SemaDeclCXX.cpp revision a3c199b287733dbe42fc28b144e24bb0a09f1da9
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      if (OldParam->hasUninstantiatedDefaultArg())
302        NewParam->setUninstantiatedDefaultArg(
303                                      OldParam->getUninstantiatedDefaultArg());
304      else
305        NewParam->setDefaultArg(OldParam->getDefaultArg());
306    } else if (NewParam->hasDefaultArg()) {
307      if (New->getDescribedFunctionTemplate()) {
308        // Paragraph 4, quoted above, only applies to non-template functions.
309        Diag(NewParam->getLocation(),
310             diag::err_param_default_argument_template_redecl)
311          << NewParam->getDefaultArgRange();
312        Diag(Old->getLocation(), diag::note_template_prev_declaration)
313          << false;
314      } else if (New->getTemplateSpecializationKind()
315                   != TSK_ImplicitInstantiation &&
316                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
317        // C++ [temp.expr.spec]p21:
318        //   Default function arguments shall not be specified in a declaration
319        //   or a definition for one of the following explicit specializations:
320        //     - the explicit specialization of a function template;
321        //     - the explicit specialization of a member function template;
322        //     - the explicit specialization of a member function of a class
323        //       template where the class template specialization to which the
324        //       member function specialization belongs is implicitly
325        //       instantiated.
326        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
327          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
328          << New->getDeclName()
329          << NewParam->getDefaultArgRange();
330      } else if (New->getDeclContext()->isDependentContext()) {
331        // C++ [dcl.fct.default]p6 (DR217):
332        //   Default arguments for a member function of a class template shall
333        //   be specified on the initial declaration of the member function
334        //   within the class template.
335        //
336        // Reading the tea leaves a bit in DR217 and its reference to DR205
337        // leads me to the conclusion that one cannot add default function
338        // arguments for an out-of-line definition of a member function of a
339        // dependent type.
340        int WhichKind = 2;
341        if (CXXRecordDecl *Record
342              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
343          if (Record->getDescribedClassTemplate())
344            WhichKind = 0;
345          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
346            WhichKind = 1;
347          else
348            WhichKind = 2;
349        }
350
351        Diag(NewParam->getLocation(),
352             diag::err_param_default_argument_member_template_redecl)
353          << WhichKind
354          << NewParam->getDefaultArgRange();
355      }
356    }
357  }
358
359  if (CheckEquivalentExceptionSpec(
360          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
361          New->getType()->getAs<FunctionProtoType>(), New->getLocation()))
362    Invalid = true;
363
364  return Invalid;
365}
366
367/// CheckCXXDefaultArguments - Verify that the default arguments for a
368/// function declaration are well-formed according to C++
369/// [dcl.fct.default].
370void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
371  unsigned NumParams = FD->getNumParams();
372  unsigned p;
373
374  // Find first parameter with a default argument
375  for (p = 0; p < NumParams; ++p) {
376    ParmVarDecl *Param = FD->getParamDecl(p);
377    if (Param->hasDefaultArg())
378      break;
379  }
380
381  // C++ [dcl.fct.default]p4:
382  //   In a given function declaration, all parameters
383  //   subsequent to a parameter with a default argument shall
384  //   have default arguments supplied in this or previous
385  //   declarations. A default argument shall not be redefined
386  //   by a later declaration (not even to the same value).
387  unsigned LastMissingDefaultArg = 0;
388  for (; p < NumParams; ++p) {
389    ParmVarDecl *Param = FD->getParamDecl(p);
390    if (!Param->hasDefaultArg()) {
391      if (Param->isInvalidDecl())
392        /* We already complained about this parameter. */;
393      else if (Param->getIdentifier())
394        Diag(Param->getLocation(),
395             diag::err_param_default_argument_missing_name)
396          << Param->getIdentifier();
397      else
398        Diag(Param->getLocation(),
399             diag::err_param_default_argument_missing);
400
401      LastMissingDefaultArg = p;
402    }
403  }
404
405  if (LastMissingDefaultArg > 0) {
406    // Some default arguments were missing. Clear out all of the
407    // default arguments up to (and including) the last missing
408    // default argument, so that we leave the function parameters
409    // in a semantically valid state.
410    for (p = 0; p <= LastMissingDefaultArg; ++p) {
411      ParmVarDecl *Param = FD->getParamDecl(p);
412      if (Param->hasDefaultArg()) {
413        if (!Param->hasUnparsedDefaultArg())
414          Param->getDefaultArg()->Destroy(Context);
415        Param->setDefaultArg(0);
416      }
417    }
418  }
419}
420
421/// isCurrentClassName - Determine whether the identifier II is the
422/// name of the class type currently being defined. In the case of
423/// nested classes, this will only return true if II is the name of
424/// the innermost class.
425bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
426                              const CXXScopeSpec *SS) {
427  assert(getLangOptions().CPlusPlus && "No class names in C!");
428
429  CXXRecordDecl *CurDecl;
430  if (SS && SS->isSet() && !SS->isInvalid()) {
431    DeclContext *DC = computeDeclContext(*SS, true);
432    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
433  } else
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
435
436  if (CurDecl)
437    return &II == CurDecl->getIdentifier();
438  else
439    return false;
440}
441
442/// \brief Check the validity of a C++ base class specifier.
443///
444/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
445/// and returns NULL otherwise.
446CXXBaseSpecifier *
447Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
448                         SourceRange SpecifierRange,
449                         bool Virtual, AccessSpecifier Access,
450                         QualType BaseType,
451                         SourceLocation BaseLoc) {
452  // C++ [class.union]p1:
453  //   A union shall not have base classes.
454  if (Class->isUnion()) {
455    Diag(Class->getLocation(), diag::err_base_clause_on_union)
456      << SpecifierRange;
457    return 0;
458  }
459
460  if (BaseType->isDependentType())
461    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
462                                Class->getTagKind() == RecordDecl::TK_class,
463                                Access, BaseType);
464
465  // Base specifiers must be record types.
466  if (!BaseType->isRecordType()) {
467    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
468    return 0;
469  }
470
471  // C++ [class.union]p1:
472  //   A union shall not be used as a base class.
473  if (BaseType->isUnionType()) {
474    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
475    return 0;
476  }
477
478  // C++ [class.derived]p2:
479  //   The class-name in a base-specifier shall not be an incompletely
480  //   defined class.
481  if (RequireCompleteType(BaseLoc, BaseType,
482                          PDiag(diag::err_incomplete_base_class)
483                            << SpecifierRange))
484    return 0;
485
486  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
487  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
488  assert(BaseDecl && "Record type has no declaration");
489  BaseDecl = BaseDecl->getDefinition(Context);
490  assert(BaseDecl && "Base type is not incomplete, but has no definition");
491  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
492  assert(CXXBaseDecl && "Base type is not a C++ type");
493
494  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
495  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
496    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
497    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
498      << BaseType;
499    return 0;
500  }
501
502  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
503
504  // Create the base specifier.
505  // FIXME: Allocate via ASTContext?
506  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
507                              Class->getTagKind() == RecordDecl::TK_class,
508                              Access, BaseType);
509}
510
511void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
512                                          const CXXRecordDecl *BaseClass,
513                                          bool BaseIsVirtual) {
514  // A class with a non-empty base class is not empty.
515  // FIXME: Standard ref?
516  if (!BaseClass->isEmpty())
517    Class->setEmpty(false);
518
519  // C++ [class.virtual]p1:
520  //   A class that [...] inherits a virtual function is called a polymorphic
521  //   class.
522  if (BaseClass->isPolymorphic())
523    Class->setPolymorphic(true);
524
525  // C++ [dcl.init.aggr]p1:
526  //   An aggregate is [...] a class with [...] no base classes [...].
527  Class->setAggregate(false);
528
529  // C++ [class]p4:
530  //   A POD-struct is an aggregate class...
531  Class->setPOD(false);
532
533  if (BaseIsVirtual) {
534    // C++ [class.ctor]p5:
535    //   A constructor is trivial if its class has no virtual base classes.
536    Class->setHasTrivialConstructor(false);
537
538    // C++ [class.copy]p6:
539    //   A copy constructor is trivial if its class has no virtual base classes.
540    Class->setHasTrivialCopyConstructor(false);
541
542    // C++ [class.copy]p11:
543    //   A copy assignment operator is trivial if its class has no virtual
544    //   base classes.
545    Class->setHasTrivialCopyAssignment(false);
546
547    // C++0x [meta.unary.prop] is_empty:
548    //    T is a class type, but not a union type, with ... no virtual base
549    //    classes
550    Class->setEmpty(false);
551  } else {
552    // C++ [class.ctor]p5:
553    //   A constructor is trivial if all the direct base classes of its
554    //   class have trivial constructors.
555    if (!BaseClass->hasTrivialConstructor())
556      Class->setHasTrivialConstructor(false);
557
558    // C++ [class.copy]p6:
559    //   A copy constructor is trivial if all the direct base classes of its
560    //   class have trivial copy constructors.
561    if (!BaseClass->hasTrivialCopyConstructor())
562      Class->setHasTrivialCopyConstructor(false);
563
564    // C++ [class.copy]p11:
565    //   A copy assignment operator is trivial if all the direct base classes
566    //   of its class have trivial copy assignment operators.
567    if (!BaseClass->hasTrivialCopyAssignment())
568      Class->setHasTrivialCopyAssignment(false);
569  }
570
571  // C++ [class.ctor]p3:
572  //   A destructor is trivial if all the direct base classes of its class
573  //   have trivial destructors.
574  if (!BaseClass->hasTrivialDestructor())
575    Class->setHasTrivialDestructor(false);
576}
577
578/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
579/// one entry in the base class list of a class specifier, for
580/// example:
581///    class foo : public bar, virtual private baz {
582/// 'public bar' and 'virtual private baz' are each base-specifiers.
583Sema::BaseResult
584Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
585                         bool Virtual, AccessSpecifier Access,
586                         TypeTy *basetype, SourceLocation BaseLoc) {
587  if (!classdecl)
588    return true;
589
590  AdjustDeclIfTemplate(classdecl);
591  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
592  QualType BaseType = GetTypeFromParser(basetype);
593  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
594                                                      Virtual, Access,
595                                                      BaseType, BaseLoc))
596    return BaseSpec;
597
598  return true;
599}
600
601/// \brief Performs the actual work of attaching the given base class
602/// specifiers to a C++ class.
603bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
604                                unsigned NumBases) {
605 if (NumBases == 0)
606    return false;
607
608  // Used to keep track of which base types we have already seen, so
609  // that we can properly diagnose redundant direct base types. Note
610  // that the key is always the unqualified canonical type of the base
611  // class.
612  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
613
614  // Copy non-redundant base specifiers into permanent storage.
615  unsigned NumGoodBases = 0;
616  bool Invalid = false;
617  for (unsigned idx = 0; idx < NumBases; ++idx) {
618    QualType NewBaseType
619      = Context.getCanonicalType(Bases[idx]->getType());
620    NewBaseType = NewBaseType.getLocalUnqualifiedType();
621
622    if (KnownBaseTypes[NewBaseType]) {
623      // C++ [class.mi]p3:
624      //   A class shall not be specified as a direct base class of a
625      //   derived class more than once.
626      Diag(Bases[idx]->getSourceRange().getBegin(),
627           diag::err_duplicate_base_class)
628        << KnownBaseTypes[NewBaseType]->getType()
629        << Bases[idx]->getSourceRange();
630
631      // Delete the duplicate base class specifier; we're going to
632      // overwrite its pointer later.
633      Context.Deallocate(Bases[idx]);
634
635      Invalid = true;
636    } else {
637      // Okay, add this new base class.
638      KnownBaseTypes[NewBaseType] = Bases[idx];
639      Bases[NumGoodBases++] = Bases[idx];
640    }
641  }
642
643  // Attach the remaining base class specifiers to the derived class.
644  Class->setBases(Context, Bases, NumGoodBases);
645
646  // Delete the remaining (good) base class specifiers, since their
647  // data has been copied into the CXXRecordDecl.
648  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
649    Context.Deallocate(Bases[idx]);
650
651  return Invalid;
652}
653
654/// ActOnBaseSpecifiers - Attach the given base specifiers to the
655/// class, after checking whether there are any duplicate base
656/// classes.
657void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
658                               unsigned NumBases) {
659  if (!ClassDecl || !Bases || !NumBases)
660    return;
661
662  AdjustDeclIfTemplate(ClassDecl);
663  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
664                       (CXXBaseSpecifier**)(Bases), NumBases);
665}
666
667/// \brief Determine whether the type \p Derived is a C++ class that is
668/// derived from the type \p Base.
669bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
670  if (!getLangOptions().CPlusPlus)
671    return false;
672
673  const RecordType *DerivedRT = Derived->getAs<RecordType>();
674  if (!DerivedRT)
675    return false;
676
677  const RecordType *BaseRT = Base->getAs<RecordType>();
678  if (!BaseRT)
679    return false;
680
681  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
682  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
683  return DerivedRD->isDerivedFrom(BaseRD);
684}
685
686/// \brief Determine whether the type \p Derived is a C++ class that is
687/// derived from the type \p Base.
688bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
689  if (!getLangOptions().CPlusPlus)
690    return false;
691
692  const RecordType *DerivedRT = Derived->getAs<RecordType>();
693  if (!DerivedRT)
694    return false;
695
696  const RecordType *BaseRT = Base->getAs<RecordType>();
697  if (!BaseRT)
698    return false;
699
700  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
701  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
702  return DerivedRD->isDerivedFrom(BaseRD, Paths);
703}
704
705/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
706/// conversion (where Derived and Base are class types) is
707/// well-formed, meaning that the conversion is unambiguous (and
708/// that all of the base classes are accessible). Returns true
709/// and emits a diagnostic if the code is ill-formed, returns false
710/// otherwise. Loc is the location where this routine should point to
711/// if there is an error, and Range is the source range to highlight
712/// if there is an error.
713bool
714Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
715                                   unsigned InaccessibleBaseID,
716                                   unsigned AmbigiousBaseConvID,
717                                   SourceLocation Loc, SourceRange Range,
718                                   DeclarationName Name) {
719  // First, determine whether the path from Derived to Base is
720  // ambiguous. This is slightly more expensive than checking whether
721  // the Derived to Base conversion exists, because here we need to
722  // explore multiple paths to determine if there is an ambiguity.
723  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
724                     /*DetectVirtual=*/false);
725  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
726  assert(DerivationOkay &&
727         "Can only be used with a derived-to-base conversion");
728  (void)DerivationOkay;
729
730  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
731    if (InaccessibleBaseID == 0)
732      return false;
733    // Check that the base class can be accessed.
734    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
735                                Name);
736  }
737
738  // We know that the derived-to-base conversion is ambiguous, and
739  // we're going to produce a diagnostic. Perform the derived-to-base
740  // search just one more time to compute all of the possible paths so
741  // that we can print them out. This is more expensive than any of
742  // the previous derived-to-base checks we've done, but at this point
743  // performance isn't as much of an issue.
744  Paths.clear();
745  Paths.setRecordingPaths(true);
746  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
747  assert(StillOkay && "Can only be used with a derived-to-base conversion");
748  (void)StillOkay;
749
750  // Build up a textual representation of the ambiguous paths, e.g.,
751  // D -> B -> A, that will be used to illustrate the ambiguous
752  // conversions in the diagnostic. We only print one of the paths
753  // to each base class subobject.
754  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
755
756  Diag(Loc, AmbigiousBaseConvID)
757  << Derived << Base << PathDisplayStr << Range << Name;
758  return true;
759}
760
761bool
762Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
763                                   SourceLocation Loc, SourceRange Range,
764                                   bool IgnoreAccess) {
765  return CheckDerivedToBaseConversion(Derived, Base,
766                                      IgnoreAccess ? 0 :
767                                        diag::err_conv_to_inaccessible_base,
768                                      diag::err_ambiguous_derived_to_base_conv,
769                                      Loc, Range, DeclarationName());
770}
771
772
773/// @brief Builds a string representing ambiguous paths from a
774/// specific derived class to different subobjects of the same base
775/// class.
