SemaDeclCXX.cpp revision 9f71a8f4c7a182a5236da9e747d57cc1d1bd24c2
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_iterator I = Node->child_begin(),
67         E = Node->child_end(); I != E; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                      MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateExprWithCleanups(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check that the default argument is well-formed
181  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
182  if (DefaultArgChecker.Visit(DefaultArg)) {
183    Param->setInvalidDecl();
184    return;
185  }
186
187  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
188}
189
190/// ActOnParamUnparsedDefaultArgument - We've seen a default
191/// argument for a function parameter, but we can't parse it yet
192/// because we're inside a class definition. Note that this default
193/// argument will be parsed later.
194void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
195                                             SourceLocation EqualLoc,
196                                             SourceLocation ArgLoc) {
197  if (!param)
198    return;
199
200  ParmVarDecl *Param = cast<ParmVarDecl>(param);
201  if (Param)
202    Param->setUnparsedDefaultArg();
203
204  UnparsedDefaultArgLocs[Param] = ArgLoc;
205}
206
207/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
208/// the default argument for the parameter param failed.
209void Sema::ActOnParamDefaultArgumentError(Decl *param) {
210  if (!param)
211    return;
212
213  ParmVarDecl *Param = cast<ParmVarDecl>(param);
214
215  Param->setInvalidDecl();
216
217  UnparsedDefaultArgLocs.erase(Param);
218}
219
220/// CheckExtraCXXDefaultArguments - Check for any extra default
221/// arguments in the declarator, which is not a function declaration
222/// or definition and therefore is not permitted to have default
223/// arguments. This routine should be invoked for every declarator
224/// that is not a function declaration or definition.
225void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
226  // C++ [dcl.fct.default]p3
227  //   A default argument expression shall be specified only in the
228  //   parameter-declaration-clause of a function declaration or in a
229  //   template-parameter (14.1). It shall not be specified for a
230  //   parameter pack. If it is specified in a
231  //   parameter-declaration-clause, it shall not occur within a
232  //   declarator or abstract-declarator of a parameter-declaration.
233  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
234    DeclaratorChunk &chunk = D.getTypeObject(i);
235    if (chunk.Kind == DeclaratorChunk::Function) {
236      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
237        ParmVarDecl *Param =
238          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
239        if (Param->hasUnparsedDefaultArg()) {
240          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
241          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
242            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
243          delete Toks;
244          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
245        } else if (Param->getDefaultArg()) {
246          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
247            << Param->getDefaultArg()->getSourceRange();
248          Param->setDefaultArg(0);
249        }
250      }
251    }
252  }
253}
254
255// MergeCXXFunctionDecl - Merge two declarations of the same C++
256// function, once we already know that they have the same
257// type. Subroutine of MergeFunctionDecl. Returns true if there was an
258// error, false otherwise.
259bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
260  bool Invalid = false;
261
262  // C++ [dcl.fct.default]p4:
263  //   For non-template functions, default arguments can be added in
264  //   later declarations of a function in the same
265  //   scope. Declarations in different scopes have completely
266  //   distinct sets of default arguments. That is, declarations in
267  //   inner scopes do not acquire default arguments from
268  //   declarations in outer scopes, and vice versa. In a given
269  //   function declaration, all parameters subsequent to a
270  //   parameter with a default argument shall have default
271  //   arguments supplied in this or previous declarations. A
272  //   default argument shall not be redefined by a later
273  //   declaration (not even to the same value).
274  //
275  // C++ [dcl.fct.default]p6:
276  //   Except for member functions of class templates, the default arguments
277  //   in a member function definition that appears outside of the class
278  //   definition are added to the set of default arguments provided by the
279  //   member function declaration in the class definition.
280  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
281    ParmVarDecl *OldParam = Old->getParamDecl(p);
282    ParmVarDecl *NewParam = New->getParamDecl(p);
283
284    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
285      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
286      // hint here. Alternatively, we could walk the type-source information
287      // for NewParam to find the last source location in the type... but it
288      // isn't worth the effort right now. This is the kind of test case that
289      // is hard to get right:
290
291      //   int f(int);
292      //   void g(int (*fp)(int) = f);
293      //   void g(int (*fp)(int) = &f);
294      Diag(NewParam->getLocation(),
295           diag::err_param_default_argument_redefinition)
296        << NewParam->getDefaultArgRange();
297
298      // Look for the function declaration where the default argument was
299      // actually written, which may be a declaration prior to Old.
300      for (FunctionDecl *Older = Old->getPreviousDeclaration();
301           Older; Older = Older->getPreviousDeclaration()) {
302        if (!Older->getParamDecl(p)->hasDefaultArg())
303          break;
304
305        OldParam = Older->getParamDecl(p);
306      }
307
308      Diag(OldParam->getLocation(), diag::note_previous_definition)
309        << OldParam->getDefaultArgRange();
310      Invalid = true;
311    } else if (OldParam->hasDefaultArg()) {
312      // Merge the old default argument into the new parameter.
313      // It's important to use getInit() here;  getDefaultArg()
314      // strips off any top-level ExprWithCleanups.
315      NewParam->setHasInheritedDefaultArg();
316      if (OldParam->hasUninstantiatedDefaultArg())
317        NewParam->setUninstantiatedDefaultArg(
318                                      OldParam->getUninstantiatedDefaultArg());
319      else
320        NewParam->setDefaultArg(OldParam->getInit());
321    } else if (NewParam->hasDefaultArg()) {
322      if (New->getDescribedFunctionTemplate()) {
323        // Paragraph 4, quoted above, only applies to non-template functions.
324        Diag(NewParam->getLocation(),
325             diag::err_param_default_argument_template_redecl)
326          << NewParam->getDefaultArgRange();
327        Diag(Old->getLocation(), diag::note_template_prev_declaration)
328          << false;
329      } else if (New->getTemplateSpecializationKind()
330                   != TSK_ImplicitInstantiation &&
331                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
332        // C++ [temp.expr.spec]p21:
333        //   Default function arguments shall not be specified in a declaration
334        //   or a definition for one of the following explicit specializations:
335        //     - the explicit specialization of a function template;
336        //     - the explicit specialization of a member function template;
337        //     - the explicit specialization of a member function of a class
338        //       template where the class template specialization to which the
339        //       member function specialization belongs is implicitly
340        //       instantiated.
341        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
342          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
343          << New->getDeclName()
344          << NewParam->getDefaultArgRange();
345      } else if (New->getDeclContext()->isDependentContext()) {
346        // C++ [dcl.fct.default]p6 (DR217):
347        //   Default arguments for a member function of a class template shall
348        //   be specified on the initial declaration of the member function
349        //   within the class template.
350        //
351        // Reading the tea leaves a bit in DR217 and its reference to DR205
352        // leads me to the conclusion that one cannot add default function
353        // arguments for an out-of-line definition of a member function of a
354        // dependent type.
355        int WhichKind = 2;
356        if (CXXRecordDecl *Record
357              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
358          if (Record->getDescribedClassTemplate())
359            WhichKind = 0;
360          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
361            WhichKind = 1;
362          else
363            WhichKind = 2;
364        }
365
366        Diag(NewParam->getLocation(),
367             diag::err_param_default_argument_member_template_redecl)
368          << WhichKind
369          << NewParam->getDefaultArgRange();
370      }
371    }
372  }
373
374  if (CheckEquivalentExceptionSpec(Old, New))
375    Invalid = true;
376
377  return Invalid;
378}
379
380/// CheckCXXDefaultArguments - Verify that the default arguments for a
381/// function declaration are well-formed according to C++
382/// [dcl.fct.default].
383void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
384  unsigned NumParams = FD->getNumParams();
385  unsigned p;
386
387  // Find first parameter with a default argument
388  for (p = 0; p < NumParams; ++p) {
389    ParmVarDecl *Param = FD->getParamDecl(p);
390    if (Param->hasDefaultArg())
391      break;
392  }
393
394  // C++ [dcl.fct.default]p4:
395  //   In a given function declaration, all parameters
396  //   subsequent to a parameter with a default argument shall
397  //   have default arguments supplied in this or previous
398  //   declarations. A default argument shall not be redefined
399  //   by a later declaration (not even to the same value).
400  unsigned LastMissingDefaultArg = 0;
401  for (; p < NumParams; ++p) {
402    ParmVarDecl *Param = FD->getParamDecl(p);
403    if (!Param->hasDefaultArg()) {
404      if (Param->isInvalidDecl())
405        /* We already complained about this parameter. */;
406      else if (Param->getIdentifier())
407        Diag(Param->getLocation(),
408             diag::err_param_default_argument_missing_name)
409          << Param->getIdentifier();
410      else
411        Diag(Param->getLocation(),
412             diag::err_param_default_argument_missing);
413
414      LastMissingDefaultArg = p;
415    }
416  }
417
418  if (LastMissingDefaultArg > 0) {
419    // Some default arguments were missing. Clear out all of the
420    // default arguments up to (and including) the last missing
421    // default argument, so that we leave the function parameters
422    // in a semantically valid state.
423    for (p = 0; p <= LastMissingDefaultArg; ++p) {
424      ParmVarDecl *Param = FD->getParamDecl(p);
425      if (Param->hasDefaultArg()) {
426        Param->setDefaultArg(0);
427      }
428    }
429  }
430}
431
432/// isCurrentClassName - Determine whether the identifier II is the
433/// name of the class type currently being defined. In the case of
434/// nested classes, this will only return true if II is the name of
435/// the innermost class.
436bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
437                              const CXXScopeSpec *SS) {
438  assert(getLangOptions().CPlusPlus && "No class names in C!");
439
440  CXXRecordDecl *CurDecl;
441  if (SS && SS->isSet() && !SS->isInvalid()) {
442    DeclContext *DC = computeDeclContext(*SS, true);
443    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
444  } else
445    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
446
447  if (CurDecl && CurDecl->getIdentifier())
448    return &II == CurDecl->getIdentifier();
449  else
450    return false;
451}
452
453/// \brief Check the validity of a C++ base class specifier.
454///
455/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
456/// and returns NULL otherwise.
457CXXBaseSpecifier *
458Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
459                         SourceRange SpecifierRange,
460                         bool Virtual, AccessSpecifier Access,
461                         TypeSourceInfo *TInfo) {
462  QualType BaseType = TInfo->getType();
463
464  // C++ [class.union]p1:
465  //   A union shall not have base classes.
466  if (Class->isUnion()) {
467    Diag(Class->getLocation(), diag::err_base_clause_on_union)
468      << SpecifierRange;
469    return 0;
470  }
471
472  if (BaseType->isDependentType())
473    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
474                                          Class->getTagKind() == TTK_Class,
475                                          Access, TInfo);
476
477  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
478
479  // Base specifiers must be record types.
480  if (!BaseType->isRecordType()) {
481    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
482    return 0;
483  }
484
485  // C++ [class.union]p1:
486  //   A union shall not be used as a base class.
487  if (BaseType->isUnionType()) {
488    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
489    return 0;
490  }
491
492  // C++ [class.derived]p2:
493  //   The class-name in a base-specifier shall not be an incompletely
494  //   defined class.
495  if (RequireCompleteType(BaseLoc, BaseType,
496                          PDiag(diag::err_incomplete_base_class)
497                            << SpecifierRange)) {
498    Class->setInvalidDecl();
499    return 0;
500  }
501
502  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
503  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
504  assert(BaseDecl && "Record type has no declaration");
505  BaseDecl = BaseDecl->getDefinition();
506  assert(BaseDecl && "Base type is not incomplete, but has no definition");
507  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
508  assert(CXXBaseDecl && "Base type is not a C++ type");
509
510  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
511  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
512    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
513    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
514      << BaseType;
515    return 0;
516  }
517
518  if (BaseDecl->isInvalidDecl())
519    Class->setInvalidDecl();
520
521  // Create the base specifier.
522  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
523                                        Class->getTagKind() == TTK_Class,
524                                        Access, TInfo);
525}
526
527/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
528/// one entry in the base class list of a class specifier, for
529/// example:
530///    class foo : public bar, virtual private baz {
531/// 'public bar' and 'virtual private baz' are each base-specifiers.
532BaseResult
533Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
534                         bool Virtual, AccessSpecifier Access,
535                         ParsedType basetype, SourceLocation BaseLoc) {
536  if (!classdecl)
537    return true;
538
539  AdjustDeclIfTemplate(classdecl);
540  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
541  if (!Class)
542    return true;
543
544  TypeSourceInfo *TInfo = 0;
545  GetTypeFromParser(basetype, &TInfo);
546  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
547                                                      Virtual, Access, TInfo))
548    return BaseSpec;
549
550  return true;
551}
552
553/// \brief Performs the actual work of attaching the given base class
554/// specifiers to a C++ class.
555bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
556                                unsigned NumBases) {
557 if (NumBases == 0)
558    return false;
559
560  // Used to keep track of which base types we have already seen, so
561  // that we can properly diagnose redundant direct base types. Note
562  // that the key is always the unqualified canonical type of the base
563  // class.
564  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
565
566  // Copy non-redundant base specifiers into permanent storage.
567  unsigned NumGoodBases = 0;
568  bool Invalid = false;
569  for (unsigned idx = 0; idx < NumBases; ++idx) {
570    QualType NewBaseType
571      = Context.getCanonicalType(Bases[idx]->getType());
572    NewBaseType = NewBaseType.getLocalUnqualifiedType();
573    if (!Class->hasObjectMember()) {
574      if (const RecordType *FDTTy =
575            NewBaseType.getTypePtr()->getAs<RecordType>())
576        if (FDTTy->getDecl()->hasObjectMember())
577          Class->setHasObjectMember(true);
578    }
579
580    if (KnownBaseTypes[NewBaseType]) {
581      // C++ [class.mi]p3:
582      //   A class shall not be specified as a direct base class of a
583      //   derived class more than once.
584      Diag(Bases[idx]->getSourceRange().getBegin(),
585           diag::err_duplicate_base_class)
586        << KnownBaseTypes[NewBaseType]->getType()
587        << Bases[idx]->getSourceRange();
588
589      // Delete the duplicate base class specifier; we're going to
590      // overwrite its pointer later.
591      Context.Deallocate(Bases[idx]);
592
593      Invalid = true;
594    } else {
595      // Okay, add this new base class.
596      KnownBaseTypes[NewBaseType] = Bases[idx];
597      Bases[NumGoodBases++] = Bases[idx];
598    }
599  }
600
601  // Attach the remaining base class specifiers to the derived class.
602  Class->setBases(Bases, NumGoodBases);
603
604  // Delete the remaining (good) base class specifiers, since their
605  // data has been copied into the CXXRecordDecl.
606  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
607    Context.Deallocate(Bases[idx]);
608
609  return Invalid;
610}
611
612/// ActOnBaseSpecifiers - Attach the given base specifiers to the
613/// class, after checking whether there are any duplicate base
614/// classes.
615void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
616                               unsigned NumBases) {
617  if (!ClassDecl || !Bases || !NumBases)
618    return;
619
620  AdjustDeclIfTemplate(ClassDecl);
621  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
622                       (CXXBaseSpecifier**)(Bases), NumBases);
623}
624
625static CXXRecordDecl *GetClassForType(QualType T) {
626  if (const RecordType *RT = T->getAs<RecordType>())
627    return cast<CXXRecordDecl>(RT->getDecl());
628  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
629    return ICT->getDecl();
630  else
631    return 0;
632}
633
634/// \brief Determine whether the type \p Derived is a C++ class that is
635/// derived from the type \p Base.
636bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
637  if (!getLangOptions().CPlusPlus)
638    return false;
639
640  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
641  if (!DerivedRD)
642    return false;
643
644  CXXRecordDecl *BaseRD = GetClassForType(Base);
645  if (!BaseRD)
646    return false;
647
648  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
649  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
650}
651
652/// \brief Determine whether the type \p Derived is a C++ class that is
653/// derived from the type \p Base.
654bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
655  if (!getLangOptions().CPlusPlus)
656    return false;
657
658  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
659  if (!DerivedRD)
660    return false;
661
662  CXXRecordDecl *BaseRD = GetClassForType(Base);
663  if (!BaseRD)
664    return false;
665
666  return DerivedRD->isDerivedFrom(BaseRD, Paths);
667}
668
669void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
670                              CXXCastPath &BasePathArray) {
671  assert(BasePathArray.empty() && "Base path array must be empty!");
672  assert(Paths.isRecordingPaths() && "Must record paths!");
673
674  const CXXBasePath &Path = Paths.front();
675
676  // We first go backward and check if we have a virtual base.
677  // FIXME: It would be better if CXXBasePath had the base specifier for
678  // the nearest virtual base.
679  unsigned Start = 0;
680  for (unsigned I = Path.size(); I != 0; --I) {
681    if (Path[I - 1].Base->isVirtual()) {
682      Start = I - 1;
683      break;
684    }
685  }
686
687  // Now add all bases.
688  for (unsigned I = Start, E = Path.size(); I != E; ++I)
689    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
690}
691
692/// \brief Determine whether the given base path includes a virtual
693/// base class.
694bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
695  for (CXXCastPath::const_iterator B = BasePath.begin(),
696                                BEnd = BasePath.end();
697       B != BEnd; ++B)
698    if ((*B)->isVirtual())
699      return true;
700
701  return false;
702}
703
704/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
705/// conversion (where Derived and Base are class types) is
706/// well-formed, meaning that the conversion is unambiguous (and
707/// that all of the base classes are accessible). Returns true
708/// and emits a diagnostic if the code is ill-formed, returns false
709/// otherwise. Loc is the location where this routine should point to
710/// if there is an error, and Range is the source range to highlight
711/// if there is an error.
712bool
713Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
714                                   unsigned InaccessibleBaseID,
715                                   unsigned AmbigiousBaseConvID,
716                                   SourceLocation Loc, SourceRange Range,
717                                   DeclarationName Name,
718                                   CXXCastPath *BasePath) {
719  // First, determine whether the path from Derived to Base is
720  // ambiguous. This is slightly more expensive than checking whether
721  // the Derived to Base conversion exists, because here we need to
722  // explore multiple paths to determine if there is an ambiguity.
723  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
724                     /*DetectVirtual=*/false);
725  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
726  assert(DerivationOkay &&
727         "Can only be used with a derived-to-base conversion");
728  (void)DerivationOkay;
729
730  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
731    if (InaccessibleBaseID) {
732      // Check that the base class can be accessed.
733      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
734                                   InaccessibleBaseID)) {
735        case AR_inaccessible:
736          return true;
737        case AR_accessible:
738        case AR_dependent:
739        case AR_delayed:
740          break;
741      }
742    }
743
744    // Build a base path if necessary.
745    if (BasePath)
746      BuildBasePathArray(Paths, *BasePath);
747    return false;
748  }
749
750  // We know that the derived-to-base conversion is ambiguous, and
751  // we're going to produce a diagnostic. Perform the derived-to-base
752  // search just one more time to compute all of the possible paths so
753  // that we can print them out. This is more expensive than any of
754  // the previous derived-to-base checks we've done, but at this point
755  // performance isn't as much of an issue.
756  Paths.clear();
757  Paths.setRecordingPaths(true);
758  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
759  assert(StillOkay && "Can only be used with a derived-to-base conversion");
760  (void)StillOkay;
761
762  // Build up a textual representation of the ambiguous paths, e.g.,
763  // D -> B -> A, that will be used to illustrate the ambiguous
764  // conversions in the diagnostic. We only print one of the paths
765  // to each base class subobject.
766  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
767
768  Diag(Loc, AmbigiousBaseConvID)
769  << Derived << Base << PathDisplayStr << Range << Name;
770  return true;
771}
772
773bool
774Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
775                                   SourceLocation Loc, SourceRange Range,
776                                   CXXCastPath *BasePath,
777                                   bool IgnoreAccess) {
778  return CheckDerivedToBaseConversion(Derived, Base,
779                                      IgnoreAccess ? 0
780                                       : diag::err_upcast_to_inaccessible_base,
781                                      diag::err_ambiguous_derived_to_base_conv,
782                                      Loc, Range, DeclarationName(),
783                                      BasePath);
784}
785
786
787/// @brief Builds a string representing ambiguous paths from a
788/// specific derived class to different subobjects of the same base
789/// class.
790///
791/// This function builds a string that can be used in error messages
792/// to show the different paths that one can take through the
793/// inheritance hierarchy to go from the derived class to different
794/// subobjects of a base class. The result looks something like this:
795/// @code
796/// struct D -> struct B -> struct A
797/// struct D -> struct C -> struct A
798/// @endcode
799std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
800  std::string PathDisplayStr;
801  std::set<unsigned> DisplayedPaths;
802  for (CXXBasePaths::paths_iterator Path = Paths.begin();
803       Path != Paths.end(); ++Path) {
804    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
805      // We haven't displayed a path to this particular base
806      // class subobject yet.
807      PathDisplayStr += "\n    ";
808      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
809      for (CXXBasePath::const_iterator Element = Path->begin();
810           Element != Path->end(); ++Element)
811        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
812    }
813  }
814
815  return PathDisplayStr;
816}
817
818//===----------------------------------------------------------------------===//
819// C++ class member Handling
820//===----------------------------------------------------------------------===//
821
822/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
823Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
824                                 SourceLocation ASLoc,
825                                 SourceLocation ColonLoc) {
826  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
827  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
828                                                  ASLoc, ColonLoc);
829  CurContext->addHiddenDecl(ASDecl);
830  return ASDecl;
831}
832
833/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
834/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
835/// bitfield width if there is one and 'InitExpr' specifies the initializer if
836/// any.
837Decl *
838Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
839                               MultiTemplateParamsArg TemplateParameterLists,
840                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
841                               bool Deleted) {
842  const DeclSpec &DS = D.getDeclSpec();
843  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
844  DeclarationName Name = NameInfo.getName();
845  SourceLocation Loc = NameInfo.getLoc();
846
847  // For anonymous bitfields, the location should point to the type.
848  if (Loc.isInvalid())
849    Loc = D.getSourceRange().getBegin();
850
851  Expr *BitWidth = static_cast<Expr*>(BW);
852  Expr *Init = static_cast<Expr*>(InitExpr);
853
854  assert(isa<CXXRecordDecl>(CurContext));
855  assert(!DS.isFriendSpecified());
856
857  bool isFunc = false;
858  if (D.isFunctionDeclarator())
859    isFunc = true;
860  else if (D.getNumTypeObjects() == 0 &&
861           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
862    QualType TDType = GetTypeFromParser(DS.getRepAsType());
863    isFunc = TDType->isFunctionType();
864  }
865
866  // C++ 9.2p6: A member shall not be declared to have automatic storage
867  // duration (auto, register) or with the extern storage-class-specifier.
868  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
869  // data members and cannot be applied to names declared const or static,
870  // and cannot be applied to reference members.
871  switch (DS.getStorageClassSpec()) {
872    case DeclSpec::SCS_unspecified:
873    case DeclSpec::SCS_typedef:
874    case DeclSpec::SCS_static:
875      // FALL THROUGH.
876      break;
877    case DeclSpec::SCS_mutable:
878      if (isFunc) {
879        if (DS.getStorageClassSpecLoc().isValid())
880          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
881        else
882          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
883
884        // FIXME: It would be nicer if the keyword was ignored only for this
885        // declarator. Otherwise we could get follow-up errors.
886        D.getMutableDeclSpec().ClearStorageClassSpecs();
887      }
888      break;
889    default:
890      if (DS.getStorageClassSpecLoc().isValid())
891        Diag(DS.getStorageClassSpecLoc(),
892             diag::err_storageclass_invalid_for_member);
893      else
894        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
895      D.getMutableDeclSpec().ClearStorageClassSpecs();
896  }
897
898  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
899                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
900                      !isFunc);
901
902  Decl *Member;
903  if (isInstField) {
904    CXXScopeSpec &SS = D.getCXXScopeSpec();
905
906
907    if (SS.isSet() && !SS.isInvalid()) {
908      // The user provided a superfluous scope specifier inside a class
909      // definition:
910      //
911      // class X {
912      //   int X::member;
913      // };
914      DeclContext *DC = 0;
915      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
916        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
917        << Name << FixItHint::CreateRemoval(SS.getRange());
918      else
919        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
920          << Name << SS.getRange();
921
922      SS.clear();
923    }
924
925    // FIXME: Check for template parameters!
926    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
927                         AS);
928    assert(Member && "HandleField never returns null");
929  } else {
930    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
931    if (!Member) {
932      return 0;
933    }
934
935    // Non-instance-fields can't have a bitfield.
936    if (BitWidth) {
937      if (Member->isInvalidDecl()) {
938        // don't emit another diagnostic.
939      } else if (isa<VarDecl>(Member)) {
940        // C++ 9.6p3: A bit-field shall not be a static member.
941        // "static member 'A' cannot be a bit-field"
942        Diag(Loc, diag::err_static_not_bitfield)
943          << Name << BitWidth->getSourceRange();
944      } else if (isa<TypedefDecl>(Member)) {
945        // "typedef member 'x' cannot be a bit-field"
946        Diag(Loc, diag::err_typedef_not_bitfield)
947          << Name << BitWidth->getSourceRange();
948      } else {
949        // A function typedef ("typedef int f(); f a;").
950        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
951        Diag(Loc, diag::err_not_integral_type_bitfield)
952          << Name << cast<ValueDecl>(Member)->getType()
953          << BitWidth->getSourceRange();
954      }
955
956      BitWidth = 0;
957      Member->setInvalidDecl();
958    }
959
960    Member->setAccess(AS);
961
962    // If we have declared a member function template, set the access of the
963    // templated declaration as well.
964    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
965      FunTmpl->getTemplatedDecl()->setAccess(AS);
966  }
967
968  assert((Name || isInstField) && "No identifier for non-field ?");
969
970  if (Init)
971    AddInitializerToDecl(Member, Init, false);
972  if (Deleted) // FIXME: Source location is not very good.
973    SetDeclDeleted(Member, D.getSourceRange().getBegin());
974
975  if (isInstField) {
976    FieldCollector->Add(cast<FieldDecl>(Member));
977    return 0;
978  }
979  return Member;
980}
981
982/// \brief Find the direct and/or virtual base specifiers that
983/// correspond to the given base type, for use in base initialization
984/// within a constructor.
985static bool FindBaseInitializer(Sema &SemaRef,
986                                CXXRecordDecl *ClassDecl,
987                                QualType BaseType,
988                                const CXXBaseSpecifier *&DirectBaseSpec,
989                                const CXXBaseSpecifier *&VirtualBaseSpec) {
990  // First, check for a direct base class.
991  DirectBaseSpec = 0;
992  for (CXXRecordDecl::base_class_const_iterator Base
993         = ClassDecl->bases_begin();
994       Base != ClassDecl->bases_end(); ++Base) {
995    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
996      // We found a direct base of this type. That's what we're
997      // initializing.
998      DirectBaseSpec = &*Base;
999      break;
1000    }
1001  }
1002
1003  // Check for a virtual base class.
1004  // FIXME: We might be able to short-circuit this if we know in advance that
1005  // there are no virtual bases.
1006  VirtualBaseSpec = 0;
1007  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1008    // We haven't found a base yet; search the class hierarchy for a
1009    // virtual base class.
1010    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1011                       /*DetectVirtual=*/false);
1012    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1013                              BaseType, Paths)) {
1014      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1015           Path != Paths.end(); ++Path) {
1016        if (Path->back().Base->isVirtual()) {
1017          VirtualBaseSpec = Path->back().Base;
1018          break;
1019        }
1020      }
1021    }
1022  }
1023
1024  return DirectBaseSpec || VirtualBaseSpec;
1025}
1026
1027/// ActOnMemInitializer - Handle a C++ member initializer.
