err_multiple_base_initialization)
2112      << QualType(BaseClass, 0)
2113      << Init->getSourceRange();
2114  }
2115  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2116    << 0 << PrevInit->getSourceRange();
2117
2118  return true;
2119}
2120
2121typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2122typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2123
2124bool CheckRedundantUnionInit(Sema &S,
2125                             CXXBaseOrMemberInitializer *Init,
2126                             RedundantUnionMap &Unions) {
2127  FieldDecl *Field = Init->getMember();
2128  RecordDecl *Parent = Field->getParent();
2129  if (!Parent->isAnonymousStructOrUnion())
2130    return false;
2131
2132  NamedDecl *Child = Field;
2133  do {
2134    if (Parent->isUnion()) {
2135      UnionEntry &En = Unions[Parent];
2136      if (En.first && En.first != Child) {
2137        S.Diag(Init->getSourceLocation(),
2138               diag::err_multiple_mem_union_initialization)
2139          << Field->getDeclName()
2140          << Init->getSourceRange();
2141        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2142          << 0 << En.second->getSourceRange();
2143        return true;
2144      } else if (!En.first) {
2145        En.first = Child;
2146        En.second = Init;
2147      }
2148    }
2149
2150    Child = Parent;
2151    Parent = cast<RecordDecl>(Parent->getDeclContext());
2152  } while (Parent->isAnonymousStructOrUnion());
2153
2154  return false;
2155}
2156}
2157
2158/// ActOnMemInitializers - Handle the member initializers for a constructor.
2159void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
2160                                SourceLocation ColonLoc,
2161                                MemInitTy **meminits, unsigned NumMemInits,
2162                                bool AnyErrors) {
2163  if (!ConstructorDecl)
2164    return;
2165
2166  AdjustDeclIfTemplate(ConstructorDecl);
2167
2168  CXXConstructorDecl *Constructor
2169    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
2170
2171  if (!Constructor) {
2172    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2173    return;
2174  }
2175
2176  CXXBaseOrMemberInitializer **MemInits =
2177    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2178
2179  // Mapping for the duplicate initializers check.
2180  // For member initializers, this is keyed with a FieldDecl*.
2181  // For base initializers, this is keyed with a Type*.
2182  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2183
2184  // Mapping for the inconsistent anonymous-union initializers check.
2185  RedundantUnionMap MemberUnions;
2186
2187  bool HadError = false;
2188  for (unsigned i = 0; i < NumMemInits; i++) {
2189    CXXBaseOrMemberInitializer *Init = MemInits[i];
2190
2191    // Set the source order index.
2192    Init->setSourceOrder(i);
2193
2194    if (Init->isMemberInitializer()) {
2195      FieldDecl *Field = Init->getMember();
2196      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2197          CheckRedundantUnionInit(*this, Init, MemberUnions))
2198        HadError = true;
2199    } else {
2200      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2201      if (CheckRedundantInit(*this, Init, Members[Key]))
2202        HadError = true;
2203    }
2204  }
2205
2206  if (HadError)
2207    return;
2208
2209  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2210
2211  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2212}
2213
2214void
2215Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2216                                             CXXRecordDecl *ClassDecl) {
2217  // Ignore dependent contexts.
2218  if (ClassDecl->isDependentContext())
2219    return;
2220
2221  // FIXME: all the access-control diagnostics are positioned on the
2222  // field/base declaration.  That's probably good; that said, the
2223  // user might reasonably want to know why the destructor is being
2224  // emitted, and we currently don't say.
2225
2226  // Non-static data members.
2227  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2228       E = ClassDecl->field_end(); I != E; ++I) {
2229    FieldDecl *Field = *I;
2230    if (Field->isInvalidDecl())
2231      continue;
2232    QualType FieldType = Context.getBaseElementType(Field->getType());
2233
2234    const RecordType* RT = FieldType->getAs<RecordType>();
2235    if (!RT)
2236      continue;
2237
2238    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2239    if (FieldClassDecl->hasTrivialDestructor())
2240      continue;
2241
2242    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2243    CheckDestructorAccess(Field->getLocation(), Dtor,
2244                          PDiag(diag::err_access_dtor_field)
2245                            << Field->getDeclName()
2246                            << FieldType);
2247
2248    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2249  }
2250
2251  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2252
2253  // Bases.
2254  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2255       E = ClassDecl->bases_end(); Base != E; ++Base) {
2256    // Bases are always records in a well-formed non-dependent class.
2257    const RecordType *RT = Base->getType()->getAs<RecordType>();
2258
2259    // Remember direct virtual bases.
2260    if (Base->isVirtual())
2261      DirectVirtualBases.insert(RT);
2262
2263    // Ignore trivial destructors.
2264    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2265    if (BaseClassDecl->hasTrivialDestructor())
2266      continue;
2267
2268    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2269
2270    // FIXME: caret should be on the start of the class name
2271    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2272                          PDiag(diag::err_access_dtor_base)
2273                            << Base->getType()
2274                            << Base->getSourceRange());
2275
2276    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2277  }
2278
2279  // Virtual bases.
2280  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2281       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2282
2283    // Bases are always records in a well-formed non-dependent class.
2284    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2285
2286    // Ignore direct virtual bases.
2287    if (DirectVirtualBases.count(RT))
2288      continue;
2289
2290    // Ignore trivial destructors.
2291    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2292    if (BaseClassDecl->hasTrivialDestructor())
2293      continue;
2294
2295    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2296    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2297                          PDiag(diag::err_access_dtor_vbase)
2298                            << VBase->getType());
2299
2300    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2301  }
2302}
2303
2304void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2305  if (!CDtorDecl)
2306    return;
2307
2308  if (CXXConstructorDecl *Constructor
2309      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2310    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2311}
2312
2313bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2314                                  unsigned DiagID, AbstractDiagSelID SelID) {
2315  if (SelID == -1)
2316    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2317  else
2318    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2319}
2320
2321bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2322                                  const PartialDiagnostic &PD) {
2323  if (!getLangOptions().CPlusPlus)
2324    return false;
2325
2326  if (const ArrayType *AT = Context.getAsArrayType(T))
2327    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2328
2329  if (const PointerType *PT = T->getAs<PointerType>()) {
2330    // Find the innermost pointer type.
2331    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2332      PT = T;
2333
2334    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2335      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2336  }
2337
2338  const RecordType *RT = T->getAs<RecordType>();
2339  if (!RT)
2340    return false;
2341
2342  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2343
2344  // We can't answer whether something is abstract until it has a
2345  // definition.  If it's currently being defined, we'll walk back
2346  // over all the declarations when we have a full definition.
2347  const CXXRecordDecl *Def = RD->getDefinition();
2348  if (!Def || Def->isBeingDefined())
2349    return false;
2350
2351  if (!RD->isAbstract())
2352    return false;
2353
2354  Diag(Loc, PD) << RD->getDeclName();
2355  DiagnoseAbstractType(RD);
2356
2357  return true;
2358}
2359
2360void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2361  // Check if we've already emitted the list of pure virtual functions
2362  // for this class.
2363  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2364    return;
2365
2366  CXXFinalOverriderMap FinalOverriders;
2367  RD->getFinalOverriders(FinalOverriders);
2368
2369  // Keep a set of seen pure methods so we won't diagnose the same method
2370  // more than once.
2371  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2372
2373  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2374                                   MEnd = FinalOverriders.end();
2375       M != MEnd;
2376       ++M) {
2377    for (OverridingMethods::iterator SO = M->second.begin(),
2378                                  SOEnd = M->second.end();
2379         SO != SOEnd; ++SO) {
2380      // C++ [class.abstract]p4:
2381      //   A class is abstract if it contains or inherits at least one
2382      //   pure virtual function for which the final overrider is pure
2383      //   virtual.
2384
2385      //
2386      if (SO->second.size() != 1)
2387        continue;
2388
2389      if (!SO->second.front().Method->isPure())
2390        continue;
2391
2392      if (!SeenPureMethods.insert(SO->second.front().Method))
2393        continue;
2394
2395      Diag(SO->second.front().Method->getLocation(),
2396           diag::note_pure_virtual_function)
2397        << SO->second.front().Method->getDeclName();
2398    }
2399  }
2400
2401  if (!PureVirtualClassDiagSet)
2402    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2403  PureVirtualClassDiagSet->insert(RD);
2404}
2405
2406namespace {
2407struct AbstractUsageInfo {
2408  Sema &S;
2409  CXXRecordDecl *Record;
2410  CanQualType AbstractType;
2411  bool Invalid;
2412
2413  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2414    : S(S), Record(Record),
2415      AbstractType(S.Context.getCanonicalType(
2416                   S.Context.getTypeDeclType(Record))),
2417      Invalid(false) {}
2418
2419  void DiagnoseAbstractType() {
2420    if (Invalid) return;
2421    S.DiagnoseAbstractType(Record);
2422    Invalid = true;
2423  }
2424
2425  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2426};
2427
2428struct CheckAbstractUsage {
2429  AbstractUsageInfo &Info;
2430  const NamedDecl *Ctx;
2431
2432  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2433    : Info(Info), Ctx(Ctx) {}
2434
2435  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2436    switch (TL.getTypeLocClass()) {
2437#define ABSTRACT_TYPELOC(CLASS, PARENT)
2438#define TYPELOC(CLASS, PARENT) \
2439    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2440#include "clang/AST/TypeLocNodes.def"
2441    }
2442  }
2443
2444  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2445    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2446    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2447      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2448      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2449    }
2450  }
2451
2452  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2453    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2454  }
2455
2456  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2457    // Visit the type parameters from a permissive context.
2458    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2459      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2460      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2461        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2462          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2463      // TODO: other template argument types?
2464    }
2465  }
2466
2467  // Visit pointee types from a permissive context.
2468#define CheckPolymorphic(Type) \
2469  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2470    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2471  }
2472  CheckPolymorphic(PointerTypeLoc)
2473  CheckPolymorphic(ReferenceTypeLoc)
2474  CheckPolymorphic(MemberPointerTypeLoc)
2475  CheckPolymorphic(BlockPointerTypeLoc)
2476
2477  /// Handle all the types we haven't given a more specific
2478  /// implementation for above.
2479  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2480    // Every other kind of type that we haven't called out already
2481    // that has an inner type is either (1) sugar or (2) contains that
2482    // inner type in some way as a subobject.
2483    if (TypeLoc Next = TL.getNextTypeLoc())
2484      return Visit(Next, Sel);
2485
2486    // If there's no inner type and we're in a permissive context,
2487    // don't diagnose.
2488    if (Sel == Sema::AbstractNone) return;
2489
2490    // Check whether the type matches the abstract type.
2491    QualType T = TL.getType();
2492    if (T->isArrayType()) {
2493      Sel = Sema::AbstractArrayType;
2494      T = Info.S.Context.getBaseElementType(T);
2495    }
2496    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2497    if (CT != Info.AbstractType) return;
2498
2499    // It matched; do some magic.
2500    if (Sel == Sema::AbstractArrayType) {
2501      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2502        << T << TL.getSourceRange();
2503    } else {
2504      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2505        << Sel << T << TL.getSourceRange();
2506    }
2507    Info.DiagnoseAbstractType();
2508  }
2509};
2510
2511void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2512                                  Sema::AbstractDiagSelID Sel) {
2513  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2514}
2515
2516}
2517
2518/// Check for invalid uses of an abstract type in a method declaration.
2519static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2520                                    CXXMethodDecl *MD) {
2521  // No need to do the check on definitions, which require that
2522  // the return/param types be complete.
2523  if (MD->isThisDeclarationADefinition())
2524    return;
2525
2526  // For safety's sake, just ignore it if we don't have type source
2527  // information.  This should never happen for non-implicit methods,
2528  // but...
2529  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2530    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2531}
2532
2533/// Check for invalid uses of an abstract type within a class definition.
2534static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2535                                    CXXRecordDecl *RD) {
2536  for (CXXRecordDecl::decl_iterator
2537         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2538    Decl *D = *I;
2539    if (D->isImplicit()) continue;
2540
2541    // Methods and method templates.
2542    if (isa<CXXMethodDecl>(D)) {
2543      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2544    } else if (isa<FunctionTemplateDecl>(D)) {
2545      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2546      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2547
2548    // Fields and static variables.
2549    } else if (isa<FieldDecl>(D)) {
2550      FieldDecl *FD = cast<FieldDecl>(D);
2551      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2552        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2553    } else if (isa<VarDecl>(D)) {
2554      VarDecl *VD = cast<VarDecl>(D);
2555      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2556        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2557
2558    // Nested classes and class templates.
2559    } else if (isa<CXXRecordDecl>(D)) {
2560      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2561    } else if (isa<ClassTemplateDecl>(D)) {
2562      CheckAbstractClassUsage(Info,
2563                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2564    }
2565  }
2566}
2567
2568/// \brief Perform semantic checks on a class definition that has been
2569/// completing, introducing implicitly-declared members, checking for
2570/// abstract types, etc.
2571void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2572  if (!Record || Record->isInvalidDecl())
2573    return;
2574
2575  if (!Record->isDependentType())
2576    AddImplicitlyDeclaredMembersToClass(Record);
2577
2578  if (Record->isInvalidDecl())
2579    return;
2580
2581  // Set access bits correctly on the directly-declared conversions.
2582  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2583  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2584    Convs->setAccess(I, (*I)->getAccess());
2585
2586  // Determine whether we need to check for final overriders. We do
2587  // this either when there are virtual base classes (in which case we
2588  // may end up finding multiple final overriders for a given virtual
2589  // function) or any of the base classes is abstract (in which case
2590  // we might detect that this class is abstract).
2591  bool CheckFinalOverriders = false;
2592  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2593      !Record->isDependentType()) {
2594    if (Record->getNumVBases())
2595      CheckFinalOverriders = true;
2596    else if (!Record->isAbstract()) {
2597      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2598                                                 BEnd = Record->bases_end();
2599           B != BEnd; ++B) {
2600        CXXRecordDecl *BaseDecl
2601          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2602        if (BaseDecl->isAbstract()) {
2603          CheckFinalOverriders = true;
2604          break;
2605        }
2606      }
2607    }
2608  }
2609
2610  if (CheckFinalOverriders) {
2611    CXXFinalOverriderMap FinalOverriders;
2612    Record->getFinalOverriders(FinalOverriders);
2613
2614    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2615                                     MEnd = FinalOverriders.end();
2616         M != MEnd; ++M) {
2617      for (OverridingMethods::iterator SO = M->second.begin(),
2618                                    SOEnd = M->second.end();
2619           SO != SOEnd; ++SO) {
2620        assert(SO->second.size() > 0 &&
2621               "All virtual functions have overridding virtual functions");
2622        if (SO->second.size() == 1) {
2623          // C++ [class.abstract]p4:
2624          //   A class is abstract if it contains or inherits at least one
2625          //   pure virtual function for which the final overrider is pure
2626          //   virtual.
2627          if (SO->second.front().Method->isPure())
2628            Record->setAbstract(true);
2629          continue;
2630        }
2631
2632        // C++ [class.virtual]p2:
2633        //   In a derived class, if a virtual member function of a base
2634        //   class subobject has more than one final overrider the
2635        //   program is ill-formed.
2636        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2637          << (NamedDecl *)M->first << Record;
2638        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2639        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2640                                                 OMEnd = SO->second.end();
2641             OM != OMEnd; ++OM)
2642          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2643            << (NamedDecl *)M->first << OM->Method->getParent();
2644
2645        Record->setInvalidDecl();
2646      }
2647    }
2648  }
2649
2650  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2651    AbstractUsageInfo Info(*this, Record);
2652    CheckAbstractClassUsage(Info, Record);
2653  }
2654
2655  // If this is not an aggregate type and has no user-declared constructor,
2656  // complain about any non-static data members of reference or const scalar
2657  // type, since they will never get initializers.
2658  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2659      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2660    bool Complained = false;
2661    for (RecordDecl::field_iterator F = Record->field_begin(),
2662                                 FEnd = Record->field_end();
2663         F != FEnd; ++F) {
2664      if (F->getType()->isReferenceType() ||
2665          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2666        if (!Complained) {
2667          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2668            << Record->getTagKind() << Record;
2669          Complained = true;
2670        }
2671
2672        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2673          << F->getType()->isReferenceType()
2674          << F->getDeclName();
2675      }
2676    }
2677  }
2678
2679  if (Record->isDynamicClass())
2680    DynamicClasses.push_back(Record);
2681}
2682
2683void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2684                                             DeclPtrTy TagDecl,
2685                                             SourceLocation LBrac,
2686                                             SourceLocation RBrac,
2687                                             AttributeList *AttrList) {
2688  if (!TagDecl)
2689    return;
2690
2691  AdjustDeclIfTemplate(TagDecl);
2692
2693  ActOnFields(S, RLoc, TagDecl,
2694              (DeclPtrTy*)FieldCollector->getCurFields(),
2695              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2696
2697  CheckCompletedCXXClass(
2698                        dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2699}
2700
2701namespace {
2702  /// \brief Helper class that collects exception specifications for
2703  /// implicitly-declared special member functions.
2704  class ImplicitExceptionSpecification {
2705    ASTContext &Context;
2706    bool AllowsAllExceptions;
2707    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2708    llvm::SmallVector<QualType, 4> Exceptions;
2709
2710  public:
2711    explicit ImplicitExceptionSpecification(ASTContext &Context)
2712      : Context(Context), AllowsAllExceptions(false) { }
2713
2714    /// \brief Whether the special member function should have any
2715    /// exception specification at all.
2716    bool hasExceptionSpecification() const {
2717      return !AllowsAllExceptions;
2718    }
2719
2720    /// \brief Whether the special member function should have a
2721    /// throw(...) exception specification (a Microsoft extension).
2722    bool hasAnyExceptionSpecification() const {
2723      return false;
2724    }
2725
2726    /// \brief The number of exceptions in the exception specification.
2727    unsigned size() const { return Exceptions.size(); }
2728
2729    /// \brief The set of exceptions in the exception specification.
2730    const QualType *data() const { return Exceptions.data(); }
2731
2732    /// \brief Note that
2733    void CalledDecl(CXXMethodDecl *Method) {
2734      // If we already know that we allow all exceptions, do nothing.
2735      if (AllowsAllExceptions || !Method)
2736        return;
2737
2738      const FunctionProtoType *Proto
2739        = Method->getType()->getAs<FunctionProtoType>();
2740
2741      // If this function can throw any exceptions, make a note of that.
2742      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2743        AllowsAllExceptions = true;
2744        ExceptionsSeen.clear();
2745        Exceptions.clear();
2746        return;
2747      }
2748
2749      // Record the exceptions in this function's exception specification.
2750      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2751                                              EEnd = Proto->exception_end();
2752           E != EEnd; ++E)
2753        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2754          Exceptions.push_back(*E);
2755    }
2756  };
2757}
2758
2759
2760/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2761/// special functions, such as the default constructor, copy
2762/// constructor, or destructor, to the given C++ class (C++
2763/// [special]p1).  This routine can only be executed just before the
2764/// definition of the class is complete.
2765void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2766  if (!ClassDecl->hasUserDeclaredConstructor())
2767    ++ASTContext::NumImplicitDefaultConstructors;
2768
2769  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2770    ++ASTContext::NumImplicitCopyConstructors;
2771
2772  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2773    ++ASTContext::NumImplicitCopyAssignmentOperators;
2774
2775    // If we have a dynamic class, then the copy assignment operator may be
2776    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2777    // it shows up in the right place in the vtable and that we diagnose
2778    // problems with the implicit exception specification.
2779    if (ClassDecl->isDynamicClass())
2780      DeclareImplicitCopyAssignment(ClassDecl);
2781  }
2782
2783  if (!ClassDecl->hasUserDeclaredDestructor()) {
2784    ++ASTContext::NumImplicitDestructors;
2785
2786    // If we have a dynamic class, then the destructor may be virtual, so we
2787    // have to declare the destructor immediately. This ensures that, e.g., it
2788    // shows up in the right place in the vtable and that we diagnose problems
2789    // with the implicit exception specification.
