SemaDeclCXX.cpp revision 9cd0a3c6b68570a1c2788c5fec0ef4371fb48d81
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  return Invalid;
262}
263
264/// CheckCXXDefaultArguments - Verify that the default arguments for a
265/// function declaration are well-formed according to C++
266/// [dcl.fct.default].
267void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
268  unsigned NumParams = FD->getNumParams();
269  unsigned p;
270
271  // Find first parameter with a default argument
272  for (p = 0; p < NumParams; ++p) {
273    ParmVarDecl *Param = FD->getParamDecl(p);
274    if (Param->getDefaultArg())
275      break;
276  }
277
278  // C++ [dcl.fct.default]p4:
279  //   In a given function declaration, all parameters
280  //   subsequent to a parameter with a default argument shall
281  //   have default arguments supplied in this or previous
282  //   declarations. A default argument shall not be redefined
283  //   by a later declaration (not even to the same value).
284  unsigned LastMissingDefaultArg = 0;
285  for(; p < NumParams; ++p) {
286    ParmVarDecl *Param = FD->getParamDecl(p);
287    if (!Param->getDefaultArg()) {
288      if (Param->isInvalidDecl())
289        /* We already complained about this parameter. */;
290      else if (Param->getIdentifier())
291        Diag(Param->getLocation(),
292             diag::err_param_default_argument_missing_name)
293          << Param->getIdentifier();
294      else
295        Diag(Param->getLocation(),
296             diag::err_param_default_argument_missing);
297
298      LastMissingDefaultArg = p;
299    }
300  }
301
302  if (LastMissingDefaultArg > 0) {
303    // Some default arguments were missing. Clear out all of the
304    // default arguments up to (and including) the last missing
305    // default argument, so that we leave the function parameters
306    // in a semantically valid state.
307    for (p = 0; p <= LastMissingDefaultArg; ++p) {
308      ParmVarDecl *Param = FD->getParamDecl(p);
309      if (Param->hasDefaultArg()) {
310        if (!Param->hasUnparsedDefaultArg())
311          Param->getDefaultArg()->Destroy(Context);
312        Param->setDefaultArg(0);
313      }
314    }
315  }
316}
317
318/// isCurrentClassName - Determine whether the identifier II is the
319/// name of the class type currently being defined. In the case of
320/// nested classes, this will only return true if II is the name of
321/// the innermost class.
322bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
323                              const CXXScopeSpec *SS) {
324  CXXRecordDecl *CurDecl;
325  if (SS && SS->isSet() && !SS->isInvalid()) {
326    DeclContext *DC = computeDeclContext(*SS);
327    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
328  } else
329    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
330
331  if (CurDecl)
332    return &II == CurDecl->getIdentifier();
333  else
334    return false;
335}
336
337/// \brief Check the validity of a C++ base class specifier.
338///
339/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
340/// and returns NULL otherwise.
341CXXBaseSpecifier *
342Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
343                         SourceRange SpecifierRange,
344                         bool Virtual, AccessSpecifier Access,
345                         QualType BaseType,
346                         SourceLocation BaseLoc) {
347  // C++ [class.union]p1:
348  //   A union shall not have base classes.
349  if (Class->isUnion()) {
350    Diag(Class->getLocation(), diag::err_base_clause_on_union)
351      << SpecifierRange;
352    return 0;
353  }
354
355  if (BaseType->isDependentType())
356    return new CXXBaseSpecifier(SpecifierRange, Virtual,
357                                Class->getTagKind() == RecordDecl::TK_class,
358                                Access, BaseType);
359
360  // Base specifiers must be record types.
361  if (!BaseType->isRecordType()) {
362    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
363    return 0;
364  }
365
366  // C++ [class.union]p1:
367  //   A union shall not be used as a base class.
368  if (BaseType->isUnionType()) {
369    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
370    return 0;
371  }
372
373  // C++ [class.derived]p2:
374  //   The class-name in a base-specifier shall not be an incompletely
375  //   defined class.
376  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
377                          SpecifierRange))
378    return 0;
379
380  // If the base class is polymorphic, the new one is, too.
381  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
382  assert(BaseDecl && "Record type has no declaration");
383  BaseDecl = BaseDecl->getDefinition(Context);
384  assert(BaseDecl && "Base type is not incomplete, but has no definition");
385  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
386    Class->setPolymorphic(true);
387
388  // C++ [dcl.init.aggr]p1:
389  //   An aggregate is [...] a class with [...] no base classes [...].
390  Class->setAggregate(false);
391  Class->setPOD(false);
392
393  if (Virtual) {
394    // C++ [class.ctor]p5:
395    //   A constructor is trivial if its class has no virtual base classes.
396    Class->setHasTrivialConstructor(false);
397  } else {
398    // C++ [class.ctor]p5:
399    //   A constructor is trivial if all the direct base classes of its
400    //   class have trivial constructors.
401    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
402                                    hasTrivialConstructor());
403  }
404
405  // C++ [class.ctor]p3:
406  //   A destructor is trivial if all the direct base classes of its class
407  //   have trivial destructors.
408  Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
409                                 hasTrivialDestructor());
410
411  // Create the base specifier.
412  // FIXME: Allocate via ASTContext?
413  return new CXXBaseSpecifier(SpecifierRange, Virtual,
414                              Class->getTagKind() == RecordDecl::TK_class,
415                              Access, BaseType);
416}
417
418/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
419/// one entry in the base class list of a class specifier, for
420/// example:
421///    class foo : public bar, virtual private baz {
422/// 'public bar' and 'virtual private baz' are each base-specifiers.
423Sema::BaseResult
424Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
425                         bool Virtual, AccessSpecifier Access,
426                         TypeTy *basetype, SourceLocation BaseLoc) {
427  if (!classdecl)
428    return true;
429
430  AdjustDeclIfTemplate(classdecl);
431  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
432  QualType BaseType = QualType::getFromOpaquePtr(basetype);
433  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
434                                                      Virtual, Access,
435                                                      BaseType, BaseLoc))
436    return BaseSpec;
437
438  return true;
439}
440
441/// \brief Performs the actual work of attaching the given base class
442/// specifiers to a C++ class.
443bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
444                                unsigned NumBases) {
445 if (NumBases == 0)
446    return false;
447
448  // Used to keep track of which base types we have already seen, so
449  // that we can properly diagnose redundant direct base types. Note
450  // that the key is always the unqualified canonical type of the base
451  // class.
452  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
453
454  // Copy non-redundant base specifiers into permanent storage.
455  unsigned NumGoodBases = 0;
456  bool Invalid = false;
457  for (unsigned idx = 0; idx < NumBases; ++idx) {
458    QualType NewBaseType
459      = Context.getCanonicalType(Bases[idx]->getType());
460    NewBaseType = NewBaseType.getUnqualifiedType();
461
462    if (KnownBaseTypes[NewBaseType]) {
463      // C++ [class.mi]p3:
464      //   A class shall not be specified as a direct base class of a
465      //   derived class more than once.
466      Diag(Bases[idx]->getSourceRange().getBegin(),
467           diag::err_duplicate_base_class)
468        << KnownBaseTypes[NewBaseType]->getType()
469        << Bases[idx]->getSourceRange();
470
471      // Delete the duplicate base class specifier; we're going to
472      // overwrite its pointer later.
473      delete Bases[idx];
474
475      Invalid = true;
476    } else {
477      // Okay, add this new base class.
478      KnownBaseTypes[NewBaseType] = Bases[idx];
479      Bases[NumGoodBases++] = Bases[idx];
480    }
481  }
482
483  // Attach the remaining base class specifiers to the derived class.
484  Class->setBases(Context, Bases, NumGoodBases);
485
486  // Delete the remaining (good) base class specifiers, since their
487  // data has been copied into the CXXRecordDecl.
488  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
489    delete Bases[idx];
490
491  return Invalid;
492}
493
494/// ActOnBaseSpecifiers - Attach the given base specifiers to the
495/// class, after checking whether there are any duplicate base
496/// classes.
497void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
498                               unsigned NumBases) {
499  if (!ClassDecl || !Bases || !NumBases)
500    return;
501
502  AdjustDeclIfTemplate(ClassDecl);
503  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
504                       (CXXBaseSpecifier**)(Bases), NumBases);
505}
506
507//===----------------------------------------------------------------------===//
508// C++ class member Handling
509//===----------------------------------------------------------------------===//
510
511/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
512/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
513/// bitfield width if there is one and 'InitExpr' specifies the initializer if
514/// any.
515Sema::DeclPtrTy
516Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
517                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
518  const DeclSpec &DS = D.getDeclSpec();
519  DeclarationName Name = GetNameForDeclarator(D);
520  Expr *BitWidth = static_cast<Expr*>(BW);
521  Expr *Init = static_cast<Expr*>(InitExpr);
522  SourceLocation Loc = D.getIdentifierLoc();
523
524  bool isFunc = D.isFunctionDeclarator();
525
526  // C++ 9.2p6: A member shall not be declared to have automatic storage
527  // duration (auto, register) or with the extern storage-class-specifier.
528  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
529  // data members and cannot be applied to names declared const or static,
530  // and cannot be applied to reference members.
531  switch (DS.getStorageClassSpec()) {
532    case DeclSpec::SCS_unspecified:
533    case DeclSpec::SCS_typedef:
534    case DeclSpec::SCS_static:
535      // FALL THROUGH.
536      break;
537    case DeclSpec::SCS_mutable:
538      if (isFunc) {
539        if (DS.getStorageClassSpecLoc().isValid())
540          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
541        else
542          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
543
544        // FIXME: It would be nicer if the keyword was ignored only for this
545        // declarator. Otherwise we could get follow-up errors.
546        D.getMutableDeclSpec().ClearStorageClassSpecs();
547      } else {
548        QualType T = GetTypeForDeclarator(D, S);
549        diag::kind err = static_cast<diag::kind>(0);
550        if (T->isReferenceType())
551          err = diag::err_mutable_reference;
552        else if (T.isConstQualified())
553          err = diag::err_mutable_const;
554        if (err != 0) {
555          if (DS.getStorageClassSpecLoc().isValid())
556            Diag(DS.getStorageClassSpecLoc(), err);
557          else
558            Diag(DS.getThreadSpecLoc(), err);
559          // FIXME: It would be nicer if the keyword was ignored only for this
560          // declarator. Otherwise we could get follow-up errors.
561          D.getMutableDeclSpec().ClearStorageClassSpecs();
562        }
563      }
564      break;
565    default:
566      if (DS.getStorageClassSpecLoc().isValid())
567        Diag(DS.getStorageClassSpecLoc(),
568             diag::err_storageclass_invalid_for_member);
569      else
570        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
571      D.getMutableDeclSpec().ClearStorageClassSpecs();
572  }
573
574  if (!isFunc &&
575      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
576      D.getNumTypeObjects() == 0) {
577    // Check also for this case:
578    //
579    // typedef int f();
580    // f a;
581    //
582    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
583    isFunc = TDType->isFunctionType();
584  }
585
586  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
587                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
588                      !isFunc);
589
590  Decl *Member;
591  if (isInstField) {
592    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
593                         AS);
594    assert(Member && "HandleField never returns null");
595  } else {
596    Member = ActOnDeclarator(S, D).getAs<Decl>();
597    if (!Member) {
598      if (BitWidth) DeleteExpr(BitWidth);
599      return DeclPtrTy();
600    }
601
602    // Non-instance-fields can't have a bitfield.
603    if (BitWidth) {
604      if (Member->isInvalidDecl()) {
605        // don't emit another diagnostic.
606      } else if (isa<VarDecl>(Member)) {
607        // C++ 9.6p3: A bit-field shall not be a static member.
608        // "static member 'A' cannot be a bit-field"
609        Diag(Loc, diag::err_static_not_bitfield)
610          << Name << BitWidth->getSourceRange();
611      } else if (isa<TypedefDecl>(Member)) {
612        // "typedef member 'x' cannot be a bit-field"
613        Diag(Loc, diag::err_typedef_not_bitfield)
614          << Name << BitWidth->getSourceRange();
615      } else {
616        // A function typedef ("typedef int f(); f a;").
617        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
618        Diag(Loc, diag::err_not_integral_type_bitfield)
619          << Name << cast<ValueDecl>(Member)->getType()
620          << BitWidth->getSourceRange();
621      }
622
623      DeleteExpr(BitWidth);
624      BitWidth = 0;
625      Member->setInvalidDecl();
626    }
627
628    Member->setAccess(AS);
629  }
630
631  assert((Name || isInstField) && "No identifier for non-field ?");
632
633  if (Init)
634    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
635  if (Deleted) // FIXME: Source location is not very good.