1028MemInitResult
1029Sema::ActOnMemInitializer(Decl *ConstructorD,
1030                          Scope *S,
1031                          CXXScopeSpec &SS,
1032                          IdentifierInfo *MemberOrBase,
1033                          ParsedType TemplateTypeTy,
1034                          SourceLocation IdLoc,
1035                          SourceLocation LParenLoc,
1036                          ExprTy **Args, unsigned NumArgs,
1037                          SourceLocation RParenLoc) {
1038  if (!ConstructorD)
1039    return true;
1040
1041  AdjustDeclIfTemplate(ConstructorD);
1042
1043  CXXConstructorDecl *Constructor
1044    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1045  if (!Constructor) {
1046    // The user wrote a constructor initializer on a function that is
1047    // not a C++ constructor. Ignore the error for now, because we may
1048    // have more member initializers coming; we'll diagnose it just
1049    // once in ActOnMemInitializers.
1050    return true;
1051  }
1052
1053  CXXRecordDecl *ClassDecl = Constructor->getParent();
1054
1055  // C++ [class.base.init]p2:
1056  //   Names in a mem-initializer-id are looked up in the scope of the
1057  //   constructor's class and, if not found in that scope, are looked
1058  //   up in the scope containing the constructor's definition.
1059  //   [Note: if the constructor's class contains a member with the
1060  //   same name as a direct or virtual base class of the class, a
1061  //   mem-initializer-id naming the member or base class and composed
1062  //   of a single identifier refers to the class member. A
1063  //   mem-initializer-id for the hidden base class may be specified
1064  //   using a qualified name. ]
1065  if (!SS.getScopeRep() && !TemplateTypeTy) {
1066    // Look for a member, first.
1067    FieldDecl *Member = 0;
1068    DeclContext::lookup_result Result
1069      = ClassDecl->lookup(MemberOrBase);
1070    if (Result.first != Result.second) {
1071      Member = dyn_cast<FieldDecl>(*Result.first);
1072
1073      if (Member)
1074        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1075                                    LParenLoc, RParenLoc);
1076      // Handle anonymous union case.
1077      if (IndirectFieldDecl* IndirectField
1078            = dyn_cast<IndirectFieldDecl>(*Result.first))
1079         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1080                                       NumArgs, IdLoc,
1081                                       LParenLoc, RParenLoc);
1082    }
1083  }
1084  // It didn't name a member, so see if it names a class.
1085  QualType BaseType;
1086  TypeSourceInfo *TInfo = 0;
1087
1088  if (TemplateTypeTy) {
1089    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1090  } else {
1091    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1092    LookupParsedName(R, S, &SS);
1093
1094    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1095    if (!TyD) {
1096      if (R.isAmbiguous()) return true;
1097
1098      // We don't want access-control diagnostics here.
1099      R.suppressDiagnostics();
1100
1101      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1102        bool NotUnknownSpecialization = false;
1103        DeclContext *DC = computeDeclContext(SS, false);
1104        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1105          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1106
1107        if (!NotUnknownSpecialization) {
1108          // When the scope specifier can refer to a member of an unknown
1109          // specialization, we take it as a type name.
1110          BaseType = CheckTypenameType(ETK_None,
1111                                       (NestedNameSpecifier *)SS.getScopeRep(),
1112                                       *MemberOrBase, SourceLocation(),
1113                                       SS.getRange(), IdLoc);
1114          if (BaseType.isNull())
1115            return true;
1116
1117          R.clear();
1118          R.setLookupName(MemberOrBase);
1119        }
1120      }
1121
1122      // If no results were found, try to correct typos.
1123      if (R.empty() && BaseType.isNull() &&
1124          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1125          R.isSingleResult()) {
1126        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1127          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1128            // We have found a non-static data member with a similar
1129            // name to what was typed; complain and initialize that
1130            // member.
1131            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1132              << MemberOrBase << true << R.getLookupName()
1133              << FixItHint::CreateReplacement(R.getNameLoc(),
1134                                              R.getLookupName().getAsString());
1135            Diag(Member->getLocation(), diag::note_previous_decl)
1136              << Member->getDeclName();
1137
1138            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1139                                          LParenLoc, RParenLoc);
1140          }
1141        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1142          const CXXBaseSpecifier *DirectBaseSpec;
1143          const CXXBaseSpecifier *VirtualBaseSpec;
1144          if (FindBaseInitializer(*this, ClassDecl,
1145                                  Context.getTypeDeclType(Type),
1146                                  DirectBaseSpec, VirtualBaseSpec)) {
1147            // We have found a direct or virtual base class with a
1148            // similar name to what was typed; complain and initialize
1149            // that base class.
1150            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1151              << MemberOrBase << false << R.getLookupName()
1152              << FixItHint::CreateReplacement(R.getNameLoc(),
1153                                              R.getLookupName().getAsString());
1154
1155            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1156                                                             : VirtualBaseSpec;
1157            Diag(BaseSpec->getSourceRange().getBegin(),
1158                 diag::note_base_class_specified_here)
1159              << BaseSpec->getType()
1160              << BaseSpec->getSourceRange();
1161
1162            TyD = Type;
1163          }
1164        }
1165      }
1166
1167      if (!TyD && BaseType.isNull()) {
1168        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1169          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1170        return true;
1171      }
1172    }
1173
1174    if (BaseType.isNull()) {
1175      BaseType = Context.getTypeDeclType(TyD);
1176      if (SS.isSet()) {
1177        NestedNameSpecifier *Qualifier =
1178          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1179
1180        // FIXME: preserve source range information
1181        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1182      }
1183    }
1184  }
1185
1186  if (!TInfo)
1187    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1188
1189  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1190                              LParenLoc, RParenLoc, ClassDecl);
1191}
1192
1193/// Checks an initializer expression for use of uninitialized fields, such as
1194/// containing the field that is being initialized. Returns true if there is an
1195/// uninitialized field was used an updates the SourceLocation parameter; false
1196/// otherwise.
1197static bool InitExprContainsUninitializedFields(const Stmt *S,
1198                                                const ValueDecl *LhsField,
1199                                                SourceLocation *L) {
1200  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1201
1202  if (isa<CallExpr>(S)) {
1203    // Do not descend into function calls or constructors, as the use
1204    // of an uninitialized field may be valid. One would have to inspect
1205    // the contents of the function/ctor to determine if it is safe or not.
1206    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1207    // may be safe, depending on what the function/ctor does.
1208    return false;
1209  }
1210  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1211    const NamedDecl *RhsField = ME->getMemberDecl();
1212
1213    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1214      // The member expression points to a static data member.
1215      assert(VD->isStaticDataMember() &&
1216             "Member points to non-static data member!");
1217      (void)VD;
1218      return false;
1219    }
1220
1221    if (isa<EnumConstantDecl>(RhsField)) {
1222      // The member expression points to an enum.
1223      return false;
1224    }
1225
1226    if (RhsField == LhsField) {
1227      // Initializing a field with itself. Throw a warning.
1228      // But wait; there are exceptions!
1229      // Exception #1:  The field may not belong to this record.
1230      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1231      const Expr *base = ME->getBase();
1232      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1233        // Even though the field matches, it does not belong to this record.
1234        return false;
1235      }
1236      // None of the exceptions triggered; return true to indicate an
1237      // uninitialized field was used.
1238      *L = ME->getMemberLoc();
1239      return true;
1240    }
1241  } else if (isa<SizeOfAlignOfExpr>(S)) {
1242    // sizeof/alignof doesn't reference contents, do not warn.
1243    return false;
1244  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1245    // address-of doesn't reference contents (the pointer may be dereferenced
1246    // in the same expression but it would be rare; and weird).
1247    if (UOE->getOpcode() == UO_AddrOf)
1248      return false;
1249  }
1250  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1251       it != e; ++it) {
1252    if (!*it) {
1253      // An expression such as 'member(arg ?: "")' may trigger this.
1254      continue;
1255    }
1256    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1257      return true;
1258  }
1259  return false;
1260}
1261
1262MemInitResult
1263Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1264                             unsigned NumArgs, SourceLocation IdLoc,
1265                             SourceLocation LParenLoc,
1266                             SourceLocation RParenLoc) {
1267  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1268  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1269  assert((DirectMember || IndirectMember) &&
1270         "Member must be a FieldDecl or IndirectFieldDecl");
1271
1272  if (Member->isInvalidDecl())
1273    return true;
1274
1275  // Diagnose value-uses of fields to initialize themselves, e.g.
1276  //   foo(foo)
1277  // where foo is not also a parameter to the constructor.
1278  // TODO: implement -Wuninitialized and fold this into that framework.
1279  for (unsigned i = 0; i < NumArgs; ++i) {
1280    SourceLocation L;
1281    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1282      // FIXME: Return true in the case when other fields are used before being
1283      // uninitialized. For example, let this field be the i'th field. When
1284      // initializing the i'th field, throw a warning if any of the >= i'th
1285      // fields are used, as they are not yet initialized.
1286      // Right now we are only handling the case where the i'th field uses
1287      // itself in its initializer.
1288      Diag(L, diag::warn_field_is_uninit);
1289    }
1290  }
1291
1292  bool HasDependentArg = false;
1293  for (unsigned i = 0; i < NumArgs; i++)
1294    HasDependentArg |= Args[i]->isTypeDependent();
1295
1296  Expr *Init;
1297  if (Member->getType()->isDependentType() || HasDependentArg) {
1298    // Can't check initialization for a member of dependent type or when
1299    // any of the arguments are type-dependent expressions.
1300    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1301                                       RParenLoc);
1302
1303    // Erase any temporaries within this evaluation context; we're not
1304    // going to track them in the AST, since we'll be rebuilding the
1305    // ASTs during template instantiation.
1306    ExprTemporaries.erase(
1307              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1308                          ExprTemporaries.end());
1309  } else {
1310    // Initialize the member.
1311    InitializedEntity MemberEntity =
1312      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1313                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1314    InitializationKind Kind =
1315      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1316
1317    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1318
1319    ExprResult MemberInit =
1320      InitSeq.Perform(*this, MemberEntity, Kind,
1321                      MultiExprArg(*this, Args, NumArgs), 0);
1322    if (MemberInit.isInvalid())
1323      return true;
1324
1325    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1326
1327    // C++0x [class.base.init]p7:
1328    //   The initialization of each base and member constitutes a
1329    //   full-expression.
1330    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1331    if (MemberInit.isInvalid())
1332      return true;
1333
1334    // If we are in a dependent context, template instantiation will
1335    // perform this type-checking again. Just save the arguments that we
1336    // received in a ParenListExpr.
1337    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1338    // of the information that we have about the member
1339    // initializer. However, deconstructing the ASTs is a dicey process,
1340    // and this approach is far more likely to get the corner cases right.
1341    if (CurContext->isDependentContext())
1342      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1343                                               RParenLoc);
1344    else
1345      Init = MemberInit.get();
1346  }
1347
1348  if (DirectMember) {
1349    return new (Context) CXXBaseOrMemberInitializer(Context, DirectMember,
1350                                                    IdLoc, LParenLoc, Init,
1351                                                    RParenLoc);
1352  } else {
1353    return new (Context) CXXBaseOrMemberInitializer(Context, IndirectMember,
1354                                                    IdLoc, LParenLoc, Init,
1355                                                    RParenLoc);
1356  }
1357}
1358
1359MemInitResult
1360Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1361                           Expr **Args, unsigned NumArgs,
1362                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1363                           CXXRecordDecl *ClassDecl) {
1364  bool HasDependentArg = false;
1365  for (unsigned i = 0; i < NumArgs; i++)
1366    HasDependentArg |= Args[i]->isTypeDependent();
1367
1368  SourceLocation BaseLoc
1369    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1370
1371  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1372    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1373             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1374
1375  // C++ [class.base.init]p2:
1376  //   [...] Unless the mem-initializer-id names a nonstatic data
1377  //   member of the constructor's class or a direct or virtual base
1378  //   of that class, the mem-initializer is ill-formed. A
1379  //   mem-initializer-list can initialize a base class using any
1380  //   name that denotes that base class type.
1381  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1382
1383  // Check for direct and virtual base classes.
1384  const CXXBaseSpecifier *DirectBaseSpec = 0;
1385  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1386  if (!Dependent) {
1387    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1388                        VirtualBaseSpec);
1389
1390    // C++ [base.class.init]p2:
1391    // Unless the mem-initializer-id names a nonstatic data member of the
1392    // constructor's class or a direct or virtual base of that class, the
1393    // mem-initializer is ill-formed.
1394    if (!DirectBaseSpec && !VirtualBaseSpec) {
1395      // If the class has any dependent bases, then it's possible that
1396      // one of those types will resolve to the same type as
1397      // BaseType. Therefore, just treat this as a dependent base
1398      // class initialization.  FIXME: Should we try to check the
1399      // initialization anyway? It seems odd.
1400      if (ClassDecl->hasAnyDependentBases())
1401        Dependent = true;
1402      else
1403        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1404          << BaseType << Context.getTypeDeclType(ClassDecl)
1405          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1406    }
1407  }
1408
1409  if (Dependent) {
1410    // Can't check initialization for a base of dependent type or when
1411    // any of the arguments are type-dependent expressions.
1412    ExprResult BaseInit
1413      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1414                                          RParenLoc));
1415
1416    // Erase any temporaries within this evaluation context; we're not
1417    // going to track them in the AST, since we'll be rebuilding the
1418    // ASTs during template instantiation.
1419    ExprTemporaries.erase(
1420              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1421                          ExprTemporaries.end());
1422
1423    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1424                                                    /*IsVirtual=*/false,
1425                                                    LParenLoc,
1426                                                    BaseInit.takeAs<Expr>(),
1427                                                    RParenLoc);
1428  }
1429
1430  // C++ [base.class.init]p2:
1431  //   If a mem-initializer-id is ambiguous because it designates both
1432  //   a direct non-virtual base class and an inherited virtual base
1433  //   class, the mem-initializer is ill-formed.
1434  if (DirectBaseSpec && VirtualBaseSpec)
1435    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1436      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1437
1438  CXXBaseSpecifier *BaseSpec
1439    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1440  if (!BaseSpec)
1441    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1442
1443  // Initialize the base.
1444  InitializedEntity BaseEntity =
1445    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1446  InitializationKind Kind =
1447    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1448
1449  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1450
1451  ExprResult BaseInit =
1452    InitSeq.Perform(*this, BaseEntity, Kind,
1453                    MultiExprArg(*this, Args, NumArgs), 0);
1454  if (BaseInit.isInvalid())
1455    return true;
1456
1457  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1458
1459  // C++0x [class.base.init]p7:
1460  //   The initialization of each base and member constitutes a
1461  //   full-expression.
1462  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1463  if (BaseInit.isInvalid())
1464    return true;
1465
1466  // If we are in a dependent context, template instantiation will
1467  // perform this type-checking again. Just save the arguments that we
1468  // received in a ParenListExpr.
1469  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1470  // of the information that we have about the base
1471  // initializer. However, deconstructing the ASTs is a dicey process,
1472  // and this approach is far more likely to get the corner cases right.
1473  if (CurContext->isDependentContext()) {
1474    ExprResult Init
1475      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1476                                          RParenLoc));
1477    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1478                                                    BaseSpec->isVirtual(),
1479                                                    LParenLoc,
1480                                                    Init.takeAs<Expr>(),
1481                                                    RParenLoc);
1482  }
1483
1484  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1485                                                  BaseSpec->isVirtual(),
1486                                                  LParenLoc,
1487                                                  BaseInit.takeAs<Expr>(),
1488                                                  RParenLoc);
1489}
1490
1491/// ImplicitInitializerKind - How an implicit base or member initializer should
1492/// initialize its base or member.
1493enum ImplicitInitializerKind {
1494  IIK_Default,
1495  IIK_Copy,
1496  IIK_Move
1497};
1498
1499static bool
1500BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1501                             ImplicitInitializerKind ImplicitInitKind,
1502                             CXXBaseSpecifier *BaseSpec,
1503                             bool IsInheritedVirtualBase,
1504                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1505  InitializedEntity InitEntity
1506    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1507                                        IsInheritedVirtualBase);
1508
1509  ExprResult BaseInit;
1510
1511  switch (ImplicitInitKind) {
1512  case IIK_Default: {
1513    InitializationKind InitKind
1514      = InitializationKind::CreateDefault(Constructor->getLocation());
1515    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1516    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1517                               MultiExprArg(SemaRef, 0, 0));
1518    break;
1519  }
1520
1521  case IIK_Copy: {
1522    ParmVarDecl *Param = Constructor->getParamDecl(0);
1523    QualType ParamType = Param->getType().getNonReferenceType();
1524
1525    Expr *CopyCtorArg =
1526      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1527                          Constructor->getLocation(), ParamType,
1528                          VK_LValue, 0);
1529
1530    // Cast to the base class to avoid ambiguities.
1531    QualType ArgTy =
1532      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1533                                       ParamType.getQualifiers());
1534
1535    CXXCastPath BasePath;
1536    BasePath.push_back(BaseSpec);
1537    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1538                              CK_UncheckedDerivedToBase,
1539                              VK_LValue, &BasePath);
1540
1541    InitializationKind InitKind
1542      = InitializationKind::CreateDirect(Constructor->getLocation(),
1543                                         SourceLocation(), SourceLocation());
1544    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1545                                   &CopyCtorArg, 1);
1546    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1547                               MultiExprArg(&CopyCtorArg, 1));
1548    break;
1549  }
1550
1551  case IIK_Move:
1552    assert(false && "Unhandled initializer kind!");
1553  }
1554
1555  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1556  if (BaseInit.isInvalid())
1557    return true;
1558
1559  CXXBaseInit =
1560    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1561               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1562                                                        SourceLocation()),
1563                                             BaseSpec->isVirtual(),
1564                                             SourceLocation(),
1565                                             BaseInit.takeAs<Expr>(),
1566                                             SourceLocation());
1567
1568  return false;
1569}
1570
1571static bool
1572BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1573                               ImplicitInitializerKind ImplicitInitKind,
1574                               FieldDecl *Field,
1575                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1576  if (Field->isInvalidDecl())
1577    return true;
1578
1579  SourceLocation Loc = Constructor->getLocation();
1580
1581  if (ImplicitInitKind == IIK_Copy) {
1582    ParmVarDecl *Param = Constructor->getParamDecl(0);
1583    QualType ParamType = Param->getType().getNonReferenceType();
1584
1585    Expr *MemberExprBase =
1586      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1587                          Loc, ParamType, VK_LValue, 0);
1588
1589    // Build a reference to this field within the parameter.
1590    CXXScopeSpec SS;
1591    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1592                              Sema::LookupMemberName);
1593    MemberLookup.addDecl(Field, AS_public);
1594    MemberLookup.resolveKind();
1595    ExprResult CopyCtorArg
1596      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1597                                         ParamType, Loc,
1598                                         /*IsArrow=*/false,
1599                                         SS,
1600                                         /*FirstQualifierInScope=*/0,
1601                                         MemberLookup,
1602                                         /*TemplateArgs=*/0);
1603    if (CopyCtorArg.isInvalid())
1604      return true;
1605
1606    // When the field we are copying is an array, create index variables for
1607    // each dimension of the array. We use these index variables to subscript
1608    // the source array, and other clients (e.g., CodeGen) will perform the
1609    // necessary iteration with these index variables.
1610    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1611    QualType BaseType = Field->getType();
1612    QualType SizeType = SemaRef.Context.getSizeType();
1613    while (const ConstantArrayType *Array
1614                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1615      // Create the iteration variable for this array index.
1616      IdentifierInfo *IterationVarName = 0;
1617      {
1618        llvm::SmallString<8> Str;
1619        llvm::raw_svector_ostream OS(Str);
1620        OS << "__i" << IndexVariables.size();
1621        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1622      }
1623      VarDecl *IterationVar
1624        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1625                          IterationVarName, SizeType,
1626                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1627                          SC_None, SC_None);
1628      IndexVariables.push_back(IterationVar);
1629
1630      // Create a reference to the iteration variable.
1631      ExprResult IterationVarRef
1632        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1633      assert(!IterationVarRef.isInvalid() &&
1634             "Reference to invented variable cannot fail!");
1635
1636      // Subscript the array with this iteration variable.
1637      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1638                                                            Loc,
1639                                                        IterationVarRef.take(),
1640                                                            Loc);
1641      if (CopyCtorArg.isInvalid())
1642        return true;
1643
1644      BaseType = Array->getElementType();
1645    }
1646
1647    // Construct the entity that we will be initializing. For an array, this
1648    // will be first element in the array, which may require several levels
1649    // of array-subscript entities.
1650    llvm::SmallVector<InitializedEntity, 4> Entities;
1651    Entities.reserve(1 + IndexVariables.size());
1652    Entities.push_back(InitializedEntity::InitializeMember(Field));
1653    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1654      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1655                                                              0,
1656                                                              Entities.back()));
1657
1658    // Direct-initialize to use the copy constructor.
1659    InitializationKind InitKind =
1660      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1661
1662    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1663    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1664                                   &CopyCtorArgE, 1);
1665
1666    ExprResult MemberInit
1667      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1668                        MultiExprArg(&CopyCtorArgE, 1));
1669    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1670    if (MemberInit.isInvalid())
1671      return true;
1672
1673    CXXMemberInit
1674      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1675                                           MemberInit.takeAs<Expr>(), Loc,
1676                                           IndexVariables.data(),
1677                                           IndexVariables.size());
1678    return false;
1679  }
1680
1681  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1682
1683  QualType FieldBaseElementType =
1684    SemaRef.Context.getBaseElementType(Field->getType());
1685
1686  if (FieldBaseElementType->isRecordType()) {
1687    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1688    InitializationKind InitKind =
1689      InitializationKind::CreateDefault(Loc);
1690
1691    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1692    ExprResult MemberInit =
1693      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1694
1695    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1696    if (MemberInit.isInvalid())
1697      return true;
1698
1699    CXXMemberInit =
1700      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1701                                                       Field, Loc, Loc,
1702                                                       MemberInit.get(),
1703                                                       Loc);
1704    return false;
1705  }
1706
1707  if (FieldBaseElementType->isReferenceType()) {
1708    SemaRef.Diag(Constructor->getLocation(),
1709                 diag::err_uninitialized_member_in_ctor)
1710    << (int)Constructor->isImplicit()
1711    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1712    << 0 << Field->getDeclName();
1713    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1714    return true;
1715  }
1716
1717  if (FieldBaseElementType.isConstQualified()) {
1718    SemaRef.Diag(Constructor->getLocation(),
1719                 diag::err_uninitialized_member_in_ctor)
1720    << (int)Constructor->isImplicit()
1721    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1722    << 1 << Field->getDeclName();
1723    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1724    return true;
1725  }
1726
1727  // Nothing to initialize.
1728  CXXMemberInit = 0;
1729  return false;
1730}
1731
1732namespace {
1733struct BaseAndFieldInfo {
1734  Sema &S;
1735  CXXConstructorDecl *Ctor;
1736  bool AnyErrorsInInits;
1737  ImplicitInitializerKind IIK;
1738  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1739  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1740
1741  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1742    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1743    // FIXME: Handle implicit move constructors.
1744    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1745      IIK = IIK_Copy;
1746    else
1747      IIK = IIK_Default;
1748  }
1749};
1750}
1751
1752static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1753                                    FieldDecl *Top, FieldDecl *Field) {
1754
1755  // Overwhelmingly common case: we have a direct initializer for this field.
1756  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1757    Info.AllToInit.push_back(Init);
1758    return false;
1759  }
1760
1761  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1762    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1763    assert(FieldClassType && "anonymous struct/union without record type");
1764    CXXRecordDecl *FieldClassDecl
1765      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1766
1767    // Even though union members never have non-trivial default
1768    // constructions in C++03, we still build member initializers for aggregate
1769    // record types which can be union members, and C++0x allows non-trivial
1770    // default constructors for union members, so we ensure that only one
1771    // member is initialized for these.
1772    if (FieldClassDecl->isUnion()) {
1773      // First check for an explicit initializer for one field.
1774      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1775           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1776        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1777          Info.AllToInit.push_back(Init);
1778
1779          // Once we've initialized a field of an anonymous union, the union
1780          // field in the class is also initialized, so exit immediately.
1781          return false;
1782        } else if ((*FA)->isAnonymousStructOrUnion()) {
1783          if (CollectFieldInitializer(Info, Top, *FA))
1784            return true;
1785        }
1786      }
1787
1788      // Fallthrough and construct a default initializer for the union as
1789      // a whole, which can call its default constructor if such a thing exists
1790      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1791      // behavior going forward with C++0x, when anonymous unions there are
1792      // finalized, we should revisit this.
1793    } else {
1794      // For structs, we simply descend through to initialize all members where
1795      // necessary.
1796      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1797           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1798        if (CollectFieldInitializer(Info, Top, *FA))
1799          return true;
1800      }
1801    }
1802  }
1803
1804  // Don't try to build an implicit initializer if there were semantic
1805  // errors in any of the initializers (and therefore we might be
1806  // missing some that the user actually wrote).
1807  if (Info.AnyErrorsInInits)
1808    return false;
1809
1810  CXXBaseOrMemberInitializer *Init = 0;
1811  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1812    return true;
1813
1814  if (Init)
1815    Info.AllToInit.push_back(Init);
1816
1817  return false;
1818}
1819
1820bool
1821Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1822                                  CXXBaseOrMemberInitializer **Initializers,
1823                                  unsigned NumInitializers,
1824                                  bool AnyErrors) {
1825  if (Constructor->getDeclContext()->isDependentContext()) {
1826    // Just store the initializers as written, they will be checked during
1827    // instantiation.
1828    if (NumInitializers > 0) {
1829      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1830      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1831        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1832      memcpy(baseOrMemberInitializers, Initializers,
1833             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1834      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1835    }
1836
1837    return false;
1838  }
1839
1840  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1841
1842  // We need to build the initializer AST according to order of construction
1843  // and not what user specified in the Initializers list.
1844  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1845  if (!ClassDecl)
1846    return true;
1847
1848  bool HadError = false;
1849
1850  for (unsigned i = 0; i < NumInitializers; i++) {
1851    CXXBaseOrMemberInitializer *Member = Initializers[i];
1852
1853    if (Member->isBaseInitializer())
1854      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1855    else
1856      Info.AllBaseFields[Member->getAnyMember()] = Member;
1857  }
1858
1859  // Keep track of the direct virtual bases.
1860  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1861  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1862       E = ClassDecl->bases_end(); I != E; ++I) {
1863    if (I->isVirtual())
1864      DirectVBases.insert(I);
1865  }
1866
1867  // Push virtual bases before others.
1868  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1869       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1870
1871    if (CXXBaseOrMemberInitializer *Value
1872        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1873      Info.AllToInit.push_back(Value);
1874    } else if (!AnyErrors) {
1875      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1876      CXXBaseOrMemberInitializer *CXXBaseInit;
1877      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1878                                       VBase, IsInheritedVirtualBase,
1879                                       CXXBaseInit)) {
1880        HadError = true;
1881        continue;
1882      }
1883
1884      Info.AllToInit.push_back(CXXBaseInit);
1885    }
1886  }
1887
1888  // Non-virtual bases.
1889  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1890       E = ClassDecl->bases_end(); Base != E; ++Base) {
1891    // Virtuals are in the virtual base list and already constructed.
1892    if (Base->isVirtual())
1893      continue;
1894
1895    if (CXXBaseOrMemberInitializer *Value
1896          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1897      Info.AllToInit.push_back(Value);
1898    } else if (!AnyErrors) {
1899      CXXBaseOrMemberInitializer *CXXBaseInit;
1900      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1901                                       Base, /*IsInheritedVirtualBase=*/false,
1902                                       CXXBaseInit)) {
1903        HadError = true;
1904        continue;
1905      }
1906
1907      Info.AllToInit.push_back(CXXBaseInit);
1908    }
1909  }
1910
1911  // Fields.