776///
777/// This function builds a string that can be used in error messages
778/// to show the different paths that one can take through the
779/// inheritance hierarchy to go from the derived class to different
780/// subobjects of a base class. The result looks something like this:
781/// @code
782/// struct D -> struct B -> struct A
783/// struct D -> struct C -> struct A
784/// @endcode
785std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
786  std::string PathDisplayStr;
787  std::set<unsigned> DisplayedPaths;
788  for (CXXBasePaths::paths_iterator Path = Paths.begin();
789       Path != Paths.end(); ++Path) {
790    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
791      // We haven't displayed a path to this particular base
792      // class subobject yet.
793      PathDisplayStr += "\n    ";
794      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
795      for (CXXBasePath::const_iterator Element = Path->begin();
796           Element != Path->end(); ++Element)
797        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
798    }
799  }
800
801  return PathDisplayStr;
802}
803
804//===----------------------------------------------------------------------===//
805// C++ class member Handling
806//===----------------------------------------------------------------------===//
807
808/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
809/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
810/// bitfield width if there is one and 'InitExpr' specifies the initializer if
811/// any.
812Sema::DeclPtrTy
813Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
814                               MultiTemplateParamsArg TemplateParameterLists,
815                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
816                               bool Deleted) {
817  const DeclSpec &DS = D.getDeclSpec();
818  DeclarationName Name = GetNameForDeclarator(D);
819  Expr *BitWidth = static_cast<Expr*>(BW);
820  Expr *Init = static_cast<Expr*>(InitExpr);
821  SourceLocation Loc = D.getIdentifierLoc();
822
823  bool isFunc = D.isFunctionDeclarator();
824
825  assert(!DS.isFriendSpecified());
826
827  // C++ 9.2p6: A member shall not be declared to have automatic storage
828  // duration (auto, register) or with the extern storage-class-specifier.
829  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
830  // data members and cannot be applied to names declared const or static,
831  // and cannot be applied to reference members.
832  switch (DS.getStorageClassSpec()) {
833    case DeclSpec::SCS_unspecified:
834    case DeclSpec::SCS_typedef:
835    case DeclSpec::SCS_static:
836      // FALL THROUGH.
837      break;
838    case DeclSpec::SCS_mutable:
839      if (isFunc) {
840        if (DS.getStorageClassSpecLoc().isValid())
841          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
842        else
843          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
844
845        // FIXME: It would be nicer if the keyword was ignored only for this
846        // declarator. Otherwise we could get follow-up errors.
847        D.getMutableDeclSpec().ClearStorageClassSpecs();
848      } else {
849        QualType T = GetTypeForDeclarator(D, S);
850        diag::kind err = static_cast<diag::kind>(0);
851        if (T->isReferenceType())
852          err = diag::err_mutable_reference;
853        else if (T.isConstQualified())
854          err = diag::err_mutable_const;
855        if (err != 0) {
856          if (DS.getStorageClassSpecLoc().isValid())
857            Diag(DS.getStorageClassSpecLoc(), err);
858          else
859            Diag(DS.getThreadSpecLoc(), err);
860          // FIXME: It would be nicer if the keyword was ignored only for this
861          // declarator. Otherwise we could get follow-up errors.
862          D.getMutableDeclSpec().ClearStorageClassSpecs();
863        }
864      }
865      break;
866    default:
867      if (DS.getStorageClassSpecLoc().isValid())
868        Diag(DS.getStorageClassSpecLoc(),
869             diag::err_storageclass_invalid_for_member);
870      else
871        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
872      D.getMutableDeclSpec().ClearStorageClassSpecs();
873  }
874
875  if (!isFunc &&
876      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
877      D.getNumTypeObjects() == 0) {
878    // Check also for this case:
879    //
880    // typedef int f();
881    // f a;
882    //
883    QualType TDType = GetTypeFromParser(DS.getTypeRep());
884    isFunc = TDType->isFunctionType();
885  }
886
887  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
888                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
889                      !isFunc);
890
891  Decl *Member;
892  if (isInstField) {
893    // FIXME: Check for template parameters!
894    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
895                         AS);
896    assert(Member && "HandleField never returns null");
897  } else {
898    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
899               .getAs<Decl>();
900    if (!Member) {
901      if (BitWidth) DeleteExpr(BitWidth);
902      return DeclPtrTy();
903    }
904
905    // Non-instance-fields can't have a bitfield.
906    if (BitWidth) {
907      if (Member->isInvalidDecl()) {
908        // don't emit another diagnostic.
909      } else if (isa<VarDecl>(Member)) {
910        // C++ 9.6p3: A bit-field shall not be a static member.
911        // "static member 'A' cannot be a bit-field"
912        Diag(Loc, diag::err_static_not_bitfield)
913          << Name << BitWidth->getSourceRange();
914      } else if (isa<TypedefDecl>(Member)) {
915        // "typedef member 'x' cannot be a bit-field"
916        Diag(Loc, diag::err_typedef_not_bitfield)
917          << Name << BitWidth->getSourceRange();
918      } else {
919        // A function typedef ("typedef int f(); f a;").
920        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
921        Diag(Loc, diag::err_not_integral_type_bitfield)
922          << Name << cast<ValueDecl>(Member)->getType()
923          << BitWidth->getSourceRange();
924      }
925
926      DeleteExpr(BitWidth);
927      BitWidth = 0;
928      Member->setInvalidDecl();
929    }
930
931    Member->setAccess(AS);
932
933    // If we have declared a member function template, set the access of the
934    // templated declaration as well.
935    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
936      FunTmpl->getTemplatedDecl()->setAccess(AS);
937  }
938
939  assert((Name || isInstField) && "No identifier for non-field ?");
940
941  if (Init)
942    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
943  if (Deleted) // FIXME: Source location is not very good.
944    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
945
946  if (isInstField) {
947    FieldCollector->Add(cast<FieldDecl>(Member));
948    return DeclPtrTy();
949  }
950  return DeclPtrTy::make(Member);
951}
952
953/// \brief Find the direct and/or virtual base specifiers that
954/// correspond to the given base type, for use in base initialization
955/// within a constructor.
956static bool FindBaseInitializer(Sema &SemaRef,
957                                CXXRecordDecl *ClassDecl,
958                                QualType BaseType,
959                                const CXXBaseSpecifier *&DirectBaseSpec,
960                                const CXXBaseSpecifier *&VirtualBaseSpec) {
961  // First, check for a direct base class.
962  DirectBaseSpec = 0;
963  for (CXXRecordDecl::base_class_const_iterator Base
964         = ClassDecl->bases_begin();
965       Base != ClassDecl->bases_end(); ++Base) {
966    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
967      // We found a direct base of this type. That's what we're
968      // initializing.
969      DirectBaseSpec = &*Base;
970      break;
971    }
972  }
973
974  // Check for a virtual base class.
975  // FIXME: We might be able to short-circuit this if we know in advance that
976  // there are no virtual bases.
977  VirtualBaseSpec = 0;
978  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
979    // We haven't found a base yet; search the class hierarchy for a
980    // virtual base class.
981    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
982                       /*DetectVirtual=*/false);
983    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
984                              BaseType, Paths)) {
985      for (CXXBasePaths::paths_iterator Path = Paths.begin();
986           Path != Paths.end(); ++Path) {
987        if (Path->back().Base->isVirtual()) {
988          VirtualBaseSpec = Path->back().Base;
989          break;
990        }
991      }
992    }
993  }
994
995  return DirectBaseSpec || VirtualBaseSpec;
996}
997
998/// ActOnMemInitializer - Handle a C++ member initializer.
999Sema::MemInitResult
1000Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1001                          Scope *S,
1002                          const CXXScopeSpec &SS,
1003                          IdentifierInfo *MemberOrBase,
1004                          TypeTy *TemplateTypeTy,
1005                          SourceLocation IdLoc,
1006                          SourceLocation LParenLoc,
1007                          ExprTy **Args, unsigned NumArgs,
1008                          SourceLocation *CommaLocs,
1009                          SourceLocation RParenLoc) {
1010  if (!ConstructorD)
1011    return true;
1012
1013  AdjustDeclIfTemplate(ConstructorD);
1014
1015  CXXConstructorDecl *Constructor
1016    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1017  if (!Constructor) {
1018    // The user wrote a constructor initializer on a function that is
1019    // not a C++ constructor. Ignore the error for now, because we may
1020    // have more member initializers coming; we'll diagnose it just
1021    // once in ActOnMemInitializers.
1022    return true;
1023  }
1024
1025  CXXRecordDecl *ClassDecl = Constructor->getParent();
1026
1027  // C++ [class.base.init]p2:
1028  //   Names in a mem-initializer-id are looked up in the scope of the
1029  //   constructor’s class and, if not found in that scope, are looked
1030  //   up in the scope containing the constructor’s
1031  //   definition. [Note: if the constructor’s class contains a member
1032  //   with the same name as a direct or virtual base class of the
1033  //   class, a mem-initializer-id naming the member or base class and
1034  //   composed of a single identifier refers to the class member. A
1035  //   mem-initializer-id for the hidden base class may be specified
1036  //   using a qualified name. ]
1037  if (!SS.getScopeRep() && !TemplateTypeTy) {
1038    // Look for a member, first.
1039    FieldDecl *Member = 0;
1040    DeclContext::lookup_result Result
1041      = ClassDecl->lookup(MemberOrBase);
1042    if (Result.first != Result.second)
1043      Member = dyn_cast<FieldDecl>(*Result.first);
1044
1045    // FIXME: Handle members of an anonymous union.
1046
1047    if (Member)
1048      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1049                                    LParenLoc, RParenLoc);
1050  }
1051  // It didn't name a member, so see if it names a class.
1052  QualType BaseType;
1053  TypeSourceInfo *TInfo = 0;
1054
1055  if (TemplateTypeTy) {
1056    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1057  } else {
1058    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1059    LookupParsedName(R, S, &SS);
1060
1061    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1062    if (!TyD) {
1063      if (R.isAmbiguous()) return true;
1064
1065      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1066        bool NotUnknownSpecialization = false;
1067        DeclContext *DC = computeDeclContext(SS, false);
1068        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1069          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1070
1071        if (!NotUnknownSpecialization) {
1072          // When the scope specifier can refer to a member of an unknown
1073          // specialization, we take it as a type name.
1074          BaseType = CheckTypenameType((NestedNameSpecifier *)SS.getScopeRep(),
1075                                       *MemberOrBase, SS.getRange());
1076          R.clear();
1077        }
1078      }
1079
1080      // If no results were found, try to correct typos.
1081      if (R.empty() && BaseType.isNull() &&
1082          CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) {
1083        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1084          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1085            // We have found a non-static data member with a similar
1086            // name to what was typed; complain and initialize that
1087            // member.
1088            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1089              << MemberOrBase << true << R.getLookupName()
1090              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1091                                               R.getLookupName().getAsString());
1092            Diag(Member->getLocation(), diag::note_previous_decl)
1093              << Member->getDeclName();
1094
1095            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1096                                          LParenLoc, RParenLoc);
1097          }
1098        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1099          const CXXBaseSpecifier *DirectBaseSpec;
1100          const CXXBaseSpecifier *VirtualBaseSpec;
1101          if (FindBaseInitializer(*this, ClassDecl,
1102                                  Context.getTypeDeclType(Type),
1103                                  DirectBaseSpec, VirtualBaseSpec)) {
1104            // We have found a direct or virtual base class with a
1105            // similar name to what was typed; complain and initialize
1106            // that base class.
1107            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1108              << MemberOrBase << false << R.getLookupName()
1109              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1110                                               R.getLookupName().getAsString());
1111
1112            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1113                                                             : VirtualBaseSpec;
1114            Diag(BaseSpec->getSourceRange().getBegin(),
1115                 diag::note_base_class_specified_here)
1116              << BaseSpec->getType()
1117              << BaseSpec->getSourceRange();
1118
1119            TyD = Type;
1120          }
1121        }
1122      }
1123
1124      if (!TyD && BaseType.isNull()) {
1125        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1126          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1127        return true;
1128      }
1129    }
1130
1131    if (BaseType.isNull()) {
1132      BaseType = Context.getTypeDeclType(TyD);
1133      if (SS.isSet()) {
1134        NestedNameSpecifier *Qualifier =
1135          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1136
1137        // FIXME: preserve source range information
1138        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1139      }
1140    }
1141  }
1142
1143  if (!TInfo)
1144    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1145
1146  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1147                              LParenLoc, RParenLoc, ClassDecl);
1148}
1149
1150/// Checks an initializer expression for use of uninitialized fields, such as
1151/// containing the field that is being initialized. Returns true if there is an
1152/// uninitialized field was used an updates the SourceLocation parameter; false
1153/// otherwise.
1154static bool InitExprContainsUninitializedFields(const Stmt* S,
1155                                                const FieldDecl* LhsField,
1156                                                SourceLocation* L) {
1157  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1158  if (ME) {
1159    const NamedDecl* RhsField = ME->getMemberDecl();
1160    if (RhsField == LhsField) {
1161      // Initializing a field with itself. Throw a warning.
1162      // But wait; there are exceptions!
1163      // Exception #1:  The field may not belong to this record.
1164      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1165      const Expr* base = ME->getBase();
1166      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1167        // Even though the field matches, it does not belong to this record.
1168        return false;
1169      }
1170      // None of the exceptions triggered; return true to indicate an
1171      // uninitialized field was used.
1172      *L = ME->getMemberLoc();
1173      return true;
1174    }
1175  }
1176  bool found = false;
1177  for (Stmt::const_child_iterator it = S->child_begin();
1178       it != S->child_end() && found == false;
1179       ++it) {
1180    if (isa<CallExpr>(S)) {
1181      // Do not descend into function calls or constructors, as the use
1182      // of an uninitialized field may be valid. One would have to inspect
1183      // the contents of the function/ctor to determine if it is safe or not.
1184      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1185      // may be safe, depending on what the function/ctor does.
1186      continue;
1187    }
1188    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1189  }
1190  return found;
1191}
1192
1193Sema::MemInitResult
1194Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1195                             unsigned NumArgs, SourceLocation IdLoc,
1196                             SourceLocation LParenLoc,
1197                             SourceLocation RParenLoc) {
1198  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1199  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1200  ExprTemporaries.clear();
1201
1202  // Diagnose value-uses of fields to initialize themselves, e.g.
1203  //   foo(foo)
1204  // where foo is not also a parameter to the constructor.
1205  // TODO: implement -Wuninitialized and fold this into that framework.
1206  for (unsigned i = 0; i < NumArgs; ++i) {
1207    SourceLocation L;
1208    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1209      // FIXME: Return true in the case when other fields are used before being
1210      // uninitialized. For example, let this field be the i'th field. When
1211      // initializing the i'th field, throw a warning if any of the >= i'th
1212      // fields are used, as they are not yet initialized.
1213      // Right now we are only handling the case where the i'th field uses
1214      // itself in its initializer.
1215      Diag(L, diag::warn_field_is_uninit);
1216    }
1217  }
1218
1219  bool HasDependentArg = false;
1220  for (unsigned i = 0; i < NumArgs; i++)
1221    HasDependentArg |= Args[i]->isTypeDependent();
1222
1223  CXXConstructorDecl *C = 0;
1224  QualType FieldType = Member->getType();
1225  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1226    FieldType = Array->getElementType();
1227  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1228  if (FieldType->isDependentType()) {
1229    // Can't check init for dependent type.
1230  } else if (FieldType->isRecordType()) {
1231    // Member is a record (struct/union/class), so pass the initializer
1232    // arguments down to the record's constructor.
1233    if (!HasDependentArg) {
1234      C = PerformInitializationByConstructor(FieldType,
1235                                             MultiExprArg(*this,
1236                                                          (void**)Args,
1237                                                          NumArgs),
1238                                             IdLoc,
1239                                             SourceRange(IdLoc, RParenLoc),
1240                                             Member->getDeclName(),
1241                  InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc),
1242                                             ConstructorArgs);
1243
1244      if (C) {
1245        // Take over the constructor arguments as our own.