636    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
637
638  if (isInstField) {
639    FieldCollector->Add(cast<FieldDecl>(Member));
640    return DeclPtrTy();
641  }
642  return DeclPtrTy::make(Member);
643}
644
645/// ActOnMemInitializer - Handle a C++ member initializer.
646Sema::MemInitResult
647Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
648                          Scope *S,
649                          const CXXScopeSpec &SS,
650                          IdentifierInfo *MemberOrBase,
651                          TypeTy *TemplateTypeTy,
652                          SourceLocation IdLoc,
653                          SourceLocation LParenLoc,
654                          ExprTy **Args, unsigned NumArgs,
655                          SourceLocation *CommaLocs,
656                          SourceLocation RParenLoc) {
657  if (!ConstructorD)
658    return true;
659
660  CXXConstructorDecl *Constructor
661    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
662  if (!Constructor) {
663    // The user wrote a constructor initializer on a function that is
664    // not a C++ constructor. Ignore the error for now, because we may
665    // have more member initializers coming; we'll diagnose it just
666    // once in ActOnMemInitializers.
667    return true;
668  }
669
670  CXXRecordDecl *ClassDecl = Constructor->getParent();
671
672  // C++ [class.base.init]p2:
673  //   Names in a mem-initializer-id are looked up in the scope of the
674  //   constructor’s class and, if not found in that scope, are looked
675  //   up in the scope containing the constructor’s
676  //   definition. [Note: if the constructor’s class contains a member
677  //   with the same name as a direct or virtual base class of the
678  //   class, a mem-initializer-id naming the member or base class and
679  //   composed of a single identifier refers to the class member. A
680  //   mem-initializer-id for the hidden base class may be specified
681  //   using a qualified name. ]
682  if (!SS.getScopeRep() && !TemplateTypeTy) {
683    // Look for a member, first.
684    FieldDecl *Member = 0;
685    DeclContext::lookup_result Result
686      = ClassDecl->lookup(MemberOrBase);
687    if (Result.first != Result.second)
688      Member = dyn_cast<FieldDecl>(*Result.first);
689
690    // FIXME: Handle members of an anonymous union.
691
692    if (Member) {
693      // FIXME: Perform direct initialization of the member.
694      return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs,
695                                            IdLoc);
696    }
697  }
698  // It didn't name a member, so see if it names a class.
699  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
700                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
701  if (!BaseTy)
702    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
703      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
704
705  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
706  if (!BaseType->isRecordType() && !BaseType->isDependentType())
707    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
708      << BaseType << SourceRange(IdLoc, RParenLoc);
709
710  // C++ [class.base.init]p2:
711  //   [...] Unless the mem-initializer-id names a nonstatic data
712  //   member of the constructor’s class or a direct or virtual base
713  //   of that class, the mem-initializer is ill-formed. A
714  //   mem-initializer-list can initialize a base class using any
715  //   name that denotes that base class type.
716
717  // First, check for a direct base class.
718  const CXXBaseSpecifier *DirectBaseSpec = 0;
719  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
720       Base != ClassDecl->bases_end(); ++Base) {
721    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
722        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
723      // We found a direct base of this type. That's what we're
724      // initializing.
725      DirectBaseSpec = &*Base;
726      break;
727    }
728  }
729
730  // Check for a virtual base class.
731  // FIXME: We might be able to short-circuit this if we know in advance that
732  // there are no virtual bases.
733  const CXXBaseSpecifier *VirtualBaseSpec = 0;
734  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
735    // We haven't found a base yet; search the class hierarchy for a
736    // virtual base class.
737    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
738                    /*DetectVirtual=*/false);
739    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
740      for (BasePaths::paths_iterator Path = Paths.begin();
741           Path != Paths.end(); ++Path) {
742        if (Path->back().Base->isVirtual()) {
743          VirtualBaseSpec = Path->back().Base;
744          break;
745        }
746      }
747    }
748  }
749
750  // C++ [base.class.init]p2:
751  //   If a mem-initializer-id is ambiguous because it designates both
752  //   a direct non-virtual base class and an inherited virtual base
753  //   class, the mem-initializer is ill-formed.
754  if (DirectBaseSpec && VirtualBaseSpec)
755    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
756      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
757  // C++ [base.class.init]p2:
758  // Unless the mem-initializer-id names a nonstatic data membeer of the
759  // constructor's class ot a direst or virtual base of that class, the
760  // mem-initializer is ill-formed.
761  if (!DirectBaseSpec && !VirtualBaseSpec)
762    return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
763    << BaseType << ClassDecl->getNameAsCString()
764    << SourceRange(IdLoc, RParenLoc);
765
766
767  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs,
768                                        IdLoc);
769}
770
771void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
772                                SourceLocation ColonLoc,
773                                MemInitTy **MemInits, unsigned NumMemInits) {
774  if (!ConstructorDecl)
775    return;
776
777  CXXConstructorDecl *Constructor
778    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
779
780  if (!Constructor) {
781    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
782    return;
783  }
784  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
785  bool err = false;
786  for (unsigned i = 0; i < NumMemInits; i++) {
787    CXXBaseOrMemberInitializer *Member =
788      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
789    void *KeyToMember = Member->getBaseOrMember();
790    // For fields injected into the class via declaration of an anonymous union,
791    // use its anonymous union class declaration as the unique key.
792    if (FieldDecl *Field = Member->getMember())
793      if (Field->getDeclContext()->isRecord() &&
794          cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
795        KeyToMember = static_cast<void *>(Field->getDeclContext());
796    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
797    if (!PrevMember) {
798      PrevMember = Member;
799      continue;
800    }
801    if (FieldDecl *Field = Member->getMember())
802      Diag(Member->getSourceLocation(),
803           diag::error_multiple_mem_initialization)
804      << Field->getNameAsString();
805    else {
806      Type *BaseClass = Member->getBaseClass();
807      assert(BaseClass && "ActOnMemInitializers - neither field or base");
808      Diag(Member->getSourceLocation(),
809           diag::error_multiple_base_initialization)
810        << BaseClass->getDesugaredType(true);
811    }
812    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
813      << 0;
814    err = true;
815  }
816  if (!err)
817    Constructor->setBaseOrMemberInitializers(Context,
818                    reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
819                    NumMemInits);
820}
821
822namespace {
823  /// PureVirtualMethodCollector - traverses a class and its superclasses
824  /// and determines if it has any pure virtual methods.
825  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
826    ASTContext &Context;
827
828  public:
829    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
830
831  private:
832    MethodList Methods;
833
834    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
835
836  public:
837    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
838      : Context(Ctx) {
839
840      MethodList List;
841      Collect(RD, List);
842
843      // Copy the temporary list to methods, and make sure to ignore any
844      // null entries.
845      for (size_t i = 0, e = List.size(); i != e; ++i) {
846        if (List[i])
847          Methods.push_back(List[i]);
848      }
849    }
850
851    bool empty() const { return Methods.empty(); }
852
853    MethodList::const_iterator methods_begin() { return Methods.begin(); }
854    MethodList::const_iterator methods_end() { return Methods.end(); }
855  };
856
857  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
858                                           MethodList& Methods) {
859    // First, collect the pure virtual methods for the base classes.
860    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
861         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
862      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
863        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
864        if (BaseDecl && BaseDecl->isAbstract())
865          Collect(BaseDecl, Methods);
866      }
867    }
868
869    // Next, zero out any pure virtual methods that this class overrides.
870    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
871
872    MethodSetTy OverriddenMethods;
873    size_t MethodsSize = Methods.size();
874
875    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
876         i != e; ++i) {
877      // Traverse the record, looking for methods.
878      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
879        // If the method is pre virtual, add it to the methods vector.
880        if (MD->isPure()) {
881          Methods.push_back(MD);
882          continue;
883        }
884
885        // Otherwise, record all the overridden methods in our set.
886        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
887             E = MD->end_overridden_methods(); I != E; ++I) {
888          // Keep track of the overridden methods.
889          OverriddenMethods.insert(*I);
890        }
891      }
892    }
893
894    // Now go through the methods and zero out all the ones we know are
895    // overridden.
896    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
897      if (OverriddenMethods.count(Methods[i]))
898        Methods[i] = 0;
899    }
900
901  }
902}
903
904bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
905                                  unsigned DiagID, AbstractDiagSelID SelID,
906                                  const CXXRecordDecl *CurrentRD) {
907
908  if (!getLangOptions().CPlusPlus)
909    return false;
910
911  if (const ArrayType *AT = Context.getAsArrayType(T))
912    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
913                                  CurrentRD);
914
915  if (const PointerType *PT = T->getAsPointerType()) {
916    // Find the innermost pointer type.
917    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
918      PT = T;
919
920    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
921      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
922                                    CurrentRD);
923  }
924
925  const RecordType *RT = T->getAsRecordType();
926  if (!RT)
927    return false;
928
929  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
930  if (!RD)
931    return false;
932
933  if (CurrentRD && CurrentRD != RD)
934    return false;
935
936  if (!RD->isAbstract())
937    return false;
938
939  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
940
941  // Check if we've already emitted the list of pure virtual functions for this
942  // class.
943  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
944    return true;
945
946  PureVirtualMethodCollector Collector(Context, RD);
947
948  for (PureVirtualMethodCollector::MethodList::const_iterator I =
949       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
950    const CXXMethodDecl *MD = *I;
951
952    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
953      MD->getDeclName();
954  }
955
956  if (!PureVirtualClassDiagSet)
957    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
958  PureVirtualClassDiagSet->insert(RD);
959
960  return true;
961}
962
963namespace {
964  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
965    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
966    Sema &SemaRef;
967    CXXRecordDecl *AbstractClass;
968
969    bool VisitDeclContext(const DeclContext *DC) {
970      bool Invalid = false;
971
972      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
973           E = DC->decls_end(); I != E; ++I)
974        Invalid |= Visit(*I);
975
976      return Invalid;
977    }
978
979  public:
980    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
981      : SemaRef(SemaRef), AbstractClass(ac) {
982        Visit(SemaRef.Context.getTranslationUnitDecl());
983    }
984
985    bool VisitFunctionDecl(const FunctionDecl *FD) {
986      if (FD->isThisDeclarationADefinition()) {
987        // No need to do the check if we're in a definition, because it requires
988        // that the return/param types are complete.
989        // because that requires
990        return VisitDeclContext(FD);
991      }
992
993      // Check the return type.
994      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
995      bool Invalid =
996        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
997                                       diag::err_abstract_type_in_decl,
998                                       Sema::AbstractReturnType,
999                                       AbstractClass);
1000
1001      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1002           E = FD->param_end(); I != E; ++I) {
1003        const ParmVarDecl *VD = *I;
1004        Invalid |=
1005          SemaRef.RequireNonAbstractType(VD->getLocation(),
1006                                         VD->getOriginalType(),
1007                                         diag::err_abstract_type_in_decl,
1008                                         Sema::AbstractParamType,
1009                                         AbstractClass);
1010      }
1011
1012      return Invalid;
1013    }
1014
1015    bool VisitDecl(const Decl* D) {
1016      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1017        return VisitDeclContext(DC);
1018
1019      return false;
1020    }
1021  };
1022}
1023
1024void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1025                                             DeclPtrTy TagDecl,
1026                                             SourceLocation LBrac,
1027                                             SourceLocation RBrac) {
1028  if (!TagDecl)
1029    return;
1030
1031  AdjustDeclIfTemplate(TagDecl);
1032  ActOnFields(S, RLoc, TagDecl,
1033              (DeclPtrTy*)FieldCollector->getCurFields(),
1034              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1035
1036  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1037  if (!RD->isAbstract()) {
1038    // Collect all the pure virtual methods and see if this is an abstract
1039    // class after all.
1040    PureVirtualMethodCollector Collector(Context, RD);
1041    if (!Collector.empty())
1042      RD->setAbstract(true);
1043  }
1044
1045  if (RD->isAbstract())
1046    AbstractClassUsageDiagnoser(*this, RD);
1047
1048  if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
1049    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1050         i != e; ++i) {
1051      // All the nonstatic data members must have trivial constructors.