2790    if (ClassDecl->isDynamicClass())
2791      DeclareImplicitDestructor(ClassDecl);
2792  }
2793}
2794
2795void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2796  Decl *D = TemplateD.getAs<Decl>();
2797  if (!D)
2798    return;
2799
2800  TemplateParameterList *Params = 0;
2801  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2802    Params = Template->getTemplateParameters();
2803  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2804           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2805    Params = PartialSpec->getTemplateParameters();
2806  else
2807    return;
2808
2809  for (TemplateParameterList::iterator Param = Params->begin(),
2810                                    ParamEnd = Params->end();
2811       Param != ParamEnd; ++Param) {
2812    NamedDecl *Named = cast<NamedDecl>(*Param);
2813    if (Named->getDeclName()) {
2814      S->AddDecl(DeclPtrTy::make(Named));
2815      IdResolver.AddDecl(Named);
2816    }
2817  }
2818}
2819
2820void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2821  if (!RecordD) return;
2822  AdjustDeclIfTemplate(RecordD);
2823  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2824  PushDeclContext(S, Record);
2825}
2826
2827void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2828  if (!RecordD) return;
2829  PopDeclContext();
2830}
2831
2832/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2833/// parsing a top-level (non-nested) C++ class, and we are now
2834/// parsing those parts of the given Method declaration that could
2835/// not be parsed earlier (C++ [class.mem]p2), such as default
2836/// arguments. This action should enter the scope of the given
2837/// Method declaration as if we had just parsed the qualified method
2838/// name. However, it should not bring the parameters into scope;
2839/// that will be performed by ActOnDelayedCXXMethodParameter.
2840void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2841}
2842
2843/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2844/// C++ method declaration. We're (re-)introducing the given
2845/// function parameter into scope for use in parsing later parts of
2846/// the method declaration. For example, we could see an
2847/// ActOnParamDefaultArgument event for this parameter.
2848void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2849  if (!ParamD)
2850    return;
2851
2852  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2853
2854  // If this parameter has an unparsed default argument, clear it out
2855  // to make way for the parsed default argument.
2856  if (Param->hasUnparsedDefaultArg())
2857    Param->setDefaultArg(0);
2858
2859  S->AddDecl(DeclPtrTy::make(Param));
2860  if (Param->getDeclName())
2861    IdResolver.AddDecl(Param);
2862}
2863
2864/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2865/// processing the delayed method declaration for Method. The method
2866/// declaration is now considered finished. There may be a separate
2867/// ActOnStartOfFunctionDef action later (not necessarily
2868/// immediately!) for this method, if it was also defined inside the
2869/// class body.
2870void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2871  if (!MethodD)
2872    return;
2873
2874  AdjustDeclIfTemplate(MethodD);
2875
2876  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2877
2878  // Now that we have our default arguments, check the constructor
2879  // again. It could produce additional diagnostics or affect whether
2880  // the class has implicitly-declared destructors, among other
2881  // things.
2882  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2883    CheckConstructor(Constructor);
2884
2885  // Check the default arguments, which we may have added.
2886  if (!Method->isInvalidDecl())
2887    CheckCXXDefaultArguments(Method);
2888}
2889
2890/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2891/// the well-formedness of the constructor declarator @p D with type @p
2892/// R. If there are any errors in the declarator, this routine will
2893/// emit diagnostics and set the invalid bit to true.  In any case, the type
2894/// will be updated to reflect a well-formed type for the constructor and
2895/// returned.
2896QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2897                                          FunctionDecl::StorageClass &SC) {
2898  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2899
2900  // C++ [class.ctor]p3:
2901  //   A constructor shall not be virtual (10.3) or static (9.4). A
2902  //   constructor can be invoked for a const, volatile or const
2903  //   volatile object. A constructor shall not be declared const,
2904  //   volatile, or const volatile (9.3.2).
2905  if (isVirtual) {
2906    if (!D.isInvalidType())
2907      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2908        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2909        << SourceRange(D.getIdentifierLoc());
2910    D.setInvalidType();
2911  }
2912  if (SC == FunctionDecl::Static) {
2913    if (!D.isInvalidType())
2914      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2915        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2916        << SourceRange(D.getIdentifierLoc());
2917    D.setInvalidType();
2918    SC = FunctionDecl::None;
2919  }
2920
2921  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2922  if (FTI.TypeQuals != 0) {
2923    if (FTI.TypeQuals & Qualifiers::Const)
2924      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2925        << "const" << SourceRange(D.getIdentifierLoc());
2926    if (FTI.TypeQuals & Qualifiers::Volatile)
2927      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2928        << "volatile" << SourceRange(D.getIdentifierLoc());
2929    if (FTI.TypeQuals & Qualifiers::Restrict)
2930      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2931        << "restrict" << SourceRange(D.getIdentifierLoc());
2932  }
2933
2934  // Rebuild the function type "R" without any type qualifiers (in
2935  // case any of the errors above fired) and with "void" as the
2936  // return type, since constructors don't have return types.
2937  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2938  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2939                                 Proto->getNumArgs(),
2940                                 Proto->isVariadic(), 0,
2941                                 Proto->hasExceptionSpec(),
2942                                 Proto->hasAnyExceptionSpec(),
2943                                 Proto->getNumExceptions(),
2944                                 Proto->exception_begin(),
2945                                 Proto->getExtInfo());
2946}
2947
2948/// CheckConstructor - Checks a fully-formed constructor for
2949/// well-formedness, issuing any diagnostics required. Returns true if
2950/// the constructor declarator is invalid.
2951void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2952  CXXRecordDecl *ClassDecl
2953    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2954  if (!ClassDecl)
2955    return Constructor->setInvalidDecl();
2956
2957  // C++ [class.copy]p3:
2958  //   A declaration of a constructor for a class X is ill-formed if
2959  //   its first parameter is of type (optionally cv-qualified) X and
2960  //   either there are no other parameters or else all other
2961  //   parameters have default arguments.
2962  if (!Constructor->isInvalidDecl() &&
2963      ((Constructor->getNumParams() == 1) ||
2964       (Constructor->getNumParams() > 1 &&
2965        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2966      Constructor->getTemplateSpecializationKind()
2967                                              != TSK_ImplicitInstantiation) {
2968    QualType ParamType = Constructor->getParamDecl(0)->getType();
2969    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2970    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2971      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2972      const char *ConstRef
2973        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2974                                                        : " const &";
2975      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2976        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2977
2978      // FIXME: Rather that making the constructor invalid, we should endeavor
2979      // to fix the type.
2980      Constructor->setInvalidDecl();
2981    }
2982  }
2983
2984  // Notify the class that we've added a constructor.  In principle we
2985  // don't need to do this for out-of-line declarations; in practice
2986  // we only instantiate the most recent declaration of a method, so
2987  // we have to call this for everything but friends.
2988  if (!Constructor->getFriendObjectKind())
2989    ClassDecl->addedConstructor(Context, Constructor);
2990}
2991
2992/// CheckDestructor - Checks a fully-formed destructor definition for
2993/// well-formedness, issuing any diagnostics required.  Returns true
2994/// on error.
2995bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2996  CXXRecordDecl *RD = Destructor->getParent();
2997
2998  if (Destructor->isVirtual()) {
2999    SourceLocation Loc;
3000
3001    if (!Destructor->isImplicit())
3002      Loc = Destructor->getLocation();
3003    else
3004      Loc = RD->getLocation();
3005
3006    // If we have a virtual destructor, look up the deallocation function
3007    FunctionDecl *OperatorDelete = 0;
3008    DeclarationName Name =
3009    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3010    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3011      return true;
3012
3013    MarkDeclarationReferenced(Loc, OperatorDelete);
3014
3015    Destructor->setOperatorDelete(OperatorDelete);
3016  }
3017
3018  return false;
3019}
3020
3021static inline bool
3022FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3023  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3024          FTI.ArgInfo[0].Param &&
3025          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
3026}
3027
3028/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3029/// the well-formednes of the destructor declarator @p D with type @p
3030/// R. If there are any errors in the declarator, this routine will
3031/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3032/// will be updated to reflect a well-formed type for the destructor and
3033/// returned.
3034QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3035                                         FunctionDecl::StorageClass& SC) {
3036  // C++ [class.dtor]p1:
3037  //   [...] A typedef-name that names a class is a class-name
3038  //   (7.1.3); however, a typedef-name that names a class shall not
3039  //   be used as the identifier in the declarator for a destructor
3040  //   declaration.
3041  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3042  if (isa<TypedefType>(DeclaratorType))
3043    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3044      << DeclaratorType;
3045
3046  // C++ [class.dtor]p2:
3047  //   A destructor is used to destroy objects of its class type. A
3048  //   destructor takes no parameters, and no return type can be
3049  //   specified for it (not even void). The address of a destructor
3050  //   shall not be taken. A destructor shall not be static. A
3051  //   destructor can be invoked for a const, volatile or const
3052  //   volatile object. A destructor shall not be declared const,
3053  //   volatile or const volatile (9.3.2).
3054  if (SC == FunctionDecl::Static) {
3055    if (!D.isInvalidType())
3056      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3057        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3058        << SourceRange(D.getIdentifierLoc())
3059        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3060
3061    SC = FunctionDecl::None;
3062  }
3063  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3064    // Destructors don't have return types, but the parser will
3065    // happily parse something like:
3066    //
3067    //   class X {
3068    //     float ~X();
3069    //   };
3070    //
3071    // The return type will be eliminated later.
3072    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3073      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3074      << SourceRange(D.getIdentifierLoc());
3075  }
3076
3077  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3078  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3079    if (FTI.TypeQuals & Qualifiers::Const)
3080      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3081        << "const" << SourceRange(D.getIdentifierLoc());
3082    if (FTI.TypeQuals & Qualifiers::Volatile)
3083      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3084        << "volatile" << SourceRange(D.getIdentifierLoc());
3085    if (FTI.TypeQuals & Qualifiers::Restrict)
3086      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3087        << "restrict" << SourceRange(D.getIdentifierLoc());
3088    D.setInvalidType();
3089  }
3090
3091  // Make sure we don't have any parameters.
3092  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3093    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3094
3095    // Delete the parameters.
3096    FTI.freeArgs();
3097    D.setInvalidType();
3098  }
3099
3100  // Make sure the destructor isn't variadic.
3101  if (FTI.isVariadic) {
3102    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3103    D.setInvalidType();
3104  }
3105
3106  // Rebuild the function type "R" without any type qualifiers or
3107  // parameters (in case any of the errors above fired) and with
3108  // "void" as the return type, since destructors don't have return
3109  // types.
3110  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3111  if (!Proto)
3112    return QualType();
3113
3114  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3115                                 Proto->hasExceptionSpec(),
3116                                 Proto->hasAnyExceptionSpec(),
3117                                 Proto->getNumExceptions(),
3118                                 Proto->exception_begin(),
3119                                 Proto->getExtInfo());
3120}
3121
3122/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3123/// well-formednes of the conversion function declarator @p D with
3124/// type @p R. If there are any errors in the declarator, this routine
3125/// will emit diagnostics and return true. Otherwise, it will return
3126/// false. Either way, the type @p R will be updated to reflect a
3127/// well-formed type for the conversion operator.
3128void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3129                                     FunctionDecl::StorageClass& SC) {
3130  // C++ [class.conv.fct]p1:
3131  //   Neither parameter types nor return type can be specified. The
3132  //   type of a conversion function (8.3.5) is "function taking no
3133  //   parameter returning conversion-type-id."
3134  if (SC == FunctionDecl::Static) {
3135    if (!D.isInvalidType())
3136      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3137        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3138        << SourceRange(D.getIdentifierLoc());
3139    D.setInvalidType();
3140    SC = FunctionDecl::None;
3141  }
3142
3143  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3144
3145  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3146    // Conversion functions don't have return types, but the parser will
3147    // happily parse something like:
3148    //
3149    //   class X {
3150    //     float operator bool();
3151    //   };
3152    //
3153    // The return type will be changed later anyway.
3154    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3155      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3156      << SourceRange(D.getIdentifierLoc());
3157    D.setInvalidType();
3158  }
3159
3160  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3161
3162  // Make sure we don't have any parameters.
3163  if (Proto->getNumArgs() > 0) {
3164    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3165
3166    // Delete the parameters.
3167    D.getTypeObject(0).Fun.freeArgs();
3168    D.setInvalidType();
3169  } else if (Proto->isVariadic()) {
3170    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3171    D.setInvalidType();
3172  }
3173
3174  // Diagnose "&operator bool()" and other such nonsense.  This
3175  // is actually a gcc extension which we don't support.
3176  if (Proto->getResultType() != ConvType) {
3177    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3178      << Proto->getResultType();
3179    D.setInvalidType();
3180    ConvType = Proto->getResultType();
3181  }
3182
3183  // C++ [class.conv.fct]p4:
3184  //   The conversion-type-id shall not represent a function type nor
3185  //   an array type.
3186  if (ConvType->isArrayType()) {
3187    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3188    ConvType = Context.getPointerType(ConvType);
3189    D.setInvalidType();
3190  } else if (ConvType->isFunctionType()) {
3191    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3192    ConvType = Context.getPointerType(ConvType);
3193    D.setInvalidType();
3194  }
3195
3196  // Rebuild the function type "R" without any parameters (in case any
3197  // of the errors above fired) and with the conversion type as the
3198  // return type.
3199  if (D.isInvalidType()) {
3200    R = Context.getFunctionType(ConvType, 0, 0, false,
3201                                Proto->getTypeQuals(),
3202                                Proto->hasExceptionSpec(),
3203                                Proto->hasAnyExceptionSpec(),
3204                                Proto->getNumExceptions(),
3205                                Proto->exception_begin(),
3206                                Proto->getExtInfo());
3207  }
3208
3209  // C++0x explicit conversion operators.
3210  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3211    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3212         diag::warn_explicit_conversion_functions)
3213      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3214}
3215
3216/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3217/// the declaration of the given C++ conversion function. This routine
3218/// is responsible for recording the conversion function in the C++
3219/// class, if possible.
3220Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3221  assert(Conversion && "Expected to receive a conversion function declaration");
3222
3223  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3224
3225  // Make sure we aren't redeclaring the conversion function.
3226  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3227
3228  // C++ [class.conv.fct]p1:
3229  //   [...] A conversion function is never used to convert a
3230  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3231  //   same object type (or a reference to it), to a (possibly
3232  //   cv-qualified) base class of that type (or a reference to it),
3233  //   or to (possibly cv-qualified) void.
3234  // FIXME: Suppress this warning if the conversion function ends up being a
3235  // virtual function that overrides a virtual function in a base class.
3236  QualType ClassType
3237    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3238  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3239    ConvType = ConvTypeRef->getPointeeType();
3240  if (ConvType->isRecordType()) {
3241    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3242    if (ConvType == ClassType)
3243      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3244        << ClassType;
3245    else if (IsDerivedFrom(ClassType, ConvType))
3246      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3247        <<  ClassType << ConvType;
3248  } else if (ConvType->isVoidType()) {
3249    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3250      << ClassType << ConvType;
3251  }
3252
3253  if (Conversion->getPrimaryTemplate()) {
3254    // ignore specializations
3255  } else if (Conversion->getPreviousDeclaration()) {
3256    if (FunctionTemplateDecl *ConversionTemplate
3257                                  = Conversion->getDescribedFunctionTemplate()) {
3258      if (ClassDecl->replaceConversion(
3259                                   ConversionTemplate->getPreviousDeclaration(),
3260                                       ConversionTemplate))
3261        return DeclPtrTy::make(ConversionTemplate);
3262    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3263                                            Conversion))
3264      return DeclPtrTy::make(Conversion);
3265    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3266  } else if (FunctionTemplateDecl *ConversionTemplate
3267               = Conversion->getDescribedFunctionTemplate())
3268    ClassDecl->addConversionFunction(ConversionTemplate);
3269  else
3270    ClassDecl->addConversionFunction(Conversion);
3271
3272  return DeclPtrTy::make(Conversion);
3273}
3274
3275//===----------------------------------------------------------------------===//
3276// Namespace Handling
3277//===----------------------------------------------------------------------===//
3278
3279/// ActOnStartNamespaceDef - This is called at the start of a namespace
3280/// definition.
3281Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3282                                             SourceLocation IdentLoc,
3283                                             IdentifierInfo *II,
3284                                             SourceLocation LBrace,
3285                                             AttributeList *AttrList) {
3286  NamespaceDecl *Namespc =
3287      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3288  Namespc->setLBracLoc(LBrace);
3289
3290  Scope *DeclRegionScope = NamespcScope->getParent();
3291
3292  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3293
3294  if (const VisibilityAttr *attr = Namespc->getAttr<VisibilityAttr>())
3295    PushPragmaVisibility(attr->getVisibility());
3296
3297  if (II) {
3298    // C++ [namespace.def]p2:
3299    // The identifier in an original-namespace-definition shall not have been
3300    // previously defined in the declarative region in which the
3301    // original-namespace-definition appears. The identifier in an
3302    // original-namespace-definition is the name of the namespace. Subsequently
3303    // in that declarative region, it is treated as an original-namespace-name.
3304
3305    NamedDecl *PrevDecl
3306      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3307                         ForRedeclaration);
3308
3309    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3310      // This is an extended namespace definition.
3311      // Attach this namespace decl to the chain of extended namespace
3312      // definitions.
3313      OrigNS->setNextNamespace(Namespc);
3314      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3315
3316      // Remove the previous declaration from the scope.
3317      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3318        IdResolver.RemoveDecl(OrigNS);
3319        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3320      }
3321    } else if (PrevDecl) {
3322      // This is an invalid name redefinition.
3323      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3324       << Namespc->getDeclName();
3325      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3326      Namespc->setInvalidDecl();
3327      // Continue on to push Namespc as current DeclContext and return it.
3328    } else if (II->isStr("std") &&
3329               CurContext->getLookupContext()->isTranslationUnit()) {
3330      // This is the first "real" definition of the namespace "std", so update
3331      // our cache of the "std" namespace to point at this definition.
3332      if (NamespaceDecl *StdNS = getStdNamespace()) {
3333        // We had already defined a dummy namespace "std". Link this new
3334        // namespace definition to the dummy namespace "std".
3335        StdNS->setNextNamespace(Namespc);
3336        StdNS->setLocation(IdentLoc);
3337        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3338      }
3339
3340      // Make our StdNamespace cache point at the first real definition of the
3341      // "std" namespace.
3342      StdNamespace = Namespc;
3343    }
3344
3345    PushOnScopeChains(Namespc, DeclRegionScope);
3346  } else {
3347    // Anonymous namespaces.
3348    assert(Namespc->isAnonymousNamespace());
3349
3350    // Link the anonymous namespace into its parent.
3351    NamespaceDecl *PrevDecl;
3352    DeclContext *Parent = CurContext->getLookupContext();
3353    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3354      PrevDecl = TU->getAnonymousNamespace();
3355      TU->setAnonymousNamespace(Namespc);
3356    } else {
3357      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3358      PrevDecl = ND->getAnonymousNamespace();
3359      ND->setAnonymousNamespace(Namespc);
3360    }
3361
3362    // Link the anonymous namespace with its previous declaration.
3363    if (PrevDecl) {
3364      assert(PrevDecl->isAnonymousNamespace());
3365      assert(!PrevDecl->getNextNamespace());
3366      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3367      PrevDecl->setNextNamespace(Namespc);
3368    }
3369
3370    CurContext->addDecl(Namespc);
3371
3372    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3373    //   behaves as if it were replaced by
3374    //     namespace unique { /* empty body */ }
3375    //     using namespace unique;
3376    //     namespace unique { namespace-body }
3377    //   where all occurrences of 'unique' in a translation unit are
3378    //   replaced by the same identifier and this identifier differs
3379    //   from all other identifiers in the entire program.