1246        NumArgs = ConstructorArgs.size();
1247        Args = (Expr **)ConstructorArgs.take();
1248      }
1249    }
1250  } else if (NumArgs != 1 && NumArgs != 0) {
1251    // The member type is not a record type (or an array of record
1252    // types), so it can be only be default- or copy-initialized.
1253    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1254                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1255  } else if (!HasDependentArg) {
1256    Expr *NewExp;
1257    if (NumArgs == 0) {
1258      if (FieldType->isReferenceType()) {
1259        Diag(IdLoc, diag::err_null_intialized_reference_member)
1260              << Member->getDeclName();
1261        return Diag(Member->getLocation(), diag::note_declared_at);
1262      }
1263      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1264      NumArgs = 1;
1265    }
1266    else
1267      NewExp = (Expr*)Args[0];
1268    if (!Member->isInvalidDecl() &&
1269        PerformCopyInitialization(NewExp, FieldType, AA_Passing))
1270      return true;
1271    Args[0] = NewExp;
1272  }
1273
1274  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1275  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1276  ExprTemporaries.clear();
1277
1278  // FIXME: Perform direct initialization of the member.
1279  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1280                                                  C, LParenLoc, (Expr **)Args,
1281                                                  NumArgs, RParenLoc);
1282}
1283
1284Sema::MemInitResult
1285Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1286                           Expr **Args, unsigned NumArgs,
1287                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1288                           CXXRecordDecl *ClassDecl) {
1289  bool HasDependentArg = false;
1290  for (unsigned i = 0; i < NumArgs; i++)
1291    HasDependentArg |= Args[i]->isTypeDependent();
1292
1293  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1294  if (!BaseType->isDependentType()) {
1295    if (!BaseType->isRecordType())
1296      return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1297        << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1298
1299    // C++ [class.base.init]p2:
1300    //   [...] Unless the mem-initializer-id names a nonstatic data
1301    //   member of the constructor’s class or a direct or virtual base
1302    //   of that class, the mem-initializer is ill-formed. A
1303    //   mem-initializer-list can initialize a base class using any
1304    //   name that denotes that base class type.
1305
1306    // Check for direct and virtual base classes.
1307    const CXXBaseSpecifier *DirectBaseSpec = 0;
1308    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1309    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1310                        VirtualBaseSpec);
1311
1312    // C++ [base.class.init]p2:
1313    //   If a mem-initializer-id is ambiguous because it designates both
1314    //   a direct non-virtual base class and an inherited virtual base
1315    //   class, the mem-initializer is ill-formed.
1316    if (DirectBaseSpec && VirtualBaseSpec)
1317      return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1318        << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1319    // C++ [base.class.init]p2:
1320    // Unless the mem-initializer-id names a nonstatic data membeer of the
1321    // constructor's class ot a direst or virtual base of that class, the
1322    // mem-initializer is ill-formed.
1323    if (!DirectBaseSpec && !VirtualBaseSpec)
1324      return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1325        << BaseType << ClassDecl->getNameAsCString()
1326        << BaseTInfo->getTypeLoc().getSourceRange();
1327  }
1328
1329  CXXConstructorDecl *C = 0;
1330  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1331  if (!BaseType->isDependentType() && !HasDependentArg) {
1332    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1333                      Context.getCanonicalType(BaseType).getUnqualifiedType());
1334
1335    C = PerformInitializationByConstructor(BaseType,
1336                                           MultiExprArg(*this,
1337                                                        (void**)Args, NumArgs),
1338                                           BaseLoc,
1339                                           SourceRange(BaseLoc, RParenLoc),
1340                                           Name,
1341                InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc),
1342                                           ConstructorArgs);
1343    if (C) {
1344      // Take over the constructor arguments as our own.
1345      NumArgs = ConstructorArgs.size();
1346      Args = (Expr **)ConstructorArgs.take();
1347    }
1348  }
1349
1350  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1351  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1352  ExprTemporaries.clear();
1353
1354  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, C,
1355                                                  LParenLoc, (Expr **)Args,
1356                                                  NumArgs, RParenLoc);
1357}
1358
1359bool
1360Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1361                              CXXBaseOrMemberInitializer **Initializers,
1362                              unsigned NumInitializers,
1363                              bool IsImplicitConstructor) {
1364  // We need to build the initializer AST according to order of construction
1365  // and not what user specified in the Initializers list.
1366  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1367  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1368  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1369  bool HasDependentBaseInit = false;
1370  bool HadError = false;
1371
1372  for (unsigned i = 0; i < NumInitializers; i++) {
1373    CXXBaseOrMemberInitializer *Member = Initializers[i];
1374    if (Member->isBaseInitializer()) {
1375      if (Member->getBaseClass()->isDependentType())
1376        HasDependentBaseInit = true;
1377      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1378    } else {
1379      AllBaseFields[Member->getMember()] = Member;
1380    }
1381  }
1382
1383  if (HasDependentBaseInit) {
1384    // FIXME. This does not preserve the ordering of the initializers.
1385    // Try (with -Wreorder)
1386    // template<class X> struct A {};
1387    // template<class X> struct B : A<X> {
1388    //   B() : x1(10), A<X>() {}
1389    //   int x1;
1390    // };
1391    // B<int> x;
1392    // On seeing one dependent type, we should essentially exit this routine
1393    // while preserving user-declared initializer list. When this routine is
1394    // called during instantiatiation process, this routine will rebuild the
1395    // ordered initializer list correctly.
1396
1397    // If we have a dependent base initialization, we can't determine the
1398    // association between initializers and bases; just dump the known
1399    // initializers into the list, and don't try to deal with other bases.
1400    for (unsigned i = 0; i < NumInitializers; i++) {
1401      CXXBaseOrMemberInitializer *Member = Initializers[i];
1402      if (Member->isBaseInitializer())
1403        AllToInit.push_back(Member);
1404    }
1405  } else {
1406    // Push virtual bases before others.
1407    for (CXXRecordDecl::base_class_iterator VBase =
1408         ClassDecl->vbases_begin(),
1409         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1410      if (VBase->getType()->isDependentType())
1411        continue;
1412      if (CXXBaseOrMemberInitializer *Value
1413            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1414        AllToInit.push_back(Value);
1415      }
1416      else {
1417        CXXRecordDecl *VBaseDecl =
1418          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1419        assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null");
1420        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1421        if (!Ctor) {
1422          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1423            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1424            << 0 << VBase->getType();
1425          Diag(VBaseDecl->getLocation(), diag::note_previous_decl)
1426            << Context.getTagDeclType(VBaseDecl);
1427          HadError = true;
1428          continue;
1429        }
1430
1431        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1432        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1433                                    Constructor->getLocation(), CtorArgs))
1434          continue;
1435
1436        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1437
1438        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1439        // subexpression so we can wrap it in a CXXExprWithTemporaries if
1440        // necessary.
1441        // FIXME: Is there any better source-location information we can give?
1442        ExprTemporaries.clear();
1443        CXXBaseOrMemberInitializer *Member =
1444          new (Context) CXXBaseOrMemberInitializer(Context,
1445                             Context.getTrivialTypeSourceInfo(VBase->getType(),
1446                                                              SourceLocation()),
1447                                                   Ctor,
1448                                                   SourceLocation(),
1449                                                   CtorArgs.takeAs<Expr>(),
1450                                                   CtorArgs.size(),
1451                                                   SourceLocation());
1452        AllToInit.push_back(Member);
1453      }
1454    }
1455
1456    for (CXXRecordDecl::base_class_iterator Base =
1457         ClassDecl->bases_begin(),
1458         E = ClassDecl->bases_end(); Base != E; ++Base) {
1459      // Virtuals are in the virtual base list and already constructed.
1460      if (Base->isVirtual())
1461        continue;
1462      // Skip dependent types.
1463      if (Base->getType()->isDependentType())
1464        continue;
1465      if (CXXBaseOrMemberInitializer *Value
1466            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1467        AllToInit.push_back(Value);
1468      }
1469      else {
1470        CXXRecordDecl *BaseDecl =
1471          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1472        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1473         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1474        if (!Ctor) {
1475          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1476            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1477            << 0 << Base->getType();
1478          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1479            << Context.getTagDeclType(BaseDecl);
1480          HadError = true;
1481          continue;
1482        }
1483
1484        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1485        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1486                                     Constructor->getLocation(), CtorArgs))
1487          continue;
1488
1489        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1490
1491        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1492        // subexpression so we can wrap it in a CXXExprWithTemporaries if
1493        // necessary.
1494        // FIXME: Is there any better source-location information we can give?
1495        ExprTemporaries.clear();
1496        CXXBaseOrMemberInitializer *Member =
1497          new (Context) CXXBaseOrMemberInitializer(Context,
1498                             Context.getTrivialTypeSourceInfo(Base->getType(),
1499                                                              SourceLocation()),
1500                                                   Ctor,
1501                                                   SourceLocation(),
1502                                                   CtorArgs.takeAs<Expr>(),
1503                                                   CtorArgs.size(),
1504                                                   SourceLocation());
1505        AllToInit.push_back(Member);
1506      }
1507    }
1508  }
1509
1510  // non-static data members.
1511  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1512       E = ClassDecl->field_end(); Field != E; ++Field) {
1513    if ((*Field)->isAnonymousStructOrUnion()) {
1514      if (const RecordType *FieldClassType =
1515          Field->getType()->getAs<RecordType>()) {
1516        CXXRecordDecl *FieldClassDecl
1517          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1518        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1519            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1520          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1521            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1522            // set to the anonymous union data member used in the initializer
1523            // list.
1524            Value->setMember(*Field);
1525            Value->setAnonUnionMember(*FA);
1526            AllToInit.push_back(Value);
1527            break;
1528          }
1529        }
1530      }
1531      continue;
1532    }
1533    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1534      AllToInit.push_back(Value);
1535      continue;
1536    }
1537
1538    if ((*Field)->getType()->isDependentType())
1539      continue;
1540
1541    QualType FT = Context.getBaseElementType((*Field)->getType());
1542    if (const RecordType* RT = FT->getAs<RecordType>()) {
1543      CXXConstructorDecl *Ctor =
1544        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1545      if (!Ctor) {
1546        Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1547          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1548          << 1 << (*Field)->getDeclName();
1549        Diag(Field->getLocation(), diag::note_field_decl);
1550        Diag(RT->getDecl()->getLocation(), diag::note_previous_decl)
1551          << Context.getTagDeclType(RT->getDecl());
1552        HadError = true;
1553        continue;
1554      }
1555
1556      if (FT.isConstQualified() && Ctor->isTrivial()) {
1557        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1558          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1559          << 1 << (*Field)->getDeclName();
1560        Diag((*Field)->getLocation(), diag::note_declared_at);
1561        HadError = true;
1562      }
1563
1564      // Don't create initializers for trivial constructors, since they don't
1565      // actually need to be run.
1566      if (Ctor->isTrivial())
1567        continue;
1568
1569      ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1570      if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1571                                  Constructor->getLocation(), CtorArgs))
1572        continue;
1573
1574      // FIXME: CXXBaseOrMemberInitializer should only contain a single
1575      // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1576      ExprTemporaries.clear();
1577      CXXBaseOrMemberInitializer *Member =
1578        new (Context) CXXBaseOrMemberInitializer(Context,
1579                                                 *Field, SourceLocation(),
1580                                                 Ctor,
1581                                                 SourceLocation(),
1582                                                 CtorArgs.takeAs<Expr>(),
1583                                                 CtorArgs.size(),
1584                                                 SourceLocation());
1585
1586      AllToInit.push_back(Member);
1587      MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1588    }
1589    else if (FT->isReferenceType()) {
1590      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1591        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1592        << 0 << (*Field)->getDeclName();
1593      Diag((*Field)->getLocation(), diag::note_declared_at);
1594      HadError = true;
1595    }
1596    else if (FT.isConstQualified()) {
1597      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1598        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1599        << 1 << (*Field)->getDeclName();
1600      Diag((*Field)->getLocation(), diag::note_declared_at);
1601      HadError = true;
1602    }
1603  }
1604
1605  NumInitializers = AllToInit.size();
1606  if (NumInitializers > 0) {
1607    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1608    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1609      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1610
1611    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1612    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1613      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1614  }
1615
1616  return HadError;
1617}
1618
1619static void *GetKeyForTopLevelField(FieldDecl *Field) {
1620  // For anonymous unions, use the class declaration as the key.
1621  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1622    if (RT->getDecl()->isAnonymousStructOrUnion())
1623      return static_cast<void *>(RT->getDecl());
1624  }
1625  return static_cast<void *>(Field);
1626}
1627
1628static void *GetKeyForBase(QualType BaseType) {
1629  if (const RecordType *RT = BaseType->getAs<RecordType>())
1630    return (void *)RT;
1631
1632  assert(0 && "Unexpected base type!");
1633  return 0;
1634}
1635
1636static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1637                             bool MemberMaybeAnon = false) {
1638  // For fields injected into the class via declaration of an anonymous union,
1639  // use its anonymous union class declaration as the unique key.
1640  if (Member->isMemberInitializer()) {
1641    FieldDecl *Field = Member->getMember();
1642
1643    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1644    // data member of the class. Data member used in the initializer list is
1645    // in AnonUnionMember field.
1646    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1647      Field = Member->getAnonUnionMember();
1648    if (Field->getDeclContext()->isRecord()) {
1649      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1650      if (RD->isAnonymousStructOrUnion())
1651        return static_cast<void *>(RD);
1652    }
1653    return static_cast<void *>(Field);
1654  }
1655
1656  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1657}
1658
1659/// ActOnMemInitializers - Handle the member initializers for a constructor.
1660void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1661                                SourceLocation ColonLoc,
1662                                MemInitTy **MemInits, unsigned NumMemInits) {
1663  if (!ConstructorDecl)
1664    return;
1665
1666  AdjustDeclIfTemplate(ConstructorDecl);
1667
1668  CXXConstructorDecl *Constructor
1669    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1670
1671  if (!Constructor) {
1672    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1673    return;
1674  }
1675
1676  if (!Constructor->isDependentContext()) {
1677    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1678    bool err = false;
1679    for (unsigned i = 0; i < NumMemInits; i++) {
1680      CXXBaseOrMemberInitializer *Member =
1681        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1682      void *KeyToMember = GetKeyForMember(Member);
1683      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1684      if (!PrevMember) {
1685        PrevMember = Member;
1686        continue;
1687      }
1688      if (FieldDecl *Field = Member->getMember())
1689        Diag(Member->getSourceLocation(),
1690             diag::error_multiple_mem_initialization)
1691          << Field->getNameAsString()
1692          << Member->getSourceRange();
1693      else {
1694        Type *BaseClass = Member->getBaseClass();
1695        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1696        Diag(Member->getSourceLocation(),
1697             diag::error_multiple_base_initialization)
1698          << QualType(BaseClass, 0)
1699          << Member->getSourceRange();
1700      }
1701      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1702        << 0;
1703      err = true;
1704    }
1705
1706    if (err)
1707      return;
1708  }
1709
1710  SetBaseOrMemberInitializers(Constructor,
1711                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1712                      NumMemInits, false);
1713
1714  if (Constructor->isDependentContext())
1715    return;
1716
1717  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1718      Diagnostic::Ignored &&
1719      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1720      Diagnostic::Ignored)
1721    return;
1722
1723  // Also issue warning if order of ctor-initializer list does not match order
1724  // of 1) base class declarations and 2) order of non-static data members.
1725  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1726
1727  CXXRecordDecl *ClassDecl
1728    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1729  // Push virtual bases before others.
1730  for (CXXRecordDecl::base_class_iterator VBase =
1731       ClassDecl->vbases_begin(),
1732       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1733    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1734
1735  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1736       E = ClassDecl->bases_end(); Base != E; ++Base) {
1737    // Virtuals are alread in the virtual base list and are constructed
1738    // first.