1912  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1913       E = ClassDecl->field_end(); Field != E; ++Field) {
1914    if ((*Field)->getType()->isIncompleteArrayType()) {
1915      assert(ClassDecl->hasFlexibleArrayMember() &&
1916             "Incomplete array type is not valid");
1917      continue;
1918    }
1919    if (CollectFieldInitializer(Info, *Field, *Field))
1920      HadError = true;
1921  }
1922
1923  NumInitializers = Info.AllToInit.size();
1924  if (NumInitializers > 0) {
1925    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1926    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1927      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1928    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1929           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1930    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1931
1932    // Constructors implicitly reference the base and member
1933    // destructors.
1934    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1935                                           Constructor->getParent());
1936  }
1937
1938  return HadError;
1939}
1940
1941static void *GetKeyForTopLevelField(FieldDecl *Field) {
1942  // For anonymous unions, use the class declaration as the key.
1943  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1944    if (RT->getDecl()->isAnonymousStructOrUnion())
1945      return static_cast<void *>(RT->getDecl());
1946  }
1947  return static_cast<void *>(Field);
1948}
1949
1950static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1951  return Context.getCanonicalType(BaseType).getTypePtr();
1952}
1953
1954static void *GetKeyForMember(ASTContext &Context,
1955                             CXXBaseOrMemberInitializer *Member) {
1956  if (!Member->isAnyMemberInitializer())
1957    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1958
1959  // For fields injected into the class via declaration of an anonymous union,
1960  // use its anonymous union class declaration as the unique key.
1961  FieldDecl *Field = Member->getAnyMember();
1962
1963  // If the field is a member of an anonymous struct or union, our key
1964  // is the anonymous record decl that's a direct child of the class.
1965  RecordDecl *RD = Field->getParent();
1966  if (RD->isAnonymousStructOrUnion()) {
1967    while (true) {
1968      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1969      if (Parent->isAnonymousStructOrUnion())
1970        RD = Parent;
1971      else
1972        break;
1973    }
1974
1975    return static_cast<void *>(RD);
1976  }
1977
1978  return static_cast<void *>(Field);
1979}
1980
1981static void
1982DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1983                                  const CXXConstructorDecl *Constructor,
1984                                  CXXBaseOrMemberInitializer **Inits,
1985                                  unsigned NumInits) {
1986  if (Constructor->getDeclContext()->isDependentContext())
1987    return;
1988
1989  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1990        == Diagnostic::Ignored)
1991    return;
1992
1993  // Build the list of bases and members in the order that they'll
1994  // actually be initialized.  The explicit initializers should be in
1995  // this same order but may be missing things.
1996  llvm::SmallVector<const void*, 32> IdealInitKeys;
1997
1998  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1999
2000  // 1. Virtual bases.
2001  for (CXXRecordDecl::base_class_const_iterator VBase =
2002       ClassDecl->vbases_begin(),
2003       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2004    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2005
2006  // 2. Non-virtual bases.
2007  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2008       E = ClassDecl->bases_end(); Base != E; ++Base) {
2009    if (Base->isVirtual())
2010      continue;
2011    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2012  }
2013
2014  // 3. Direct fields.
2015  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2016       E = ClassDecl->field_end(); Field != E; ++Field)
2017    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2018
2019  unsigned NumIdealInits = IdealInitKeys.size();
2020  unsigned IdealIndex = 0;
2021
2022  CXXBaseOrMemberInitializer *PrevInit = 0;
2023  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2024    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2025    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2026
2027    // Scan forward to try to find this initializer in the idealized
2028    // initializers list.
2029    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2030      if (InitKey == IdealInitKeys[IdealIndex])
2031        break;
2032
2033    // If we didn't find this initializer, it must be because we
2034    // scanned past it on a previous iteration.  That can only
2035    // happen if we're out of order;  emit a warning.
2036    if (IdealIndex == NumIdealInits && PrevInit) {
2037      Sema::SemaDiagnosticBuilder D =
2038        SemaRef.Diag(PrevInit->getSourceLocation(),
2039                     diag::warn_initializer_out_of_order);
2040
2041      if (PrevInit->isAnyMemberInitializer())
2042        D << 0 << PrevInit->getAnyMember()->getDeclName();
2043      else
2044        D << 1 << PrevInit->getBaseClassInfo()->getType();
2045
2046      if (Init->isAnyMemberInitializer())
2047        D << 0 << Init->getAnyMember()->getDeclName();
2048      else
2049        D << 1 << Init->getBaseClassInfo()->getType();
2050
2051      // Move back to the initializer's location in the ideal list.
2052      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2053        if (InitKey == IdealInitKeys[IdealIndex])
2054          break;
2055
2056      assert(IdealIndex != NumIdealInits &&
2057             "initializer not found in initializer list");
2058    }
2059
2060    PrevInit = Init;
2061  }
2062}
2063
2064namespace {
2065bool CheckRedundantInit(Sema &S,
2066                        CXXBaseOrMemberInitializer *Init,
2067                        CXXBaseOrMemberInitializer *&PrevInit) {
2068  if (!PrevInit) {
2069    PrevInit = Init;
2070    return false;
2071  }
2072
2073  if (FieldDecl *Field = Init->getMember())
2074    S.Diag(Init->getSourceLocation(),
2075           diag::err_multiple_mem_initialization)
2076      << Field->getDeclName()
2077      << Init->getSourceRange();
2078  else {
2079    Type *BaseClass = Init->getBaseClass();
2080    assert(BaseClass && "neither field nor base");
2081    S.Diag(Init->getSourceLocation(),
2082           diag::err_multiple_base_initialization)
2083      << QualType(BaseClass, 0)
2084      << Init->getSourceRange();
2085  }
2086  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2087    << 0 << PrevInit->getSourceRange();
2088
2089  return true;
2090}
2091
2092typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2093typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2094
2095bool CheckRedundantUnionInit(Sema &S,
2096                             CXXBaseOrMemberInitializer *Init,
2097                             RedundantUnionMap &Unions) {
2098  FieldDecl *Field = Init->getAnyMember();
2099  RecordDecl *Parent = Field->getParent();
2100  if (!Parent->isAnonymousStructOrUnion())
2101    return false;
2102
2103  NamedDecl *Child = Field;
2104  do {
2105    if (Parent->isUnion()) {
2106      UnionEntry &En = Unions[Parent];
2107      if (En.first && En.first != Child) {
2108        S.Diag(Init->getSourceLocation(),
2109               diag::err_multiple_mem_union_initialization)
2110          << Field->getDeclName()
2111          << Init->getSourceRange();
2112        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2113          << 0 << En.second->getSourceRange();
2114        return true;
2115      } else if (!En.first) {
2116        En.first = Child;
2117        En.second = Init;
2118      }
2119    }
2120
2121    Child = Parent;
2122    Parent = cast<RecordDecl>(Parent->getDeclContext());
2123  } while (Parent->isAnonymousStructOrUnion());
2124
2125  return false;
2126}
2127}
2128
2129/// ActOnMemInitializers - Handle the member initializers for a constructor.
2130void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2131                                SourceLocation ColonLoc,
2132                                MemInitTy **meminits, unsigned NumMemInits,
2133                                bool AnyErrors) {
2134  if (!ConstructorDecl)
2135    return;
2136
2137  AdjustDeclIfTemplate(ConstructorDecl);
2138
2139  CXXConstructorDecl *Constructor
2140    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2141
2142  if (!Constructor) {
2143    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2144    return;
2145  }
2146
2147  CXXBaseOrMemberInitializer **MemInits =
2148    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2149
2150  // Mapping for the duplicate initializers check.
2151  // For member initializers, this is keyed with a FieldDecl*.
2152  // For base initializers, this is keyed with a Type*.
2153  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2154
2155  // Mapping for the inconsistent anonymous-union initializers check.
2156  RedundantUnionMap MemberUnions;
2157
2158  bool HadError = false;
2159  for (unsigned i = 0; i < NumMemInits; i++) {
2160    CXXBaseOrMemberInitializer *Init = MemInits[i];
2161
2162    // Set the source order index.
2163    Init->setSourceOrder(i);
2164
2165    if (Init->isAnyMemberInitializer()) {
2166      FieldDecl *Field = Init->getAnyMember();
2167      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2168          CheckRedundantUnionInit(*this, Init, MemberUnions))
2169        HadError = true;
2170    } else {
2171      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2172      if (CheckRedundantInit(*this, Init, Members[Key]))
2173        HadError = true;
2174    }
2175  }
2176
2177  if (HadError)
2178    return;
2179
2180  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2181
2182  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2183}
2184
2185void
2186Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2187                                             CXXRecordDecl *ClassDecl) {
2188  // Ignore dependent contexts.
2189  if (ClassDecl->isDependentContext())
2190    return;
2191
2192  // FIXME: all the access-control diagnostics are positioned on the
2193  // field/base declaration.  That's probably good; that said, the
2194  // user might reasonably want to know why the destructor is being
2195  // emitted, and we currently don't say.
2196
2197  // Non-static data members.
2198  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2199       E = ClassDecl->field_end(); I != E; ++I) {
2200    FieldDecl *Field = *I;
2201    if (Field->isInvalidDecl())
2202      continue;
2203    QualType FieldType = Context.getBaseElementType(Field->getType());
2204
2205    const RecordType* RT = FieldType->getAs<RecordType>();
2206    if (!RT)
2207      continue;
2208
2209    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2210    if (FieldClassDecl->hasTrivialDestructor())
2211      continue;
2212
2213    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2214    CheckDestructorAccess(Field->getLocation(), Dtor,
2215                          PDiag(diag::err_access_dtor_field)
2216                            << Field->getDeclName()
2217                            << FieldType);
2218
2219    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2220  }
2221
2222  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2223
2224  // Bases.
2225  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2226       E = ClassDecl->bases_end(); Base != E; ++Base) {
2227    // Bases are always records in a well-formed non-dependent class.
2228    const RecordType *RT = Base->getType()->getAs<RecordType>();
2229
2230    // Remember direct virtual bases.
2231    if (Base->isVirtual())
2232      DirectVirtualBases.insert(RT);
2233
2234    // Ignore trivial destructors.
2235    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2236    if (BaseClassDecl->hasTrivialDestructor())
2237      continue;
2238
2239    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2240
2241    // FIXME: caret should be on the start of the class name
2242    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2243                          PDiag(diag::err_access_dtor_base)
2244                            << Base->getType()
2245                            << Base->getSourceRange());
2246
2247    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2248  }
2249
2250  // Virtual bases.
2251  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2252       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2253
2254    // Bases are always records in a well-formed non-dependent class.
2255    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2256
2257    // Ignore direct virtual bases.
2258    if (DirectVirtualBases.count(RT))
2259      continue;
2260
2261    // Ignore trivial destructors.
2262    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2263    if (BaseClassDecl->hasTrivialDestructor())
2264      continue;
2265
2266    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2267    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2268                          PDiag(diag::err_access_dtor_vbase)
2269                            << VBase->getType());
2270
2271    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2272  }
2273}
2274
2275void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2276  if (!CDtorDecl)
2277    return;
2278
2279  if (CXXConstructorDecl *Constructor
2280      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2281    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2282}
2283
2284bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2285                                  unsigned DiagID, AbstractDiagSelID SelID) {
2286  if (SelID == -1)
2287    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2288  else
2289    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2290}
2291
2292bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2293                                  const PartialDiagnostic &PD) {
2294  if (!getLangOptions().CPlusPlus)
2295    return false;
2296
2297  if (const ArrayType *AT = Context.getAsArrayType(T))
2298    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2299
2300  if (const PointerType *PT = T->getAs<PointerType>()) {
2301    // Find the innermost pointer type.
2302    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2303      PT = T;
2304
2305    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2306      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2307  }
2308
2309  const RecordType *RT = T->getAs<RecordType>();
2310  if (!RT)
2311    return false;
2312
2313  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2314
2315  // We can't answer whether something is abstract until it has a
2316  // definition.  If it's currently being defined, we'll walk back
2317  // over all the declarations when we have a full definition.
2318  const CXXRecordDecl *Def = RD->getDefinition();
2319  if (!Def || Def->isBeingDefined())
2320    return false;
2321
2322  if (!RD->isAbstract())
2323    return false;
2324
2325  Diag(Loc, PD) << RD->getDeclName();
2326  DiagnoseAbstractType(RD);
2327
2328  return true;
2329}
2330
2331void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2332  // Check if we've already emitted the list of pure virtual functions
2333  // for this class.
2334  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2335    return;
2336
2337  CXXFinalOverriderMap FinalOverriders;
2338  RD->getFinalOverriders(FinalOverriders);
2339
2340  // Keep a set of seen pure methods so we won't diagnose the same method
2341  // more than once.
2342  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2343
2344  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2345                                   MEnd = FinalOverriders.end();
2346       M != MEnd;
2347       ++M) {
2348    for (OverridingMethods::iterator SO = M->second.begin(),
2349                                  SOEnd = M->second.end();
2350         SO != SOEnd; ++SO) {
2351      // C++ [class.abstract]p4:
2352      //   A class is abstract if it contains or inherits at least one
2353      //   pure virtual function for which the final overrider is pure
2354      //   virtual.
2355
2356      //
2357      if (SO->second.size() != 1)
2358        continue;
2359
2360      if (!SO->second.front().Method->isPure())
2361        continue;
2362
2363      if (!SeenPureMethods.insert(SO->second.front().Method))
2364        continue;
2365
2366      Diag(SO->second.front().Method->getLocation(),
2367           diag::note_pure_virtual_function)
2368        << SO->second.front().Method->getDeclName();
2369    }
2370  }
2371
2372  if (!PureVirtualClassDiagSet)
2373    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2374  PureVirtualClassDiagSet->insert(RD);
2375}
2376
2377namespace {
2378struct AbstractUsageInfo {
2379  Sema &S;
2380  CXXRecordDecl *Record;
2381  CanQualType AbstractType;
2382  bool Invalid;
2383
2384  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2385    : S(S), Record(Record),
2386      AbstractType(S.Context.getCanonicalType(
2387                   S.Context.getTypeDeclType(Record))),
2388      Invalid(false) {}
2389
2390  void DiagnoseAbstractType() {
2391    if (Invalid) return;
2392    S.DiagnoseAbstractType(Record);
2393    Invalid = true;
2394  }
2395
2396  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2397};
2398
2399struct CheckAbstractUsage {
2400  AbstractUsageInfo &Info;
2401  const NamedDecl *Ctx;
2402
2403  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2404    : Info(Info), Ctx(Ctx) {}
2405
2406  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2407    switch (TL.getTypeLocClass()) {
2408#define ABSTRACT_TYPELOC(CLASS, PARENT)
2409#define TYPELOC(CLASS, PARENT) \
2410    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2411#include "clang/AST/TypeLocNodes.def"
2412    }
2413  }
2414
2415  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2416    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2417    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2418      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2419      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2420    }
2421  }
2422
2423  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2424    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2425  }
2426
2427  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2428    // Visit the type parameters from a permissive context.
2429    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2430      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2431      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2432        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2433          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2434      // TODO: other template argument types?
2435    }
2436  }
2437
2438  // Visit pointee types from a permissive context.
2439#define CheckPolymorphic(Type) \
2440  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2441    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2442  }
2443  CheckPolymorphic(PointerTypeLoc)
2444  CheckPolymorphic(ReferenceTypeLoc)
2445  CheckPolymorphic(MemberPointerTypeLoc)
2446  CheckPolymorphic(BlockPointerTypeLoc)
2447
2448  /// Handle all the types we haven't given a more specific
2449  /// implementation for above.
2450  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2451    // Every other kind of type that we haven't called out already
2452    // that has an inner type is either (1) sugar or (2) contains that
2453    // inner type in some way as a subobject.
2454    if (TypeLoc Next = TL.getNextTypeLoc())
2455      return Visit(Next, Sel);
2456
2457    // If there's no inner type and we're in a permissive context,
2458    // don't diagnose.
2459    if (Sel == Sema::AbstractNone) return;
2460
2461    // Check whether the type matches the abstract type.
2462    QualType T = TL.getType();
2463    if (T->isArrayType()) {
2464      Sel = Sema::AbstractArrayType;
2465      T = Info.S.Context.getBaseElementType(T);
2466    }
2467    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2468    if (CT != Info.AbstractType) return;
2469
2470    // It matched; do some magic.
2471    if (Sel == Sema::AbstractArrayType) {
2472      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2473        << T << TL.getSourceRange();
2474    } else {
2475      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2476        << Sel << T << TL.getSourceRange();
2477    }
2478    Info.DiagnoseAbstractType();
2479  }
2480};
2481
2482void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2483                                  Sema::AbstractDiagSelID Sel) {
2484  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2485}
2486
2487}
2488
2489/// Check for invalid uses of an abstract type in a method declaration.
2490static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2491                                    CXXMethodDecl *MD) {
2492  // No need to do the check on definitions, which require that
2493  // the return/param types be complete.
2494  if (MD->isThisDeclarationADefinition())
2495    return;
2496
2497  // For safety's sake, just ignore it if we don't have type source
2498  // information.  This should never happen for non-implicit methods,
2499  // but...
2500  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2501    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2502}
2503
2504/// Check for invalid uses of an abstract type within a class definition.
2505static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2506                                    CXXRecordDecl *RD) {
2507  for (CXXRecordDecl::decl_iterator
2508         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2509    Decl *D = *I;
2510    if (D->isImplicit()) continue;
2511
2512    // Methods and method templates.
2513    if (isa<CXXMethodDecl>(D)) {
2514      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2515    } else if (isa<FunctionTemplateDecl>(D)) {
2516      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2517      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2518
2519    // Fields and static variables.
2520    } else if (isa<FieldDecl>(D)) {
2521      FieldDecl *FD = cast<FieldDecl>(D);
2522      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2523        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2524    } else if (isa<VarDecl>(D)) {
2525      VarDecl *VD = cast<VarDecl>(D);
2526      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2527        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2528
2529    // Nested classes and class templates.
2530    } else if (isa<CXXRecordDecl>(D)) {
2531      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2532    } else if (isa<ClassTemplateDecl>(D)) {
2533      CheckAbstractClassUsage(Info,
2534                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2535    }
2536  }
2537}
2538
2539/// \brief Perform semantic checks on a class definition that has been
2540/// completing, introducing implicitly-declared members, checking for
2541/// abstract types, etc.
2542void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2543  if (!Record)
2544    return;
2545
2546  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2547    AbstractUsageInfo Info(*this, Record);
2548    CheckAbstractClassUsage(Info, Record);
2549  }
2550
2551  // If this is not an aggregate type and has no user-declared constructor,
2552  // complain about any non-static data members of reference or const scalar
2553  // type, since they will never get initializers.
2554  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2555      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2556    bool Complained = false;
2557    for (RecordDecl::field_iterator F = Record->field_begin(),
2558                                 FEnd = Record->field_end();
2559         F != FEnd; ++F) {
2560      if (F->getType()->isReferenceType() ||
2561          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2562        if (!Complained) {
2563          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2564            << Record->getTagKind() << Record;
2565          Complained = true;
2566        }
2567
2568        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2569          << F->getType()->isReferenceType()
2570          << F->getDeclName();
2571      }
2572    }
2573  }
2574
2575  if (Record->isDynamicClass())
2576    DynamicClasses.push_back(Record);
2577
2578  if (Record->getIdentifier()) {
2579    // C++ [class.mem]p13:
2580    //   If T is the name of a class, then each of the following shall have a
2581    //   name different from T:
2582    //     - every member of every anonymous union that is a member of class T.
2583    //
2584    // C++ [class.mem]p14:
2585    //   In addition, if class T has a user-declared constructor (12.1), every
2586    //   non-static data member of class T shall have a name different from T.
2587    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2588         R.first != R.second; ++R.first) {
2589      NamedDecl *D = *R.first;
2590      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2591          isa<IndirectFieldDecl>(D)) {
2592        Diag(D->getLocation(), diag::err_member_name_of_class)
2593          << D->getDeclName();
2594        break;
2595      }
2596    }
2597  }
2598}
2599
2600void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2601                                             Decl *TagDecl,
2602                                             SourceLocation LBrac,
2603                                             SourceLocation RBrac,
2604                                             AttributeList *AttrList) {
2605  if (!TagDecl)
2606    return;
2607
2608  AdjustDeclIfTemplate(TagDecl);
2609
2610  ActOnFields(S, RLoc, TagDecl,
2611              // strict aliasing violation!
2612              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2613              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2614
2615  CheckCompletedCXXClass(
2616                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2617}
2618
2619namespace {
2620  /// \brief Helper class that collects exception specifications for
2621  /// implicitly-declared special member functions.
2622  class ImplicitExceptionSpecification {
2623    ASTContext &Context;
2624    bool AllowsAllExceptions;
2625    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2626    llvm::SmallVector<QualType, 4> Exceptions;
2627
2628  public:
2629    explicit ImplicitExceptionSpecification(ASTContext &Context)
2630      : Context(Context), AllowsAllExceptions(false) { }
2631
2632    /// \brief Whether the special member function should have any
2633    /// exception specification at all.
2634    bool hasExceptionSpecification() const {
2635      return !AllowsAllExceptions;
2636    }
2637
2638    /// \brief Whether the special member function should have a
2639    /// throw(...) exception specification (a Microsoft extension).
2640    bool hasAnyExceptionSpecification() const {
2641      return false;
2642    }
2643
2644    /// \brief The number of exceptions in the exception specification.
2645    unsigned size() const { return Exceptions.size(); }
2646
2647    /// \brief The set of exceptions in the exception specification.
2648    const QualType *data() const { return Exceptions.data(); }
2649
2650    /// \brief Note that
2651    void CalledDecl(CXXMethodDecl *Method) {
2652      // If we already know that we allow all exceptions, do nothing.
2653      if (AllowsAllExceptions || !Method)
2654        return;
2655
2656      const FunctionProtoType *Proto
2657        = Method->getType()->getAs<FunctionProtoType>();
2658
2659      // If this function can throw any exceptions, make a note of that.
2660      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2661        AllowsAllExceptions = true;
2662        ExceptionsSeen.clear();
2663        Exceptions.clear();
2664        return;
2665      }
2666
2667      // Record the exceptions in this function's exception specification.
2668      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2669                                              EEnd = Proto->exception_end();
2670           E != EEnd; ++E)
2671        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2672          Exceptions.push_back(*E);
2673    }
2674  };
2675}
2676
2677
2678/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2679/// special functions, such as the default constructor, copy
2680/// constructor, or destructor, to the given C++ class (C++
2681/// [special]p1).  This routine can only be executed just before the
2682/// definition of the class is complete.
2683void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2684  if (!ClassDecl->hasUserDeclaredConstructor())
2685    ++ASTContext::NumImplicitDefaultConstructors;
2686
2687  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2688    ++ASTContext::NumImplicitCopyConstructors;
2689
2690  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2691    ++ASTContext::NumImplicitCopyAssignmentOperators;
2692
2693    // If we have a dynamic class, then the copy assignment operator may be
2694    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2695    // it shows up in the right place in the vtable and that we diagnose
2696    // problems with the implicit exception specification.
2697    if (ClassDecl->isDynamicClass())
2698      DeclareImplicitCopyAssignment(ClassDecl);
2699  }
2700
2701  if (!ClassDecl->hasUserDeclaredDestructor()) {
2702    ++ASTContext::NumImplicitDestructors;
2703
2704    // If we have a dynamic class, then the destructor may be virtual, so we
2705    // have to declare the destructor immediately. This ensures that, e.g., it
2706    // shows up in the right place in the vtable and that we diagnose problems
2707    // with the implicit exception specification.
2708    if (ClassDecl->isDynamicClass())
2709      DeclareImplicitDestructor(ClassDecl);
2710  }
2711}
2712
2713void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
2714  if (!D)
2715    return;
2716
2717  TemplateParameterList *Params = 0;
2718  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2719    Params = Template->getTemplateParameters();
2720  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2721           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2722    Params = PartialSpec->getTemplateParameters();
2723  else
2724    return;
2725
2726  for (TemplateParameterList::iterator Param = Params->begin(),
2727                                    ParamEnd = Params->end();
2728       Param != ParamEnd; ++Param) {
2729    NamedDecl *Named = cast<NamedDecl>(*Param);
2730    if (Named->getDeclName()) {
2731      S->AddDecl(Named);
2732      IdResolver.AddDecl(Named);
2733    }
2734  }
2735}
2736
2737void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2738  if (!RecordD) return;
2739  AdjustDeclIfTemplate(RecordD);
2740  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
2741  PushDeclContext(S, Record);
2742}
2743
2744void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2745  if (!RecordD) return;
2746  PopDeclContext();
2747}
2748
2749/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2750/// parsing a top-level (non-nested) C++ class, and we are now
2751/// parsing those parts of the given Method declaration that could
2752/// not be parsed earlier (C++ [class.mem]p2), such as default
2753/// arguments. This action should enter the scope of the given
2754/// Method declaration as if we had just parsed the qualified method
2755/// name. However, it should not bring the parameters into scope;
2756/// that will be performed by ActOnDelayedCXXMethodParameter.
2757void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2758}
2759
2760/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2761/// C++ method declaration. We're (re-)introducing the given
2762/// function parameter into scope for use in parsing later parts of
2763/// the method declaration. For example, we could see an
2764/// ActOnParamDefaultArgument event for this parameter.
2765void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
2766  if (!ParamD)
2767    return;
2768
2769  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
2770
2771  // If this parameter has an unparsed default argument, clear it out
2772  // to make way for the parsed default argument.
2773  if (Param->hasUnparsedDefaultArg())
2774    Param->setDefaultArg(0);
2775
2776  S->AddDecl(Param);
2777  if (Param->getDeclName())
2778    IdResolver.AddDecl(Param);
2779}
2780
2781/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2782/// processing the delayed method declaration for Method. The method
2783/// declaration is now considered finished. There may be a separate
2784/// ActOnStartOfFunctionDef action later (not necessarily
2785/// immediately!) for this method, if it was also defined inside the
2786/// class body.
2787void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2788  if (!MethodD)
2789    return;
2790
2791  AdjustDeclIfTemplate(MethodD);
2792
2793  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
2794
2795  // Now that we have our default arguments, check the constructor
2796  // again. It could produce additional diagnostics or affect whether
2797  // the class has implicitly-declared destructors, among other
2798  // things.
2799  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2800    CheckConstructor(Constructor);
2801
2802  // Check the default arguments, which we may have added.
2803  if (!Method->isInvalidDecl())
2804    CheckCXXDefaultArguments(Method);
2805}
2806
2807/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2808/// the well-formedness of the constructor declarator @p D with type @p
2809/// R. If there are any errors in the declarator, this routine will
2810/// emit diagnostics and set the invalid bit to true.  In any case, the type
2811/// will be updated to reflect a well-formed type for the constructor and
2812/// returned.
2813QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2814                                          StorageClass &SC) {
2815  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2816
2817  // C++ [class.ctor]p3:
2818  //   A constructor shall not be virtual (10.3) or static (9.4). A
2819  //   constructor can be invoked for a const, volatile or const
2820  //   volatile object. A constructor shall not be declared const,
2821  //   volatile, or const volatile (9.3.2).