3380
3381    // We just create the namespace with an empty name and then add an
3382    // implicit using declaration, just like the standard suggests.
3383    //
3384    // CodeGen enforces the "universally unique" aspect by giving all
3385    // declarations semantically contained within an anonymous
3386    // namespace internal linkage.
3387
3388    if (!PrevDecl) {
3389      UsingDirectiveDecl* UD
3390        = UsingDirectiveDecl::Create(Context, CurContext,
3391                                     /* 'using' */ LBrace,
3392                                     /* 'namespace' */ SourceLocation(),
3393                                     /* qualifier */ SourceRange(),
3394                                     /* NNS */ NULL,
3395                                     /* identifier */ SourceLocation(),
3396                                     Namespc,
3397                                     /* Ancestor */ CurContext);
3398      UD->setImplicit();
3399      CurContext->addDecl(UD);
3400    }
3401  }
3402
3403  // Although we could have an invalid decl (i.e. the namespace name is a
3404  // redefinition), push it as current DeclContext and try to continue parsing.
3405  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3406  // for the namespace has the declarations that showed up in that particular
3407  // namespace definition.
3408  PushDeclContext(NamespcScope, Namespc);
3409  return DeclPtrTy::make(Namespc);
3410}
3411
3412/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3413/// is a namespace alias, returns the namespace it points to.
3414static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3415  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3416    return AD->getNamespace();
3417  return dyn_cast_or_null<NamespaceDecl>(D);
3418}
3419
3420/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3421/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3422void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3423  Decl *Dcl = D.getAs<Decl>();
3424  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3425  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3426  Namespc->setRBracLoc(RBrace);
3427  PopDeclContext();
3428  if (Namespc->hasAttr<VisibilityAttr>())
3429    PopPragmaVisibility();
3430}
3431
3432/// \brief Retrieve the special "std" namespace, which may require us to
3433/// implicitly define the namespace.
3434NamespaceDecl *Sema::getOrCreateStdNamespace() {
3435  if (!StdNamespace) {
3436    // The "std" namespace has not yet been defined, so build one implicitly.
3437    StdNamespace = NamespaceDecl::Create(Context,
3438                                         Context.getTranslationUnitDecl(),
3439                                         SourceLocation(),
3440                                         &PP.getIdentifierTable().get("std"));
3441    getStdNamespace()->setImplicit(true);
3442  }
3443
3444  return getStdNamespace();
3445}
3446
3447Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3448                                          SourceLocation UsingLoc,
3449                                          SourceLocation NamespcLoc,
3450                                          CXXScopeSpec &SS,
3451                                          SourceLocation IdentLoc,
3452                                          IdentifierInfo *NamespcName,
3453                                          AttributeList *AttrList) {
3454  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3455  assert(NamespcName && "Invalid NamespcName.");
3456  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3457  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3458
3459  UsingDirectiveDecl *UDir = 0;
3460  NestedNameSpecifier *Qualifier = 0;
3461  if (SS.isSet())
3462    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3463
3464  // Lookup namespace name.
3465  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3466  LookupParsedName(R, S, &SS);
3467  if (R.isAmbiguous())
3468    return DeclPtrTy();
3469
3470  if (R.empty()) {
3471    // Allow "using namespace std;" or "using namespace ::std;" even if
3472    // "std" hasn't been defined yet, for GCC compatibility.
3473    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3474        NamespcName->isStr("std")) {
3475      Diag(IdentLoc, diag::ext_using_undefined_std);
3476      R.addDecl(getOrCreateStdNamespace());
3477      R.resolveKind();
3478    }
3479    // Otherwise, attempt typo correction.
3480    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3481                                                       CTC_NoKeywords, 0)) {
3482      if (R.getAsSingle<NamespaceDecl>() ||
3483          R.getAsSingle<NamespaceAliasDecl>()) {
3484        if (DeclContext *DC = computeDeclContext(SS, false))
3485          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3486            << NamespcName << DC << Corrected << SS.getRange()
3487            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3488        else
3489          Diag(IdentLoc, diag::err_using_directive_suggest)
3490            << NamespcName << Corrected
3491            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3492        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3493          << Corrected;
3494
3495        NamespcName = Corrected.getAsIdentifierInfo();
3496      } else {
3497        R.clear();
3498        R.setLookupName(NamespcName);
3499      }
3500    }
3501  }
3502
3503  if (!R.empty()) {
3504    NamedDecl *Named = R.getFoundDecl();
3505    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3506        && "expected namespace decl");
3507    // C++ [namespace.udir]p1:
3508    //   A using-directive specifies that the names in the nominated
3509    //   namespace can be used in the scope in which the
3510    //   using-directive appears after the using-directive. During
3511    //   unqualified name lookup (3.4.1), the names appear as if they
3512    //   were declared in the nearest enclosing namespace which
3513    //   contains both the using-directive and the nominated
3514    //   namespace. [Note: in this context, "contains" means "contains
3515    //   directly or indirectly". ]
3516
3517    // Find enclosing context containing both using-directive and
3518    // nominated namespace.
3519    NamespaceDecl *NS = getNamespaceDecl(Named);
3520    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3521    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3522      CommonAncestor = CommonAncestor->getParent();
3523
3524    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3525                                      SS.getRange(),
3526                                      (NestedNameSpecifier *)SS.getScopeRep(),
3527                                      IdentLoc, Named, CommonAncestor);
3528    PushUsingDirective(S, UDir);
3529  } else {
3530    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3531  }
3532
3533  // FIXME: We ignore attributes for now.
3534  delete AttrList;
3535  return DeclPtrTy::make(UDir);
3536}
3537
3538void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3539  // If scope has associated entity, then using directive is at namespace
3540  // or translation unit scope. We add UsingDirectiveDecls, into
3541  // it's lookup structure.
3542  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3543    Ctx->addDecl(UDir);
3544  else
3545    // Otherwise it is block-sope. using-directives will affect lookup
3546    // only to the end of scope.
3547    S->PushUsingDirective(DeclPtrTy::make(UDir));
3548}
3549
3550
3551Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3552                                            AccessSpecifier AS,
3553                                            bool HasUsingKeyword,
3554                                            SourceLocation UsingLoc,
3555                                            CXXScopeSpec &SS,
3556                                            UnqualifiedId &Name,
3557                                            AttributeList *AttrList,
3558                                            bool IsTypeName,
3559                                            SourceLocation TypenameLoc) {
3560  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3561
3562  switch (Name.getKind()) {
3563  case UnqualifiedId::IK_Identifier:
3564  case UnqualifiedId::IK_OperatorFunctionId:
3565  case UnqualifiedId::IK_LiteralOperatorId:
3566  case UnqualifiedId::IK_ConversionFunctionId:
3567    break;
3568
3569  case UnqualifiedId::IK_ConstructorName:
3570  case UnqualifiedId::IK_ConstructorTemplateId:
3571    // C++0x inherited constructors.
3572    if (getLangOptions().CPlusPlus0x) break;
3573
3574    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3575      << SS.getRange();
3576    return DeclPtrTy();
3577
3578  case UnqualifiedId::IK_DestructorName:
3579    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3580      << SS.getRange();
3581    return DeclPtrTy();
3582
3583  case UnqualifiedId::IK_TemplateId:
3584    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3585      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3586    return DeclPtrTy();
3587  }
3588
3589  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3590  DeclarationName TargetName = TargetNameInfo.getName();
3591  if (!TargetName)
3592    return DeclPtrTy();
3593
3594  // Warn about using declarations.
3595  // TODO: store that the declaration was written without 'using' and
3596  // talk about access decls instead of using decls in the
3597  // diagnostics.
3598  if (!HasUsingKeyword) {
3599    UsingLoc = Name.getSourceRange().getBegin();
3600
3601    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3602      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3603  }
3604
3605  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3606                                        TargetNameInfo, AttrList,
3607                                        /* IsInstantiation */ false,
3608                                        IsTypeName, TypenameLoc);
3609  if (UD)
3610    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3611
3612  return DeclPtrTy::make(UD);
3613}
3614
3615/// \brief Determine whether a using declaration considers the given
3616/// declarations as "equivalent", e.g., if they are redeclarations of
3617/// the same entity or are both typedefs of the same type.
3618static bool
3619IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3620                         bool &SuppressRedeclaration) {
3621  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3622    SuppressRedeclaration = false;
3623    return true;
3624  }
3625
3626  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3627    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3628      SuppressRedeclaration = true;
3629      return Context.hasSameType(TD1->getUnderlyingType(),
3630                                 TD2->getUnderlyingType());
3631    }
3632
3633  return false;
3634}
3635
3636
3637/// Determines whether to create a using shadow decl for a particular
3638/// decl, given the set of decls existing prior to this using lookup.
3639bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3640                                const LookupResult &Previous) {
3641  // Diagnose finding a decl which is not from a base class of the
3642  // current class.  We do this now because there are cases where this
3643  // function will silently decide not to build a shadow decl, which
3644  // will pre-empt further diagnostics.
3645  //
3646  // We don't need to do this in C++0x because we do the check once on
3647  // the qualifier.
3648  //
3649  // FIXME: diagnose the following if we care enough:
3650  //   struct A { int foo; };
3651  //   struct B : A { using A::foo; };
3652  //   template <class T> struct C : A {};
3653  //   template <class T> struct D : C<T> { using B::foo; } // <---
3654  // This is invalid (during instantiation) in C++03 because B::foo
3655  // resolves to the using decl in B, which is not a base class of D<T>.
3656  // We can't diagnose it immediately because C<T> is an unknown
3657  // specialization.  The UsingShadowDecl in D<T> then points directly
3658  // to A::foo, which will look well-formed when we instantiate.
3659  // The right solution is to not collapse the shadow-decl chain.
3660  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3661    DeclContext *OrigDC = Orig->getDeclContext();
3662
3663    // Handle enums and anonymous structs.
3664    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3665    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3666    while (OrigRec->isAnonymousStructOrUnion())
3667      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3668
3669    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3670      if (OrigDC == CurContext) {
3671        Diag(Using->getLocation(),
3672             diag::err_using_decl_nested_name_specifier_is_current_class)
3673          << Using->getNestedNameRange();
3674        Diag(Orig->getLocation(), diag::note_using_decl_target);
3675        return true;
3676      }
3677
3678      Diag(Using->getNestedNameRange().getBegin(),
3679           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3680        << Using->getTargetNestedNameDecl()
3681        << cast<CXXRecordDecl>(CurContext)
3682        << Using->getNestedNameRange();
3683      Diag(Orig->getLocation(), diag::note_using_decl_target);
3684      return true;
3685    }
3686  }
3687
3688  if (Previous.empty()) return false;
3689
3690  NamedDecl *Target = Orig;
3691  if (isa<UsingShadowDecl>(Target))
3692    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3693
3694  // If the target happens to be one of the previous declarations, we
3695  // don't have a conflict.
3696  //
3697  // FIXME: but we might be increasing its access, in which case we
3698  // should redeclare it.
3699  NamedDecl *NonTag = 0, *Tag = 0;
3700  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3701         I != E; ++I) {
3702    NamedDecl *D = (*I)->getUnderlyingDecl();
3703    bool Result;
3704    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3705      return Result;
3706
3707    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3708  }
3709
3710  if (Target->isFunctionOrFunctionTemplate()) {
3711    FunctionDecl *FD;
3712    if (isa<FunctionTemplateDecl>(Target))
3713      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3714    else
3715      FD = cast<FunctionDecl>(Target);
3716
3717    NamedDecl *OldDecl = 0;
3718    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3719    case Ovl_Overload:
3720      return false;
3721
3722    case Ovl_NonFunction:
3723      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3724      break;
3725
3726    // We found a decl with the exact signature.
3727    case Ovl_Match:
3728      // If we're in a record, we want to hide the target, so we
3729      // return true (without a diagnostic) to tell the caller not to
3730      // build a shadow decl.
3731      if (CurContext->isRecord())
3732        return true;
3733
3734      // If we're not in a record, this is an error.
3735      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3736      break;
3737    }
3738
3739    Diag(Target->getLocation(), diag::note_using_decl_target);
3740    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3741    return true;
3742  }
3743
3744  // Target is not a function.
3745
3746  if (isa<TagDecl>(Target)) {
3747    // No conflict between a tag and a non-tag.
3748    if (!Tag) return false;
3749
3750    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3751    Diag(Target->getLocation(), diag::note_using_decl_target);
3752    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3753    return true;
3754  }
3755
3756  // No conflict between a tag and a non-tag.
3757  if (!NonTag) return false;
3758
3759  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3760  Diag(Target->getLocation(), diag::note_using_decl_target);
3761  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3762  return true;
3763}
3764
3765/// Builds a shadow declaration corresponding to a 'using' declaration.
3766UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3767                                            UsingDecl *UD,
3768                                            NamedDecl *Orig) {
3769
3770  // If we resolved to another shadow declaration, just coalesce them.
3771  NamedDecl *Target = Orig;
3772  if (isa<UsingShadowDecl>(Target)) {
3773    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3774    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3775  }
3776
3777  UsingShadowDecl *Shadow
3778    = UsingShadowDecl::Create(Context, CurContext,
3779                              UD->getLocation(), UD, Target);
3780  UD->addShadowDecl(Shadow);
3781
3782  if (S)
3783    PushOnScopeChains(Shadow, S);
3784  else
3785    CurContext->addDecl(Shadow);
3786  Shadow->setAccess(UD->getAccess());
3787
3788  // Register it as a conversion if appropriate.
3789  if (Shadow->getDeclName().getNameKind()
3790        == DeclarationName::CXXConversionFunctionName)
3791    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3792
3793  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3794    Shadow->setInvalidDecl();
3795
3796  return Shadow;
3797}
3798
3799/// Hides a using shadow declaration.  This is required by the current
3800/// using-decl implementation when a resolvable using declaration in a
3801/// class is followed by a declaration which would hide or override
3802/// one or more of the using decl's targets; for example:
3803///
3804///   struct Base { void foo(int); };
3805///   struct Derived : Base {
3806///     using Base::foo;
3807///     void foo(int);
3808///   };
3809///
3810/// The governing language is C++03 [namespace.udecl]p12:
3811///
3812///   When a using-declaration brings names from a base class into a
3813///   derived class scope, member functions in the derived class
3814///   override and/or hide member functions with the same name and
3815///   parameter types in a base class (rather than conflicting).
3816///
3817/// There are two ways to implement this:
3818///   (1) optimistically create shadow decls when they're not hidden
3819///       by existing declarations, or
3820///   (2) don't create any shadow decls (or at least don't make them
3821///       visible) until we've fully parsed/instantiated the class.
3822/// The problem with (1) is that we might have to retroactively remove
3823/// a shadow decl, which requires several O(n) operations because the
3824/// decl structures are (very reasonably) not designed for removal.
3825/// (2) avoids this but is very fiddly and phase-dependent.
3826void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3827  if (Shadow->getDeclName().getNameKind() ==
3828        DeclarationName::CXXConversionFunctionName)
3829    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3830
3831  // Remove it from the DeclContext...
3832  Shadow->getDeclContext()->removeDecl(Shadow);
3833
3834  // ...and the scope, if applicable...
3835  if (S) {
3836    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3837    IdResolver.RemoveDecl(Shadow);
3838  }
3839
3840  // ...and the using decl.
3841  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3842
3843  // TODO: complain somehow if Shadow was used.  It shouldn't
3844  // be possible for this to happen, because...?
3845}
3846
3847/// Builds a using declaration.
3848///
3849/// \param IsInstantiation - Whether this call arises from an
3850///   instantiation of an unresolved using declaration.  We treat
3851///   the lookup differently for these declarations.
3852NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3853                                       SourceLocation UsingLoc,
3854                                       CXXScopeSpec &SS,
3855                                       const DeclarationNameInfo &NameInfo,
3856                                       AttributeList *AttrList,
3857                                       bool IsInstantiation,
3858                                       bool IsTypeName,
3859                                       SourceLocation TypenameLoc) {
3860  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3861  SourceLocation IdentLoc = NameInfo.getLoc();
3862  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3863
3864  // FIXME: We ignore attributes for now.
3865  delete AttrList;
3866
3867  if (SS.isEmpty()) {
3868    Diag(IdentLoc, diag::err_using_requires_qualname);
3869    return 0;
3870  }
3871
3872  // Do the redeclaration lookup in the current scope.
3873  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
3874                        ForRedeclaration);
3875  Previous.setHideTags(false);
3876  if (S) {
3877    LookupName(Previous, S);
3878
3879    // It is really dumb that we have to do this.
3880    LookupResult::Filter F = Previous.makeFilter();
3881    while (F.hasNext()) {
3882      NamedDecl *D = F.next();
3883      if (!isDeclInScope(D, CurContext, S))
3884        F.erase();
3885    }
3886    F.done();
3887  } else {
3888    assert(IsInstantiation && "no scope in non-instantiation");
3889    assert(CurContext->isRecord() && "scope not record in instantiation");
3890    LookupQualifiedName(Previous, CurContext);
3891  }
3892
3893  NestedNameSpecifier *NNS =
3894    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3895
3896  // Check for invalid redeclarations.
3897  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3898    return 0;
3899
3900  // Check for bad qualifiers.
3901  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3902    return 0;
3903
3904  DeclContext *LookupContext = computeDeclContext(SS);
3905  NamedDecl *D;
3906  if (!LookupContext) {
3907    if (IsTypeName) {
3908      // FIXME: not all declaration name kinds are legal here
3909      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3910                                              UsingLoc, TypenameLoc,
3911                                              SS.getRange(), NNS,
3912                                              IdentLoc, NameInfo.getName());
3913    } else {
3914      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3915                                           UsingLoc, SS.getRange(),
3916                                           NNS, NameInfo);
3917    }
3918  } else {
3919    D = UsingDecl::Create(Context, CurContext,
3920                          SS.getRange(), UsingLoc, NNS, NameInfo,
3921                          IsTypeName);
3922  }
3923  D->setAccess(AS);
3924  CurContext->addDecl(D);
3925
3926  if (!LookupContext) return D;
3927  UsingDecl *UD = cast<UsingDecl>(D);
3928
3929  if (RequireCompleteDeclContext(SS, LookupContext)) {
3930    UD->setInvalidDecl();
3931    return UD;
3932  }
3933
3934  // Look up the target name.
3935
3936  LookupResult R(*this, NameInfo, LookupOrdinaryName);
3937
3938  // Unlike most lookups, we don't always want to hide tag
3939  // declarations: tag names are visible through the using declaration
3940  // even if hidden by ordinary names, *except* in a dependent context
3941  // where it's important for the sanity of two-phase lookup.
3942  if (!IsInstantiation)
3943    R.setHideTags(false);
3944
3945  LookupQualifiedName(R, LookupContext);
3946
3947  if (R.empty()) {
3948    Diag(IdentLoc, diag::err_no_member)
3949      << NameInfo.getName() << LookupContext << SS.getRange();
3950    UD->setInvalidDecl();
3951    return UD;
3952  }
3953
3954  if (R.isAmbiguous()) {
3955    UD->setInvalidDecl();
3956    return UD;
3957  }
3958
3959  if (IsTypeName) {
3960    // If we asked for a typename and got a non-type decl, error out.
3961    if (!R.getAsSingle<TypeDecl>()) {
3962      Diag(IdentLoc, diag::err_using_typename_non_type);
3963      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3964        Diag((*I)->getUnderlyingDecl()->getLocation(),
3965             diag::note_using_decl_target);
3966      UD->setInvalidDecl();
3967      return UD;
3968    }
3969  } else {
3970    // If we asked for a non-typename and we got a type, error out,
3971    // but only if this is an instantiation of an unresolved using
3972    // decl.  Otherwise just silently find the type name.