1739    if (Base->isVirtual())
1740      continue;
1741    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1742  }
1743
1744  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1745       E = ClassDecl->field_end(); Field != E; ++Field)
1746    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1747
1748  int Last = AllBaseOrMembers.size();
1749  int curIndex = 0;
1750  CXXBaseOrMemberInitializer *PrevMember = 0;
1751  for (unsigned i = 0; i < NumMemInits; i++) {
1752    CXXBaseOrMemberInitializer *Member =
1753      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1754    void *MemberInCtorList = GetKeyForMember(Member, true);
1755
1756    for (; curIndex < Last; curIndex++)
1757      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1758        break;
1759    if (curIndex == Last) {
1760      assert(PrevMember && "Member not in member list?!");
1761      // Initializer as specified in ctor-initializer list is out of order.
1762      // Issue a warning diagnostic.
1763      if (PrevMember->isBaseInitializer()) {
1764        // Diagnostics is for an initialized base class.
1765        Type *BaseClass = PrevMember->getBaseClass();
1766        Diag(PrevMember->getSourceLocation(),
1767             diag::warn_base_initialized)
1768          << QualType(BaseClass, 0);
1769      } else {
1770        FieldDecl *Field = PrevMember->getMember();
1771        Diag(PrevMember->getSourceLocation(),
1772             diag::warn_field_initialized)
1773          << Field->getNameAsString();
1774      }
1775      // Also the note!
1776      if (FieldDecl *Field = Member->getMember())
1777        Diag(Member->getSourceLocation(),
1778             diag::note_fieldorbase_initialized_here) << 0
1779          << Field->getNameAsString();
1780      else {
1781        Type *BaseClass = Member->getBaseClass();
1782        Diag(Member->getSourceLocation(),
1783             diag::note_fieldorbase_initialized_here) << 1
1784          << QualType(BaseClass, 0);
1785      }
1786      for (curIndex = 0; curIndex < Last; curIndex++)
1787        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1788          break;
1789    }
1790    PrevMember = Member;
1791  }
1792}
1793
1794void
1795Sema::MarkBaseAndMemberDestructorsReferenced(CXXDestructorDecl *Destructor) {
1796  // Ignore dependent destructors.
1797  if (Destructor->isDependentContext())
1798    return;
1799
1800  CXXRecordDecl *ClassDecl = Destructor->getParent();
1801
1802  // Non-static data members.
1803  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1804       E = ClassDecl->field_end(); I != E; ++I) {
1805    FieldDecl *Field = *I;
1806
1807    QualType FieldType = Context.getBaseElementType(Field->getType());
1808
1809    const RecordType* RT = FieldType->getAs<RecordType>();
1810    if (!RT)
1811      continue;
1812
1813    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1814    if (FieldClassDecl->hasTrivialDestructor())
1815      continue;
1816
1817    const CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1818    MarkDeclarationReferenced(Destructor->getLocation(),
1819                              const_cast<CXXDestructorDecl*>(Dtor));
1820  }
1821
1822  // Bases.
1823  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1824       E = ClassDecl->bases_end(); Base != E; ++Base) {
1825    // Ignore virtual bases.
1826    if (Base->isVirtual())
1827      continue;
1828
1829    // Ignore trivial destructors.
1830    CXXRecordDecl *BaseClassDecl
1831      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1832    if (BaseClassDecl->hasTrivialDestructor())
1833      continue;
1834
1835    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1836    MarkDeclarationReferenced(Destructor->getLocation(),
1837                              const_cast<CXXDestructorDecl*>(Dtor));
1838  }
1839
1840  // Virtual bases.
1841  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1842       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1843    // Ignore trivial destructors.
1844    CXXRecordDecl *BaseClassDecl
1845      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1846    if (BaseClassDecl->hasTrivialDestructor())
1847      continue;
1848
1849    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1850    MarkDeclarationReferenced(Destructor->getLocation(),
1851                              const_cast<CXXDestructorDecl*>(Dtor));
1852  }
1853}
1854
1855void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1856  if (!CDtorDecl)
1857    return;
1858
1859  AdjustDeclIfTemplate(CDtorDecl);
1860
1861  if (CXXConstructorDecl *Constructor
1862      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1863    SetBaseOrMemberInitializers(Constructor, 0, 0, false);
1864}
1865
1866namespace {
1867  /// PureVirtualMethodCollector - traverses a class and its superclasses
1868  /// and determines if it has any pure virtual methods.
1869  class PureVirtualMethodCollector {
1870    ASTContext &Context;
1871
1872  public:
1873    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1874
1875  private:
1876    MethodList Methods;
1877
1878    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1879
1880  public:
1881    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1882      : Context(Ctx) {
1883
1884      MethodList List;
1885      Collect(RD, List);
1886
1887      // Copy the temporary list to methods, and make sure to ignore any
1888      // null entries.
1889      for (size_t i = 0, e = List.size(); i != e; ++i) {
1890        if (List[i])
1891          Methods.push_back(List[i]);
1892      }
1893    }
1894
1895    bool empty() const { return Methods.empty(); }
1896
1897    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1898    MethodList::const_iterator methods_end() { return Methods.end(); }
1899  };
1900
1901  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1902                                           MethodList& Methods) {
1903    // First, collect the pure virtual methods for the base classes.
1904    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1905         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1906      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1907        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1908        if (BaseDecl && BaseDecl->isAbstract())
1909          Collect(BaseDecl, Methods);
1910      }
1911    }
1912
1913    // Next, zero out any pure virtual methods that this class overrides.
1914    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1915
1916    MethodSetTy OverriddenMethods;
1917    size_t MethodsSize = Methods.size();
1918
1919    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1920         i != e; ++i) {
1921      // Traverse the record, looking for methods.
1922      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1923        // If the method is pure virtual, add it to the methods vector.
1924        if (MD->isPure())
1925          Methods.push_back(MD);
1926
1927        // Record all the overridden methods in our set.
1928        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1929             E = MD->end_overridden_methods(); I != E; ++I) {
1930          // Keep track of the overridden methods.
1931          OverriddenMethods.insert(*I);
1932        }
1933      }
1934    }
1935
1936    // Now go through the methods and zero out all the ones we know are
1937    // overridden.
1938    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1939      if (OverriddenMethods.count(Methods[i]))
1940        Methods[i] = 0;
1941    }
1942
1943  }
1944}
1945
1946
1947bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1948                                  unsigned DiagID, AbstractDiagSelID SelID,
1949                                  const CXXRecordDecl *CurrentRD) {
1950  if (SelID == -1)
1951    return RequireNonAbstractType(Loc, T,
1952                                  PDiag(DiagID), CurrentRD);
1953  else
1954    return RequireNonAbstractType(Loc, T,
1955                                  PDiag(DiagID) << SelID, CurrentRD);
1956}
1957
1958bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1959                                  const PartialDiagnostic &PD,
1960                                  const CXXRecordDecl *CurrentRD) {
1961  if (!getLangOptions().CPlusPlus)
1962    return false;
1963
1964  if (const ArrayType *AT = Context.getAsArrayType(T))
1965    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1966                                  CurrentRD);
1967
1968  if (const PointerType *PT = T->getAs<PointerType>()) {
1969    // Find the innermost pointer type.
1970    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1971      PT = T;
1972
1973    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1974      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1975  }
1976
1977  const RecordType *RT = T->getAs<RecordType>();
1978  if (!RT)
1979    return false;
1980
1981  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1982  if (!RD)
1983    return false;
1984
1985  if (CurrentRD && CurrentRD != RD)
1986    return false;
1987
1988  if (!RD->isAbstract())
1989    return false;
1990
1991  Diag(Loc, PD) << RD->getDeclName();
1992
1993  // Check if we've already emitted the list of pure virtual functions for this
1994  // class.
1995  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1996    return true;
1997
1998  PureVirtualMethodCollector Collector(Context, RD);
1999
2000  for (PureVirtualMethodCollector::MethodList::const_iterator I =
2001       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
2002    const CXXMethodDecl *MD = *I;
2003
2004    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
2005      MD->getDeclName();
2006  }
2007
2008  if (!PureVirtualClassDiagSet)
2009    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2010  PureVirtualClassDiagSet->insert(RD);
2011
2012  return true;
2013}
2014
2015namespace {
2016  class AbstractClassUsageDiagnoser
2017    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2018    Sema &SemaRef;
2019    CXXRecordDecl *AbstractClass;
2020
2021    bool VisitDeclContext(const DeclContext *DC) {
2022      bool Invalid = false;
2023
2024      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2025           E = DC->decls_end(); I != E; ++I)
2026        Invalid |= Visit(*I);
2027
2028      return Invalid;
2029    }
2030
2031  public:
2032    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2033      : SemaRef(SemaRef), AbstractClass(ac) {
2034        Visit(SemaRef.Context.getTranslationUnitDecl());
2035    }
2036
2037    bool VisitFunctionDecl(const FunctionDecl *FD) {
2038      if (FD->isThisDeclarationADefinition()) {
2039        // No need to do the check if we're in a definition, because it requires
2040        // that the return/param types are complete.
2041        // because that requires
2042        return VisitDeclContext(FD);
2043      }
2044
2045      // Check the return type.
2046      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2047      bool Invalid =
2048        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2049                                       diag::err_abstract_type_in_decl,
2050                                       Sema::AbstractReturnType,
2051                                       AbstractClass);
2052
2053      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2054           E = FD->param_end(); I != E; ++I) {
2055        const ParmVarDecl *VD = *I;
2056        Invalid |=
2057          SemaRef.RequireNonAbstractType(VD->getLocation(),
2058                                         VD->getOriginalType(),
2059                                         diag::err_abstract_type_in_decl,
2060                                         Sema::AbstractParamType,
2061                                         AbstractClass);
2062      }
2063
2064      return Invalid;
2065    }
2066
2067    bool VisitDecl(const Decl* D) {
2068      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2069        return VisitDeclContext(DC);
2070
2071      return false;
2072    }
2073  };
2074}
2075
2076/// \brief Perform semantic checks on a class definition that has been
2077/// completing, introducing implicitly-declared members, checking for
2078/// abstract types, etc.
2079void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2080  if (!Record || Record->isInvalidDecl())
2081    return;
2082
2083  if (!Record->isDependentType())
2084    AddImplicitlyDeclaredMembersToClass(Record);
2085
2086  if (Record->isInvalidDecl())
2087    return;
2088
2089  // Set access bits correctly on the directly-declared conversions.
2090  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2091  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2092    Convs->setAccess(I, (*I)->getAccess());
2093
2094  if (!Record->isAbstract()) {
2095    // Collect all the pure virtual methods and see if this is an abstract
2096    // class after all.
2097    PureVirtualMethodCollector Collector(Context, Record);
2098    if (!Collector.empty())
2099      Record->setAbstract(true);
2100  }
2101
2102  if (Record->isAbstract())
2103    (void)AbstractClassUsageDiagnoser(*this, Record);
2104}
2105
2106void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2107                                             DeclPtrTy TagDecl,
2108                                             SourceLocation LBrac,
2109                                             SourceLocation RBrac) {
2110  if (!TagDecl)
2111    return;
2112
2113  AdjustDeclIfTemplate(TagDecl);
2114
2115  ActOnFields(S, RLoc, TagDecl,
2116              (DeclPtrTy*)FieldCollector->getCurFields(),
2117              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
2118
2119  CheckCompletedCXXClass(
2120                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2121}
2122
2123/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2124/// special functions, such as the default constructor, copy
2125/// constructor, or destructor, to the given C++ class (C++
2126/// [special]p1).  This routine can only be executed just before the
2127/// definition of the class is complete.
2128void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2129  CanQualType ClassType
2130    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2131
2132  // FIXME: Implicit declarations have exception specifications, which are
2133  // the union of the specifications of the implicitly called functions.
2134
2135  if (!ClassDecl->hasUserDeclaredConstructor()) {
2136    // C++ [class.ctor]p5:
2137    //   A default constructor for a class X is a constructor of class X
2138    //   that can be called without an argument. If there is no
2139    //   user-declared constructor for class X, a default constructor is
2140    //   implicitly declared. An implicitly-declared default constructor
2141    //   is an inline public member of its class.
2142    DeclarationName Name
2143      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2144    CXXConstructorDecl *DefaultCon =
2145      CXXConstructorDecl::Create(Context, ClassDecl,
2146                                 ClassDecl->getLocation(), Name,
2147                                 Context.getFunctionType(Context.VoidTy,
2148                                                         0, 0, false, 0),
2149                                 /*TInfo=*/0,
2150                                 /*isExplicit=*/false,
2151                                 /*isInline=*/true,
2152                                 /*isImplicitlyDeclared=*/true);
2153    DefaultCon->setAccess(AS_public);
2154    DefaultCon->setImplicit();
2155    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2156    ClassDecl->addDecl(DefaultCon);
2157  }
2158
2159  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2160    // C++ [class.copy]p4:
2161    //   If the class definition does not explicitly declare a copy
2162    //   constructor, one is declared implicitly.
2163
2164    // C++ [class.copy]p5:
2165    //   The implicitly-declared copy constructor for a class X will
2166    //   have the form
2167    //
2168    //       X::X(const X&)
2169    //
2170    //   if
2171    bool HasConstCopyConstructor = true;
2172
2173    //     -- each direct or virtual base class B of X has a copy
2174    //        constructor whose first parameter is of type const B& or
2175    //        const volatile B&, and
2176    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2177         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2178      const CXXRecordDecl *BaseClassDecl
2179        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2180      HasConstCopyConstructor
2181        = BaseClassDecl->hasConstCopyConstructor(Context);
2182    }
2183
2184    //     -- for all the nonstatic data members of X that are of a
2185    //        class type M (or array thereof), each such class type
2186    //        has a copy constructor whose first parameter is of type
2187    //        const M& or const volatile M&.
2188    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2189         HasConstCopyConstructor && Field != ClassDecl->field_end();
2190         ++Field) {
2191      QualType FieldType = (*Field)->getType();
2192      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2193        FieldType = Array->getElementType();
2194      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2195        const CXXRecordDecl *FieldClassDecl
2196          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2197        HasConstCopyConstructor
2198          = FieldClassDecl->hasConstCopyConstructor(Context);
2199      }
2200    }
2201
2202    //   Otherwise, the implicitly declared copy constructor will have
2203    //   the form
2204    //
2205    //       X::X(X&)
2206    QualType ArgType = ClassType;
2207    if (HasConstCopyConstructor)
2208      ArgType = ArgType.withConst();
2209    ArgType = Context.getLValueReferenceType(ArgType);
2210
2211    //   An implicitly-declared copy constructor is an inline public
2212    //   member of its class.
2213    DeclarationName Name
2214      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2215    CXXConstructorDecl *CopyConstructor
2216      = CXXConstructorDecl::Create(Context, ClassDecl,
2217                                   ClassDecl->getLocation(), Name,
2218                                   Context.getFunctionType(Context.VoidTy,
2219                                                           &ArgType, 1,
2220                                                           false, 0),
2221                                   /*TInfo=*/0,
2222                                   /*isExplicit=*/false,
2223                                   /*isInline=*/true,
2224                                   /*isImplicitlyDeclared=*/true);
2225    CopyConstructor->setAccess(AS_public);
2226    CopyConstructor->setImplicit();
2227    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2228
2229    // Add the parameter to the constructor.
2230    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2231                                                 ClassDecl->getLocation(),
2232                                                 /*IdentifierInfo=*/0,
2233                                                 ArgType, /*TInfo=*/0,
2234                                                 VarDecl::None, 0);
2235    CopyConstructor->setParams(Context, &FromParam, 1);
2236    ClassDecl->addDecl(CopyConstructor);
2237  }
2238
2239  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2240    // Note: The following rules are largely analoguous to the copy
2241    // constructor rules. Note that virtual bases are not taken into account
2242    // for determining the argument type of the operator. Note also that
2243    // operators taking an object instead of a reference are allowed.
2244    //
2245    // C++ [class.copy]p10:
2246    //   If the class definition does not explicitly declare a copy
2247    //   assignment operator, one is declared implicitly.