1052      QualType FTy = i->getType();
1053      while (const ArrayType *AT = Context.getAsArrayType(FTy))
1054        FTy = AT->getElementType();
1055
1056      if (const RecordType *RT = FTy->getAsRecordType()) {
1057        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
1058
1059        if (!FieldRD->hasTrivialConstructor())
1060          RD->setHasTrivialConstructor(false);
1061        if (!FieldRD->hasTrivialDestructor())
1062          RD->setHasTrivialDestructor(false);
1063
1064        // If RD has neither a trivial constructor nor a trivial destructor
1065        // we don't need to continue checking.
1066        if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
1067          break;
1068      }
1069    }
1070  }
1071
1072  if (!RD->isDependentType())
1073    AddImplicitlyDeclaredMembersToClass(RD);
1074}
1075
1076/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1077/// special functions, such as the default constructor, copy
1078/// constructor, or destructor, to the given C++ class (C++
1079/// [special]p1).  This routine can only be executed just before the
1080/// definition of the class is complete.
1081void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1082  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1083  ClassType = Context.getCanonicalType(ClassType);
1084
1085  // FIXME: Implicit declarations have exception specifications, which are
1086  // the union of the specifications of the implicitly called functions.
1087
1088  if (!ClassDecl->hasUserDeclaredConstructor()) {
1089    // C++ [class.ctor]p5:
1090    //   A default constructor for a class X is a constructor of class X
1091    //   that can be called without an argument. If there is no
1092    //   user-declared constructor for class X, a default constructor is
1093    //   implicitly declared. An implicitly-declared default constructor
1094    //   is an inline public member of its class.
1095    DeclarationName Name
1096      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1097    CXXConstructorDecl *DefaultCon =
1098      CXXConstructorDecl::Create(Context, ClassDecl,
1099                                 ClassDecl->getLocation(), Name,
1100                                 Context.getFunctionType(Context.VoidTy,
1101                                                         0, 0, false, 0),
1102                                 /*isExplicit=*/false,
1103                                 /*isInline=*/true,
1104                                 /*isImplicitlyDeclared=*/true);
1105    DefaultCon->setAccess(AS_public);
1106    DefaultCon->setImplicit();
1107    ClassDecl->addDecl(DefaultCon);
1108  }
1109
1110  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1111    // C++ [class.copy]p4:
1112    //   If the class definition does not explicitly declare a copy
1113    //   constructor, one is declared implicitly.
1114
1115    // C++ [class.copy]p5:
1116    //   The implicitly-declared copy constructor for a class X will
1117    //   have the form
1118    //
1119    //       X::X(const X&)
1120    //
1121    //   if
1122    bool HasConstCopyConstructor = true;
1123
1124    //     -- each direct or virtual base class B of X has a copy
1125    //        constructor whose first parameter is of type const B& or
1126    //        const volatile B&, and
1127    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1128         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1129      const CXXRecordDecl *BaseClassDecl
1130        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1131      HasConstCopyConstructor
1132        = BaseClassDecl->hasConstCopyConstructor(Context);
1133    }
1134
1135    //     -- for all the nonstatic data members of X that are of a
1136    //        class type M (or array thereof), each such class type
1137    //        has a copy constructor whose first parameter is of type
1138    //        const M& or const volatile M&.
1139    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1140         HasConstCopyConstructor && Field != ClassDecl->field_end();
1141         ++Field) {
1142      QualType FieldType = (*Field)->getType();
1143      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1144        FieldType = Array->getElementType();
1145      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1146        const CXXRecordDecl *FieldClassDecl
1147          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1148        HasConstCopyConstructor
1149          = FieldClassDecl->hasConstCopyConstructor(Context);
1150      }
1151    }
1152
1153    //   Otherwise, the implicitly declared copy constructor will have
1154    //   the form
1155    //
1156    //       X::X(X&)
1157    QualType ArgType = ClassType;
1158    if (HasConstCopyConstructor)
1159      ArgType = ArgType.withConst();
1160    ArgType = Context.getLValueReferenceType(ArgType);
1161
1162    //   An implicitly-declared copy constructor is an inline public
1163    //   member of its class.
1164    DeclarationName Name
1165      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1166    CXXConstructorDecl *CopyConstructor
1167      = CXXConstructorDecl::Create(Context, ClassDecl,
1168                                   ClassDecl->getLocation(), Name,
1169                                   Context.getFunctionType(Context.VoidTy,
1170                                                           &ArgType, 1,
1171                                                           false, 0),
1172                                   /*isExplicit=*/false,
1173                                   /*isInline=*/true,
1174                                   /*isImplicitlyDeclared=*/true);
1175    CopyConstructor->setAccess(AS_public);
1176    CopyConstructor->setImplicit();
1177
1178    // Add the parameter to the constructor.
1179    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1180                                                 ClassDecl->getLocation(),
1181                                                 /*IdentifierInfo=*/0,
1182                                                 ArgType, VarDecl::None, 0);
1183    CopyConstructor->setParams(Context, &FromParam, 1);
1184    ClassDecl->addDecl(CopyConstructor);
1185  }
1186
1187  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1188    // Note: The following rules are largely analoguous to the copy
1189    // constructor rules. Note that virtual bases are not taken into account
1190    // for determining the argument type of the operator. Note also that
1191    // operators taking an object instead of a reference are allowed.
1192    //
1193    // C++ [class.copy]p10:
1194    //   If the class definition does not explicitly declare a copy
1195    //   assignment operator, one is declared implicitly.
1196    //   The implicitly-defined copy assignment operator for a class X
1197    //   will have the form
1198    //
1199    //       X& X::operator=(const X&)
1200    //
1201    //   if
1202    bool HasConstCopyAssignment = true;
1203
1204    //       -- each direct base class B of X has a copy assignment operator
1205    //          whose parameter is of type const B&, const volatile B& or B,
1206    //          and
1207    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1208         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1209      const CXXRecordDecl *BaseClassDecl
1210        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1211      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1212    }
1213
1214    //       -- for all the nonstatic data members of X that are of a class
1215    //          type M (or array thereof), each such class type has a copy
1216    //          assignment operator whose parameter is of type const M&,
1217    //          const volatile M& or M.
1218    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1219         HasConstCopyAssignment && Field != ClassDecl->field_end();
1220         ++Field) {
1221      QualType FieldType = (*Field)->getType();
1222      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1223        FieldType = Array->getElementType();
1224      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1225        const CXXRecordDecl *FieldClassDecl
1226          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1227        HasConstCopyAssignment
1228          = FieldClassDecl->hasConstCopyAssignment(Context);
1229      }
1230    }
1231
1232    //   Otherwise, the implicitly declared copy assignment operator will
1233    //   have the form
1234    //
1235    //       X& X::operator=(X&)
1236    QualType ArgType = ClassType;
1237    QualType RetType = Context.getLValueReferenceType(ArgType);
1238    if (HasConstCopyAssignment)
1239      ArgType = ArgType.withConst();
1240    ArgType = Context.getLValueReferenceType(ArgType);
1241
1242    //   An implicitly-declared copy assignment operator is an inline public
1243    //   member of its class.
1244    DeclarationName Name =
1245      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1246    CXXMethodDecl *CopyAssignment =
1247      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1248                            Context.getFunctionType(RetType, &ArgType, 1,
1249                                                    false, 0),
1250                            /*isStatic=*/false, /*isInline=*/true);
1251    CopyAssignment->setAccess(AS_public);
1252    CopyAssignment->setImplicit();
1253
1254    // Add the parameter to the operator.
1255    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1256                                                 ClassDecl->getLocation(),
1257                                                 /*IdentifierInfo=*/0,
1258                                                 ArgType, VarDecl::None, 0);
1259    CopyAssignment->setParams(Context, &FromParam, 1);
1260
1261    // Don't call addedAssignmentOperator. There is no way to distinguish an
1262    // implicit from an explicit assignment operator.
1263    ClassDecl->addDecl(CopyAssignment);
1264  }
1265
1266  if (!ClassDecl->hasUserDeclaredDestructor()) {
1267    // C++ [class.dtor]p2:
1268    //   If a class has no user-declared destructor, a destructor is
1269    //   declared implicitly. An implicitly-declared destructor is an
1270    //   inline public member of its class.
1271    DeclarationName Name
1272      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1273    CXXDestructorDecl *Destructor
1274      = CXXDestructorDecl::Create(Context, ClassDecl,
1275                                  ClassDecl->getLocation(), Name,
1276                                  Context.getFunctionType(Context.VoidTy,
1277                                                          0, 0, false, 0),
1278                                  /*isInline=*/true,
1279                                  /*isImplicitlyDeclared=*/true);
1280    Destructor->setAccess(AS_public);
1281    Destructor->setImplicit();
1282    ClassDecl->addDecl(Destructor);
1283  }
1284}
1285
1286void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1287  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1288  if (!Template)
1289    return;
1290
1291  TemplateParameterList *Params = Template->getTemplateParameters();
1292  for (TemplateParameterList::iterator Param = Params->begin(),
1293                                    ParamEnd = Params->end();
1294       Param != ParamEnd; ++Param) {
1295    NamedDecl *Named = cast<NamedDecl>(*Param);
1296    if (Named->getDeclName()) {
1297      S->AddDecl(DeclPtrTy::make(Named));
1298      IdResolver.AddDecl(Named);
1299    }
1300  }
1301}
1302
1303/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1304/// parsing a top-level (non-nested) C++ class, and we are now
1305/// parsing those parts of the given Method declaration that could
1306/// not be parsed earlier (C++ [class.mem]p2), such as default
1307/// arguments. This action should enter the scope of the given
1308/// Method declaration as if we had just parsed the qualified method
1309/// name. However, it should not bring the parameters into scope;
1310/// that will be performed by ActOnDelayedCXXMethodParameter.
1311void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1312  if (!MethodD)
1313    return;
1314
1315  CXXScopeSpec SS;
1316  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1317  QualType ClassTy
1318    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1319  SS.setScopeRep(
1320    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1321  ActOnCXXEnterDeclaratorScope(S, SS);
1322}
1323
1324/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1325/// C++ method declaration. We're (re-)introducing the given
1326/// function parameter into scope for use in parsing later parts of
1327/// the method declaration. For example, we could see an
1328/// ActOnParamDefaultArgument event for this parameter.
1329void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1330  if (!ParamD)
1331    return;
1332
1333  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1334
1335  // If this parameter has an unparsed default argument, clear it out
1336  // to make way for the parsed default argument.
1337  if (Param->hasUnparsedDefaultArg())
1338    Param->setDefaultArg(0);
1339
1340  S->AddDecl(DeclPtrTy::make(Param));
1341  if (Param->getDeclName())
1342    IdResolver.AddDecl(Param);
1343}
1344
1345/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1346/// processing the delayed method declaration for Method. The method
1347/// declaration is now considered finished. There may be a separate
1348/// ActOnStartOfFunctionDef action later (not necessarily
1349/// immediately!) for this method, if it was also defined inside the
1350/// class body.
1351void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1352  if (!MethodD)
1353    return;
1354
1355  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1356  CXXScopeSpec SS;
1357  QualType ClassTy
1358    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1359  SS.setScopeRep(
1360    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1361  ActOnCXXExitDeclaratorScope(S, SS);
1362
1363  // Now that we have our default arguments, check the constructor
1364  // again. It could produce additional diagnostics or affect whether
1365  // the class has implicitly-declared destructors, among other
1366  // things.
1367  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1368    CheckConstructor(Constructor);
1369
1370  // Check the default arguments, which we may have added.
1371  if (!Method->isInvalidDecl())
1372    CheckCXXDefaultArguments(Method);
1373}
1374
1375/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1376/// the well-formedness of the constructor declarator @p D with type @p
1377/// R. If there are any errors in the declarator, this routine will
1378/// emit diagnostics and set the invalid bit to true.  In any case, the type
1379/// will be updated to reflect a well-formed type for the constructor and
1380/// returned.
1381QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1382                                          FunctionDecl::StorageClass &SC) {
1383  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1384
1385  // C++ [class.ctor]p3:
1386  //   A constructor shall not be virtual (10.3) or static (9.4). A
1387  //   constructor can be invoked for a const, volatile or const
1388  //   volatile object. A constructor shall not be declared const,
1389  //   volatile, or const volatile (9.3.2).
