SemaDeclCXX.cpp revision 9c06a2ffa20c65e2c13fb3f1267771cb00b7e63b
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Parse/Template.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Lex/Preprocessor.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/Compiler.h"
27#include <algorithm> // for std::equal
28#include <map>
29#include <set>
30
31using namespace clang;
32
33//===----------------------------------------------------------------------===//
34// CheckDefaultArgumentVisitor
35//===----------------------------------------------------------------------===//
36
37namespace {
38  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
39  /// the default argument of a parameter to determine whether it
40  /// contains any ill-formed subexpressions. For example, this will
41  /// diagnose the use of local variables or parameters within the
42  /// default argument expression.
43  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
44    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
45    Expr *DefaultArg;
46    Sema *S;
47
48  public:
49    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
50      : DefaultArg(defarg), S(s) {}
51
52    bool VisitExpr(Expr *Node);
53    bool VisitDeclRefExpr(DeclRefExpr *DRE);
54    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
55  };
56
57  /// VisitExpr - Visit all of the children of this expression.
58  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
59    bool IsInvalid = false;
60    for (Stmt::child_iterator I = Node->child_begin(),
61         E = Node->child_end(); I != E; ++I)
62      IsInvalid |= Visit(*I);
63    return IsInvalid;
64  }
65
66  /// VisitDeclRefExpr - Visit a reference to a declaration, to
67  /// determine whether this declaration can be used in the default
68  /// argument expression.
69  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
70    NamedDecl *Decl = DRE->getDecl();
71    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
72      // C++ [dcl.fct.default]p9
73      //   Default arguments are evaluated each time the function is
74      //   called. The order of evaluation of function arguments is
75      //   unspecified. Consequently, parameters of a function shall not
76      //   be used in default argument expressions, even if they are not
77      //   evaluated. Parameters of a function declared before a default
78      //   argument expression are in scope and can hide namespace and
79      //   class member names.
80      return S->Diag(DRE->getSourceRange().getBegin(),
81                     diag::err_param_default_argument_references_param)
82         << Param->getDeclName() << DefaultArg->getSourceRange();
83    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
84      // C++ [dcl.fct.default]p7
85      //   Local variables shall not be used in default argument
86      //   expressions.
87      if (VDecl->isBlockVarDecl())
88        return S->Diag(DRE->getSourceRange().getBegin(),
89                       diag::err_param_default_argument_references_local)
90          << VDecl->getDeclName() << DefaultArg->getSourceRange();
91    }
92
93    return false;
94  }
95
96  /// VisitCXXThisExpr - Visit a C++ "this" expression.
97  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
98    // C++ [dcl.fct.default]p8:
99    //   The keyword this shall not be used in a default argument of a
100    //   member function.
101    return S->Diag(ThisE->getSourceRange().getBegin(),
102                   diag::err_param_default_argument_references_this)
103               << ThisE->getSourceRange();
104  }
105}
106
107bool
108Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
109                              SourceLocation EqualLoc) {
110  QualType ParamType = Param->getType();
111
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
127                            Param->getDeclName(), /*DirectInit=*/false))
128    return true;
129
130  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
131
132  // Okay: add the default argument to the parameter
133  Param->setDefaultArg(Arg);
134
135  DefaultArg.release();
136
137  return false;
138}
139
140/// ActOnParamDefaultArgument - Check whether the default argument
141/// provided for a function parameter is well-formed. If so, attach it
142/// to the parameter declaration.
143void
144Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
145                                ExprArg defarg) {
146  if (!param || !defarg.get())
147    return;
148
149  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
150  UnparsedDefaultArgLocs.erase(Param);
151
152  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
153  QualType ParamType = Param->getType();
154
155  // Default arguments are only permitted in C++
156  if (!getLangOptions().CPlusPlus) {
157    Diag(EqualLoc, diag::err_param_default_argument)
158      << DefaultArg->getSourceRange();
159    Param->setInvalidDecl();
160    return;
161  }
162
163  // Check that the default argument is well-formed
164  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
165  if (DefaultArgChecker.Visit(DefaultArg.get())) {
166    Param->setInvalidDecl();
167    return;
168  }
169
170  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
171}
172
173/// ActOnParamUnparsedDefaultArgument - We've seen a default
174/// argument for a function parameter, but we can't parse it yet
175/// because we're inside a class definition. Note that this default
176/// argument will be parsed later.
177void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
178                                             SourceLocation EqualLoc,
179                                             SourceLocation ArgLoc) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184  if (Param)
185    Param->setUnparsedDefaultArg();
186
187  UnparsedDefaultArgLocs[Param] = ArgLoc;
188}
189
190/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
191/// the default argument for the parameter param failed.
192void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
193  if (!param)
194    return;
195
196  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
197
198  Param->setInvalidDecl();
199
200  UnparsedDefaultArgLocs.erase(Param);
201}
202
203/// CheckExtraCXXDefaultArguments - Check for any extra default
204/// arguments in the declarator, which is not a function declaration
205/// or definition and therefore is not permitted to have default
206/// arguments. This routine should be invoked for every declarator
207/// that is not a function declaration or definition.
208void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
209  // C++ [dcl.fct.default]p3
210  //   A default argument expression shall be specified only in the
211  //   parameter-declaration-clause of a function declaration or in a
212  //   template-parameter (14.1). It shall not be specified for a
213  //   parameter pack. If it is specified in a
214  //   parameter-declaration-clause, it shall not occur within a
215  //   declarator or abstract-declarator of a parameter-declaration.
216  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
217    DeclaratorChunk &chunk = D.getTypeObject(i);
218    if (chunk.Kind == DeclaratorChunk::Function) {
219      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
220        ParmVarDecl *Param =
221          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
222        if (Param->hasUnparsedDefaultArg()) {
223          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
224          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
225            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
226          delete Toks;
227          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
228        } else if (Param->getDefaultArg()) {
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << Param->getDefaultArg()->getSourceRange();
231          Param->setDefaultArg(0);
232        }
233      }
234    }
235  }
236}
237
238// MergeCXXFunctionDecl - Merge two declarations of the same C++
239// function, once we already know that they have the same
240// type. Subroutine of MergeFunctionDecl. Returns true if there was an
241// error, false otherwise.
242bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
243  bool Invalid = false;
244
245  // C++ [dcl.fct.default]p4:
246  //   For non-template functions, default arguments can be added in
247  //   later declarations of a function in the same
248  //   scope. Declarations in different scopes have completely
249  //   distinct sets of default arguments. That is, declarations in
250  //   inner scopes do not acquire default arguments from
251  //   declarations in outer scopes, and vice versa. In a given
252  //   function declaration, all parameters subsequent to a
253  //   parameter with a default argument shall have default
254  //   arguments supplied in this or previous declarations. A
255  //   default argument shall not be redefined by a later
256  //   declaration (not even to the same value).
257  //
258  // C++ [dcl.fct.default]p6:
259  //   Except for member functions of class templates, the default arguments
260  //   in a member function definition that appears outside of the class
261  //   definition are added to the set of default arguments provided by the
262  //   member function declaration in the class definition.
263  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
264    ParmVarDecl *OldParam = Old->getParamDecl(p);
265    ParmVarDecl *NewParam = New->getParamDecl(p);
266
267    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
268      // FIXME: If the parameter doesn't have an identifier then the location
269      // points to the '=' which means that the fixit hint won't remove any
270      // extra spaces between the type and the '='.
271      SourceLocation Begin = NewParam->getLocation();
272      if (NewParam->getIdentifier())
273        Begin = PP.getLocForEndOfToken(Begin);
274
275      Diag(NewParam->getLocation(),
276           diag::err_param_default_argument_redefinition)
277        << NewParam->getDefaultArgRange()
278        << CodeModificationHint::CreateRemoval(SourceRange(Begin,
279                                                        NewParam->getLocEnd()));
280
281      // Look for the function declaration where the default argument was
282      // actually written, which may be a declaration prior to Old.
283      for (FunctionDecl *Older = Old->getPreviousDeclaration();
284           Older; Older = Older->getPreviousDeclaration()) {
285        if (!Older->getParamDecl(p)->hasDefaultArg())
286          break;
287
288        OldParam = Older->getParamDecl(p);
289      }
290
291      Diag(OldParam->getLocation(), diag::note_previous_definition)
292        << OldParam->getDefaultArgRange();
293      Invalid = true;
294    } else if (OldParam->hasDefaultArg()) {
295      // Merge the old default argument into the new parameter
296      if (OldParam->hasUninstantiatedDefaultArg())
297        NewParam->setUninstantiatedDefaultArg(
298                                      OldParam->getUninstantiatedDefaultArg());
299      else
300        NewParam->setDefaultArg(OldParam->getDefaultArg());
301    } else if (NewParam->hasDefaultArg()) {
302      if (New->getDescribedFunctionTemplate()) {
303        // Paragraph 4, quoted above, only applies to non-template functions.
304        Diag(NewParam->getLocation(),
305             diag::err_param_default_argument_template_redecl)
306          << NewParam->getDefaultArgRange();
307        Diag(Old->getLocation(), diag::note_template_prev_declaration)
308          << false;
309      } else if (New->getTemplateSpecializationKind()
310                   != TSK_ImplicitInstantiation &&
311                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
312        // C++ [temp.expr.spec]p21:
313        //   Default function arguments shall not be specified in a declaration
314        //   or a definition for one of the following explicit specializations:
315        //     - the explicit specialization of a function template;
316        //     - the explicit specialization of a member function template;
317        //     - the explicit specialization of a member function of a class
318        //       template where the class template specialization to which the
319        //       member function specialization belongs is implicitly
320        //       instantiated.
321        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
322          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
323          << New->getDeclName()
324          << NewParam->getDefaultArgRange();
325      } else if (New->getDeclContext()->isDependentContext()) {
326        // C++ [dcl.fct.default]p6 (DR217):
327        //   Default arguments for a member function of a class template shall
328        //   be specified on the initial declaration of the member function
329        //   within the class template.
330        //
331        // Reading the tea leaves a bit in DR217 and its reference to DR205
332        // leads me to the conclusion that one cannot add default function
333        // arguments for an out-of-line definition of a member function of a
334        // dependent type.
335        int WhichKind = 2;
336        if (CXXRecordDecl *Record
337              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
338          if (Record->getDescribedClassTemplate())
339            WhichKind = 0;
340          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
341            WhichKind = 1;
342          else
343            WhichKind = 2;
344        }
345
346        Diag(NewParam->getLocation(),
347             diag::err_param_default_argument_member_template_redecl)
348          << WhichKind
349          << NewParam->getDefaultArgRange();
350      }
351    }
352  }
353
354  if (CheckEquivalentExceptionSpec(
355          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
356          New->getType()->getAs<FunctionProtoType>(), New->getLocation())) {
357    Invalid = true;
358  }
359
360  return Invalid;
361}
362
363/// CheckCXXDefaultArguments - Verify that the default arguments for a
364/// function declaration are well-formed according to C++
365/// [dcl.fct.default].
366void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
367  unsigned NumParams = FD->getNumParams();
368  unsigned p;
369
370  // Find first parameter with a default argument
371  for (p = 0; p < NumParams; ++p) {
372    ParmVarDecl *Param = FD->getParamDecl(p);
373    if (Param->hasDefaultArg())
374      break;
375  }
376
377  // C++ [dcl.fct.default]p4:
378  //   In a given function declaration, all parameters
379  //   subsequent to a parameter with a default argument shall
380  //   have default arguments supplied in this or previous
381  //   declarations. A default argument shall not be redefined
382  //   by a later declaration (not even to the same value).
383  unsigned LastMissingDefaultArg = 0;
384  for (; p < NumParams; ++p) {
385    ParmVarDecl *Param = FD->getParamDecl(p);
386    if (!Param->hasDefaultArg()) {
387      if (Param->isInvalidDecl())
388        /* We already complained about this parameter. */;
389      else if (Param->getIdentifier())
390        Diag(Param->getLocation(),
391             diag::err_param_default_argument_missing_name)
392          << Param->getIdentifier();
393      else
394        Diag(Param->getLocation(),
395             diag::err_param_default_argument_missing);
396
397      LastMissingDefaultArg = p;
398    }
399  }
400
401  if (LastMissingDefaultArg > 0) {
402    // Some default arguments were missing. Clear out all of the
403    // default arguments up to (and including) the last missing
404    // default argument, so that we leave the function parameters
405    // in a semantically valid state.
406    for (p = 0; p <= LastMissingDefaultArg; ++p) {
407      ParmVarDecl *Param = FD->getParamDecl(p);
408      if (Param->hasDefaultArg()) {
409        if (!Param->hasUnparsedDefaultArg())
410          Param->getDefaultArg()->Destroy(Context);
411        Param->setDefaultArg(0);
412      }
413    }
414  }
415}
416
417/// isCurrentClassName - Determine whether the identifier II is the
418/// name of the class type currently being defined. In the case of
419/// nested classes, this will only return true if II is the name of
420/// the innermost class.
421bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
422                              const CXXScopeSpec *SS) {
423  CXXRecordDecl *CurDecl;
424  if (SS && SS->isSet() && !SS->isInvalid()) {
425    DeclContext *DC = computeDeclContext(*SS, true);
426    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
427  } else
428    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
429
430  if (CurDecl)
431    return &II == CurDecl->getIdentifier();
432  else
433    return false;
434}
435
436/// \brief Check the validity of a C++ base class specifier.
437///
438/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
439/// and returns NULL otherwise.
440CXXBaseSpecifier *
441Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
442                         SourceRange SpecifierRange,
443                         bool Virtual, AccessSpecifier Access,
444                         QualType BaseType,
445                         SourceLocation BaseLoc) {
446  // C++ [class.union]p1:
447  //   A union shall not have base classes.
448  if (Class->isUnion()) {
449    Diag(Class->getLocation(), diag::err_base_clause_on_union)
450      << SpecifierRange;
451    return 0;
452  }
453
454  if (BaseType->isDependentType())
455    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
456                                Class->getTagKind() == RecordDecl::TK_class,
457                                Access, BaseType);
458
459  // Base specifiers must be record types.
460  if (!BaseType->isRecordType()) {
461    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
462    return 0;
463  }
464
465  // C++ [class.union]p1:
466  //   A union shall not be used as a base class.
467  if (BaseType->isUnionType()) {
468    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
469    return 0;
470  }
471
472  // C++ [class.derived]p2:
473  //   The class-name in a base-specifier shall not be an incompletely
474  //   defined class.
475  if (RequireCompleteType(BaseLoc, BaseType,
476                          PDiag(diag::err_incomplete_base_class)
477                            << SpecifierRange))
478    return 0;
479
480  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
481  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
482  assert(BaseDecl && "Record type has no declaration");
483  BaseDecl = BaseDecl->getDefinition(Context);
484  assert(BaseDecl && "Base type is not incomplete, but has no definition");
485  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
486  assert(CXXBaseDecl && "Base type is not a C++ type");
487  if (!CXXBaseDecl->isEmpty())
488    Class->setEmpty(false);
489  if (CXXBaseDecl->isPolymorphic())
490    Class->setPolymorphic(true);
491
492  // C++ [dcl.init.aggr]p1:
493  //   An aggregate is [...] a class with [...] no base classes [...].
494  Class->setAggregate(false);
495  Class->setPOD(false);
496
497  if (Virtual) {
498    // C++ [class.ctor]p5:
499    //   A constructor is trivial if its class has no virtual base classes.
500    Class->setHasTrivialConstructor(false);
501
502    // C++ [class.copy]p6:
503    //   A copy constructor is trivial if its class has no virtual base classes.
504    Class->setHasTrivialCopyConstructor(false);
505
506    // C++ [class.copy]p11:
507    //   A copy assignment operator is trivial if its class has no virtual
508    //   base classes.
509    Class->setHasTrivialCopyAssignment(false);
510
511    // C++0x [meta.unary.prop] is_empty:
512    //    T is a class type, but not a union type, with ... no virtual base
513    //    classes
514    Class->setEmpty(false);
515  } else {
516    // C++ [class.ctor]p5:
517    //   A constructor is trivial if all the direct base classes of its
518    //   class have trivial constructors.
519    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
520      Class->setHasTrivialConstructor(false);
521
522    // C++ [class.copy]p6:
523    //   A copy constructor is trivial if all the direct base classes of its
524    //   class have trivial copy constructors.
525    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
526      Class->setHasTrivialCopyConstructor(false);
527
528    // C++ [class.copy]p11:
529    //   A copy assignment operator is trivial if all the direct base classes
530    //   of its class have trivial copy assignment operators.
531    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
532      Class->setHasTrivialCopyAssignment(false);
533  }
534
535  // C++ [class.ctor]p3:
536  //   A destructor is trivial if all the direct base classes of its class
537  //   have trivial destructors.
538  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
539    Class->setHasTrivialDestructor(false);
540
541  // Create the base specifier.
542  // FIXME: Allocate via ASTContext?
543  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
544                              Class->getTagKind() == RecordDecl::TK_class,
545                              Access, BaseType);
546}
547
548/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
549/// one entry in the base class list of a class specifier, for
550/// example:
551///    class foo : public bar, virtual private baz {
552/// 'public bar' and 'virtual private baz' are each base-specifiers.
553Sema::BaseResult
554Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
555                         bool Virtual, AccessSpecifier Access,
556                         TypeTy *basetype, SourceLocation BaseLoc) {
557  if (!classdecl)
558    return true;
559
560  AdjustDeclIfTemplate(classdecl);
561  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
562  QualType BaseType = GetTypeFromParser(basetype);
563  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
564                                                      Virtual, Access,
565                                                      BaseType, BaseLoc))
566    return BaseSpec;
567
568  return true;
569}
570
571/// \brief Performs the actual work of attaching the given base class
572/// specifiers to a C++ class.
573bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
574                                unsigned NumBases) {
575 if (NumBases == 0)
576    return false;
577
578  // Used to keep track of which base types we have already seen, so
579  // that we can properly diagnose redundant direct base types. Note
580  // that the key is always the unqualified canonical type of the base
581  // class.
582  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
583
584  // Copy non-redundant base specifiers into permanent storage.
585  unsigned NumGoodBases = 0;
586  bool Invalid = false;
587  for (unsigned idx = 0; idx < NumBases; ++idx) {
588    QualType NewBaseType
589      = Context.getCanonicalType(Bases[idx]->getType());
590    NewBaseType = NewBaseType.getUnqualifiedType();
591
592    if (KnownBaseTypes[NewBaseType]) {
593      // C++ [class.mi]p3:
594      //   A class shall not be specified as a direct base class of a
595      //   derived class more than once.
596      Diag(Bases[idx]->getSourceRange().getBegin(),
597           diag::err_duplicate_base_class)
598        << KnownBaseTypes[NewBaseType]->getType()
599        << Bases[idx]->getSourceRange();
600
601      // Delete the duplicate base class specifier; we're going to
602      // overwrite its pointer later.
603      Context.Deallocate(Bases[idx]);
604
605      Invalid = true;
606    } else {
607      // Okay, add this new base class.
608      KnownBaseTypes[NewBaseType] = Bases[idx];
609      Bases[NumGoodBases++] = Bases[idx];
610    }
611  }
612
613  // Attach the remaining base class specifiers to the derived class.
614  Class->setBases(Context, Bases, NumGoodBases);
615
616  // Delete the remaining (good) base class specifiers, since their
617  // data has been copied into the CXXRecordDecl.
618  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
619    Context.Deallocate(Bases[idx]);
620
621  return Invalid;
622}
623
624/// ActOnBaseSpecifiers - Attach the given base specifiers to the
625/// class, after checking whether there are any duplicate base
626/// classes.
627void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
628                               unsigned NumBases) {
629  if (!ClassDecl || !Bases || !NumBases)
630    return;
631
632  AdjustDeclIfTemplate(ClassDecl);
633  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
634                       (CXXBaseSpecifier**)(Bases), NumBases);
635}
636
637/// \brief Determine whether the type \p Derived is a C++ class that is
638/// derived from the type \p Base.
639bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
640  if (!getLangOptions().CPlusPlus)
641    return false;
642
643  const RecordType *DerivedRT = Derived->getAs<RecordType>();
644  if (!DerivedRT)
645    return false;
646
647  const RecordType *BaseRT = Base->getAs<RecordType>();
648  if (!BaseRT)
649    return false;
650
651  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
652  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
653  return DerivedRD->isDerivedFrom(BaseRD);
654}
655
656/// \brief Determine whether the type \p Derived is a C++ class that is
657/// derived from the type \p Base.
658bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
659  if (!getLangOptions().CPlusPlus)
660    return false;
661
662  const RecordType *DerivedRT = Derived->getAs<RecordType>();
663  if (!DerivedRT)
664    return false;
665
666  const RecordType *BaseRT = Base->getAs<RecordType>();
667  if (!BaseRT)
668    return false;
669
670  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
671  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
672  return DerivedRD->isDerivedFrom(BaseRD, Paths);
673}
674
675/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
676/// conversion (where Derived and Base are class types) is
677/// well-formed, meaning that the conversion is unambiguous (and
678/// that all of the base classes are accessible). Returns true
679/// and emits a diagnostic if the code is ill-formed, returns false
680/// otherwise. Loc is the location where this routine should point to
681/// if there is an error, and Range is the source range to highlight
682/// if there is an error.
683bool
684Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
685                                   unsigned InaccessibleBaseID,
686                                   unsigned AmbigiousBaseConvID,
687                                   SourceLocation Loc, SourceRange Range,
688                                   DeclarationName Name) {
689  // First, determine whether the path from Derived to Base is
690  // ambiguous. This is slightly more expensive than checking whether
691  // the Derived to Base conversion exists, because here we need to
692  // explore multiple paths to determine if there is an ambiguity.
693  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
694                     /*DetectVirtual=*/false);
695  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
696  assert(DerivationOkay &&
697         "Can only be used with a derived-to-base conversion");
698  (void)DerivationOkay;
699
700  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
701    // Check that the base class can be accessed.
702    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
703                                Name);
704  }
705
706  // We know that the derived-to-base conversion is ambiguous, and
707  // we're going to produce a diagnostic. Perform the derived-to-base
708  // search just one more time to compute all of the possible paths so
709  // that we can print them out. This is more expensive than any of
710  // the previous derived-to-base checks we've done, but at this point
711  // performance isn't as much of an issue.
712  Paths.clear();
713  Paths.setRecordingPaths(true);
714  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
715  assert(StillOkay && "Can only be used with a derived-to-base conversion");
716  (void)StillOkay;
717
718  // Build up a textual representation of the ambiguous paths, e.g.,
719  // D -> B -> A, that will be used to illustrate the ambiguous
720  // conversions in the diagnostic. We only print one of the paths
721  // to each base class subobject.
722  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
723
724  Diag(Loc, AmbigiousBaseConvID)
725  << Derived << Base << PathDisplayStr << Range << Name;
726  return true;
727}
728
729bool
730Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
731                                   SourceLocation Loc, SourceRange Range) {
732  return CheckDerivedToBaseConversion(Derived, Base,
733                                      diag::err_conv_to_inaccessible_base,
734                                      diag::err_ambiguous_derived_to_base_conv,
735                                      Loc, Range, DeclarationName());
736}
737
738
739/// @brief Builds a string representing ambiguous paths from a
740/// specific derived class to different subobjects of the same base
741/// class.
742///
743/// This function builds a string that can be used in error messages
744/// to show the different paths that one can take through the
745/// inheritance hierarchy to go from the derived class to different
746/// subobjects of a base class. The result looks something like this:
747/// @code
748/// struct D -> struct B -> struct A
749/// struct D -> struct C -> struct A
750/// @endcode
751std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
752  std::string PathDisplayStr;
753  std::set<unsigned> DisplayedPaths;
754  for (CXXBasePaths::paths_iterator Path = Paths.begin();
755       Path != Paths.end(); ++Path) {
756    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
757      // We haven't displayed a path to this particular base
758      // class subobject yet.
759      PathDisplayStr += "\n    ";
760      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
761      for (CXXBasePath::const_iterator Element = Path->begin();
762           Element != Path->end(); ++Element)
763        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
764    }
765  }
766
767  return PathDisplayStr;
768}
769
770//===----------------------------------------------------------------------===//
771// C++ class member Handling
772//===----------------------------------------------------------------------===//
773
774/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
775/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
776/// bitfield width if there is one and 'InitExpr' specifies the initializer if
777/// any.
778Sema::DeclPtrTy
779Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
780                               MultiTemplateParamsArg TemplateParameterLists,
781                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
782  const DeclSpec &DS = D.getDeclSpec();
783  DeclarationName Name = GetNameForDeclarator(D);
784  Expr *BitWidth = static_cast<Expr*>(BW);
785  Expr *Init = static_cast<Expr*>(InitExpr);
786  SourceLocation Loc = D.getIdentifierLoc();
787
788  bool isFunc = D.isFunctionDeclarator();
789
790  assert(!DS.isFriendSpecified());
791
792  // C++ 9.2p6: A member shall not be declared to have automatic storage
793  // duration (auto, register) or with the extern storage-class-specifier.
794  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
795  // data members and cannot be applied to names declared const or static,
796  // and cannot be applied to reference members.
797  switch (DS.getStorageClassSpec()) {
798    case DeclSpec::SCS_unspecified:
799    case DeclSpec::SCS_typedef:
800    case DeclSpec::SCS_static:
801      // FALL THROUGH.
802      break;
803    case DeclSpec::SCS_mutable:
804      if (isFunc) {
805        if (DS.getStorageClassSpecLoc().isValid())
806          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
807        else
808          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
809
810        // FIXME: It would be nicer if the keyword was ignored only for this
811        // declarator. Otherwise we could get follow-up errors.
812        D.getMutableDeclSpec().ClearStorageClassSpecs();
813      } else {
814        QualType T = GetTypeForDeclarator(D, S);
815        diag::kind err = static_cast<diag::kind>(0);
816        if (T->isReferenceType())
817          err = diag::err_mutable_reference;
818        else if (T.isConstQualified())
819          err = diag::err_mutable_const;
820        if (err != 0) {
821          if (DS.getStorageClassSpecLoc().isValid())
822            Diag(DS.getStorageClassSpecLoc(), err);
823          else
824            Diag(DS.getThreadSpecLoc(), err);
825          // FIXME: It would be nicer if the keyword was ignored only for this
826          // declarator. Otherwise we could get follow-up errors.
827          D.getMutableDeclSpec().ClearStorageClassSpecs();
828        }
829      }
830      break;
831    default:
832      if (DS.getStorageClassSpecLoc().isValid())
833        Diag(DS.getStorageClassSpecLoc(),
834             diag::err_storageclass_invalid_for_member);
835      else
836        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
837      D.getMutableDeclSpec().ClearStorageClassSpecs();
838  }
839
840  if (!isFunc &&
841      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
842      D.getNumTypeObjects() == 0) {
843    // Check also for this case:
844    //
845    // typedef int f();
846    // f a;
847    //
848    QualType TDType = GetTypeFromParser(DS.getTypeRep());
849    isFunc = TDType->isFunctionType();
850  }
851
852  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
853                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
854                      !isFunc);
855
856  Decl *Member;
857  if (isInstField) {
858    // FIXME: Check for template parameters!
859    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
860                         AS);
861    assert(Member && "HandleField never returns null");
862  } else {
863    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
864               .getAs<Decl>();
865    if (!Member) {
866      if (BitWidth) DeleteExpr(BitWidth);
867      return DeclPtrTy();
868    }
869
870    // Non-instance-fields can't have a bitfield.
871    if (BitWidth) {
872      if (Member->isInvalidDecl()) {
873        // don't emit another diagnostic.
874      } else if (isa<VarDecl>(Member)) {
875        // C++ 9.6p3: A bit-field shall not be a static member.
876        // "static member 'A' cannot be a bit-field"
877        Diag(Loc, diag::err_static_not_bitfield)
878          << Name << BitWidth->getSourceRange();
879      } else if (isa<TypedefDecl>(Member)) {
880        // "typedef member 'x' cannot be a bit-field"
881        Diag(Loc, diag::err_typedef_not_bitfield)
882          << Name << BitWidth->getSourceRange();
883      } else {
884        // A function typedef ("typedef int f(); f a;").
885        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
886        Diag(Loc, diag::err_not_integral_type_bitfield)
887          << Name << cast<ValueDecl>(Member)->getType()
888          << BitWidth->getSourceRange();
889      }
890
891      DeleteExpr(BitWidth);
892      BitWidth = 0;
893      Member->setInvalidDecl();
894    }
895
896    Member->setAccess(AS);
897
898    // If we have declared a member function template, set the access of the
899    // templated declaration as well.
900    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
901      FunTmpl->getTemplatedDecl()->setAccess(AS);
902  }
903
904  assert((Name || isInstField) && "No identifier for non-field ?");
905
906  if (Init)
907    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
908  if (Deleted) // FIXME: Source location is not very good.
909    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
910
911  if (isInstField) {
912    FieldCollector->Add(cast<FieldDecl>(Member));
913    return DeclPtrTy();
914  }
915  return DeclPtrTy::make(Member);
916}
917
918/// ActOnMemInitializer - Handle a C++ member initializer.
919Sema::MemInitResult
920Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
921                          Scope *S,
922                          const CXXScopeSpec &SS,
923                          IdentifierInfo *MemberOrBase,
924                          TypeTy *TemplateTypeTy,
925                          SourceLocation IdLoc,
926                          SourceLocation LParenLoc,
927                          ExprTy **Args, unsigned NumArgs,
928                          SourceLocation *CommaLocs,
929                          SourceLocation RParenLoc) {
930  if (!ConstructorD)
931    return true;
932
933  AdjustDeclIfTemplate(ConstructorD);
934
935  CXXConstructorDecl *Constructor
936    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
937  if (!Constructor) {
938    // The user wrote a constructor initializer on a function that is
939    // not a C++ constructor. Ignore the error for now, because we may
940    // have more member initializers coming; we'll diagnose it just
941    // once in ActOnMemInitializers.
942    return true;
943  }
944
945  CXXRecordDecl *ClassDecl = Constructor->getParent();
946
947  // C++ [class.base.init]p2:
948  //   Names in a mem-initializer-id are looked up in the scope of the
949  //   constructor’s class and, if not found in that scope, are looked
950  //   up in the scope containing the constructor’s
951  //   definition. [Note: if the constructor’s class contains a member
952  //   with the same name as a direct or virtual base class of the
953  //   class, a mem-initializer-id naming the member or base class and
954  //   composed of a single identifier refers to the class member. A
955  //   mem-initializer-id for the hidden base class may be specified
956  //   using a qualified name. ]
957  if (!SS.getScopeRep() && !TemplateTypeTy) {
958    // Look for a member, first.
959    FieldDecl *Member = 0;
960    DeclContext::lookup_result Result
961      = ClassDecl->lookup(MemberOrBase);
962    if (Result.first != Result.second)
963      Member = dyn_cast<FieldDecl>(*Result.first);
964
965    // FIXME: Handle members of an anonymous union.
966
967    if (Member)
968      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
969                                    RParenLoc);
970  }
971  // It didn't name a member, so see if it names a class.
972  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
973                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
974  if (!BaseTy)
975    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
976      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
977
978  QualType BaseType = GetTypeFromParser(BaseTy);
979
980  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
981                              RParenLoc, ClassDecl);
982}
983
984/// Checks an initializer expression for use of uninitialized fields, such as
985/// containing the field that is being initialized. Returns true if there is an
986/// uninitialized field was used an updates the SourceLocation parameter; false
987/// otherwise.
988static bool InitExprContainsUninitializedFields(const Stmt* S,
989                                                const FieldDecl* LhsField,
990                                                SourceLocation* L) {
991  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
992  if (ME) {
993    const NamedDecl* RhsField = ME->getMemberDecl();
994    if (RhsField == LhsField) {
995      // Initializing a field with itself. Throw a warning.
996      // But wait; there are exceptions!
997      // Exception #1:  The field may not belong to this record.
998      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
999      const Expr* base = ME->getBase();
1000      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1001        // Even though the field matches, it does not belong to this record.
1002        return false;
1003      }
1004      // None of the exceptions triggered; return true to indicate an
1005      // uninitialized field was used.
1006      *L = ME->getMemberLoc();
1007      return true;
1008    }
1009  }
1010  bool found = false;
1011  for (Stmt::const_child_iterator it = S->child_begin();
1012       it != S->child_end() && found == false;
1013       ++it) {
1014    if (isa<CallExpr>(S)) {
1015      // Do not descend into function calls or constructors, as the use
1016      // of an uninitialized field may be valid. One would have to inspect
1017      // the contents of the function/ctor to determine if it is safe or not.
1018      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1019      // may be safe, depending on what the function/ctor does.
1020      continue;
1021    }
1022    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1023  }
1024  return found;
1025}
1026
1027Sema::MemInitResult
1028Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1029                             unsigned NumArgs, SourceLocation IdLoc,
1030                             SourceLocation RParenLoc) {
1031  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1032  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1033  ExprTemporaries.clear();
1034
1035  // Diagnose value-uses of fields to initialize themselves, e.g.
1036  //   foo(foo)
1037  // where foo is not also a parameter to the constructor.
1038  // TODO: implement -Wuninitialized and fold this into that framework.
1039  for (unsigned i = 0; i < NumArgs; ++i) {
1040    SourceLocation L;
1041    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1042      // FIXME: Return true in the case when other fields are used before being
1043      // uninitialized. For example, let this field be the i'th field. When
1044      // initializing the i'th field, throw a warning if any of the >= i'th
1045      // fields are used, as they are not yet initialized.
1046      // Right now we are only handling the case where the i'th field uses
1047      // itself in its initializer.
1048      Diag(L, diag::warn_field_is_uninit);
1049    }
1050  }
1051
1052  bool HasDependentArg = false;
1053  for (unsigned i = 0; i < NumArgs; i++)
1054    HasDependentArg |= Args[i]->isTypeDependent();
1055
1056  CXXConstructorDecl *C = 0;
1057  QualType FieldType = Member->getType();
1058  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1059    FieldType = Array->getElementType();
1060  if (FieldType->isDependentType()) {
1061    // Can't check init for dependent type.
1062  } else if (FieldType->isRecordType()) {
1063    // Member is a record (struct/union/class), so pass the initializer
1064    // arguments down to the record's constructor.
1065    if (!HasDependentArg) {
1066      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1067
1068      C = PerformInitializationByConstructor(FieldType,
1069                                             MultiExprArg(*this,
1070                                                          (void**)Args,
1071                                                          NumArgs),
1072                                             IdLoc,
1073                                             SourceRange(IdLoc, RParenLoc),
1074                                             Member->getDeclName(), IK_Direct,
1075                                             ConstructorArgs);
1076
1077      if (C) {
1078        // Take over the constructor arguments as our own.
1079        NumArgs = ConstructorArgs.size();
1080        Args = (Expr **)ConstructorArgs.take();
1081      }
1082    }
1083  } else if (NumArgs != 1 && NumArgs != 0) {
1084    // The member type is not a record type (or an array of record
1085    // types), so it can be only be default- or copy-initialized.
1086    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1087                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1088  } else if (!HasDependentArg) {
1089    Expr *NewExp;
1090    if (NumArgs == 0) {
1091      if (FieldType->isReferenceType()) {
1092        Diag(IdLoc, diag::err_null_intialized_reference_member)
1093              << Member->getDeclName();
1094        return Diag(Member->getLocation(), diag::note_declared_at);
1095      }
1096      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1097      NumArgs = 1;
1098    }
1099    else
1100      NewExp = (Expr*)Args[0];
1101    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
1102      return true;
1103    Args[0] = NewExp;
1104  }
1105
1106  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1107  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1108  ExprTemporaries.clear();
1109
1110  // FIXME: Perform direct initialization of the member.
1111  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
1112                                                  NumArgs, C, IdLoc, RParenLoc);
1113}
1114
1115Sema::MemInitResult
1116Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
1117                           unsigned NumArgs, SourceLocation IdLoc,
1118                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
1119  bool HasDependentArg = false;
1120  for (unsigned i = 0; i < NumArgs; i++)
1121    HasDependentArg |= Args[i]->isTypeDependent();
1122
1123  if (!BaseType->isDependentType()) {
1124    if (!BaseType->isRecordType())
1125      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
1126        << BaseType << SourceRange(IdLoc, RParenLoc);
1127
1128    // C++ [class.base.init]p2:
1129    //   [...] Unless the mem-initializer-id names a nonstatic data
1130    //   member of the constructor’s class or a direct or virtual base
1131    //   of that class, the mem-initializer is ill-formed. A
1132    //   mem-initializer-list can initialize a base class using any
1133    //   name that denotes that base class type.
1134
1135    // First, check for a direct base class.
1136    const CXXBaseSpecifier *DirectBaseSpec = 0;
1137    for (CXXRecordDecl::base_class_const_iterator Base =
1138         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
1139      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
1140          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
1141        // We found a direct base of this type. That's what we're
1142        // initializing.
1143        DirectBaseSpec = &*Base;
1144        break;
1145      }
1146    }
1147
1148    // Check for a virtual base class.
1149    // FIXME: We might be able to short-circuit this if we know in advance that
1150    // there are no virtual bases.
1151    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1152    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1153      // We haven't found a base yet; search the class hierarchy for a
1154      // virtual base class.
1155      CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1156                         /*DetectVirtual=*/false);
1157      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
1158        for (CXXBasePaths::paths_iterator Path = Paths.begin();
1159             Path != Paths.end(); ++Path) {
1160          if (Path->back().Base->isVirtual()) {
1161            VirtualBaseSpec = Path->back().Base;
1162            break;
1163          }
1164        }
1165      }
1166    }
1167
1168    // C++ [base.class.init]p2:
1169    //   If a mem-initializer-id is ambiguous because it designates both
1170    //   a direct non-virtual base class and an inherited virtual base
1171    //   class, the mem-initializer is ill-formed.
1172    if (DirectBaseSpec && VirtualBaseSpec)
1173      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
1174        << BaseType << SourceRange(IdLoc, RParenLoc);
1175    // C++ [base.class.init]p2:
1176    // Unless the mem-initializer-id names a nonstatic data membeer of the
1177    // constructor's class ot a direst or virtual base of that class, the
1178    // mem-initializer is ill-formed.
1179    if (!DirectBaseSpec && !VirtualBaseSpec)
1180      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
1181      << BaseType << ClassDecl->getNameAsCString()
1182      << SourceRange(IdLoc, RParenLoc);
1183  }
1184
1185  CXXConstructorDecl *C = 0;
1186  if (!BaseType->isDependentType() && !HasDependentArg) {
1187    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1188                      Context.getCanonicalType(BaseType).getUnqualifiedType());
1189    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1190
1191    C = PerformInitializationByConstructor(BaseType,
1192                                           MultiExprArg(*this,
1193                                                        (void**)Args, NumArgs),
1194                                           IdLoc, SourceRange(IdLoc, RParenLoc),
1195                                           Name, IK_Direct,
1196                                           ConstructorArgs);
1197    if (C) {
1198      // Take over the constructor arguments as our own.
1199      NumArgs = ConstructorArgs.size();
1200      Args = (Expr **)ConstructorArgs.take();
1201    }
1202  }
1203
1204  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1205  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1206  ExprTemporaries.clear();
1207
1208  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
1209                                                  NumArgs, C, IdLoc, RParenLoc);
1210}
1211
1212bool
1213Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1214                              CXXBaseOrMemberInitializer **Initializers,
1215                              unsigned NumInitializers,
1216                              bool IsImplicitConstructor) {
1217  // We need to build the initializer AST according to order of construction
1218  // and not what user specified in the Initializers list.
1219  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1220  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1221  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1222  bool HasDependentBaseInit = false;
1223  bool HadError = false;
1224
1225  for (unsigned i = 0; i < NumInitializers; i++) {
1226    CXXBaseOrMemberInitializer *Member = Initializers[i];
1227    if (Member->isBaseInitializer()) {
1228      if (Member->getBaseClass()->isDependentType())
1229        HasDependentBaseInit = true;
1230      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1231    } else {
1232      AllBaseFields[Member->getMember()] = Member;
1233    }
1234  }
1235
1236  if (HasDependentBaseInit) {
1237    // FIXME. This does not preserve the ordering of the initializers.