2248    //   The implicitly-defined copy assignment operator for a class X
2249    //   will have the form
2250    //
2251    //       X& X::operator=(const X&)
2252    //
2253    //   if
2254    bool HasConstCopyAssignment = true;
2255
2256    //       -- each direct base class B of X has a copy assignment operator
2257    //          whose parameter is of type const B&, const volatile B& or B,
2258    //          and
2259    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2260         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2261      assert(!Base->getType()->isDependentType() &&
2262            "Cannot generate implicit members for class with dependent bases.");
2263      const CXXRecordDecl *BaseClassDecl
2264        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2265      const CXXMethodDecl *MD = 0;
2266      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2267                                                                     MD);
2268    }
2269
2270    //       -- for all the nonstatic data members of X that are of a class
2271    //          type M (or array thereof), each such class type has a copy
2272    //          assignment operator whose parameter is of type const M&,
2273    //          const volatile M& or M.
2274    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2275         HasConstCopyAssignment && Field != ClassDecl->field_end();
2276         ++Field) {
2277      QualType FieldType = (*Field)->getType();
2278      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2279        FieldType = Array->getElementType();
2280      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2281        const CXXRecordDecl *FieldClassDecl
2282          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2283        const CXXMethodDecl *MD = 0;
2284        HasConstCopyAssignment
2285          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2286      }
2287    }
2288
2289    //   Otherwise, the implicitly declared copy assignment operator will
2290    //   have the form
2291    //
2292    //       X& X::operator=(X&)
2293    QualType ArgType = ClassType;
2294    QualType RetType = Context.getLValueReferenceType(ArgType);
2295    if (HasConstCopyAssignment)
2296      ArgType = ArgType.withConst();
2297    ArgType = Context.getLValueReferenceType(ArgType);
2298
2299    //   An implicitly-declared copy assignment operator is an inline public
2300    //   member of its class.
2301    DeclarationName Name =
2302      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2303    CXXMethodDecl *CopyAssignment =
2304      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2305                            Context.getFunctionType(RetType, &ArgType, 1,
2306                                                    false, 0),
2307                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2308    CopyAssignment->setAccess(AS_public);
2309    CopyAssignment->setImplicit();
2310    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2311    CopyAssignment->setCopyAssignment(true);
2312
2313    // Add the parameter to the operator.
2314    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2315                                                 ClassDecl->getLocation(),
2316                                                 /*IdentifierInfo=*/0,
2317                                                 ArgType, /*TInfo=*/0,
2318                                                 VarDecl::None, 0);
2319    CopyAssignment->setParams(Context, &FromParam, 1);
2320
2321    // Don't call addedAssignmentOperator. There is no way to distinguish an
2322    // implicit from an explicit assignment operator.
2323    ClassDecl->addDecl(CopyAssignment);
2324    AddOverriddenMethods(ClassDecl, CopyAssignment);
2325  }
2326
2327  if (!ClassDecl->hasUserDeclaredDestructor()) {
2328    // C++ [class.dtor]p2:
2329    //   If a class has no user-declared destructor, a destructor is
2330    //   declared implicitly. An implicitly-declared destructor is an
2331    //   inline public member of its class.
2332    DeclarationName Name
2333      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2334    CXXDestructorDecl *Destructor
2335      = CXXDestructorDecl::Create(Context, ClassDecl,
2336                                  ClassDecl->getLocation(), Name,
2337                                  Context.getFunctionType(Context.VoidTy,
2338                                                          0, 0, false, 0),
2339                                  /*isInline=*/true,
2340                                  /*isImplicitlyDeclared=*/true);
2341    Destructor->setAccess(AS_public);
2342    Destructor->setImplicit();
2343    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2344    ClassDecl->addDecl(Destructor);
2345
2346    AddOverriddenMethods(ClassDecl, Destructor);
2347  }
2348}
2349
2350void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2351  Decl *D = TemplateD.getAs<Decl>();
2352  if (!D)
2353    return;
2354
2355  TemplateParameterList *Params = 0;
2356  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2357    Params = Template->getTemplateParameters();
2358  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2359           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2360    Params = PartialSpec->getTemplateParameters();
2361  else
2362    return;
2363
2364  for (TemplateParameterList::iterator Param = Params->begin(),
2365                                    ParamEnd = Params->end();
2366       Param != ParamEnd; ++Param) {
2367    NamedDecl *Named = cast<NamedDecl>(*Param);
2368    if (Named->getDeclName()) {
2369      S->AddDecl(DeclPtrTy::make(Named));
2370      IdResolver.AddDecl(Named);
2371    }
2372  }
2373}
2374
2375void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2376  if (!RecordD) return;
2377  AdjustDeclIfTemplate(RecordD);
2378  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2379  PushDeclContext(S, Record);
2380}
2381
2382void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2383  if (!RecordD) return;
2384  PopDeclContext();
2385}
2386
2387/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2388/// parsing a top-level (non-nested) C++ class, and we are now
2389/// parsing those parts of the given Method declaration that could
2390/// not be parsed earlier (C++ [class.mem]p2), such as default
2391/// arguments. This action should enter the scope of the given
2392/// Method declaration as if we had just parsed the qualified method
2393/// name. However, it should not bring the parameters into scope;
2394/// that will be performed by ActOnDelayedCXXMethodParameter.
2395void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2396}
2397
2398/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2399/// C++ method declaration. We're (re-)introducing the given
2400/// function parameter into scope for use in parsing later parts of
2401/// the method declaration. For example, we could see an
2402/// ActOnParamDefaultArgument event for this parameter.
2403void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2404  if (!ParamD)
2405    return;
2406
2407  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2408
2409  // If this parameter has an unparsed default argument, clear it out
2410  // to make way for the parsed default argument.
2411  if (Param->hasUnparsedDefaultArg())
2412    Param->setDefaultArg(0);
2413
2414  S->AddDecl(DeclPtrTy::make(Param));
2415  if (Param->getDeclName())
2416    IdResolver.AddDecl(Param);
2417}
2418
2419/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2420/// processing the delayed method declaration for Method. The method
2421/// declaration is now considered finished. There may be a separate
2422/// ActOnStartOfFunctionDef action later (not necessarily
2423/// immediately!) for this method, if it was also defined inside the
2424/// class body.
2425void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2426  if (!MethodD)
2427    return;
2428
2429  AdjustDeclIfTemplate(MethodD);
2430
2431  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2432
2433  // Now that we have our default arguments, check the constructor
2434  // again. It could produce additional diagnostics or affect whether
2435  // the class has implicitly-declared destructors, among other
2436  // things.
2437  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2438    CheckConstructor(Constructor);
2439
2440  // Check the default arguments, which we may have added.
2441  if (!Method->isInvalidDecl())
2442    CheckCXXDefaultArguments(Method);
2443}
2444
2445/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2446/// the well-formedness of the constructor declarator @p D with type @p
2447/// R. If there are any errors in the declarator, this routine will
2448/// emit diagnostics and set the invalid bit to true.  In any case, the type
2449/// will be updated to reflect a well-formed type for the constructor and
2450/// returned.
2451QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2452                                          FunctionDecl::StorageClass &SC) {
2453  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2454
2455  // C++ [class.ctor]p3:
2456  //   A constructor shall not be virtual (10.3) or static (9.4). A
2457  //   constructor can be invoked for a const, volatile or const
2458  //   volatile object. A constructor shall not be declared const,
2459  //   volatile, or const volatile (9.3.2).
2460  if (isVirtual) {
2461    if (!D.isInvalidType())
2462      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2463        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2464        << SourceRange(D.getIdentifierLoc());
2465    D.setInvalidType();
2466  }
2467  if (SC == FunctionDecl::Static) {
2468    if (!D.isInvalidType())
2469      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2470        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2471        << SourceRange(D.getIdentifierLoc());
2472    D.setInvalidType();
2473    SC = FunctionDecl::None;
2474  }
2475
2476  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2477  if (FTI.TypeQuals != 0) {
2478    if (FTI.TypeQuals & Qualifiers::Const)
2479      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2480        << "const" << SourceRange(D.getIdentifierLoc());
2481    if (FTI.TypeQuals & Qualifiers::Volatile)
2482      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2483        << "volatile" << SourceRange(D.getIdentifierLoc());
2484    if (FTI.TypeQuals & Qualifiers::Restrict)
2485      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2486        << "restrict" << SourceRange(D.getIdentifierLoc());
2487  }
2488
2489  // Rebuild the function type "R" without any type qualifiers (in
2490  // case any of the errors above fired) and with "void" as the
2491  // return type, since constructors don't have return types. We
2492  // *always* have to do this, because GetTypeForDeclarator will
2493  // put in a result type of "int" when none was specified.
2494  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2495  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2496                                 Proto->getNumArgs(),
2497                                 Proto->isVariadic(), 0);
2498}
2499
2500/// CheckConstructor - Checks a fully-formed constructor for
2501/// well-formedness, issuing any diagnostics required. Returns true if
2502/// the constructor declarator is invalid.
2503void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2504  CXXRecordDecl *ClassDecl
2505    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2506  if (!ClassDecl)
2507    return Constructor->setInvalidDecl();
2508
2509  // C++ [class.copy]p3:
2510  //   A declaration of a constructor for a class X is ill-formed if
2511  //   its first parameter is of type (optionally cv-qualified) X and
2512  //   either there are no other parameters or else all other
2513  //   parameters have default arguments.
2514  if (!Constructor->isInvalidDecl() &&
2515      ((Constructor->getNumParams() == 1) ||
2516       (Constructor->getNumParams() > 1 &&
2517        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2518      Constructor->getTemplateSpecializationKind()
2519                                              != TSK_ImplicitInstantiation) {
2520    QualType ParamType = Constructor->getParamDecl(0)->getType();
2521    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2522    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2523      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2524      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2525        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2526
2527      // FIXME: Rather that making the constructor invalid, we should endeavor
2528      // to fix the type.
2529      Constructor->setInvalidDecl();
2530    }
2531  }
2532
2533  // Notify the class that we've added a constructor.
2534  ClassDecl->addedConstructor(Context, Constructor);
2535}
2536
2537/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2538/// issuing any diagnostics required. Returns true on error.
2539bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2540  CXXRecordDecl *RD = Destructor->getParent();
2541
2542  if (Destructor->isVirtual()) {
2543    SourceLocation Loc;
2544
2545    if (!Destructor->isImplicit())
2546      Loc = Destructor->getLocation();
2547    else
2548      Loc = RD->getLocation();
2549
2550    // If we have a virtual destructor, look up the deallocation function
2551    FunctionDecl *OperatorDelete = 0;
2552    DeclarationName Name =
2553    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2554    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2555      return true;
2556
2557    Destructor->setOperatorDelete(OperatorDelete);
2558  }
2559
2560  return false;
2561}
2562
2563static inline bool
2564FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2565  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2566          FTI.ArgInfo[0].Param &&
2567          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2568}
2569
2570/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2571/// the well-formednes of the destructor declarator @p D with type @p
2572/// R. If there are any errors in the declarator, this routine will
2573/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2574/// will be updated to reflect a well-formed type for the destructor and
2575/// returned.
2576QualType Sema::CheckDestructorDeclarator(Declarator &D,
2577                                         FunctionDecl::StorageClass& SC) {
2578  // C++ [class.dtor]p1:
2579  //   [...] A typedef-name that names a class is a class-name
2580  //   (7.1.3); however, a typedef-name that names a class shall not
2581  //   be used as the identifier in the declarator for a destructor
2582  //   declaration.
2583  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2584  if (isa<TypedefType>(DeclaratorType)) {
2585    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2586      << DeclaratorType;
2587    D.setInvalidType();
2588  }
2589
2590  // C++ [class.dtor]p2:
2591  //   A destructor is used to destroy objects of its class type. A
2592  //   destructor takes no parameters, and no return type can be
2593  //   specified for it (not even void). The address of a destructor
2594  //   shall not be taken. A destructor shall not be static. A
2595  //   destructor can be invoked for a const, volatile or const
2596  //   volatile object. A destructor shall not be declared const,
2597  //   volatile or const volatile (9.3.2).
2598  if (SC == FunctionDecl::Static) {
2599    if (!D.isInvalidType())
2600      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2601        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2602        << SourceRange(D.getIdentifierLoc());
2603    SC = FunctionDecl::None;
2604    D.setInvalidType();
2605  }
2606  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2607    // Destructors don't have return types, but the parser will
2608    // happily parse something like:
2609    //
2610    //   class X {
2611    //     float ~X();
2612    //   };
2613    //
2614    // The return type will be eliminated later.
2615    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2616      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2617      << SourceRange(D.getIdentifierLoc());
2618  }
2619
2620  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2621  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2622    if (FTI.TypeQuals & Qualifiers::Const)
2623      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2624        << "const" << SourceRange(D.getIdentifierLoc());
2625    if (FTI.TypeQuals & Qualifiers::Volatile)
2626      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2627        << "volatile" << SourceRange(D.getIdentifierLoc());
2628    if (FTI.TypeQuals & Qualifiers::Restrict)
2629      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2630        << "restrict" << SourceRange(D.getIdentifierLoc());
2631    D.setInvalidType();
2632  }
2633
2634  // Make sure we don't have any parameters.
2635  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2636    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2637
2638    // Delete the parameters.
2639    FTI.freeArgs();
2640    D.setInvalidType();
2641  }
2642
2643  // Make sure the destructor isn't variadic.
2644  if (FTI.isVariadic) {
2645    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2646    D.setInvalidType();
2647  }
2648
2649  // Rebuild the function type "R" without any type qualifiers or
2650  // parameters (in case any of the errors above fired) and with
2651  // "void" as the return type, since destructors don't have return
2652  // types. We *always* have to do this, because GetTypeForDeclarator
2653  // will put in a result type of "int" when none was specified.
2654  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2655}
2656
2657/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2658/// well-formednes of the conversion function declarator @p D with
2659/// type @p R. If there are any errors in the declarator, this routine
2660/// will emit diagnostics and return true. Otherwise, it will return
2661/// false. Either way, the type @p R will be updated to reflect a
2662/// well-formed type for the conversion operator.
2663void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2664                                     FunctionDecl::StorageClass& SC) {
2665  // C++ [class.conv.fct]p1:
2666  //   Neither parameter types nor return type can be specified. The
2667  //   type of a conversion function (8.3.5) is "function taking no
2668  //   parameter returning conversion-type-id."
2669  if (SC == FunctionDecl::Static) {
2670    if (!D.isInvalidType())
2671      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2672        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2673        << SourceRange(D.getIdentifierLoc());
2674    D.setInvalidType();
2675    SC = FunctionDecl::None;
2676  }
2677  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2678    // Conversion functions don't have return types, but the parser will
2679    // happily parse something like:
2680    //
2681    //   class X {
2682    //     float operator bool();
2683    //   };
2684    //
2685    // The return type will be changed later anyway.
2686    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2687      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2688      << SourceRange(D.getIdentifierLoc());
2689  }
2690
2691  // Make sure we don't have any parameters.
2692  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2693    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2694
2695    // Delete the parameters.
2696    D.getTypeObject(0).Fun.freeArgs();
2697    D.setInvalidType();
2698  }
2699
2700  // Make sure the conversion function isn't variadic.
2701  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2702    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2703    D.setInvalidType();
2704  }
2705
2706  // C++ [class.conv.fct]p4:
2707  //   The conversion-type-id shall not represent a function type nor
2708  //   an array type.
2709  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2710  if (ConvType->isArrayType()) {
2711    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2712    ConvType = Context.getPointerType(ConvType);
2713    D.setInvalidType();
2714  } else if (ConvType->isFunctionType()) {
2715    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2716    ConvType = Context.getPointerType(ConvType);
2717    D.setInvalidType();
2718  }
2719
2720  // Rebuild the function type "R" without any parameters (in case any
2721  // of the errors above fired) and with the conversion type as the
2722  // return type.
2723  R = Context.getFunctionType(ConvType, 0, 0, false,
2724                              R->getAs<FunctionProtoType>()->getTypeQuals());
2725
2726  // C++0x explicit conversion operators.