2822  if (isVirtual) {
2823    if (!D.isInvalidType())
2824      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2825        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2826        << SourceRange(D.getIdentifierLoc());
2827    D.setInvalidType();
2828  }
2829  if (SC == SC_Static) {
2830    if (!D.isInvalidType())
2831      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2832        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2833        << SourceRange(D.getIdentifierLoc());
2834    D.setInvalidType();
2835    SC = SC_None;
2836  }
2837
2838  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2839  if (FTI.TypeQuals != 0) {
2840    if (FTI.TypeQuals & Qualifiers::Const)
2841      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2842        << "const" << SourceRange(D.getIdentifierLoc());
2843    if (FTI.TypeQuals & Qualifiers::Volatile)
2844      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2845        << "volatile" << SourceRange(D.getIdentifierLoc());
2846    if (FTI.TypeQuals & Qualifiers::Restrict)
2847      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2848        << "restrict" << SourceRange(D.getIdentifierLoc());
2849  }
2850
2851  // Rebuild the function type "R" without any type qualifiers (in
2852  // case any of the errors above fired) and with "void" as the
2853  // return type, since constructors don't have return types.
2854  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2855  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2856                                 Proto->getNumArgs(),
2857                                 Proto->isVariadic(), 0,
2858                                 Proto->hasExceptionSpec(),
2859                                 Proto->hasAnyExceptionSpec(),
2860                                 Proto->getNumExceptions(),
2861                                 Proto->exception_begin(),
2862                                 Proto->getExtInfo());
2863}
2864
2865/// CheckConstructor - Checks a fully-formed constructor for
2866/// well-formedness, issuing any diagnostics required. Returns true if
2867/// the constructor declarator is invalid.
2868void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2869  CXXRecordDecl *ClassDecl
2870    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2871  if (!ClassDecl)
2872    return Constructor->setInvalidDecl();
2873
2874  // C++ [class.copy]p3:
2875  //   A declaration of a constructor for a class X is ill-formed if
2876  //   its first parameter is of type (optionally cv-qualified) X and
2877  //   either there are no other parameters or else all other
2878  //   parameters have default arguments.
2879  if (!Constructor->isInvalidDecl() &&
2880      ((Constructor->getNumParams() == 1) ||
2881       (Constructor->getNumParams() > 1 &&
2882        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2883      Constructor->getTemplateSpecializationKind()
2884                                              != TSK_ImplicitInstantiation) {
2885    QualType ParamType = Constructor->getParamDecl(0)->getType();
2886    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2887    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2888      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2889      const char *ConstRef
2890        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2891                                                        : " const &";
2892      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2893        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2894
2895      // FIXME: Rather that making the constructor invalid, we should endeavor
2896      // to fix the type.
2897      Constructor->setInvalidDecl();
2898    }
2899  }
2900}
2901
2902/// CheckDestructor - Checks a fully-formed destructor definition for
2903/// well-formedness, issuing any diagnostics required.  Returns true
2904/// on error.
2905bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2906  CXXRecordDecl *RD = Destructor->getParent();
2907
2908  if (Destructor->isVirtual()) {
2909    SourceLocation Loc;
2910
2911    if (!Destructor->isImplicit())
2912      Loc = Destructor->getLocation();
2913    else
2914      Loc = RD->getLocation();
2915
2916    // If we have a virtual destructor, look up the deallocation function
2917    FunctionDecl *OperatorDelete = 0;
2918    DeclarationName Name =
2919    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2920    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2921      return true;
2922
2923    MarkDeclarationReferenced(Loc, OperatorDelete);
2924
2925    Destructor->setOperatorDelete(OperatorDelete);
2926  }
2927
2928  return false;
2929}
2930
2931static inline bool
2932FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2933  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2934          FTI.ArgInfo[0].Param &&
2935          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
2936}
2937
2938/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2939/// the well-formednes of the destructor declarator @p D with type @p
2940/// R. If there are any errors in the declarator, this routine will
2941/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2942/// will be updated to reflect a well-formed type for the destructor and
2943/// returned.
2944QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
2945                                         StorageClass& SC) {
2946  // C++ [class.dtor]p1:
2947  //   [...] A typedef-name that names a class is a class-name
2948  //   (7.1.3); however, a typedef-name that names a class shall not
2949  //   be used as the identifier in the declarator for a destructor
2950  //   declaration.
2951  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2952  if (isa<TypedefType>(DeclaratorType))
2953    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2954      << DeclaratorType;
2955
2956  // C++ [class.dtor]p2:
2957  //   A destructor is used to destroy objects of its class type. A
2958  //   destructor takes no parameters, and no return type can be
2959  //   specified for it (not even void). The address of a destructor
2960  //   shall not be taken. A destructor shall not be static. A
2961  //   destructor can be invoked for a const, volatile or const
2962  //   volatile object. A destructor shall not be declared const,
2963  //   volatile or const volatile (9.3.2).
2964  if (SC == SC_Static) {
2965    if (!D.isInvalidType())
2966      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2967        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2968        << SourceRange(D.getIdentifierLoc())
2969        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2970
2971    SC = SC_None;
2972  }
2973  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2974    // Destructors don't have return types, but the parser will
2975    // happily parse something like:
2976    //
2977    //   class X {
2978    //     float ~X();
2979    //   };
2980    //
2981    // The return type will be eliminated later.
2982    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2983      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2984      << SourceRange(D.getIdentifierLoc());
2985  }
2986
2987  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2988  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2989    if (FTI.TypeQuals & Qualifiers::Const)
2990      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2991        << "const" << SourceRange(D.getIdentifierLoc());
2992    if (FTI.TypeQuals & Qualifiers::Volatile)
2993      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2994        << "volatile" << SourceRange(D.getIdentifierLoc());
2995    if (FTI.TypeQuals & Qualifiers::Restrict)
2996      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2997        << "restrict" << SourceRange(D.getIdentifierLoc());
2998    D.setInvalidType();
2999  }
3000
3001  // Make sure we don't have any parameters.
3002  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3003    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3004
3005    // Delete the parameters.
3006    FTI.freeArgs();
3007    D.setInvalidType();
3008  }
3009
3010  // Make sure the destructor isn't variadic.
3011  if (FTI.isVariadic) {
3012    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3013    D.setInvalidType();
3014  }
3015
3016  // Rebuild the function type "R" without any type qualifiers or
3017  // parameters (in case any of the errors above fired) and with
3018  // "void" as the return type, since destructors don't have return
3019  // types.
3020  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3021  if (!Proto)
3022    return QualType();
3023
3024  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3025                                 Proto->hasExceptionSpec(),
3026                                 Proto->hasAnyExceptionSpec(),
3027                                 Proto->getNumExceptions(),
3028                                 Proto->exception_begin(),
3029                                 Proto->getExtInfo());
3030}
3031
3032/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3033/// well-formednes of the conversion function declarator @p D with
3034/// type @p R. If there are any errors in the declarator, this routine
3035/// will emit diagnostics and return true. Otherwise, it will return
3036/// false. Either way, the type @p R will be updated to reflect a
3037/// well-formed type for the conversion operator.
3038void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3039                                     StorageClass& SC) {
3040  // C++ [class.conv.fct]p1:
3041  //   Neither parameter types nor return type can be specified. The
3042  //   type of a conversion function (8.3.5) is "function taking no
3043  //   parameter returning conversion-type-id."
3044  if (SC == SC_Static) {
3045    if (!D.isInvalidType())
3046      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3047        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3048        << SourceRange(D.getIdentifierLoc());
3049    D.setInvalidType();
3050    SC = SC_None;
3051  }
3052
3053  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3054
3055  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3056    // Conversion functions don't have return types, but the parser will
3057    // happily parse something like:
3058    //
3059    //   class X {
3060    //     float operator bool();
3061    //   };
3062    //
3063    // The return type will be changed later anyway.
3064    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3065      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3066      << SourceRange(D.getIdentifierLoc());
3067    D.setInvalidType();
3068  }
3069
3070  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3071
3072  // Make sure we don't have any parameters.
3073  if (Proto->getNumArgs() > 0) {
3074    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3075
3076    // Delete the parameters.
3077    D.getTypeObject(0).Fun.freeArgs();
3078    D.setInvalidType();
3079  } else if (Proto->isVariadic()) {
3080    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3081    D.setInvalidType();
3082  }
3083
3084  // Diagnose "&operator bool()" and other such nonsense.  This
3085  // is actually a gcc extension which we don't support.
3086  if (Proto->getResultType() != ConvType) {
3087    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3088      << Proto->getResultType();
3089    D.setInvalidType();
3090    ConvType = Proto->getResultType();
3091  }
3092
3093  // C++ [class.conv.fct]p4:
3094  //   The conversion-type-id shall not represent a function type nor
3095  //   an array type.
3096  if (ConvType->isArrayType()) {
3097    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3098    ConvType = Context.getPointerType(ConvType);
3099    D.setInvalidType();
3100  } else if (ConvType->isFunctionType()) {
3101    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3102    ConvType = Context.getPointerType(ConvType);
3103    D.setInvalidType();
3104  }
3105
3106  // Rebuild the function type "R" without any parameters (in case any
3107  // of the errors above fired) and with the conversion type as the
3108  // return type.
3109  if (D.isInvalidType()) {
3110    R = Context.getFunctionType(ConvType, 0, 0, false,
3111                                Proto->getTypeQuals(),
3112                                Proto->hasExceptionSpec(),
3113                                Proto->hasAnyExceptionSpec(),
3114                                Proto->getNumExceptions(),
3115                                Proto->exception_begin(),
3116                                Proto->getExtInfo());
3117  }
3118
3119  // C++0x explicit conversion operators.
3120  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3121    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3122         diag::warn_explicit_conversion_functions)
3123      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3124}
3125
3126/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3127/// the declaration of the given C++ conversion function. This routine
3128/// is responsible for recording the conversion function in the C++
3129/// class, if possible.
3130Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3131  assert(Conversion && "Expected to receive a conversion function declaration");
3132
3133  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3134
3135  // Make sure we aren't redeclaring the conversion function.
3136  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3137
3138  // C++ [class.conv.fct]p1:
3139  //   [...] A conversion function is never used to convert a
3140  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3141  //   same object type (or a reference to it), to a (possibly
3142  //   cv-qualified) base class of that type (or a reference to it),
3143  //   or to (possibly cv-qualified) void.
3144  // FIXME: Suppress this warning if the conversion function ends up being a
3145  // virtual function that overrides a virtual function in a base class.
3146  QualType ClassType
3147    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3148  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3149    ConvType = ConvTypeRef->getPointeeType();
3150  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3151      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3152    /* Suppress diagnostics for instantiations. */;
3153  else if (ConvType->isRecordType()) {
3154    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3155    if (ConvType == ClassType)
3156      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3157        << ClassType;
3158    else if (IsDerivedFrom(ClassType, ConvType))
3159      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3160        <<  ClassType << ConvType;
3161  } else if (ConvType->isVoidType()) {
3162    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3163      << ClassType << ConvType;
3164  }
3165
3166  if (FunctionTemplateDecl *ConversionTemplate
3167                                = Conversion->getDescribedFunctionTemplate())
3168    return ConversionTemplate;
3169
3170  return Conversion;
3171}
3172
3173//===----------------------------------------------------------------------===//
3174// Namespace Handling
3175//===----------------------------------------------------------------------===//
3176
3177
3178
3179/// ActOnStartNamespaceDef - This is called at the start of a namespace
3180/// definition.
3181Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3182                                   SourceLocation InlineLoc,
3183                                   SourceLocation IdentLoc,
3184                                   IdentifierInfo *II,
3185                                   SourceLocation LBrace,
3186                                   AttributeList *AttrList) {
3187  // anonymous namespace starts at its left brace
3188  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3189    (II ? IdentLoc : LBrace) , II);
3190  Namespc->setLBracLoc(LBrace);
3191  Namespc->setInline(InlineLoc.isValid());
3192
3193  Scope *DeclRegionScope = NamespcScope->getParent();
3194
3195  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3196
3197  if (const VisibilityAttr *attr = Namespc->getAttr<VisibilityAttr>())
3198    PushVisibilityAttr(attr);
3199
3200  if (II) {
3201    // C++ [namespace.def]p2:
3202    //   The identifier in an original-namespace-definition shall not
3203    //   have been previously defined in the declarative region in
3204    //   which the original-namespace-definition appears. The
3205    //   identifier in an original-namespace-definition is the name of
3206    //   the namespace. Subsequently in that declarative region, it is
3207    //   treated as an original-namespace-name.
3208    //
3209    // Since namespace names are unique in their scope, and we don't
3210    // look through using directives, just
3211    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3212    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3213
3214    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3215      // This is an extended namespace definition.
3216      if (Namespc->isInline() != OrigNS->isInline()) {
3217        // inline-ness must match
3218        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3219          << Namespc->isInline();
3220        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3221        Namespc->setInvalidDecl();
3222        // Recover by ignoring the new namespace's inline status.
3223        Namespc->setInline(OrigNS->isInline());
3224      }
3225
3226      // Attach this namespace decl to the chain of extended namespace
3227      // definitions.
3228      OrigNS->setNextNamespace(Namespc);
3229      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3230
3231      // Remove the previous declaration from the scope.
3232      if (DeclRegionScope->isDeclScope(OrigNS)) {
3233        IdResolver.RemoveDecl(OrigNS);
3234        DeclRegionScope->RemoveDecl(OrigNS);
3235      }
3236    } else if (PrevDecl) {
3237      // This is an invalid name redefinition.
3238      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3239       << Namespc->getDeclName();
3240      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3241      Namespc->setInvalidDecl();
3242      // Continue on to push Namespc as current DeclContext and return it.
3243    } else if (II->isStr("std") &&
3244               CurContext->getRedeclContext()->isTranslationUnit()) {
3245      // This is the first "real" definition of the namespace "std", so update
3246      // our cache of the "std" namespace to point at this definition.
3247      if (NamespaceDecl *StdNS = getStdNamespace()) {
3248        // We had already defined a dummy namespace "std". Link this new
3249        // namespace definition to the dummy namespace "std".
3250        StdNS->setNextNamespace(Namespc);
3251        StdNS->setLocation(IdentLoc);
3252        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3253      }
3254
3255      // Make our StdNamespace cache point at the first real definition of the
3256      // "std" namespace.
3257      StdNamespace = Namespc;
3258    }
3259
3260    PushOnScopeChains(Namespc, DeclRegionScope);
3261  } else {
3262    // Anonymous namespaces.
3263    assert(Namespc->isAnonymousNamespace());
3264
3265    // Link the anonymous namespace into its parent.
3266    NamespaceDecl *PrevDecl;
3267    DeclContext *Parent = CurContext->getRedeclContext();
3268    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3269      PrevDecl = TU->getAnonymousNamespace();
3270      TU->setAnonymousNamespace(Namespc);
3271    } else {
3272      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3273      PrevDecl = ND->getAnonymousNamespace();
3274      ND->setAnonymousNamespace(Namespc);
3275    }
3276
3277    // Link the anonymous namespace with its previous declaration.
3278    if (PrevDecl) {
3279      assert(PrevDecl->isAnonymousNamespace());
3280      assert(!PrevDecl->getNextNamespace());
3281      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3282      PrevDecl->setNextNamespace(Namespc);
3283
3284      if (Namespc->isInline() != PrevDecl->isInline()) {
3285        // inline-ness must match
3286        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3287          << Namespc->isInline();
3288        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3289        Namespc->setInvalidDecl();
3290        // Recover by ignoring the new namespace's inline status.
3291        Namespc->setInline(PrevDecl->isInline());
3292      }
3293    }
3294
3295    CurContext->addDecl(Namespc);
3296
3297    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3298    //   behaves as if it were replaced by
3299    //     namespace unique { /* empty body */ }
3300    //     using namespace unique;
3301    //     namespace unique { namespace-body }
3302    //   where all occurrences of 'unique' in a translation unit are
3303    //   replaced by the same identifier and this identifier differs
3304    //   from all other identifiers in the entire program.
3305
3306    // We just create the namespace with an empty name and then add an
3307    // implicit using declaration, just like the standard suggests.
3308    //
3309    // CodeGen enforces the "universally unique" aspect by giving all
3310    // declarations semantically contained within an anonymous
3311    // namespace internal linkage.
3312
3313    if (!PrevDecl) {
3314      UsingDirectiveDecl* UD
3315        = UsingDirectiveDecl::Create(Context, CurContext,
3316                                     /* 'using' */ LBrace,
3317                                     /* 'namespace' */ SourceLocation(),
3318                                     /* qualifier */ SourceRange(),
3319                                     /* NNS */ NULL,
3320                                     /* identifier */ SourceLocation(),
3321                                     Namespc,
3322                                     /* Ancestor */ CurContext);
3323      UD->setImplicit();
3324      CurContext->addDecl(UD);
3325    }
3326  }
3327
3328  // Although we could have an invalid decl (i.e. the namespace name is a
3329  // redefinition), push it as current DeclContext and try to continue parsing.
3330  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3331  // for the namespace has the declarations that showed up in that particular
3332  // namespace definition.
3333  PushDeclContext(NamespcScope, Namespc);
3334  return Namespc;
3335}
3336
3337/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3338/// is a namespace alias, returns the namespace it points to.
3339static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3340  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3341    return AD->getNamespace();
3342  return dyn_cast_or_null<NamespaceDecl>(D);
3343}
3344
3345/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3346/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3347void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3348  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3349  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3350  Namespc->setRBracLoc(RBrace);
3351  PopDeclContext();
3352  if (Namespc->hasAttr<VisibilityAttr>())
3353    PopPragmaVisibility();
3354}
3355
3356CXXRecordDecl *Sema::getStdBadAlloc() const {
3357  return cast_or_null<CXXRecordDecl>(
3358                                  StdBadAlloc.get(Context.getExternalSource()));
3359}
3360
3361NamespaceDecl *Sema::getStdNamespace() const {
3362  return cast_or_null<NamespaceDecl>(
3363                                 StdNamespace.get(Context.getExternalSource()));
3364}
3365
3366/// \brief Retrieve the special "std" namespace, which may require us to
3367/// implicitly define the namespace.
3368NamespaceDecl *Sema::getOrCreateStdNamespace() {
3369  if (!StdNamespace) {
3370    // The "std" namespace has not yet been defined, so build one implicitly.
3371    StdNamespace = NamespaceDecl::Create(Context,
3372                                         Context.getTranslationUnitDecl(),
3373                                         SourceLocation(),
3374                                         &PP.getIdentifierTable().get("std"));
3375    getStdNamespace()->setImplicit(true);
3376  }
3377
3378  return getStdNamespace();
3379}
3380
3381Decl *Sema::ActOnUsingDirective(Scope *S,
3382                                          SourceLocation UsingLoc,
3383                                          SourceLocation NamespcLoc,
3384                                          CXXScopeSpec &SS,
3385                                          SourceLocation IdentLoc,
3386                                          IdentifierInfo *NamespcName,
3387                                          AttributeList *AttrList) {
3388  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3389  assert(NamespcName && "Invalid NamespcName.");
3390  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3391
3392  // This can only happen along a recovery path.
3393  while (S->getFlags() & Scope::TemplateParamScope)
3394    S = S->getParent();
3395  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3396
3397  UsingDirectiveDecl *UDir = 0;
3398  NestedNameSpecifier *Qualifier = 0;
3399  if (SS.isSet())
3400    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3401
3402  // Lookup namespace name.
3403  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3404  LookupParsedName(R, S, &SS);
3405  if (R.isAmbiguous())
3406    return 0;
3407
3408  if (R.empty()) {
3409    // Allow "using namespace std;" or "using namespace ::std;" even if
3410    // "std" hasn't been defined yet, for GCC compatibility.
3411    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3412        NamespcName->isStr("std")) {
3413      Diag(IdentLoc, diag::ext_using_undefined_std);
3414      R.addDecl(getOrCreateStdNamespace());
3415      R.resolveKind();
3416    }
3417    // Otherwise, attempt typo correction.
3418    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3419                                                       CTC_NoKeywords, 0)) {
3420      if (R.getAsSingle<NamespaceDecl>() ||
3421          R.getAsSingle<NamespaceAliasDecl>()) {
3422        if (DeclContext *DC = computeDeclContext(SS, false))
3423          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3424            << NamespcName << DC << Corrected << SS.getRange()
3425            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3426        else
3427          Diag(IdentLoc, diag::err_using_directive_suggest)
3428            << NamespcName << Corrected
3429            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3430        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3431          << Corrected;
3432
3433        NamespcName = Corrected.getAsIdentifierInfo();
3434      } else {
3435        R.clear();
3436        R.setLookupName(NamespcName);
3437      }
3438    }
3439  }
3440
3441  if (!R.empty()) {
3442    NamedDecl *Named = R.getFoundDecl();
3443    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3444        && "expected namespace decl");
3445    // C++ [namespace.udir]p1:
3446    //   A using-directive specifies that the names in the nominated
3447    //   namespace can be used in the scope in which the
3448    //   using-directive appears after the using-directive. During
3449    //   unqualified name lookup (3.4.1), the names appear as if they
3450    //   were declared in the nearest enclosing namespace which
3451    //   contains both the using-directive and the nominated
3452    //   namespace. [Note: in this context, "contains" means "contains
3453    //   directly or indirectly". ]
3454
3455    // Find enclosing context containing both using-directive and
3456    // nominated namespace.
3457    NamespaceDecl *NS = getNamespaceDecl(Named);
3458    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3459    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3460      CommonAncestor = CommonAncestor->getParent();
3461
3462    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3463                                      SS.getRange(),
3464                                      (NestedNameSpecifier *)SS.getScopeRep(),
3465                                      IdentLoc, Named, CommonAncestor);
3466    PushUsingDirective(S, UDir);
3467  } else {
3468    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3469  }
3470
3471  // FIXME: We ignore attributes for now.
3472  return UDir;
3473}
3474
3475void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3476  // If scope has associated entity, then using directive is at namespace
3477  // or translation unit scope. We add UsingDirectiveDecls, into
3478  // it's lookup structure.
3479  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3480    Ctx->addDecl(UDir);
3481  else
3482    // Otherwise it is block-sope. using-directives will affect lookup
3483    // only to the end of scope.
3484    S->PushUsingDirective(UDir);
3485}
3486
3487
3488Decl *Sema::ActOnUsingDeclaration(Scope *S,
3489                                  AccessSpecifier AS,
3490                                  bool HasUsingKeyword,
3491                                  SourceLocation UsingLoc,
3492                                  CXXScopeSpec &SS,
3493                                  UnqualifiedId &Name,
3494                                  AttributeList *AttrList,
3495                                  bool IsTypeName,
3496                                  SourceLocation TypenameLoc) {
3497  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3498
3499  switch (Name.getKind()) {
3500  case UnqualifiedId::IK_Identifier:
3501  case UnqualifiedId::IK_OperatorFunctionId:
3502  case UnqualifiedId::IK_LiteralOperatorId:
3503  case UnqualifiedId::IK_ConversionFunctionId:
3504    break;
3505
3506  case UnqualifiedId::IK_ConstructorName:
3507  case UnqualifiedId::IK_ConstructorTemplateId:
3508    // C++0x inherited constructors.
3509    if (getLangOptions().CPlusPlus0x) break;
3510
3511    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3512      << SS.getRange();
3513    return 0;
3514
3515  case UnqualifiedId::IK_DestructorName:
3516    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3517      << SS.getRange();
3518    return 0;
3519
3520  case UnqualifiedId::IK_TemplateId:
3521    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3522      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3523    return 0;
3524  }
3525
3526  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3527  DeclarationName TargetName = TargetNameInfo.getName();
3528  if (!TargetName)
3529    return 0;
3530
3531  // Warn about using declarations.
3532  // TODO: store that the declaration was written without 'using' and
3533  // talk about access decls instead of using decls in the
3534  // diagnostics.
3535  if (!HasUsingKeyword) {
3536    UsingLoc = Name.getSourceRange().getBegin();
3537
3538    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3539      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3540  }
3541
3542  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3543                                        TargetNameInfo, AttrList,
3544                                        /* IsInstantiation */ false,
3545                                        IsTypeName, TypenameLoc);
3546  if (UD)
3547    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3548
3549  return UD;
3550}
3551
3552/// \brief Determine whether a using declaration considers the given
3553/// declarations as "equivalent", e.g., if they are redeclarations of
3554/// the same entity or are both typedefs of the same type.
3555static bool
3556IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3557                         bool &SuppressRedeclaration) {
3558  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3559    SuppressRedeclaration = false;
3560    return true;
3561  }
3562
3563  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3564    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3565      SuppressRedeclaration = true;
3566      return Context.hasSameType(TD1->getUnderlyingType(),
3567                                 TD2->getUnderlyingType());
3568    }
3569
3570  return false;
3571}
3572
3573
3574/// Determines whether to create a using shadow decl for a particular
3575/// decl, given the set of decls existing prior to this using lookup.
3576bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3577                                const LookupResult &Previous) {
3578  // Diagnose finding a decl which is not from a base class of the
3579  // current class.  We do this now because there are cases where this
3580  // function will silently decide not to build a shadow decl, which
3581  // will pre-empt further diagnostics.
3582  //
3583  // We don't need to do this in C++0x because we do the check once on
3584  // the qualifier.
3585  //
3586  // FIXME: diagnose the following if we care enough:
3587  //   struct A { int foo; };
3588  //   struct B : A { using A::foo; };
3589  //   template <class T> struct C : A {};
3590  //   template <class T> struct D : C<T> { using B::foo; } // <---
3591  // This is invalid (during instantiation) in C++03 because B::foo
3592  // resolves to the using decl in B, which is not a base class of D<T>.
3593  // We can't diagnose it immediately because C<T> is an unknown
3594  // specialization.  The UsingShadowDecl in D<T> then points directly
3595  // to A::foo, which will look well-formed when we instantiate.
3596  // The right solution is to not collapse the shadow-decl chain.
3597  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3598    DeclContext *OrigDC = Orig->getDeclContext();
3599
3600    // Handle enums and anonymous structs.
3601    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3602    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3603    while (OrigRec->isAnonymousStructOrUnion())
3604      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3605
3606    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3607      if (OrigDC == CurContext) {
3608        Diag(Using->getLocation(),
3609             diag::err_using_decl_nested_name_specifier_is_current_class)
3610          << Using->getNestedNameRange();
3611        Diag(Orig->getLocation(), diag::note_using_decl_target);
3612        return true;
3613      }
3614
3615      Diag(Using->getNestedNameRange().getBegin(),
3616           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3617        << Using->getTargetNestedNameDecl()
3618        << cast<CXXRecordDecl>(CurContext)
3619        << Using->getNestedNameRange();
3620      Diag(Orig->getLocation(), diag::note_using_decl_target);
3621      return true;
3622    }
3623  }
3624
3625  if (Previous.empty()) return false;
3626
3627  NamedDecl *Target = Orig;
3628  if (isa<UsingShadowDecl>(Target))
3629    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3630
3631  // If the target happens to be one of the previous declarations, we
3632  // don't have a conflict.
3633  //
3634  // FIXME: but we might be increasing its access, in which case we
3635  // should redeclare it.
3636  NamedDecl *NonTag = 0, *Tag = 0;
3637  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3638         I != E; ++I) {
3639    NamedDecl *D = (*I)->getUnderlyingDecl();
3640    bool Result;
3641    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3642      return Result;
3643
3644    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3645  }
3646
3647  if (Target->isFunctionOrFunctionTemplate()) {
3648    FunctionDecl *FD;
3649    if (isa<FunctionTemplateDecl>(Target))
3650      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3651    else
3652      FD = cast<FunctionDecl>(Target);
3653
3654    NamedDecl *OldDecl = 0;
3655    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3656    case Ovl_Overload:
3657      return false;
3658
3659    case Ovl_NonFunction:
3660      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3661      break;
3662
3663    // We found a decl with the exact signature.
3664    case Ovl_Match:
3665      // If we're in a record, we want to hide the target, so we
3666      // return true (without a diagnostic) to tell the caller not to
3667      // build a shadow decl.