3973    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3974      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3975      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3976      UD->setInvalidDecl();
3977      return UD;
3978    }
3979  }
3980
3981  // C++0x N2914 [namespace.udecl]p6:
3982  // A using-declaration shall not name a namespace.
3983  if (R.getAsSingle<NamespaceDecl>()) {
3984    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3985      << SS.getRange();
3986    UD->setInvalidDecl();
3987    return UD;
3988  }
3989
3990  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3991    if (!CheckUsingShadowDecl(UD, *I, Previous))
3992      BuildUsingShadowDecl(S, UD, *I);
3993  }
3994
3995  return UD;
3996}
3997
3998/// Checks that the given using declaration is not an invalid
3999/// redeclaration.  Note that this is checking only for the using decl
4000/// itself, not for any ill-formedness among the UsingShadowDecls.
4001bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4002                                       bool isTypeName,
4003                                       const CXXScopeSpec &SS,
4004                                       SourceLocation NameLoc,
4005                                       const LookupResult &Prev) {
4006  // C++03 [namespace.udecl]p8:
4007  // C++0x [namespace.udecl]p10:
4008  //   A using-declaration is a declaration and can therefore be used
4009  //   repeatedly where (and only where) multiple declarations are
4010  //   allowed.
4011  //
4012  // That's in non-member contexts.
4013  if (!CurContext->getLookupContext()->isRecord())
4014    return false;
4015
4016  NestedNameSpecifier *Qual
4017    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4018
4019  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4020    NamedDecl *D = *I;
4021
4022    bool DTypename;
4023    NestedNameSpecifier *DQual;
4024    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4025      DTypename = UD->isTypeName();
4026      DQual = UD->getTargetNestedNameDecl();
4027    } else if (UnresolvedUsingValueDecl *UD
4028                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4029      DTypename = false;
4030      DQual = UD->getTargetNestedNameSpecifier();
4031    } else if (UnresolvedUsingTypenameDecl *UD
4032                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4033      DTypename = true;
4034      DQual = UD->getTargetNestedNameSpecifier();
4035    } else continue;
4036
4037    // using decls differ if one says 'typename' and the other doesn't.
4038    // FIXME: non-dependent using decls?
4039    if (isTypeName != DTypename) continue;
4040
4041    // using decls differ if they name different scopes (but note that
4042    // template instantiation can cause this check to trigger when it
4043    // didn't before instantiation).
4044    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4045        Context.getCanonicalNestedNameSpecifier(DQual))
4046      continue;
4047
4048    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4049    Diag(D->getLocation(), diag::note_using_decl) << 1;
4050    return true;
4051  }
4052
4053  return false;
4054}
4055
4056
4057/// Checks that the given nested-name qualifier used in a using decl
4058/// in the current context is appropriately related to the current
4059/// scope.  If an error is found, diagnoses it and returns true.
4060bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4061                                   const CXXScopeSpec &SS,
4062                                   SourceLocation NameLoc) {
4063  DeclContext *NamedContext = computeDeclContext(SS);
4064
4065  if (!CurContext->isRecord()) {
4066    // C++03 [namespace.udecl]p3:
4067    // C++0x [namespace.udecl]p8:
4068    //   A using-declaration for a class member shall be a member-declaration.
4069
4070    // If we weren't able to compute a valid scope, it must be a
4071    // dependent class scope.
4072    if (!NamedContext || NamedContext->isRecord()) {
4073      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4074        << SS.getRange();
4075      return true;
4076    }
4077
4078    // Otherwise, everything is known to be fine.
4079    return false;
4080  }
4081
4082  // The current scope is a record.
4083
4084  // If the named context is dependent, we can't decide much.
4085  if (!NamedContext) {
4086    // FIXME: in C++0x, we can diagnose if we can prove that the
4087    // nested-name-specifier does not refer to a base class, which is
4088    // still possible in some cases.
4089
4090    // Otherwise we have to conservatively report that things might be
4091    // okay.
4092    return false;
4093  }
4094
4095  if (!NamedContext->isRecord()) {
4096    // Ideally this would point at the last name in the specifier,
4097    // but we don't have that level of source info.
4098    Diag(SS.getRange().getBegin(),
4099         diag::err_using_decl_nested_name_specifier_is_not_class)
4100      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4101    return true;
4102  }
4103
4104  if (getLangOptions().CPlusPlus0x) {
4105    // C++0x [namespace.udecl]p3:
4106    //   In a using-declaration used as a member-declaration, the
4107    //   nested-name-specifier shall name a base class of the class
4108    //   being defined.
4109
4110    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4111                                 cast<CXXRecordDecl>(NamedContext))) {
4112      if (CurContext == NamedContext) {
4113        Diag(NameLoc,
4114             diag::err_using_decl_nested_name_specifier_is_current_class)
4115          << SS.getRange();
4116        return true;
4117      }
4118
4119      Diag(SS.getRange().getBegin(),
4120           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4121        << (NestedNameSpecifier*) SS.getScopeRep()
4122        << cast<CXXRecordDecl>(CurContext)
4123        << SS.getRange();
4124      return true;
4125    }
4126
4127    return false;
4128  }
4129
4130  // C++03 [namespace.udecl]p4:
4131  //   A using-declaration used as a member-declaration shall refer
4132  //   to a member of a base class of the class being defined [etc.].
4133
4134  // Salient point: SS doesn't have to name a base class as long as
4135  // lookup only finds members from base classes.  Therefore we can
4136  // diagnose here only if we can prove that that can't happen,
4137  // i.e. if the class hierarchies provably don't intersect.
4138
4139  // TODO: it would be nice if "definitely valid" results were cached
4140  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4141  // need to be repeated.
4142
4143  struct UserData {
4144    llvm::DenseSet<const CXXRecordDecl*> Bases;
4145
4146    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4147      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4148      Data->Bases.insert(Base);
4149      return true;
4150    }
4151
4152    bool hasDependentBases(const CXXRecordDecl *Class) {
4153      return !Class->forallBases(collect, this);
4154    }
4155
4156    /// Returns true if the base is dependent or is one of the
4157    /// accumulated base classes.
4158    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4159      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4160      return !Data->Bases.count(Base);
4161    }
4162
4163    bool mightShareBases(const CXXRecordDecl *Class) {
4164      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4165    }
4166  };
4167
4168  UserData Data;
4169
4170  // Returns false if we find a dependent base.
4171  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4172    return false;
4173
4174  // Returns false if the class has a dependent base or if it or one
4175  // of its bases is present in the base set of the current context.
4176  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4177    return false;
4178
4179  Diag(SS.getRange().getBegin(),
4180       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4181    << (NestedNameSpecifier*) SS.getScopeRep()
4182    << cast<CXXRecordDecl>(CurContext)
4183    << SS.getRange();
4184
4185  return true;
4186}
4187
4188Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
4189                                             SourceLocation NamespaceLoc,
4190                                             SourceLocation AliasLoc,
4191                                             IdentifierInfo *Alias,
4192                                             CXXScopeSpec &SS,
4193                                             SourceLocation IdentLoc,
4194                                             IdentifierInfo *Ident) {
4195
4196  // Lookup the namespace name.
4197  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4198  LookupParsedName(R, S, &SS);
4199
4200  // Check if we have a previous declaration with the same name.
4201  NamedDecl *PrevDecl
4202    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4203                       ForRedeclaration);
4204  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4205    PrevDecl = 0;
4206
4207  if (PrevDecl) {
4208    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4209      // We already have an alias with the same name that points to the same
4210      // namespace, so don't create a new one.
4211      // FIXME: At some point, we'll want to create the (redundant)
4212      // declaration to maintain better source information.
4213      if (!R.isAmbiguous() && !R.empty() &&
4214          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4215        return DeclPtrTy();
4216    }
4217
4218    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4219      diag::err_redefinition_different_kind;
4220    Diag(AliasLoc, DiagID) << Alias;
4221    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4222    return DeclPtrTy();
4223  }
4224
4225  if (R.isAmbiguous())
4226    return DeclPtrTy();
4227
4228  if (R.empty()) {
4229    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4230                                                CTC_NoKeywords, 0)) {
4231      if (R.getAsSingle<NamespaceDecl>() ||
4232          R.getAsSingle<NamespaceAliasDecl>()) {
4233        if (DeclContext *DC = computeDeclContext(SS, false))
4234          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4235            << Ident << DC << Corrected << SS.getRange()
4236            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4237        else
4238          Diag(IdentLoc, diag::err_using_directive_suggest)
4239            << Ident << Corrected
4240            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4241
4242        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4243          << Corrected;
4244
4245        Ident = Corrected.getAsIdentifierInfo();
4246      } else {
4247        R.clear();
4248        R.setLookupName(Ident);
4249      }
4250    }
4251
4252    if (R.empty()) {
4253      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4254      return DeclPtrTy();
4255    }
4256  }
4257
4258  NamespaceAliasDecl *AliasDecl =
4259    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4260                               Alias, SS.getRange(),
4261                               (NestedNameSpecifier *)SS.getScopeRep(),
4262                               IdentLoc, R.getFoundDecl());
4263
4264  PushOnScopeChains(AliasDecl, S);
4265  return DeclPtrTy::make(AliasDecl);
4266}
4267
4268namespace {
4269  /// \brief Scoped object used to handle the state changes required in Sema
4270  /// to implicitly define the body of a C++ member function;
4271  class ImplicitlyDefinedFunctionScope {
4272    Sema &S;
4273    DeclContext *PreviousContext;
4274
4275  public:
4276    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4277      : S(S), PreviousContext(S.CurContext)
4278    {
4279      S.CurContext = Method;
4280      S.PushFunctionScope();
4281      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4282    }
4283
4284    ~ImplicitlyDefinedFunctionScope() {
4285      S.PopExpressionEvaluationContext();
4286      S.PopFunctionOrBlockScope();
4287      S.CurContext = PreviousContext;
4288    }
4289  };
4290}
4291
4292CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4293                                                     CXXRecordDecl *ClassDecl) {
4294  // C++ [class.ctor]p5:
4295  //   A default constructor for a class X is a constructor of class X
4296  //   that can be called without an argument. If there is no
4297  //   user-declared constructor for class X, a default constructor is
4298  //   implicitly declared. An implicitly-declared default constructor
4299  //   is an inline public member of its class.
4300  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4301         "Should not build implicit default constructor!");
4302
4303  // C++ [except.spec]p14:
4304  //   An implicitly declared special member function (Clause 12) shall have an
4305  //   exception-specification. [...]
4306  ImplicitExceptionSpecification ExceptSpec(Context);
4307
4308  // Direct base-class destructors.
4309  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4310                                       BEnd = ClassDecl->bases_end();
4311       B != BEnd; ++B) {
4312    if (B->isVirtual()) // Handled below.
4313      continue;
4314
4315    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4316      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4317      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4318        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4319      else if (CXXConstructorDecl *Constructor
4320                                       = BaseClassDecl->getDefaultConstructor())
4321        ExceptSpec.CalledDecl(Constructor);
4322    }
4323  }
4324
4325  // Virtual base-class destructors.
4326  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4327                                       BEnd = ClassDecl->vbases_end();
4328       B != BEnd; ++B) {
4329    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4330      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4331      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4332        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4333      else if (CXXConstructorDecl *Constructor
4334                                       = BaseClassDecl->getDefaultConstructor())
4335        ExceptSpec.CalledDecl(Constructor);
4336    }
4337  }
4338
4339  // Field destructors.
4340  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4341                               FEnd = ClassDecl->field_end();
4342       F != FEnd; ++F) {
4343    if (const RecordType *RecordTy
4344              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4345      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4346      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4347        ExceptSpec.CalledDecl(
4348                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4349      else if (CXXConstructorDecl *Constructor
4350                                      = FieldClassDecl->getDefaultConstructor())
4351        ExceptSpec.CalledDecl(Constructor);
4352    }
4353  }
4354
4355
4356  // Create the actual constructor declaration.
4357  CanQualType ClassType
4358    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4359  DeclarationName Name
4360    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4361  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4362  CXXConstructorDecl *DefaultCon
4363    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4364                                 Context.getFunctionType(Context.VoidTy,
4365                                                         0, 0, false, 0,
4366                                       ExceptSpec.hasExceptionSpecification(),
4367                                     ExceptSpec.hasAnyExceptionSpecification(),
4368                                                         ExceptSpec.size(),
4369                                                         ExceptSpec.data(),
4370                                                       FunctionType::ExtInfo()),
4371                                 /*TInfo=*/0,
4372                                 /*isExplicit=*/false,
4373                                 /*isInline=*/true,
4374                                 /*isImplicitlyDeclared=*/true);
4375  DefaultCon->setAccess(AS_public);
4376  DefaultCon->setImplicit();
4377  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4378
4379  // Note that we have declared this constructor.
4380  ClassDecl->setDeclaredDefaultConstructor(true);
4381  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4382
4383  if (Scope *S = getScopeForContext(ClassDecl))
4384    PushOnScopeChains(DefaultCon, S, false);
4385  ClassDecl->addDecl(DefaultCon);
4386
4387  return DefaultCon;
4388}
4389
4390void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4391                                            CXXConstructorDecl *Constructor) {
4392  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4393          !Constructor->isUsed(false)) &&
4394    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4395
4396  CXXRecordDecl *ClassDecl = Constructor->getParent();
4397  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4398
4399  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4400  ErrorTrap Trap(*this);
4401  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4402      Trap.hasErrorOccurred()) {
4403    Diag(CurrentLocation, diag::note_member_synthesized_at)
4404      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4405    Constructor->setInvalidDecl();
4406  } else {
4407    Constructor->setUsed();
4408    MarkVTableUsed(CurrentLocation, ClassDecl);
4409  }
4410}
4411
4412CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4413  // C++ [class.dtor]p2:
4414  //   If a class has no user-declared destructor, a destructor is
4415  //   declared implicitly. An implicitly-declared destructor is an
4416  //   inline public member of its class.
4417
4418  // C++ [except.spec]p14:
4419  //   An implicitly declared special member function (Clause 12) shall have
4420  //   an exception-specification.
4421  ImplicitExceptionSpecification ExceptSpec(Context);
4422
4423  // Direct base-class destructors.
4424  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4425                                       BEnd = ClassDecl->bases_end();
4426       B != BEnd; ++B) {
4427    if (B->isVirtual()) // Handled below.
4428      continue;
4429
4430    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4431      ExceptSpec.CalledDecl(
4432                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4433  }
4434
4435  // Virtual base-class destructors.
4436  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4437                                       BEnd = ClassDecl->vbases_end();
4438       B != BEnd; ++B) {
4439    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4440      ExceptSpec.CalledDecl(
4441                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4442  }
4443
4444  // Field destructors.
4445  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4446                               FEnd = ClassDecl->field_end();
4447       F != FEnd; ++F) {
4448    if (const RecordType *RecordTy
4449        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4450      ExceptSpec.CalledDecl(
4451                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4452  }
4453
4454  // Create the actual destructor declaration.
4455  QualType Ty = Context.getFunctionType(Context.VoidTy,
4456                                        0, 0, false, 0,
4457                                        ExceptSpec.hasExceptionSpecification(),
4458                                    ExceptSpec.hasAnyExceptionSpecification(),
4459                                        ExceptSpec.size(),
4460                                        ExceptSpec.data(),
4461                                        FunctionType::ExtInfo());
4462
4463  CanQualType ClassType
4464    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4465  DeclarationName Name
4466    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4467  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4468  CXXDestructorDecl *Destructor
4469    = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty,
4470                                /*isInline=*/true,
4471                                /*isImplicitlyDeclared=*/true);
4472  Destructor->setAccess(AS_public);
4473  Destructor->setImplicit();
4474  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4475
4476  // Note that we have declared this destructor.
4477  ClassDecl->setDeclaredDestructor(true);
4478  ++ASTContext::NumImplicitDestructorsDeclared;
4479
4480  // Introduce this destructor into its scope.
4481  if (Scope *S = getScopeForContext(ClassDecl))
4482    PushOnScopeChains(Destructor, S, false);
4483  ClassDecl->addDecl(Destructor);
4484
4485  // This could be uniqued if it ever proves significant.
4486  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4487
4488  AddOverriddenMethods(ClassDecl, Destructor);
4489
4490  return Destructor;
4491}
4492
4493void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4494                                    CXXDestructorDecl *Destructor) {
4495  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4496         "DefineImplicitDestructor - call it for implicit default dtor");
4497  CXXRecordDecl *ClassDecl = Destructor->getParent();
4498  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4499
4500  if (Destructor->isInvalidDecl())
4501    return;
4502
4503  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4504
4505  ErrorTrap Trap(*this);
4506  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4507                                         Destructor->getParent());
4508
4509  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4510    Diag(CurrentLocation, diag::note_member_synthesized_at)
4511      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4512
4513    Destructor->setInvalidDecl();
4514    return;
4515  }
4516
4517  Destructor->setUsed();
4518  MarkVTableUsed(CurrentLocation, ClassDecl);
4519}
4520
4521/// \brief Builds a statement that copies the given entity from \p From to
4522/// \c To.
4523///
4524/// This routine is used to copy the members of a class with an
4525/// implicitly-declared copy assignment operator. When the entities being
4526/// copied are arrays, this routine builds for loops to copy them.
4527///
4528/// \param S The Sema object used for type-checking.
4529///
4530/// \param Loc The location where the implicit copy is being generated.
4531///
4532/// \param T The type of the expressions being copied. Both expressions must
4533/// have this type.
4534///
4535/// \param To The expression we are copying to.
4536///
4537/// \param From The expression we are copying from.
4538///
4539/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4540/// Otherwise, it's a non-static member subobject.
4541///
4542/// \param Depth Internal parameter recording the depth of the recursion.
4543///
4544/// \returns A statement or a loop that copies the expressions.
4545static Sema::OwningStmtResult
4546BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4547                      Sema::OwningExprResult To, Sema::OwningExprResult From,
4548                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4549  typedef Sema::OwningStmtResult OwningStmtResult;
4550  typedef Sema::OwningExprResult OwningExprResult;
4551
4552  // C++0x [class.copy]p30:
4553  //   Each subobject is assigned in the manner appropriate to its type:
4554  //
4555  //     - if the subobject is of class type, the copy assignment operator
4556  //       for the class is used (as if by explicit qualification; that is,
4557  //       ignoring any possible virtual overriding functions in more derived
4558  //       classes);
4559  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4560    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4561
4562    // Look for operator=.
4563    DeclarationName Name
4564      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4565    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4566    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4567
4568    // Filter out any result that isn't a copy-assignment operator.
4569    LookupResult::Filter F = OpLookup.makeFilter();
4570    while (F.hasNext()) {
4571      NamedDecl *D = F.next();
4572      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4573        if (Method->isCopyAssignmentOperator())
4574          continue;
4575
4576      F.erase();
4577    }
4578    F.done();
4579
4580    // Suppress the protected check (C++ [class.protected]) for each of the
4581    // assignment operators we found. This strange dance is required when
4582    // we're assigning via a base classes's copy-assignment operator. To
4583    // ensure that we're getting the right base class subobject (without
4584    // ambiguities), we need to cast "this" to that subobject type; to
4585    // ensure that we don't go through the virtual call mechanism, we need
4586    // to qualify the operator= name with the base class (see below). However,
4587    // this means that if the base class has a protected copy assignment
4588    // operator, the protected member access check will fail. So, we
4589    // rewrite "protected" access to "public" access in this case, since we
4590    // know by construction that we're calling from a derived class.
4591    if (CopyingBaseSubobject) {
4592      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4593           L != LEnd; ++L) {
4594        if (L.getAccess() == AS_protected)
4595          L.setAccess(AS_public);
4596      }
4597    }
4598
4599    // Create the nested-name-specifier that will be used to qualify the
4600    // reference to operator=; this is required to suppress the virtual
4601    // call mechanism.
4602    CXXScopeSpec SS;
4603    SS.setRange(Loc);
4604    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4605                                               T.getTypePtr()));
4606
4607    // Create the reference to operator=.