1238    // Try (with -Wreorder)
1239    // template<class X> struct A {};
1240    // template<class X> struct B : A<X> {
1241    //   B() : x1(10), A<X>() {}
1242    //   int x1;
1243    // };
1244    // B<int> x;
1245    // On seeing one dependent type, we should essentially exit this routine
1246    // while preserving user-declared initializer list. When this routine is
1247    // called during instantiatiation process, this routine will rebuild the
1248    // ordered initializer list correctly.
1249
1250    // If we have a dependent base initialization, we can't determine the
1251    // association between initializers and bases; just dump the known
1252    // initializers into the list, and don't try to deal with other bases.
1253    for (unsigned i = 0; i < NumInitializers; i++) {
1254      CXXBaseOrMemberInitializer *Member = Initializers[i];
1255      if (Member->isBaseInitializer())
1256        AllToInit.push_back(Member);
1257    }
1258  } else {
1259    // Push virtual bases before others.
1260    for (CXXRecordDecl::base_class_iterator VBase =
1261         ClassDecl->vbases_begin(),
1262         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1263      if (VBase->getType()->isDependentType())
1264        continue;
1265      if (CXXBaseOrMemberInitializer *Value =
1266          AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1267        CXXRecordDecl *BaseDecl =
1268          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1269        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1270        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
1271          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1272        AllToInit.push_back(Value);
1273      }
1274      else {
1275        CXXRecordDecl *VBaseDecl =
1276        cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1277        assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null");
1278        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1279        if (!Ctor) {
1280          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1281            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1282            << 0 << VBase->getType();
1283          Diag(VBaseDecl->getLocation(), diag::note_previous_class_decl)
1284            << Context.getTagDeclType(VBaseDecl);
1285          HadError = true;
1286          continue;
1287        }
1288
1289        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1290        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1291                                    Constructor->getLocation(), CtorArgs))
1292          continue;
1293
1294        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1295
1296        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1297        // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1298        ExprTemporaries.clear();
1299        CXXBaseOrMemberInitializer *Member =
1300          new (Context) CXXBaseOrMemberInitializer(VBase->getType(),
1301                                                   CtorArgs.takeAs<Expr>(),
1302                                                   CtorArgs.size(), Ctor,
1303                                                   SourceLocation(),
1304                                                   SourceLocation());
1305        AllToInit.push_back(Member);
1306      }
1307    }
1308
1309    for (CXXRecordDecl::base_class_iterator Base =
1310         ClassDecl->bases_begin(),
1311         E = ClassDecl->bases_end(); Base != E; ++Base) {
1312      // Virtuals are in the virtual base list and already constructed.
1313      if (Base->isVirtual())
1314        continue;
1315      // Skip dependent types.
1316      if (Base->getType()->isDependentType())
1317        continue;
1318      if (CXXBaseOrMemberInitializer *Value =
1319          AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1320        CXXRecordDecl *BaseDecl =
1321          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1322        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1323        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
1324          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1325        AllToInit.push_back(Value);
1326      }
1327      else {
1328        CXXRecordDecl *BaseDecl =
1329          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1330        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1331         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1332        if (!Ctor) {
1333          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1334            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1335            << 0 << Base->getType();
1336          Diag(BaseDecl->getLocation(), diag::note_previous_class_decl)
1337            << Context.getTagDeclType(BaseDecl);
1338          HadError = true;
1339          continue;
1340        }
1341
1342        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1343        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1344                                     Constructor->getLocation(), CtorArgs))
1345          continue;
1346
1347        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1348
1349        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1350        // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1351        ExprTemporaries.clear();
1352        CXXBaseOrMemberInitializer *Member =
1353          new (Context) CXXBaseOrMemberInitializer(Base->getType(),
1354                                                   CtorArgs.takeAs<Expr>(),
1355                                                   CtorArgs.size(), Ctor,
1356                                                   SourceLocation(),
1357                                                   SourceLocation());
1358        AllToInit.push_back(Member);
1359      }
1360    }
1361  }
1362
1363  // non-static data members.
1364  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1365       E = ClassDecl->field_end(); Field != E; ++Field) {
1366    if ((*Field)->isAnonymousStructOrUnion()) {
1367      if (const RecordType *FieldClassType =
1368          Field->getType()->getAs<RecordType>()) {
1369        CXXRecordDecl *FieldClassDecl
1370          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1371        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1372            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1373          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1374            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1375            // set to the anonymous union data member used in the initializer
1376            // list.
1377            Value->setMember(*Field);
1378            Value->setAnonUnionMember(*FA);
1379            AllToInit.push_back(Value);
1380            break;
1381          }
1382        }
1383      }
1384      continue;
1385    }
1386    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1387      QualType FT = (*Field)->getType();
1388      if (const RecordType* RT = FT->getAs<RecordType>()) {
1389        CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RT->getDecl());
1390        assert(FieldRecDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1391        if (CXXConstructorDecl *Ctor =
1392              FieldRecDecl->getDefaultConstructor(Context))
1393          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1394      }
1395      AllToInit.push_back(Value);
1396      continue;
1397    }
1398
1399    if ((*Field)->getType()->isDependentType())
1400      continue;
1401
1402    QualType FT = Context.getBaseElementType((*Field)->getType());
1403    if (const RecordType* RT = FT->getAs<RecordType>()) {
1404      CXXConstructorDecl *Ctor =
1405        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1406      if (!Ctor) {
1407        Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1408          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1409          << 1 << (*Field)->getDeclName();
1410        Diag(Field->getLocation(), diag::note_field_decl);
1411        Diag(RT->getDecl()->getLocation(), diag::note_previous_class_decl)
1412          << Context.getTagDeclType(RT->getDecl());
1413        HadError = true;
1414        continue;
1415      }
1416
1417      ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1418      if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1419                                  Constructor->getLocation(), CtorArgs))
1420        continue;
1421
1422      // FIXME: CXXBaseOrMemberInitializer should only contain a single
1423      // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1424      ExprTemporaries.clear();
1425      CXXBaseOrMemberInitializer *Member =
1426        new (Context) CXXBaseOrMemberInitializer(*Field,CtorArgs.takeAs<Expr>(),
1427                                                 CtorArgs.size(), Ctor,
1428                                                 SourceLocation(),
1429                                                 SourceLocation());
1430
1431      AllToInit.push_back(Member);
1432      MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1433      if (FT.isConstQualified() && Ctor->isTrivial()) {
1434        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1435          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1436          << 1 << (*Field)->getDeclName();
1437        Diag((*Field)->getLocation(), diag::note_declared_at);
1438        HadError = true;
1439      }
1440    }
1441    else if (FT->isReferenceType()) {
1442      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1443        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1444        << 0 << (*Field)->getDeclName();
1445      Diag((*Field)->getLocation(), diag::note_declared_at);
1446      HadError = true;
1447    }
1448    else if (FT.isConstQualified()) {
1449      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1450        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1451        << 1 << (*Field)->getDeclName();
1452      Diag((*Field)->getLocation(), diag::note_declared_at);
1453      HadError = true;
1454    }
1455  }
1456
1457  NumInitializers = AllToInit.size();
1458  if (NumInitializers > 0) {
1459    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1460    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1461      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1462
1463    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1464    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1465      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1466  }
1467
1468  return HadError;
1469}
1470
1471static void *GetKeyForTopLevelField(FieldDecl *Field) {
1472  // For anonymous unions, use the class declaration as the key.
1473  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1474    if (RT->getDecl()->isAnonymousStructOrUnion())
1475      return static_cast<void *>(RT->getDecl());
1476  }
1477  return static_cast<void *>(Field);
1478}
1479
1480static void *GetKeyForBase(QualType BaseType) {
1481  if (const RecordType *RT = BaseType->getAs<RecordType>())
1482    return (void *)RT;
1483
1484  assert(0 && "Unexpected base type!");
1485  return 0;
1486}
1487
1488static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1489                             bool MemberMaybeAnon = false) {
1490  // For fields injected into the class via declaration of an anonymous union,
1491  // use its anonymous union class declaration as the unique key.
1492  if (Member->isMemberInitializer()) {
1493    FieldDecl *Field = Member->getMember();
1494
1495    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1496    // data member of the class. Data member used in the initializer list is
1497    // in AnonUnionMember field.
1498    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1499      Field = Member->getAnonUnionMember();
1500    if (Field->getDeclContext()->isRecord()) {
1501      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1502      if (RD->isAnonymousStructOrUnion())
1503        return static_cast<void *>(RD);
1504    }
1505    return static_cast<void *>(Field);
1506  }
1507
1508  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1509}
1510
1511/// ActOnMemInitializers - Handle the member initializers for a constructor.
1512void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1513                                SourceLocation ColonLoc,
1514                                MemInitTy **MemInits, unsigned NumMemInits) {
1515  if (!ConstructorDecl)
1516    return;
1517
1518  AdjustDeclIfTemplate(ConstructorDecl);
1519
1520  CXXConstructorDecl *Constructor
1521    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1522
1523  if (!Constructor) {
1524    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1525    return;
1526  }
1527
1528  if (!Constructor->isDependentContext()) {
1529    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1530    bool err = false;
1531    for (unsigned i = 0; i < NumMemInits; i++) {
1532      CXXBaseOrMemberInitializer *Member =
1533        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1534      void *KeyToMember = GetKeyForMember(Member);
1535      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1536      if (!PrevMember) {
1537        PrevMember = Member;
1538        continue;
1539      }
1540      if (FieldDecl *Field = Member->getMember())
1541        Diag(Member->getSourceLocation(),
1542             diag::error_multiple_mem_initialization)
1543        << Field->getNameAsString();
1544      else {
1545        Type *BaseClass = Member->getBaseClass();
1546        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1547        Diag(Member->getSourceLocation(),
1548             diag::error_multiple_base_initialization)
1549          << QualType(BaseClass, 0);
1550      }
1551      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1552        << 0;
1553      err = true;
1554    }
1555
1556    if (err)
1557      return;
1558  }
1559
1560  SetBaseOrMemberInitializers(Constructor,
1561                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1562                      NumMemInits, false);
1563
1564  if (Constructor->isDependentContext())
1565    return;
1566
1567  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1568      Diagnostic::Ignored &&
1569      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1570      Diagnostic::Ignored)
1571    return;
1572
1573  // Also issue warning if order of ctor-initializer list does not match order
1574  // of 1) base class declarations and 2) order of non-static data members.
1575  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1576
1577  CXXRecordDecl *ClassDecl
1578    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1579  // Push virtual bases before others.
1580  for (CXXRecordDecl::base_class_iterator VBase =
1581       ClassDecl->vbases_begin(),
1582       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1583    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1584
1585  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1586       E = ClassDecl->bases_end(); Base != E; ++Base) {
1587    // Virtuals are alread in the virtual base list and are constructed
1588    // first.
1589    if (Base->isVirtual())
1590      continue;
1591    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1592  }
1593
1594  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1595       E = ClassDecl->field_end(); Field != E; ++Field)
1596    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1597
1598  int Last = AllBaseOrMembers.size();
1599  int curIndex = 0;
1600  CXXBaseOrMemberInitializer *PrevMember = 0;
1601  for (unsigned i = 0; i < NumMemInits; i++) {
1602    CXXBaseOrMemberInitializer *Member =
1603      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1604    void *MemberInCtorList = GetKeyForMember(Member, true);
1605
1606    for (; curIndex < Last; curIndex++)
1607      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1608        break;
1609    if (curIndex == Last) {
1610      assert(PrevMember && "Member not in member list?!");
1611      // Initializer as specified in ctor-initializer list is out of order.
1612      // Issue a warning diagnostic.
1613      if (PrevMember->isBaseInitializer()) {
1614        // Diagnostics is for an initialized base class.
1615        Type *BaseClass = PrevMember->getBaseClass();
1616        Diag(PrevMember->getSourceLocation(),
1617             diag::warn_base_initialized)
1618          << QualType(BaseClass, 0);
1619      } else {
1620        FieldDecl *Field = PrevMember->getMember();
1621        Diag(PrevMember->getSourceLocation(),
1622             diag::warn_field_initialized)
1623          << Field->getNameAsString();
1624      }
1625      // Also the note!
1626      if (FieldDecl *Field = Member->getMember())
1627        Diag(Member->getSourceLocation(),
1628             diag::note_fieldorbase_initialized_here) << 0
1629          << Field->getNameAsString();
1630      else {
1631        Type *BaseClass = Member->getBaseClass();
1632        Diag(Member->getSourceLocation(),
1633             diag::note_fieldorbase_initialized_here) << 1
1634          << QualType(BaseClass, 0);
1635      }
1636      for (curIndex = 0; curIndex < Last; curIndex++)
1637        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1638          break;
1639    }
1640    PrevMember = Member;
1641  }
1642}
1643
1644void
1645Sema::computeBaseOrMembersToDestroy(CXXDestructorDecl *Destructor) {
1646  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Destructor->getDeclContext());
1647  llvm::SmallVector<uintptr_t, 32> AllToDestruct;
1648
1649  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1650       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1651    if (VBase->getType()->isDependentType())
1652      continue;
1653    // Skip over virtual bases which have trivial destructors.
1654    CXXRecordDecl *BaseClassDecl
1655      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1656    if (BaseClassDecl->hasTrivialDestructor())
1657      continue;
1658    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1659      MarkDeclarationReferenced(Destructor->getLocation(),
1660                                const_cast<CXXDestructorDecl*>(Dtor));
1661
1662    uintptr_t Member =
1663    reinterpret_cast<uintptr_t>(VBase->getType().getTypePtr())
1664      | CXXDestructorDecl::VBASE;
1665    AllToDestruct.push_back(Member);
1666  }
1667  for (CXXRecordDecl::base_class_iterator Base =
1668       ClassDecl->bases_begin(),
1669       E = ClassDecl->bases_end(); Base != E; ++Base) {
1670    if (Base->isVirtual())
1671      continue;
1672    if (Base->getType()->isDependentType())
1673      continue;
1674    // Skip over virtual bases which have trivial destructors.
1675    CXXRecordDecl *BaseClassDecl
1676    = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1677    if (BaseClassDecl->hasTrivialDestructor())
1678      continue;
1679    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1680      MarkDeclarationReferenced(Destructor->getLocation(),
1681                                const_cast<CXXDestructorDecl*>(Dtor));
1682    uintptr_t Member =
1683    reinterpret_cast<uintptr_t>(Base->getType().getTypePtr())
1684      | CXXDestructorDecl::DRCTNONVBASE;
1685    AllToDestruct.push_back(Member);
1686  }
1687
1688  // non-static data members.
1689  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1690       E = ClassDecl->field_end(); Field != E; ++Field) {
1691    QualType FieldType = Context.getBaseElementType((*Field)->getType());
1692
1693    if (const RecordType* RT = FieldType->getAs<RecordType>()) {
1694      // Skip over virtual bases which have trivial destructors.
1695      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1696      if (FieldClassDecl->hasTrivialDestructor())
1697        continue;
1698      if (const CXXDestructorDecl *Dtor =
1699            FieldClassDecl->getDestructor(Context))
1700        MarkDeclarationReferenced(Destructor->getLocation(),
1701                                  const_cast<CXXDestructorDecl*>(Dtor));
1702      uintptr_t Member = reinterpret_cast<uintptr_t>(*Field);
1703      AllToDestruct.push_back(Member);
1704    }
1705  }
1706
1707  unsigned NumDestructions = AllToDestruct.size();
1708  if (NumDestructions > 0) {
1709    Destructor->setNumBaseOrMemberDestructions(NumDestructions);
1710    uintptr_t *BaseOrMemberDestructions =
1711      new (Context) uintptr_t [NumDestructions];
1712    // Insert in reverse order.
1713    for (int Idx = NumDestructions-1, i=0 ; Idx >= 0; --Idx)
1714      BaseOrMemberDestructions[i++] = AllToDestruct[Idx];
1715    Destructor->setBaseOrMemberDestructions(BaseOrMemberDestructions);
1716  }
1717}
1718
1719void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1720  if (!CDtorDecl)
1721    return;
1722
1723  AdjustDeclIfTemplate(CDtorDecl);
1724
1725  if (CXXConstructorDecl *Constructor
1726      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1727    SetBaseOrMemberInitializers(Constructor, 0, 0, false);
1728}
1729
1730namespace {
1731  /// PureVirtualMethodCollector - traverses a class and its superclasses
1732  /// and determines if it has any pure virtual methods.
1733  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1734    ASTContext &Context;
1735
1736  public:
1737    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1738
1739  private:
1740    MethodList Methods;
1741
1742    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1743
1744  public:
1745    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1746      : Context(Ctx) {
1747
1748      MethodList List;
1749      Collect(RD, List);
1750
1751      // Copy the temporary list to methods, and make sure to ignore any
1752      // null entries.
1753      for (size_t i = 0, e = List.size(); i != e; ++i) {
1754        if (List[i])
1755          Methods.push_back(List[i]);
1756      }
1757    }
1758
1759    bool empty() const { return Methods.empty(); }
1760
1761    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1762    MethodList::const_iterator methods_end() { return Methods.end(); }
1763  };
1764
1765  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1766                                           MethodList& Methods) {
1767    // First, collect the pure virtual methods for the base classes.
1768    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1769         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1770      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1771        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1772        if (BaseDecl && BaseDecl->isAbstract())
1773          Collect(BaseDecl, Methods);
1774      }
1775    }
1776
1777    // Next, zero out any pure virtual methods that this class overrides.
1778    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1779
1780    MethodSetTy OverriddenMethods;
1781    size_t MethodsSize = Methods.size();
1782
1783    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1784         i != e; ++i) {
1785      // Traverse the record, looking for methods.
1786      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1787        // If the method is pure virtual, add it to the methods vector.
1788        if (MD->isPure())
1789          Methods.push_back(MD);
1790
1791        // Record all the overridden methods in our set.
1792        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1793             E = MD->end_overridden_methods(); I != E; ++I) {
1794          // Keep track of the overridden methods.
1795          OverriddenMethods.insert(*I);
1796        }
1797      }
1798    }
1799
1800    // Now go through the methods and zero out all the ones we know are
1801    // overridden.
1802    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1803      if (OverriddenMethods.count(Methods[i]))
1804        Methods[i] = 0;
1805    }
1806
1807  }
1808}
1809
1810
1811bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1812                                  unsigned DiagID, AbstractDiagSelID SelID,
1813                                  const CXXRecordDecl *CurrentRD) {
1814  if (SelID == -1)
1815    return RequireNonAbstractType(Loc, T,
1816                                  PDiag(DiagID), CurrentRD);
1817  else
1818    return RequireNonAbstractType(Loc, T,
1819                                  PDiag(DiagID) << SelID, CurrentRD);
1820}
1821
1822bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1823                                  const PartialDiagnostic &PD,
1824                                  const CXXRecordDecl *CurrentRD) {
1825  if (!getLangOptions().CPlusPlus)
1826    return false;
1827
1828  if (const ArrayType *AT = Context.getAsArrayType(T))
1829    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1830                                  CurrentRD);
1831
1832  if (const PointerType *PT = T->getAs<PointerType>()) {
1833    // Find the innermost pointer type.
1834    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1835      PT = T;
1836
1837    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1838      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1839  }
1840
1841  const RecordType *RT = T->getAs<RecordType>();
1842  if (!RT)
1843    return false;
1844
1845  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1846  if (!RD)
1847    return false;
1848
1849  if (CurrentRD && CurrentRD != RD)
1850    return false;
1851
1852  if (!RD->isAbstract())
1853    return false;
1854
1855  Diag(Loc, PD) << RD->getDeclName();
1856
1857  // Check if we've already emitted the list of pure virtual functions for this
1858  // class.