1390  if (isVirtual) {
1391    if (!D.isInvalidType())
1392      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1393        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1394        << SourceRange(D.getIdentifierLoc());
1395    D.setInvalidType();
1396  }
1397  if (SC == FunctionDecl::Static) {
1398    if (!D.isInvalidType())
1399      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1400        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1401        << SourceRange(D.getIdentifierLoc());
1402    D.setInvalidType();
1403    SC = FunctionDecl::None;
1404  }
1405
1406  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1407  if (FTI.TypeQuals != 0) {
1408    if (FTI.TypeQuals & QualType::Const)
1409      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1410        << "const" << SourceRange(D.getIdentifierLoc());
1411    if (FTI.TypeQuals & QualType::Volatile)
1412      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1413        << "volatile" << SourceRange(D.getIdentifierLoc());
1414    if (FTI.TypeQuals & QualType::Restrict)
1415      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1416        << "restrict" << SourceRange(D.getIdentifierLoc());
1417  }
1418
1419  // Rebuild the function type "R" without any type qualifiers (in
1420  // case any of the errors above fired) and with "void" as the
1421  // return type, since constructors don't have return types. We
1422  // *always* have to do this, because GetTypeForDeclarator will
1423  // put in a result type of "int" when none was specified.
1424  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1425  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1426                                 Proto->getNumArgs(),
1427                                 Proto->isVariadic(), 0);
1428}
1429
1430/// CheckConstructor - Checks a fully-formed constructor for
1431/// well-formedness, issuing any diagnostics required. Returns true if
1432/// the constructor declarator is invalid.
1433void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1434  CXXRecordDecl *ClassDecl
1435    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1436  if (!ClassDecl)
1437    return Constructor->setInvalidDecl();
1438
1439  // C++ [class.copy]p3:
1440  //   A declaration of a constructor for a class X is ill-formed if
1441  //   its first parameter is of type (optionally cv-qualified) X and
1442  //   either there are no other parameters or else all other
1443  //   parameters have default arguments.
1444  if (!Constructor->isInvalidDecl() &&
1445      ((Constructor->getNumParams() == 1) ||
1446       (Constructor->getNumParams() > 1 &&
1447        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1448    QualType ParamType = Constructor->getParamDecl(0)->getType();
1449    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1450    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1451      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1452      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1453        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1454      Constructor->setInvalidDecl();
1455    }
1456  }
1457
1458  // Notify the class that we've added a constructor.
1459  ClassDecl->addedConstructor(Context, Constructor);
1460}
1461
1462static inline bool
1463FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1464  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1465          FTI.ArgInfo[0].Param &&
1466          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1467}
1468
1469/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1470/// the well-formednes of the destructor declarator @p D with type @p
1471/// R. If there are any errors in the declarator, this routine will
1472/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1473/// will be updated to reflect a well-formed type for the destructor and
1474/// returned.
1475QualType Sema::CheckDestructorDeclarator(Declarator &D,
1476                                         FunctionDecl::StorageClass& SC) {
1477  // C++ [class.dtor]p1:
1478  //   [...] A typedef-name that names a class is a class-name
1479  //   (7.1.3); however, a typedef-name that names a class shall not
1480  //   be used as the identifier in the declarator for a destructor
1481  //   declaration.
1482  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1483  if (isa<TypedefType>(DeclaratorType)) {
1484    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1485      << DeclaratorType;
1486    D.setInvalidType();
1487  }
1488
1489  // C++ [class.dtor]p2:
1490  //   A destructor is used to destroy objects of its class type. A
1491  //   destructor takes no parameters, and no return type can be
1492  //   specified for it (not even void). The address of a destructor
1493  //   shall not be taken. A destructor shall not be static. A
1494  //   destructor can be invoked for a const, volatile or const
1495  //   volatile object. A destructor shall not be declared const,
1496  //   volatile or const volatile (9.3.2).
1497  if (SC == FunctionDecl::Static) {
1498    if (!D.isInvalidType())
1499      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1500        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1501        << SourceRange(D.getIdentifierLoc());
1502    SC = FunctionDecl::None;
1503    D.setInvalidType();
1504  }
1505  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1506    // Destructors don't have return types, but the parser will
1507    // happily parse something like:
1508    //
1509    //   class X {
1510    //     float ~X();
1511    //   };
1512    //
1513    // The return type will be eliminated later.
1514    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1515      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1516      << SourceRange(D.getIdentifierLoc());
1517  }
1518
1519  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1520  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1521    if (FTI.TypeQuals & QualType::Const)
1522      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1523        << "const" << SourceRange(D.getIdentifierLoc());
1524    if (FTI.TypeQuals & QualType::Volatile)
1525      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1526        << "volatile" << SourceRange(D.getIdentifierLoc());
1527    if (FTI.TypeQuals & QualType::Restrict)
1528      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1529        << "restrict" << SourceRange(D.getIdentifierLoc());
1530    D.setInvalidType();
1531  }
1532
1533  // Make sure we don't have any parameters.
1534  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1535    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1536
1537    // Delete the parameters.
1538    FTI.freeArgs();
1539    D.setInvalidType();
1540  }
1541
1542  // Make sure the destructor isn't variadic.
1543  if (FTI.isVariadic) {
1544    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1545    D.setInvalidType();
1546  }
1547
1548  // Rebuild the function type "R" without any type qualifiers or
1549  // parameters (in case any of the errors above fired) and with
1550  // "void" as the return type, since destructors don't have return
1551  // types. We *always* have to do this, because GetTypeForDeclarator
1552  // will put in a result type of "int" when none was specified.
1553  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1554}
1555
1556/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1557/// well-formednes of the conversion function declarator @p D with
1558/// type @p R. If there are any errors in the declarator, this routine
1559/// will emit diagnostics and return true. Otherwise, it will return
1560/// false. Either way, the type @p R will be updated to reflect a
1561/// well-formed type for the conversion operator.
1562void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1563                                     FunctionDecl::StorageClass& SC) {
1564  // C++ [class.conv.fct]p1:
1565  //   Neither parameter types nor return type can be specified. The
1566  //   type of a conversion function (8.3.5) is “function taking no
1567  //   parameter returning conversion-type-id.”
1568  if (SC == FunctionDecl::Static) {
1569    if (!D.isInvalidType())
1570      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1571        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1572        << SourceRange(D.getIdentifierLoc());
1573    D.setInvalidType();
1574    SC = FunctionDecl::None;
1575  }
1576  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1577    // Conversion functions don't have return types, but the parser will
1578    // happily parse something like:
1579    //
1580    //   class X {
1581    //     float operator bool();
1582    //   };
1583    //
1584    // The return type will be changed later anyway.
1585    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1586      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1587      << SourceRange(D.getIdentifierLoc());
1588  }
1589
1590  // Make sure we don't have any parameters.
1591  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1592    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1593
1594    // Delete the parameters.
1595    D.getTypeObject(0).Fun.freeArgs();
1596    D.setInvalidType();
1597  }
1598
1599  // Make sure the conversion function isn't variadic.
1600  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1601    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1602    D.setInvalidType();
1603  }
1604
1605  // C++ [class.conv.fct]p4:
1606  //   The conversion-type-id shall not represent a function type nor
1607  //   an array type.
1608  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1609  if (ConvType->isArrayType()) {
1610    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1611    ConvType = Context.getPointerType(ConvType);
1612    D.setInvalidType();
1613  } else if (ConvType->isFunctionType()) {
1614    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1615    ConvType = Context.getPointerType(ConvType);
1616    D.setInvalidType();
1617  }
1618
1619  // Rebuild the function type "R" without any parameters (in case any
1620  // of the errors above fired) and with the conversion type as the
1621  // return type.
1622  R = Context.getFunctionType(ConvType, 0, 0, false,
1623                              R->getAsFunctionProtoType()->getTypeQuals());
1624
1625  // C++0x explicit conversion operators.
1626  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1627    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1628         diag::warn_explicit_conversion_functions)
1629      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1630}
1631
1632/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1633/// the declaration of the given C++ conversion function. This routine
1634/// is responsible for recording the conversion function in the C++
1635/// class, if possible.
1636Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1637  assert(Conversion && "Expected to receive a conversion function declaration");
1638
1639  // Set the lexical context of this conversion function
1640  Conversion->setLexicalDeclContext(CurContext);
1641
1642  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1643
1644  // Make sure we aren't redeclaring the conversion function.
1645  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1646
1647  // C++ [class.conv.fct]p1:
1648  //   [...] A conversion function is never used to convert a
1649  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1650  //   same object type (or a reference to it), to a (possibly
1651  //   cv-qualified) base class of that type (or a reference to it),
1652  //   or to (possibly cv-qualified) void.
1653  // FIXME: Suppress this warning if the conversion function ends up being a
1654  // virtual function that overrides a virtual function in a base class.
1655  QualType ClassType
1656    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1657  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1658    ConvType = ConvTypeRef->getPointeeType();
1659  if (ConvType->isRecordType()) {
1660    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1661    if (ConvType == ClassType)
1662      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1663        << ClassType;
1664    else if (IsDerivedFrom(ClassType, ConvType))
1665      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1666        <<  ClassType << ConvType;
1667  } else if (ConvType->isVoidType()) {
1668    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1669      << ClassType << ConvType;
1670  }
1671
1672  if (Conversion->getPreviousDeclaration()) {
1673    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1674    for (OverloadedFunctionDecl::function_iterator
1675           Conv = Conversions->function_begin(),
1676           ConvEnd = Conversions->function_end();
1677         Conv != ConvEnd; ++Conv) {
1678      if (*Conv
1679            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1680        *Conv = Conversion;
1681        return DeclPtrTy::make(Conversion);
1682      }
1683    }
1684    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1685  } else
1686    ClassDecl->addConversionFunction(Context, Conversion);
1687
1688  return DeclPtrTy::make(Conversion);
1689}
1690
1691//===----------------------------------------------------------------------===//
1692// Namespace Handling
1693//===----------------------------------------------------------------------===//
1694
1695/// ActOnStartNamespaceDef - This is called at the start of a namespace
1696/// definition.
1697Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1698                                             SourceLocation IdentLoc,
1699                                             IdentifierInfo *II,
1700                                             SourceLocation LBrace) {
1701  NamespaceDecl *Namespc =
1702      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1703  Namespc->setLBracLoc(LBrace);
1704
1705  Scope *DeclRegionScope = NamespcScope->getParent();
1706
1707  if (II) {
1708    // C++ [namespace.def]p2:
1709    // The identifier in an original-namespace-definition shall not have been
1710    // previously defined in the declarative region in which the
1711    // original-namespace-definition appears. The identifier in an
1712    // original-namespace-definition is the name of the namespace. Subsequently
1713    // in that declarative region, it is treated as an original-namespace-name.
1714
1715    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1716                                     true);
1717
1718    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1719      // This is an extended namespace definition.
1720      // Attach this namespace decl to the chain of extended namespace
1721      // definitions.
1722      OrigNS->setNextNamespace(Namespc);
1723      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1724
1725      // Remove the previous declaration from the scope.
1726      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1727        IdResolver.RemoveDecl(OrigNS);
1728        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1729      }
1730    } else if (PrevDecl) {
1731      // This is an invalid name redefinition.
1732      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1733       << Namespc->getDeclName();
1734      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1735      Namespc->setInvalidDecl();
1736      // Continue on to push Namespc as current DeclContext and return it.
1737    }
1738
1739    PushOnScopeChains(Namespc, DeclRegionScope);
1740  } else {
1741    // FIXME: Handle anonymous namespaces
1742  }
1743
1744  // Although we could have an invalid decl (i.e. the namespace name is a
1745  // redefinition), push it as current DeclContext and try to continue parsing.
1746  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1747  // for the namespace has the declarations that showed up in that particular
1748  // namespace definition.
1749  PushDeclContext(NamespcScope, Namespc);
1750  return DeclPtrTy::make(Namespc);
1751}
1752
1753/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1754/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1755void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1756  Decl *Dcl = D.getAs<Decl>();
1757  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1758  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1759  Namespc->setRBracLoc(RBrace);
1760  PopDeclContext();
1761}
1762
1763Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1764                                          SourceLocation UsingLoc,
1765                                          SourceLocation NamespcLoc,
1766                                          const CXXScopeSpec &SS,
1767                                          SourceLocation IdentLoc,
1768                                          IdentifierInfo *NamespcName,
1769                                          AttributeList *AttrList) {
1770  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1771  assert(NamespcName && "Invalid NamespcName.");
1772  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1773  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1774
1775  UsingDirectiveDecl *UDir = 0;
1776
1777  // Lookup namespace name.