4608    OwningExprResult OpEqualRef
4609      = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
4610                                   /*FirstQualifierInScope=*/0, OpLookup,
4611                                   /*TemplateArgs=*/0,
4612                                   /*SuppressQualifierCheck=*/true);
4613    if (OpEqualRef.isInvalid())
4614      return S.StmtError();
4615
4616    // Build the call to the assignment operator.
4617    Expr *FromE = From.takeAs<Expr>();
4618    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4619                                                      OpEqualRef.takeAs<Expr>(),
4620                                                        Loc, &FromE, 1, 0, Loc);
4621    if (Call.isInvalid())
4622      return S.StmtError();
4623
4624    return S.Owned(Call.takeAs<Stmt>());
4625  }
4626
4627  //     - if the subobject is of scalar type, the built-in assignment
4628  //       operator is used.
4629  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4630  if (!ArrayTy) {
4631    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4632                                                       BinaryOperator::Assign,
4633                                                       To.takeAs<Expr>(),
4634                                                       From.takeAs<Expr>());
4635    if (Assignment.isInvalid())
4636      return S.StmtError();
4637
4638    return S.Owned(Assignment.takeAs<Stmt>());
4639  }
4640
4641  //     - if the subobject is an array, each element is assigned, in the
4642  //       manner appropriate to the element type;
4643
4644  // Construct a loop over the array bounds, e.g.,
4645  //
4646  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4647  //
4648  // that will copy each of the array elements.
4649  QualType SizeType = S.Context.getSizeType();
4650
4651  // Create the iteration variable.
4652  IdentifierInfo *IterationVarName = 0;
4653  {
4654    llvm::SmallString<8> Str;
4655    llvm::raw_svector_ostream OS(Str);
4656    OS << "__i" << Depth;
4657    IterationVarName = &S.Context.Idents.get(OS.str());
4658  }
4659  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4660                                          IterationVarName, SizeType,
4661                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4662                                          VarDecl::None, VarDecl::None);
4663
4664  // Initialize the iteration variable to zero.
4665  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4666  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4667
4668  // Create a reference to the iteration variable; we'll use this several
4669  // times throughout.
4670  Expr *IterationVarRef
4671    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4672  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4673
4674  // Create the DeclStmt that holds the iteration variable.
4675  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4676
4677  // Create the comparison against the array bound.
4678  llvm::APInt Upper = ArrayTy->getSize();
4679  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4680  OwningExprResult Comparison
4681    = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4682                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4683                                    BinaryOperator::NE, S.Context.BoolTy, Loc));
4684
4685  // Create the pre-increment of the iteration variable.
4686  OwningExprResult Increment
4687    = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4688                                            UnaryOperator::PreInc,
4689                                            SizeType, Loc));
4690
4691  // Subscript the "from" and "to" expressions with the iteration variable.
4692  From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
4693                                           S.Owned(IterationVarRef->Retain()),
4694                                           Loc);
4695  To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
4696                                         S.Owned(IterationVarRef->Retain()),
4697                                         Loc);
4698  assert(!From.isInvalid() && "Builtin subscripting can't fail!");
4699  assert(!To.isInvalid() && "Builtin subscripting can't fail!");
4700
4701  // Build the copy for an individual element of the array.
4702  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4703                                                ArrayTy->getElementType(),
4704                                                move(To), move(From),
4705                                                CopyingBaseSubobject, Depth+1);
4706  if (Copy.isInvalid())
4707    return S.StmtError();
4708
4709  // Construct the loop that copies all elements of this array.
4710  return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
4711                        S.MakeFullExpr(Comparison),
4712                        Sema::DeclPtrTy(),
4713                        S.MakeFullExpr(Increment),
4714                        Loc, move(Copy));
4715}
4716
4717/// \brief Determine whether the given class has a copy assignment operator
4718/// that accepts a const-qualified argument.
4719static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4720  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4721
4722  if (!Class->hasDeclaredCopyAssignment())
4723    S.DeclareImplicitCopyAssignment(Class);
4724
4725  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4726  DeclarationName OpName
4727    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4728
4729  DeclContext::lookup_const_iterator Op, OpEnd;
4730  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4731    // C++ [class.copy]p9:
4732    //   A user-declared copy assignment operator is a non-static non-template
4733    //   member function of class X with exactly one parameter of type X, X&,
4734    //   const X&, volatile X& or const volatile X&.
4735    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4736    if (!Method)
4737      continue;
4738
4739    if (Method->isStatic())
4740      continue;
4741    if (Method->getPrimaryTemplate())
4742      continue;
4743    const FunctionProtoType *FnType =
4744    Method->getType()->getAs<FunctionProtoType>();
4745    assert(FnType && "Overloaded operator has no prototype.");
4746    // Don't assert on this; an invalid decl might have been left in the AST.
4747    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4748      continue;
4749    bool AcceptsConst = true;
4750    QualType ArgType = FnType->getArgType(0);
4751    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4752      ArgType = Ref->getPointeeType();
4753      // Is it a non-const lvalue reference?
4754      if (!ArgType.isConstQualified())
4755        AcceptsConst = false;
4756    }
4757    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4758      continue;
4759
4760    // We have a single argument of type cv X or cv X&, i.e. we've found the
4761    // copy assignment operator. Return whether it accepts const arguments.
4762    return AcceptsConst;
4763  }
4764  assert(Class->isInvalidDecl() &&
4765         "No copy assignment operator declared in valid code.");
4766  return false;
4767}
4768
4769CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4770  // Note: The following rules are largely analoguous to the copy
4771  // constructor rules. Note that virtual bases are not taken into account
4772  // for determining the argument type of the operator. Note also that
4773  // operators taking an object instead of a reference are allowed.
4774
4775
4776  // C++ [class.copy]p10:
4777  //   If the class definition does not explicitly declare a copy
4778  //   assignment operator, one is declared implicitly.
4779  //   The implicitly-defined copy assignment operator for a class X
4780  //   will have the form
4781  //
4782  //       X& X::operator=(const X&)
4783  //
4784  //   if
4785  bool HasConstCopyAssignment = true;
4786
4787  //       -- each direct base class B of X has a copy assignment operator
4788  //          whose parameter is of type const B&, const volatile B& or B,
4789  //          and
4790  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4791                                       BaseEnd = ClassDecl->bases_end();
4792       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4793    assert(!Base->getType()->isDependentType() &&
4794           "Cannot generate implicit members for class with dependent bases.");
4795    const CXXRecordDecl *BaseClassDecl
4796      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4797    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4798  }
4799
4800  //       -- for all the nonstatic data members of X that are of a class
4801  //          type M (or array thereof), each such class type has a copy
4802  //          assignment operator whose parameter is of type const M&,
4803  //          const volatile M& or M.
4804  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4805                                  FieldEnd = ClassDecl->field_end();
4806       HasConstCopyAssignment && Field != FieldEnd;
4807       ++Field) {
4808    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4809    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4810      const CXXRecordDecl *FieldClassDecl
4811        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4812      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4813    }
4814  }
4815
4816  //   Otherwise, the implicitly declared copy assignment operator will
4817  //   have the form
4818  //
4819  //       X& X::operator=(X&)
4820  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4821  QualType RetType = Context.getLValueReferenceType(ArgType);
4822  if (HasConstCopyAssignment)
4823    ArgType = ArgType.withConst();
4824  ArgType = Context.getLValueReferenceType(ArgType);
4825
4826  // C++ [except.spec]p14:
4827  //   An implicitly declared special member function (Clause 12) shall have an
4828  //   exception-specification. [...]
4829  ImplicitExceptionSpecification ExceptSpec(Context);
4830  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4831                                       BaseEnd = ClassDecl->bases_end();
4832       Base != BaseEnd; ++Base) {
4833    CXXRecordDecl *BaseClassDecl
4834      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4835
4836    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4837      DeclareImplicitCopyAssignment(BaseClassDecl);
4838
4839    if (CXXMethodDecl *CopyAssign
4840           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4841      ExceptSpec.CalledDecl(CopyAssign);
4842  }
4843  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4844                                  FieldEnd = ClassDecl->field_end();
4845       Field != FieldEnd;
4846       ++Field) {
4847    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4848    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4849      CXXRecordDecl *FieldClassDecl
4850        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4851
4852      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4853        DeclareImplicitCopyAssignment(FieldClassDecl);
4854
4855      if (CXXMethodDecl *CopyAssign
4856            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4857        ExceptSpec.CalledDecl(CopyAssign);
4858    }
4859  }
4860
4861  //   An implicitly-declared copy assignment operator is an inline public
4862  //   member of its class.
4863  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4864  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4865  CXXMethodDecl *CopyAssignment
4866    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
4867                            Context.getFunctionType(RetType, &ArgType, 1,
4868                                                    false, 0,
4869                                         ExceptSpec.hasExceptionSpecification(),
4870                                      ExceptSpec.hasAnyExceptionSpecification(),
4871                                                    ExceptSpec.size(),
4872                                                    ExceptSpec.data(),
4873                                                    FunctionType::ExtInfo()),
4874                            /*TInfo=*/0, /*isStatic=*/false,
4875                            /*StorageClassAsWritten=*/FunctionDecl::None,
4876                            /*isInline=*/true);
4877  CopyAssignment->setAccess(AS_public);
4878  CopyAssignment->setImplicit();
4879  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4880  CopyAssignment->setCopyAssignment(true);
4881
4882  // Add the parameter to the operator.
4883  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4884                                               ClassDecl->getLocation(),
4885                                               /*Id=*/0,
4886                                               ArgType, /*TInfo=*/0,
4887                                               VarDecl::None,
4888                                               VarDecl::None, 0);
4889  CopyAssignment->setParams(&FromParam, 1);
4890
4891  // Note that we have added this copy-assignment operator.
4892  ClassDecl->setDeclaredCopyAssignment(true);
4893  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4894
4895  if (Scope *S = getScopeForContext(ClassDecl))
4896    PushOnScopeChains(CopyAssignment, S, false);
4897  ClassDecl->addDecl(CopyAssignment);
4898
4899  AddOverriddenMethods(ClassDecl, CopyAssignment);
4900  return CopyAssignment;
4901}
4902
4903void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4904                                        CXXMethodDecl *CopyAssignOperator) {
4905  assert((CopyAssignOperator->isImplicit() &&
4906          CopyAssignOperator->isOverloadedOperator() &&
4907          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4908          !CopyAssignOperator->isUsed(false)) &&
4909         "DefineImplicitCopyAssignment called for wrong function");
4910
4911  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4912
4913  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4914    CopyAssignOperator->setInvalidDecl();
4915    return;
4916  }
4917
4918  CopyAssignOperator->setUsed();
4919
4920  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4921  ErrorTrap Trap(*this);
4922
4923  // C++0x [class.copy]p30:
4924  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4925  //   for a non-union class X performs memberwise copy assignment of its
4926  //   subobjects. The direct base classes of X are assigned first, in the
4927  //   order of their declaration in the base-specifier-list, and then the
4928  //   immediate non-static data members of X are assigned, in the order in
4929  //   which they were declared in the class definition.
4930
4931  // The statements that form the synthesized function body.
4932  ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
4933
4934  // The parameter for the "other" object, which we are copying from.
4935  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4936  Qualifiers OtherQuals = Other->getType().getQualifiers();
4937  QualType OtherRefType = Other->getType();
4938  if (const LValueReferenceType *OtherRef
4939                                = OtherRefType->getAs<LValueReferenceType>()) {
4940    OtherRefType = OtherRef->getPointeeType();
4941    OtherQuals = OtherRefType.getQualifiers();
4942  }
4943
4944  // Our location for everything implicitly-generated.
4945  SourceLocation Loc = CopyAssignOperator->getLocation();
4946
4947  // Construct a reference to the "other" object. We'll be using this
4948  // throughout the generated ASTs.
4949  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4950  assert(OtherRef && "Reference to parameter cannot fail!");
4951
4952  // Construct the "this" pointer. We'll be using this throughout the generated
4953  // ASTs.
4954  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4955  assert(This && "Reference to this cannot fail!");
4956
4957  // Assign base classes.
4958  bool Invalid = false;
4959  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4960       E = ClassDecl->bases_end(); Base != E; ++Base) {
4961    // Form the assignment:
4962    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4963    QualType BaseType = Base->getType().getUnqualifiedType();
4964    CXXRecordDecl *BaseClassDecl = 0;
4965    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4966      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4967    else {
4968      Invalid = true;
4969      continue;
4970    }
4971
4972    CXXCastPath BasePath;
4973    BasePath.push_back(Base);
4974
4975    // Construct the "from" expression, which is an implicit cast to the
4976    // appropriately-qualified base type.
4977    Expr *From = OtherRef->Retain();
4978    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4979                      CastExpr::CK_UncheckedDerivedToBase,
4980                      ImplicitCastExpr::LValue, &BasePath);
4981
4982    // Dereference "this".
4983    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4984                                               Owned(This->Retain()));
4985
4986    // Implicitly cast "this" to the appropriately-qualified base type.
4987    Expr *ToE = To.takeAs<Expr>();
4988    ImpCastExprToType(ToE,
4989                      Context.getCVRQualifiedType(BaseType,
4990                                      CopyAssignOperator->getTypeQualifiers()),
4991                      CastExpr::CK_UncheckedDerivedToBase,
4992                      ImplicitCastExpr::LValue, &BasePath);
4993    To = Owned(ToE);
4994
4995    // Build the copy.
4996    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4997                                                  move(To), Owned(From),
4998                                                /*CopyingBaseSubobject=*/true);
4999    if (Copy.isInvalid()) {
5000      Diag(CurrentLocation, diag::note_member_synthesized_at)
5001        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5002      CopyAssignOperator->setInvalidDecl();
5003      return;
5004    }
5005
5006    // Success! Record the copy.
5007    Statements.push_back(Copy.takeAs<Expr>());
5008  }
5009
5010  // \brief Reference to the __builtin_memcpy function.
5011  Expr *BuiltinMemCpyRef = 0;
5012  // \brief Reference to the __builtin_objc_memmove_collectable function.
5013  Expr *CollectableMemCpyRef = 0;
5014
5015  // Assign non-static members.
5016  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5017                                  FieldEnd = ClassDecl->field_end();
5018       Field != FieldEnd; ++Field) {
5019    // Check for members of reference type; we can't copy those.
5020    if (Field->getType()->isReferenceType()) {
5021      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5022        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5023      Diag(Field->getLocation(), diag::note_declared_at);
5024      Diag(CurrentLocation, diag::note_member_synthesized_at)
5025        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5026      Invalid = true;
5027      continue;
5028    }
5029
5030    // Check for members of const-qualified, non-class type.
5031    QualType BaseType = Context.getBaseElementType(Field->getType());
5032    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5033      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5034        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5035      Diag(Field->getLocation(), diag::note_declared_at);
5036      Diag(CurrentLocation, diag::note_member_synthesized_at)
5037        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5038      Invalid = true;
5039      continue;
5040    }
5041
5042    QualType FieldType = Field->getType().getNonReferenceType();
5043    if (FieldType->isIncompleteArrayType()) {
5044      assert(ClassDecl->hasFlexibleArrayMember() &&
5045             "Incomplete array type is not valid");
5046      continue;
5047    }
5048
5049    // Build references to the field in the object we're copying from and to.
5050    CXXScopeSpec SS; // Intentionally empty
5051    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5052                              LookupMemberName);
5053    MemberLookup.addDecl(*Field);
5054    MemberLookup.resolveKind();
5055    OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
5056                                                     OtherRefType,
5057                                                     Loc, /*IsArrow=*/false,
5058                                                     SS, 0, MemberLookup, 0);
5059    OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
5060                                                   This->getType(),
5061                                                   Loc, /*IsArrow=*/true,
5062                                                   SS, 0, MemberLookup, 0);
5063    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5064    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5065
5066    // If the field should be copied with __builtin_memcpy rather than via
5067    // explicit assignments, do so. This optimization only applies for arrays
5068    // of scalars and arrays of class type with trivial copy-assignment
5069    // operators.
5070    if (FieldType->isArrayType() &&
5071        (!BaseType->isRecordType() ||
5072         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5073           ->hasTrivialCopyAssignment())) {
5074      // Compute the size of the memory buffer to be copied.
5075      QualType SizeType = Context.getSizeType();
5076      llvm::APInt Size(Context.getTypeSize(SizeType),
5077                       Context.getTypeSizeInChars(BaseType).getQuantity());
5078      for (const ConstantArrayType *Array
5079              = Context.getAsConstantArrayType(FieldType);
5080           Array;
5081           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5082        llvm::APInt ArraySize = Array->getSize();
5083        ArraySize.zextOrTrunc(Size.getBitWidth());
5084        Size *= ArraySize;
5085      }
5086
5087      // Take the address of the field references for "from" and "to".
5088      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
5089      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
5090
5091      bool NeedsCollectableMemCpy =
5092          (BaseType->isRecordType() &&
5093           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5094
5095      if (NeedsCollectableMemCpy) {
5096        if (!CollectableMemCpyRef) {
5097          // Create a reference to the __builtin_objc_memmove_collectable function.
5098          LookupResult R(*this,
5099                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5100                         Loc, LookupOrdinaryName);
5101          LookupName(R, TUScope, true);
5102
5103          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5104          if (!CollectableMemCpy) {
5105            // Something went horribly wrong earlier, and we will have
5106            // complained about it.
5107            Invalid = true;
5108            continue;
5109          }
5110
5111          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5112                                                  CollectableMemCpy->getType(),
5113                                                  Loc, 0).takeAs<Expr>();
5114          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5115        }
5116      }
5117      // Create a reference to the __builtin_memcpy builtin function.
5118      else if (!BuiltinMemCpyRef) {
5119        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5120                       LookupOrdinaryName);
5121        LookupName(R, TUScope, true);
5122
5123        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5124        if (!BuiltinMemCpy) {
5125          // Something went horribly wrong earlier, and we will have complained
5126          // about it.
5127          Invalid = true;
5128          continue;
5129        }
5130
5131        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5132                                            BuiltinMemCpy->getType(),
5133                                            Loc, 0).takeAs<Expr>();
5134        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5135      }
5136
5137      ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
5138      CallArgs.push_back(To.takeAs<Expr>());
5139      CallArgs.push_back(From.takeAs<Expr>());
5140      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
5141      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
5142      Commas.push_back(Loc);
5143      Commas.push_back(Loc);
5144      OwningExprResult Call = ExprError();
5145      if (NeedsCollectableMemCpy)
5146        Call = ActOnCallExpr(/*Scope=*/0,
5147                             Owned(CollectableMemCpyRef->Retain()),
5148                             Loc, move_arg(CallArgs),
5149                             Commas.data(), Loc);
5150      else
5151        Call = ActOnCallExpr(/*Scope=*/0,
5152                             Owned(BuiltinMemCpyRef->Retain()),
5153                             Loc, move_arg(CallArgs),
5154                             Commas.data(), Loc);
5155
5156      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5157      Statements.push_back(Call.takeAs<Expr>());
5158      continue;
5159    }
5160
5161    // Build the copy of this field.
5162    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5163                                                  move(To), move(From),
5164                                              /*CopyingBaseSubobject=*/false);
5165    if (Copy.isInvalid()) {
5166      Diag(CurrentLocation, diag::note_member_synthesized_at)
5167        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5168      CopyAssignOperator->setInvalidDecl();
5169      return;
5170    }
5171
5172    // Success! Record the copy.