1859  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1860    return true;
1861
1862  PureVirtualMethodCollector Collector(Context, RD);
1863
1864  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1865       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1866    const CXXMethodDecl *MD = *I;
1867
1868    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1869      MD->getDeclName();
1870  }
1871
1872  if (!PureVirtualClassDiagSet)
1873    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1874  PureVirtualClassDiagSet->insert(RD);
1875
1876  return true;
1877}
1878
1879namespace {
1880  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1881    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1882    Sema &SemaRef;
1883    CXXRecordDecl *AbstractClass;
1884
1885    bool VisitDeclContext(const DeclContext *DC) {
1886      bool Invalid = false;
1887
1888      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1889           E = DC->decls_end(); I != E; ++I)
1890        Invalid |= Visit(*I);
1891
1892      return Invalid;
1893    }
1894
1895  public:
1896    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1897      : SemaRef(SemaRef), AbstractClass(ac) {
1898        Visit(SemaRef.Context.getTranslationUnitDecl());
1899    }
1900
1901    bool VisitFunctionDecl(const FunctionDecl *FD) {
1902      if (FD->isThisDeclarationADefinition()) {
1903        // No need to do the check if we're in a definition, because it requires
1904        // that the return/param types are complete.
1905        // because that requires
1906        return VisitDeclContext(FD);
1907      }
1908
1909      // Check the return type.
1910      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
1911      bool Invalid =
1912        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1913                                       diag::err_abstract_type_in_decl,
1914                                       Sema::AbstractReturnType,
1915                                       AbstractClass);
1916
1917      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1918           E = FD->param_end(); I != E; ++I) {
1919        const ParmVarDecl *VD = *I;
1920        Invalid |=
1921          SemaRef.RequireNonAbstractType(VD->getLocation(),
1922                                         VD->getOriginalType(),
1923                                         diag::err_abstract_type_in_decl,
1924                                         Sema::AbstractParamType,
1925                                         AbstractClass);
1926      }
1927
1928      return Invalid;
1929    }
1930
1931    bool VisitDecl(const Decl* D) {
1932      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1933        return VisitDeclContext(DC);
1934
1935      return false;
1936    }
1937  };
1938}
1939
1940void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1941                                             DeclPtrTy TagDecl,
1942                                             SourceLocation LBrac,
1943                                             SourceLocation RBrac) {
1944  if (!TagDecl)
1945    return;
1946
1947  AdjustDeclIfTemplate(TagDecl);
1948  ActOnFields(S, RLoc, TagDecl,
1949              (DeclPtrTy*)FieldCollector->getCurFields(),
1950              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1951
1952  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1953  if (!RD->isAbstract()) {
1954    // Collect all the pure virtual methods and see if this is an abstract
1955    // class after all.
1956    PureVirtualMethodCollector Collector(Context, RD);
1957    if (!Collector.empty())
1958      RD->setAbstract(true);
1959  }
1960
1961  if (RD->isAbstract())
1962    AbstractClassUsageDiagnoser(*this, RD);
1963
1964  if (!RD->isDependentType() && !RD->isInvalidDecl())
1965    AddImplicitlyDeclaredMembersToClass(RD);
1966}
1967
1968/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1969/// special functions, such as the default constructor, copy
1970/// constructor, or destructor, to the given C++ class (C++
1971/// [special]p1).  This routine can only be executed just before the
1972/// definition of the class is complete.
1973void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1974  CanQualType ClassType
1975    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1976
1977  // FIXME: Implicit declarations have exception specifications, which are
1978  // the union of the specifications of the implicitly called functions.
1979
1980  if (!ClassDecl->hasUserDeclaredConstructor()) {
1981    // C++ [class.ctor]p5:
1982    //   A default constructor for a class X is a constructor of class X
1983    //   that can be called without an argument. If there is no
1984    //   user-declared constructor for class X, a default constructor is
1985    //   implicitly declared. An implicitly-declared default constructor
1986    //   is an inline public member of its class.
1987    DeclarationName Name
1988      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1989    CXXConstructorDecl *DefaultCon =
1990      CXXConstructorDecl::Create(Context, ClassDecl,
1991                                 ClassDecl->getLocation(), Name,
1992                                 Context.getFunctionType(Context.VoidTy,
1993                                                         0, 0, false, 0),
1994                                 /*DInfo=*/0,
1995                                 /*isExplicit=*/false,
1996                                 /*isInline=*/true,
1997                                 /*isImplicitlyDeclared=*/true);
1998    DefaultCon->setAccess(AS_public);
1999    DefaultCon->setImplicit();
2000    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2001    ClassDecl->addDecl(DefaultCon);
2002  }
2003
2004  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2005    // C++ [class.copy]p4:
2006    //   If the class definition does not explicitly declare a copy
2007    //   constructor, one is declared implicitly.
2008
2009    // C++ [class.copy]p5:
2010    //   The implicitly-declared copy constructor for a class X will
2011    //   have the form
2012    //
2013    //       X::X(const X&)
2014    //
2015    //   if
2016    bool HasConstCopyConstructor = true;
2017
2018    //     -- each direct or virtual base class B of X has a copy
2019    //        constructor whose first parameter is of type const B& or
2020    //        const volatile B&, and
2021    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2022         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2023      const CXXRecordDecl *BaseClassDecl
2024        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2025      HasConstCopyConstructor
2026        = BaseClassDecl->hasConstCopyConstructor(Context);
2027    }
2028
2029    //     -- for all the nonstatic data members of X that are of a
2030    //        class type M (or array thereof), each such class type
2031    //        has a copy constructor whose first parameter is of type
2032    //        const M& or const volatile M&.
2033    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2034         HasConstCopyConstructor && Field != ClassDecl->field_end();
2035         ++Field) {
2036      QualType FieldType = (*Field)->getType();
2037      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2038        FieldType = Array->getElementType();
2039      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2040        const CXXRecordDecl *FieldClassDecl
2041          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2042        HasConstCopyConstructor
2043          = FieldClassDecl->hasConstCopyConstructor(Context);
2044      }
2045    }
2046
2047    //   Otherwise, the implicitly declared copy constructor will have
2048    //   the form
2049    //
2050    //       X::X(X&)
2051    QualType ArgType = ClassType;
2052    if (HasConstCopyConstructor)
2053      ArgType = ArgType.withConst();
2054    ArgType = Context.getLValueReferenceType(ArgType);
2055
2056    //   An implicitly-declared copy constructor is an inline public
2057    //   member of its class.
2058    DeclarationName Name
2059      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2060    CXXConstructorDecl *CopyConstructor
2061      = CXXConstructorDecl::Create(Context, ClassDecl,
2062                                   ClassDecl->getLocation(), Name,
2063                                   Context.getFunctionType(Context.VoidTy,
2064                                                           &ArgType, 1,
2065                                                           false, 0),
2066                                   /*DInfo=*/0,
2067                                   /*isExplicit=*/false,
2068                                   /*isInline=*/true,
2069                                   /*isImplicitlyDeclared=*/true);
2070    CopyConstructor->setAccess(AS_public);
2071    CopyConstructor->setImplicit();
2072    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2073
2074    // Add the parameter to the constructor.
2075    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2076                                                 ClassDecl->getLocation(),
2077                                                 /*IdentifierInfo=*/0,
2078                                                 ArgType, /*DInfo=*/0,
2079                                                 VarDecl::None, 0);
2080    CopyConstructor->setParams(Context, &FromParam, 1);
2081    ClassDecl->addDecl(CopyConstructor);
2082  }
2083
2084  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2085    // Note: The following rules are largely analoguous to the copy
2086    // constructor rules. Note that virtual bases are not taken into account
2087    // for determining the argument type of the operator. Note also that
2088    // operators taking an object instead of a reference are allowed.
2089    //
2090    // C++ [class.copy]p10:
2091    //   If the class definition does not explicitly declare a copy
2092    //   assignment operator, one is declared implicitly.
2093    //   The implicitly-defined copy assignment operator for a class X
2094    //   will have the form
2095    //
2096    //       X& X::operator=(const X&)
2097    //
2098    //   if
2099    bool HasConstCopyAssignment = true;
2100
2101    //       -- each direct base class B of X has a copy assignment operator
2102    //          whose parameter is of type const B&, const volatile B& or B,
2103    //          and
2104    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2105         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2106      assert(!Base->getType()->isDependentType() &&
2107            "Cannot generate implicit members for class with dependent bases.");
2108      const CXXRecordDecl *BaseClassDecl
2109        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2110      const CXXMethodDecl *MD = 0;
2111      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2112                                                                     MD);
2113    }
2114
2115    //       -- for all the nonstatic data members of X that are of a class
2116    //          type M (or array thereof), each such class type has a copy
2117    //          assignment operator whose parameter is of type const M&,
2118    //          const volatile M& or M.
2119    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2120         HasConstCopyAssignment && Field != ClassDecl->field_end();
2121         ++Field) {
2122      QualType FieldType = (*Field)->getType();
2123      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2124        FieldType = Array->getElementType();
2125      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2126        const CXXRecordDecl *FieldClassDecl
2127          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2128        const CXXMethodDecl *MD = 0;
2129        HasConstCopyAssignment
2130          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2131      }
2132    }
2133
2134    //   Otherwise, the implicitly declared copy assignment operator will
2135    //   have the form
2136    //
2137    //       X& X::operator=(X&)
2138    QualType ArgType = ClassType;
2139    QualType RetType = Context.getLValueReferenceType(ArgType);
2140    if (HasConstCopyAssignment)
2141      ArgType = ArgType.withConst();
2142    ArgType = Context.getLValueReferenceType(ArgType);
2143
2144    //   An implicitly-declared copy assignment operator is an inline public
2145    //   member of its class.
2146    DeclarationName Name =
2147      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2148    CXXMethodDecl *CopyAssignment =
2149      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2150                            Context.getFunctionType(RetType, &ArgType, 1,
2151                                                    false, 0),
2152                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2153    CopyAssignment->setAccess(AS_public);
2154    CopyAssignment->setImplicit();
2155    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2156    CopyAssignment->setCopyAssignment(true);
2157
2158    // Add the parameter to the operator.
2159    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2160                                                 ClassDecl->getLocation(),
2161                                                 /*IdentifierInfo=*/0,
2162                                                 ArgType, /*DInfo=*/0,
2163                                                 VarDecl::None, 0);
2164    CopyAssignment->setParams(Context, &FromParam, 1);
2165
2166    // Don't call addedAssignmentOperator. There is no way to distinguish an
2167    // implicit from an explicit assignment operator.
2168    ClassDecl->addDecl(CopyAssignment);
2169  }
2170
2171  if (!ClassDecl->hasUserDeclaredDestructor()) {
2172    // C++ [class.dtor]p2:
2173    //   If a class has no user-declared destructor, a destructor is
2174    //   declared implicitly. An implicitly-declared destructor is an
2175    //   inline public member of its class.
2176    DeclarationName Name
2177      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2178    CXXDestructorDecl *Destructor
2179      = CXXDestructorDecl::Create(Context, ClassDecl,
2180                                  ClassDecl->getLocation(), Name,
2181                                  Context.getFunctionType(Context.VoidTy,
2182                                                          0, 0, false, 0),
2183                                  /*isInline=*/true,
2184                                  /*isImplicitlyDeclared=*/true);
2185    Destructor->setAccess(AS_public);
2186    Destructor->setImplicit();
2187    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2188    ClassDecl->addDecl(Destructor);
2189  }
2190}
2191
2192void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2193  Decl *D = TemplateD.getAs<Decl>();
2194  if (!D)
2195    return;
2196
2197  TemplateParameterList *Params = 0;
2198  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2199    Params = Template->getTemplateParameters();
2200  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2201           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2202    Params = PartialSpec->getTemplateParameters();
2203  else
2204    return;
2205
2206  for (TemplateParameterList::iterator Param = Params->begin(),
2207                                    ParamEnd = Params->end();
2208       Param != ParamEnd; ++Param) {
2209    NamedDecl *Named = cast<NamedDecl>(*Param);
2210    if (Named->getDeclName()) {
2211      S->AddDecl(DeclPtrTy::make(Named));
2212      IdResolver.AddDecl(Named);
2213    }
2214  }
2215}
2216
2217/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2218/// parsing a top-level (non-nested) C++ class, and we are now
2219/// parsing those parts of the given Method declaration that could
2220/// not be parsed earlier (C++ [class.mem]p2), such as default
2221/// arguments. This action should enter the scope of the given
2222/// Method declaration as if we had just parsed the qualified method
2223/// name. However, it should not bring the parameters into scope;
2224/// that will be performed by ActOnDelayedCXXMethodParameter.
2225void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2226  if (!MethodD)
2227    return;
2228
2229  AdjustDeclIfTemplate(MethodD);
2230
2231  CXXScopeSpec SS;
2232  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2233  QualType ClassTy
2234    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2235  SS.setScopeRep(
2236    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2237  ActOnCXXEnterDeclaratorScope(S, SS);
2238}
2239
2240/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2241/// C++ method declaration. We're (re-)introducing the given
2242/// function parameter into scope for use in parsing later parts of
2243/// the method declaration. For example, we could see an
2244/// ActOnParamDefaultArgument event for this parameter.
2245void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2246  if (!ParamD)
2247    return;
2248
2249  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2250
2251  // If this parameter has an unparsed default argument, clear it out
2252  // to make way for the parsed default argument.
2253  if (Param->hasUnparsedDefaultArg())
2254    Param->setDefaultArg(0);
2255
2256  S->AddDecl(DeclPtrTy::make(Param));
2257  if (Param->getDeclName())
2258    IdResolver.AddDecl(Param);
2259}
2260
2261/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2262/// processing the delayed method declaration for Method. The method
2263/// declaration is now considered finished. There may be a separate
2264/// ActOnStartOfFunctionDef action later (not necessarily
2265/// immediately!) for this method, if it was also defined inside the
2266/// class body.
2267void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2268  if (!MethodD)
2269    return;
2270
2271  AdjustDeclIfTemplate(MethodD);
2272
2273  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2274  CXXScopeSpec SS;
2275  QualType ClassTy
2276    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2277  SS.setScopeRep(
2278    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2279  ActOnCXXExitDeclaratorScope(S, SS);
2280
2281  // Now that we have our default arguments, check the constructor
2282  // again. It could produce additional diagnostics or affect whether
2283  // the class has implicitly-declared destructors, among other
2284  // things.
2285  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2286    CheckConstructor(Constructor);
2287
2288  // Check the default arguments, which we may have added.
2289  if (!Method->isInvalidDecl())
2290    CheckCXXDefaultArguments(Method);
2291}
2292
2293/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2294/// the well-formedness of the constructor declarator @p D with type @p
2295/// R. If there are any errors in the declarator, this routine will
2296/// emit diagnostics and set the invalid bit to true.  In any case, the type
2297/// will be updated to reflect a well-formed type for the constructor and
2298/// returned.
2299QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2300                                          FunctionDecl::StorageClass &SC) {
2301  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2302
2303  // C++ [class.ctor]p3:
2304  //   A constructor shall not be virtual (10.3) or static (9.4). A
2305  //   constructor can be invoked for a const, volatile or const
2306  //   volatile object. A constructor shall not be declared const,
2307  //   volatile, or const volatile (9.3.2).
2308  if (isVirtual) {
2309    if (!D.isInvalidType())
2310      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2311        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2312        << SourceRange(D.getIdentifierLoc());
2313    D.setInvalidType();
2314  }
2315  if (SC == FunctionDecl::Static) {
2316    if (!D.isInvalidType())
2317      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2318        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2319        << SourceRange(D.getIdentifierLoc());
2320    D.setInvalidType();
2321    SC = FunctionDecl::None;
2322  }
2323
2324  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2325  if (FTI.TypeQuals != 0) {
2326    if (FTI.TypeQuals & Qualifiers::Const)
2327      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2328        << "const" << SourceRange(D.getIdentifierLoc());
2329    if (FTI.TypeQuals & Qualifiers::Volatile)
2330      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2331        << "volatile" << SourceRange(D.getIdentifierLoc());
2332    if (FTI.TypeQuals & Qualifiers::Restrict)
2333      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2334        << "restrict" << SourceRange(D.getIdentifierLoc());
2335  }
2336
2337  // Rebuild the function type "R" without any type qualifiers (in
2338  // case any of the errors above fired) and with "void" as the
2339  // return type, since constructors don't have return types. We
2340  // *always* have to do this, because GetTypeForDeclarator will
2341  // put in a result type of "int" when none was specified.
2342  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2343  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2344                                 Proto->getNumArgs(),
2345                                 Proto->isVariadic(), 0);
2346}
2347
2348/// CheckConstructor - Checks a fully-formed constructor for
2349/// well-formedness, issuing any diagnostics required. Returns true if
2350/// the constructor declarator is invalid.
2351void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2352  CXXRecordDecl *ClassDecl
2353    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2354  if (!ClassDecl)
2355    return Constructor->setInvalidDecl();
2356
2357  // C++ [class.copy]p3:
2358  //   A declaration of a constructor for a class X is ill-formed if
2359  //   its first parameter is of type (optionally cv-qualified) X and
2360  //   either there are no other parameters or else all other
2361  //   parameters have default arguments.
2362  if (!Constructor->isInvalidDecl() &&
2363      ((Constructor->getNumParams() == 1) ||
2364       (Constructor->getNumParams() > 1 &&
2365        Constructor->getParamDecl(1)->hasDefaultArg()))) {
2366    QualType ParamType = Constructor->getParamDecl(0)->getType();
2367    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2368    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2369      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2370      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2371        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2372      Constructor->setInvalidDecl();
2373    }
2374  }
2375
2376  // Notify the class that we've added a constructor.
2377  ClassDecl->addedConstructor(Context, Constructor);
2378}
2379
2380static inline bool
2381FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2382  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2383          FTI.ArgInfo[0].Param &&
2384          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2385}
2386
2387/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2388/// the well-formednes of the destructor declarator @p D with type @p
2389/// R. If there are any errors in the declarator, this routine will
2390/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2391/// will be updated to reflect a well-formed type for the destructor and
2392/// returned.
2393QualType Sema::CheckDestructorDeclarator(Declarator &D,
2394                                         FunctionDecl::StorageClass& SC) {
2395  // C++ [class.dtor]p1:
2396  //   [...] A typedef-name that names a class is a class-name
2397  //   (7.1.3); however, a typedef-name that names a class shall not
2398  //   be used as the identifier in the declarator for a destructor
2399  //   declaration.
2400  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2401  if (isa<TypedefType>(DeclaratorType)) {
2402    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2403      << DeclaratorType;
2404    D.setInvalidType();
2405  }
2406
2407  // C++ [class.dtor]p2:
2408  //   A destructor is used to destroy objects of its class type. A
2409  //   destructor takes no parameters, and no return type can be
2410  //   specified for it (not even void). The address of a destructor
2411  //   shall not be taken. A destructor shall not be static. A
2412  //   destructor can be invoked for a const, volatile or const
2413  //   volatile object. A destructor shall not be declared const,
2414  //   volatile or const volatile (9.3.2).
2415  if (SC == FunctionDecl::Static) {
2416    if (!D.isInvalidType())
2417      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2418        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2419        << SourceRange(D.getIdentifierLoc());
2420    SC = FunctionDecl::None;
2421    D.setInvalidType();
2422  }
2423  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2424    // Destructors don't have return types, but the parser will
2425    // happily parse something like:
2426    //
2427    //   class X {
2428    //     float ~X();
2429    //   };
2430    //
2431    // The return type will be eliminated later.
2432    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2433      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2434      << SourceRange(D.getIdentifierLoc());
2435  }
2436
2437  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2438  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2439    if (FTI.TypeQuals & Qualifiers::Const)
2440      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2441        << "const" << SourceRange(D.getIdentifierLoc());
2442    if (FTI.TypeQuals & Qualifiers::Volatile)
2443      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2444        << "volatile" << SourceRange(D.getIdentifierLoc());
2445    if (FTI.TypeQuals & Qualifiers::Restrict)
2446      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2447        << "restrict" << SourceRange(D.getIdentifierLoc());
2448    D.setInvalidType();
2449  }
2450
2451  // Make sure we don't have any parameters.
2452  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2453    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2454
2455    // Delete the parameters.
2456    FTI.freeArgs();
2457    D.setInvalidType();
2458  }
2459
2460  // Make sure the destructor isn't variadic.