1778  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1779                                    LookupNamespaceName, false);
1780  if (R.isAmbiguous()) {
1781    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1782    return DeclPtrTy();
1783  }
1784  if (NamedDecl *NS = R) {
1785    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1786    // C++ [namespace.udir]p1:
1787    //   A using-directive specifies that the names in the nominated
1788    //   namespace can be used in the scope in which the
1789    //   using-directive appears after the using-directive. During
1790    //   unqualified name lookup (3.4.1), the names appear as if they
1791    //   were declared in the nearest enclosing namespace which
1792    //   contains both the using-directive and the nominated
1793    //   namespace. [Note: in this context, “contains” means “contains
1794    //   directly or indirectly”. ]
1795
1796    // Find enclosing context containing both using-directive and
1797    // nominated namespace.
1798    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1799    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1800      CommonAncestor = CommonAncestor->getParent();
1801
1802    UDir = UsingDirectiveDecl::Create(Context,
1803                                      CurContext, UsingLoc,
1804                                      NamespcLoc,
1805                                      SS.getRange(),
1806                                      (NestedNameSpecifier *)SS.getScopeRep(),
1807                                      IdentLoc,
1808                                      cast<NamespaceDecl>(NS),
1809                                      CommonAncestor);
1810    PushUsingDirective(S, UDir);
1811  } else {
1812    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1813  }
1814
1815  // FIXME: We ignore attributes for now.
1816  delete AttrList;
1817  return DeclPtrTy::make(UDir);
1818}
1819
1820void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1821  // If scope has associated entity, then using directive is at namespace
1822  // or translation unit scope. We add UsingDirectiveDecls, into
1823  // it's lookup structure.
1824  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1825    Ctx->addDecl(UDir);
1826  else
1827    // Otherwise it is block-sope. using-directives will affect lookup
1828    // only to the end of scope.
1829    S->PushUsingDirective(DeclPtrTy::make(UDir));
1830}
1831
1832
1833Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1834                                          SourceLocation UsingLoc,
1835                                          const CXXScopeSpec &SS,
1836                                          SourceLocation IdentLoc,
1837                                          IdentifierInfo *TargetName,
1838                                          OverloadedOperatorKind Op,
1839                                          AttributeList *AttrList,
1840                                          bool IsTypeName) {
1841  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1842  assert((TargetName || Op) && "Invalid TargetName.");
1843  assert(IdentLoc.isValid() && "Invalid TargetName location.");
1844  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1845
1846  UsingDecl *UsingAlias = 0;
1847
1848  DeclarationName Name;
1849  if (TargetName)
1850    Name = TargetName;
1851  else
1852    Name = Context.DeclarationNames.getCXXOperatorName(Op);
1853
1854  // Lookup target name.
1855  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
1856
1857  if (NamedDecl *NS = R) {
1858    if (IsTypeName && !isa<TypeDecl>(NS)) {
1859      Diag(IdentLoc, diag::err_using_typename_non_type);
1860    }
1861    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
1862        NS->getLocation(), UsingLoc, NS,
1863        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
1864        IsTypeName);
1865    PushOnScopeChains(UsingAlias, S);
1866  } else {
1867    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
1868  }
1869
1870  // FIXME: We ignore attributes for now.
1871  delete AttrList;
1872  return DeclPtrTy::make(UsingAlias);
1873}
1874
1875/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1876/// is a namespace alias, returns the namespace it points to.
1877static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1878  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1879    return AD->getNamespace();
1880  return dyn_cast_or_null<NamespaceDecl>(D);
1881}
1882
1883Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1884                                             SourceLocation NamespaceLoc,
1885                                             SourceLocation AliasLoc,
1886                                             IdentifierInfo *Alias,
1887                                             const CXXScopeSpec &SS,
1888                                             SourceLocation IdentLoc,
1889                                             IdentifierInfo *Ident) {
1890
1891  // Lookup the namespace name.
1892  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1893
1894  // Check if we have a previous declaration with the same name.
1895  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1896    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1897      // We already have an alias with the same name that points to the same
1898      // namespace, so don't create a new one.
1899      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1900        return DeclPtrTy();
1901    }
1902
1903    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1904      diag::err_redefinition_different_kind;
1905    Diag(AliasLoc, DiagID) << Alias;
1906    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1907    return DeclPtrTy();
1908  }
1909
1910  if (R.isAmbiguous()) {
1911    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1912    return DeclPtrTy();
1913  }
1914
1915  if (!R) {
1916    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
1917    return DeclPtrTy();
1918  }
1919
1920  NamespaceAliasDecl *AliasDecl =
1921    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
1922                               Alias, SS.getRange(),
1923                               (NestedNameSpecifier *)SS.getScopeRep(),
1924                               IdentLoc, R);
1925
1926  CurContext->addDecl(AliasDecl);
1927  return DeclPtrTy::make(AliasDecl);
1928}
1929
1930void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
1931                                            CXXConstructorDecl *Constructor) {
1932  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
1933          !Constructor->isUsed()) &&
1934    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
1935
1936  CXXRecordDecl *ClassDecl
1937    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1938  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
1939  // Before the implicitly-declared default constructor for a class is
1940  // implicitly defined, all the implicitly-declared default constructors
1941  // for its base class and its non-static data members shall have been
1942  // implicitly defined.
1943  bool err = false;
1944  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1945       E = ClassDecl->bases_end(); Base != E; ++Base) {
1946    CXXRecordDecl *BaseClassDecl
1947      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1948    if (!BaseClassDecl->hasTrivialConstructor()) {
1949      if (CXXConstructorDecl *BaseCtor =
1950            BaseClassDecl->getDefaultConstructor(Context))
1951        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
1952      else {
1953        Diag(CurrentLocation, diag::err_defining_default_ctor)
1954          << Context.getTagDeclType(ClassDecl) << 1
1955          << Context.getTagDeclType(BaseClassDecl);
1956        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
1957              << Context.getTagDeclType(BaseClassDecl);
1958        err = true;
1959      }
1960    }
1961  }
1962  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1963       E = ClassDecl->field_end(); Field != E; ++Field) {
1964    QualType FieldType = Context.getCanonicalType((*Field)->getType());
1965    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1966      FieldType = Array->getElementType();
1967    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1968      CXXRecordDecl *FieldClassDecl
1969        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1970      if (!FieldClassDecl->hasTrivialConstructor()) {
1971        if (CXXConstructorDecl *FieldCtor =
1972            FieldClassDecl->getDefaultConstructor(Context))
1973          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
1974        else {
1975          Diag(CurrentLocation, diag::err_defining_default_ctor)
1976          << Context.getTagDeclType(ClassDecl) << 0 <<
1977              Context.getTagDeclType(FieldClassDecl);
1978          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
1979          << Context.getTagDeclType(FieldClassDecl);
1980          err = true;
1981        }
1982      }
1983    }
1984    else if (FieldType->isReferenceType()) {
1985      Diag(CurrentLocation, diag::err_unintialized_member)
1986        << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getNameAsCString();
1987      Diag((*Field)->getLocation(), diag::note_declared_at);
1988      err = true;
1989    }
1990    else if (FieldType.isConstQualified()) {
1991      Diag(CurrentLocation, diag::err_unintialized_member)
1992        << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getNameAsCString();
1993       Diag((*Field)->getLocation(), diag::note_declared_at);
1994      err = true;
1995    }
1996  }
1997  if (!err)
1998    Constructor->setUsed();
1999  else
2000    Constructor->setInvalidDecl();
2001}
2002
2003void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2004                                            CXXDestructorDecl *Destructor) {
2005  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2006         "DefineImplicitDestructor - call it for implicit default dtor");
2007
2008  CXXRecordDecl *ClassDecl
2009  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2010  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2011  // C++ [class.dtor] p5
2012  // Before the implicitly-declared default destructor for a class is
2013  // implicitly defined, all the implicitly-declared default destructors
2014  // for its base class and its non-static data members shall have been
2015  // implicitly defined.
2016  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2017       E = ClassDecl->bases_end(); Base != E; ++Base) {
2018    CXXRecordDecl *BaseClassDecl
2019      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2020    if (!BaseClassDecl->hasTrivialDestructor()) {
2021      if (CXXDestructorDecl *BaseDtor =
2022          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2023        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2024      else
2025        assert(false &&
2026               "DefineImplicitDestructor - missing dtor in a base class");
2027    }
2028  }
2029
2030  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2031       E = ClassDecl->field_end(); Field != E; ++Field) {
2032    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2033    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2034      FieldType = Array->getElementType();
2035    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2036      CXXRecordDecl *FieldClassDecl
2037        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2038      if (!FieldClassDecl->hasTrivialDestructor()) {
2039        if (CXXDestructorDecl *FieldDtor =
2040            const_cast<CXXDestructorDecl*>(
2041                                        FieldClassDecl->getDestructor(Context)))
2042          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2043        else
2044          assert(false &&
2045          "DefineImplicitDestructor - missing dtor in class of a data member");
2046      }
2047    }
2048  }
2049  Destructor->setUsed();
2050}
2051
2052void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2053                                          CXXMethodDecl *MethodDecl) {
2054  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2055          MethodDecl->getOverloadedOperator() == OO_Equal &&
2056          !MethodDecl->isUsed()) &&
2057         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2058
2059  CXXRecordDecl *ClassDecl
2060    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2061
2062  // C++[class.copy] p12
2063  // Before the implicitly-declared copy assignment operator for a class is
2064  // implicitly defined, all implicitly-declared copy assignment operators
2065  // for its direct base classes and its nonstatic data members shall have
2066  // been implicitly defined.
2067  bool err = false;
2068  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2069       E = ClassDecl->bases_end(); Base != E; ++Base) {
2070    CXXRecordDecl *BaseClassDecl
2071      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2072    if (CXXMethodDecl *BaseAssignOpMethod =
2073          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2074      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2075  }
2076  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2077       E = ClassDecl->field_end(); Field != E; ++Field) {
2078    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2079    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2080      FieldType = Array->getElementType();
2081    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2082      CXXRecordDecl *FieldClassDecl
2083        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2084      if (CXXMethodDecl *FieldAssignOpMethod =
2085          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2086        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2087    }
2088    else if (FieldType->isReferenceType()) {
2089      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2090      << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getNameAsCString();
2091      Diag((*Field)->getLocation(), diag::note_declared_at);
2092      Diag(CurrentLocation, diag::note_first_required_here);
2093      err = true;
2094    }
2095    else if (FieldType.isConstQualified()) {
2096      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2097      << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getNameAsCString();
2098      Diag((*Field)->getLocation(), diag::note_declared_at);
2099      Diag(CurrentLocation, diag::note_first_required_here);
2100      err = true;
2101    }
2102  }
2103  if (!err)
2104    MethodDecl->setUsed();
2105}
2106
2107CXXMethodDecl *
2108Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2109                              CXXRecordDecl *ClassDecl) {
2110  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2111  QualType RHSType(LHSType);
2112  // If class's assignment operator argument is const/volatile qualified,
2113  // look for operator = (const/volatile B&). Otherwise, look for
2114  // operator = (B&).
2115  if (ParmDecl->getType().isConstQualified())
2116    RHSType.addConst();
2117  if (ParmDecl->getType().isVolatileQualified())
2118    RHSType.addVolatile();
2119  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2120                                                          LHSType,
2121                                                          SourceLocation()));
2122  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2123                                                          RHSType,
2124                                                          SourceLocation()));
2125  Expr *Args[2] = { &*LHS, &*RHS };
2126  OverloadCandidateSet CandidateSet;
2127  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2128                              CandidateSet);
2129  OverloadCandidateSet::iterator Best;
2130  if (BestViableFunction(CandidateSet,
2131                         ClassDecl->getLocation(), Best) == OR_Success)
2132    return cast<CXXMethodDecl>(Best->Function);
2133  assert(false &&
2134         "getAssignOperatorMethod - copy assignment operator method not found");
2135  return 0;
2136}
2137
2138void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2139                                   CXXConstructorDecl *CopyConstructor,
2140                                   unsigned TypeQuals) {
2141  assert((CopyConstructor->isImplicit() &&
2142          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2143          !CopyConstructor->isUsed()) &&
2144         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2145
2146  CXXRecordDecl *ClassDecl
2147    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2148  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2149  // C++ [class.copy] p209
2150  // Before the implicitly-declared copy constructor for a class is
2151  // implicitly defined, all the implicitly-declared copy constructors
2152  // for its base class and its non-static data members shall have been
2153  // implicitly defined.