5173    Statements.push_back(Copy.takeAs<Stmt>());
5174  }
5175
5176  if (!Invalid) {
5177    // Add a "return *this;"
5178    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
5179                                                    Owned(This->Retain()));
5180
5181    OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
5182    if (Return.isInvalid())
5183      Invalid = true;
5184    else {
5185      Statements.push_back(Return.takeAs<Stmt>());
5186
5187      if (Trap.hasErrorOccurred()) {
5188        Diag(CurrentLocation, diag::note_member_synthesized_at)
5189          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5190        Invalid = true;
5191      }
5192    }
5193  }
5194
5195  if (Invalid) {
5196    CopyAssignOperator->setInvalidDecl();
5197    return;
5198  }
5199
5200  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5201                                            /*isStmtExpr=*/false);
5202  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5203  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5204}
5205
5206CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5207                                                    CXXRecordDecl *ClassDecl) {
5208  // C++ [class.copy]p4:
5209  //   If the class definition does not explicitly declare a copy
5210  //   constructor, one is declared implicitly.
5211
5212  // C++ [class.copy]p5:
5213  //   The implicitly-declared copy constructor for a class X will
5214  //   have the form
5215  //
5216  //       X::X(const X&)
5217  //
5218  //   if
5219  bool HasConstCopyConstructor = true;
5220
5221  //     -- each direct or virtual base class B of X has a copy
5222  //        constructor whose first parameter is of type const B& or
5223  //        const volatile B&, and
5224  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5225                                       BaseEnd = ClassDecl->bases_end();
5226       HasConstCopyConstructor && Base != BaseEnd;
5227       ++Base) {
5228    // Virtual bases are handled below.
5229    if (Base->isVirtual())
5230      continue;
5231
5232    CXXRecordDecl *BaseClassDecl
5233      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5234    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5235      DeclareImplicitCopyConstructor(BaseClassDecl);
5236
5237    HasConstCopyConstructor
5238      = BaseClassDecl->hasConstCopyConstructor(Context);
5239  }
5240
5241  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5242                                       BaseEnd = ClassDecl->vbases_end();
5243       HasConstCopyConstructor && Base != BaseEnd;
5244       ++Base) {
5245    CXXRecordDecl *BaseClassDecl
5246      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5247    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5248      DeclareImplicitCopyConstructor(BaseClassDecl);
5249
5250    HasConstCopyConstructor
5251      = BaseClassDecl->hasConstCopyConstructor(Context);
5252  }
5253
5254  //     -- for all the nonstatic data members of X that are of a
5255  //        class type M (or array thereof), each such class type
5256  //        has a copy constructor whose first parameter is of type
5257  //        const M& or const volatile M&.
5258  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5259                                  FieldEnd = ClassDecl->field_end();
5260       HasConstCopyConstructor && Field != FieldEnd;
5261       ++Field) {
5262    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5263    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5264      CXXRecordDecl *FieldClassDecl
5265        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5266      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5267        DeclareImplicitCopyConstructor(FieldClassDecl);
5268
5269      HasConstCopyConstructor
5270        = FieldClassDecl->hasConstCopyConstructor(Context);
5271    }
5272  }
5273
5274  //   Otherwise, the implicitly declared copy constructor will have
5275  //   the form
5276  //
5277  //       X::X(X&)
5278  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5279  QualType ArgType = ClassType;
5280  if (HasConstCopyConstructor)
5281    ArgType = ArgType.withConst();
5282  ArgType = Context.getLValueReferenceType(ArgType);
5283
5284  // C++ [except.spec]p14:
5285  //   An implicitly declared special member function (Clause 12) shall have an
5286  //   exception-specification. [...]
5287  ImplicitExceptionSpecification ExceptSpec(Context);
5288  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5289  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5290                                       BaseEnd = ClassDecl->bases_end();
5291       Base != BaseEnd;
5292       ++Base) {
5293    // Virtual bases are handled below.
5294    if (Base->isVirtual())
5295      continue;
5296
5297    CXXRecordDecl *BaseClassDecl
5298      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5299    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5300      DeclareImplicitCopyConstructor(BaseClassDecl);
5301
5302    if (CXXConstructorDecl *CopyConstructor
5303                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5304      ExceptSpec.CalledDecl(CopyConstructor);
5305  }
5306  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5307                                       BaseEnd = ClassDecl->vbases_end();
5308       Base != BaseEnd;
5309       ++Base) {
5310    CXXRecordDecl *BaseClassDecl
5311      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5312    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5313      DeclareImplicitCopyConstructor(BaseClassDecl);
5314
5315    if (CXXConstructorDecl *CopyConstructor
5316                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5317      ExceptSpec.CalledDecl(CopyConstructor);
5318  }
5319  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5320                                  FieldEnd = ClassDecl->field_end();
5321       Field != FieldEnd;
5322       ++Field) {
5323    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5324    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5325      CXXRecordDecl *FieldClassDecl
5326        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5327      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5328        DeclareImplicitCopyConstructor(FieldClassDecl);
5329
5330      if (CXXConstructorDecl *CopyConstructor
5331                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5332        ExceptSpec.CalledDecl(CopyConstructor);
5333    }
5334  }
5335
5336  //   An implicitly-declared copy constructor is an inline public
5337  //   member of its class.
5338  DeclarationName Name
5339    = Context.DeclarationNames.getCXXConstructorName(
5340                                           Context.getCanonicalType(ClassType));
5341  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5342  CXXConstructorDecl *CopyConstructor
5343    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5344                                 Context.getFunctionType(Context.VoidTy,
5345                                                         &ArgType, 1,
5346                                                         false, 0,
5347                                         ExceptSpec.hasExceptionSpecification(),
5348                                      ExceptSpec.hasAnyExceptionSpecification(),
5349                                                         ExceptSpec.size(),
5350                                                         ExceptSpec.data(),
5351                                                       FunctionType::ExtInfo()),
5352                                 /*TInfo=*/0,
5353                                 /*isExplicit=*/false,
5354                                 /*isInline=*/true,
5355                                 /*isImplicitlyDeclared=*/true);
5356  CopyConstructor->setAccess(AS_public);
5357  CopyConstructor->setImplicit();
5358  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5359
5360  // Note that we have declared this constructor.
5361  ClassDecl->setDeclaredCopyConstructor(true);
5362  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5363
5364  // Add the parameter to the constructor.
5365  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5366                                               ClassDecl->getLocation(),
5367                                               /*IdentifierInfo=*/0,
5368                                               ArgType, /*TInfo=*/0,
5369                                               VarDecl::None,
5370                                               VarDecl::None, 0);
5371  CopyConstructor->setParams(&FromParam, 1);
5372  if (Scope *S = getScopeForContext(ClassDecl))
5373    PushOnScopeChains(CopyConstructor, S, false);
5374  ClassDecl->addDecl(CopyConstructor);
5375
5376  return CopyConstructor;
5377}
5378
5379void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5380                                   CXXConstructorDecl *CopyConstructor,
5381                                   unsigned TypeQuals) {
5382  assert((CopyConstructor->isImplicit() &&
5383          CopyConstructor->isCopyConstructor(TypeQuals) &&
5384          !CopyConstructor->isUsed(false)) &&
5385         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5386
5387  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5388  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5389
5390  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5391  ErrorTrap Trap(*this);
5392
5393  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5394      Trap.hasErrorOccurred()) {
5395    Diag(CurrentLocation, diag::note_member_synthesized_at)
5396      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5397    CopyConstructor->setInvalidDecl();
5398  }  else {
5399    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5400                                               CopyConstructor->getLocation(),
5401                                               MultiStmtArg(*this, 0, 0),
5402                                               /*isStmtExpr=*/false)
5403                                                              .takeAs<Stmt>());
5404  }
5405
5406  CopyConstructor->setUsed();
5407}
5408
5409Sema::OwningExprResult
5410Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5411                            CXXConstructorDecl *Constructor,
5412                            MultiExprArg ExprArgs,
5413                            bool RequiresZeroInit,
5414                            CXXConstructExpr::ConstructionKind ConstructKind) {
5415  bool Elidable = false;
5416
5417  // C++0x [class.copy]p34:
5418  //   When certain criteria are met, an implementation is allowed to
5419  //   omit the copy/move construction of a class object, even if the
5420  //   copy/move constructor and/or destructor for the object have
5421  //   side effects. [...]
5422  //     - when a temporary class object that has not been bound to a
5423  //       reference (12.2) would be copied/moved to a class object
5424  //       with the same cv-unqualified type, the copy/move operation
5425  //       can be omitted by constructing the temporary object
5426  //       directly into the target of the omitted copy/move
5427  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5428    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5429    Elidable = SubExpr->isTemporaryObject() &&
5430      Context.hasSameUnqualifiedType(SubExpr->getType(),
5431                           Context.getTypeDeclType(Constructor->getParent()));
5432  }
5433
5434  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5435                               Elidable, move(ExprArgs), RequiresZeroInit,
5436                               ConstructKind);
5437}
5438
5439/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5440/// including handling of its default argument expressions.
5441Sema::OwningExprResult
5442Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5443                            CXXConstructorDecl *Constructor, bool Elidable,
5444                            MultiExprArg ExprArgs,
5445                            bool RequiresZeroInit,
5446                            CXXConstructExpr::ConstructionKind ConstructKind) {
5447  unsigned NumExprs = ExprArgs.size();
5448  Expr **Exprs = (Expr **)ExprArgs.release();
5449
5450  MarkDeclarationReferenced(ConstructLoc, Constructor);
5451  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5452                                        Constructor, Elidable, Exprs, NumExprs,
5453                                        RequiresZeroInit, ConstructKind));
5454}
5455
5456bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5457                                        CXXConstructorDecl *Constructor,
5458                                        MultiExprArg Exprs) {
5459  OwningExprResult TempResult =
5460    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5461                          move(Exprs));
5462  if (TempResult.isInvalid())
5463    return true;
5464
5465  Expr *Temp = TempResult.takeAs<Expr>();
5466  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5467  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
5468  VD->setInit(Temp);
5469
5470  return false;
5471}
5472
5473void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5474  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5475  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5476      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5477    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5478    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5479    CheckDestructorAccess(VD->getLocation(), Destructor,
5480                          PDiag(diag::err_access_dtor_var)
5481                            << VD->getDeclName()
5482                            << VD->getType());
5483
5484    if (!VD->isInvalidDecl() && VD->hasGlobalStorage())
5485      Diag(VD->getLocation(), diag::warn_global_destructor);
5486  }
5487}
5488
5489/// AddCXXDirectInitializerToDecl - This action is called immediately after
5490/// ActOnDeclarator, when a C++ direct initializer is present.
5491/// e.g: "int x(1);"
5492void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
5493                                         SourceLocation LParenLoc,
5494                                         MultiExprArg Exprs,
5495                                         SourceLocation *CommaLocs,
5496                                         SourceLocation RParenLoc) {
5497  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5498  Decl *RealDecl = Dcl.getAs<Decl>();
5499
5500  // If there is no declaration, there was an error parsing it.  Just ignore
5501  // the initializer.
5502  if (RealDecl == 0)
5503    return;
5504
5505  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5506  if (!VDecl) {
5507    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5508    RealDecl->setInvalidDecl();
5509    return;
5510  }
5511
5512  // We will represent direct-initialization similarly to copy-initialization:
5513  //    int x(1);  -as-> int x = 1;
5514  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5515  //
5516  // Clients that want to distinguish between the two forms, can check for
5517  // direct initializer using VarDecl::hasCXXDirectInitializer().
5518  // A major benefit is that clients that don't particularly care about which
5519  // exactly form was it (like the CodeGen) can handle both cases without
5520  // special case code.
5521
5522  // C++ 8.5p11:
5523  // The form of initialization (using parentheses or '=') is generally
5524  // insignificant, but does matter when the entity being initialized has a
5525  // class type.
5526
5527  if (!VDecl->getType()->isDependentType() &&
5528      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5529                          diag::err_typecheck_decl_incomplete_type)) {
5530    VDecl->setInvalidDecl();
5531    return;
5532  }
5533
5534  // The variable can not have an abstract class type.
5535  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5536                             diag::err_abstract_type_in_decl,
5537                             AbstractVariableType))
5538    VDecl->setInvalidDecl();
5539
5540  const VarDecl *Def;
5541  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5542    Diag(VDecl->getLocation(), diag::err_redefinition)
5543    << VDecl->getDeclName();
5544    Diag(Def->getLocation(), diag::note_previous_definition);
5545    VDecl->setInvalidDecl();
5546    return;
5547  }
5548
5549  // If either the declaration has a dependent type or if any of the
5550  // expressions is type-dependent, we represent the initialization
5551  // via a ParenListExpr for later use during template instantiation.
5552  if (VDecl->getType()->isDependentType() ||
5553      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5554    // Let clients know that initialization was done with a direct initializer.
5555    VDecl->setCXXDirectInitializer(true);
5556
5557    // Store the initialization expressions as a ParenListExpr.
5558    unsigned NumExprs = Exprs.size();
5559    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5560                                               (Expr **)Exprs.release(),
5561                                               NumExprs, RParenLoc));
5562    return;
5563  }
5564
5565  // Capture the variable that is being initialized and the style of
5566  // initialization.
5567  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5568
5569  // FIXME: Poor source location information.
5570  InitializationKind Kind
5571    = InitializationKind::CreateDirect(VDecl->getLocation(),
5572                                       LParenLoc, RParenLoc);
5573
5574  InitializationSequence InitSeq(*this, Entity, Kind,
5575                                 (Expr**)Exprs.get(), Exprs.size());
5576  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5577  if (Result.isInvalid()) {
5578    VDecl->setInvalidDecl();
5579    return;
5580  }
5581
5582  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
5583  VDecl->setInit(Result.takeAs<Expr>());
5584  VDecl->setCXXDirectInitializer(true);
5585
5586    if (!VDecl->isInvalidDecl() &&
5587        !VDecl->getDeclContext()->isDependentContext() &&
5588        VDecl->hasGlobalStorage() &&
5589        !VDecl->getInit()->isConstantInitializer(Context,
5590                                        VDecl->getType()->isReferenceType()))
5591      Diag(VDecl->getLocation(), diag::warn_global_constructor)
5592        << VDecl->getInit()->getSourceRange();
5593
5594  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5595    FinalizeVarWithDestructor(VDecl, Record);
5596}
5597
5598/// \brief Given a constructor and the set of arguments provided for the
5599/// constructor, convert the arguments and add any required default arguments
5600/// to form a proper call to this constructor.
5601///
5602/// \returns true if an error occurred, false otherwise.
5603bool
5604Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5605                              MultiExprArg ArgsPtr,
5606                              SourceLocation Loc,
5607                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
5608  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5609  unsigned NumArgs = ArgsPtr.size();
5610  Expr **Args = (Expr **)ArgsPtr.get();
5611
5612  const FunctionProtoType *Proto
5613    = Constructor->getType()->getAs<FunctionProtoType>();
5614  assert(Proto && "Constructor without a prototype?");
5615  unsigned NumArgsInProto = Proto->getNumArgs();
5616
5617  // If too few arguments are available, we'll fill in the rest with defaults.
5618  if (NumArgs < NumArgsInProto)
5619    ConvertedArgs.reserve(NumArgsInProto);
5620  else
5621    ConvertedArgs.reserve(NumArgs);
5622
5623  VariadicCallType CallType =
5624    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5625  llvm::SmallVector<Expr *, 8> AllArgs;
5626  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5627                                        Proto, 0, Args, NumArgs, AllArgs,
5628                                        CallType);
5629  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5630    ConvertedArgs.push_back(AllArgs[i]);
5631  return Invalid;
5632}
5633
5634static inline bool
5635CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5636                                       const FunctionDecl *FnDecl) {
5637  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
5638  if (isa<NamespaceDecl>(DC)) {
5639    return SemaRef.Diag(FnDecl->getLocation(),
5640                        diag::err_operator_new_delete_declared_in_namespace)
5641      << FnDecl->getDeclName();
5642  }
5643
5644  if (isa<TranslationUnitDecl>(DC) &&
5645      FnDecl->getStorageClass() == FunctionDecl::Static) {
5646    return SemaRef.Diag(FnDecl->getLocation(),
5647                        diag::err_operator_new_delete_declared_static)
5648      << FnDecl->getDeclName();
5649  }
5650
5651  return false;
5652}
5653
5654static inline bool
5655CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5656                            CanQualType ExpectedResultType,
5657                            CanQualType ExpectedFirstParamType,
5658                            unsigned DependentParamTypeDiag,
5659                            unsigned InvalidParamTypeDiag) {
5660  QualType ResultType =
5661    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5662
5663  // Check that the result type is not dependent.
5664  if (ResultType->isDependentType())
5665    return SemaRef.Diag(FnDecl->getLocation(),
5666                        diag::err_operator_new_delete_dependent_result_type)
5667    << FnDecl->getDeclName() << ExpectedResultType;
5668
5669  // Check that the result type is what we expect.
5670  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5671    return SemaRef.Diag(FnDecl->getLocation(),
5672                        diag::err_operator_new_delete_invalid_result_type)
5673    << FnDecl->getDeclName() << ExpectedResultType;
5674
5675  // A function template must have at least 2 parameters.
5676  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5677    return SemaRef.Diag(FnDecl->getLocation(),
5678                      diag::err_operator_new_delete_template_too_few_parameters)
5679        << FnDecl->getDeclName();
5680
5681  // The function decl must have at least 1 parameter.
5682  if (FnDecl->getNumParams() == 0)
5683    return SemaRef.Diag(FnDecl->getLocation(),
5684                        diag::err_operator_new_delete_too_few_parameters)
5685      << FnDecl->getDeclName();
5686
5687  // Check the the first parameter type is not dependent.
5688  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5689  if (FirstParamType->isDependentType())
5690    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5691      << FnDecl->getDeclName() << ExpectedFirstParamType;
5692
5693  // Check that the first parameter type is what we expect.
5694  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5695      ExpectedFirstParamType)
5696    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5697    << FnDecl->getDeclName() << ExpectedFirstParamType;
5698
5699  return false;
5700}
5701
5702static bool
5703CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5704  // C++ [basic.stc.dynamic.allocation]p1:
5705  //   A program is ill-formed if an allocation function is declared in a
5706  //   namespace scope other than global scope or declared static in global
5707  //   scope.
5708  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5709    return true;
5710
5711  CanQualType SizeTy =
5712    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5713
5714  // C++ [basic.stc.dynamic.allocation]p1:
5715  //  The return type shall be void*. The first parameter shall have type
5716  //  std::size_t.
5717  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5718                                  SizeTy,
5719                                  diag::err_operator_new_dependent_param_type,
5720                                  diag::err_operator_new_param_type))
5721    return true;
5722
5723  // C++ [basic.stc.dynamic.allocation]p1:
5724  //  The first parameter shall not have an associated default argument.
5725  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5726    return SemaRef.Diag(FnDecl->getLocation(),
5727                        diag::err_operator_new_default_arg)
5728      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5729
5730  return false;
5731}
5732
5733static bool
5734CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5735  // C++ [basic.stc.dynamic.deallocation]p1:
5736  //   A program is ill-formed if deallocation functions are declared in a
5737  //   namespace scope other than global scope or declared static in global
5738  //   scope.
5739  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5740    return true;
5741
5742  // C++ [basic.stc.dynamic.deallocation]p2:
5743  //   Each deallocation function shall return void and its first parameter
5744  //   shall be void*.
5745  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5746                                  SemaRef.Context.VoidPtrTy,
5747                                 diag::err_operator_delete_dependent_param_type,
5748                                 diag::err_operator_delete_param_type))
5749    return true;
5750
5751  return false;
5752}
5753
5754/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5755/// of this overloaded operator is well-formed. If so, returns false;
5756/// otherwise, emits appropriate diagnostics and returns true.
5757bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5758  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5759         "Expected an overloaded operator declaration");
5760
5761  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5762
5763  // C++ [over.oper]p5:
5764  //   The allocation and deallocation functions, operator new,
5765  //   operator new[], operator delete and operator delete[], are
5766  //   described completely in 3.7.3. The attributes and restrictions
5767  //   found in the rest of this subclause do not apply to them unless
5768  //   explicitly stated in 3.7.3.