3668      if (CurContext->isRecord())
3669        return true;
3670
3671      // If we're not in a record, this is an error.
3672      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3673      break;
3674    }
3675
3676    Diag(Target->getLocation(), diag::note_using_decl_target);
3677    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3678    return true;
3679  }
3680
3681  // Target is not a function.
3682
3683  if (isa<TagDecl>(Target)) {
3684    // No conflict between a tag and a non-tag.
3685    if (!Tag) return false;
3686
3687    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3688    Diag(Target->getLocation(), diag::note_using_decl_target);
3689    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3690    return true;
3691  }
3692
3693  // No conflict between a tag and a non-tag.
3694  if (!NonTag) return false;
3695
3696  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3697  Diag(Target->getLocation(), diag::note_using_decl_target);
3698  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3699  return true;
3700}
3701
3702/// Builds a shadow declaration corresponding to a 'using' declaration.
3703UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3704                                            UsingDecl *UD,
3705                                            NamedDecl *Orig) {
3706
3707  // If we resolved to another shadow declaration, just coalesce them.
3708  NamedDecl *Target = Orig;
3709  if (isa<UsingShadowDecl>(Target)) {
3710    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3711    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3712  }
3713
3714  UsingShadowDecl *Shadow
3715    = UsingShadowDecl::Create(Context, CurContext,
3716                              UD->getLocation(), UD, Target);
3717  UD->addShadowDecl(Shadow);
3718
3719  Shadow->setAccess(UD->getAccess());
3720  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3721    Shadow->setInvalidDecl();
3722
3723  if (S)
3724    PushOnScopeChains(Shadow, S);
3725  else
3726    CurContext->addDecl(Shadow);
3727
3728
3729  return Shadow;
3730}
3731
3732/// Hides a using shadow declaration.  This is required by the current
3733/// using-decl implementation when a resolvable using declaration in a
3734/// class is followed by a declaration which would hide or override
3735/// one or more of the using decl's targets; for example:
3736///
3737///   struct Base { void foo(int); };
3738///   struct Derived : Base {
3739///     using Base::foo;
3740///     void foo(int);
3741///   };
3742///
3743/// The governing language is C++03 [namespace.udecl]p12:
3744///
3745///   When a using-declaration brings names from a base class into a
3746///   derived class scope, member functions in the derived class
3747///   override and/or hide member functions with the same name and
3748///   parameter types in a base class (rather than conflicting).
3749///
3750/// There are two ways to implement this:
3751///   (1) optimistically create shadow decls when they're not hidden
3752///       by existing declarations, or
3753///   (2) don't create any shadow decls (or at least don't make them
3754///       visible) until we've fully parsed/instantiated the class.
3755/// The problem with (1) is that we might have to retroactively remove
3756/// a shadow decl, which requires several O(n) operations because the
3757/// decl structures are (very reasonably) not designed for removal.
3758/// (2) avoids this but is very fiddly and phase-dependent.
3759void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3760  if (Shadow->getDeclName().getNameKind() ==
3761        DeclarationName::CXXConversionFunctionName)
3762    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3763
3764  // Remove it from the DeclContext...
3765  Shadow->getDeclContext()->removeDecl(Shadow);
3766
3767  // ...and the scope, if applicable...
3768  if (S) {
3769    S->RemoveDecl(Shadow);
3770    IdResolver.RemoveDecl(Shadow);
3771  }
3772
3773  // ...and the using decl.
3774  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3775
3776  // TODO: complain somehow if Shadow was used.  It shouldn't
3777  // be possible for this to happen, because...?
3778}
3779
3780/// Builds a using declaration.
3781///
3782/// \param IsInstantiation - Whether this call arises from an
3783///   instantiation of an unresolved using declaration.  We treat
3784///   the lookup differently for these declarations.
3785NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3786                                       SourceLocation UsingLoc,
3787                                       CXXScopeSpec &SS,
3788                                       const DeclarationNameInfo &NameInfo,
3789                                       AttributeList *AttrList,
3790                                       bool IsInstantiation,
3791                                       bool IsTypeName,
3792                                       SourceLocation TypenameLoc) {
3793  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3794  SourceLocation IdentLoc = NameInfo.getLoc();
3795  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3796
3797  // FIXME: We ignore attributes for now.
3798
3799  if (SS.isEmpty()) {
3800    Diag(IdentLoc, diag::err_using_requires_qualname);
3801    return 0;
3802  }
3803
3804  // Do the redeclaration lookup in the current scope.
3805  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
3806                        ForRedeclaration);
3807  Previous.setHideTags(false);
3808  if (S) {
3809    LookupName(Previous, S);
3810
3811    // It is really dumb that we have to do this.
3812    LookupResult::Filter F = Previous.makeFilter();
3813    while (F.hasNext()) {
3814      NamedDecl *D = F.next();
3815      if (!isDeclInScope(D, CurContext, S))
3816        F.erase();
3817    }
3818    F.done();
3819  } else {
3820    assert(IsInstantiation && "no scope in non-instantiation");
3821    assert(CurContext->isRecord() && "scope not record in instantiation");
3822    LookupQualifiedName(Previous, CurContext);
3823  }
3824
3825  NestedNameSpecifier *NNS =
3826    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3827
3828  // Check for invalid redeclarations.
3829  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3830    return 0;
3831
3832  // Check for bad qualifiers.
3833  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3834    return 0;
3835
3836  DeclContext *LookupContext = computeDeclContext(SS);
3837  NamedDecl *D;
3838  if (!LookupContext) {
3839    if (IsTypeName) {
3840      // FIXME: not all declaration name kinds are legal here
3841      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3842                                              UsingLoc, TypenameLoc,
3843                                              SS.getRange(), NNS,
3844                                              IdentLoc, NameInfo.getName());
3845    } else {
3846      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3847                                           UsingLoc, SS.getRange(),
3848                                           NNS, NameInfo);
3849    }
3850  } else {
3851    D = UsingDecl::Create(Context, CurContext,
3852                          SS.getRange(), UsingLoc, NNS, NameInfo,
3853                          IsTypeName);
3854  }
3855  D->setAccess(AS);
3856  CurContext->addDecl(D);
3857
3858  if (!LookupContext) return D;
3859  UsingDecl *UD = cast<UsingDecl>(D);
3860
3861  if (RequireCompleteDeclContext(SS, LookupContext)) {
3862    UD->setInvalidDecl();
3863    return UD;
3864  }
3865
3866  // Look up the target name.
3867
3868  LookupResult R(*this, NameInfo, LookupOrdinaryName);
3869
3870  // Unlike most lookups, we don't always want to hide tag
3871  // declarations: tag names are visible through the using declaration
3872  // even if hidden by ordinary names, *except* in a dependent context
3873  // where it's important for the sanity of two-phase lookup.
3874  if (!IsInstantiation)
3875    R.setHideTags(false);
3876
3877  LookupQualifiedName(R, LookupContext);
3878
3879  if (R.empty()) {
3880    Diag(IdentLoc, diag::err_no_member)
3881      << NameInfo.getName() << LookupContext << SS.getRange();
3882    UD->setInvalidDecl();
3883    return UD;
3884  }
3885
3886  if (R.isAmbiguous()) {
3887    UD->setInvalidDecl();
3888    return UD;
3889  }
3890
3891  if (IsTypeName) {
3892    // If we asked for a typename and got a non-type decl, error out.
3893    if (!R.getAsSingle<TypeDecl>()) {
3894      Diag(IdentLoc, diag::err_using_typename_non_type);
3895      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3896        Diag((*I)->getUnderlyingDecl()->getLocation(),
3897             diag::note_using_decl_target);
3898      UD->setInvalidDecl();
3899      return UD;
3900    }
3901  } else {
3902    // If we asked for a non-typename and we got a type, error out,
3903    // but only if this is an instantiation of an unresolved using
3904    // decl.  Otherwise just silently find the type name.
3905    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3906      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3907      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3908      UD->setInvalidDecl();
3909      return UD;
3910    }
3911  }
3912
3913  // C++0x N2914 [namespace.udecl]p6:
3914  // A using-declaration shall not name a namespace.
3915  if (R.getAsSingle<NamespaceDecl>()) {
3916    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3917      << SS.getRange();
3918    UD->setInvalidDecl();
3919    return UD;
3920  }
3921
3922  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3923    if (!CheckUsingShadowDecl(UD, *I, Previous))
3924      BuildUsingShadowDecl(S, UD, *I);
3925  }
3926
3927  return UD;
3928}
3929
3930/// Checks that the given using declaration is not an invalid
3931/// redeclaration.  Note that this is checking only for the using decl
3932/// itself, not for any ill-formedness among the UsingShadowDecls.
3933bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3934                                       bool isTypeName,
3935                                       const CXXScopeSpec &SS,
3936                                       SourceLocation NameLoc,
3937                                       const LookupResult &Prev) {
3938  // C++03 [namespace.udecl]p8:
3939  // C++0x [namespace.udecl]p10:
3940  //   A using-declaration is a declaration and can therefore be used
3941  //   repeatedly where (and only where) multiple declarations are
3942  //   allowed.
3943  //
3944  // That's in non-member contexts.
3945  if (!CurContext->getRedeclContext()->isRecord())
3946    return false;
3947
3948  NestedNameSpecifier *Qual
3949    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3950
3951  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3952    NamedDecl *D = *I;
3953
3954    bool DTypename;
3955    NestedNameSpecifier *DQual;
3956    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3957      DTypename = UD->isTypeName();
3958      DQual = UD->getTargetNestedNameDecl();
3959    } else if (UnresolvedUsingValueDecl *UD
3960                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3961      DTypename = false;
3962      DQual = UD->getTargetNestedNameSpecifier();
3963    } else if (UnresolvedUsingTypenameDecl *UD
3964                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3965      DTypename = true;
3966      DQual = UD->getTargetNestedNameSpecifier();
3967    } else continue;
3968
3969    // using decls differ if one says 'typename' and the other doesn't.
3970    // FIXME: non-dependent using decls?
3971    if (isTypeName != DTypename) continue;
3972
3973    // using decls differ if they name different scopes (but note that
3974    // template instantiation can cause this check to trigger when it
3975    // didn't before instantiation).
3976    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3977        Context.getCanonicalNestedNameSpecifier(DQual))
3978      continue;
3979
3980    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3981    Diag(D->getLocation(), diag::note_using_decl) << 1;
3982    return true;
3983  }
3984
3985  return false;
3986}
3987
3988
3989/// Checks that the given nested-name qualifier used in a using decl
3990/// in the current context is appropriately related to the current
3991/// scope.  If an error is found, diagnoses it and returns true.
3992bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3993                                   const CXXScopeSpec &SS,
3994                                   SourceLocation NameLoc) {
3995  DeclContext *NamedContext = computeDeclContext(SS);
3996
3997  if (!CurContext->isRecord()) {
3998    // C++03 [namespace.udecl]p3:
3999    // C++0x [namespace.udecl]p8:
4000    //   A using-declaration for a class member shall be a member-declaration.
4001
4002    // If we weren't able to compute a valid scope, it must be a
4003    // dependent class scope.
4004    if (!NamedContext || NamedContext->isRecord()) {
4005      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4006        << SS.getRange();
4007      return true;
4008    }
4009
4010    // Otherwise, everything is known to be fine.
4011    return false;
4012  }
4013
4014  // The current scope is a record.
4015
4016  // If the named context is dependent, we can't decide much.
4017  if (!NamedContext) {
4018    // FIXME: in C++0x, we can diagnose if we can prove that the
4019    // nested-name-specifier does not refer to a base class, which is
4020    // still possible in some cases.
4021
4022    // Otherwise we have to conservatively report that things might be
4023    // okay.
4024    return false;
4025  }
4026
4027  if (!NamedContext->isRecord()) {
4028    // Ideally this would point at the last name in the specifier,
4029    // but we don't have that level of source info.
4030    Diag(SS.getRange().getBegin(),
4031         diag::err_using_decl_nested_name_specifier_is_not_class)
4032      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4033    return true;
4034  }
4035
4036  if (getLangOptions().CPlusPlus0x) {
4037    // C++0x [namespace.udecl]p3:
4038    //   In a using-declaration used as a member-declaration, the
4039    //   nested-name-specifier shall name a base class of the class
4040    //   being defined.
4041
4042    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4043                                 cast<CXXRecordDecl>(NamedContext))) {
4044      if (CurContext == NamedContext) {
4045        Diag(NameLoc,
4046             diag::err_using_decl_nested_name_specifier_is_current_class)
4047          << SS.getRange();
4048        return true;
4049      }
4050
4051      Diag(SS.getRange().getBegin(),
4052           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4053        << (NestedNameSpecifier*) SS.getScopeRep()
4054        << cast<CXXRecordDecl>(CurContext)
4055        << SS.getRange();
4056      return true;
4057    }
4058
4059    return false;
4060  }
4061
4062  // C++03 [namespace.udecl]p4:
4063  //   A using-declaration used as a member-declaration shall refer
4064  //   to a member of a base class of the class being defined [etc.].
4065
4066  // Salient point: SS doesn't have to name a base class as long as
4067  // lookup only finds members from base classes.  Therefore we can
4068  // diagnose here only if we can prove that that can't happen,
4069  // i.e. if the class hierarchies provably don't intersect.
4070
4071  // TODO: it would be nice if "definitely valid" results were cached
4072  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4073  // need to be repeated.
4074
4075  struct UserData {
4076    llvm::DenseSet<const CXXRecordDecl*> Bases;
4077
4078    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4079      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4080      Data->Bases.insert(Base);
4081      return true;
4082    }
4083
4084    bool hasDependentBases(const CXXRecordDecl *Class) {
4085      return !Class->forallBases(collect, this);
4086    }
4087
4088    /// Returns true if the base is dependent or is one of the
4089    /// accumulated base classes.
4090    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4091      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4092      return !Data->Bases.count(Base);
4093    }
4094
4095    bool mightShareBases(const CXXRecordDecl *Class) {
4096      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4097    }
4098  };
4099
4100  UserData Data;
4101
4102  // Returns false if we find a dependent base.
4103  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4104    return false;
4105
4106  // Returns false if the class has a dependent base or if it or one
4107  // of its bases is present in the base set of the current context.
4108  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4109    return false;
4110
4111  Diag(SS.getRange().getBegin(),
4112       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4113    << (NestedNameSpecifier*) SS.getScopeRep()
4114    << cast<CXXRecordDecl>(CurContext)
4115    << SS.getRange();
4116
4117  return true;
4118}
4119
4120Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4121                                             SourceLocation NamespaceLoc,
4122                                             SourceLocation AliasLoc,
4123                                             IdentifierInfo *Alias,
4124                                             CXXScopeSpec &SS,
4125                                             SourceLocation IdentLoc,
4126                                             IdentifierInfo *Ident) {
4127
4128  // Lookup the namespace name.
4129  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4130  LookupParsedName(R, S, &SS);
4131
4132  // Check if we have a previous declaration with the same name.
4133  NamedDecl *PrevDecl
4134    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4135                       ForRedeclaration);
4136  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4137    PrevDecl = 0;
4138
4139  if (PrevDecl) {
4140    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4141      // We already have an alias with the same name that points to the same
4142      // namespace, so don't create a new one.
4143      // FIXME: At some point, we'll want to create the (redundant)
4144      // declaration to maintain better source information.
4145      if (!R.isAmbiguous() && !R.empty() &&
4146          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4147        return 0;
4148    }
4149
4150    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4151      diag::err_redefinition_different_kind;
4152    Diag(AliasLoc, DiagID) << Alias;
4153    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4154    return 0;
4155  }
4156
4157  if (R.isAmbiguous())
4158    return 0;
4159
4160  if (R.empty()) {
4161    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4162                                                CTC_NoKeywords, 0)) {
4163      if (R.getAsSingle<NamespaceDecl>() ||
4164          R.getAsSingle<NamespaceAliasDecl>()) {
4165        if (DeclContext *DC = computeDeclContext(SS, false))
4166          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4167            << Ident << DC << Corrected << SS.getRange()
4168            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4169        else
4170          Diag(IdentLoc, diag::err_using_directive_suggest)
4171            << Ident << Corrected
4172            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4173
4174        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4175          << Corrected;
4176
4177        Ident = Corrected.getAsIdentifierInfo();
4178      } else {
4179        R.clear();
4180        R.setLookupName(Ident);
4181      }
4182    }
4183
4184    if (R.empty()) {
4185      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4186      return 0;
4187    }
4188  }
4189
4190  NamespaceAliasDecl *AliasDecl =
4191    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4192                               Alias, SS.getRange(),
4193                               (NestedNameSpecifier *)SS.getScopeRep(),
4194                               IdentLoc, R.getFoundDecl());
4195
4196  PushOnScopeChains(AliasDecl, S);
4197  return AliasDecl;
4198}
4199
4200namespace {
4201  /// \brief Scoped object used to handle the state changes required in Sema
4202  /// to implicitly define the body of a C++ member function;
4203  class ImplicitlyDefinedFunctionScope {
4204    Sema &S;
4205    DeclContext *PreviousContext;
4206
4207  public:
4208    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4209      : S(S), PreviousContext(S.CurContext)
4210    {
4211      S.CurContext = Method;
4212      S.PushFunctionScope();
4213      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4214    }
4215
4216    ~ImplicitlyDefinedFunctionScope() {
4217      S.PopExpressionEvaluationContext();
4218      S.PopFunctionOrBlockScope();
4219      S.CurContext = PreviousContext;
4220    }
4221  };
4222}
4223
4224static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4225                                                       CXXRecordDecl *D) {
4226  ASTContext &Context = Self.Context;
4227  QualType ClassType = Context.getTypeDeclType(D);
4228  DeclarationName ConstructorName
4229    = Context.DeclarationNames.getCXXConstructorName(
4230                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4231
4232  DeclContext::lookup_const_iterator Con, ConEnd;
4233  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4234       Con != ConEnd; ++Con) {
4235    // FIXME: In C++0x, a constructor template can be a default constructor.
4236    if (isa<FunctionTemplateDecl>(*Con))
4237      continue;
4238
4239    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4240    if (Constructor->isDefaultConstructor())
4241      return Constructor;
4242  }
4243  return 0;
4244}
4245
4246CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4247                                                     CXXRecordDecl *ClassDecl) {
4248  // C++ [class.ctor]p5:
4249  //   A default constructor for a class X is a constructor of class X
4250  //   that can be called without an argument. If there is no
4251  //   user-declared constructor for class X, a default constructor is
4252  //   implicitly declared. An implicitly-declared default constructor
4253  //   is an inline public member of its class.
4254  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4255         "Should not build implicit default constructor!");
4256
4257  // C++ [except.spec]p14:
4258  //   An implicitly declared special member function (Clause 12) shall have an
4259  //   exception-specification. [...]
4260  ImplicitExceptionSpecification ExceptSpec(Context);
4261
4262  // Direct base-class destructors.
4263  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4264                                       BEnd = ClassDecl->bases_end();
4265       B != BEnd; ++B) {
4266    if (B->isVirtual()) // Handled below.
4267      continue;
4268
4269    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4270      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4271      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4272        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4273      else if (CXXConstructorDecl *Constructor
4274                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4275        ExceptSpec.CalledDecl(Constructor);
4276    }
4277  }
4278
4279  // Virtual base-class destructors.
4280  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4281                                       BEnd = ClassDecl->vbases_end();
4282       B != BEnd; ++B) {
4283    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4284      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4285      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4286        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4287      else if (CXXConstructorDecl *Constructor
4288                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4289        ExceptSpec.CalledDecl(Constructor);
4290    }
4291  }
4292
4293  // Field destructors.
4294  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4295                               FEnd = ClassDecl->field_end();
4296       F != FEnd; ++F) {
4297    if (const RecordType *RecordTy
4298              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4299      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4300      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4301        ExceptSpec.CalledDecl(
4302                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4303      else if (CXXConstructorDecl *Constructor
4304                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4305        ExceptSpec.CalledDecl(Constructor);
4306    }
4307  }
4308
4309
4310  // Create the actual constructor declaration.
4311  CanQualType ClassType
4312    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4313  DeclarationName Name
4314    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4315  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4316  CXXConstructorDecl *DefaultCon
4317    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4318                                 Context.getFunctionType(Context.VoidTy,
4319                                                         0, 0, false, 0,
4320                                       ExceptSpec.hasExceptionSpecification(),
4321                                     ExceptSpec.hasAnyExceptionSpecification(),
4322                                                         ExceptSpec.size(),
4323                                                         ExceptSpec.data(),
4324                                                       FunctionType::ExtInfo()),
4325                                 /*TInfo=*/0,
4326                                 /*isExplicit=*/false,
4327                                 /*isInline=*/true,
4328                                 /*isImplicitlyDeclared=*/true);
4329  DefaultCon->setAccess(AS_public);
4330  DefaultCon->setImplicit();
4331  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4332
4333  // Note that we have declared this constructor.
4334  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4335
4336  if (Scope *S = getScopeForContext(ClassDecl))
4337    PushOnScopeChains(DefaultCon, S, false);
4338  ClassDecl->addDecl(DefaultCon);
4339
4340  return DefaultCon;
4341}
4342
4343void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4344                                            CXXConstructorDecl *Constructor) {
4345  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4346          !Constructor->isUsed(false)) &&
4347    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4348
4349  CXXRecordDecl *ClassDecl = Constructor->getParent();
4350  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4351
4352  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4353  DiagnosticErrorTrap Trap(Diags);
4354  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4355      Trap.hasErrorOccurred()) {
4356    Diag(CurrentLocation, diag::note_member_synthesized_at)
4357      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4358    Constructor->setInvalidDecl();
4359    return;
4360  }
4361
4362  SourceLocation Loc = Constructor->getLocation();
4363  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4364
4365  Constructor->setUsed();
4366  MarkVTableUsed(CurrentLocation, ClassDecl);
4367}
4368
4369CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4370  // C++ [class.dtor]p2:
4371  //   If a class has no user-declared destructor, a destructor is
4372  //   declared implicitly. An implicitly-declared destructor is an
4373  //   inline public member of its class.
4374
4375  // C++ [except.spec]p14:
4376  //   An implicitly declared special member function (Clause 12) shall have
4377  //   an exception-specification.
4378  ImplicitExceptionSpecification ExceptSpec(Context);
4379
4380  // Direct base-class destructors.
4381  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4382                                       BEnd = ClassDecl->bases_end();
4383       B != BEnd; ++B) {
4384    if (B->isVirtual()) // Handled below.
4385      continue;
4386
4387    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4388      ExceptSpec.CalledDecl(
4389                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4390  }
4391
4392  // Virtual base-class destructors.
4393  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4394                                       BEnd = ClassDecl->vbases_end();
4395       B != BEnd; ++B) {
4396    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4397      ExceptSpec.CalledDecl(
4398                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4399  }
4400
4401  // Field destructors.
4402  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4403                               FEnd = ClassDecl->field_end();
4404       F != FEnd; ++F) {
4405    if (const RecordType *RecordTy
4406        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4407      ExceptSpec.CalledDecl(
4408                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4409  }
4410
4411  // Create the actual destructor declaration.
4412  QualType Ty = Context.getFunctionType(Context.VoidTy,
4413                                        0, 0, false, 0,
4414                                        ExceptSpec.hasExceptionSpecification(),
4415                                    ExceptSpec.hasAnyExceptionSpecification(),
4416                                        ExceptSpec.size(),
4417                                        ExceptSpec.data(),
4418                                        FunctionType::ExtInfo());
4419
4420  CanQualType ClassType
4421    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4422  DeclarationName Name
4423    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4424  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4425  CXXDestructorDecl *Destructor
4426      = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, 0,
4427                                /*isInline=*/true,
4428                                /*isImplicitlyDeclared=*/true);
4429  Destructor->setAccess(AS_public);
4430  Destructor->setImplicit();
4431  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4432
4433  // Note that we have declared this destructor.
4434  ++ASTContext::NumImplicitDestructorsDeclared;
4435
4436  // Introduce this destructor into its scope.
4437  if (Scope *S = getScopeForContext(ClassDecl))
4438    PushOnScopeChains(Destructor, S, false);
4439  ClassDecl->addDecl(Destructor);
4440
4441  // This could be uniqued if it ever proves significant.
4442  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4443
4444  AddOverriddenMethods(ClassDecl, Destructor);
4445
4446  return Destructor;
4447}
4448
4449void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4450                                    CXXDestructorDecl *Destructor) {
4451  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4452         "DefineImplicitDestructor - call it for implicit default dtor");
4453  CXXRecordDecl *ClassDecl = Destructor->getParent();
4454  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4455
4456  if (Destructor->isInvalidDecl())
4457    return;
4458
4459  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4460
4461  DiagnosticErrorTrap Trap(Diags);
4462  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4463                                         Destructor->getParent());
4464
4465  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4466    Diag(CurrentLocation, diag::note_member_synthesized_at)
4467      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4468
4469    Destructor->setInvalidDecl();
4470    return;
4471  }
4472
4473  SourceLocation Loc = Destructor->getLocation();
4474  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4475
4476  Destructor->setUsed();
4477  MarkVTableUsed(CurrentLocation, ClassDecl);
4478}
4479
4480/// \brief Builds a statement that copies the given entity from \p From to
4481/// \c To.
4482///
4483/// This routine is used to copy the members of a class with an
4484/// implicitly-declared copy assignment operator. When the entities being
4485/// copied are arrays, this routine builds for loops to copy them.
4486///
4487/// \param S The Sema object used for type-checking.
4488///
4489/// \param Loc The location where the implicit copy is being generated.
4490///
4491/// \param T The type of the expressions being copied. Both expressions must
4492/// have this type.
4493///
4494/// \param To The expression we are copying to.
4495///
4496/// \param From The expression we are copying from.
4497///
4498/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4499/// Otherwise, it's a non-static member subobject.
4500///
4501/// \param Depth Internal parameter recording the depth of the recursion.
4502///
4503/// \returns A statement or a loop that copies the expressions.
4504static StmtResult
4505BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4506                      Expr *To, Expr *From,
4507                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4508  // C++0x [class.copy]p30:
4509  //   Each subobject is assigned in the manner appropriate to its type:
4510  //
4511  //     - if the subobject is of class type, the copy assignment operator
4512  //       for the class is used (as if by explicit qualification; that is,
4513  //       ignoring any possible virtual overriding functions in more derived
4514  //       classes);
4515  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4516    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4517
4518    // Look for operator=.
4519    DeclarationName Name
4520      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4521    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4522    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4523
4524    // Filter out any result that isn't a copy-assignment operator.
4525    LookupResult::Filter F = OpLookup.makeFilter();
4526    while (F.hasNext()) {
4527      NamedDecl *D = F.next();
4528      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4529        if (Method->isCopyAssignmentOperator())
4530          continue;
4531
4532      F.erase();
4533    }
4534    F.done();
4535
4536    // Suppress the protected check (C++ [class.protected]) for each of the
4537    // assignment operators we found. This strange dance is required when
4538    // we're assigning via a base classes's copy-assignment operator. To
4539    // ensure that we're getting the right base class subobject (without
4540    // ambiguities), we need to cast "this" to that subobject type; to
4541    // ensure that we don't go through the virtual call mechanism, we need
4542    // to qualify the operator= name with the base class (see below). However,
4543    // this means that if the base class has a protected copy assignment
4544    // operator, the protected member access check will fail. So, we
4545    // rewrite "protected" access to "public" access in this case, since we
4546    // know by construction that we're calling from a derived class.
4547    if (CopyingBaseSubobject) {
4548      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4549           L != LEnd; ++L) {
4550        if (L.getAccess() == AS_protected)
4551          L.setAccess(AS_public);
4552      }
4553    }
4554
4555    // Create the nested-name-specifier that will be used to qualify the
4556    // reference to operator=; this is required to suppress the virtual
4557    // call mechanism.