2154  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2155       Base != ClassDecl->bases_end(); ++Base) {
2156    CXXRecordDecl *BaseClassDecl
2157      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2158    if (CXXConstructorDecl *BaseCopyCtor =
2159        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2160      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2161  }
2162  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2163                                  FieldEnd = ClassDecl->field_end();
2164       Field != FieldEnd; ++Field) {
2165    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2166    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2167      FieldType = Array->getElementType();
2168    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2169      CXXRecordDecl *FieldClassDecl
2170        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2171      if (CXXConstructorDecl *FieldCopyCtor =
2172          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2173        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2174    }
2175  }
2176  CopyConstructor->setUsed();
2177}
2178
2179void Sema::InitializeVarWithConstructor(VarDecl *VD,
2180                                        CXXConstructorDecl *Constructor,
2181                                        QualType DeclInitType,
2182                                        Expr **Exprs, unsigned NumExprs) {
2183  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2184                                        false, Exprs, NumExprs);
2185  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2186  VD->setInit(Context, Temp);
2187}
2188
2189void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2190{
2191  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2192                                  DeclInitType->getAsRecordType()->getDecl());
2193  if (!ClassDecl->hasTrivialDestructor())
2194    if (CXXDestructorDecl *Destructor =
2195        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2196      MarkDeclarationReferenced(Loc, Destructor);
2197}
2198
2199/// AddCXXDirectInitializerToDecl - This action is called immediately after
2200/// ActOnDeclarator, when a C++ direct initializer is present.
2201/// e.g: "int x(1);"
2202void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2203                                         SourceLocation LParenLoc,
2204                                         MultiExprArg Exprs,
2205                                         SourceLocation *CommaLocs,
2206                                         SourceLocation RParenLoc) {
2207  unsigned NumExprs = Exprs.size();
2208  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2209  Decl *RealDecl = Dcl.getAs<Decl>();
2210
2211  // If there is no declaration, there was an error parsing it.  Just ignore
2212  // the initializer.
2213  if (RealDecl == 0)
2214    return;
2215
2216  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2217  if (!VDecl) {
2218    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2219    RealDecl->setInvalidDecl();
2220    return;
2221  }
2222
2223  // FIXME: Need to handle dependent types and expressions here.
2224
2225  // We will treat direct-initialization as a copy-initialization:
2226  //    int x(1);  -as-> int x = 1;
2227  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2228  //
2229  // Clients that want to distinguish between the two forms, can check for
2230  // direct initializer using VarDecl::hasCXXDirectInitializer().
2231  // A major benefit is that clients that don't particularly care about which
2232  // exactly form was it (like the CodeGen) can handle both cases without
2233  // special case code.
2234
2235  // C++ 8.5p11:
2236  // The form of initialization (using parentheses or '=') is generally
2237  // insignificant, but does matter when the entity being initialized has a
2238  // class type.
2239  QualType DeclInitType = VDecl->getType();
2240  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2241    DeclInitType = Array->getElementType();
2242
2243  // FIXME: This isn't the right place to complete the type.
2244  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2245                          diag::err_typecheck_decl_incomplete_type)) {
2246    VDecl->setInvalidDecl();
2247    return;
2248  }
2249
2250  if (VDecl->getType()->isRecordType()) {
2251    CXXConstructorDecl *Constructor
2252      = PerformInitializationByConstructor(DeclInitType,
2253                                           (Expr **)Exprs.get(), NumExprs,
2254                                           VDecl->getLocation(),
2255                                           SourceRange(VDecl->getLocation(),
2256                                                       RParenLoc),
2257                                           VDecl->getDeclName(),
2258                                           IK_Direct);
2259    if (!Constructor)
2260      RealDecl->setInvalidDecl();
2261    else {
2262      VDecl->setCXXDirectInitializer(true);
2263      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2264                                   (Expr**)Exprs.release(), NumExprs);
2265      // FIXME. Must do all that is needed to destroy the object
2266      // on scope exit. For now, just mark the destructor as used.
2267      MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2268    }
2269    return;
2270  }
2271
2272  if (NumExprs > 1) {
2273    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2274      << SourceRange(VDecl->getLocation(), RParenLoc);
2275    RealDecl->setInvalidDecl();
2276    return;
2277  }
2278
2279  // Let clients know that initialization was done with a direct initializer.
2280  VDecl->setCXXDirectInitializer(true);
2281
2282  assert(NumExprs == 1 && "Expected 1 expression");
2283  // Set the init expression, handles conversions.
2284  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2285                       /*DirectInit=*/true);
2286}
2287
2288/// PerformInitializationByConstructor - Perform initialization by
2289/// constructor (C++ [dcl.init]p14), which may occur as part of
2290/// direct-initialization or copy-initialization. We are initializing
2291/// an object of type @p ClassType with the given arguments @p
2292/// Args. @p Loc is the location in the source code where the
2293/// initializer occurs (e.g., a declaration, member initializer,
2294/// functional cast, etc.) while @p Range covers the whole
2295/// initialization. @p InitEntity is the entity being initialized,
2296/// which may by the name of a declaration or a type. @p Kind is the
2297/// kind of initialization we're performing, which affects whether
2298/// explicit constructors will be considered. When successful, returns
2299/// the constructor that will be used to perform the initialization;
2300/// when the initialization fails, emits a diagnostic and returns
2301/// null.
2302CXXConstructorDecl *
2303Sema::PerformInitializationByConstructor(QualType ClassType,
2304                                         Expr **Args, unsigned NumArgs,
2305                                         SourceLocation Loc, SourceRange Range,
2306                                         DeclarationName InitEntity,
2307                                         InitializationKind Kind) {
2308  const RecordType *ClassRec = ClassType->getAsRecordType();
2309  assert(ClassRec && "Can only initialize a class type here");
2310
2311  // C++ [dcl.init]p14:
2312  //
2313  //   If the initialization is direct-initialization, or if it is
2314  //   copy-initialization where the cv-unqualified version of the
2315  //   source type is the same class as, or a derived class of, the
2316  //   class of the destination, constructors are considered. The
2317  //   applicable constructors are enumerated (13.3.1.3), and the
2318  //   best one is chosen through overload resolution (13.3). The
2319  //   constructor so selected is called to initialize the object,
2320  //   with the initializer expression(s) as its argument(s). If no
2321  //   constructor applies, or the overload resolution is ambiguous,
2322  //   the initialization is ill-formed.
2323  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2324  OverloadCandidateSet CandidateSet;
2325
2326  // Add constructors to the overload set.
2327  DeclarationName ConstructorName
2328    = Context.DeclarationNames.getCXXConstructorName(
2329                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2330  DeclContext::lookup_const_iterator Con, ConEnd;
2331  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2332       Con != ConEnd; ++Con) {
2333    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2334    if ((Kind == IK_Direct) ||
2335        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2336        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2337      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2338  }
2339
2340  // FIXME: When we decide not to synthesize the implicitly-declared
2341  // constructors, we'll need to make them appear here.
2342
2343  OverloadCandidateSet::iterator Best;
2344  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2345  case OR_Success:
2346    // We found a constructor. Return it.
2347    return cast<CXXConstructorDecl>(Best->Function);
2348
2349  case OR_No_Viable_Function:
2350    if (InitEntity)
2351      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2352        << InitEntity << Range;
2353    else
2354      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2355        << ClassType << Range;
2356    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2357    return 0;
2358
2359  case OR_Ambiguous:
2360    if (InitEntity)
2361      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2362    else
2363      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2364    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2365    return 0;
2366
2367  case OR_Deleted:
2368    if (InitEntity)
2369      Diag(Loc, diag::err_ovl_deleted_init)
2370        << Best->Function->isDeleted()
2371        << InitEntity << Range;
2372    else
2373      Diag(Loc, diag::err_ovl_deleted_init)
2374        << Best->Function->isDeleted()
2375        << InitEntity << Range;
2376    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2377    return 0;
2378  }
2379
2380  return 0;
2381}
2382
2383/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2384/// determine whether they are reference-related,
2385/// reference-compatible, reference-compatible with added
2386/// qualification, or incompatible, for use in C++ initialization by
2387/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2388/// type, and the first type (T1) is the pointee type of the reference
2389/// type being initialized.
2390Sema::ReferenceCompareResult
2391Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2392                                   bool& DerivedToBase) {
2393  assert(!T1->isReferenceType() &&
2394    "T1 must be the pointee type of the reference type");
2395  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2396
2397  T1 = Context.getCanonicalType(T1);
2398  T2 = Context.getCanonicalType(T2);
2399  QualType UnqualT1 = T1.getUnqualifiedType();
2400  QualType UnqualT2 = T2.getUnqualifiedType();
2401
2402  // C++ [dcl.init.ref]p4:
2403  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2404  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2405  //   T1 is a base class of T2.
2406  if (UnqualT1 == UnqualT2)
2407    DerivedToBase = false;
2408  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2409    DerivedToBase = true;
2410  else
2411    return Ref_Incompatible;
2412
2413  // At this point, we know that T1 and T2 are reference-related (at
2414  // least).
2415
2416  // C++ [dcl.init.ref]p4:
2417  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2418  //   reference-related to T2 and cv1 is the same cv-qualification
2419  //   as, or greater cv-qualification than, cv2. For purposes of
2420  //   overload resolution, cases for which cv1 is greater
2421  //   cv-qualification than cv2 are identified as
2422  //   reference-compatible with added qualification (see 13.3.3.2).
2423  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2424    return Ref_Compatible;
2425  else if (T1.isMoreQualifiedThan(T2))
2426    return Ref_Compatible_With_Added_Qualification;
2427  else
2428    return Ref_Related;
2429}
2430
2431/// CheckReferenceInit - Check the initialization of a reference
2432/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2433/// the initializer (either a simple initializer or an initializer
2434/// list), and DeclType is the type of the declaration. When ICS is
2435/// non-null, this routine will compute the implicit conversion
2436/// sequence according to C++ [over.ics.ref] and will not produce any
2437/// diagnostics; when ICS is null, it will emit diagnostics when any
2438/// errors are found. Either way, a return value of true indicates
2439/// that there was a failure, a return value of false indicates that
2440/// the reference initialization succeeded.
2441///
2442/// When @p SuppressUserConversions, user-defined conversions are
2443/// suppressed.
2444/// When @p AllowExplicit, we also permit explicit user-defined
2445/// conversion functions.
2446/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2447bool
2448Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2449                         ImplicitConversionSequence *ICS,
2450                         bool SuppressUserConversions,
2451                         bool AllowExplicit, bool ForceRValue) {
2452  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2453
2454  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2455  QualType T2 = Init->getType();
2456
2457  // If the initializer is the address of an overloaded function, try
2458  // to resolve the overloaded function. If all goes well, T2 is the
2459  // type of the resulting function.
2460  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2461    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2462                                                          ICS != 0);
2463    if (Fn) {
2464      // Since we're performing this reference-initialization for
2465      // real, update the initializer with the resulting function.
2466      if (!ICS) {
2467        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2468          return true;
2469
2470        FixOverloadedFunctionReference(Init, Fn);
2471      }
2472
2473      T2 = Fn->getType();
2474    }
2475  }
2476
2477  // Compute some basic properties of the types and the initializer.
2478  bool isRValRef = DeclType->isRValueReferenceType();
2479  bool DerivedToBase = false;
2480  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2481                                                  Init->isLvalue(Context);
2482  ReferenceCompareResult RefRelationship
2483    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2484
2485  // Most paths end in a failed conversion.
2486  if (ICS)
2487    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2488
2489  // C++ [dcl.init.ref]p5:
2490  //   A reference to type “cv1 T1” is initialized by an expression
2491  //   of type “cv2 T2” as follows:
2492
2493  //     -- If the initializer expression
2494
2495  // Rvalue references cannot bind to lvalues (N2812).
2496  // There is absolutely no situation where they can. In particular, note that
2497  // this is ill-formed, even if B has a user-defined conversion to A&&:
2498  //   B b;
2499  //   A&& r = b;
2500  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2501    if (!ICS)
2502      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2503        << Init->getSourceRange();
2504    return true;
2505  }
2506
2507  bool BindsDirectly = false;
2508  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2509  //          reference-compatible with “cv2 T2,” or
2510  //
2511  // Note that the bit-field check is skipped if we are just computing
2512  // the implicit conversion sequence (C++ [over.best.ics]p2).
2513  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2514      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2515    BindsDirectly = true;
2516
2517    if (ICS) {
2518      // C++ [over.ics.ref]p1:
2519      //   When a parameter of reference type binds directly (8.5.3)
2520      //   to an argument expression, the implicit conversion sequence
2521      //   is the identity conversion, unless the argument expression
2522      //   has a type that is a derived class of the parameter type,
2523      //   in which case the implicit conversion sequence is a
2524      //   derived-to-base Conversion (13.3.3.1).