2727  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2728    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2729         diag::warn_explicit_conversion_functions)
2730      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2731}
2732
2733/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2734/// the declaration of the given C++ conversion function. This routine
2735/// is responsible for recording the conversion function in the C++
2736/// class, if possible.
2737Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2738  assert(Conversion && "Expected to receive a conversion function declaration");
2739
2740  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2741
2742  // Make sure we aren't redeclaring the conversion function.
2743  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2744
2745  // C++ [class.conv.fct]p1:
2746  //   [...] A conversion function is never used to convert a
2747  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2748  //   same object type (or a reference to it), to a (possibly
2749  //   cv-qualified) base class of that type (or a reference to it),
2750  //   or to (possibly cv-qualified) void.
2751  // FIXME: Suppress this warning if the conversion function ends up being a
2752  // virtual function that overrides a virtual function in a base class.
2753  QualType ClassType
2754    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2755  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2756    ConvType = ConvTypeRef->getPointeeType();
2757  if (ConvType->isRecordType()) {
2758    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2759    if (ConvType == ClassType)
2760      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2761        << ClassType;
2762    else if (IsDerivedFrom(ClassType, ConvType))
2763      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2764        <<  ClassType << ConvType;
2765  } else if (ConvType->isVoidType()) {
2766    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2767      << ClassType << ConvType;
2768  }
2769
2770  if (Conversion->getPrimaryTemplate()) {
2771    // ignore specializations
2772  } else if (Conversion->getPreviousDeclaration()) {
2773    if (FunctionTemplateDecl *ConversionTemplate
2774                                  = Conversion->getDescribedFunctionTemplate()) {
2775      if (ClassDecl->replaceConversion(
2776                                   ConversionTemplate->getPreviousDeclaration(),
2777                                       ConversionTemplate))
2778        return DeclPtrTy::make(ConversionTemplate);
2779    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
2780                                            Conversion))
2781      return DeclPtrTy::make(Conversion);
2782    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2783  } else if (FunctionTemplateDecl *ConversionTemplate
2784               = Conversion->getDescribedFunctionTemplate())
2785    ClassDecl->addConversionFunction(ConversionTemplate);
2786  else
2787    ClassDecl->addConversionFunction(Conversion);
2788
2789  return DeclPtrTy::make(Conversion);
2790}
2791
2792//===----------------------------------------------------------------------===//
2793// Namespace Handling
2794//===----------------------------------------------------------------------===//
2795
2796/// ActOnStartNamespaceDef - This is called at the start of a namespace
2797/// definition.
2798Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2799                                             SourceLocation IdentLoc,
2800                                             IdentifierInfo *II,
2801                                             SourceLocation LBrace) {
2802  NamespaceDecl *Namespc =
2803      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2804  Namespc->setLBracLoc(LBrace);
2805
2806  Scope *DeclRegionScope = NamespcScope->getParent();
2807
2808  if (II) {
2809    // C++ [namespace.def]p2:
2810    // The identifier in an original-namespace-definition shall not have been
2811    // previously defined in the declarative region in which the
2812    // original-namespace-definition appears. The identifier in an
2813    // original-namespace-definition is the name of the namespace. Subsequently
2814    // in that declarative region, it is treated as an original-namespace-name.
2815
2816    NamedDecl *PrevDecl
2817      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2818                         ForRedeclaration);
2819
2820    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2821      // This is an extended namespace definition.
2822      // Attach this namespace decl to the chain of extended namespace
2823      // definitions.
2824      OrigNS->setNextNamespace(Namespc);
2825      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2826
2827      // Remove the previous declaration from the scope.
2828      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2829        IdResolver.RemoveDecl(OrigNS);
2830        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2831      }
2832    } else if (PrevDecl) {
2833      // This is an invalid name redefinition.
2834      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2835       << Namespc->getDeclName();
2836      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2837      Namespc->setInvalidDecl();
2838      // Continue on to push Namespc as current DeclContext and return it.
2839    } else if (II->isStr("std") &&
2840               CurContext->getLookupContext()->isTranslationUnit()) {
2841      // This is the first "real" definition of the namespace "std", so update
2842      // our cache of the "std" namespace to point at this definition.
2843      if (StdNamespace) {
2844        // We had already defined a dummy namespace "std". Link this new
2845        // namespace definition to the dummy namespace "std".
2846        StdNamespace->setNextNamespace(Namespc);
2847        StdNamespace->setLocation(IdentLoc);
2848        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2849      }
2850
2851      // Make our StdNamespace cache point at the first real definition of the
2852      // "std" namespace.
2853      StdNamespace = Namespc;
2854    }
2855
2856    PushOnScopeChains(Namespc, DeclRegionScope);
2857  } else {
2858    // Anonymous namespaces.
2859    assert(Namespc->isAnonymousNamespace());
2860    CurContext->addDecl(Namespc);
2861
2862    // Link the anonymous namespace into its parent.
2863    NamespaceDecl *PrevDecl;
2864    DeclContext *Parent = CurContext->getLookupContext();
2865    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
2866      PrevDecl = TU->getAnonymousNamespace();
2867      TU->setAnonymousNamespace(Namespc);
2868    } else {
2869      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
2870      PrevDecl = ND->getAnonymousNamespace();
2871      ND->setAnonymousNamespace(Namespc);
2872    }
2873
2874    // Link the anonymous namespace with its previous declaration.
2875    if (PrevDecl) {
2876      assert(PrevDecl->isAnonymousNamespace());
2877      assert(!PrevDecl->getNextNamespace());
2878      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
2879      PrevDecl->setNextNamespace(Namespc);
2880    }
2881
2882    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2883    //   behaves as if it were replaced by
2884    //     namespace unique { /* empty body */ }
2885    //     using namespace unique;
2886    //     namespace unique { namespace-body }
2887    //   where all occurrences of 'unique' in a translation unit are
2888    //   replaced by the same identifier and this identifier differs
2889    //   from all other identifiers in the entire program.
2890
2891    // We just create the namespace with an empty name and then add an
2892    // implicit using declaration, just like the standard suggests.
2893    //
2894    // CodeGen enforces the "universally unique" aspect by giving all
2895    // declarations semantically contained within an anonymous
2896    // namespace internal linkage.
2897
2898    if (!PrevDecl) {
2899      UsingDirectiveDecl* UD
2900        = UsingDirectiveDecl::Create(Context, CurContext,
2901                                     /* 'using' */ LBrace,
2902                                     /* 'namespace' */ SourceLocation(),
2903                                     /* qualifier */ SourceRange(),
2904                                     /* NNS */ NULL,
2905                                     /* identifier */ SourceLocation(),
2906                                     Namespc,
2907                                     /* Ancestor */ CurContext);
2908      UD->setImplicit();
2909      CurContext->addDecl(UD);
2910    }
2911  }
2912
2913  // Although we could have an invalid decl (i.e. the namespace name is a
2914  // redefinition), push it as current DeclContext and try to continue parsing.
2915  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2916  // for the namespace has the declarations that showed up in that particular
2917  // namespace definition.
2918  PushDeclContext(NamespcScope, Namespc);
2919  return DeclPtrTy::make(Namespc);
2920}
2921
2922/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2923/// is a namespace alias, returns the namespace it points to.
2924static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2925  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2926    return AD->getNamespace();
2927  return dyn_cast_or_null<NamespaceDecl>(D);
2928}
2929
2930/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2931/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2932void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2933  Decl *Dcl = D.getAs<Decl>();
2934  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2935  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2936  Namespc->setRBracLoc(RBrace);
2937  PopDeclContext();
2938}
2939
2940Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2941                                          SourceLocation UsingLoc,
2942                                          SourceLocation NamespcLoc,
2943                                          const CXXScopeSpec &SS,
2944                                          SourceLocation IdentLoc,
2945                                          IdentifierInfo *NamespcName,
2946                                          AttributeList *AttrList) {
2947  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2948  assert(NamespcName && "Invalid NamespcName.");
2949  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2950  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2951
2952  UsingDirectiveDecl *UDir = 0;
2953
2954  // Lookup namespace name.
2955  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
2956  LookupParsedName(R, S, &SS);
2957  if (R.isAmbiguous())
2958    return DeclPtrTy();
2959
2960  if (!R.empty()) {
2961    NamedDecl *Named = R.getFoundDecl();
2962    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
2963        && "expected namespace decl");
2964    // C++ [namespace.udir]p1:
2965    //   A using-directive specifies that the names in the nominated
2966    //   namespace can be used in the scope in which the
2967    //   using-directive appears after the using-directive. During
2968    //   unqualified name lookup (3.4.1), the names appear as if they
2969    //   were declared in the nearest enclosing namespace which
2970    //   contains both the using-directive and the nominated
2971    //   namespace. [Note: in this context, "contains" means "contains
2972    //   directly or indirectly". ]
2973
2974    // Find enclosing context containing both using-directive and
2975    // nominated namespace.
2976    NamespaceDecl *NS = getNamespaceDecl(Named);
2977    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2978    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2979      CommonAncestor = CommonAncestor->getParent();
2980
2981    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
2982                                      SS.getRange(),
2983                                      (NestedNameSpecifier *)SS.getScopeRep(),
2984                                      IdentLoc, Named, CommonAncestor);
2985    PushUsingDirective(S, UDir);
2986  } else {
2987    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2988  }
2989
2990  // FIXME: We ignore attributes for now.
2991  delete AttrList;
2992  return DeclPtrTy::make(UDir);
2993}
2994
2995void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2996  // If scope has associated entity, then using directive is at namespace
2997  // or translation unit scope. We add UsingDirectiveDecls, into
2998  // it's lookup structure.
2999  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3000    Ctx->addDecl(UDir);
3001  else
3002    // Otherwise it is block-sope. using-directives will affect lookup
3003    // only to the end of scope.
3004    S->PushUsingDirective(DeclPtrTy::make(UDir));
3005}
3006
3007
3008Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3009                                            AccessSpecifier AS,
3010                                            bool HasUsingKeyword,
3011                                            SourceLocation UsingLoc,
3012                                            const CXXScopeSpec &SS,
3013                                            UnqualifiedId &Name,
3014                                            AttributeList *AttrList,
3015                                            bool IsTypeName,
3016                                            SourceLocation TypenameLoc) {
3017  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3018
3019  switch (Name.getKind()) {
3020  case UnqualifiedId::IK_Identifier:
3021  case UnqualifiedId::IK_OperatorFunctionId:
3022  case UnqualifiedId::IK_LiteralOperatorId:
3023  case UnqualifiedId::IK_ConversionFunctionId:
3024    break;
3025
3026  case UnqualifiedId::IK_ConstructorName:
3027  case UnqualifiedId::IK_ConstructorTemplateId:
3028    // C++0x inherited constructors.
3029    if (getLangOptions().CPlusPlus0x) break;
3030
3031    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3032      << SS.getRange();
3033    return DeclPtrTy();
3034
3035  case UnqualifiedId::IK_DestructorName:
3036    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3037      << SS.getRange();
3038    return DeclPtrTy();
3039
3040  case UnqualifiedId::IK_TemplateId:
3041    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3042      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3043    return DeclPtrTy();
3044  }
3045
3046  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3047  if (!TargetName)
3048    return DeclPtrTy();
3049
3050  // Warn about using declarations.
3051  // TODO: store that the declaration was written without 'using' and
3052  // talk about access decls instead of using decls in the
3053  // diagnostics.
3054  if (!HasUsingKeyword) {
3055    UsingLoc = Name.getSourceRange().getBegin();
3056
3057    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3058      << CodeModificationHint::CreateInsertion(SS.getRange().getBegin(),
3059                                               "using ");
3060  }
3061
3062  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3063                                        Name.getSourceRange().getBegin(),
3064                                        TargetName, AttrList,
3065                                        /* IsInstantiation */ false,
3066                                        IsTypeName, TypenameLoc);
3067  if (UD)
3068    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3069
3070  return DeclPtrTy::make(UD);
3071}
3072
3073/// Determines whether to create a using shadow decl for a particular
3074/// decl, given the set of decls existing prior to this using lookup.
3075bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3076                                const LookupResult &Previous) {
3077  // Diagnose finding a decl which is not from a base class of the
3078  // current class.  We do this now because there are cases where this
3079  // function will silently decide not to build a shadow decl, which
3080  // will pre-empt further diagnostics.
3081  //
3082  // We don't need to do this in C++0x because we do the check once on
3083  // the qualifier.
3084  //
3085  // FIXME: diagnose the following if we care enough:
3086  //   struct A { int foo; };
3087  //   struct B : A { using A::foo; };
3088  //   template <class T> struct C : A {};
3089  //   template <class T> struct D : C<T> { using B::foo; } // <---
3090  // This is invalid (during instantiation) in C++03 because B::foo
3091  // resolves to the using decl in B, which is not a base class of D<T>.
3092  // We can't diagnose it immediately because C<T> is an unknown
3093  // specialization.  The UsingShadowDecl in D<T> then points directly
3094  // to A::foo, which will look well-formed when we instantiate.
3095  // The right solution is to not collapse the shadow-decl chain.
3096  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3097    DeclContext *OrigDC = Orig->getDeclContext();
3098
3099    // Handle enums and anonymous structs.
3100    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3101    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3102    while (OrigRec->isAnonymousStructOrUnion())
3103      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3104
3105    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3106      if (OrigDC == CurContext) {
3107        Diag(Using->getLocation(),
3108             diag::err_using_decl_nested_name_specifier_is_current_class)
3109          << Using->getNestedNameRange();
3110        Diag(Orig->getLocation(), diag::note_using_decl_target);
3111        return true;
3112      }
3113
3114      Diag(Using->getNestedNameRange().getBegin(),
3115           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3116        << Using->getTargetNestedNameDecl()
3117        << cast<CXXRecordDecl>(CurContext)
3118        << Using->getNestedNameRange();
3119      Diag(Orig->getLocation(), diag::note_using_decl_target);
3120      return true;
3121    }
3122  }
3123
3124  if (Previous.empty()) return false;
3125
3126  NamedDecl *Target = Orig;
3127  if (isa<UsingShadowDecl>(Target))
3128    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3129
3130  // If the target happens to be one of the previous declarations, we
3131  // don't have a conflict.
3132  //
3133  // FIXME: but we might be increasing its access, in which case we
3134  // should redeclare it.
3135  NamedDecl *NonTag = 0, *Tag = 0;
3136  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3137         I != E; ++I) {
3138    NamedDecl *D = (*I)->getUnderlyingDecl();
3139    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3140      return false;
3141
3142    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3143  }
3144
3145  if (Target->isFunctionOrFunctionTemplate()) {
3146    FunctionDecl *FD;
3147    if (isa<FunctionTemplateDecl>(Target))
3148      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3149    else
3150      FD = cast<FunctionDecl>(Target);
3151
3152    NamedDecl *OldDecl = 0;
3153    switch (CheckOverload(FD, Previous, OldDecl)) {
3154    case Ovl_Overload:
3155      return false;
3156
3157    case Ovl_NonFunction:
3158      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3159      break;
3160
3161    // We found a decl with the exact signature.
3162    case Ovl_Match:
3163      if (isa<UsingShadowDecl>(OldDecl)) {
3164        // Silently ignore the possible conflict.
3165        return false;
3166      }
3167
3168      // If we're in a record, we want to hide the target, so we
3169      // return true (without a diagnostic) to tell the caller not to
3170      // build a shadow decl.
3171      if (CurContext->isRecord())
3172        return true;
3173
3174      // If we're not in a record, this is an error.
3175      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3176      break;
3177    }
3178
3179    Diag(Target->getLocation(), diag::note_using_decl_target);
3180    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3181    return true;
3182  }
3183
3184  // Target is not a function.
3185
3186  if (isa<TagDecl>(Target)) {
3187    // No conflict between a tag and a non-tag.
3188    if (!Tag) return false;
3189
3190    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3191    Diag(Target->getLocation(), diag::note_using_decl_target);
3192    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3193    return true;
3194  }
3195
3196  // No conflict between a tag and a non-tag.
3197  if (!NonTag) return false;
3198
3199  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3200  Diag(Target->getLocation(), diag::note_using_decl_target);
3201  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3202  return true;
3203}
3204
3205/// Builds a shadow declaration corresponding to a 'using' declaration.