5769  if (Op == OO_Delete || Op == OO_Array_Delete)
5770    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5771
5772  if (Op == OO_New || Op == OO_Array_New)
5773    return CheckOperatorNewDeclaration(*this, FnDecl);
5774
5775  // C++ [over.oper]p6:
5776  //   An operator function shall either be a non-static member
5777  //   function or be a non-member function and have at least one
5778  //   parameter whose type is a class, a reference to a class, an
5779  //   enumeration, or a reference to an enumeration.
5780  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5781    if (MethodDecl->isStatic())
5782      return Diag(FnDecl->getLocation(),
5783                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5784  } else {
5785    bool ClassOrEnumParam = false;
5786    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5787                                   ParamEnd = FnDecl->param_end();
5788         Param != ParamEnd; ++Param) {
5789      QualType ParamType = (*Param)->getType().getNonReferenceType();
5790      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5791          ParamType->isEnumeralType()) {
5792        ClassOrEnumParam = true;
5793        break;
5794      }
5795    }
5796
5797    if (!ClassOrEnumParam)
5798      return Diag(FnDecl->getLocation(),
5799                  diag::err_operator_overload_needs_class_or_enum)
5800        << FnDecl->getDeclName();
5801  }
5802
5803  // C++ [over.oper]p8:
5804  //   An operator function cannot have default arguments (8.3.6),
5805  //   except where explicitly stated below.
5806  //
5807  // Only the function-call operator allows default arguments
5808  // (C++ [over.call]p1).
5809  if (Op != OO_Call) {
5810    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5811         Param != FnDecl->param_end(); ++Param) {
5812      if ((*Param)->hasDefaultArg())
5813        return Diag((*Param)->getLocation(),
5814                    diag::err_operator_overload_default_arg)
5815          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5816    }
5817  }
5818
5819  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5820    { false, false, false }
5821#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5822    , { Unary, Binary, MemberOnly }
5823#include "clang/Basic/OperatorKinds.def"
5824  };
5825
5826  bool CanBeUnaryOperator = OperatorUses[Op][0];
5827  bool CanBeBinaryOperator = OperatorUses[Op][1];
5828  bool MustBeMemberOperator = OperatorUses[Op][2];
5829
5830  // C++ [over.oper]p8:
5831  //   [...] Operator functions cannot have more or fewer parameters
5832  //   than the number required for the corresponding operator, as
5833  //   described in the rest of this subclause.
5834  unsigned NumParams = FnDecl->getNumParams()
5835                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5836  if (Op != OO_Call &&
5837      ((NumParams == 1 && !CanBeUnaryOperator) ||
5838       (NumParams == 2 && !CanBeBinaryOperator) ||
5839       (NumParams < 1) || (NumParams > 2))) {
5840    // We have the wrong number of parameters.
5841    unsigned ErrorKind;
5842    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5843      ErrorKind = 2;  // 2 -> unary or binary.
5844    } else if (CanBeUnaryOperator) {
5845      ErrorKind = 0;  // 0 -> unary
5846    } else {
5847      assert(CanBeBinaryOperator &&
5848             "All non-call overloaded operators are unary or binary!");
5849      ErrorKind = 1;  // 1 -> binary
5850    }
5851
5852    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5853      << FnDecl->getDeclName() << NumParams << ErrorKind;
5854  }
5855
5856  // Overloaded operators other than operator() cannot be variadic.
5857  if (Op != OO_Call &&
5858      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5859    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5860      << FnDecl->getDeclName();
5861  }
5862
5863  // Some operators must be non-static member functions.
5864  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5865    return Diag(FnDecl->getLocation(),
5866                diag::err_operator_overload_must_be_member)
5867      << FnDecl->getDeclName();
5868  }
5869
5870  // C++ [over.inc]p1:
5871  //   The user-defined function called operator++ implements the
5872  //   prefix and postfix ++ operator. If this function is a member
5873  //   function with no parameters, or a non-member function with one
5874  //   parameter of class or enumeration type, it defines the prefix
5875  //   increment operator ++ for objects of that type. If the function
5876  //   is a member function with one parameter (which shall be of type
5877  //   int) or a non-member function with two parameters (the second
5878  //   of which shall be of type int), it defines the postfix
5879  //   increment operator ++ for objects of that type.
5880  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5881    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5882    bool ParamIsInt = false;
5883    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5884      ParamIsInt = BT->getKind() == BuiltinType::Int;
5885
5886    if (!ParamIsInt)
5887      return Diag(LastParam->getLocation(),
5888                  diag::err_operator_overload_post_incdec_must_be_int)
5889        << LastParam->getType() << (Op == OO_MinusMinus);
5890  }
5891
5892  // Notify the class if it got an assignment operator.
5893  if (Op == OO_Equal) {
5894    // Would have returned earlier otherwise.
5895    assert(isa<CXXMethodDecl>(FnDecl) &&
5896      "Overloaded = not member, but not filtered.");
5897    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5898    Method->getParent()->addedAssignmentOperator(Context, Method);
5899  }
5900
5901  return false;
5902}
5903
5904/// CheckLiteralOperatorDeclaration - Check whether the declaration
5905/// of this literal operator function is well-formed. If so, returns
5906/// false; otherwise, emits appropriate diagnostics and returns true.
5907bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5908  DeclContext *DC = FnDecl->getDeclContext();
5909  Decl::Kind Kind = DC->getDeclKind();
5910  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5911      Kind != Decl::LinkageSpec) {
5912    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5913      << FnDecl->getDeclName();
5914    return true;
5915  }
5916
5917  bool Valid = false;
5918
5919  // template <char...> type operator "" name() is the only valid template
5920  // signature, and the only valid signature with no parameters.
5921  if (FnDecl->param_size() == 0) {
5922    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5923      // Must have only one template parameter
5924      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5925      if (Params->size() == 1) {
5926        NonTypeTemplateParmDecl *PmDecl =
5927          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5928
5929        // The template parameter must be a char parameter pack.
5930        // FIXME: This test will always fail because non-type parameter packs
5931        //   have not been implemented.
5932        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5933            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5934          Valid = true;
5935      }
5936    }
5937  } else {
5938    // Check the first parameter
5939    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5940
5941    QualType T = (*Param)->getType();
5942
5943    // unsigned long long int, long double, and any character type are allowed
5944    // as the only parameters.
5945    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5946        Context.hasSameType(T, Context.LongDoubleTy) ||
5947        Context.hasSameType(T, Context.CharTy) ||
5948        Context.hasSameType(T, Context.WCharTy) ||
5949        Context.hasSameType(T, Context.Char16Ty) ||
5950        Context.hasSameType(T, Context.Char32Ty)) {
5951      if (++Param == FnDecl->param_end())
5952        Valid = true;
5953      goto FinishedParams;
5954    }
5955
5956    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5957    const PointerType *PT = T->getAs<PointerType>();
5958    if (!PT)
5959      goto FinishedParams;
5960    T = PT->getPointeeType();
5961    if (!T.isConstQualified())
5962      goto FinishedParams;
5963    T = T.getUnqualifiedType();
5964
5965    // Move on to the second parameter;
5966    ++Param;
5967
5968    // If there is no second parameter, the first must be a const char *
5969    if (Param == FnDecl->param_end()) {
5970      if (Context.hasSameType(T, Context.CharTy))
5971        Valid = true;
5972      goto FinishedParams;
5973    }
5974
5975    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5976    // are allowed as the first parameter to a two-parameter function
5977    if (!(Context.hasSameType(T, Context.CharTy) ||
5978          Context.hasSameType(T, Context.WCharTy) ||
5979          Context.hasSameType(T, Context.Char16Ty) ||
5980          Context.hasSameType(T, Context.Char32Ty)))
5981      goto FinishedParams;
5982
5983    // The second and final parameter must be an std::size_t
5984    T = (*Param)->getType().getUnqualifiedType();
5985    if (Context.hasSameType(T, Context.getSizeType()) &&
5986        ++Param == FnDecl->param_end())
5987      Valid = true;
5988  }
5989
5990  // FIXME: This diagnostic is absolutely terrible.
5991FinishedParams:
5992  if (!Valid) {
5993    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5994      << FnDecl->getDeclName();
5995    return true;
5996  }
5997
5998  return false;
5999}
6000
6001/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6002/// linkage specification, including the language and (if present)
6003/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6004/// the location of the language string literal, which is provided
6005/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6006/// the '{' brace. Otherwise, this linkage specification does not
6007/// have any braces.
6008Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
6009                                                     SourceLocation ExternLoc,
6010                                                     SourceLocation LangLoc,
6011                                                     llvm::StringRef Lang,
6012                                                     SourceLocation LBraceLoc) {
6013  LinkageSpecDecl::LanguageIDs Language;
6014  if (Lang == "\"C\"")
6015    Language = LinkageSpecDecl::lang_c;
6016  else if (Lang == "\"C++\"")
6017    Language = LinkageSpecDecl::lang_cxx;
6018  else {
6019    Diag(LangLoc, diag::err_bad_language);
6020    return DeclPtrTy();
6021  }
6022
6023  // FIXME: Add all the various semantics of linkage specifications
6024
6025  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6026                                               LangLoc, Language,
6027                                               LBraceLoc.isValid());
6028  CurContext->addDecl(D);
6029  PushDeclContext(S, D);
6030  return DeclPtrTy::make(D);
6031}
6032
6033/// ActOnFinishLinkageSpecification - Complete the definition of
6034/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6035/// valid, it's the position of the closing '}' brace in a linkage
6036/// specification that uses braces.
6037Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
6038                                                      DeclPtrTy LinkageSpec,
6039                                                      SourceLocation RBraceLoc) {
6040  if (LinkageSpec)
6041    PopDeclContext();
6042  return LinkageSpec;
6043}
6044
6045/// \brief Perform semantic analysis for the variable declaration that
6046/// occurs within a C++ catch clause, returning the newly-created
6047/// variable.
6048VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
6049                                         TypeSourceInfo *TInfo,
6050                                         IdentifierInfo *Name,
6051                                         SourceLocation Loc,
6052                                         SourceRange Range) {
6053  bool Invalid = false;
6054
6055  // Arrays and functions decay.
6056  if (ExDeclType->isArrayType())
6057    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6058  else if (ExDeclType->isFunctionType())
6059    ExDeclType = Context.getPointerType(ExDeclType);
6060
6061  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6062  // The exception-declaration shall not denote a pointer or reference to an
6063  // incomplete type, other than [cv] void*.
6064  // N2844 forbids rvalue references.
6065  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6066    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
6067    Invalid = true;
6068  }
6069
6070  // GCC allows catching pointers and references to incomplete types
6071  // as an extension; so do we, but we warn by default.
6072
6073  QualType BaseType = ExDeclType;
6074  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6075  unsigned DK = diag::err_catch_incomplete;
6076  bool IncompleteCatchIsInvalid = true;
6077  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6078    BaseType = Ptr->getPointeeType();
6079    Mode = 1;
6080    DK = diag::ext_catch_incomplete_ptr;
6081    IncompleteCatchIsInvalid = false;
6082  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6083    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6084    BaseType = Ref->getPointeeType();
6085    Mode = 2;
6086    DK = diag::ext_catch_incomplete_ref;
6087    IncompleteCatchIsInvalid = false;
6088  }
6089  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6090      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6091      IncompleteCatchIsInvalid)
6092    Invalid = true;
6093
6094  if (!Invalid && !ExDeclType->isDependentType() &&
6095      RequireNonAbstractType(Loc, ExDeclType,
6096                             diag::err_abstract_type_in_decl,
6097                             AbstractVariableType))
6098    Invalid = true;
6099
6100  // Only the non-fragile NeXT runtime currently supports C++ catches
6101  // of ObjC types, and no runtime supports catching ObjC types by value.
6102  if (!Invalid && getLangOptions().ObjC1) {
6103    QualType T = ExDeclType;
6104    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6105      T = RT->getPointeeType();
6106
6107    if (T->isObjCObjectType()) {
6108      Diag(Loc, diag::err_objc_object_catch);
6109      Invalid = true;
6110    } else if (T->isObjCObjectPointerType()) {
6111      if (!getLangOptions().NeXTRuntime) {
6112        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6113        Invalid = true;
6114      } else if (!getLangOptions().ObjCNonFragileABI) {
6115        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6116        Invalid = true;
6117      }
6118    }
6119  }
6120
6121  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6122                                    Name, ExDeclType, TInfo, VarDecl::None,
6123                                    VarDecl::None);
6124  ExDecl->setExceptionVariable(true);
6125
6126  if (!Invalid) {
6127    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6128      // C++ [except.handle]p16:
6129      //   The object declared in an exception-declaration or, if the
6130      //   exception-declaration does not specify a name, a temporary (12.2) is
6131      //   copy-initialized (8.5) from the exception object. [...]
6132      //   The object is destroyed when the handler exits, after the destruction
6133      //   of any automatic objects initialized within the handler.
6134      //
6135      // We just pretend to initialize the object with itself, then make sure
6136      // it can be destroyed later.
6137      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6138      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6139                                            Loc, ExDeclType, 0);
6140      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6141                                                               SourceLocation());
6142      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6143      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6144                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
6145      if (Result.isInvalid())
6146        Invalid = true;
6147      else
6148        FinalizeVarWithDestructor(ExDecl, RecordTy);
6149    }
6150  }
6151
6152  if (Invalid)
6153    ExDecl->setInvalidDecl();
6154
6155  return ExDecl;
6156}
6157
6158/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6159/// handler.
6160Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6161  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6162  QualType ExDeclType = TInfo->getType();
6163
6164  bool Invalid = D.isInvalidType();
6165  IdentifierInfo *II = D.getIdentifier();
6166  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6167                                             LookupOrdinaryName,
6168                                             ForRedeclaration)) {
6169    // The scope should be freshly made just for us. There is just no way
6170    // it contains any previous declaration.
6171    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
6172    if (PrevDecl->isTemplateParameter()) {
6173      // Maybe we will complain about the shadowed template parameter.
6174      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6175    }
6176  }
6177
6178  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6179    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6180      << D.getCXXScopeSpec().getRange();
6181    Invalid = true;
6182  }
6183
6184  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
6185                                              D.getIdentifier(),
6186                                              D.getIdentifierLoc(),
6187                                            D.getDeclSpec().getSourceRange());
6188
6189  if (Invalid)
6190    ExDecl->setInvalidDecl();
6191
6192  // Add the exception declaration into this scope.
6193  if (II)
6194    PushOnScopeChains(ExDecl, S);
6195  else
6196    CurContext->addDecl(ExDecl);
6197
6198  ProcessDeclAttributes(S, ExDecl, D);
6199  return DeclPtrTy::make(ExDecl);
6200}
6201
6202Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6203                                                   ExprArg assertexpr,
6204                                                   ExprArg assertmessageexpr) {
6205  Expr *AssertExpr = (Expr *)assertexpr.get();
6206  StringLiteral *AssertMessage =
6207    cast<StringLiteral>((Expr *)assertmessageexpr.get());
6208
6209  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6210    llvm::APSInt Value(32);
6211    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6212      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6213        AssertExpr->getSourceRange();
6214      return DeclPtrTy();
6215    }
6216
6217    if (Value == 0) {
6218      Diag(AssertLoc, diag::err_static_assert_failed)
6219        << AssertMessage->getString() << AssertExpr->getSourceRange();
6220    }
6221  }
6222
6223  assertexpr.release();
6224  assertmessageexpr.release();
6225  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6226                                        AssertExpr, AssertMessage);
6227
6228  CurContext->addDecl(Decl);
6229  return DeclPtrTy::make(Decl);
6230}
6231
6232/// \brief Perform semantic analysis of the given friend type declaration.
6233///
6234/// \returns A friend declaration that.
6235FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6236                                      TypeSourceInfo *TSInfo) {
6237  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6238
6239  QualType T = TSInfo->getType();
6240  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6241
6242  if (!getLangOptions().CPlusPlus0x) {
6243    // C++03 [class.friend]p2:
6244    //   An elaborated-type-specifier shall be used in a friend declaration
6245    //   for a class.*
6246    //
6247    //   * The class-key of the elaborated-type-specifier is required.
6248    if (!ActiveTemplateInstantiations.empty()) {
6249      // Do not complain about the form of friend template types during
6250      // template instantiation; we will already have complained when the
6251      // template was declared.
6252    } else if (!T->isElaboratedTypeSpecifier()) {
6253      // If we evaluated the type to a record type, suggest putting
6254      // a tag in front.
6255      if (const RecordType *RT = T->getAs<RecordType>()) {
6256        RecordDecl *RD = RT->getDecl();
6257
6258        std::string InsertionText = std::string(" ") + RD->getKindName();
6259
6260        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6261          << (unsigned) RD->getTagKind()
6262          << T
6263          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6264                                        InsertionText);
6265      } else {
6266        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6267          << T
6268          << SourceRange(FriendLoc, TypeRange.getEnd());
6269      }
6270    } else if (T->getAs<EnumType>()) {
6271      Diag(FriendLoc, diag::ext_enum_friend)
6272        << T
6273        << SourceRange(FriendLoc, TypeRange.getEnd());
6274    }
6275  }
6276
6277  // C++0x [class.friend]p3:
6278  //   If the type specifier in a friend declaration designates a (possibly
6279  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6280  //   the friend declaration is ignored.
6281
6282  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6283  // in [class.friend]p3 that we do not implement.
6284
6285  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6286}
6287
6288/// Handle a friend type declaration.  This works in tandem with
6289/// ActOnTag.
6290///
6291/// Notes on friend class templates:
6292///
6293/// We generally treat friend class declarations as if they were
6294/// declaring a class.  So, for example, the elaborated type specifier
6295/// in a friend declaration is required to obey the restrictions of a
6296/// class-head (i.e. no typedefs in the scope chain), template
6297/// parameters are required to match up with simple template-ids, &c.
6298/// However, unlike when declaring a template specialization, it's
6299/// okay to refer to a template specialization without an empty
6300/// template parameter declaration, e.g.
6301///   friend class A<T>::B<unsigned>;
6302/// We permit this as a special case; if there are any template
6303/// parameters present at all, require proper matching, i.e.
6304///   template <> template <class T> friend class A<int>::B;
6305Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6306                                          MultiTemplateParamsArg TempParams) {
6307  SourceLocation Loc = DS.getSourceRange().getBegin();
6308
6309  assert(DS.isFriendSpecified());
6310  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6311
6312  // Try to convert the decl specifier to a type.  This works for
6313  // friend templates because ActOnTag never produces a ClassTemplateDecl
6314  // for a TUK_Friend.
6315  Declarator TheDeclarator(DS, Declarator::MemberContext);
6316  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6317  QualType T = TSI->getType();
6318  if (TheDeclarator.isInvalidType())
6319    return DeclPtrTy();
6320
6321  // This is definitely an error in C++98.  It's probably meant to
6322  // be forbidden in C++0x, too, but the specification is just
6323  // poorly written.
6324  //
6325  // The problem is with declarations like the following:
6326  //   template <T> friend A<T>::foo;
6327  // where deciding whether a class C is a friend or not now hinges
6328  // on whether there exists an instantiation of A that causes
6329  // 'foo' to equal C.  There are restrictions on class-heads
6330  // (which we declare (by fiat) elaborated friend declarations to
6331  // be) that makes this tractable.
6332  //
6333  // FIXME: handle "template <> friend class A<T>;", which
6334  // is possibly well-formed?  Who even knows?
6335  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6336    Diag(Loc, diag::err_tagless_friend_type_template)
6337      << DS.getSourceRange();
6338    return DeclPtrTy();
6339  }
6340
6341  // C++98 [class.friend]p1: A friend of a class is a function
6342  //   or class that is not a member of the class . . .
6343  // This is fixed in DR77, which just barely didn't make the C++03
6344  // deadline.  It's also a very silly restriction that seriously
6345  // affects inner classes and which nobody else seems to implement;
6346  // thus we never diagnose it, not even in -pedantic.