4558    CXXScopeSpec SS;
4559    SS.setRange(Loc);
4560    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4561                                               T.getTypePtr()));
4562
4563    // Create the reference to operator=.
4564    ExprResult OpEqualRef
4565      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
4566                                   /*FirstQualifierInScope=*/0, OpLookup,
4567                                   /*TemplateArgs=*/0,
4568                                   /*SuppressQualifierCheck=*/true);
4569    if (OpEqualRef.isInvalid())
4570      return StmtError();
4571
4572    // Build the call to the assignment operator.
4573
4574    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4575                                                  OpEqualRef.takeAs<Expr>(),
4576                                                  Loc, &From, 1, Loc);
4577    if (Call.isInvalid())
4578      return StmtError();
4579
4580    return S.Owned(Call.takeAs<Stmt>());
4581  }
4582
4583  //     - if the subobject is of scalar type, the built-in assignment
4584  //       operator is used.
4585  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4586  if (!ArrayTy) {
4587    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
4588    if (Assignment.isInvalid())
4589      return StmtError();
4590
4591    return S.Owned(Assignment.takeAs<Stmt>());
4592  }
4593
4594  //     - if the subobject is an array, each element is assigned, in the
4595  //       manner appropriate to the element type;
4596
4597  // Construct a loop over the array bounds, e.g.,
4598  //
4599  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4600  //
4601  // that will copy each of the array elements.
4602  QualType SizeType = S.Context.getSizeType();
4603
4604  // Create the iteration variable.
4605  IdentifierInfo *IterationVarName = 0;
4606  {
4607    llvm::SmallString<8> Str;
4608    llvm::raw_svector_ostream OS(Str);
4609    OS << "__i" << Depth;
4610    IterationVarName = &S.Context.Idents.get(OS.str());
4611  }
4612  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4613                                          IterationVarName, SizeType,
4614                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4615                                          SC_None, SC_None);
4616
4617  // Initialize the iteration variable to zero.
4618  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4619  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
4620
4621  // Create a reference to the iteration variable; we'll use this several
4622  // times throughout.
4623  Expr *IterationVarRef
4624    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
4625  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4626
4627  // Create the DeclStmt that holds the iteration variable.
4628  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4629
4630  // Create the comparison against the array bound.
4631  llvm::APInt Upper
4632    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
4633  Expr *Comparison
4634    = new (S.Context) BinaryOperator(IterationVarRef,
4635                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
4636                                     BO_NE, S.Context.BoolTy,
4637                                     VK_RValue, OK_Ordinary, Loc);
4638
4639  // Create the pre-increment of the iteration variable.
4640  Expr *Increment
4641    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
4642                                    VK_LValue, OK_Ordinary, Loc);
4643
4644  // Subscript the "from" and "to" expressions with the iteration variable.
4645  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
4646                                                         IterationVarRef, Loc));
4647  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
4648                                                       IterationVarRef, Loc));
4649
4650  // Build the copy for an individual element of the array.
4651  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
4652                                          To, From, CopyingBaseSubobject,
4653                                          Depth + 1);
4654  if (Copy.isInvalid())
4655    return StmtError();
4656
4657  // Construct the loop that copies all elements of this array.
4658  return S.ActOnForStmt(Loc, Loc, InitStmt,
4659                        S.MakeFullExpr(Comparison),
4660                        0, S.MakeFullExpr(Increment),
4661                        Loc, Copy.take());
4662}
4663
4664/// \brief Determine whether the given class has a copy assignment operator
4665/// that accepts a const-qualified argument.
4666static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4667  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4668
4669  if (!Class->hasDeclaredCopyAssignment())
4670    S.DeclareImplicitCopyAssignment(Class);
4671
4672  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4673  DeclarationName OpName
4674    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4675
4676  DeclContext::lookup_const_iterator Op, OpEnd;
4677  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4678    // C++ [class.copy]p9:
4679    //   A user-declared copy assignment operator is a non-static non-template
4680    //   member function of class X with exactly one parameter of type X, X&,
4681    //   const X&, volatile X& or const volatile X&.
4682    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4683    if (!Method)
4684      continue;
4685
4686    if (Method->isStatic())
4687      continue;
4688    if (Method->getPrimaryTemplate())
4689      continue;
4690    const FunctionProtoType *FnType =
4691    Method->getType()->getAs<FunctionProtoType>();
4692    assert(FnType && "Overloaded operator has no prototype.");
4693    // Don't assert on this; an invalid decl might have been left in the AST.
4694    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4695      continue;
4696    bool AcceptsConst = true;
4697    QualType ArgType = FnType->getArgType(0);
4698    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4699      ArgType = Ref->getPointeeType();
4700      // Is it a non-const lvalue reference?
4701      if (!ArgType.isConstQualified())
4702        AcceptsConst = false;
4703    }
4704    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4705      continue;
4706
4707    // We have a single argument of type cv X or cv X&, i.e. we've found the
4708    // copy assignment operator. Return whether it accepts const arguments.
4709    return AcceptsConst;
4710  }
4711  assert(Class->isInvalidDecl() &&
4712         "No copy assignment operator declared in valid code.");
4713  return false;
4714}
4715
4716CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4717  // Note: The following rules are largely analoguous to the copy
4718  // constructor rules. Note that virtual bases are not taken into account
4719  // for determining the argument type of the operator. Note also that
4720  // operators taking an object instead of a reference are allowed.
4721
4722
4723  // C++ [class.copy]p10:
4724  //   If the class definition does not explicitly declare a copy
4725  //   assignment operator, one is declared implicitly.
4726  //   The implicitly-defined copy assignment operator for a class X
4727  //   will have the form
4728  //
4729  //       X& X::operator=(const X&)
4730  //
4731  //   if
4732  bool HasConstCopyAssignment = true;
4733
4734  //       -- each direct base class B of X has a copy assignment operator
4735  //          whose parameter is of type const B&, const volatile B& or B,
4736  //          and
4737  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4738                                       BaseEnd = ClassDecl->bases_end();
4739       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4740    assert(!Base->getType()->isDependentType() &&
4741           "Cannot generate implicit members for class with dependent bases.");
4742    const CXXRecordDecl *BaseClassDecl
4743      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4744    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4745  }
4746
4747  //       -- for all the nonstatic data members of X that are of a class
4748  //          type M (or array thereof), each such class type has a copy
4749  //          assignment operator whose parameter is of type const M&,
4750  //          const volatile M& or M.
4751  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4752                                  FieldEnd = ClassDecl->field_end();
4753       HasConstCopyAssignment && Field != FieldEnd;
4754       ++Field) {
4755    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4756    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4757      const CXXRecordDecl *FieldClassDecl
4758        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4759      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4760    }
4761  }
4762
4763  //   Otherwise, the implicitly declared copy assignment operator will
4764  //   have the form
4765  //
4766  //       X& X::operator=(X&)
4767  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4768  QualType RetType = Context.getLValueReferenceType(ArgType);
4769  if (HasConstCopyAssignment)
4770    ArgType = ArgType.withConst();
4771  ArgType = Context.getLValueReferenceType(ArgType);
4772
4773  // C++ [except.spec]p14:
4774  //   An implicitly declared special member function (Clause 12) shall have an
4775  //   exception-specification. [...]
4776  ImplicitExceptionSpecification ExceptSpec(Context);
4777  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4778                                       BaseEnd = ClassDecl->bases_end();
4779       Base != BaseEnd; ++Base) {
4780    CXXRecordDecl *BaseClassDecl
4781      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4782
4783    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4784      DeclareImplicitCopyAssignment(BaseClassDecl);
4785
4786    if (CXXMethodDecl *CopyAssign
4787           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4788      ExceptSpec.CalledDecl(CopyAssign);
4789  }
4790  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4791                                  FieldEnd = ClassDecl->field_end();
4792       Field != FieldEnd;
4793       ++Field) {
4794    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4795    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4796      CXXRecordDecl *FieldClassDecl
4797        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4798
4799      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4800        DeclareImplicitCopyAssignment(FieldClassDecl);
4801
4802      if (CXXMethodDecl *CopyAssign
4803            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4804        ExceptSpec.CalledDecl(CopyAssign);
4805    }
4806  }
4807
4808  //   An implicitly-declared copy assignment operator is an inline public
4809  //   member of its class.
4810  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4811  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4812  CXXMethodDecl *CopyAssignment
4813    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
4814                            Context.getFunctionType(RetType, &ArgType, 1,
4815                                                    false, 0,
4816                                         ExceptSpec.hasExceptionSpecification(),
4817                                      ExceptSpec.hasAnyExceptionSpecification(),
4818                                                    ExceptSpec.size(),
4819                                                    ExceptSpec.data(),
4820                                                    FunctionType::ExtInfo()),
4821                            /*TInfo=*/0, /*isStatic=*/false,
4822                            /*StorageClassAsWritten=*/SC_None,
4823                            /*isInline=*/true);
4824  CopyAssignment->setAccess(AS_public);
4825  CopyAssignment->setImplicit();
4826  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4827
4828  // Add the parameter to the operator.
4829  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4830                                               ClassDecl->getLocation(),
4831                                               /*Id=*/0,
4832                                               ArgType, /*TInfo=*/0,
4833                                               SC_None,
4834                                               SC_None, 0);
4835  CopyAssignment->setParams(&FromParam, 1);
4836
4837  // Note that we have added this copy-assignment operator.
4838  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4839
4840  if (Scope *S = getScopeForContext(ClassDecl))
4841    PushOnScopeChains(CopyAssignment, S, false);
4842  ClassDecl->addDecl(CopyAssignment);
4843
4844  AddOverriddenMethods(ClassDecl, CopyAssignment);
4845  return CopyAssignment;
4846}
4847
4848void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4849                                        CXXMethodDecl *CopyAssignOperator) {
4850  assert((CopyAssignOperator->isImplicit() &&
4851          CopyAssignOperator->isOverloadedOperator() &&
4852          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4853          !CopyAssignOperator->isUsed(false)) &&
4854         "DefineImplicitCopyAssignment called for wrong function");
4855
4856  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4857
4858  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4859    CopyAssignOperator->setInvalidDecl();
4860    return;
4861  }
4862
4863  CopyAssignOperator->setUsed();
4864
4865  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4866  DiagnosticErrorTrap Trap(Diags);
4867
4868  // C++0x [class.copy]p30:
4869  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4870  //   for a non-union class X performs memberwise copy assignment of its
4871  //   subobjects. The direct base classes of X are assigned first, in the
4872  //   order of their declaration in the base-specifier-list, and then the
4873  //   immediate non-static data members of X are assigned, in the order in
4874  //   which they were declared in the class definition.
4875
4876  // The statements that form the synthesized function body.
4877  ASTOwningVector<Stmt*> Statements(*this);
4878
4879  // The parameter for the "other" object, which we are copying from.
4880  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4881  Qualifiers OtherQuals = Other->getType().getQualifiers();
4882  QualType OtherRefType = Other->getType();
4883  if (const LValueReferenceType *OtherRef
4884                                = OtherRefType->getAs<LValueReferenceType>()) {
4885    OtherRefType = OtherRef->getPointeeType();
4886    OtherQuals = OtherRefType.getQualifiers();
4887  }
4888
4889  // Our location for everything implicitly-generated.
4890  SourceLocation Loc = CopyAssignOperator->getLocation();
4891
4892  // Construct a reference to the "other" object. We'll be using this
4893  // throughout the generated ASTs.
4894  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
4895  assert(OtherRef && "Reference to parameter cannot fail!");
4896
4897  // Construct the "this" pointer. We'll be using this throughout the generated
4898  // ASTs.
4899  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4900  assert(This && "Reference to this cannot fail!");
4901
4902  // Assign base classes.
4903  bool Invalid = false;
4904  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4905       E = ClassDecl->bases_end(); Base != E; ++Base) {
4906    // Form the assignment:
4907    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4908    QualType BaseType = Base->getType().getUnqualifiedType();
4909    CXXRecordDecl *BaseClassDecl = 0;
4910    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4911      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4912    else {
4913      Invalid = true;
4914      continue;
4915    }
4916
4917    CXXCastPath BasePath;
4918    BasePath.push_back(Base);
4919
4920    // Construct the "from" expression, which is an implicit cast to the
4921    // appropriately-qualified base type.
4922    Expr *From = OtherRef;
4923    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4924                      CK_UncheckedDerivedToBase,
4925                      VK_LValue, &BasePath);
4926
4927    // Dereference "this".
4928    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
4929
4930    // Implicitly cast "this" to the appropriately-qualified base type.
4931    Expr *ToE = To.takeAs<Expr>();
4932    ImpCastExprToType(ToE,
4933                      Context.getCVRQualifiedType(BaseType,
4934                                      CopyAssignOperator->getTypeQualifiers()),
4935                      CK_UncheckedDerivedToBase,
4936                      VK_LValue, &BasePath);
4937    To = Owned(ToE);
4938
4939    // Build the copy.
4940    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4941                                            To.get(), From,
4942                                            /*CopyingBaseSubobject=*/true);
4943    if (Copy.isInvalid()) {
4944      Diag(CurrentLocation, diag::note_member_synthesized_at)
4945        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4946      CopyAssignOperator->setInvalidDecl();
4947      return;
4948    }
4949
4950    // Success! Record the copy.
4951    Statements.push_back(Copy.takeAs<Expr>());
4952  }
4953
4954  // \brief Reference to the __builtin_memcpy function.
4955  Expr *BuiltinMemCpyRef = 0;
4956  // \brief Reference to the __builtin_objc_memmove_collectable function.
4957  Expr *CollectableMemCpyRef = 0;
4958
4959  // Assign non-static members.
4960  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4961                                  FieldEnd = ClassDecl->field_end();
4962       Field != FieldEnd; ++Field) {
4963    // Check for members of reference type; we can't copy those.
4964    if (Field->getType()->isReferenceType()) {
4965      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4966        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4967      Diag(Field->getLocation(), diag::note_declared_at);
4968      Diag(CurrentLocation, diag::note_member_synthesized_at)
4969        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4970      Invalid = true;
4971      continue;
4972    }
4973
4974    // Check for members of const-qualified, non-class type.
4975    QualType BaseType = Context.getBaseElementType(Field->getType());
4976    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4977      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4978        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4979      Diag(Field->getLocation(), diag::note_declared_at);
4980      Diag(CurrentLocation, diag::note_member_synthesized_at)
4981        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4982      Invalid = true;
4983      continue;
4984    }
4985
4986    QualType FieldType = Field->getType().getNonReferenceType();
4987    if (FieldType->isIncompleteArrayType()) {
4988      assert(ClassDecl->hasFlexibleArrayMember() &&
4989             "Incomplete array type is not valid");
4990      continue;
4991    }
4992
4993    // Build references to the field in the object we're copying from and to.
4994    CXXScopeSpec SS; // Intentionally empty
4995    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4996                              LookupMemberName);
4997    MemberLookup.addDecl(*Field);
4998    MemberLookup.resolveKind();
4999    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5000                                               Loc, /*IsArrow=*/false,
5001                                               SS, 0, MemberLookup, 0);
5002    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5003                                             Loc, /*IsArrow=*/true,
5004                                             SS, 0, MemberLookup, 0);
5005    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5006    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5007
5008    // If the field should be copied with __builtin_memcpy rather than via
5009    // explicit assignments, do so. This optimization only applies for arrays
5010    // of scalars and arrays of class type with trivial copy-assignment
5011    // operators.
5012    if (FieldType->isArrayType() &&
5013        (!BaseType->isRecordType() ||
5014         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5015           ->hasTrivialCopyAssignment())) {
5016      // Compute the size of the memory buffer to be copied.
5017      QualType SizeType = Context.getSizeType();
5018      llvm::APInt Size(Context.getTypeSize(SizeType),
5019                       Context.getTypeSizeInChars(BaseType).getQuantity());
5020      for (const ConstantArrayType *Array
5021              = Context.getAsConstantArrayType(FieldType);
5022           Array;
5023           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5024        llvm::APInt ArraySize
5025          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5026        Size *= ArraySize;
5027      }
5028
5029      // Take the address of the field references for "from" and "to".
5030      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5031      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5032
5033      bool NeedsCollectableMemCpy =
5034          (BaseType->isRecordType() &&
5035           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5036
5037      if (NeedsCollectableMemCpy) {
5038        if (!CollectableMemCpyRef) {
5039          // Create a reference to the __builtin_objc_memmove_collectable function.
5040          LookupResult R(*this,
5041                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5042                         Loc, LookupOrdinaryName);
5043          LookupName(R, TUScope, true);
5044
5045          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5046          if (!CollectableMemCpy) {
5047            // Something went horribly wrong earlier, and we will have
5048            // complained about it.
5049            Invalid = true;
5050            continue;
5051          }
5052
5053          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5054                                                  CollectableMemCpy->getType(),
5055                                                  VK_LValue, Loc, 0).take();
5056          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5057        }
5058      }
5059      // Create a reference to the __builtin_memcpy builtin function.
5060      else if (!BuiltinMemCpyRef) {
5061        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5062                       LookupOrdinaryName);
5063        LookupName(R, TUScope, true);
5064
5065        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5066        if (!BuiltinMemCpy) {
5067          // Something went horribly wrong earlier, and we will have complained
5068          // about it.
5069          Invalid = true;
5070          continue;
5071        }
5072
5073        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5074                                            BuiltinMemCpy->getType(),
5075                                            VK_LValue, Loc, 0).take();
5076        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5077      }
5078
5079      ASTOwningVector<Expr*> CallArgs(*this);
5080      CallArgs.push_back(To.takeAs<Expr>());
5081      CallArgs.push_back(From.takeAs<Expr>());
5082      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5083      ExprResult Call = ExprError();
5084      if (NeedsCollectableMemCpy)
5085        Call = ActOnCallExpr(/*Scope=*/0,
5086                             CollectableMemCpyRef,
5087                             Loc, move_arg(CallArgs),
5088                             Loc);
5089      else
5090        Call = ActOnCallExpr(/*Scope=*/0,
5091                             BuiltinMemCpyRef,
5092                             Loc, move_arg(CallArgs),
5093                             Loc);
5094
5095      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5096      Statements.push_back(Call.takeAs<Expr>());
5097      continue;
5098    }
5099
5100    // Build the copy of this field.
5101    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5102                                                  To.get(), From.get(),
5103                                              /*CopyingBaseSubobject=*/false);
5104    if (Copy.isInvalid()) {
5105      Diag(CurrentLocation, diag::note_member_synthesized_at)
5106        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5107      CopyAssignOperator->setInvalidDecl();
5108      return;
5109    }
5110
5111    // Success! Record the copy.
5112    Statements.push_back(Copy.takeAs<Stmt>());
5113  }
5114
5115  if (!Invalid) {
5116    // Add a "return *this;"
5117    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5118
5119    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5120    if (Return.isInvalid())
5121      Invalid = true;
5122    else {
5123      Statements.push_back(Return.takeAs<Stmt>());
5124
5125      if (Trap.hasErrorOccurred()) {
5126        Diag(CurrentLocation, diag::note_member_synthesized_at)
5127          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5128        Invalid = true;
5129      }
5130    }
5131  }
5132
5133  if (Invalid) {
5134    CopyAssignOperator->setInvalidDecl();
5135    return;
5136  }
5137
5138  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5139                                            /*isStmtExpr=*/false);
5140  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5141  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5142}
5143
5144CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5145                                                    CXXRecordDecl *ClassDecl) {
5146  // C++ [class.copy]p4:
5147  //   If the class definition does not explicitly declare a copy
5148  //   constructor, one is declared implicitly.
5149
5150  // C++ [class.copy]p5:
5151  //   The implicitly-declared copy constructor for a class X will
5152  //   have the form
5153  //
5154  //       X::X(const X&)
5155  //
5156  //   if
5157  bool HasConstCopyConstructor = true;
5158
5159  //     -- each direct or virtual base class B of X has a copy
5160  //        constructor whose first parameter is of type const B& or
5161  //        const volatile B&, and
5162  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5163                                       BaseEnd = ClassDecl->bases_end();
5164       HasConstCopyConstructor && Base != BaseEnd;
5165       ++Base) {
5166    // Virtual bases are handled below.
5167    if (Base->isVirtual())
5168      continue;
5169
5170    CXXRecordDecl *BaseClassDecl
5171      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5172    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5173      DeclareImplicitCopyConstructor(BaseClassDecl);
5174
5175    HasConstCopyConstructor
5176      = BaseClassDecl->hasConstCopyConstructor(Context);
5177  }
5178
5179  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5180                                       BaseEnd = ClassDecl->vbases_end();
5181       HasConstCopyConstructor && Base != BaseEnd;
5182       ++Base) {
5183    CXXRecordDecl *BaseClassDecl
5184      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5185    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5186      DeclareImplicitCopyConstructor(BaseClassDecl);
5187
5188    HasConstCopyConstructor
5189      = BaseClassDecl->hasConstCopyConstructor(Context);
5190  }
5191
5192  //     -- for all the nonstatic data members of X that are of a
5193  //        class type M (or array thereof), each such class type
5194  //        has a copy constructor whose first parameter is of type
5195  //        const M& or const volatile M&.
5196  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5197                                  FieldEnd = ClassDecl->field_end();
5198       HasConstCopyConstructor && Field != FieldEnd;
5199       ++Field) {
5200    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5201    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5202      CXXRecordDecl *FieldClassDecl
5203        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5204      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5205        DeclareImplicitCopyConstructor(FieldClassDecl);
5206
5207      HasConstCopyConstructor
5208        = FieldClassDecl->hasConstCopyConstructor(Context);
5209    }
5210  }
5211
5212  //   Otherwise, the implicitly declared copy constructor will have
5213  //   the form
5214  //
5215  //       X::X(X&)
5216  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5217  QualType ArgType = ClassType;
5218  if (HasConstCopyConstructor)
5219    ArgType = ArgType.withConst();
5220  ArgType = Context.getLValueReferenceType(ArgType);
5221
5222  // C++ [except.spec]p14:
5223  //   An implicitly declared special member function (Clause 12) shall have an
5224  //   exception-specification. [...]
5225  ImplicitExceptionSpecification ExceptSpec(Context);
5226  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5227  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5228                                       BaseEnd = ClassDecl->bases_end();
5229       Base != BaseEnd;
5230       ++Base) {
5231    // Virtual bases are handled below.
5232    if (Base->isVirtual())
5233      continue;
5234
5235    CXXRecordDecl *BaseClassDecl
5236      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5237    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5238      DeclareImplicitCopyConstructor(BaseClassDecl);
5239
5240    if (CXXConstructorDecl *CopyConstructor
5241                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5242      ExceptSpec.CalledDecl(CopyConstructor);
5243  }
5244  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5245                                       BaseEnd = ClassDecl->vbases_end();
5246       Base != BaseEnd;
5247       ++Base) {
5248    CXXRecordDecl *BaseClassDecl
5249      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5250    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5251      DeclareImplicitCopyConstructor(BaseClassDecl);
5252
5253    if (CXXConstructorDecl *CopyConstructor
5254                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5255      ExceptSpec.CalledDecl(CopyConstructor);
5256  }
5257  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5258                                  FieldEnd = ClassDecl->field_end();
5259       Field != FieldEnd;
5260       ++Field) {
5261    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5262    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5263      CXXRecordDecl *FieldClassDecl
5264        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5265      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5266        DeclareImplicitCopyConstructor(FieldClassDecl);
5267
5268      if (CXXConstructorDecl *CopyConstructor
5269                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5270        ExceptSpec.CalledDecl(CopyConstructor);
5271    }
5272  }
5273
5274  //   An implicitly-declared copy constructor is an inline public
5275  //   member of its class.
5276  DeclarationName Name
5277    = Context.DeclarationNames.getCXXConstructorName(
5278                                           Context.getCanonicalType(ClassType));
5279  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5280  CXXConstructorDecl *CopyConstructor
5281    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5282                                 Context.getFunctionType(Context.VoidTy,
5283                                                         &ArgType, 1,
5284                                                         false, 0,
5285                                         ExceptSpec.hasExceptionSpecification(),
5286                                      ExceptSpec.hasAnyExceptionSpecification(),
5287                                                         ExceptSpec.size(),
5288                                                         ExceptSpec.data(),
5289                                                       FunctionType::ExtInfo()),
5290                                 /*TInfo=*/0,
5291                                 /*isExplicit=*/false,
5292                                 /*isInline=*/true,
5293                                 /*isImplicitlyDeclared=*/true);
5294  CopyConstructor->setAccess(AS_public);
5295  CopyConstructor->setImplicit();
5296  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5297
5298  // Note that we have declared this constructor.
5299  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5300
5301  // Add the parameter to the constructor.
5302  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5303                                               ClassDecl->getLocation(),
5304                                               /*IdentifierInfo=*/0,
5305                                               ArgType, /*TInfo=*/0,
5306                                               SC_None,
5307                                               SC_None, 0);
5308  CopyConstructor->setParams(&FromParam, 1);
5309  if (Scope *S = getScopeForContext(ClassDecl))
5310    PushOnScopeChains(CopyConstructor, S, false);
5311  ClassDecl->addDecl(CopyConstructor);
5312
5313  return CopyConstructor;
5314}
5315
5316void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5317                                   CXXConstructorDecl *CopyConstructor,
5318                                   unsigned TypeQuals) {
5319  assert((CopyConstructor->isImplicit() &&
5320          CopyConstructor->isCopyConstructor(TypeQuals) &&
5321          !CopyConstructor->isUsed(false)) &&
5322         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5323
5324  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5325  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5326
5327  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5328  DiagnosticErrorTrap Trap(Diags);
5329
5330  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5331      Trap.hasErrorOccurred()) {
5332    Diag(CurrentLocation, diag::note_member_synthesized_at)
5333      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5334    CopyConstructor->setInvalidDecl();
5335  }  else {
5336    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5337                                               CopyConstructor->getLocation(),
5338                                               MultiStmtArg(*this, 0, 0),
5339                                               /*isStmtExpr=*/false)
5340                                                              .takeAs<Stmt>());
5341  }
5342
5343  CopyConstructor->setUsed();
5344}
5345
5346ExprResult
5347Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5348                            CXXConstructorDecl *Constructor,
5349                            MultiExprArg ExprArgs,
5350                            bool RequiresZeroInit,
5351                            unsigned ConstructKind,
5352                            SourceRange ParenRange) {
5353  bool Elidable = false;
5354
5355  // C++0x [class.copy]p34:
5356  //   When certain criteria are met, an implementation is allowed to
5357  //   omit the copy/move construction of a class object, even if the
5358  //   copy/move constructor and/or destructor for the object have
5359  //   side effects. [...]
5360  //     - when a temporary class object that has not been bound to a
5361  //       reference (12.2) would be copied/moved to a class object
5362  //       with the same cv-unqualified type, the copy/move operation
5363  //       can be omitted by constructing the temporary object
5364  //       directly into the target of the omitted copy/move
5365  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5366      Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5367    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5368    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5369  }
5370
5371  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5372                               Elidable, move(ExprArgs), RequiresZeroInit,
5373                               ConstructKind, ParenRange);
5374}
5375
5376/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5377/// including handling of its default argument expressions.
5378ExprResult
5379Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5380                            CXXConstructorDecl *Constructor, bool Elidable,
5381                            MultiExprArg ExprArgs,
5382                            bool RequiresZeroInit,
5383                            unsigned ConstructKind,
5384                            SourceRange ParenRange) {
5385  unsigned NumExprs = ExprArgs.size();
5386  Expr **Exprs = (Expr **)ExprArgs.release();
5387
5388  MarkDeclarationReferenced(ConstructLoc, Constructor);
5389  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5390                                        Constructor, Elidable, Exprs, NumExprs,
5391                                        RequiresZeroInit,
5392              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
5393                                        ParenRange));
5394}
5395
5396bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5397                                        CXXConstructorDecl *Constructor,
5398                                        MultiExprArg Exprs) {
5399  // FIXME: Provide the correct paren SourceRange when available.