3206UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3207                                            UsingDecl *UD,
3208                                            NamedDecl *Orig) {
3209
3210  // If we resolved to another shadow declaration, just coalesce them.
3211  NamedDecl *Target = Orig;
3212  if (isa<UsingShadowDecl>(Target)) {
3213    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3214    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3215  }
3216
3217  UsingShadowDecl *Shadow
3218    = UsingShadowDecl::Create(Context, CurContext,
3219                              UD->getLocation(), UD, Target);
3220  UD->addShadowDecl(Shadow);
3221
3222  if (S)
3223    PushOnScopeChains(Shadow, S);
3224  else
3225    CurContext->addDecl(Shadow);
3226  Shadow->setAccess(UD->getAccess());
3227
3228  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3229    Shadow->setInvalidDecl();
3230
3231  return Shadow;
3232}
3233
3234/// Hides a using shadow declaration.  This is required by the current
3235/// using-decl implementation when a resolvable using declaration in a
3236/// class is followed by a declaration which would hide or override
3237/// one or more of the using decl's targets; for example:
3238///
3239///   struct Base { void foo(int); };
3240///   struct Derived : Base {
3241///     using Base::foo;
3242///     void foo(int);
3243///   };
3244///
3245/// The governing language is C++03 [namespace.udecl]p12:
3246///
3247///   When a using-declaration brings names from a base class into a
3248///   derived class scope, member functions in the derived class
3249///   override and/or hide member functions with the same name and
3250///   parameter types in a base class (rather than conflicting).
3251///
3252/// There are two ways to implement this:
3253///   (1) optimistically create shadow decls when they're not hidden
3254///       by existing declarations, or
3255///   (2) don't create any shadow decls (or at least don't make them
3256///       visible) until we've fully parsed/instantiated the class.
3257/// The problem with (1) is that we might have to retroactively remove
3258/// a shadow decl, which requires several O(n) operations because the
3259/// decl structures are (very reasonably) not designed for removal.
3260/// (2) avoids this but is very fiddly and phase-dependent.
3261void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3262  // Remove it from the DeclContext...
3263  Shadow->getDeclContext()->removeDecl(Shadow);
3264
3265  // ...and the scope, if applicable...
3266  if (S) {
3267    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3268    IdResolver.RemoveDecl(Shadow);
3269  }
3270
3271  // ...and the using decl.
3272  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3273
3274  // TODO: complain somehow if Shadow was used.  It shouldn't
3275  // be possible for this to happen, because
3276}
3277
3278/// Builds a using declaration.
3279///
3280/// \param IsInstantiation - Whether this call arises from an
3281///   instantiation of an unresolved using declaration.  We treat
3282///   the lookup differently for these declarations.
3283NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3284                                       SourceLocation UsingLoc,
3285                                       const CXXScopeSpec &SS,
3286                                       SourceLocation IdentLoc,
3287                                       DeclarationName Name,
3288                                       AttributeList *AttrList,
3289                                       bool IsInstantiation,
3290                                       bool IsTypeName,
3291                                       SourceLocation TypenameLoc) {
3292  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3293  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3294
3295  // FIXME: We ignore attributes for now.
3296  delete AttrList;
3297
3298  if (SS.isEmpty()) {
3299    Diag(IdentLoc, diag::err_using_requires_qualname);
3300    return 0;
3301  }
3302
3303  // Do the redeclaration lookup in the current scope.
3304  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3305                        ForRedeclaration);
3306  Previous.setHideTags(false);
3307  if (S) {
3308    LookupName(Previous, S);
3309
3310    // It is really dumb that we have to do this.
3311    LookupResult::Filter F = Previous.makeFilter();
3312    while (F.hasNext()) {
3313      NamedDecl *D = F.next();
3314      if (!isDeclInScope(D, CurContext, S))
3315        F.erase();
3316    }
3317    F.done();
3318  } else {
3319    assert(IsInstantiation && "no scope in non-instantiation");
3320    assert(CurContext->isRecord() && "scope not record in instantiation");
3321    LookupQualifiedName(Previous, CurContext);
3322  }
3323
3324  NestedNameSpecifier *NNS =
3325    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3326
3327  // Check for invalid redeclarations.
3328  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3329    return 0;
3330
3331  // Check for bad qualifiers.
3332  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3333    return 0;
3334
3335  DeclContext *LookupContext = computeDeclContext(SS);
3336  NamedDecl *D;
3337  if (!LookupContext) {
3338    if (IsTypeName) {
3339      // FIXME: not all declaration name kinds are legal here
3340      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3341                                              UsingLoc, TypenameLoc,
3342                                              SS.getRange(), NNS,
3343                                              IdentLoc, Name);
3344    } else {
3345      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3346                                           UsingLoc, SS.getRange(), NNS,
3347                                           IdentLoc, Name);
3348    }
3349  } else {
3350    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3351                          SS.getRange(), UsingLoc, NNS, Name,
3352                          IsTypeName);
3353  }
3354  D->setAccess(AS);
3355  CurContext->addDecl(D);
3356
3357  if (!LookupContext) return D;
3358  UsingDecl *UD = cast<UsingDecl>(D);
3359
3360  if (RequireCompleteDeclContext(SS)) {
3361    UD->setInvalidDecl();
3362    return UD;
3363  }
3364
3365  // Look up the target name.
3366
3367  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3368
3369  // Unlike most lookups, we don't always want to hide tag
3370  // declarations: tag names are visible through the using declaration
3371  // even if hidden by ordinary names, *except* in a dependent context
3372  // where it's important for the sanity of two-phase lookup.
3373  if (!IsInstantiation)
3374    R.setHideTags(false);
3375
3376  LookupQualifiedName(R, LookupContext);
3377
3378  if (R.empty()) {
3379    Diag(IdentLoc, diag::err_no_member)
3380      << Name << LookupContext << SS.getRange();
3381    UD->setInvalidDecl();
3382    return UD;
3383  }
3384
3385  if (R.isAmbiguous()) {
3386    UD->setInvalidDecl();
3387    return UD;
3388  }
3389
3390  if (IsTypeName) {
3391    // If we asked for a typename and got a non-type decl, error out.
3392    if (!R.getAsSingle<TypeDecl>()) {
3393      Diag(IdentLoc, diag::err_using_typename_non_type);
3394      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3395        Diag((*I)->getUnderlyingDecl()->getLocation(),
3396             diag::note_using_decl_target);
3397      UD->setInvalidDecl();
3398      return UD;
3399    }
3400  } else {
3401    // If we asked for a non-typename and we got a type, error out,
3402    // but only if this is an instantiation of an unresolved using
3403    // decl.  Otherwise just silently find the type name.
3404    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3405      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3406      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3407      UD->setInvalidDecl();
3408      return UD;
3409    }
3410  }
3411
3412  // C++0x N2914 [namespace.udecl]p6:
3413  // A using-declaration shall not name a namespace.
3414  if (R.getAsSingle<NamespaceDecl>()) {
3415    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3416      << SS.getRange();
3417    UD->setInvalidDecl();
3418    return UD;
3419  }
3420
3421  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3422    if (!CheckUsingShadowDecl(UD, *I, Previous))
3423      BuildUsingShadowDecl(S, UD, *I);
3424  }
3425
3426  return UD;
3427}
3428
3429/// Checks that the given using declaration is not an invalid
3430/// redeclaration.  Note that this is checking only for the using decl
3431/// itself, not for any ill-formedness among the UsingShadowDecls.
3432bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3433                                       bool isTypeName,
3434                                       const CXXScopeSpec &SS,
3435                                       SourceLocation NameLoc,
3436                                       const LookupResult &Prev) {
3437  // C++03 [namespace.udecl]p8:
3438  // C++0x [namespace.udecl]p10:
3439  //   A using-declaration is a declaration and can therefore be used
3440  //   repeatedly where (and only where) multiple declarations are
3441  //   allowed.
3442  // That's only in file contexts.
3443  if (CurContext->getLookupContext()->isFileContext())
3444    return false;
3445
3446  NestedNameSpecifier *Qual
3447    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3448
3449  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3450    NamedDecl *D = *I;
3451
3452    bool DTypename;
3453    NestedNameSpecifier *DQual;
3454    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3455      DTypename = UD->isTypeName();
3456      DQual = UD->getTargetNestedNameDecl();
3457    } else if (UnresolvedUsingValueDecl *UD
3458                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3459      DTypename = false;
3460      DQual = UD->getTargetNestedNameSpecifier();
3461    } else if (UnresolvedUsingTypenameDecl *UD
3462                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3463      DTypename = true;
3464      DQual = UD->getTargetNestedNameSpecifier();
3465    } else continue;
3466
3467    // using decls differ if one says 'typename' and the other doesn't.
3468    // FIXME: non-dependent using decls?
3469    if (isTypeName != DTypename) continue;
3470
3471    // using decls differ if they name different scopes (but note that
3472    // template instantiation can cause this check to trigger when it
3473    // didn't before instantiation).
3474    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3475        Context.getCanonicalNestedNameSpecifier(DQual))
3476      continue;
3477
3478    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3479    Diag(D->getLocation(), diag::note_using_decl) << 1;
3480    return true;
3481  }
3482
3483  return false;
3484}
3485
3486
3487/// Checks that the given nested-name qualifier used in a using decl
3488/// in the current context is appropriately related to the current
3489/// scope.  If an error is found, diagnoses it and returns true.
3490bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3491                                   const CXXScopeSpec &SS,
3492                                   SourceLocation NameLoc) {
3493  DeclContext *NamedContext = computeDeclContext(SS);
3494
3495  if (!CurContext->isRecord()) {
3496    // C++03 [namespace.udecl]p3:
3497    // C++0x [namespace.udecl]p8:
3498    //   A using-declaration for a class member shall be a member-declaration.
3499
3500    // If we weren't able to compute a valid scope, it must be a
3501    // dependent class scope.
3502    if (!NamedContext || NamedContext->isRecord()) {
3503      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3504        << SS.getRange();
3505      return true;
3506    }
3507
3508    // Otherwise, everything is known to be fine.
3509    return false;
3510  }
3511
3512  // The current scope is a record.
3513
3514  // If the named context is dependent, we can't decide much.
3515  if (!NamedContext) {
3516    // FIXME: in C++0x, we can diagnose if we can prove that the
3517    // nested-name-specifier does not refer to a base class, which is
3518    // still possible in some cases.
3519
3520    // Otherwise we have to conservatively report that things might be
3521    // okay.
3522    return false;
3523  }
3524
3525  if (!NamedContext->isRecord()) {
3526    // Ideally this would point at the last name in the specifier,
3527    // but we don't have that level of source info.
3528    Diag(SS.getRange().getBegin(),
3529         diag::err_using_decl_nested_name_specifier_is_not_class)
3530      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3531    return true;
3532  }
3533
3534  if (getLangOptions().CPlusPlus0x) {
3535    // C++0x [namespace.udecl]p3:
3536    //   In a using-declaration used as a member-declaration, the
3537    //   nested-name-specifier shall name a base class of the class
3538    //   being defined.
3539
3540    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3541                                 cast<CXXRecordDecl>(NamedContext))) {
3542      if (CurContext == NamedContext) {
3543        Diag(NameLoc,
3544             diag::err_using_decl_nested_name_specifier_is_current_class)
3545          << SS.getRange();
3546        return true;
3547      }
3548
3549      Diag(SS.getRange().getBegin(),
3550           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3551        << (NestedNameSpecifier*) SS.getScopeRep()
3552        << cast<CXXRecordDecl>(CurContext)
3553        << SS.getRange();
3554      return true;
3555    }
3556
3557    return false;
3558  }
3559
3560  // C++03 [namespace.udecl]p4:
3561  //   A using-declaration used as a member-declaration shall refer
3562  //   to a member of a base class of the class being defined [etc.].
3563
3564  // Salient point: SS doesn't have to name a base class as long as
3565  // lookup only finds members from base classes.  Therefore we can
3566  // diagnose here only if we can prove that that can't happen,
3567  // i.e. if the class hierarchies provably don't intersect.
3568
3569  // TODO: it would be nice if "definitely valid" results were cached
3570  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3571  // need to be repeated.
3572
3573  struct UserData {
3574    llvm::DenseSet<const CXXRecordDecl*> Bases;
3575
3576    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3577      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3578      Data->Bases.insert(Base);
3579      return true;
3580    }
3581
3582    bool hasDependentBases(const CXXRecordDecl *Class) {
3583      return !Class->forallBases(collect, this);
3584    }
3585
3586    /// Returns true if the base is dependent or is one of the
3587    /// accumulated base classes.
3588    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3589      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3590      return !Data->Bases.count(Base);
3591    }
3592
3593    bool mightShareBases(const CXXRecordDecl *Class) {
3594      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3595    }
3596  };
3597
3598  UserData Data;
3599
3600  // Returns false if we find a dependent base.
3601  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3602    return false;
3603
3604  // Returns false if the class has a dependent base or if it or one
3605  // of its bases is present in the base set of the current context.
3606  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3607    return false;
3608
3609  Diag(SS.getRange().getBegin(),
3610       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3611    << (NestedNameSpecifier*) SS.getScopeRep()
3612    << cast<CXXRecordDecl>(CurContext)
3613    << SS.getRange();
3614
3615  return true;
3616}
3617
3618Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3619                                             SourceLocation NamespaceLoc,
3620                                             SourceLocation AliasLoc,
3621                                             IdentifierInfo *Alias,
3622                                             const CXXScopeSpec &SS,
3623                                             SourceLocation IdentLoc,
3624                                             IdentifierInfo *Ident) {
3625
3626  // Lookup the namespace name.
3627  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3628  LookupParsedName(R, S, &SS);
3629
3630  // Check if we have a previous declaration with the same name.
3631  if (NamedDecl *PrevDecl
3632        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3633    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3634      // We already have an alias with the same name that points to the same
3635      // namespace, so don't create a new one.
3636      if (!R.isAmbiguous() && !R.empty() &&
3637          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
3638        return DeclPtrTy();
3639    }
3640
3641    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3642      diag::err_redefinition_different_kind;
3643    Diag(AliasLoc, DiagID) << Alias;
3644    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3645    return DeclPtrTy();
3646  }
3647
3648  if (R.isAmbiguous())
3649    return DeclPtrTy();
3650
3651  if (R.empty()) {
3652    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3653    return DeclPtrTy();
3654  }
3655
3656  NamespaceAliasDecl *AliasDecl =
3657    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3658                               Alias, SS.getRange(),
3659                               (NestedNameSpecifier *)SS.getScopeRep(),
3660                               IdentLoc, R.getFoundDecl());
3661
3662  CurContext->addDecl(AliasDecl);
3663  return DeclPtrTy::make(AliasDecl);
3664}
3665
3666void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3667                                            CXXConstructorDecl *Constructor) {
3668  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3669          !Constructor->isUsed()) &&
3670    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3671
3672  CXXRecordDecl *ClassDecl
3673    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3674  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3675
3676  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) {
3677    Diag(CurrentLocation, diag::note_member_synthesized_at)
3678      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3679    Constructor->setInvalidDecl();
3680  } else {
3681    Constructor->setUsed();
3682  }
3683}
3684
3685void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3686                                    CXXDestructorDecl *Destructor) {
3687  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3688         "DefineImplicitDestructor - call it for implicit default dtor");
3689  CXXRecordDecl *ClassDecl = Destructor->getParent();
3690  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3691  // C++ [class.dtor] p5
3692  // Before the implicitly-declared default destructor for a class is
3693  // implicitly defined, all the implicitly-declared default destructors
3694  // for its base class and its non-static data members shall have been
3695  // implicitly defined.