2461  if (FTI.isVariadic) {
2462    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2463    D.setInvalidType();
2464  }
2465
2466  // Rebuild the function type "R" without any type qualifiers or
2467  // parameters (in case any of the errors above fired) and with
2468  // "void" as the return type, since destructors don't have return
2469  // types. We *always* have to do this, because GetTypeForDeclarator
2470  // will put in a result type of "int" when none was specified.
2471  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2472}
2473
2474/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2475/// well-formednes of the conversion function declarator @p D with
2476/// type @p R. If there are any errors in the declarator, this routine
2477/// will emit diagnostics and return true. Otherwise, it will return
2478/// false. Either way, the type @p R will be updated to reflect a
2479/// well-formed type for the conversion operator.
2480void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2481                                     FunctionDecl::StorageClass& SC) {
2482  // C++ [class.conv.fct]p1:
2483  //   Neither parameter types nor return type can be specified. The
2484  //   type of a conversion function (8.3.5) is "function taking no
2485  //   parameter returning conversion-type-id."
2486  if (SC == FunctionDecl::Static) {
2487    if (!D.isInvalidType())
2488      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2489        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2490        << SourceRange(D.getIdentifierLoc());
2491    D.setInvalidType();
2492    SC = FunctionDecl::None;
2493  }
2494  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2495    // Conversion functions don't have return types, but the parser will
2496    // happily parse something like:
2497    //
2498    //   class X {
2499    //     float operator bool();
2500    //   };
2501    //
2502    // The return type will be changed later anyway.
2503    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2504      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2505      << SourceRange(D.getIdentifierLoc());
2506  }
2507
2508  // Make sure we don't have any parameters.
2509  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2510    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2511
2512    // Delete the parameters.
2513    D.getTypeObject(0).Fun.freeArgs();
2514    D.setInvalidType();
2515  }
2516
2517  // Make sure the conversion function isn't variadic.
2518  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2519    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2520    D.setInvalidType();
2521  }
2522
2523  // C++ [class.conv.fct]p4:
2524  //   The conversion-type-id shall not represent a function type nor
2525  //   an array type.
2526  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2527  if (ConvType->isArrayType()) {
2528    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2529    ConvType = Context.getPointerType(ConvType);
2530    D.setInvalidType();
2531  } else if (ConvType->isFunctionType()) {
2532    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2533    ConvType = Context.getPointerType(ConvType);
2534    D.setInvalidType();
2535  }
2536
2537  // Rebuild the function type "R" without any parameters (in case any
2538  // of the errors above fired) and with the conversion type as the
2539  // return type.
2540  R = Context.getFunctionType(ConvType, 0, 0, false,
2541                              R->getAs<FunctionProtoType>()->getTypeQuals());
2542
2543  // C++0x explicit conversion operators.
2544  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2545    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2546         diag::warn_explicit_conversion_functions)
2547      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2548}
2549
2550/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2551/// the declaration of the given C++ conversion function. This routine
2552/// is responsible for recording the conversion function in the C++
2553/// class, if possible.
2554Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2555  assert(Conversion && "Expected to receive a conversion function declaration");
2556
2557  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2558
2559  // Make sure we aren't redeclaring the conversion function.
2560  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2561
2562  // C++ [class.conv.fct]p1:
2563  //   [...] A conversion function is never used to convert a
2564  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2565  //   same object type (or a reference to it), to a (possibly
2566  //   cv-qualified) base class of that type (or a reference to it),
2567  //   or to (possibly cv-qualified) void.
2568  // FIXME: Suppress this warning if the conversion function ends up being a
2569  // virtual function that overrides a virtual function in a base class.
2570  QualType ClassType
2571    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2572  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2573    ConvType = ConvTypeRef->getPointeeType();
2574  if (ConvType->isRecordType()) {
2575    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2576    if (ConvType == ClassType)
2577      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2578        << ClassType;
2579    else if (IsDerivedFrom(ClassType, ConvType))
2580      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2581        <<  ClassType << ConvType;
2582  } else if (ConvType->isVoidType()) {
2583    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2584      << ClassType << ConvType;
2585  }
2586
2587  if (Conversion->getPreviousDeclaration()) {
2588    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2589    if (FunctionTemplateDecl *ConversionTemplate
2590          = Conversion->getDescribedFunctionTemplate())
2591      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2592    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
2593    for (OverloadedFunctionDecl::function_iterator
2594           Conv = Conversions->function_begin(),
2595           ConvEnd = Conversions->function_end();
2596         Conv != ConvEnd; ++Conv) {
2597      if (*Conv == ExpectedPrevDecl) {
2598        *Conv = Conversion;
2599        return DeclPtrTy::make(Conversion);
2600      }
2601    }
2602    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2603  } else if (FunctionTemplateDecl *ConversionTemplate
2604               = Conversion->getDescribedFunctionTemplate())
2605    ClassDecl->addConversionFunction(ConversionTemplate);
2606  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2607    ClassDecl->addConversionFunction(Conversion);
2608
2609  return DeclPtrTy::make(Conversion);
2610}
2611
2612//===----------------------------------------------------------------------===//
2613// Namespace Handling
2614//===----------------------------------------------------------------------===//
2615
2616/// ActOnStartNamespaceDef - This is called at the start of a namespace
2617/// definition.
2618Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2619                                             SourceLocation IdentLoc,
2620                                             IdentifierInfo *II,
2621                                             SourceLocation LBrace) {
2622  NamespaceDecl *Namespc =
2623      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2624  Namespc->setLBracLoc(LBrace);
2625
2626  Scope *DeclRegionScope = NamespcScope->getParent();
2627
2628  if (II) {
2629    // C++ [namespace.def]p2:
2630    // The identifier in an original-namespace-definition shall not have been
2631    // previously defined in the declarative region in which the
2632    // original-namespace-definition appears. The identifier in an
2633    // original-namespace-definition is the name of the namespace. Subsequently
2634    // in that declarative region, it is treated as an original-namespace-name.
2635
2636    NamedDecl *PrevDecl
2637      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName, true);
2638
2639    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2640      // This is an extended namespace definition.
2641      // Attach this namespace decl to the chain of extended namespace
2642      // definitions.
2643      OrigNS->setNextNamespace(Namespc);
2644      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2645
2646      // Remove the previous declaration from the scope.
2647      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2648        IdResolver.RemoveDecl(OrigNS);
2649        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2650      }
2651    } else if (PrevDecl) {
2652      // This is an invalid name redefinition.
2653      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2654       << Namespc->getDeclName();
2655      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2656      Namespc->setInvalidDecl();
2657      // Continue on to push Namespc as current DeclContext and return it.
2658    } else if (II->isStr("std") &&
2659               CurContext->getLookupContext()->isTranslationUnit()) {
2660      // This is the first "real" definition of the namespace "std", so update
2661      // our cache of the "std" namespace to point at this definition.
2662      if (StdNamespace) {
2663        // We had already defined a dummy namespace "std". Link this new
2664        // namespace definition to the dummy namespace "std".
2665        StdNamespace->setNextNamespace(Namespc);
2666        StdNamespace->setLocation(IdentLoc);
2667        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2668      }
2669
2670      // Make our StdNamespace cache point at the first real definition of the
2671      // "std" namespace.
2672      StdNamespace = Namespc;
2673    }
2674
2675    PushOnScopeChains(Namespc, DeclRegionScope);
2676  } else {
2677    // Anonymous namespaces.
2678
2679    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2680    //   behaves as if it were replaced by
2681    //     namespace unique { /* empty body */ }
2682    //     using namespace unique;
2683    //     namespace unique { namespace-body }
2684    //   where all occurrences of 'unique' in a translation unit are
2685    //   replaced by the same identifier and this identifier differs
2686    //   from all other identifiers in the entire program.
2687
2688    // We just create the namespace with an empty name and then add an
2689    // implicit using declaration, just like the standard suggests.
2690    //
2691    // CodeGen enforces the "universally unique" aspect by giving all
2692    // declarations semantically contained within an anonymous
2693    // namespace internal linkage.
2694
2695    assert(Namespc->isAnonymousNamespace());
2696    CurContext->addDecl(Namespc);
2697
2698    UsingDirectiveDecl* UD
2699      = UsingDirectiveDecl::Create(Context, CurContext,
2700                                   /* 'using' */ LBrace,
2701                                   /* 'namespace' */ SourceLocation(),
2702                                   /* qualifier */ SourceRange(),
2703                                   /* NNS */ NULL,
2704                                   /* identifier */ SourceLocation(),
2705                                   Namespc,
2706                                   /* Ancestor */ CurContext);
2707    UD->setImplicit();
2708    CurContext->addDecl(UD);
2709  }
2710
2711  // Although we could have an invalid decl (i.e. the namespace name is a
2712  // redefinition), push it as current DeclContext and try to continue parsing.
2713  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2714  // for the namespace has the declarations that showed up in that particular
2715  // namespace definition.
2716  PushDeclContext(NamespcScope, Namespc);
2717  return DeclPtrTy::make(Namespc);
2718}
2719
2720/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2721/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2722void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2723  Decl *Dcl = D.getAs<Decl>();
2724  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2725  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2726  Namespc->setRBracLoc(RBrace);
2727  PopDeclContext();
2728}
2729
2730Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2731                                          SourceLocation UsingLoc,
2732                                          SourceLocation NamespcLoc,
2733                                          const CXXScopeSpec &SS,
2734                                          SourceLocation IdentLoc,
2735                                          IdentifierInfo *NamespcName,
2736                                          AttributeList *AttrList) {
2737  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2738  assert(NamespcName && "Invalid NamespcName.");
2739  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2740  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2741
2742  UsingDirectiveDecl *UDir = 0;
2743
2744  // Lookup namespace name.
2745  LookupResult R;
2746  LookupParsedName(R, S, &SS, NamespcName, LookupNamespaceName, false);
2747  if (R.isAmbiguous()) {
2748    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
2749    return DeclPtrTy();
2750  }
2751  if (!R.empty()) {
2752    NamedDecl *NS = R.getFoundDecl();
2753    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2754    // C++ [namespace.udir]p1:
2755    //   A using-directive specifies that the names in the nominated
2756    //   namespace can be used in the scope in which the
2757    //   using-directive appears after the using-directive. During
2758    //   unqualified name lookup (3.4.1), the names appear as if they
2759    //   were declared in the nearest enclosing namespace which
2760    //   contains both the using-directive and the nominated
2761    //   namespace. [Note: in this context, "contains" means "contains
2762    //   directly or indirectly". ]
2763
2764    // Find enclosing context containing both using-directive and
2765    // nominated namespace.
2766    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2767    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2768      CommonAncestor = CommonAncestor->getParent();
2769
2770    UDir = UsingDirectiveDecl::Create(Context,
2771                                      CurContext, UsingLoc,
2772                                      NamespcLoc,
2773                                      SS.getRange(),
2774                                      (NestedNameSpecifier *)SS.getScopeRep(),
2775                                      IdentLoc,
2776                                      cast<NamespaceDecl>(NS),
2777                                      CommonAncestor);
2778    PushUsingDirective(S, UDir);
2779  } else {
2780    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2781  }
2782
2783  // FIXME: We ignore attributes for now.
2784  delete AttrList;
2785  return DeclPtrTy::make(UDir);
2786}
2787
2788void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2789  // If scope has associated entity, then using directive is at namespace
2790  // or translation unit scope. We add UsingDirectiveDecls, into
2791  // it's lookup structure.
2792  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2793    Ctx->addDecl(UDir);
2794  else
2795    // Otherwise it is block-sope. using-directives will affect lookup
2796    // only to the end of scope.
2797    S->PushUsingDirective(DeclPtrTy::make(UDir));
2798}
2799
2800
2801Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2802                                            AccessSpecifier AS,
2803                                            SourceLocation UsingLoc,
2804                                            const CXXScopeSpec &SS,
2805                                            UnqualifiedId &Name,
2806                                            AttributeList *AttrList,
2807                                            bool IsTypeName) {
2808  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2809
2810  switch (Name.getKind()) {
2811  case UnqualifiedId::IK_Identifier:
2812  case UnqualifiedId::IK_OperatorFunctionId:
2813  case UnqualifiedId::IK_ConversionFunctionId:
2814    break;
2815
2816  case UnqualifiedId::IK_ConstructorName:
2817    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
2818      << SS.getRange();
2819    return DeclPtrTy();
2820
2821  case UnqualifiedId::IK_DestructorName:
2822    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
2823      << SS.getRange();
2824    return DeclPtrTy();
2825
2826  case UnqualifiedId::IK_TemplateId:
2827    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
2828      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
2829    return DeclPtrTy();
2830  }
2831
2832  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
2833  NamedDecl *UD = BuildUsingDeclaration(UsingLoc, SS,
2834                                        Name.getSourceRange().getBegin(),
2835                                        TargetName, AttrList, IsTypeName);
2836  if (UD) {
2837    PushOnScopeChains(UD, S);
2838    UD->setAccess(AS);
2839  }
2840
2841  return DeclPtrTy::make(UD);
2842}
2843
2844NamedDecl *Sema::BuildUsingDeclaration(SourceLocation UsingLoc,
2845                                       const CXXScopeSpec &SS,
2846                                       SourceLocation IdentLoc,
2847                                       DeclarationName Name,
2848                                       AttributeList *AttrList,
2849                                       bool IsTypeName) {
2850  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2851  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2852
2853  // FIXME: We ignore attributes for now.
2854  delete AttrList;
2855
2856  if (SS.isEmpty()) {
2857    Diag(IdentLoc, diag::err_using_requires_qualname);
2858    return 0;
2859  }
2860
2861  NestedNameSpecifier *NNS =
2862    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2863
2864  DeclContext *LookupContext = computeDeclContext(SS);
2865  if (!LookupContext) {
2866    return UnresolvedUsingDecl::Create(Context, CurContext, UsingLoc,
2867                                       SS.getRange(), NNS,
2868                                       IdentLoc, Name, IsTypeName);
2869  }
2870
2871  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2872    // C++0x N2914 [namespace.udecl]p3:
2873    // A using-declaration used as a member-declaration shall refer to a member
2874    // of a base class of the class being defined, shall refer to a member of an
2875    // anonymous union that is a member of a base class of the class being
2876    // defined, or shall refer to an enumerator for an enumeration type that is
2877    // a member of a base class of the class being defined.
2878
2879    CXXRecordDecl *LookupRD = dyn_cast<CXXRecordDecl>(LookupContext);
2880    if (!LookupRD || !RD->isDerivedFrom(LookupRD)) {
2881      Diag(SS.getRange().getBegin(),
2882           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2883        << NNS << RD->getDeclName();
2884      return 0;
2885    }
2886  } else {
2887    // C++0x N2914 [namespace.udecl]p8:
2888    // A using-declaration for a class member shall be a member-declaration.
2889    if (isa<CXXRecordDecl>(LookupContext)) {
2890      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2891        << SS.getRange();
2892      return 0;
2893    }
2894  }
2895
2896  // Lookup target name.
2897  LookupResult R;
2898  LookupQualifiedName(R, LookupContext, Name, LookupOrdinaryName);
2899
2900  if (R.empty()) {
2901    Diag(IdentLoc, diag::err_no_member)
2902      << Name << LookupContext << SS.getRange();
2903    return 0;
2904  }
2905
2906  // FIXME: handle ambiguity?
2907  NamedDecl *ND = R.getAsSingleDecl(Context);
2908
2909  if (IsTypeName && !isa<TypeDecl>(ND)) {
2910    Diag(IdentLoc, diag::err_using_typename_non_type);
2911    return 0;
2912  }
2913
2914  // C++0x N2914 [namespace.udecl]p6:
2915  // A using-declaration shall not name a namespace.
2916  if (isa<NamespaceDecl>(ND)) {
2917    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
2918      << SS.getRange();
2919    return 0;
2920  }
2921
2922  return UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2923                           ND->getLocation(), UsingLoc, ND, NNS, IsTypeName);
2924}
2925
2926/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2927/// is a namespace alias, returns the namespace it points to.
2928static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2929  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2930    return AD->getNamespace();
2931  return dyn_cast_or_null<NamespaceDecl>(D);
2932}
2933
2934Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2935                                             SourceLocation NamespaceLoc,
2936                                             SourceLocation AliasLoc,
2937                                             IdentifierInfo *Alias,
2938                                             const CXXScopeSpec &SS,
2939                                             SourceLocation IdentLoc,
2940                                             IdentifierInfo *Ident) {
2941
2942  // Lookup the namespace name.
2943  LookupResult R;
2944  LookupParsedName(R, S, &SS, Ident, LookupNamespaceName, false);
2945
2946  // Check if we have a previous declaration with the same name.
2947  if (NamedDecl *PrevDecl
2948        = LookupSingleName(S, Alias, LookupOrdinaryName, true)) {
2949    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2950      // We already have an alias with the same name that points to the same
2951      // namespace, so don't create a new one.
2952      if (!R.isAmbiguous() && !R.empty() &&
2953          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
2954        return DeclPtrTy();
2955    }
2956
2957    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2958      diag::err_redefinition_different_kind;
2959    Diag(AliasLoc, DiagID) << Alias;
2960    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2961    return DeclPtrTy();
2962  }
2963
2964  if (R.isAmbiguous()) {
2965    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2966    return DeclPtrTy();
2967  }
2968
2969  if (R.empty()) {
2970    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2971    return DeclPtrTy();
2972  }
2973
2974  NamespaceAliasDecl *AliasDecl =
2975    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2976                               Alias, SS.getRange(),
2977                               (NestedNameSpecifier *)SS.getScopeRep(),
2978                               IdentLoc, R.getFoundDecl());
2979
2980  CurContext->addDecl(AliasDecl);
2981  return DeclPtrTy::make(AliasDecl);
2982}
2983
2984void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2985                                            CXXConstructorDecl *Constructor) {
2986  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2987          !Constructor->isUsed()) &&
2988    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2989
2990  CXXRecordDecl *ClassDecl
2991    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2992  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2993
2994  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) {
2995    Diag(CurrentLocation, diag::note_ctor_synthesized_at)
2996      << Context.getTagDeclType(ClassDecl);
2997    Constructor->setInvalidDecl();
2998  } else {
2999    Constructor->setUsed();
3000  }
3001  return;
3002}
3003
3004void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3005                                    CXXDestructorDecl *Destructor) {
3006  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3007         "DefineImplicitDestructor - call it for implicit default dtor");
3008
3009  CXXRecordDecl *ClassDecl
3010  = cast<CXXRecordDecl>(Destructor->getDeclContext());
3011  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3012  // C++ [class.dtor] p5
3013  // Before the implicitly-declared default destructor for a class is
3014  // implicitly defined, all the implicitly-declared default destructors
3015  // for its base class and its non-static data members shall have been
3016  // implicitly defined.
3017  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3018       E = ClassDecl->bases_end(); Base != E; ++Base) {
3019    CXXRecordDecl *BaseClassDecl
3020      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3021    if (!BaseClassDecl->hasTrivialDestructor()) {
3022      if (CXXDestructorDecl *BaseDtor =
3023          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3024        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3025      else
3026        assert(false &&
3027               "DefineImplicitDestructor - missing dtor in a base class");
3028    }
3029  }
3030
3031  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3032       E = ClassDecl->field_end(); Field != E; ++Field) {
3033    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3034    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3035      FieldType = Array->getElementType();
3036    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3037      CXXRecordDecl *FieldClassDecl
3038        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3039      if (!FieldClassDecl->hasTrivialDestructor()) {
3040        if (CXXDestructorDecl *FieldDtor =
3041            const_cast<CXXDestructorDecl*>(
3042                                        FieldClassDecl->getDestructor(Context)))
3043          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3044        else
3045          assert(false &&
3046          "DefineImplicitDestructor - missing dtor in class of a data member");
3047      }
3048    }
3049  }
3050  Destructor->setUsed();
3051}
3052
3053void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3054                                          CXXMethodDecl *MethodDecl) {
3055  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3056          MethodDecl->getOverloadedOperator() == OO_Equal &&
3057          !MethodDecl->isUsed()) &&
3058         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3059
3060  CXXRecordDecl *ClassDecl
3061    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3062
3063  // C++[class.copy] p12
3064  // Before the implicitly-declared copy assignment operator for a class is
3065  // implicitly defined, all implicitly-declared copy assignment operators
3066  // for its direct base classes and its nonstatic data members shall have
3067  // been implicitly defined.