6347  //
6348  // But note that we could warn about it: it's always useless to
6349  // friend one of your own members (it's not, however, worthless to
6350  // friend a member of an arbitrary specialization of your template).
6351
6352  Decl *D;
6353  if (unsigned NumTempParamLists = TempParams.size())
6354    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6355                                   NumTempParamLists,
6356                                 (TemplateParameterList**) TempParams.release(),
6357                                   TSI,
6358                                   DS.getFriendSpecLoc());
6359  else
6360    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6361
6362  if (!D)
6363    return DeclPtrTy();
6364
6365  D->setAccess(AS_public);
6366  CurContext->addDecl(D);
6367
6368  return DeclPtrTy::make(D);
6369}
6370
6371Sema::DeclPtrTy
6372Sema::ActOnFriendFunctionDecl(Scope *S,
6373                              Declarator &D,
6374                              bool IsDefinition,
6375                              MultiTemplateParamsArg TemplateParams) {
6376  const DeclSpec &DS = D.getDeclSpec();
6377
6378  assert(DS.isFriendSpecified());
6379  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6380
6381  SourceLocation Loc = D.getIdentifierLoc();
6382  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6383  QualType T = TInfo->getType();
6384
6385  // C++ [class.friend]p1
6386  //   A friend of a class is a function or class....
6387  // Note that this sees through typedefs, which is intended.
6388  // It *doesn't* see through dependent types, which is correct
6389  // according to [temp.arg.type]p3:
6390  //   If a declaration acquires a function type through a
6391  //   type dependent on a template-parameter and this causes
6392  //   a declaration that does not use the syntactic form of a
6393  //   function declarator to have a function type, the program
6394  //   is ill-formed.
6395  if (!T->isFunctionType()) {
6396    Diag(Loc, diag::err_unexpected_friend);
6397
6398    // It might be worthwhile to try to recover by creating an
6399    // appropriate declaration.
6400    return DeclPtrTy();
6401  }
6402
6403  // C++ [namespace.memdef]p3
6404  //  - If a friend declaration in a non-local class first declares a
6405  //    class or function, the friend class or function is a member
6406  //    of the innermost enclosing namespace.
6407  //  - The name of the friend is not found by simple name lookup
6408  //    until a matching declaration is provided in that namespace
6409  //    scope (either before or after the class declaration granting
6410  //    friendship).
6411  //  - If a friend function is called, its name may be found by the
6412  //    name lookup that considers functions from namespaces and
6413  //    classes associated with the types of the function arguments.
6414  //  - When looking for a prior declaration of a class or a function
6415  //    declared as a friend, scopes outside the innermost enclosing
6416  //    namespace scope are not considered.
6417
6418  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
6419  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6420  DeclarationName Name = NameInfo.getName();
6421  assert(Name);
6422
6423  // The context we found the declaration in, or in which we should
6424  // create the declaration.
6425  DeclContext *DC;
6426
6427  // FIXME: handle local classes
6428
6429  // Recover from invalid scope qualifiers as if they just weren't there.
6430  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6431                        ForRedeclaration);
6432  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
6433    DC = computeDeclContext(ScopeQual);
6434
6435    // FIXME: handle dependent contexts
6436    if (!DC) return DeclPtrTy();
6437    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
6438
6439    LookupQualifiedName(Previous, DC);
6440
6441    // Ignore things found implicitly in the wrong scope.
6442    // TODO: better diagnostics for this case.  Suggesting the right
6443    // qualified scope would be nice...
6444    LookupResult::Filter F = Previous.makeFilter();
6445    while (F.hasNext()) {
6446      NamedDecl *D = F.next();
6447      if (!D->getDeclContext()->getLookupContext()->Equals(DC))
6448        F.erase();
6449    }
6450    F.done();
6451
6452    if (Previous.empty()) {
6453      D.setInvalidType();
6454      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6455      return DeclPtrTy();
6456    }
6457
6458    // C++ [class.friend]p1: A friend of a class is a function or
6459    //   class that is not a member of the class . . .
6460    if (DC->Equals(CurContext))
6461      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6462
6463  // Otherwise walk out to the nearest namespace scope looking for matches.
6464  } else {
6465    // TODO: handle local class contexts.
6466
6467    DC = CurContext;
6468    while (true) {
6469      // Skip class contexts.  If someone can cite chapter and verse
6470      // for this behavior, that would be nice --- it's what GCC and
6471      // EDG do, and it seems like a reasonable intent, but the spec
6472      // really only says that checks for unqualified existing
6473      // declarations should stop at the nearest enclosing namespace,
6474      // not that they should only consider the nearest enclosing
6475      // namespace.
6476      while (DC->isRecord())
6477        DC = DC->getParent();
6478
6479      LookupQualifiedName(Previous, DC);
6480
6481      // TODO: decide what we think about using declarations.
6482      if (!Previous.empty())
6483        break;
6484
6485      if (DC->isFileContext()) break;
6486      DC = DC->getParent();
6487    }
6488
6489    // C++ [class.friend]p1: A friend of a class is a function or
6490    //   class that is not a member of the class . . .
6491    // C++0x changes this for both friend types and functions.
6492    // Most C++ 98 compilers do seem to give an error here, so
6493    // we do, too.
6494    if (!Previous.empty() && DC->Equals(CurContext)
6495        && !getLangOptions().CPlusPlus0x)
6496      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6497  }
6498
6499  if (DC->isFileContext()) {
6500    // This implies that it has to be an operator or function.
6501    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6502        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6503        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6504      Diag(Loc, diag::err_introducing_special_friend) <<
6505        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6506         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6507      return DeclPtrTy();
6508    }
6509  }
6510
6511  bool Redeclaration = false;
6512  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
6513                                          move(TemplateParams),
6514                                          IsDefinition,
6515                                          Redeclaration);
6516  if (!ND) return DeclPtrTy();
6517
6518  assert(ND->getDeclContext() == DC);
6519  assert(ND->getLexicalDeclContext() == CurContext);
6520
6521  // Add the function declaration to the appropriate lookup tables,
6522  // adjusting the redeclarations list as necessary.  We don't
6523  // want to do this yet if the friending class is dependent.
6524  //
6525  // Also update the scope-based lookup if the target context's
6526  // lookup context is in lexical scope.
6527  if (!CurContext->isDependentContext()) {
6528    DC = DC->getLookupContext();
6529    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6530    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6531      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6532  }
6533
6534  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6535                                       D.getIdentifierLoc(), ND,
6536                                       DS.getFriendSpecLoc());
6537  FrD->setAccess(AS_public);
6538  CurContext->addDecl(FrD);
6539
6540  return DeclPtrTy::make(ND);
6541}
6542
6543void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
6544  AdjustDeclIfTemplate(dcl);
6545
6546  Decl *Dcl = dcl.getAs<Decl>();
6547  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6548  if (!Fn) {
6549    Diag(DelLoc, diag::err_deleted_non_function);
6550    return;
6551  }
6552  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6553    Diag(DelLoc, diag::err_deleted_decl_not_first);
6554    Diag(Prev->getLocation(), diag::note_previous_declaration);
6555    // If the declaration wasn't the first, we delete the function anyway for
6556    // recovery.
6557  }
6558  Fn->setDeleted();
6559}
6560
6561static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6562  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6563       ++CI) {
6564    Stmt *SubStmt = *CI;
6565    if (!SubStmt)
6566      continue;
6567    if (isa<ReturnStmt>(SubStmt))
6568      Self.Diag(SubStmt->getSourceRange().getBegin(),
6569           diag::err_return_in_constructor_handler);
6570    if (!isa<Expr>(SubStmt))
6571      SearchForReturnInStmt(Self, SubStmt);
6572  }
6573}
6574
6575void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6576  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6577    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6578    SearchForReturnInStmt(*this, Handler);
6579  }
6580}
6581
6582bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6583                                             const CXXMethodDecl *Old) {
6584  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6585  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6586
6587  if (Context.hasSameType(NewTy, OldTy) ||
6588      NewTy->isDependentType() || OldTy->isDependentType())
6589    return false;
6590
6591  // Check if the return types are covariant
6592  QualType NewClassTy, OldClassTy;
6593
6594  /// Both types must be pointers or references to classes.
6595  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6596    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6597      NewClassTy = NewPT->getPointeeType();
6598      OldClassTy = OldPT->getPointeeType();
6599    }
6600  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6601    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6602      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6603        NewClassTy = NewRT->getPointeeType();
6604        OldClassTy = OldRT->getPointeeType();
6605      }
6606    }
6607  }
6608
6609  // The return types aren't either both pointers or references to a class type.
6610  if (NewClassTy.isNull()) {
6611    Diag(New->getLocation(),
6612         diag::err_different_return_type_for_overriding_virtual_function)
6613      << New->getDeclName() << NewTy << OldTy;
6614    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6615
6616    return true;
6617  }
6618
6619  // C++ [class.virtual]p6:
6620  //   If the return type of D::f differs from the return type of B::f, the
6621  //   class type in the return type of D::f shall be complete at the point of
6622  //   declaration of D::f or shall be the class type D.
6623  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6624    if (!RT->isBeingDefined() &&
6625        RequireCompleteType(New->getLocation(), NewClassTy,
6626                            PDiag(diag::err_covariant_return_incomplete)
6627                              << New->getDeclName()))
6628    return true;
6629  }
6630
6631  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6632    // Check if the new class derives from the old class.
6633    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6634      Diag(New->getLocation(),
6635           diag::err_covariant_return_not_derived)
6636      << New->getDeclName() << NewTy << OldTy;
6637      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6638      return true;
6639    }
6640
6641    // Check if we the conversion from derived to base is valid.
6642    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6643                    diag::err_covariant_return_inaccessible_base,
6644                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6645                    // FIXME: Should this point to the return type?
6646                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6647      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6648      return true;
6649    }
6650  }
6651
6652  // The qualifiers of the return types must be the same.
6653  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6654    Diag(New->getLocation(),
6655         diag::err_covariant_return_type_different_qualifications)
6656    << New->getDeclName() << NewTy << OldTy;
6657    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6658    return true;
6659  };
6660
6661
6662  // The new class type must have the same or less qualifiers as the old type.
6663  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6664    Diag(New->getLocation(),
6665         diag::err_covariant_return_type_class_type_more_qualified)
6666    << New->getDeclName() << NewTy << OldTy;
6667    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6668    return true;
6669  };
6670
6671  return false;
6672}
6673
6674bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6675                                             const CXXMethodDecl *Old)
6676{
6677  if (Old->hasAttr<FinalAttr>()) {
6678    Diag(New->getLocation(), diag::err_final_function_overridden)
6679      << New->getDeclName();
6680    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6681    return true;
6682  }
6683
6684  return false;
6685}
6686
6687/// \brief Mark the given method pure.
6688///
6689/// \param Method the method to be marked pure.
6690///
6691/// \param InitRange the source range that covers the "0" initializer.
6692bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6693  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6694    Method->setPure();
6695
6696    // A class is abstract if at least one function is pure virtual.
6697    Method->getParent()->setAbstract(true);
6698    return false;
6699  }
6700
6701  if (!Method->isInvalidDecl())
6702    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6703      << Method->getDeclName() << InitRange;
6704  return true;
6705}
6706
6707/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6708/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6709/// is a fresh scope pushed for just this purpose.
6710///
6711/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6712/// static data member of class X, names should be looked up in the scope of
6713/// class X.
6714void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6715  // If there is no declaration, there was an error parsing it.
6716  Decl *D = Dcl.getAs<Decl>();
6717  if (D == 0) return;
6718
6719  // We should only get called for declarations with scope specifiers, like:
6720  //   int foo::bar;
6721  assert(D->isOutOfLine());
6722  EnterDeclaratorContext(S, D->getDeclContext());
6723}
6724
6725/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6726/// initializer for the out-of-line declaration 'Dcl'.
6727void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6728  // If there is no declaration, there was an error parsing it.
6729  Decl *D = Dcl.getAs<Decl>();
6730  if (D == 0) return;
6731
6732  assert(D->isOutOfLine());
6733  ExitDeclaratorContext(S);
6734}
6735
6736/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6737/// C++ if/switch/while/for statement.
6738/// e.g: "if (int x = f()) {...}"
6739Action::DeclResult
6740Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6741  // C++ 6.4p2:
6742  // The declarator shall not specify a function or an array.
6743  // The type-specifier-seq shall not contain typedef and shall not declare a
6744  // new class or enumeration.
6745  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6746         "Parser allowed 'typedef' as storage class of condition decl.");
6747
6748  TagDecl *OwnedTag = 0;
6749  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6750  QualType Ty = TInfo->getType();
6751
6752  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6753                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6754                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6755    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6756      << D.getSourceRange();
6757    return DeclResult();
6758  } else if (OwnedTag && OwnedTag->isDefinition()) {
6759    // The type-specifier-seq shall not declare a new class or enumeration.
6760    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6761  }
6762
6763  DeclPtrTy Dcl = ActOnDeclarator(S, D);
6764  if (!Dcl)
6765    return DeclResult();
6766
6767  return Dcl;
6768}
6769
6770void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6771                          bool DefinitionRequired) {
6772  // Ignore any vtable uses in unevaluated operands or for classes that do
6773  // not have a vtable.
6774  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6775      CurContext->isDependentContext() ||
6776      ExprEvalContexts.back().Context == Unevaluated)
6777    return;
6778
6779  // Try to insert this class into the map.
6780  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6781  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6782    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6783  if (!Pos.second) {
6784    // If we already had an entry, check to see if we are promoting this vtable
6785    // to required a definition. If so, we need to reappend to the VTableUses
6786    // list, since we may have already processed the first entry.
6787    if (DefinitionRequired && !Pos.first->second) {
6788      Pos.first->second = true;
6789    } else {
6790      // Otherwise, we can early exit.
6791      return;
6792    }
6793  }
6794
6795  // Local classes need to have their virtual members marked
6796  // immediately. For all other classes, we mark their virtual members
6797  // at the end of the translation unit.
6798  if (Class->isLocalClass())
6799    MarkVirtualMembersReferenced(Loc, Class);
6800  else
6801    VTableUses.push_back(std::make_pair(Class, Loc));
6802}
6803
6804bool Sema::DefineUsedVTables() {
6805  // If any dynamic classes have their key function defined within
6806  // this translation unit, then those vtables are considered "used" and must
6807  // be emitted.
6808  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6809    if (const CXXMethodDecl *KeyFunction
6810                             = Context.getKeyFunction(DynamicClasses[I])) {
6811      const FunctionDecl *Definition = 0;
6812      if (KeyFunction->hasBody(Definition))
6813        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6814    }
6815  }
6816
6817  if (VTableUses.empty())
6818    return false;
6819
6820  // Note: The VTableUses vector could grow as a result of marking
6821  // the members of a class as "used", so we check the size each
6822  // time through the loop and prefer indices (with are stable) to
6823  // iterators (which are not).
6824  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6825    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6826    if (!Class)
6827      continue;
6828
6829    SourceLocation Loc = VTableUses[I].second;
6830
6831    // If this class has a key function, but that key function is
6832    // defined in another translation unit, we don't need to emit the
6833    // vtable even though we're using it.
6834    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6835    if (KeyFunction && !KeyFunction->hasBody()) {
6836      switch (KeyFunction->getTemplateSpecializationKind()) {
6837      case TSK_Undeclared:
6838      case TSK_ExplicitSpecialization:
6839      case TSK_ExplicitInstantiationDeclaration:
6840        // The key function is in another translation unit.
6841        continue;
6842
6843      case TSK_ExplicitInstantiationDefinition:
6844      case TSK_ImplicitInstantiation:
6845        // We will be instantiating the key function.
6846        break;
6847      }
6848    } else if (!KeyFunction) {
6849      // If we have a class with no key function that is the subject
6850      // of an explicit instantiation declaration, suppress the
6851      // vtable; it will live with the explicit instantiation
6852      // definition.
6853      bool IsExplicitInstantiationDeclaration
6854        = Class->getTemplateSpecializationKind()
6855                                      == TSK_ExplicitInstantiationDeclaration;
6856      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6857                                 REnd = Class->redecls_end();
6858           R != REnd; ++R) {
6859        TemplateSpecializationKind TSK
6860          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6861        if (TSK == TSK_ExplicitInstantiationDeclaration)
6862          IsExplicitInstantiationDeclaration = true;
6863        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6864          IsExplicitInstantiationDeclaration = false;
6865          break;
6866        }
6867      }
6868
6869      if (IsExplicitInstantiationDeclaration)
6870        continue;
6871    }
6872
6873    // Mark all of the virtual members of this class as referenced, so
6874    // that we can build a vtable. Then, tell the AST consumer that a
6875    // vtable for this class is required.
6876    MarkVirtualMembersReferenced(Loc, Class);
6877    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6878    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6879
6880    // Optionally warn if we're emitting a weak vtable.
6881    if (Class->getLinkage() == ExternalLinkage &&
6882        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6883      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
6884        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6885    }
6886  }
6887  VTableUses.clear();
6888
6889  return true;
6890}
6891
6892void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6893                                        const CXXRecordDecl *RD) {
6894  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6895       e = RD->method_end(); i != e; ++i) {
6896    CXXMethodDecl *MD = *i;
6897
6898    // C++ [basic.def.odr]p2:
6899    //   [...] A virtual member function is used if it is not pure. [...]
6900    if (MD->isVirtual() && !MD->isPure())
6901      MarkDeclarationReferenced(Loc, MD);
6902  }
6903
6904  // Only classes that have virtual bases need a VTT.
6905  if (RD->getNumVBases() == 0)
6906    return;
6907
6908  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6909           e = RD->bases_end(); i != e; ++i) {
6910    const CXXRecordDecl *Base =
6911        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6912    if (Base->getNumVBases() == 0)
6913      continue;
6914    MarkVirtualMembersReferenced(Loc, Base);
6915  }
6916}
6917
6918/// SetIvarInitializers - This routine builds initialization ASTs for the
6919/// Objective-C implementation whose ivars need be initialized.
6920void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6921  if (!getLangOptions().CPlusPlus)
6922    return;
6923  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6924    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6925    CollectIvarsToConstructOrDestruct(OID, ivars);
6926    if (ivars.empty())
6927      return;
6928    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6929    for (unsigned i = 0; i < ivars.size(); i++) {
6930      FieldDecl *Field = ivars[i];
6931      if (Field->isInvalidDecl())
6932        continue;
6933
6934      CXXBaseOrMemberInitializer *Member;
6935      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6936      InitializationKind InitKind =
6937        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6938
6939      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6940      Sema::OwningExprResult MemberInit =
6941        InitSeq.Perform(*this, InitEntity, InitKind,
6942                        Sema::MultiExprArg(*this, 0, 0));
6943      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
6944      // Note, MemberInit could actually come back empty if no initialization
6945      // is required (e.g., because it would call a trivial default constructor)
6946      if (!MemberInit.get() || MemberInit.isInvalid())
6947        continue;
6948
6949      Member =
6950        new (Context) CXXBaseOrMemberInitializer(Context,
6951                                                 Field, SourceLocation(),
6952                                                 SourceLocation(),
6953                                                 MemberInit.takeAs<Expr>(),
6954                                                 SourceLocation());
6955      AllToInit.push_back(Member);
6956
6957      // Be sure that the destructor is accessible and is marked as referenced.
6958      if (const RecordType *RecordTy
6959                  = Context.getBaseElementType(Field->getType())
6960                                                        ->getAs<RecordType>()) {
6961                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6962        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
6963          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6964          CheckDestructorAccess(Field->getLocation(), Destructor,
6965                            PDiag(diag::err_access_dtor_ivar)
6966                              << Context.getBaseElementType(Field->getType()));
6967        }
6968      }
6969    }
6970    ObjCImplementation->setIvarInitializers(Context,
6971                                            AllToInit.data(), AllToInit.size());
6972  }
6973}
6974