5400  ExprResult TempResult =
5401    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5402                          move(Exprs), false, CXXConstructExpr::CK_Complete,
5403                          SourceRange());
5404  if (TempResult.isInvalid())
5405    return true;
5406
5407  Expr *Temp = TempResult.takeAs<Expr>();
5408  CheckImplicitConversions(Temp, VD->getLocation());
5409  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5410  Temp = MaybeCreateExprWithCleanups(Temp);
5411  VD->setInit(Temp);
5412
5413  return false;
5414}
5415
5416void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5417  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5418  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5419      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5420    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5421    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5422    CheckDestructorAccess(VD->getLocation(), Destructor,
5423                          PDiag(diag::err_access_dtor_var)
5424                            << VD->getDeclName()
5425                            << VD->getType());
5426
5427    // TODO: this should be re-enabled for static locals by !CXAAtExit
5428    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5429      Diag(VD->getLocation(), diag::warn_global_destructor);
5430  }
5431}
5432
5433/// AddCXXDirectInitializerToDecl - This action is called immediately after
5434/// ActOnDeclarator, when a C++ direct initializer is present.
5435/// e.g: "int x(1);"
5436void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5437                                         SourceLocation LParenLoc,
5438                                         MultiExprArg Exprs,
5439                                         SourceLocation RParenLoc) {
5440  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5441
5442  // If there is no declaration, there was an error parsing it.  Just ignore
5443  // the initializer.
5444  if (RealDecl == 0)
5445    return;
5446
5447  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5448  if (!VDecl) {
5449    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5450    RealDecl->setInvalidDecl();
5451    return;
5452  }
5453
5454  // We will represent direct-initialization similarly to copy-initialization:
5455  //    int x(1);  -as-> int x = 1;
5456  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5457  //
5458  // Clients that want to distinguish between the two forms, can check for
5459  // direct initializer using VarDecl::hasCXXDirectInitializer().
5460  // A major benefit is that clients that don't particularly care about which
5461  // exactly form was it (like the CodeGen) can handle both cases without
5462  // special case code.
5463
5464  // C++ 8.5p11:
5465  // The form of initialization (using parentheses or '=') is generally
5466  // insignificant, but does matter when the entity being initialized has a
5467  // class type.
5468
5469  if (!VDecl->getType()->isDependentType() &&
5470      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5471                          diag::err_typecheck_decl_incomplete_type)) {
5472    VDecl->setInvalidDecl();
5473    return;
5474  }
5475
5476  // The variable can not have an abstract class type.
5477  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5478                             diag::err_abstract_type_in_decl,
5479                             AbstractVariableType))
5480    VDecl->setInvalidDecl();
5481
5482  const VarDecl *Def;
5483  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5484    Diag(VDecl->getLocation(), diag::err_redefinition)
5485    << VDecl->getDeclName();
5486    Diag(Def->getLocation(), diag::note_previous_definition);
5487    VDecl->setInvalidDecl();
5488    return;
5489  }
5490
5491  // C++ [class.static.data]p4
5492  //   If a static data member is of const integral or const
5493  //   enumeration type, its declaration in the class definition can
5494  //   specify a constant-initializer which shall be an integral
5495  //   constant expression (5.19). In that case, the member can appear
5496  //   in integral constant expressions. The member shall still be
5497  //   defined in a namespace scope if it is used in the program and the
5498  //   namespace scope definition shall not contain an initializer.
5499  //
5500  // We already performed a redefinition check above, but for static
5501  // data members we also need to check whether there was an in-class
5502  // declaration with an initializer.
5503  const VarDecl* PrevInit = 0;
5504  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5505    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5506    Diag(PrevInit->getLocation(), diag::note_previous_definition);
5507    return;
5508  }
5509
5510  // If either the declaration has a dependent type or if any of the
5511  // expressions is type-dependent, we represent the initialization
5512  // via a ParenListExpr for later use during template instantiation.
5513  if (VDecl->getType()->isDependentType() ||
5514      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5515    // Let clients know that initialization was done with a direct initializer.
5516    VDecl->setCXXDirectInitializer(true);
5517
5518    // Store the initialization expressions as a ParenListExpr.
5519    unsigned NumExprs = Exprs.size();
5520    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5521                                               (Expr **)Exprs.release(),
5522                                               NumExprs, RParenLoc));
5523    return;
5524  }
5525
5526  // Capture the variable that is being initialized and the style of
5527  // initialization.
5528  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5529
5530  // FIXME: Poor source location information.
5531  InitializationKind Kind
5532    = InitializationKind::CreateDirect(VDecl->getLocation(),
5533                                       LParenLoc, RParenLoc);
5534
5535  InitializationSequence InitSeq(*this, Entity, Kind,
5536                                 Exprs.get(), Exprs.size());
5537  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5538  if (Result.isInvalid()) {
5539    VDecl->setInvalidDecl();
5540    return;
5541  }
5542
5543  CheckImplicitConversions(Result.get(), LParenLoc);
5544
5545  Result = MaybeCreateExprWithCleanups(Result);
5546  VDecl->setInit(Result.takeAs<Expr>());
5547  VDecl->setCXXDirectInitializer(true);
5548
5549    if (!VDecl->isInvalidDecl() &&
5550        !VDecl->getDeclContext()->isDependentContext() &&
5551        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
5552        !VDecl->getInit()->isConstantInitializer(Context,
5553                                        VDecl->getType()->isReferenceType()))
5554      Diag(VDecl->getLocation(), diag::warn_global_constructor)
5555        << VDecl->getInit()->getSourceRange();
5556
5557  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5558    FinalizeVarWithDestructor(VDecl, Record);
5559}
5560
5561/// \brief Given a constructor and the set of arguments provided for the
5562/// constructor, convert the arguments and add any required default arguments
5563/// to form a proper call to this constructor.
5564///
5565/// \returns true if an error occurred, false otherwise.
5566bool
5567Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5568                              MultiExprArg ArgsPtr,
5569                              SourceLocation Loc,
5570                              ASTOwningVector<Expr*> &ConvertedArgs) {
5571  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5572  unsigned NumArgs = ArgsPtr.size();
5573  Expr **Args = (Expr **)ArgsPtr.get();
5574
5575  const FunctionProtoType *Proto
5576    = Constructor->getType()->getAs<FunctionProtoType>();
5577  assert(Proto && "Constructor without a prototype?");
5578  unsigned NumArgsInProto = Proto->getNumArgs();
5579
5580  // If too few arguments are available, we'll fill in the rest with defaults.
5581  if (NumArgs < NumArgsInProto)
5582    ConvertedArgs.reserve(NumArgsInProto);
5583  else
5584    ConvertedArgs.reserve(NumArgs);
5585
5586  VariadicCallType CallType =
5587    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5588  llvm::SmallVector<Expr *, 8> AllArgs;
5589  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5590                                        Proto, 0, Args, NumArgs, AllArgs,
5591                                        CallType);
5592  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5593    ConvertedArgs.push_back(AllArgs[i]);
5594  return Invalid;
5595}
5596
5597static inline bool
5598CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5599                                       const FunctionDecl *FnDecl) {
5600  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
5601  if (isa<NamespaceDecl>(DC)) {
5602    return SemaRef.Diag(FnDecl->getLocation(),
5603                        diag::err_operator_new_delete_declared_in_namespace)
5604      << FnDecl->getDeclName();
5605  }
5606
5607  if (isa<TranslationUnitDecl>(DC) &&
5608      FnDecl->getStorageClass() == SC_Static) {
5609    return SemaRef.Diag(FnDecl->getLocation(),
5610                        diag::err_operator_new_delete_declared_static)
5611      << FnDecl->getDeclName();
5612  }
5613
5614  return false;
5615}
5616
5617static inline bool
5618CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5619                            CanQualType ExpectedResultType,
5620                            CanQualType ExpectedFirstParamType,
5621                            unsigned DependentParamTypeDiag,
5622                            unsigned InvalidParamTypeDiag) {
5623  QualType ResultType =
5624    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5625
5626  // Check that the result type is not dependent.
5627  if (ResultType->isDependentType())
5628    return SemaRef.Diag(FnDecl->getLocation(),
5629                        diag::err_operator_new_delete_dependent_result_type)
5630    << FnDecl->getDeclName() << ExpectedResultType;
5631
5632  // Check that the result type is what we expect.
5633  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5634    return SemaRef.Diag(FnDecl->getLocation(),
5635                        diag::err_operator_new_delete_invalid_result_type)
5636    << FnDecl->getDeclName() << ExpectedResultType;
5637
5638  // A function template must have at least 2 parameters.
5639  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5640    return SemaRef.Diag(FnDecl->getLocation(),
5641                      diag::err_operator_new_delete_template_too_few_parameters)
5642        << FnDecl->getDeclName();
5643
5644  // The function decl must have at least 1 parameter.
5645  if (FnDecl->getNumParams() == 0)
5646    return SemaRef.Diag(FnDecl->getLocation(),
5647                        diag::err_operator_new_delete_too_few_parameters)
5648      << FnDecl->getDeclName();
5649
5650  // Check the the first parameter type is not dependent.
5651  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5652  if (FirstParamType->isDependentType())
5653    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5654      << FnDecl->getDeclName() << ExpectedFirstParamType;
5655
5656  // Check that the first parameter type is what we expect.
5657  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5658      ExpectedFirstParamType)
5659    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5660    << FnDecl->getDeclName() << ExpectedFirstParamType;
5661
5662  return false;
5663}
5664
5665static bool
5666CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5667  // C++ [basic.stc.dynamic.allocation]p1:
5668  //   A program is ill-formed if an allocation function is declared in a
5669  //   namespace scope other than global scope or declared static in global
5670  //   scope.
5671  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5672    return true;
5673
5674  CanQualType SizeTy =
5675    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5676
5677  // C++ [basic.stc.dynamic.allocation]p1:
5678  //  The return type shall be void*. The first parameter shall have type
5679  //  std::size_t.
5680  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5681                                  SizeTy,
5682                                  diag::err_operator_new_dependent_param_type,
5683                                  diag::err_operator_new_param_type))
5684    return true;
5685
5686  // C++ [basic.stc.dynamic.allocation]p1:
5687  //  The first parameter shall not have an associated default argument.
5688  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5689    return SemaRef.Diag(FnDecl->getLocation(),
5690                        diag::err_operator_new_default_arg)
5691      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5692
5693  return false;
5694}
5695
5696static bool
5697CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5698  // C++ [basic.stc.dynamic.deallocation]p1:
5699  //   A program is ill-formed if deallocation functions are declared in a
5700  //   namespace scope other than global scope or declared static in global
5701  //   scope.
5702  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5703    return true;
5704
5705  // C++ [basic.stc.dynamic.deallocation]p2:
5706  //   Each deallocation function shall return void and its first parameter
5707  //   shall be void*.
5708  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5709                                  SemaRef.Context.VoidPtrTy,
5710                                 diag::err_operator_delete_dependent_param_type,
5711                                 diag::err_operator_delete_param_type))
5712    return true;
5713
5714  return false;
5715}
5716
5717/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5718/// of this overloaded operator is well-formed. If so, returns false;
5719/// otherwise, emits appropriate diagnostics and returns true.
5720bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5721  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5722         "Expected an overloaded operator declaration");
5723
5724  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5725
5726  // C++ [over.oper]p5:
5727  //   The allocation and deallocation functions, operator new,
5728  //   operator new[], operator delete and operator delete[], are
5729  //   described completely in 3.7.3. The attributes and restrictions
5730  //   found in the rest of this subclause do not apply to them unless
5731  //   explicitly stated in 3.7.3.
5732  if (Op == OO_Delete || Op == OO_Array_Delete)
5733    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5734
5735  if (Op == OO_New || Op == OO_Array_New)
5736    return CheckOperatorNewDeclaration(*this, FnDecl);
5737
5738  // C++ [over.oper]p6:
5739  //   An operator function shall either be a non-static member
5740  //   function or be a non-member function and have at least one
5741  //   parameter whose type is a class, a reference to a class, an
5742  //   enumeration, or a reference to an enumeration.
5743  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5744    if (MethodDecl->isStatic())
5745      return Diag(FnDecl->getLocation(),
5746                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5747  } else {
5748    bool ClassOrEnumParam = false;
5749    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5750                                   ParamEnd = FnDecl->param_end();
5751         Param != ParamEnd; ++Param) {
5752      QualType ParamType = (*Param)->getType().getNonReferenceType();
5753      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5754          ParamType->isEnumeralType()) {
5755        ClassOrEnumParam = true;
5756        break;
5757      }
5758    }
5759
5760    if (!ClassOrEnumParam)
5761      return Diag(FnDecl->getLocation(),
5762                  diag::err_operator_overload_needs_class_or_enum)
5763        << FnDecl->getDeclName();
5764  }
5765
5766  // C++ [over.oper]p8:
5767  //   An operator function cannot have default arguments (8.3.6),
5768  //   except where explicitly stated below.
5769  //
5770  // Only the function-call operator allows default arguments
5771  // (C++ [over.call]p1).
5772  if (Op != OO_Call) {
5773    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5774         Param != FnDecl->param_end(); ++Param) {
5775      if ((*Param)->hasDefaultArg())
5776        return Diag((*Param)->getLocation(),
5777                    diag::err_operator_overload_default_arg)
5778          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5779    }
5780  }
5781
5782  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5783    { false, false, false }
5784#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5785    , { Unary, Binary, MemberOnly }
5786#include "clang/Basic/OperatorKinds.def"
5787  };
5788
5789  bool CanBeUnaryOperator = OperatorUses[Op][0];
5790  bool CanBeBinaryOperator = OperatorUses[Op][1];
5791  bool MustBeMemberOperator = OperatorUses[Op][2];
5792
5793  // C++ [over.oper]p8:
5794  //   [...] Operator functions cannot have more or fewer parameters
5795  //   than the number required for the corresponding operator, as
5796  //   described in the rest of this subclause.
5797  unsigned NumParams = FnDecl->getNumParams()
5798                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5799  if (Op != OO_Call &&
5800      ((NumParams == 1 && !CanBeUnaryOperator) ||
5801       (NumParams == 2 && !CanBeBinaryOperator) ||
5802       (NumParams < 1) || (NumParams > 2))) {
5803    // We have the wrong number of parameters.
5804    unsigned ErrorKind;
5805    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5806      ErrorKind = 2;  // 2 -> unary or binary.
5807    } else if (CanBeUnaryOperator) {
5808      ErrorKind = 0;  // 0 -> unary
5809    } else {
5810      assert(CanBeBinaryOperator &&
5811             "All non-call overloaded operators are unary or binary!");
5812      ErrorKind = 1;  // 1 -> binary
5813    }
5814
5815    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5816      << FnDecl->getDeclName() << NumParams << ErrorKind;
5817  }
5818
5819  // Overloaded operators other than operator() cannot be variadic.
5820  if (Op != OO_Call &&
5821      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5822    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5823      << FnDecl->getDeclName();
5824  }
5825
5826  // Some operators must be non-static member functions.
5827  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5828    return Diag(FnDecl->getLocation(),
5829                diag::err_operator_overload_must_be_member)
5830      << FnDecl->getDeclName();
5831  }
5832
5833  // C++ [over.inc]p1:
5834  //   The user-defined function called operator++ implements the
5835  //   prefix and postfix ++ operator. If this function is a member
5836  //   function with no parameters, or a non-member function with one
5837  //   parameter of class or enumeration type, it defines the prefix
5838  //   increment operator ++ for objects of that type. If the function
5839  //   is a member function with one parameter (which shall be of type
5840  //   int) or a non-member function with two parameters (the second
5841  //   of which shall be of type int), it defines the postfix
5842  //   increment operator ++ for objects of that type.
5843  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5844    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5845    bool ParamIsInt = false;
5846    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5847      ParamIsInt = BT->getKind() == BuiltinType::Int;
5848
5849    if (!ParamIsInt)
5850      return Diag(LastParam->getLocation(),
5851                  diag::err_operator_overload_post_incdec_must_be_int)
5852        << LastParam->getType() << (Op == OO_MinusMinus);
5853  }
5854
5855  return false;
5856}
5857
5858/// CheckLiteralOperatorDeclaration - Check whether the declaration
5859/// of this literal operator function is well-formed. If so, returns
5860/// false; otherwise, emits appropriate diagnostics and returns true.
5861bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5862  DeclContext *DC = FnDecl->getDeclContext();
5863  Decl::Kind Kind = DC->getDeclKind();
5864  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5865      Kind != Decl::LinkageSpec) {
5866    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5867      << FnDecl->getDeclName();
5868    return true;
5869  }
5870
5871  bool Valid = false;
5872
5873  // template <char...> type operator "" name() is the only valid template
5874  // signature, and the only valid signature with no parameters.
5875  if (FnDecl->param_size() == 0) {
5876    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5877      // Must have only one template parameter
5878      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5879      if (Params->size() == 1) {
5880        NonTypeTemplateParmDecl *PmDecl =
5881          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5882
5883        // The template parameter must be a char parameter pack.
5884        // FIXME: This test will always fail because non-type parameter packs
5885        //   have not been implemented.
5886        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5887            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5888          Valid = true;
5889      }
5890    }
5891  } else {
5892    // Check the first parameter
5893    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5894
5895    QualType T = (*Param)->getType();
5896
5897    // unsigned long long int, long double, and any character type are allowed
5898    // as the only parameters.
5899    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5900        Context.hasSameType(T, Context.LongDoubleTy) ||
5901        Context.hasSameType(T, Context.CharTy) ||
5902        Context.hasSameType(T, Context.WCharTy) ||
5903        Context.hasSameType(T, Context.Char16Ty) ||
5904        Context.hasSameType(T, Context.Char32Ty)) {
5905      if (++Param == FnDecl->param_end())
5906        Valid = true;
5907      goto FinishedParams;
5908    }
5909
5910    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5911    const PointerType *PT = T->getAs<PointerType>();
5912    if (!PT)
5913      goto FinishedParams;
5914    T = PT->getPointeeType();
5915    if (!T.isConstQualified())
5916      goto FinishedParams;
5917    T = T.getUnqualifiedType();
5918
5919    // Move on to the second parameter;
5920    ++Param;
5921
5922    // If there is no second parameter, the first must be a const char *
5923    if (Param == FnDecl->param_end()) {
5924      if (Context.hasSameType(T, Context.CharTy))
5925        Valid = true;
5926      goto FinishedParams;
5927    }
5928
5929    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5930    // are allowed as the first parameter to a two-parameter function
5931    if (!(Context.hasSameType(T, Context.CharTy) ||
5932          Context.hasSameType(T, Context.WCharTy) ||
5933          Context.hasSameType(T, Context.Char16Ty) ||
5934          Context.hasSameType(T, Context.Char32Ty)))
5935      goto FinishedParams;
5936
5937    // The second and final parameter must be an std::size_t
5938    T = (*Param)->getType().getUnqualifiedType();
5939    if (Context.hasSameType(T, Context.getSizeType()) &&
5940        ++Param == FnDecl->param_end())
5941      Valid = true;
5942  }
5943
5944  // FIXME: This diagnostic is absolutely terrible.
5945FinishedParams:
5946  if (!Valid) {
5947    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5948      << FnDecl->getDeclName();
5949    return true;
5950  }
5951
5952  return false;
5953}
5954
5955/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5956/// linkage specification, including the language and (if present)
5957/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5958/// the location of the language string literal, which is provided
5959/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5960/// the '{' brace. Otherwise, this linkage specification does not
5961/// have any braces.
5962Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
5963                                           SourceLocation LangLoc,
5964                                           llvm::StringRef Lang,
5965                                           SourceLocation LBraceLoc) {
5966  LinkageSpecDecl::LanguageIDs Language;
5967  if (Lang == "\"C\"")
5968    Language = LinkageSpecDecl::lang_c;
5969  else if (Lang == "\"C++\"")
5970    Language = LinkageSpecDecl::lang_cxx;
5971  else {
5972    Diag(LangLoc, diag::err_bad_language);
5973    return 0;
5974  }
5975
5976  // FIXME: Add all the various semantics of linkage specifications
5977
5978  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5979                                               LangLoc, Language,
5980                                               LBraceLoc.isValid());
5981  CurContext->addDecl(D);
5982  PushDeclContext(S, D);
5983  return D;
5984}
5985
5986/// ActOnFinishLinkageSpecification - Complete the definition of
5987/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5988/// valid, it's the position of the closing '}' brace in a linkage
5989/// specification that uses braces.
5990Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
5991                                                      Decl *LinkageSpec,
5992                                                      SourceLocation RBraceLoc) {
5993  if (LinkageSpec)
5994    PopDeclContext();
5995  return LinkageSpec;
5996}
5997
5998/// \brief Perform semantic analysis for the variable declaration that
5999/// occurs within a C++ catch clause, returning the newly-created
6000/// variable.
6001VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6002                                         TypeSourceInfo *TInfo,
6003                                         IdentifierInfo *Name,
6004                                         SourceLocation Loc) {
6005  bool Invalid = false;
6006  QualType ExDeclType = TInfo->getType();
6007
6008  // Arrays and functions decay.
6009  if (ExDeclType->isArrayType())
6010    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6011  else if (ExDeclType->isFunctionType())
6012    ExDeclType = Context.getPointerType(ExDeclType);
6013
6014  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6015  // The exception-declaration shall not denote a pointer or reference to an
6016  // incomplete type, other than [cv] void*.
6017  // N2844 forbids rvalue references.
6018  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6019    Diag(Loc, diag::err_catch_rvalue_ref);
6020    Invalid = true;
6021  }
6022
6023  // GCC allows catching pointers and references to incomplete types
6024  // as an extension; so do we, but we warn by default.
6025
6026  QualType BaseType = ExDeclType;
6027  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6028  unsigned DK = diag::err_catch_incomplete;
6029  bool IncompleteCatchIsInvalid = true;
6030  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6031    BaseType = Ptr->getPointeeType();
6032    Mode = 1;
6033    DK = diag::ext_catch_incomplete_ptr;
6034    IncompleteCatchIsInvalid = false;
6035  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6036    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6037    BaseType = Ref->getPointeeType();
6038    Mode = 2;
6039    DK = diag::ext_catch_incomplete_ref;
6040    IncompleteCatchIsInvalid = false;
6041  }
6042  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6043      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6044      IncompleteCatchIsInvalid)
6045    Invalid = true;
6046
6047  if (!Invalid && !ExDeclType->isDependentType() &&
6048      RequireNonAbstractType(Loc, ExDeclType,
6049                             diag::err_abstract_type_in_decl,
6050                             AbstractVariableType))
6051    Invalid = true;
6052
6053  // Only the non-fragile NeXT runtime currently supports C++ catches
6054  // of ObjC types, and no runtime supports catching ObjC types by value.
6055  if (!Invalid && getLangOptions().ObjC1) {
6056    QualType T = ExDeclType;
6057    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6058      T = RT->getPointeeType();
6059
6060    if (T->isObjCObjectType()) {
6061      Diag(Loc, diag::err_objc_object_catch);
6062      Invalid = true;
6063    } else if (T->isObjCObjectPointerType()) {
6064      if (!getLangOptions().NeXTRuntime) {
6065        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6066        Invalid = true;
6067      } else if (!getLangOptions().ObjCNonFragileABI) {
6068        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6069        Invalid = true;
6070      }
6071    }
6072  }
6073
6074  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6075                                    Name, ExDeclType, TInfo, SC_None,
6076                                    SC_None);
6077  ExDecl->setExceptionVariable(true);
6078
6079  if (!Invalid) {
6080    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6081      // C++ [except.handle]p16:
6082      //   The object declared in an exception-declaration or, if the
6083      //   exception-declaration does not specify a name, a temporary (12.2) is
6084      //   copy-initialized (8.5) from the exception object. [...]
6085      //   The object is destroyed when the handler exits, after the destruction
6086      //   of any automatic objects initialized within the handler.
6087      //
6088      // We just pretend to initialize the object with itself, then make sure
6089      // it can be destroyed later.
6090      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6091      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6092                                            Loc, ExDeclType, VK_LValue, 0);
6093      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6094                                                               SourceLocation());
6095      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6096      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6097                                         MultiExprArg(*this, &ExDeclRef, 1));
6098      if (Result.isInvalid())
6099        Invalid = true;
6100      else
6101        FinalizeVarWithDestructor(ExDecl, RecordTy);
6102    }
6103  }
6104
6105  if (Invalid)
6106    ExDecl->setInvalidDecl();
6107
6108  return ExDecl;
6109}
6110
6111/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6112/// handler.
6113Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6114  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6115  QualType ExDeclType = TInfo->getType();
6116
6117  bool Invalid = D.isInvalidType();
6118  IdentifierInfo *II = D.getIdentifier();
6119  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6120                                             LookupOrdinaryName,
6121                                             ForRedeclaration)) {
6122    // The scope should be freshly made just for us. There is just no way
6123    // it contains any previous declaration.
6124    assert(!S->isDeclScope(PrevDecl));
6125    if (PrevDecl->isTemplateParameter()) {
6126      // Maybe we will complain about the shadowed template parameter.
6127      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6128    }
6129  }
6130
6131  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6132    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6133      << D.getCXXScopeSpec().getRange();
6134    Invalid = true;
6135  }
6136
6137  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6138                                              D.getIdentifier(),
6139                                              D.getIdentifierLoc());
6140
6141  if (Invalid)
6142    ExDecl->setInvalidDecl();
6143
6144  // Add the exception declaration into this scope.
6145  if (II)
6146    PushOnScopeChains(ExDecl, S);
6147  else
6148    CurContext->addDecl(ExDecl);
6149
6150  ProcessDeclAttributes(S, ExDecl, D);
6151  return ExDecl;
6152}
6153
6154Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6155                                         Expr *AssertExpr,
6156                                         Expr *AssertMessageExpr_) {
6157  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6158
6159  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6160    llvm::APSInt Value(32);
6161    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6162      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6163        AssertExpr->getSourceRange();
6164      return 0;
6165    }
6166
6167    if (Value == 0) {
6168      Diag(AssertLoc, diag::err_static_assert_failed)
6169        << AssertMessage->getString() << AssertExpr->getSourceRange();
6170    }
6171  }
6172
6173  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6174                                        AssertExpr, AssertMessage);
6175
6176  CurContext->addDecl(Decl);
6177  return Decl;
6178}
6179
6180/// \brief Perform semantic analysis of the given friend type declaration.
6181///
6182/// \returns A friend declaration that.
6183FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6184                                      TypeSourceInfo *TSInfo) {
6185  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6186
6187  QualType T = TSInfo->getType();
6188  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6189
6190  if (!getLangOptions().CPlusPlus0x) {
6191    // C++03 [class.friend]p2:
6192    //   An elaborated-type-specifier shall be used in a friend declaration
6193    //   for a class.*
6194    //
6195    //   * The class-key of the elaborated-type-specifier is required.
6196    if (!ActiveTemplateInstantiations.empty()) {
6197      // Do not complain about the form of friend template types during
6198      // template instantiation; we will already have complained when the
6199      // template was declared.
6200    } else if (!T->isElaboratedTypeSpecifier()) {
6201      // If we evaluated the type to a record type, suggest putting
6202      // a tag in front.