3068  bool err = false;
3069  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3070       E = ClassDecl->bases_end(); Base != E; ++Base) {
3071    CXXRecordDecl *BaseClassDecl
3072      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3073    if (CXXMethodDecl *BaseAssignOpMethod =
3074          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
3075      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3076  }
3077  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3078       E = ClassDecl->field_end(); Field != E; ++Field) {
3079    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3080    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3081      FieldType = Array->getElementType();
3082    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3083      CXXRecordDecl *FieldClassDecl
3084        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3085      if (CXXMethodDecl *FieldAssignOpMethod =
3086          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
3087        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3088    } else if (FieldType->isReferenceType()) {
3089      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3090      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3091      Diag(Field->getLocation(), diag::note_declared_at);
3092      Diag(CurrentLocation, diag::note_first_required_here);
3093      err = true;
3094    } else if (FieldType.isConstQualified()) {
3095      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3096      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3097      Diag(Field->getLocation(), diag::note_declared_at);
3098      Diag(CurrentLocation, diag::note_first_required_here);
3099      err = true;
3100    }
3101  }
3102  if (!err)
3103    MethodDecl->setUsed();
3104}
3105
3106CXXMethodDecl *
3107Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
3108                              CXXRecordDecl *ClassDecl) {
3109  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3110  QualType RHSType(LHSType);
3111  // If class's assignment operator argument is const/volatile qualified,
3112  // look for operator = (const/volatile B&). Otherwise, look for
3113  // operator = (B&).
3114  RHSType = Context.getCVRQualifiedType(RHSType,
3115                                     ParmDecl->getType().getCVRQualifiers());
3116  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3117                                                          LHSType,
3118                                                          SourceLocation()));
3119  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3120                                                          RHSType,
3121                                                          SourceLocation()));
3122  Expr *Args[2] = { &*LHS, &*RHS };
3123  OverloadCandidateSet CandidateSet;
3124  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3125                              CandidateSet);
3126  OverloadCandidateSet::iterator Best;
3127  if (BestViableFunction(CandidateSet,
3128                         ClassDecl->getLocation(), Best) == OR_Success)
3129    return cast<CXXMethodDecl>(Best->Function);
3130  assert(false &&
3131         "getAssignOperatorMethod - copy assignment operator method not found");
3132  return 0;
3133}
3134
3135void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3136                                   CXXConstructorDecl *CopyConstructor,
3137                                   unsigned TypeQuals) {
3138  assert((CopyConstructor->isImplicit() &&
3139          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
3140          !CopyConstructor->isUsed()) &&
3141         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3142
3143  CXXRecordDecl *ClassDecl
3144    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3145  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3146  // C++ [class.copy] p209
3147  // Before the implicitly-declared copy constructor for a class is
3148  // implicitly defined, all the implicitly-declared copy constructors
3149  // for its base class and its non-static data members shall have been
3150  // implicitly defined.
3151  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3152       Base != ClassDecl->bases_end(); ++Base) {
3153    CXXRecordDecl *BaseClassDecl
3154      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3155    if (CXXConstructorDecl *BaseCopyCtor =
3156        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3157      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3158  }
3159  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3160                                  FieldEnd = ClassDecl->field_end();
3161       Field != FieldEnd; ++Field) {
3162    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3163    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3164      FieldType = Array->getElementType();
3165    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3166      CXXRecordDecl *FieldClassDecl
3167        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3168      if (CXXConstructorDecl *FieldCopyCtor =
3169          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3170        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3171    }
3172  }
3173  CopyConstructor->setUsed();
3174}
3175
3176Sema::OwningExprResult
3177Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3178                            CXXConstructorDecl *Constructor,
3179                            MultiExprArg ExprArgs) {
3180  bool Elidable = false;
3181
3182  // C++ [class.copy]p15:
3183  //   Whenever a temporary class object is copied using a copy constructor, and
3184  //   this object and the copy have the same cv-unqualified type, an
3185  //   implementation is permitted to treat the original and the copy as two
3186  //   different ways of referring to the same object and not perform a copy at
3187  //   all, even if the class copy constructor or destructor have side effects.
3188
3189  // FIXME: Is this enough?
3190  if (Constructor->isCopyConstructor(Context)) {
3191    Expr *E = ((Expr **)ExprArgs.get())[0];
3192    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3193      E = BE->getSubExpr();
3194    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3195      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3196        E = ICE->getSubExpr();
3197
3198    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
3199      Elidable = true;
3200  }
3201
3202  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3203                               Elidable, move(ExprArgs));
3204}
3205
3206/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3207/// including handling of its default argument expressions.
3208Sema::OwningExprResult
3209Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3210                            CXXConstructorDecl *Constructor, bool Elidable,
3211                            MultiExprArg ExprArgs) {
3212  unsigned NumExprs = ExprArgs.size();
3213  Expr **Exprs = (Expr **)ExprArgs.release();
3214
3215  return Owned(CXXConstructExpr::Create(Context, DeclInitType, Constructor,
3216                                        Elidable, Exprs, NumExprs));
3217}
3218
3219Sema::OwningExprResult
3220Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3221                                  QualType Ty,
3222                                  SourceLocation TyBeginLoc,
3223                                  MultiExprArg Args,
3224                                  SourceLocation RParenLoc) {
3225  unsigned NumExprs = Args.size();
3226  Expr **Exprs = (Expr **)Args.release();
3227
3228  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3229                                                    TyBeginLoc, Exprs,
3230                                                    NumExprs, RParenLoc));
3231}
3232
3233
3234bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3235                                        CXXConstructorDecl *Constructor,
3236                                        MultiExprArg Exprs) {
3237  OwningExprResult TempResult =
3238    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3239                          move(Exprs));
3240  if (TempResult.isInvalid())
3241    return true;
3242
3243  Expr *Temp = TempResult.takeAs<Expr>();
3244  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3245  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
3246  VD->setInit(Context, Temp);
3247
3248  return false;
3249}
3250
3251void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3252  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3253                                  DeclInitType->getAs<RecordType>()->getDecl());
3254  if (!ClassDecl->hasTrivialDestructor())
3255    if (CXXDestructorDecl *Destructor =
3256        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3257      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3258}
3259
3260/// AddCXXDirectInitializerToDecl - This action is called immediately after
3261/// ActOnDeclarator, when a C++ direct initializer is present.
3262/// e.g: "int x(1);"
3263void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3264                                         SourceLocation LParenLoc,
3265                                         MultiExprArg Exprs,
3266                                         SourceLocation *CommaLocs,
3267                                         SourceLocation RParenLoc) {
3268  unsigned NumExprs = Exprs.size();
3269  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
3270  Decl *RealDecl = Dcl.getAs<Decl>();
3271
3272  // If there is no declaration, there was an error parsing it.  Just ignore
3273  // the initializer.
3274  if (RealDecl == 0)
3275    return;
3276
3277  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3278  if (!VDecl) {
3279    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3280    RealDecl->setInvalidDecl();
3281    return;
3282  }
3283
3284  // We will represent direct-initialization similarly to copy-initialization:
3285  //    int x(1);  -as-> int x = 1;
3286  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3287  //
3288  // Clients that want to distinguish between the two forms, can check for
3289  // direct initializer using VarDecl::hasCXXDirectInitializer().
3290  // A major benefit is that clients that don't particularly care about which
3291  // exactly form was it (like the CodeGen) can handle both cases without
3292  // special case code.
3293
3294  // If either the declaration has a dependent type or if any of the expressions
3295  // is type-dependent, we represent the initialization via a ParenListExpr for
3296  // later use during template instantiation.
3297  if (VDecl->getType()->isDependentType() ||
3298      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3299    // Let clients know that initialization was done with a direct initializer.
3300    VDecl->setCXXDirectInitializer(true);
3301
3302    // Store the initialization expressions as a ParenListExpr.
3303    unsigned NumExprs = Exprs.size();
3304    VDecl->setInit(Context,
3305                   new (Context) ParenListExpr(Context, LParenLoc,
3306                                               (Expr **)Exprs.release(),
3307                                               NumExprs, RParenLoc));
3308    return;
3309  }
3310
3311
3312  // C++ 8.5p11:
3313  // The form of initialization (using parentheses or '=') is generally
3314  // insignificant, but does matter when the entity being initialized has a
3315  // class type.
3316  QualType DeclInitType = VDecl->getType();
3317  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3318    DeclInitType = Context.getBaseElementType(Array);
3319
3320  // FIXME: This isn't the right place to complete the type.
3321  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3322                          diag::err_typecheck_decl_incomplete_type)) {
3323    VDecl->setInvalidDecl();
3324    return;
3325  }
3326
3327  if (VDecl->getType()->isRecordType()) {
3328    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3329
3330    CXXConstructorDecl *Constructor
3331      = PerformInitializationByConstructor(DeclInitType,
3332                                           move(Exprs),
3333                                           VDecl->getLocation(),
3334                                           SourceRange(VDecl->getLocation(),
3335                                                       RParenLoc),
3336                                           VDecl->getDeclName(),
3337                                           IK_Direct,
3338                                           ConstructorArgs);
3339    if (!Constructor)
3340      RealDecl->setInvalidDecl();
3341    else {
3342      VDecl->setCXXDirectInitializer(true);
3343      if (InitializeVarWithConstructor(VDecl, Constructor,
3344                                       move_arg(ConstructorArgs)))
3345        RealDecl->setInvalidDecl();
3346      FinalizeVarWithDestructor(VDecl, DeclInitType);
3347    }
3348    return;
3349  }
3350
3351  if (NumExprs > 1) {
3352    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
3353      << SourceRange(VDecl->getLocation(), RParenLoc);
3354    RealDecl->setInvalidDecl();
3355    return;
3356  }
3357
3358  // Let clients know that initialization was done with a direct initializer.
3359  VDecl->setCXXDirectInitializer(true);
3360
3361  assert(NumExprs == 1 && "Expected 1 expression");
3362  // Set the init expression, handles conversions.
3363  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
3364                       /*DirectInit=*/true);
3365}
3366
3367/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
3368/// may occur as part of direct-initialization or copy-initialization.
3369///
3370/// \param ClassType the type of the object being initialized, which must have
3371/// class type.
3372///
3373/// \param ArgsPtr the arguments provided to initialize the object
3374///
3375/// \param Loc the source location where the initialization occurs
3376///
3377/// \param Range the source range that covers the entire initialization
3378///
3379/// \param InitEntity the name of the entity being initialized, if known
3380///
3381/// \param Kind the type of initialization being performed
3382///
3383/// \param ConvertedArgs a vector that will be filled in with the
3384/// appropriately-converted arguments to the constructor (if initialization
3385/// succeeded).
3386///
3387/// \returns the constructor used to initialize the object, if successful.
3388/// Otherwise, emits a diagnostic and returns NULL.
3389CXXConstructorDecl *
3390Sema::PerformInitializationByConstructor(QualType ClassType,
3391                                         MultiExprArg ArgsPtr,
3392                                         SourceLocation Loc, SourceRange Range,
3393                                         DeclarationName InitEntity,
3394                                         InitializationKind Kind,
3395                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3396  const RecordType *ClassRec = ClassType->getAs<RecordType>();
3397  assert(ClassRec && "Can only initialize a class type here");
3398  Expr **Args = (Expr **)ArgsPtr.get();
3399  unsigned NumArgs = ArgsPtr.size();
3400
3401  // C++ [dcl.init]p14:
3402  //   If the initialization is direct-initialization, or if it is
3403  //   copy-initialization where the cv-unqualified version of the
3404  //   source type is the same class as, or a derived class of, the
3405  //   class of the destination, constructors are considered. The
3406  //   applicable constructors are enumerated (13.3.1.3), and the
3407  //   best one is chosen through overload resolution (13.3). The
3408  //   constructor so selected is called to initialize the object,
3409  //   with the initializer expression(s) as its argument(s). If no
3410  //   constructor applies, or the overload resolution is ambiguous,
3411  //   the initialization is ill-formed.
3412  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
3413  OverloadCandidateSet CandidateSet;
3414
3415  // Add constructors to the overload set.
3416  DeclarationName ConstructorName
3417    = Context.DeclarationNames.getCXXConstructorName(
3418                      Context.getCanonicalType(ClassType).getUnqualifiedType());
3419  DeclContext::lookup_const_iterator Con, ConEnd;
3420  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
3421       Con != ConEnd; ++Con) {
3422    // Find the constructor (which may be a template).
3423    CXXConstructorDecl *Constructor = 0;
3424    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
3425    if (ConstructorTmpl)
3426      Constructor
3427        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3428    else
3429      Constructor = cast<CXXConstructorDecl>(*Con);
3430
3431    if ((Kind == IK_Direct) ||
3432        (Kind == IK_Copy &&
3433         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
3434        (Kind == IK_Default && Constructor->isDefaultConstructor())) {
3435      if (ConstructorTmpl)
3436        AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0,
3437                                     Args, NumArgs, CandidateSet);
3438      else
3439        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
3440    }
3441  }
3442
3443  // FIXME: When we decide not to synthesize the implicitly-declared
3444  // constructors, we'll need to make them appear here.
3445
3446  OverloadCandidateSet::iterator Best;
3447  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3448  case OR_Success:
3449    // We found a constructor. Break out so that we can convert the arguments
3450    // appropriately.
3451    break;
3452
3453  case OR_No_Viable_Function:
3454    if (InitEntity)
3455      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3456        << InitEntity << Range;
3457    else
3458      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3459        << ClassType << Range;
3460    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3461    return 0;
3462
3463  case OR_Ambiguous:
3464    if (InitEntity)
3465      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
3466    else
3467      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
3468    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3469    return 0;
3470
3471  case OR_Deleted:
3472    if (InitEntity)
3473      Diag(Loc, diag::err_ovl_deleted_init)
3474        << Best->Function->isDeleted()
3475        << InitEntity << Range;
3476    else
3477      Diag(Loc, diag::err_ovl_deleted_init)
3478        << Best->Function->isDeleted()
3479        << InitEntity << Range;
3480    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3481    return 0;
3482  }
3483
3484  // Convert the arguments, fill in default arguments, etc.
3485  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3486  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
3487    return 0;
3488
3489  return Constructor;
3490}
3491
3492/// \brief Given a constructor and the set of arguments provided for the
3493/// constructor, convert the arguments and add any required default arguments
3494/// to form a proper call to this constructor.
3495///
3496/// \returns true if an error occurred, false otherwise.
3497bool
3498Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
3499                              MultiExprArg ArgsPtr,
3500                              SourceLocation Loc,
3501                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3502  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
3503  unsigned NumArgs = ArgsPtr.size();
3504  Expr **Args = (Expr **)ArgsPtr.get();
3505
3506  const FunctionProtoType *Proto
3507    = Constructor->getType()->getAs<FunctionProtoType>();
3508  assert(Proto && "Constructor without a prototype?");
3509  unsigned NumArgsInProto = Proto->getNumArgs();
3510  unsigned NumArgsToCheck = NumArgs;
3511
3512  // If too few arguments are available, we'll fill in the rest with defaults.
3513  if (NumArgs < NumArgsInProto) {
3514    NumArgsToCheck = NumArgsInProto;
3515    ConvertedArgs.reserve(NumArgsInProto);
3516  } else {
3517    ConvertedArgs.reserve(NumArgs);
3518    if (NumArgs > NumArgsInProto)
3519      NumArgsToCheck = NumArgsInProto;
3520  }
3521
3522  // Convert arguments
3523  for (unsigned i = 0; i != NumArgsToCheck; i++) {
3524    QualType ProtoArgType = Proto->getArgType(i);
3525
3526    Expr *Arg;
3527    if (i < NumArgs) {
3528      Arg = Args[i];
3529
3530      // Pass the argument.
3531      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3532        return true;
3533
3534      Args[i] = 0;
3535    } else {
3536      ParmVarDecl *Param = Constructor->getParamDecl(i);
3537
3538      OwningExprResult DefArg = BuildCXXDefaultArgExpr(Loc, Constructor, Param);
3539      if (DefArg.isInvalid())
3540        return true;
3541
3542      Arg = DefArg.takeAs<Expr>();
3543    }
3544
3545    ConvertedArgs.push_back(Arg);
3546  }
3547
3548  // If this is a variadic call, handle args passed through "...".
3549  if (Proto->isVariadic()) {
3550    // Promote the arguments (C99 6.5.2.2p7).
3551    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3552      Expr *Arg = Args[i];
3553      if (DefaultVariadicArgumentPromotion(Arg, VariadicConstructor))
3554        return true;
3555
3556      ConvertedArgs.push_back(Arg);
3557      Args[i] = 0;
3558    }
3559  }
3560
3561  return false;
3562}
3563
3564/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3565/// determine whether they are reference-related,
3566/// reference-compatible, reference-compatible with added
3567/// qualification, or incompatible, for use in C++ initialization by
3568/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3569/// type, and the first type (T1) is the pointee type of the reference
3570/// type being initialized.
3571Sema::ReferenceCompareResult
3572Sema::CompareReferenceRelationship(SourceLocation Loc,
3573                                   QualType OrigT1, QualType OrigT2,
3574                                   bool& DerivedToBase) {
3575  assert(!OrigT1->isReferenceType() &&
3576    "T1 must be the pointee type of the reference type");
3577  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3578
3579  QualType T1 = Context.getCanonicalType(OrigT1);
3580  QualType T2 = Context.getCanonicalType(OrigT2);
3581  QualType UnqualT1 = T1.getUnqualifiedType();
3582  QualType UnqualT2 = T2.getUnqualifiedType();
3583
3584  // C++ [dcl.init.ref]p4:
3585  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3586  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3587  //   T1 is a base class of T2.
3588  if (UnqualT1 == UnqualT2)
3589    DerivedToBase = false;
3590  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
3591           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
3592           IsDerivedFrom(UnqualT2, UnqualT1))
3593    DerivedToBase = true;
3594  else
3595    return Ref_Incompatible;
3596
3597  // At this point, we know that T1 and T2 are reference-related (at
3598  // least).
3599
3600  // C++ [dcl.init.ref]p4:
3601  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3602  //   reference-related to T2 and cv1 is the same cv-qualification
3603  //   as, or greater cv-qualification than, cv2. For purposes of
3604  //   overload resolution, cases for which cv1 is greater
3605  //   cv-qualification than cv2 are identified as
3606  //   reference-compatible with added qualification (see 13.3.3.2).
3607  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3608    return Ref_Compatible;
3609  else if (T1.isMoreQualifiedThan(T2))
3610    return Ref_Compatible_With_Added_Qualification;
3611  else
3612    return Ref_Related;
3613}
3614
3615/// CheckReferenceInit - Check the initialization of a reference
3616/// variable with the given initializer (C++ [dcl.init.ref]). Init is
3617/// the initializer (either a simple initializer or an initializer
3618/// list), and DeclType is the type of the declaration. When ICS is
3619/// non-null, this routine will compute the implicit conversion
3620/// sequence according to C++ [over.ics.ref] and will not produce any
3621/// diagnostics; when ICS is null, it will emit diagnostics when any
3622/// errors are found. Either way, a return value of true indicates
3623/// that there was a failure, a return value of false indicates that
3624/// the reference initialization succeeded.
3625///
3626/// When @p SuppressUserConversions, user-defined conversions are
3627/// suppressed.
3628/// When @p AllowExplicit, we also permit explicit user-defined
3629/// conversion functions.
3630/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
3631bool
3632Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
3633                         SourceLocation DeclLoc,
3634                         bool SuppressUserConversions,
3635                         bool AllowExplicit, bool ForceRValue,
3636                         ImplicitConversionSequence *ICS) {
3637  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3638
3639  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3640  QualType T2 = Init->getType();
3641
3642  // If the initializer is the address of an overloaded function, try
3643  // to resolve the overloaded function. If all goes well, T2 is the
3644  // type of the resulting function.
3645  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
3646    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
3647                                                          ICS != 0);
3648    if (Fn) {
3649      // Since we're performing this reference-initialization for
3650      // real, update the initializer with the resulting function.