2525      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2526      ICS->Standard.First = ICK_Identity;
2527      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2528      ICS->Standard.Third = ICK_Identity;
2529      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2530      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2531      ICS->Standard.ReferenceBinding = true;
2532      ICS->Standard.DirectBinding = true;
2533      ICS->Standard.RRefBinding = false;
2534      ICS->Standard.CopyConstructor = 0;
2535
2536      // Nothing more to do: the inaccessibility/ambiguity check for
2537      // derived-to-base conversions is suppressed when we're
2538      // computing the implicit conversion sequence (C++
2539      // [over.best.ics]p2).
2540      return false;
2541    } else {
2542      // Perform the conversion.
2543      // FIXME: Binding to a subobject of the lvalue is going to require more
2544      // AST annotation than this.
2545      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2546    }
2547  }
2548
2549  //       -- has a class type (i.e., T2 is a class type) and can be
2550  //          implicitly converted to an lvalue of type “cv3 T3,”
2551  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2552  //          92) (this conversion is selected by enumerating the
2553  //          applicable conversion functions (13.3.1.6) and choosing
2554  //          the best one through overload resolution (13.3)),
2555  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2556    // FIXME: Look for conversions in base classes!
2557    CXXRecordDecl *T2RecordDecl
2558      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2559
2560    OverloadCandidateSet CandidateSet;
2561    OverloadedFunctionDecl *Conversions
2562      = T2RecordDecl->getConversionFunctions();
2563    for (OverloadedFunctionDecl::function_iterator Func
2564           = Conversions->function_begin();
2565         Func != Conversions->function_end(); ++Func) {
2566      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2567
2568      // If the conversion function doesn't return a reference type,
2569      // it can't be considered for this conversion.
2570      if (Conv->getConversionType()->isLValueReferenceType() &&
2571          (AllowExplicit || !Conv->isExplicit()))
2572        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2573    }
2574
2575    OverloadCandidateSet::iterator Best;
2576    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2577    case OR_Success:
2578      // This is a direct binding.
2579      BindsDirectly = true;
2580
2581      if (ICS) {
2582        // C++ [over.ics.ref]p1:
2583        //
2584        //   [...] If the parameter binds directly to the result of
2585        //   applying a conversion function to the argument
2586        //   expression, the implicit conversion sequence is a
2587        //   user-defined conversion sequence (13.3.3.1.2), with the
2588        //   second standard conversion sequence either an identity
2589        //   conversion or, if the conversion function returns an
2590        //   entity of a type that is a derived class of the parameter
2591        //   type, a derived-to-base Conversion.
2592        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2593        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2594        ICS->UserDefined.After = Best->FinalConversion;
2595        ICS->UserDefined.ConversionFunction = Best->Function;
2596        assert(ICS->UserDefined.After.ReferenceBinding &&
2597               ICS->UserDefined.After.DirectBinding &&
2598               "Expected a direct reference binding!");
2599        return false;
2600      } else {
2601        // Perform the conversion.
2602        // FIXME: Binding to a subobject of the lvalue is going to require more
2603        // AST annotation than this.
2604        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2605      }
2606      break;
2607
2608    case OR_Ambiguous:
2609      assert(false && "Ambiguous reference binding conversions not implemented.");
2610      return true;
2611
2612    case OR_No_Viable_Function:
2613    case OR_Deleted:
2614      // There was no suitable conversion, or we found a deleted
2615      // conversion; continue with other checks.
2616      break;
2617    }
2618  }
2619
2620  if (BindsDirectly) {
2621    // C++ [dcl.init.ref]p4:
2622    //   [...] In all cases where the reference-related or
2623    //   reference-compatible relationship of two types is used to
2624    //   establish the validity of a reference binding, and T1 is a
2625    //   base class of T2, a program that necessitates such a binding
2626    //   is ill-formed if T1 is an inaccessible (clause 11) or
2627    //   ambiguous (10.2) base class of T2.
2628    //
2629    // Note that we only check this condition when we're allowed to
2630    // complain about errors, because we should not be checking for
2631    // ambiguity (or inaccessibility) unless the reference binding
2632    // actually happens.
2633    if (DerivedToBase)
2634      return CheckDerivedToBaseConversion(T2, T1,
2635                                          Init->getSourceRange().getBegin(),
2636                                          Init->getSourceRange());
2637    else
2638      return false;
2639  }
2640
2641  //     -- Otherwise, the reference shall be to a non-volatile const
2642  //        type (i.e., cv1 shall be const), or the reference shall be an
2643  //        rvalue reference and the initializer expression shall be an rvalue.
2644  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2645    if (!ICS)
2646      Diag(Init->getSourceRange().getBegin(),
2647           diag::err_not_reference_to_const_init)
2648        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2649        << T2 << Init->getSourceRange();
2650    return true;
2651  }
2652
2653  //       -- If the initializer expression is an rvalue, with T2 a
2654  //          class type, and “cv1 T1” is reference-compatible with
2655  //          “cv2 T2,” the reference is bound in one of the
2656  //          following ways (the choice is implementation-defined):
2657  //
2658  //          -- The reference is bound to the object represented by
2659  //             the rvalue (see 3.10) or to a sub-object within that
2660  //             object.
2661  //
2662  //          -- A temporary of type “cv1 T2” [sic] is created, and
2663  //             a constructor is called to copy the entire rvalue
2664  //             object into the temporary. The reference is bound to
2665  //             the temporary or to a sub-object within the
2666  //             temporary.
2667  //
2668  //          The constructor that would be used to make the copy
2669  //          shall be callable whether or not the copy is actually
2670  //          done.
2671  //
2672  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2673  // freedom, so we will always take the first option and never build
2674  // a temporary in this case. FIXME: We will, however, have to check
2675  // for the presence of a copy constructor in C++98/03 mode.
2676  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2677      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2678    if (ICS) {
2679      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2680      ICS->Standard.First = ICK_Identity;
2681      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2682      ICS->Standard.Third = ICK_Identity;
2683      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2684      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2685      ICS->Standard.ReferenceBinding = true;
2686      ICS->Standard.DirectBinding = false;
2687      ICS->Standard.RRefBinding = isRValRef;
2688      ICS->Standard.CopyConstructor = 0;
2689    } else {
2690      // FIXME: Binding to a subobject of the rvalue is going to require more
2691      // AST annotation than this.
2692      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2693    }
2694    return false;
2695  }
2696
2697  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2698  //          initialized from the initializer expression using the
2699  //          rules for a non-reference copy initialization (8.5). The
2700  //          reference is then bound to the temporary. If T1 is
2701  //          reference-related to T2, cv1 must be the same
2702  //          cv-qualification as, or greater cv-qualification than,
2703  //          cv2; otherwise, the program is ill-formed.
2704  if (RefRelationship == Ref_Related) {
2705    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2706    // we would be reference-compatible or reference-compatible with
2707    // added qualification. But that wasn't the case, so the reference
2708    // initialization fails.
2709    if (!ICS)
2710      Diag(Init->getSourceRange().getBegin(),
2711           diag::err_reference_init_drops_quals)
2712        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2713        << T2 << Init->getSourceRange();
2714    return true;
2715  }
2716
2717  // If at least one of the types is a class type, the types are not
2718  // related, and we aren't allowed any user conversions, the
2719  // reference binding fails. This case is important for breaking
2720  // recursion, since TryImplicitConversion below will attempt to
2721  // create a temporary through the use of a copy constructor.
2722  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2723      (T1->isRecordType() || T2->isRecordType())) {
2724    if (!ICS)
2725      Diag(Init->getSourceRange().getBegin(),
2726           diag::err_typecheck_convert_incompatible)
2727        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2728    return true;
2729  }
2730
2731  // Actually try to convert the initializer to T1.
2732  if (ICS) {
2733    // C++ [over.ics.ref]p2:
2734    //
2735    //   When a parameter of reference type is not bound directly to
2736    //   an argument expression, the conversion sequence is the one
2737    //   required to convert the argument expression to the
2738    //   underlying type of the reference according to
2739    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2740    //   to copy-initializing a temporary of the underlying type with
2741    //   the argument expression. Any difference in top-level
2742    //   cv-qualification is subsumed by the initialization itself
2743    //   and does not constitute a conversion.
2744    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2745    // Of course, that's still a reference binding.
2746    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2747      ICS->Standard.ReferenceBinding = true;
2748      ICS->Standard.RRefBinding = isRValRef;
2749    } else if(ICS->ConversionKind ==
2750              ImplicitConversionSequence::UserDefinedConversion) {
2751      ICS->UserDefined.After.ReferenceBinding = true;
2752      ICS->UserDefined.After.RRefBinding = isRValRef;
2753    }
2754    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2755  } else {
2756    return PerformImplicitConversion(Init, T1, "initializing");
2757  }
2758}
2759
2760/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2761/// of this overloaded operator is well-formed. If so, returns false;
2762/// otherwise, emits appropriate diagnostics and returns true.
2763bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2764  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2765         "Expected an overloaded operator declaration");
2766
2767  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2768
2769  // C++ [over.oper]p5:
2770  //   The allocation and deallocation functions, operator new,
2771  //   operator new[], operator delete and operator delete[], are
2772  //   described completely in 3.7.3. The attributes and restrictions
2773  //   found in the rest of this subclause do not apply to them unless
2774  //   explicitly stated in 3.7.3.
2775  // FIXME: Write a separate routine for checking this. For now, just allow it.
2776  if (Op == OO_New || Op == OO_Array_New ||
2777      Op == OO_Delete || Op == OO_Array_Delete)
2778    return false;
2779
2780  // C++ [over.oper]p6:
2781  //   An operator function shall either be a non-static member
2782  //   function or be a non-member function and have at least one
2783  //   parameter whose type is a class, a reference to a class, an
2784  //   enumeration, or a reference to an enumeration.
2785  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2786    if (MethodDecl->isStatic())
2787      return Diag(FnDecl->getLocation(),
2788                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2789  } else {
2790    bool ClassOrEnumParam = false;
2791    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2792                                   ParamEnd = FnDecl->param_end();
2793         Param != ParamEnd; ++Param) {
2794      QualType ParamType = (*Param)->getType().getNonReferenceType();
2795      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2796          ParamType->isEnumeralType()) {
2797        ClassOrEnumParam = true;
2798        break;
2799      }
2800    }
2801
2802    if (!ClassOrEnumParam)
2803      return Diag(FnDecl->getLocation(),
2804                  diag::err_operator_overload_needs_class_or_enum)
2805        << FnDecl->getDeclName();
2806  }
2807
2808  // C++ [over.oper]p8:
2809  //   An operator function cannot have default arguments (8.3.6),
2810  //   except where explicitly stated below.
2811  //
2812  // Only the function-call operator allows default arguments
2813  // (C++ [over.call]p1).
2814  if (Op != OO_Call) {
2815    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2816         Param != FnDecl->param_end(); ++Param) {
2817      if ((*Param)->hasUnparsedDefaultArg())
2818        return Diag((*Param)->getLocation(),
2819                    diag::err_operator_overload_default_arg)
2820          << FnDecl->getDeclName();
2821      else if (Expr *DefArg = (*Param)->getDefaultArg())
2822        return Diag((*Param)->getLocation(),
2823                    diag::err_operator_overload_default_arg)
2824          << FnDecl->getDeclName() << DefArg->getSourceRange();
2825    }
2826  }
2827
2828  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2829    { false, false, false }
2830#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2831    , { Unary, Binary, MemberOnly }
2832#include "clang/Basic/OperatorKinds.def"
2833  };
2834
2835  bool CanBeUnaryOperator = OperatorUses[Op][0];
2836  bool CanBeBinaryOperator = OperatorUses[Op][1];
2837  bool MustBeMemberOperator = OperatorUses[Op][2];
2838
2839  // C++ [over.oper]p8:
2840  //   [...] Operator functions cannot have more or fewer parameters
2841  //   than the number required for the corresponding operator, as
2842  //   described in the rest of this subclause.
2843  unsigned NumParams = FnDecl->getNumParams()
2844                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2845  if (Op != OO_Call &&
2846      ((NumParams == 1 && !CanBeUnaryOperator) ||
2847       (NumParams == 2 && !CanBeBinaryOperator) ||
2848       (NumParams < 1) || (NumParams > 2))) {
2849    // We have the wrong number of parameters.
2850    unsigned ErrorKind;
2851    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2852      ErrorKind = 2;  // 2 -> unary or binary.