6203      if (const RecordType *RT = T->getAs<RecordType>()) {
6204        RecordDecl *RD = RT->getDecl();
6205
6206        std::string InsertionText = std::string(" ") + RD->getKindName();
6207
6208        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6209          << (unsigned) RD->getTagKind()
6210          << T
6211          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6212                                        InsertionText);
6213      } else {
6214        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6215          << T
6216          << SourceRange(FriendLoc, TypeRange.getEnd());
6217      }
6218    } else if (T->getAs<EnumType>()) {
6219      Diag(FriendLoc, diag::ext_enum_friend)
6220        << T
6221        << SourceRange(FriendLoc, TypeRange.getEnd());
6222    }
6223  }
6224
6225  // C++0x [class.friend]p3:
6226  //   If the type specifier in a friend declaration designates a (possibly
6227  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6228  //   the friend declaration is ignored.
6229
6230  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6231  // in [class.friend]p3 that we do not implement.
6232
6233  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6234}
6235
6236/// Handle a friend tag declaration where the scope specifier was
6237/// templated.
6238Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6239                                    unsigned TagSpec, SourceLocation TagLoc,
6240                                    CXXScopeSpec &SS,
6241                                    IdentifierInfo *Name, SourceLocation NameLoc,
6242                                    AttributeList *Attr,
6243                                    MultiTemplateParamsArg TempParamLists) {
6244  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6245
6246  bool isExplicitSpecialization = false;
6247  unsigned NumMatchedTemplateParamLists = TempParamLists.size();
6248  bool Invalid = false;
6249
6250  if (TemplateParameterList *TemplateParams
6251        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6252                                                  TempParamLists.get(),
6253                                                  TempParamLists.size(),
6254                                                  /*friend*/ true,
6255                                                  isExplicitSpecialization,
6256                                                  Invalid)) {
6257    --NumMatchedTemplateParamLists;
6258
6259    if (TemplateParams->size() > 0) {
6260      // This is a declaration of a class template.
6261      if (Invalid)
6262        return 0;
6263
6264      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
6265                                SS, Name, NameLoc, Attr,
6266                                TemplateParams, AS_public).take();
6267    } else {
6268      // The "template<>" header is extraneous.
6269      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6270        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6271      isExplicitSpecialization = true;
6272    }
6273  }
6274
6275  if (Invalid) return 0;
6276
6277  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
6278
6279  bool isAllExplicitSpecializations = true;
6280  for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
6281    if (TempParamLists.get()[I]->size()) {
6282      isAllExplicitSpecializations = false;
6283      break;
6284    }
6285  }
6286
6287  // FIXME: don't ignore attributes.
6288
6289  // If it's explicit specializations all the way down, just forget
6290  // about the template header and build an appropriate non-templated
6291  // friend.  TODO: for source fidelity, remember the headers.
6292  if (isAllExplicitSpecializations) {
6293    ElaboratedTypeKeyword Keyword
6294      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6295    QualType T = CheckTypenameType(Keyword, SS.getScopeRep(), *Name,
6296                                   TagLoc, SS.getRange(), NameLoc);
6297    if (T.isNull())
6298      return 0;
6299
6300    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6301    if (isa<DependentNameType>(T)) {
6302      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6303      TL.setKeywordLoc(TagLoc);
6304      TL.setQualifierRange(SS.getRange());
6305      TL.setNameLoc(NameLoc);
6306    } else {
6307      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6308      TL.setKeywordLoc(TagLoc);
6309      TL.setQualifierRange(SS.getRange());
6310      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
6311    }
6312
6313    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6314                                            TSI, FriendLoc);
6315    Friend->setAccess(AS_public);
6316    CurContext->addDecl(Friend);
6317    return Friend;
6318  }
6319
6320  // Handle the case of a templated-scope friend class.  e.g.
6321  //   template <class T> class A<T>::B;
6322  // FIXME: we don't support these right now.
6323  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6324  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
6325  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6326  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6327  TL.setKeywordLoc(TagLoc);
6328  TL.setQualifierRange(SS.getRange());
6329  TL.setNameLoc(NameLoc);
6330
6331  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6332                                          TSI, FriendLoc);
6333  Friend->setAccess(AS_public);
6334  Friend->setUnsupportedFriend(true);
6335  CurContext->addDecl(Friend);
6336  return Friend;
6337}
6338
6339
6340/// Handle a friend type declaration.  This works in tandem with
6341/// ActOnTag.
6342///
6343/// Notes on friend class templates:
6344///
6345/// We generally treat friend class declarations as if they were
6346/// declaring a class.  So, for example, the elaborated type specifier
6347/// in a friend declaration is required to obey the restrictions of a
6348/// class-head (i.e. no typedefs in the scope chain), template
6349/// parameters are required to match up with simple template-ids, &c.
6350/// However, unlike when declaring a template specialization, it's
6351/// okay to refer to a template specialization without an empty
6352/// template parameter declaration, e.g.
6353///   friend class A<T>::B<unsigned>;
6354/// We permit this as a special case; if there are any template
6355/// parameters present at all, require proper matching, i.e.
6356///   template <> template <class T> friend class A<int>::B;
6357Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6358                                MultiTemplateParamsArg TempParams) {
6359  SourceLocation Loc = DS.getSourceRange().getBegin();
6360
6361  assert(DS.isFriendSpecified());
6362  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6363
6364  // Try to convert the decl specifier to a type.  This works for
6365  // friend templates because ActOnTag never produces a ClassTemplateDecl
6366  // for a TUK_Friend.
6367  Declarator TheDeclarator(DS, Declarator::MemberContext);
6368  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6369  QualType T = TSI->getType();
6370  if (TheDeclarator.isInvalidType())
6371    return 0;
6372
6373  // This is definitely an error in C++98.  It's probably meant to
6374  // be forbidden in C++0x, too, but the specification is just
6375  // poorly written.
6376  //
6377  // The problem is with declarations like the following:
6378  //   template <T> friend A<T>::foo;
6379  // where deciding whether a class C is a friend or not now hinges
6380  // on whether there exists an instantiation of A that causes
6381  // 'foo' to equal C.  There are restrictions on class-heads
6382  // (which we declare (by fiat) elaborated friend declarations to
6383  // be) that makes this tractable.
6384  //
6385  // FIXME: handle "template <> friend class A<T>;", which
6386  // is possibly well-formed?  Who even knows?
6387  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6388    Diag(Loc, diag::err_tagless_friend_type_template)
6389      << DS.getSourceRange();
6390    return 0;
6391  }
6392
6393  // C++98 [class.friend]p1: A friend of a class is a function
6394  //   or class that is not a member of the class . . .
6395  // This is fixed in DR77, which just barely didn't make the C++03
6396  // deadline.  It's also a very silly restriction that seriously
6397  // affects inner classes and which nobody else seems to implement;
6398  // thus we never diagnose it, not even in -pedantic.
6399  //
6400  // But note that we could warn about it: it's always useless to
6401  // friend one of your own members (it's not, however, worthless to
6402  // friend a member of an arbitrary specialization of your template).
6403
6404  Decl *D;
6405  if (unsigned NumTempParamLists = TempParams.size())
6406    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6407                                   NumTempParamLists,
6408                                   TempParams.release(),
6409                                   TSI,
6410                                   DS.getFriendSpecLoc());
6411  else
6412    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6413
6414  if (!D)
6415    return 0;
6416
6417  D->setAccess(AS_public);
6418  CurContext->addDecl(D);
6419
6420  return D;
6421}
6422
6423Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
6424                                    MultiTemplateParamsArg TemplateParams) {
6425  const DeclSpec &DS = D.getDeclSpec();
6426
6427  assert(DS.isFriendSpecified());
6428  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6429
6430  SourceLocation Loc = D.getIdentifierLoc();
6431  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6432  QualType T = TInfo->getType();
6433
6434  // C++ [class.friend]p1
6435  //   A friend of a class is a function or class....
6436  // Note that this sees through typedefs, which is intended.
6437  // It *doesn't* see through dependent types, which is correct
6438  // according to [temp.arg.type]p3:
6439  //   If a declaration acquires a function type through a
6440  //   type dependent on a template-parameter and this causes
6441  //   a declaration that does not use the syntactic form of a
6442  //   function declarator to have a function type, the program
6443  //   is ill-formed.
6444  if (!T->isFunctionType()) {
6445    Diag(Loc, diag::err_unexpected_friend);
6446
6447    // It might be worthwhile to try to recover by creating an
6448    // appropriate declaration.
6449    return 0;
6450  }
6451
6452  // C++ [namespace.memdef]p3
6453  //  - If a friend declaration in a non-local class first declares a
6454  //    class or function, the friend class or function is a member
6455  //    of the innermost enclosing namespace.
6456  //  - The name of the friend is not found by simple name lookup
6457  //    until a matching declaration is provided in that namespace
6458  //    scope (either before or after the class declaration granting
6459  //    friendship).
6460  //  - If a friend function is called, its name may be found by the
6461  //    name lookup that considers functions from namespaces and
6462  //    classes associated with the types of the function arguments.
6463  //  - When looking for a prior declaration of a class or a function
6464  //    declared as a friend, scopes outside the innermost enclosing
6465  //    namespace scope are not considered.
6466
6467  CXXScopeSpec &SS = D.getCXXScopeSpec();
6468  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6469  DeclarationName Name = NameInfo.getName();
6470  assert(Name);
6471
6472  // The context we found the declaration in, or in which we should
6473  // create the declaration.
6474  DeclContext *DC;
6475  Scope *DCScope = S;
6476  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6477                        ForRedeclaration);
6478
6479  // FIXME: there are different rules in local classes
6480
6481  // There are four cases here.
6482  //   - There's no scope specifier, in which case we just go to the
6483  //     appropriate scope and look for a function or function template
6484  //     there as appropriate.
6485  // Recover from invalid scope qualifiers as if they just weren't there.
6486  if (SS.isInvalid() || !SS.isSet()) {
6487    // C++0x [namespace.memdef]p3:
6488    //   If the name in a friend declaration is neither qualified nor
6489    //   a template-id and the declaration is a function or an
6490    //   elaborated-type-specifier, the lookup to determine whether
6491    //   the entity has been previously declared shall not consider
6492    //   any scopes outside the innermost enclosing namespace.
6493    // C++0x [class.friend]p11:
6494    //   If a friend declaration appears in a local class and the name
6495    //   specified is an unqualified name, a prior declaration is
6496    //   looked up without considering scopes that are outside the
6497    //   innermost enclosing non-class scope. For a friend function
6498    //   declaration, if there is no prior declaration, the program is
6499    //   ill-formed.
6500    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
6501    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
6502
6503    // Find the appropriate context according to the above.
6504    DC = CurContext;
6505    while (true) {
6506      // Skip class contexts.  If someone can cite chapter and verse
6507      // for this behavior, that would be nice --- it's what GCC and
6508      // EDG do, and it seems like a reasonable intent, but the spec
6509      // really only says that checks for unqualified existing
6510      // declarations should stop at the nearest enclosing namespace,
6511      // not that they should only consider the nearest enclosing
6512      // namespace.
6513      while (DC->isRecord())
6514        DC = DC->getParent();
6515
6516      LookupQualifiedName(Previous, DC);
6517
6518      // TODO: decide what we think about using declarations.
6519      if (isLocal || !Previous.empty())
6520        break;
6521
6522      if (isTemplateId) {
6523        if (isa<TranslationUnitDecl>(DC)) break;
6524      } else {
6525        if (DC->isFileContext()) break;
6526      }
6527      DC = DC->getParent();
6528    }
6529
6530    // C++ [class.friend]p1: A friend of a class is a function or
6531    //   class that is not a member of the class . . .
6532    // C++0x changes this for both friend types and functions.
6533    // Most C++ 98 compilers do seem to give an error here, so
6534    // we do, too.
6535    if (!Previous.empty() && DC->Equals(CurContext)
6536        && !getLangOptions().CPlusPlus0x)
6537      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6538
6539    DCScope = getScopeForDeclContext(S, DC);
6540
6541  //   - There's a non-dependent scope specifier, in which case we
6542  //     compute it and do a previous lookup there for a function
6543  //     or function template.
6544  } else if (!SS.getScopeRep()->isDependent()) {
6545    DC = computeDeclContext(SS);
6546    if (!DC) return 0;
6547
6548    if (RequireCompleteDeclContext(SS, DC)) return 0;
6549
6550    LookupQualifiedName(Previous, DC);
6551
6552    // Ignore things found implicitly in the wrong scope.
6553    // TODO: better diagnostics for this case.  Suggesting the right
6554    // qualified scope would be nice...
6555    LookupResult::Filter F = Previous.makeFilter();
6556    while (F.hasNext()) {
6557      NamedDecl *D = F.next();
6558      if (!DC->InEnclosingNamespaceSetOf(
6559              D->getDeclContext()->getRedeclContext()))
6560        F.erase();
6561    }
6562    F.done();
6563
6564    if (Previous.empty()) {
6565      D.setInvalidType();
6566      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6567      return 0;
6568    }
6569
6570    // C++ [class.friend]p1: A friend of a class is a function or
6571    //   class that is not a member of the class . . .
6572    if (DC->Equals(CurContext))
6573      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6574
6575  //   - There's a scope specifier that does not match any template
6576  //     parameter lists, in which case we use some arbitrary context,
6577  //     create a method or method template, and wait for instantiation.
6578  //   - There's a scope specifier that does match some template
6579  //     parameter lists, which we don't handle right now.
6580  } else {
6581    DC = CurContext;
6582    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
6583  }
6584
6585  if (!DC->isRecord()) {
6586    // This implies that it has to be an operator or function.
6587    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6588        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6589        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6590      Diag(Loc, diag::err_introducing_special_friend) <<
6591        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6592         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6593      return 0;
6594    }
6595  }
6596
6597  bool Redeclaration = false;
6598  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
6599                                          move(TemplateParams),
6600                                          IsDefinition,
6601                                          Redeclaration);
6602  if (!ND) return 0;
6603
6604  assert(ND->getDeclContext() == DC);
6605  assert(ND->getLexicalDeclContext() == CurContext);
6606
6607  // Add the function declaration to the appropriate lookup tables,
6608  // adjusting the redeclarations list as necessary.  We don't
6609  // want to do this yet if the friending class is dependent.
6610  //
6611  // Also update the scope-based lookup if the target context's
6612  // lookup context is in lexical scope.
6613  if (!CurContext->isDependentContext()) {
6614    DC = DC->getRedeclContext();
6615    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6616    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6617      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6618  }
6619
6620  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6621                                       D.getIdentifierLoc(), ND,
6622                                       DS.getFriendSpecLoc());
6623  FrD->setAccess(AS_public);
6624  CurContext->addDecl(FrD);
6625
6626  if (ND->isInvalidDecl())
6627    FrD->setInvalidDecl();
6628  else {
6629    FunctionDecl *FD;
6630    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
6631      FD = FTD->getTemplatedDecl();
6632    else
6633      FD = cast<FunctionDecl>(ND);
6634
6635    // Mark templated-scope function declarations as unsupported.
6636    if (FD->getNumTemplateParameterLists())
6637      FrD->setUnsupportedFriend(true);
6638  }
6639
6640  return ND;
6641}
6642
6643void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
6644  AdjustDeclIfTemplate(Dcl);
6645
6646  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6647  if (!Fn) {
6648    Diag(DelLoc, diag::err_deleted_non_function);
6649    return;
6650  }
6651  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6652    Diag(DelLoc, diag::err_deleted_decl_not_first);
6653    Diag(Prev->getLocation(), diag::note_previous_declaration);
6654    // If the declaration wasn't the first, we delete the function anyway for
6655    // recovery.
6656  }
6657  Fn->setDeleted();
6658}
6659
6660static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6661  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6662       ++CI) {
6663    Stmt *SubStmt = *CI;
6664    if (!SubStmt)
6665      continue;
6666    if (isa<ReturnStmt>(SubStmt))
6667      Self.Diag(SubStmt->getSourceRange().getBegin(),
6668           diag::err_return_in_constructor_handler);
6669    if (!isa<Expr>(SubStmt))
6670      SearchForReturnInStmt(Self, SubStmt);
6671  }
6672}
6673
6674void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6675  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6676    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6677    SearchForReturnInStmt(*this, Handler);
6678  }
6679}
6680
6681bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6682                                             const CXXMethodDecl *Old) {
6683  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6684  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6685
6686  if (Context.hasSameType(NewTy, OldTy) ||
6687      NewTy->isDependentType() || OldTy->isDependentType())
6688    return false;
6689
6690  // Check if the return types are covariant
6691  QualType NewClassTy, OldClassTy;
6692
6693  /// Both types must be pointers or references to classes.
6694  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6695    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6696      NewClassTy = NewPT->getPointeeType();
6697      OldClassTy = OldPT->getPointeeType();
6698    }
6699  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6700    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6701      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6702        NewClassTy = NewRT->getPointeeType();
6703        OldClassTy = OldRT->getPointeeType();
6704      }
6705    }
6706  }
6707
6708  // The return types aren't either both pointers or references to a class type.
6709  if (NewClassTy.isNull()) {
6710    Diag(New->getLocation(),
6711         diag::err_different_return_type_for_overriding_virtual_function)
6712      << New->getDeclName() << NewTy << OldTy;
6713    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6714
6715    return true;
6716  }
6717
6718  // C++ [class.virtual]p6:
6719  //   If the return type of D::f differs from the return type of B::f, the
6720  //   class type in the return type of D::f shall be complete at the point of
6721  //   declaration of D::f or shall be the class type D.
6722  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6723    if (!RT->isBeingDefined() &&
6724        RequireCompleteType(New->getLocation(), NewClassTy,
6725                            PDiag(diag::err_covariant_return_incomplete)
6726                              << New->getDeclName()))
6727    return true;
6728  }
6729
6730  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6731    // Check if the new class derives from the old class.
6732    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6733      Diag(New->getLocation(),
6734           diag::err_covariant_return_not_derived)
6735      << New->getDeclName() << NewTy << OldTy;
6736      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6737      return true;
6738    }
6739
6740    // Check if we the conversion from derived to base is valid.
6741    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6742                    diag::err_covariant_return_inaccessible_base,
6743                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6744                    // FIXME: Should this point to the return type?
6745                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6746      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6747      return true;
6748    }
6749  }
6750
6751  // The qualifiers of the return types must be the same.
6752  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6753    Diag(New->getLocation(),
6754         diag::err_covariant_return_type_different_qualifications)
6755    << New->getDeclName() << NewTy << OldTy;
6756    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6757    return true;
6758  };
6759
6760
6761  // The new class type must have the same or less qualifiers as the old type.
6762  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6763    Diag(New->getLocation(),
6764         diag::err_covariant_return_type_class_type_more_qualified)
6765    << New->getDeclName() << NewTy << OldTy;
6766    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6767    return true;
6768  };
6769
6770  return false;
6771}
6772
6773bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6774                                             const CXXMethodDecl *Old)
6775{
6776  if (Old->hasAttr<FinalAttr>()) {
6777    Diag(New->getLocation(), diag::err_final_function_overridden)
6778      << New->getDeclName();
6779    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6780    return true;
6781  }
6782
6783  return false;
6784}
6785
6786/// \brief Mark the given method pure.
6787///
6788/// \param Method the method to be marked pure.
6789///
6790/// \param InitRange the source range that covers the "0" initializer.
6791bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6792  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6793    Method->setPure();
6794    return false;
6795  }
6796
6797  if (!Method->isInvalidDecl())
6798    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6799      << Method->getDeclName() << InitRange;
6800  return true;
6801}
6802
6803/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6804/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6805/// is a fresh scope pushed for just this purpose.
6806///
6807/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6808/// static data member of class X, names should be looked up in the scope of
6809/// class X.
6810void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
6811  // If there is no declaration, there was an error parsing it.
6812  if (D == 0) return;
6813
6814  // We should only get called for declarations with scope specifiers, like:
6815  //   int foo::bar;
6816  assert(D->isOutOfLine());
6817  EnterDeclaratorContext(S, D->getDeclContext());
6818}
6819
6820/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6821/// initializer for the out-of-line declaration 'D'.
6822void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
6823  // If there is no declaration, there was an error parsing it.
6824  if (D == 0) return;
6825
6826  assert(D->isOutOfLine());
6827  ExitDeclaratorContext(S);
6828}
6829
6830/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6831/// C++ if/switch/while/for statement.
6832/// e.g: "if (int x = f()) {...}"
6833DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6834  // C++ 6.4p2:
6835  // The declarator shall not specify a function or an array.
6836  // The type-specifier-seq shall not contain typedef and shall not declare a
6837  // new class or enumeration.
6838  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6839         "Parser allowed 'typedef' as storage class of condition decl.");
6840
6841  TagDecl *OwnedTag = 0;
6842  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6843  QualType Ty = TInfo->getType();
6844
6845  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6846                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6847                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6848    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6849      << D.getSourceRange();
6850    return DeclResult();
6851  } else if (OwnedTag && OwnedTag->isDefinition()) {
6852    // The type-specifier-seq shall not declare a new class or enumeration.
6853    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6854  }
6855
6856  Decl *Dcl = ActOnDeclarator(S, D);
6857  if (!Dcl)
6858    return DeclResult();
6859
6860  return Dcl;
6861}
6862
6863void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6864                          bool DefinitionRequired) {
6865  // Ignore any vtable uses in unevaluated operands or for classes that do
6866  // not have a vtable.
6867  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6868      CurContext->isDependentContext() ||
6869      ExprEvalContexts.back().Context == Unevaluated)
6870    return;
6871
6872  // Try to insert this class into the map.
6873  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6874  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6875    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6876  if (!Pos.second) {
6877    // If we already had an entry, check to see if we are promoting this vtable
6878    // to required a definition. If so, we need to reappend to the VTableUses
6879    // list, since we may have already processed the first entry.
6880    if (DefinitionRequired && !Pos.first->second) {
6881      Pos.first->second = true;
6882    } else {
6883      // Otherwise, we can early exit.
6884      return;
6885    }
6886  }
6887
6888  // Local classes need to have their virtual members marked
6889  // immediately. For all other classes, we mark their virtual members
6890  // at the end of the translation unit.
6891  if (Class->isLocalClass())
6892    MarkVirtualMembersReferenced(Loc, Class);
6893  else
6894    VTableUses.push_back(std::make_pair(Class, Loc));
6895}
6896
6897bool Sema::DefineUsedVTables() {
6898  // If any dynamic classes have their key function defined within
6899  // this translation unit, then those vtables are considered "used" and must
6900  // be emitted.
6901  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6902    if (const CXXMethodDecl *KeyFunction
6903                             = Context.getKeyFunction(DynamicClasses[I])) {
6904      const FunctionDecl *Definition = 0;
6905      if (KeyFunction->hasBody(Definition))
6906        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6907    }
6908  }
6909
6910  if (VTableUses.empty())
6911    return false;
6912
6913  // Note: The VTableUses vector could grow as a result of marking
6914  // the members of a class as "used", so we check the size each
6915  // time through the loop and prefer indices (with are stable) to
6916  // iterators (which are not).
6917  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6918    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6919    if (!Class)
6920      continue;
6921
6922    SourceLocation Loc = VTableUses[I].second;
6923
6924    // If this class has a key function, but that key function is
6925    // defined in another translation unit, we don't need to emit the
6926    // vtable even though we're using it.
6927    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6928    if (KeyFunction && !KeyFunction->hasBody()) {
6929      switch (KeyFunction->getTemplateSpecializationKind()) {
6930      case TSK_Undeclared:
6931      case TSK_ExplicitSpecialization:
6932      case TSK_ExplicitInstantiationDeclaration:
6933        // The key function is in another translation unit.
6934        continue;
6935
6936      case TSK_ExplicitInstantiationDefinition:
6937      case TSK_ImplicitInstantiation:
6938        // We will be instantiating the key function.
6939        break;
6940      }
6941    } else if (!KeyFunction) {
6942      // If we have a class with no key function that is the subject
6943      // of an explicit instantiation declaration, suppress the
6944      // vtable; it will live with the explicit instantiation
6945      // definition.
6946      bool IsExplicitInstantiationDeclaration
6947        = Class->getTemplateSpecializationKind()
6948                                      == TSK_ExplicitInstantiationDeclaration;
6949      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6950                                 REnd = Class->redecls_end();
6951           R != REnd; ++R) {
6952        TemplateSpecializationKind TSK
6953          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6954        if (TSK == TSK_ExplicitInstantiationDeclaration)
6955          IsExplicitInstantiationDeclaration = true;
6956        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6957          IsExplicitInstantiationDeclaration = false;
6958          break;
6959        }
6960      }
6961
6962      if (IsExplicitInstantiationDeclaration)
6963        continue;
6964    }
6965
6966    // Mark all of the virtual members of this class as referenced, so
6967    // that we can build a vtable. Then, tell the AST consumer that a
6968    // vtable for this class is required.
6969    MarkVirtualMembersReferenced(Loc, Class);
6970    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6971    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6972
6973    // Optionally warn if we're emitting a weak vtable.
6974    if (Class->getLinkage() == ExternalLinkage &&
6975        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6976      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
6977        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6978    }
6979  }
6980  VTableUses.clear();
6981
6982  return true;
6983}
6984
6985void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6986                                        const CXXRecordDecl *RD) {
6987  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6988       e = RD->method_end(); i != e; ++i) {
6989    CXXMethodDecl *MD = *i;
6990
6991    // C++ [basic.def.odr]p2:
6992    //   [...] A virtual member function is used if it is not pure. [...]
6993    if (MD->isVirtual() && !MD->isPure())
6994      MarkDeclarationReferenced(Loc, MD);
6995  }
6996
6997  // Only classes that have virtual bases need a VTT.
6998  if (RD->getNumVBases() == 0)
6999    return;
7000
7001  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7002           e = RD->bases_end(); i != e; ++i) {
7003    const CXXRecordDecl *Base =
7004        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7005    if (Base->getNumVBases() == 0)
7006      continue;
7007    MarkVirtualMembersReferenced(Loc, Base);
7008  }
7009}
7010
7011/// SetIvarInitializers - This routine builds initialization ASTs for the
7012/// Objective-C implementation whose ivars need be initialized.
7013void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7014  if (!getLangOptions().CPlusPlus)
7015    return;
7016  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7017    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7018    CollectIvarsToConstructOrDestruct(OID, ivars);
7019    if (ivars.empty())
7020      return;
7021    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
7022    for (unsigned i = 0; i < ivars.size(); i++) {
7023      FieldDecl *Field = ivars[i];
7024      if (Field->isInvalidDecl())
7025        continue;
7026
7027      CXXBaseOrMemberInitializer *Member;
7028      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7029      InitializationKind InitKind =
7030        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7031
7032      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7033      ExprResult MemberInit =
7034        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7035      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7036      // Note, MemberInit could actually come back empty if no initialization
7037      // is required (e.g., because it would call a trivial default constructor)
7038      if (!MemberInit.get() || MemberInit.isInvalid())
7039        continue;
7040
7041      Member =
7042        new (Context) CXXBaseOrMemberInitializer(Context,
7043                                                 Field, SourceLocation(),
7044                                                 SourceLocation(),
7045                                                 MemberInit.takeAs<Expr>(),
7046                                                 SourceLocation());
7047      AllToInit.push_back(Member);
7048
7049      // Be sure that the destructor is accessible and is marked as referenced.
7050      if (const RecordType *RecordTy
7051                  = Context.getBaseElementType(Field->getType())
7052                                                        ->getAs<RecordType>()) {
7053                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7054        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7055          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7056          CheckDestructorAccess(Field->getLocation(), Destructor,
7057                            PDiag(diag::err_access_dtor_ivar)
7058                              << Context.getBaseElementType(Field->getType()));
7059        }
7060      }
7061    }
7062    ObjCImplementation->setIvarInitializers(Context,
7063                                            AllToInit.data(), AllToInit.size());
7064  }
7065}
7066