3651      if (!ICS) {
3652        if (DiagnoseUseOfDecl(Fn, DeclLoc))
3653          return true;
3654
3655        Init = FixOverloadedFunctionReference(Init, Fn);
3656      }
3657
3658      T2 = Fn->getType();
3659    }
3660  }
3661
3662  // Compute some basic properties of the types and the initializer.
3663  bool isRValRef = DeclType->isRValueReferenceType();
3664  bool DerivedToBase = false;
3665  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
3666                                                  Init->isLvalue(Context);
3667  ReferenceCompareResult RefRelationship
3668    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
3669
3670  // Most paths end in a failed conversion.
3671  if (ICS)
3672    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
3673
3674  // C++ [dcl.init.ref]p5:
3675  //   A reference to type "cv1 T1" is initialized by an expression
3676  //   of type "cv2 T2" as follows:
3677
3678  //     -- If the initializer expression
3679
3680  // Rvalue references cannot bind to lvalues (N2812).
3681  // There is absolutely no situation where they can. In particular, note that
3682  // this is ill-formed, even if B has a user-defined conversion to A&&:
3683  //   B b;
3684  //   A&& r = b;
3685  if (isRValRef && InitLvalue == Expr::LV_Valid) {
3686    if (!ICS)
3687      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3688        << Init->getSourceRange();
3689    return true;
3690  }
3691
3692  bool BindsDirectly = false;
3693  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3694  //          reference-compatible with "cv2 T2," or
3695  //
3696  // Note that the bit-field check is skipped if we are just computing
3697  // the implicit conversion sequence (C++ [over.best.ics]p2).
3698  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
3699      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3700    BindsDirectly = true;
3701
3702    if (ICS) {
3703      // C++ [over.ics.ref]p1:
3704      //   When a parameter of reference type binds directly (8.5.3)
3705      //   to an argument expression, the implicit conversion sequence
3706      //   is the identity conversion, unless the argument expression
3707      //   has a type that is a derived class of the parameter type,
3708      //   in which case the implicit conversion sequence is a
3709      //   derived-to-base Conversion (13.3.3.1).
3710      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3711      ICS->Standard.First = ICK_Identity;
3712      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3713      ICS->Standard.Third = ICK_Identity;
3714      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3715      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3716      ICS->Standard.ReferenceBinding = true;
3717      ICS->Standard.DirectBinding = true;
3718      ICS->Standard.RRefBinding = false;
3719      ICS->Standard.CopyConstructor = 0;
3720
3721      // Nothing more to do: the inaccessibility/ambiguity check for
3722      // derived-to-base conversions is suppressed when we're
3723      // computing the implicit conversion sequence (C++
3724      // [over.best.ics]p2).
3725      return false;
3726    } else {
3727      // Perform the conversion.
3728      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3729      if (DerivedToBase)
3730        CK = CastExpr::CK_DerivedToBase;
3731      else if(CheckExceptionSpecCompatibility(Init, T1))
3732        return true;
3733      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
3734    }
3735  }
3736
3737  //       -- has a class type (i.e., T2 is a class type) and can be
3738  //          implicitly converted to an lvalue of type "cv3 T3,"
3739  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3740  //          92) (this conversion is selected by enumerating the
3741  //          applicable conversion functions (13.3.1.6) and choosing
3742  //          the best one through overload resolution (13.3)),
3743  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3744      !RequireCompleteType(DeclLoc, T2, 0)) {
3745    CXXRecordDecl *T2RecordDecl
3746      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3747
3748    OverloadCandidateSet CandidateSet;
3749    OverloadedFunctionDecl *Conversions
3750      = T2RecordDecl->getVisibleConversionFunctions();
3751    for (OverloadedFunctionDecl::function_iterator Func
3752           = Conversions->function_begin();
3753         Func != Conversions->function_end(); ++Func) {
3754      FunctionTemplateDecl *ConvTemplate
3755        = dyn_cast<FunctionTemplateDecl>(*Func);
3756      CXXConversionDecl *Conv;
3757      if (ConvTemplate)
3758        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3759      else
3760        Conv = cast<CXXConversionDecl>(*Func);
3761
3762      // If the conversion function doesn't return a reference type,
3763      // it can't be considered for this conversion.
3764      if (Conv->getConversionType()->isLValueReferenceType() &&
3765          (AllowExplicit || !Conv->isExplicit())) {
3766        if (ConvTemplate)
3767          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3768                                         CandidateSet);
3769        else
3770          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3771      }
3772    }
3773
3774    OverloadCandidateSet::iterator Best;
3775    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
3776    case OR_Success:
3777      // This is a direct binding.
3778      BindsDirectly = true;
3779
3780      if (ICS) {
3781        // C++ [over.ics.ref]p1:
3782        //
3783        //   [...] If the parameter binds directly to the result of
3784        //   applying a conversion function to the argument
3785        //   expression, the implicit conversion sequence is a
3786        //   user-defined conversion sequence (13.3.3.1.2), with the
3787        //   second standard conversion sequence either an identity
3788        //   conversion or, if the conversion function returns an
3789        //   entity of a type that is a derived class of the parameter
3790        //   type, a derived-to-base Conversion.
3791        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3792        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3793        ICS->UserDefined.After = Best->FinalConversion;
3794        ICS->UserDefined.ConversionFunction = Best->Function;
3795        ICS->UserDefined.EllipsisConversion = false;
3796        assert(ICS->UserDefined.After.ReferenceBinding &&
3797               ICS->UserDefined.After.DirectBinding &&
3798               "Expected a direct reference binding!");
3799        return false;
3800      } else {
3801        OwningExprResult InitConversion =
3802          BuildCXXCastArgument(DeclLoc, QualType(),
3803                               CastExpr::CK_UserDefinedConversion,
3804                               cast<CXXMethodDecl>(Best->Function),
3805                               Owned(Init));
3806        Init = InitConversion.takeAs<Expr>();
3807
3808        if (CheckExceptionSpecCompatibility(Init, T1))
3809          return true;
3810        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
3811                          /*isLvalue=*/true);
3812      }
3813      break;
3814
3815    case OR_Ambiguous:
3816      if (ICS) {
3817        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3818             Cand != CandidateSet.end(); ++Cand)
3819          if (Cand->Viable)
3820            ICS->ConversionFunctionSet.push_back(Cand->Function);
3821        break;
3822      }
3823      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
3824            << Init->getSourceRange();
3825      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3826      return true;
3827
3828    case OR_No_Viable_Function:
3829    case OR_Deleted:
3830      // There was no suitable conversion, or we found a deleted
3831      // conversion; continue with other checks.
3832      break;
3833    }
3834  }
3835
3836  if (BindsDirectly) {
3837    // C++ [dcl.init.ref]p4:
3838    //   [...] In all cases where the reference-related or
3839    //   reference-compatible relationship of two types is used to
3840    //   establish the validity of a reference binding, and T1 is a
3841    //   base class of T2, a program that necessitates such a binding
3842    //   is ill-formed if T1 is an inaccessible (clause 11) or
3843    //   ambiguous (10.2) base class of T2.
3844    //
3845    // Note that we only check this condition when we're allowed to
3846    // complain about errors, because we should not be checking for
3847    // ambiguity (or inaccessibility) unless the reference binding
3848    // actually happens.
3849    if (DerivedToBase)
3850      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
3851                                          Init->getSourceRange());
3852    else
3853      return false;
3854  }
3855
3856  //     -- Otherwise, the reference shall be to a non-volatile const
3857  //        type (i.e., cv1 shall be const), or the reference shall be an
3858  //        rvalue reference and the initializer expression shall be an rvalue.
3859  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
3860    if (!ICS)
3861      Diag(DeclLoc, diag::err_not_reference_to_const_init)
3862        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3863        << T2 << Init->getSourceRange();
3864    return true;
3865  }
3866
3867  //       -- If the initializer expression is an rvalue, with T2 a
3868  //          class type, and "cv1 T1" is reference-compatible with
3869  //          "cv2 T2," the reference is bound in one of the
3870  //          following ways (the choice is implementation-defined):
3871  //
3872  //          -- The reference is bound to the object represented by
3873  //             the rvalue (see 3.10) or to a sub-object within that
3874  //             object.
3875  //
3876  //          -- A temporary of type "cv1 T2" [sic] is created, and
3877  //             a constructor is called to copy the entire rvalue
3878  //             object into the temporary. The reference is bound to
3879  //             the temporary or to a sub-object within the
3880  //             temporary.
3881  //
3882  //          The constructor that would be used to make the copy
3883  //          shall be callable whether or not the copy is actually
3884  //          done.
3885  //
3886  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
3887  // freedom, so we will always take the first option and never build
3888  // a temporary in this case. FIXME: We will, however, have to check
3889  // for the presence of a copy constructor in C++98/03 mode.
3890  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
3891      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3892    if (ICS) {
3893      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3894      ICS->Standard.First = ICK_Identity;
3895      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3896      ICS->Standard.Third = ICK_Identity;
3897      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3898      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3899      ICS->Standard.ReferenceBinding = true;
3900      ICS->Standard.DirectBinding = false;
3901      ICS->Standard.RRefBinding = isRValRef;
3902      ICS->Standard.CopyConstructor = 0;
3903    } else {
3904      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3905      if (DerivedToBase)
3906        CK = CastExpr::CK_DerivedToBase;
3907      else if(CheckExceptionSpecCompatibility(Init, T1))
3908        return true;
3909      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
3910    }
3911    return false;
3912  }
3913
3914  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3915  //          initialized from the initializer expression using the
3916  //          rules for a non-reference copy initialization (8.5). The
3917  //          reference is then bound to the temporary. If T1 is
3918  //          reference-related to T2, cv1 must be the same
3919  //          cv-qualification as, or greater cv-qualification than,
3920  //          cv2; otherwise, the program is ill-formed.
3921  if (RefRelationship == Ref_Related) {
3922    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3923    // we would be reference-compatible or reference-compatible with
3924    // added qualification. But that wasn't the case, so the reference
3925    // initialization fails.
3926    if (!ICS)
3927      Diag(DeclLoc, diag::err_reference_init_drops_quals)
3928        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3929        << T2 << Init->getSourceRange();
3930    return true;
3931  }
3932
3933  // If at least one of the types is a class type, the types are not
3934  // related, and we aren't allowed any user conversions, the
3935  // reference binding fails. This case is important for breaking
3936  // recursion, since TryImplicitConversion below will attempt to
3937  // create a temporary through the use of a copy constructor.
3938  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
3939      (T1->isRecordType() || T2->isRecordType())) {
3940    if (!ICS)
3941      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
3942        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
3943    return true;
3944  }
3945
3946  // Actually try to convert the initializer to T1.
3947  if (ICS) {
3948    // C++ [over.ics.ref]p2:
3949    //
3950    //   When a parameter of reference type is not bound directly to
3951    //   an argument expression, the conversion sequence is the one
3952    //   required to convert the argument expression to the
3953    //   underlying type of the reference according to
3954    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3955    //   to copy-initializing a temporary of the underlying type with
3956    //   the argument expression. Any difference in top-level
3957    //   cv-qualification is subsumed by the initialization itself
3958    //   and does not constitute a conversion.
3959    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
3960                                 /*AllowExplicit=*/false,
3961                                 /*ForceRValue=*/false,
3962                                 /*InOverloadResolution=*/false);
3963
3964    // Of course, that's still a reference binding.
3965    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3966      ICS->Standard.ReferenceBinding = true;
3967      ICS->Standard.RRefBinding = isRValRef;
3968    } else if (ICS->ConversionKind ==
3969              ImplicitConversionSequence::UserDefinedConversion) {
3970      ICS->UserDefined.After.ReferenceBinding = true;
3971      ICS->UserDefined.After.RRefBinding = isRValRef;
3972    }
3973    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3974  } else {
3975    ImplicitConversionSequence Conversions;
3976    bool badConversion = PerformImplicitConversion(Init, T1, "initializing",
3977                                                   false, false,
3978                                                   Conversions);
3979    if (badConversion) {
3980      if ((Conversions.ConversionKind  ==
3981            ImplicitConversionSequence::BadConversion)
3982          && !Conversions.ConversionFunctionSet.empty()) {
3983        Diag(DeclLoc,
3984             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
3985        for (int j = Conversions.ConversionFunctionSet.size()-1;
3986             j >= 0; j--) {
3987          FunctionDecl *Func = Conversions.ConversionFunctionSet[j];
3988          Diag(Func->getLocation(), diag::err_ovl_candidate);
3989        }
3990      }
3991      else {
3992        if (isRValRef)
3993          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3994            << Init->getSourceRange();
3995        else
3996          Diag(DeclLoc, diag::err_invalid_initialization)
3997            << DeclType << Init->getType() << Init->getSourceRange();
3998      }
3999    }
4000    return badConversion;
4001  }
4002}
4003
4004/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4005/// of this overloaded operator is well-formed. If so, returns false;
4006/// otherwise, emits appropriate diagnostics and returns true.
4007bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4008  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4009         "Expected an overloaded operator declaration");
4010
4011  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4012
4013  // C++ [over.oper]p5:
4014  //   The allocation and deallocation functions, operator new,
4015  //   operator new[], operator delete and operator delete[], are
4016  //   described completely in 3.7.3. The attributes and restrictions
4017  //   found in the rest of this subclause do not apply to them unless
4018  //   explicitly stated in 3.7.3.
4019  // FIXME: Write a separate routine for checking this. For now, just allow it.
4020  if (Op == OO_Delete || Op == OO_Array_Delete)
4021    return false;
4022
4023  if (Op == OO_New || Op == OO_Array_New) {
4024    bool ret = false;
4025    if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
4026      QualType SizeTy = Context.getCanonicalType(Context.getSizeType());
4027      QualType T = Context.getCanonicalType((*Param)->getType());
4028      if (!T->isDependentType() && SizeTy != T) {
4029        Diag(FnDecl->getLocation(),
4030             diag::err_operator_new_param_type) << FnDecl->getDeclName()
4031              << SizeTy;
4032        ret = true;
4033      }
4034    }
4035    QualType ResultTy = Context.getCanonicalType(FnDecl->getResultType());
4036    if (!ResultTy->isDependentType() && ResultTy != Context.VoidPtrTy)
4037      return Diag(FnDecl->getLocation(),
4038                  diag::err_operator_new_result_type) << FnDecl->getDeclName()
4039                  << static_cast<QualType>(Context.VoidPtrTy);
4040    return ret;
4041  }
4042
4043  // C++ [over.oper]p6:
4044  //   An operator function shall either be a non-static member
4045  //   function or be a non-member function and have at least one
4046  //   parameter whose type is a class, a reference to a class, an
4047  //   enumeration, or a reference to an enumeration.
4048  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4049    if (MethodDecl->isStatic())
4050      return Diag(FnDecl->getLocation(),
4051                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4052  } else {
4053    bool ClassOrEnumParam = false;
4054    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4055                                   ParamEnd = FnDecl->param_end();
4056         Param != ParamEnd; ++Param) {
4057      QualType ParamType = (*Param)->getType().getNonReferenceType();
4058      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4059          ParamType->isEnumeralType()) {
4060        ClassOrEnumParam = true;
4061        break;
4062      }
4063    }
4064
4065    if (!ClassOrEnumParam)
4066      return Diag(FnDecl->getLocation(),
4067                  diag::err_operator_overload_needs_class_or_enum)
4068        << FnDecl->getDeclName();
4069  }
4070
4071  // C++ [over.oper]p8:
4072  //   An operator function cannot have default arguments (8.3.6),
4073  //   except where explicitly stated below.
4074  //
4075  // Only the function-call operator allows default arguments
4076  // (C++ [over.call]p1).
4077  if (Op != OO_Call) {
4078    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4079         Param != FnDecl->param_end(); ++Param) {
4080      if ((*Param)->hasUnparsedDefaultArg())
4081        return Diag((*Param)->getLocation(),
4082                    diag::err_operator_overload_default_arg)
4083          << FnDecl->getDeclName();
4084      else if (Expr *DefArg = (*Param)->getDefaultArg())
4085        return Diag((*Param)->getLocation(),
4086                    diag::err_operator_overload_default_arg)
4087          << FnDecl->getDeclName() << DefArg->getSourceRange();
4088    }
4089  }
4090
4091  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4092    { false, false, false }
4093#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4094    , { Unary, Binary, MemberOnly }
4095#include "clang/Basic/OperatorKinds.def"
4096  };
4097
4098  bool CanBeUnaryOperator = OperatorUses[Op][0];
4099  bool CanBeBinaryOperator = OperatorUses[Op][1];
4100  bool MustBeMemberOperator = OperatorUses[Op][2];
4101
4102  // C++ [over.oper]p8:
4103  //   [...] Operator functions cannot have more or fewer parameters
4104  //   than the number required for the corresponding operator, as
4105  //   described in the rest of this subclause.
4106  unsigned NumParams = FnDecl->getNumParams()
4107                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4108  if (Op != OO_Call &&
4109      ((NumParams == 1 && !CanBeUnaryOperator) ||
4110       (NumParams == 2 && !CanBeBinaryOperator) ||
4111       (NumParams < 1) || (NumParams > 2))) {
4112    // We have the wrong number of parameters.
4113    unsigned ErrorKind;
4114    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4115      ErrorKind = 2;  // 2 -> unary or binary.
4116    } else if (CanBeUnaryOperator) {
4117      ErrorKind = 0;  // 0 -> unary
4118    } else {
4119      assert(CanBeBinaryOperator &&
4120             "All non-call overloaded operators are unary or binary!");
4121      ErrorKind = 1;  // 1 -> binary
4122    }
4123
4124    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4125      << FnDecl->getDeclName() << NumParams << ErrorKind;
4126  }
4127
4128  // Overloaded operators other than operator() cannot be variadic.
4129  if (Op != OO_Call &&
4130      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4131    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4132      << FnDecl->getDeclName();
4133  }
4134
4135  // Some operators must be non-static member functions.
4136  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4137    return Diag(FnDecl->getLocation(),
4138                diag::err_operator_overload_must_be_member)
4139      << FnDecl->getDeclName();
4140  }
4141
4142  // C++ [over.inc]p1:
4143  //   The user-defined function called operator++ implements the
4144  //   prefix and postfix ++ operator. If this function is a member
4145  //   function with no parameters, or a non-member function with one
4146  //   parameter of class or enumeration type, it defines the prefix
4147  //   increment operator ++ for objects of that type. If the function
4148  //   is a member function with one parameter (which shall be of type
4149  //   int) or a non-member function with two parameters (the second
4150  //   of which shall be of type int), it defines the postfix
4151  //   increment operator ++ for objects of that type.
4152  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4153    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4154    bool ParamIsInt = false;
4155    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4156      ParamIsInt = BT->getKind() == BuiltinType::Int;
4157
4158    if (!ParamIsInt)
4159      return Diag(LastParam->getLocation(),
4160                  diag::err_operator_overload_post_incdec_must_be_int)
4161        << LastParam->getType() << (Op == OO_MinusMinus);
4162  }
4163
4164  // Notify the class if it got an assignment operator.
4165  if (Op == OO_Equal) {
4166    // Would have returned earlier otherwise.
4167    assert(isa<CXXMethodDecl>(FnDecl) &&
4168      "Overloaded = not member, but not filtered.");
4169    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4170    Method->getParent()->addedAssignmentOperator(Context, Method);
4171  }
4172
4173  return false;
4174}
4175
4176/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4177/// linkage specification, including the language and (if present)
4178/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4179/// the location of the language string literal, which is provided
4180/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4181/// the '{' brace. Otherwise, this linkage specification does not
4182/// have any braces.