2853    } else if (CanBeUnaryOperator) {
2854      ErrorKind = 0;  // 0 -> unary
2855    } else {
2856      assert(CanBeBinaryOperator &&
2857             "All non-call overloaded operators are unary or binary!");
2858      ErrorKind = 1;  // 1 -> binary
2859    }
2860
2861    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2862      << FnDecl->getDeclName() << NumParams << ErrorKind;
2863  }
2864
2865  // Overloaded operators other than operator() cannot be variadic.
2866  if (Op != OO_Call &&
2867      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2868    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2869      << FnDecl->getDeclName();
2870  }
2871
2872  // Some operators must be non-static member functions.
2873  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2874    return Diag(FnDecl->getLocation(),
2875                diag::err_operator_overload_must_be_member)
2876      << FnDecl->getDeclName();
2877  }
2878
2879  // C++ [over.inc]p1:
2880  //   The user-defined function called operator++ implements the
2881  //   prefix and postfix ++ operator. If this function is a member
2882  //   function with no parameters, or a non-member function with one
2883  //   parameter of class or enumeration type, it defines the prefix
2884  //   increment operator ++ for objects of that type. If the function
2885  //   is a member function with one parameter (which shall be of type
2886  //   int) or a non-member function with two parameters (the second
2887  //   of which shall be of type int), it defines the postfix
2888  //   increment operator ++ for objects of that type.
2889  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2890    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2891    bool ParamIsInt = false;
2892    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2893      ParamIsInt = BT->getKind() == BuiltinType::Int;
2894
2895    if (!ParamIsInt)
2896      return Diag(LastParam->getLocation(),
2897                  diag::err_operator_overload_post_incdec_must_be_int)
2898        << LastParam->getType() << (Op == OO_MinusMinus);
2899  }
2900
2901  // Notify the class if it got an assignment operator.
2902  if (Op == OO_Equal) {
2903    // Would have returned earlier otherwise.
2904    assert(isa<CXXMethodDecl>(FnDecl) &&
2905      "Overloaded = not member, but not filtered.");
2906    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2907    Method->getParent()->addedAssignmentOperator(Context, Method);
2908  }
2909
2910  return false;
2911}
2912
2913/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2914/// linkage specification, including the language and (if present)
2915/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2916/// the location of the language string literal, which is provided
2917/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2918/// the '{' brace. Otherwise, this linkage specification does not
2919/// have any braces.
2920Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
2921                                                     SourceLocation ExternLoc,
2922                                                     SourceLocation LangLoc,
2923                                                     const char *Lang,
2924                                                     unsigned StrSize,
2925                                                     SourceLocation LBraceLoc) {
2926  LinkageSpecDecl::LanguageIDs Language;
2927  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2928    Language = LinkageSpecDecl::lang_c;
2929  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2930    Language = LinkageSpecDecl::lang_cxx;
2931  else {
2932    Diag(LangLoc, diag::err_bad_language);
2933    return DeclPtrTy();
2934  }
2935
2936  // FIXME: Add all the various semantics of linkage specifications
2937
2938  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2939                                               LangLoc, Language,
2940                                               LBraceLoc.isValid());
2941  CurContext->addDecl(D);
2942  PushDeclContext(S, D);
2943  return DeclPtrTy::make(D);
2944}
2945
2946/// ActOnFinishLinkageSpecification - Completely the definition of
2947/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2948/// valid, it's the position of the closing '}' brace in a linkage
2949/// specification that uses braces.
2950Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
2951                                                      DeclPtrTy LinkageSpec,
2952                                                      SourceLocation RBraceLoc) {
2953  if (LinkageSpec)
2954    PopDeclContext();
2955  return LinkageSpec;
2956}
2957
2958/// \brief Perform semantic analysis for the variable declaration that
2959/// occurs within a C++ catch clause, returning the newly-created
2960/// variable.
2961VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
2962                                         IdentifierInfo *Name,
2963                                         SourceLocation Loc,
2964                                         SourceRange Range) {
2965  bool Invalid = false;
2966
2967  // Arrays and functions decay.
2968  if (ExDeclType->isArrayType())
2969    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2970  else if (ExDeclType->isFunctionType())
2971    ExDeclType = Context.getPointerType(ExDeclType);
2972
2973  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2974  // The exception-declaration shall not denote a pointer or reference to an
2975  // incomplete type, other than [cv] void*.
2976  // N2844 forbids rvalue references.
2977  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
2978    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
2979    Invalid = true;
2980  }
2981
2982  QualType BaseType = ExDeclType;
2983  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2984  unsigned DK = diag::err_catch_incomplete;
2985  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2986    BaseType = Ptr->getPointeeType();
2987    Mode = 1;
2988    DK = diag::err_catch_incomplete_ptr;
2989  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2990    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2991    BaseType = Ref->getPointeeType();
2992    Mode = 2;
2993    DK = diag::err_catch_incomplete_ref;
2994  }
2995  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2996      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
2997    Invalid = true;
2998
2999  if (!Invalid && !ExDeclType->isDependentType() &&
3000      RequireNonAbstractType(Loc, ExDeclType,
3001                             diag::err_abstract_type_in_decl,
3002                             AbstractVariableType))
3003    Invalid = true;
3004
3005  // FIXME: Need to test for ability to copy-construct and destroy the
3006  // exception variable.
3007
3008  // FIXME: Need to check for abstract classes.
3009
3010  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3011                                    Name, ExDeclType, VarDecl::None,
3012                                    Range.getBegin());
3013
3014  if (Invalid)
3015    ExDecl->setInvalidDecl();
3016
3017  return ExDecl;
3018}
3019
3020/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3021/// handler.
3022Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3023  QualType ExDeclType = GetTypeForDeclarator(D, S);
3024
3025  bool Invalid = D.isInvalidType();
3026  IdentifierInfo *II = D.getIdentifier();
3027  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3028    // The scope should be freshly made just for us. There is just no way
3029    // it contains any previous declaration.
3030    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3031    if (PrevDecl->isTemplateParameter()) {
3032      // Maybe we will complain about the shadowed template parameter.
3033      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3034    }
3035  }
3036
3037  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3038    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3039      << D.getCXXScopeSpec().getRange();
3040    Invalid = true;
3041  }
3042
3043  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3044                                              D.getIdentifier(),
3045                                              D.getIdentifierLoc(),
3046                                            D.getDeclSpec().getSourceRange());
3047
3048  if (Invalid)
3049    ExDecl->setInvalidDecl();
3050
3051  // Add the exception declaration into this scope.
3052  if (II)
3053    PushOnScopeChains(ExDecl, S);
3054  else
3055    CurContext->addDecl(ExDecl);
3056
3057  ProcessDeclAttributes(S, ExDecl, D);
3058  return DeclPtrTy::make(ExDecl);
3059}
3060
3061Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3062                                                   ExprArg assertexpr,
3063                                                   ExprArg assertmessageexpr) {
3064  Expr *AssertExpr = (Expr *)assertexpr.get();
3065  StringLiteral *AssertMessage =
3066    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3067
3068  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3069    llvm::APSInt Value(32);
3070    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3071      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3072        AssertExpr->getSourceRange();
3073      return DeclPtrTy();
3074    }
3075
3076    if (Value == 0) {
3077      std::string str(AssertMessage->getStrData(),
3078                      AssertMessage->getByteLength());
3079      Diag(AssertLoc, diag::err_static_assert_failed)
3080        << str << AssertExpr->getSourceRange();
3081    }
3082  }
3083
3084  assertexpr.release();
3085  assertmessageexpr.release();
3086  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3087                                        AssertExpr, AssertMessage);
3088
3089  CurContext->addDecl(Decl);
3090  return DeclPtrTy::make(Decl);
3091}
3092
3093bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3094  if (!(S->getFlags() & Scope::ClassScope)) {
3095    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3096    return true;
3097  }
3098
3099  return false;
3100}
3101
3102void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3103  Decl *Dcl = dcl.getAs<Decl>();
3104  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3105  if (!Fn) {
3106    Diag(DelLoc, diag::err_deleted_non_function);
3107    return;
3108  }
3109  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3110    Diag(DelLoc, diag::err_deleted_decl_not_first);
3111    Diag(Prev->getLocation(), diag::note_previous_declaration);
3112    // If the declaration wasn't the first, we delete the function anyway for
3113    // recovery.
3114  }
3115  Fn->setDeleted();
3116}
3117
3118static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3119  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3120       ++CI) {
3121    Stmt *SubStmt = *CI;
3122    if (!SubStmt)
3123      continue;
3124    if (isa<ReturnStmt>(SubStmt))
3125      Self.Diag(SubStmt->getSourceRange().getBegin(),
3126           diag::err_return_in_constructor_handler);
3127    if (!isa<Expr>(SubStmt))
3128      SearchForReturnInStmt(Self, SubStmt);
3129  }
3130}
3131
3132void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3133  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3134    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3135    SearchForReturnInStmt(*this, Handler);
3136  }
3137}
3138
3139bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3140                                             const CXXMethodDecl *Old) {
3141  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3142  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3143
3144  QualType CNewTy = Context.getCanonicalType(NewTy);
3145  QualType COldTy = Context.getCanonicalType(OldTy);
3146
3147  if (CNewTy == COldTy &&
3148      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3149    return false;
3150
3151  // Check if the return types are covariant
3152  QualType NewClassTy, OldClassTy;
3153
3154  /// Both types must be pointers or references to classes.
3155  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3156    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3157      NewClassTy = NewPT->getPointeeType();
3158      OldClassTy = OldPT->getPointeeType();
3159    }
3160  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3161    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3162      NewClassTy = NewRT->getPointeeType();
3163      OldClassTy = OldRT->getPointeeType();
3164    }
3165  }
3166
3167  // The return types aren't either both pointers or references to a class type.
3168  if (NewClassTy.isNull()) {
3169    Diag(New->getLocation(),
3170         diag::err_different_return_type_for_overriding_virtual_function)
3171      << New->getDeclName() << NewTy << OldTy;
3172    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3173
3174    return true;
3175  }
3176
3177  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3178    // Check if the new class derives from the old class.
3179    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3180      Diag(New->getLocation(),
3181           diag::err_covariant_return_not_derived)
3182      << New->getDeclName() << NewTy << OldTy;
3183      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3184      return true;
3185    }
3186
3187    // Check if we the conversion from derived to base is valid.
3188    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3189                      diag::err_covariant_return_inaccessible_base,
3190                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3191                      // FIXME: Should this point to the return type?
3192                      New->getLocation(), SourceRange(), New->getDeclName())) {
3193      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3194      return true;
3195    }
3196  }
3197
3198  // The qualifiers of the return types must be the same.
3199  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3200    Diag(New->getLocation(),
3201         diag::err_covariant_return_type_different_qualifications)
3202    << New->getDeclName() << NewTy << OldTy;
3203    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3204    return true;
3205  };
3206
3207
3208  // The new class type must have the same or less qualifiers as the old type.
3209  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3210    Diag(New->getLocation(),
3211         diag::err_covariant_return_type_class_type_more_qualified)
3212    << New->getDeclName() << NewTy << OldTy;
3213    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3214    return true;
3215  };
3216
3217  return false;
3218}
3219
3220/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3221/// initializer for the declaration 'Dcl'.
3222/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3223/// static data member of class X, names should be looked up in the scope of
3224/// class X.
3225void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3226  Decl *D = Dcl.getAs<Decl>();
3227  // If there is no declaration, there was an error parsing it.
3228  if (D == 0)
3229    return;
3230
3231  // Check whether it is a declaration with a nested name specifier like
3232  // int foo::bar;
3233  if (!D->isOutOfLine())
3234    return;
3235
3236  // C++ [basic.lookup.unqual]p13
3237  //
3238  // A name used in the definition of a static data member of class X
3239  // (after the qualified-id of the static member) is looked up as if the name
3240  // was used in a member function of X.
3241
3242  // Change current context into the context of the initializing declaration.
3243  EnterDeclaratorContext(S, D->getDeclContext());
3244}
3245
3246/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3247/// initializer for the declaration 'Dcl'.
3248void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3249  Decl *D = Dcl.getAs<Decl>();
3250  // If there is no declaration, there was an error parsing it.
3251  if (D == 0)
3252    return;
3253
3254  // Check whether it is a declaration with a nested name specifier like
3255  // int foo::bar;
3256  if (!D->isOutOfLine())
3257    return;
3258
3259  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3260  ExitDeclaratorContext(S);
3261}
3262