4183Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4184                                                     SourceLocation ExternLoc,
4185                                                     SourceLocation LangLoc,
4186                                                     const char *Lang,
4187                                                     unsigned StrSize,
4188                                                     SourceLocation LBraceLoc) {
4189  LinkageSpecDecl::LanguageIDs Language;
4190  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4191    Language = LinkageSpecDecl::lang_c;
4192  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4193    Language = LinkageSpecDecl::lang_cxx;
4194  else {
4195    Diag(LangLoc, diag::err_bad_language);
4196    return DeclPtrTy();
4197  }
4198
4199  // FIXME: Add all the various semantics of linkage specifications
4200
4201  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4202                                               LangLoc, Language,
4203                                               LBraceLoc.isValid());
4204  CurContext->addDecl(D);
4205  PushDeclContext(S, D);
4206  return DeclPtrTy::make(D);
4207}
4208
4209/// ActOnFinishLinkageSpecification - Completely the definition of
4210/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4211/// valid, it's the position of the closing '}' brace in a linkage
4212/// specification that uses braces.
4213Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4214                                                      DeclPtrTy LinkageSpec,
4215                                                      SourceLocation RBraceLoc) {
4216  if (LinkageSpec)
4217    PopDeclContext();
4218  return LinkageSpec;
4219}
4220
4221/// \brief Perform semantic analysis for the variable declaration that
4222/// occurs within a C++ catch clause, returning the newly-created
4223/// variable.
4224VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4225                                         DeclaratorInfo *DInfo,
4226                                         IdentifierInfo *Name,
4227                                         SourceLocation Loc,
4228                                         SourceRange Range) {
4229  bool Invalid = false;
4230
4231  // Arrays and functions decay.
4232  if (ExDeclType->isArrayType())
4233    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4234  else if (ExDeclType->isFunctionType())
4235    ExDeclType = Context.getPointerType(ExDeclType);
4236
4237  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4238  // The exception-declaration shall not denote a pointer or reference to an
4239  // incomplete type, other than [cv] void*.
4240  // N2844 forbids rvalue references.
4241  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4242    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4243    Invalid = true;
4244  }
4245
4246  QualType BaseType = ExDeclType;
4247  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4248  unsigned DK = diag::err_catch_incomplete;
4249  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4250    BaseType = Ptr->getPointeeType();
4251    Mode = 1;
4252    DK = diag::err_catch_incomplete_ptr;
4253  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4254    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4255    BaseType = Ref->getPointeeType();
4256    Mode = 2;
4257    DK = diag::err_catch_incomplete_ref;
4258  }
4259  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4260      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
4261    Invalid = true;
4262
4263  if (!Invalid && !ExDeclType->isDependentType() &&
4264      RequireNonAbstractType(Loc, ExDeclType,
4265                             diag::err_abstract_type_in_decl,
4266                             AbstractVariableType))
4267    Invalid = true;
4268
4269  // FIXME: Need to test for ability to copy-construct and destroy the
4270  // exception variable.
4271
4272  // FIXME: Need to check for abstract classes.
4273
4274  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4275                                    Name, ExDeclType, DInfo, VarDecl::None);
4276
4277  if (Invalid)
4278    ExDecl->setInvalidDecl();
4279
4280  return ExDecl;
4281}
4282
4283/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4284/// handler.
4285Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4286  DeclaratorInfo *DInfo = 0;
4287  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
4288
4289  bool Invalid = D.isInvalidType();
4290  IdentifierInfo *II = D.getIdentifier();
4291  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4292    // The scope should be freshly made just for us. There is just no way
4293    // it contains any previous declaration.
4294    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4295    if (PrevDecl->isTemplateParameter()) {
4296      // Maybe we will complain about the shadowed template parameter.
4297      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4298    }
4299  }
4300
4301  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4302    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4303      << D.getCXXScopeSpec().getRange();
4304    Invalid = true;
4305  }
4306
4307  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
4308                                              D.getIdentifier(),
4309                                              D.getIdentifierLoc(),
4310                                            D.getDeclSpec().getSourceRange());
4311
4312  if (Invalid)
4313    ExDecl->setInvalidDecl();
4314
4315  // Add the exception declaration into this scope.
4316  if (II)
4317    PushOnScopeChains(ExDecl, S);
4318  else
4319    CurContext->addDecl(ExDecl);
4320
4321  ProcessDeclAttributes(S, ExDecl, D);
4322  return DeclPtrTy::make(ExDecl);
4323}
4324
4325Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
4326                                                   ExprArg assertexpr,
4327                                                   ExprArg assertmessageexpr) {
4328  Expr *AssertExpr = (Expr *)assertexpr.get();
4329  StringLiteral *AssertMessage =
4330    cast<StringLiteral>((Expr *)assertmessageexpr.get());
4331
4332  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
4333    llvm::APSInt Value(32);
4334    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
4335      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
4336        AssertExpr->getSourceRange();
4337      return DeclPtrTy();
4338    }
4339
4340    if (Value == 0) {
4341      std::string str(AssertMessage->getStrData(),
4342                      AssertMessage->getByteLength());
4343      Diag(AssertLoc, diag::err_static_assert_failed)
4344        << str << AssertExpr->getSourceRange();
4345    }
4346  }
4347
4348  assertexpr.release();
4349  assertmessageexpr.release();
4350  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
4351                                        AssertExpr, AssertMessage);
4352
4353  CurContext->addDecl(Decl);
4354  return DeclPtrTy::make(Decl);
4355}
4356
4357/// Handle a friend type declaration.  This works in tandem with
4358/// ActOnTag.
4359///
4360/// Notes on friend class templates:
4361///
4362/// We generally treat friend class declarations as if they were
4363/// declaring a class.  So, for example, the elaborated type specifier
4364/// in a friend declaration is required to obey the restrictions of a
4365/// class-head (i.e. no typedefs in the scope chain), template
4366/// parameters are required to match up with simple template-ids, &c.
4367/// However, unlike when declaring a template specialization, it's
4368/// okay to refer to a template specialization without an empty
4369/// template parameter declaration, e.g.
4370///   friend class A<T>::B<unsigned>;
4371/// We permit this as a special case; if there are any template
4372/// parameters present at all, require proper matching, i.e.
4373///   template <> template <class T> friend class A<int>::B;
4374Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
4375                                          MultiTemplateParamsArg TempParams) {
4376  SourceLocation Loc = DS.getSourceRange().getBegin();
4377
4378  assert(DS.isFriendSpecified());
4379  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4380
4381  // Try to convert the decl specifier to a type.  This works for
4382  // friend templates because ActOnTag never produces a ClassTemplateDecl
4383  // for a TUK_Friend.
4384  Declarator TheDeclarator(DS, Declarator::MemberContext);
4385  QualType T = GetTypeForDeclarator(TheDeclarator, S);
4386  if (TheDeclarator.isInvalidType())
4387    return DeclPtrTy();
4388
4389  // This is definitely an error in C++98.  It's probably meant to
4390  // be forbidden in C++0x, too, but the specification is just
4391  // poorly written.
4392  //
4393  // The problem is with declarations like the following:
4394  //   template <T> friend A<T>::foo;
4395  // where deciding whether a class C is a friend or not now hinges
4396  // on whether there exists an instantiation of A that causes
4397  // 'foo' to equal C.  There are restrictions on class-heads
4398  // (which we declare (by fiat) elaborated friend declarations to
4399  // be) that makes this tractable.
4400  //
4401  // FIXME: handle "template <> friend class A<T>;", which
4402  // is possibly well-formed?  Who even knows?
4403  if (TempParams.size() && !isa<ElaboratedType>(T)) {
4404    Diag(Loc, diag::err_tagless_friend_type_template)
4405      << DS.getSourceRange();
4406    return DeclPtrTy();
4407  }
4408
4409  // C++ [class.friend]p2:
4410  //   An elaborated-type-specifier shall be used in a friend declaration
4411  //   for a class.*
4412  //   * The class-key of the elaborated-type-specifier is required.
4413  // This is one of the rare places in Clang where it's legitimate to
4414  // ask about the "spelling" of the type.
4415  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
4416    // If we evaluated the type to a record type, suggest putting
4417    // a tag in front.
4418    if (const RecordType *RT = T->getAs<RecordType>()) {
4419      RecordDecl *RD = RT->getDecl();
4420
4421      std::string InsertionText = std::string(" ") + RD->getKindName();
4422
4423      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
4424        << (unsigned) RD->getTagKind()
4425        << T
4426        << SourceRange(DS.getFriendSpecLoc())
4427        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
4428                                                 InsertionText);
4429      return DeclPtrTy();
4430    }else {
4431      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
4432          << DS.getSourceRange();
4433      return DeclPtrTy();
4434    }
4435  }
4436
4437  // Enum types cannot be friends.
4438  if (T->getAs<EnumType>()) {
4439    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
4440      << SourceRange(DS.getFriendSpecLoc());
4441    return DeclPtrTy();
4442  }
4443
4444  // C++98 [class.friend]p1: A friend of a class is a function
4445  //   or class that is not a member of the class . . .
4446  // But that's a silly restriction which nobody implements for
4447  // inner classes, and C++0x removes it anyway, so we only report
4448  // this (as a warning) if we're being pedantic.
4449  if (!getLangOptions().CPlusPlus0x)
4450    if (const RecordType *RT = T->getAs<RecordType>())
4451      if (RT->getDecl()->getDeclContext() == CurContext)
4452        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
4453
4454  Decl *D;
4455  if (TempParams.size())
4456    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
4457                                   TempParams.size(),
4458                                 (TemplateParameterList**) TempParams.release(),
4459                                   T.getTypePtr(),
4460                                   DS.getFriendSpecLoc());
4461  else
4462    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
4463                           DS.getFriendSpecLoc());
4464  D->setAccess(AS_public);
4465  CurContext->addDecl(D);
4466
4467  return DeclPtrTy::make(D);
4468}
4469
4470Sema::DeclPtrTy
4471Sema::ActOnFriendFunctionDecl(Scope *S,
4472                              Declarator &D,
4473                              bool IsDefinition,
4474                              MultiTemplateParamsArg TemplateParams) {
4475  const DeclSpec &DS = D.getDeclSpec();
4476
4477  assert(DS.isFriendSpecified());
4478  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4479
4480  SourceLocation Loc = D.getIdentifierLoc();
4481  DeclaratorInfo *DInfo = 0;
4482  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4483
4484  // C++ [class.friend]p1
4485  //   A friend of a class is a function or class....
4486  // Note that this sees through typedefs, which is intended.
4487  // It *doesn't* see through dependent types, which is correct
4488  // according to [temp.arg.type]p3:
4489  //   If a declaration acquires a function type through a
4490  //   type dependent on a template-parameter and this causes
4491  //   a declaration that does not use the syntactic form of a
4492  //   function declarator to have a function type, the program
4493  //   is ill-formed.
4494  if (!T->isFunctionType()) {
4495    Diag(Loc, diag::err_unexpected_friend);
4496
4497    // It might be worthwhile to try to recover by creating an
4498    // appropriate declaration.
4499    return DeclPtrTy();
4500  }
4501
4502  // C++ [namespace.memdef]p3
4503  //  - If a friend declaration in a non-local class first declares a
4504  //    class or function, the friend class or function is a member
4505  //    of the innermost enclosing namespace.
4506  //  - The name of the friend is not found by simple name lookup
4507  //    until a matching declaration is provided in that namespace
4508  //    scope (either before or after the class declaration granting
4509  //    friendship).
4510  //  - If a friend function is called, its name may be found by the
4511  //    name lookup that considers functions from namespaces and
4512  //    classes associated with the types of the function arguments.
4513  //  - When looking for a prior declaration of a class or a function
4514  //    declared as a friend, scopes outside the innermost enclosing
4515  //    namespace scope are not considered.
4516
4517  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
4518  DeclarationName Name = GetNameForDeclarator(D);
4519  assert(Name);
4520
4521  // The context we found the declaration in, or in which we should
4522  // create the declaration.
4523  DeclContext *DC;
4524
4525  // FIXME: handle local classes
4526
4527  // Recover from invalid scope qualifiers as if they just weren't there.
4528  NamedDecl *PrevDecl = 0;
4529  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
4530    // FIXME: RequireCompleteDeclContext
4531    DC = computeDeclContext(ScopeQual);
4532
4533    // FIXME: handle dependent contexts
4534    if (!DC) return DeclPtrTy();
4535
4536    LookupResult R;
4537    LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4538    PrevDecl = R.getAsSingleDecl(Context);
4539
4540    // If searching in that context implicitly found a declaration in
4541    // a different context, treat it like it wasn't found at all.
4542    // TODO: better diagnostics for this case.  Suggesting the right
4543    // qualified scope would be nice...
4544    if (!PrevDecl || !PrevDecl->getDeclContext()->Equals(DC)) {
4545      D.setInvalidType();
4546      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
4547      return DeclPtrTy();
4548    }
4549
4550    // C++ [class.friend]p1: A friend of a class is a function or
4551    //   class that is not a member of the class . . .
4552    if (DC->Equals(CurContext))
4553      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4554
4555  // Otherwise walk out to the nearest namespace scope looking for matches.
4556  } else {
4557    // TODO: handle local class contexts.
4558
4559    DC = CurContext;
4560    while (true) {
4561      // Skip class contexts.  If someone can cite chapter and verse
4562      // for this behavior, that would be nice --- it's what GCC and
4563      // EDG do, and it seems like a reasonable intent, but the spec
4564      // really only says that checks for unqualified existing
4565      // declarations should stop at the nearest enclosing namespace,
4566      // not that they should only consider the nearest enclosing
4567      // namespace.
4568      while (DC->isRecord())
4569        DC = DC->getParent();
4570
4571      LookupResult R;
4572      LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4573      PrevDecl = R.getAsSingleDecl(Context);
4574
4575      // TODO: decide what we think about using declarations.
4576      if (PrevDecl)
4577        break;
4578
4579      if (DC->isFileContext()) break;
4580      DC = DC->getParent();
4581    }
4582
4583    // C++ [class.friend]p1: A friend of a class is a function or
4584    //   class that is not a member of the class . . .
4585    // C++0x changes this for both friend types and functions.
4586    // Most C++ 98 compilers do seem to give an error here, so
4587    // we do, too.
4588    if (PrevDecl && DC->Equals(CurContext) && !getLangOptions().CPlusPlus0x)
4589      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4590  }
4591
4592  if (DC->isFileContext()) {
4593    // This implies that it has to be an operator or function.
4594    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
4595        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
4596        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
4597      Diag(Loc, diag::err_introducing_special_friend) <<
4598        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
4599         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
4600      return DeclPtrTy();
4601    }
4602  }
4603
4604  bool Redeclaration = false;
4605  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo, PrevDecl,
4606                                          move(TemplateParams),
4607                                          IsDefinition,
4608                                          Redeclaration);
4609  if (!ND) return DeclPtrTy();
4610
4611  assert(ND->getDeclContext() == DC);
4612  assert(ND->getLexicalDeclContext() == CurContext);
4613
4614  // Add the function declaration to the appropriate lookup tables,
4615  // adjusting the redeclarations list as necessary.  We don't
4616  // want to do this yet if the friending class is dependent.
4617  //
4618  // Also update the scope-based lookup if the target context's
4619  // lookup context is in lexical scope.
4620  if (!CurContext->isDependentContext()) {
4621    DC = DC->getLookupContext();
4622    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
4623    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4624      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
4625  }
4626
4627  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
4628                                       D.getIdentifierLoc(), ND,
4629                                       DS.getFriendSpecLoc());
4630  FrD->setAccess(AS_public);
4631  CurContext->addDecl(FrD);
4632
4633  return DeclPtrTy::make(ND);
4634}
4635
4636void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
4637  AdjustDeclIfTemplate(dcl);
4638
4639  Decl *Dcl = dcl.getAs<Decl>();
4640  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
4641  if (!Fn) {
4642    Diag(DelLoc, diag::err_deleted_non_function);
4643    return;
4644  }
4645  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
4646    Diag(DelLoc, diag::err_deleted_decl_not_first);
4647    Diag(Prev->getLocation(), diag::note_previous_declaration);
4648    // If the declaration wasn't the first, we delete the function anyway for
4649    // recovery.
4650  }
4651  Fn->setDeleted();
4652}
4653
4654static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
4655  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
4656       ++CI) {
4657    Stmt *SubStmt = *CI;
4658    if (!SubStmt)
4659      continue;
4660    if (isa<ReturnStmt>(SubStmt))
4661      Self.Diag(SubStmt->getSourceRange().getBegin(),
4662           diag::err_return_in_constructor_handler);
4663    if (!isa<Expr>(SubStmt))
4664      SearchForReturnInStmt(Self, SubStmt);
4665  }
4666}
4667
4668void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
4669  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
4670    CXXCatchStmt *Handler = TryBlock->getHandler(I);
4671    SearchForReturnInStmt(*this, Handler);
4672  }
4673}
4674
4675bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
4676                                             const CXXMethodDecl *Old) {
4677  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
4678  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
4679
4680  QualType CNewTy = Context.getCanonicalType(NewTy);
4681  QualType COldTy = Context.getCanonicalType(OldTy);
4682
4683  if (CNewTy == COldTy &&
4684      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
4685    return false;
4686
4687  // Check if the return types are covariant
4688  QualType NewClassTy, OldClassTy;
4689
4690  /// Both types must be pointers or references to classes.
4691  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
4692    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
4693      NewClassTy = NewPT->getPointeeType();
4694      OldClassTy = OldPT->getPointeeType();
4695    }
4696  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
4697    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
4698      NewClassTy = NewRT->getPointeeType();
4699      OldClassTy = OldRT->getPointeeType();
4700    }
4701  }
4702
4703  // The return types aren't either both pointers or references to a class type.
4704  if (NewClassTy.isNull()) {
4705    Diag(New->getLocation(),
4706         diag::err_different_return_type_for_overriding_virtual_function)
4707      << New->getDeclName() << NewTy << OldTy;
4708    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4709
4710    return true;
4711  }
4712
4713  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
4714    // Check if the new class derives from the old class.
4715    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
4716      Diag(New->getLocation(),
4717           diag::err_covariant_return_not_derived)
4718      << New->getDeclName() << NewTy << OldTy;
4719      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4720      return true;
4721    }
4722
4723    // Check if we the conversion from derived to base is valid.
4724    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
4725                      diag::err_covariant_return_inaccessible_base,
4726                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
4727                      // FIXME: Should this point to the return type?
4728                      New->getLocation(), SourceRange(), New->getDeclName())) {
4729      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4730      return true;
4731    }
4732  }
4733
4734  // The qualifiers of the return types must be the same.
4735  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
4736    Diag(New->getLocation(),
4737         diag::err_covariant_return_type_different_qualifications)
4738    << New->getDeclName() << NewTy << OldTy;
4739    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4740    return true;
4741  };
4742
4743
4744  // The new class type must have the same or less qualifiers as the old type.
4745  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
4746    Diag(New->getLocation(),
4747         diag::err_covariant_return_type_class_type_more_qualified)
4748    << New->getDeclName() << NewTy << OldTy;
4749    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4750    return true;
4751  };
4752
4753  return false;
4754}
4755
4756/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
4757/// initializer for the declaration 'Dcl'.
4758/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
4759/// static data member of class X, names should be looked up in the scope of
4760/// class X.
4761void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4762  AdjustDeclIfTemplate(Dcl);
4763
4764  Decl *D = Dcl.getAs<Decl>();
4765  // If there is no declaration, there was an error parsing it.
4766  if (D == 0)
4767    return;
4768
4769  // Check whether it is a declaration with a nested name specifier like
4770  // int foo::bar;
4771  if (!D->isOutOfLine())
4772    return;
4773
4774  // C++ [basic.lookup.unqual]p13
4775  //
4776  // A name used in the definition of a static data member of class X
4777  // (after the qualified-id of the static member) is looked up as if the name
4778  // was used in a member function of X.
4779
4780  // Change current context into the context of the initializing declaration.
4781  EnterDeclaratorContext(S, D->getDeclContext());
4782}
4783
4784/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4785/// initializer for the declaration 'Dcl'.
4786void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4787  AdjustDeclIfTemplate(Dcl);
4788
4789  Decl *D = Dcl.getAs<Decl>();
4790  // If there is no declaration, there was an error parsing it.
4791  if (D == 0)
4792    return;
4793
4794  // Check whether it is a declaration with a nested name specifier like
4795  // int foo::bar;
4796  if (!D->isOutOfLine())
4797    return;
4798
4799  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4800  ExitDeclaratorContext(S);
4801}
4802