3696  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3697       E = ClassDecl->bases_end(); Base != E; ++Base) {
3698    CXXRecordDecl *BaseClassDecl
3699      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3700    if (!BaseClassDecl->hasTrivialDestructor()) {
3701      if (CXXDestructorDecl *BaseDtor =
3702          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3703        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3704      else
3705        assert(false &&
3706               "DefineImplicitDestructor - missing dtor in a base class");
3707    }
3708  }
3709
3710  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3711       E = ClassDecl->field_end(); Field != E; ++Field) {
3712    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3713    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3714      FieldType = Array->getElementType();
3715    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3716      CXXRecordDecl *FieldClassDecl
3717        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3718      if (!FieldClassDecl->hasTrivialDestructor()) {
3719        if (CXXDestructorDecl *FieldDtor =
3720            const_cast<CXXDestructorDecl*>(
3721                                        FieldClassDecl->getDestructor(Context)))
3722          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3723        else
3724          assert(false &&
3725          "DefineImplicitDestructor - missing dtor in class of a data member");
3726      }
3727    }
3728  }
3729
3730  // FIXME: If CheckDestructor fails, we should emit a note about where the
3731  // implicit destructor was needed.
3732  if (CheckDestructor(Destructor)) {
3733    Diag(CurrentLocation, diag::note_member_synthesized_at)
3734      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3735
3736    Destructor->setInvalidDecl();
3737    return;
3738  }
3739
3740  Destructor->setUsed();
3741}
3742
3743void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3744                                          CXXMethodDecl *MethodDecl) {
3745  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3746          MethodDecl->getOverloadedOperator() == OO_Equal &&
3747          !MethodDecl->isUsed()) &&
3748         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3749
3750  CXXRecordDecl *ClassDecl
3751    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3752
3753  // C++[class.copy] p12
3754  // Before the implicitly-declared copy assignment operator for a class is
3755  // implicitly defined, all implicitly-declared copy assignment operators
3756  // for its direct base classes and its nonstatic data members shall have
3757  // been implicitly defined.
3758  bool err = false;
3759  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3760       E = ClassDecl->bases_end(); Base != E; ++Base) {
3761    CXXRecordDecl *BaseClassDecl
3762      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3763    if (CXXMethodDecl *BaseAssignOpMethod =
3764          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3765                                  BaseClassDecl))
3766      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3767  }
3768  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3769       E = ClassDecl->field_end(); Field != E; ++Field) {
3770    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3771    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3772      FieldType = Array->getElementType();
3773    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3774      CXXRecordDecl *FieldClassDecl
3775        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3776      if (CXXMethodDecl *FieldAssignOpMethod =
3777          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3778                                  FieldClassDecl))
3779        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3780    } else if (FieldType->isReferenceType()) {
3781      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3782      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3783      Diag(Field->getLocation(), diag::note_declared_at);
3784      Diag(CurrentLocation, diag::note_first_required_here);
3785      err = true;
3786    } else if (FieldType.isConstQualified()) {
3787      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3788      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3789      Diag(Field->getLocation(), diag::note_declared_at);
3790      Diag(CurrentLocation, diag::note_first_required_here);
3791      err = true;
3792    }
3793  }
3794  if (!err)
3795    MethodDecl->setUsed();
3796}
3797
3798CXXMethodDecl *
3799Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3800                              ParmVarDecl *ParmDecl,
3801                              CXXRecordDecl *ClassDecl) {
3802  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3803  QualType RHSType(LHSType);
3804  // If class's assignment operator argument is const/volatile qualified,
3805  // look for operator = (const/volatile B&). Otherwise, look for
3806  // operator = (B&).
3807  RHSType = Context.getCVRQualifiedType(RHSType,
3808                                     ParmDecl->getType().getCVRQualifiers());
3809  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3810                                                           LHSType,
3811                                                           SourceLocation()));
3812  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3813                                                           RHSType,
3814                                                           CurrentLocation));
3815  Expr *Args[2] = { &*LHS, &*RHS };
3816  OverloadCandidateSet CandidateSet;
3817  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3818                              CandidateSet);
3819  OverloadCandidateSet::iterator Best;
3820  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3821    return cast<CXXMethodDecl>(Best->Function);
3822  assert(false &&
3823         "getAssignOperatorMethod - copy assignment operator method not found");
3824  return 0;
3825}
3826
3827void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3828                                   CXXConstructorDecl *CopyConstructor,
3829                                   unsigned TypeQuals) {
3830  assert((CopyConstructor->isImplicit() &&
3831          CopyConstructor->isCopyConstructor(TypeQuals) &&
3832          !CopyConstructor->isUsed()) &&
3833         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3834
3835  CXXRecordDecl *ClassDecl
3836    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3837  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3838  // C++ [class.copy] p209
3839  // Before the implicitly-declared copy constructor for a class is
3840  // implicitly defined, all the implicitly-declared copy constructors
3841  // for its base class and its non-static data members shall have been
3842  // implicitly defined.
3843  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3844       Base != ClassDecl->bases_end(); ++Base) {
3845    CXXRecordDecl *BaseClassDecl
3846      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3847    if (CXXConstructorDecl *BaseCopyCtor =
3848        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3849      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3850  }
3851  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3852                                  FieldEnd = ClassDecl->field_end();
3853       Field != FieldEnd; ++Field) {
3854    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3855    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3856      FieldType = Array->getElementType();
3857    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3858      CXXRecordDecl *FieldClassDecl
3859        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3860      if (CXXConstructorDecl *FieldCopyCtor =
3861          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3862        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3863    }
3864  }
3865  CopyConstructor->setUsed();
3866}
3867
3868Sema::OwningExprResult
3869Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3870                            CXXConstructorDecl *Constructor,
3871                            MultiExprArg ExprArgs,
3872                            bool RequiresZeroInit) {
3873  bool Elidable = false;
3874
3875  // C++ [class.copy]p15:
3876  //   Whenever a temporary class object is copied using a copy constructor, and
3877  //   this object and the copy have the same cv-unqualified type, an
3878  //   implementation is permitted to treat the original and the copy as two
3879  //   different ways of referring to the same object and not perform a copy at
3880  //   all, even if the class copy constructor or destructor have side effects.
3881
3882  // FIXME: Is this enough?
3883  if (Constructor->isCopyConstructor()) {
3884    Expr *E = ((Expr **)ExprArgs.get())[0];
3885    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3886      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3887        E = ICE->getSubExpr();
3888    if (CXXFunctionalCastExpr *FCE = dyn_cast<CXXFunctionalCastExpr>(E))
3889      E = FCE->getSubExpr();
3890    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3891      E = BE->getSubExpr();
3892    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3893      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3894        E = ICE->getSubExpr();
3895
3896    if (CallExpr *CE = dyn_cast<CallExpr>(E))
3897      Elidable = !CE->getCallReturnType()->isReferenceType();
3898    else if (isa<CXXTemporaryObjectExpr>(E))
3899      Elidable = true;
3900    else if (isa<CXXConstructExpr>(E))
3901      Elidable = true;
3902  }
3903
3904  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3905                               Elidable, move(ExprArgs), RequiresZeroInit);
3906}
3907
3908/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3909/// including handling of its default argument expressions.
3910Sema::OwningExprResult
3911Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3912                            CXXConstructorDecl *Constructor, bool Elidable,
3913                            MultiExprArg ExprArgs,
3914                            bool RequiresZeroInit) {
3915  unsigned NumExprs = ExprArgs.size();
3916  Expr **Exprs = (Expr **)ExprArgs.release();
3917
3918  MarkDeclarationReferenced(ConstructLoc, Constructor);
3919  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
3920                                        Constructor, Elidable, Exprs, NumExprs,
3921                                        RequiresZeroInit));
3922}
3923
3924Sema::OwningExprResult
3925Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3926                                  QualType Ty,
3927                                  SourceLocation TyBeginLoc,
3928                                  MultiExprArg Args,
3929                                  SourceLocation RParenLoc) {
3930  unsigned NumExprs = Args.size();
3931  Expr **Exprs = (Expr **)Args.release();
3932
3933  MarkDeclarationReferenced(TyBeginLoc, Constructor);
3934  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3935                                                    TyBeginLoc, Exprs,
3936                                                    NumExprs, RParenLoc));
3937}
3938
3939
3940bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3941                                        CXXConstructorDecl *Constructor,
3942                                        MultiExprArg Exprs) {
3943  OwningExprResult TempResult =
3944    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3945                          move(Exprs));
3946  if (TempResult.isInvalid())
3947    return true;
3948
3949  Expr *Temp = TempResult.takeAs<Expr>();
3950  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3951  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
3952  VD->setInit(Context, Temp);
3953
3954  return false;
3955}
3956
3957void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3958  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3959                                  DeclInitType->getAs<RecordType>()->getDecl());
3960  if (!ClassDecl->hasTrivialDestructor())
3961    if (CXXDestructorDecl *Destructor =
3962        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3963      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3964}
3965
3966/// AddCXXDirectInitializerToDecl - This action is called immediately after
3967/// ActOnDeclarator, when a C++ direct initializer is present.
3968/// e.g: "int x(1);"
3969void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3970                                         SourceLocation LParenLoc,
3971                                         MultiExprArg Exprs,
3972                                         SourceLocation *CommaLocs,
3973                                         SourceLocation RParenLoc) {
3974  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
3975  Decl *RealDecl = Dcl.getAs<Decl>();
3976
3977  // If there is no declaration, there was an error parsing it.  Just ignore
3978  // the initializer.
3979  if (RealDecl == 0)
3980    return;
3981
3982  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3983  if (!VDecl) {
3984    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3985    RealDecl->setInvalidDecl();
3986    return;
3987  }
3988
3989  // We will represent direct-initialization similarly to copy-initialization:
3990  //    int x(1);  -as-> int x = 1;
3991  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3992  //
3993  // Clients that want to distinguish between the two forms, can check for
3994  // direct initializer using VarDecl::hasCXXDirectInitializer().
3995  // A major benefit is that clients that don't particularly care about which
3996  // exactly form was it (like the CodeGen) can handle both cases without
3997  // special case code.
3998
3999  // If either the declaration has a dependent type or if any of the expressions
4000  // is type-dependent, we represent the initialization via a ParenListExpr for
4001  // later use during template instantiation.
4002  if (VDecl->getType()->isDependentType() ||
4003      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4004    // Let clients know that initialization was done with a direct initializer.
4005    VDecl->setCXXDirectInitializer(true);
4006
4007    // Store the initialization expressions as a ParenListExpr.
4008    unsigned NumExprs = Exprs.size();
4009    VDecl->setInit(Context,
4010                   new (Context) ParenListExpr(Context, LParenLoc,
4011                                               (Expr **)Exprs.release(),
4012                                               NumExprs, RParenLoc));
4013    return;
4014  }
4015
4016
4017  // C++ 8.5p11:
4018  // The form of initialization (using parentheses or '=') is generally
4019  // insignificant, but does matter when the entity being initialized has a
4020  // class type.
4021  QualType DeclInitType = VDecl->getType();
4022  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4023    DeclInitType = Context.getBaseElementType(Array);
4024
4025  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4026                          diag::err_typecheck_decl_incomplete_type)) {
4027    VDecl->setInvalidDecl();
4028    return;
4029  }
4030
4031  // The variable can not have an abstract class type.
4032  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4033                             diag::err_abstract_type_in_decl,
4034                             AbstractVariableType))
4035    VDecl->setInvalidDecl();
4036
4037  const VarDecl *Def = 0;
4038  if (VDecl->getDefinition(Def)) {
4039    Diag(VDecl->getLocation(), diag::err_redefinition)
4040    << VDecl->getDeclName();
4041    Diag(Def->getLocation(), diag::note_previous_definition);
4042    VDecl->setInvalidDecl();
4043    return;
4044  }
4045
4046  // Capture the variable that is being initialized and the style of
4047  // initialization.
4048  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4049
4050  // FIXME: Poor source location information.
4051  InitializationKind Kind
4052    = InitializationKind::CreateDirect(VDecl->getLocation(),
4053                                       LParenLoc, RParenLoc);
4054
4055  InitializationSequence InitSeq(*this, Entity, Kind,
4056                                 (Expr**)Exprs.get(), Exprs.size());
4057  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4058  if (Result.isInvalid()) {
4059    VDecl->setInvalidDecl();
4060    return;
4061  }
4062
4063  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4064  VDecl->setInit(Context, Result.takeAs<Expr>());
4065  VDecl->setCXXDirectInitializer(true);
4066
4067  if (VDecl->getType()->getAs<RecordType>())
4068    FinalizeVarWithDestructor(VDecl, DeclInitType);
4069}
4070
4071/// \brief Add the applicable constructor candidates for an initialization
4072/// by constructor.
4073static void AddConstructorInitializationCandidates(Sema &SemaRef,
4074                                                   QualType ClassType,
4075                                                   Expr **Args,
4076                                                   unsigned NumArgs,
4077                                                   InitializationKind Kind,
4078                                           OverloadCandidateSet &CandidateSet) {
4079  // C++ [dcl.init]p14:
4080  //   If the initialization is direct-initialization, or if it is
4081  //   copy-initialization where the cv-unqualified version of the
4082  //   source type is the same class as, or a derived class of, the
4083  //   class of the destination, constructors are considered. The
4084  //   applicable constructors are enumerated (13.3.1.3), and the
4085  //   best one is chosen through overload resolution (13.3). The
4086  //   constructor so selected is called to initialize the object,
4087  //   with the initializer expression(s) as its argument(s). If no
4088  //   constructor applies, or the overload resolution is ambiguous,
4089  //   the initialization is ill-formed.
4090  const RecordType *ClassRec = ClassType->getAs<RecordType>();
4091  assert(ClassRec && "Can only initialize a class type here");
4092
4093  // FIXME: When we decide not to synthesize the implicitly-declared
4094  // constructors, we'll need to make them appear here.
4095
4096  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
4097  DeclarationName ConstructorName
4098    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
4099              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
4100  DeclContext::lookup_const_iterator Con, ConEnd;
4101  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
4102       Con != ConEnd; ++Con) {
4103    // Find the constructor (which may be a template).
4104    CXXConstructorDecl *Constructor = 0;
4105    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4106    if (ConstructorTmpl)
4107      Constructor
4108      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4109    else
4110      Constructor = cast<CXXConstructorDecl>(*Con);
4111
4112    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4113        (Kind.getKind() == InitializationKind::IK_Value) ||
4114        (Kind.getKind() == InitializationKind::IK_Copy &&
4115         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4116        ((Kind.getKind() == InitializationKind::IK_Default) &&
4117         Constructor->isDefaultConstructor())) {
4118      if (ConstructorTmpl)
4119        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl,
4120                                             ConstructorTmpl->getAccess(),
4121                                             /*ExplicitArgs*/ 0,
4122                                             Args, NumArgs, CandidateSet);
4123      else
4124        SemaRef.AddOverloadCandidate(Constructor, Constructor->getAccess(),
4125                                     Args, NumArgs, CandidateSet);
4126    }
4127  }
4128}
4129
4130/// \brief Attempt to perform initialization by constructor
4131/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4132/// copy-initialization.
4133///
4134/// This routine determines whether initialization by constructor is possible,
4135/// but it does not emit any diagnostics in the case where the initialization
4136/// is ill-formed.
4137///
4138/// \param ClassType the type of the object being initialized, which must have
4139/// class type.
4140///
4141/// \param Args the arguments provided to initialize the object
4142///
4143/// \param NumArgs the number of arguments provided to initialize the object
4144///
4145/// \param Kind the type of initialization being performed
4146///
4147/// \returns the constructor used to initialize the object, if successful.
4148/// Otherwise, emits a diagnostic and returns NULL.
4149CXXConstructorDecl *
4150Sema::TryInitializationByConstructor(QualType ClassType,
4151                                     Expr **Args, unsigned NumArgs,
4152                                     SourceLocation Loc,
4153                                     InitializationKind Kind) {
4154  // Build the overload candidate set
4155  OverloadCandidateSet CandidateSet;
4156  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4157                                         CandidateSet);
4158
4159  // Determine whether we found a constructor we can use.
4160  OverloadCandidateSet::iterator Best;
4161  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4162    case OR_Success:
4163    case OR_Deleted:
4164      // We found a constructor. Return it.
4165      return cast<CXXConstructorDecl>(Best->Function);
4166
4167    case OR_No_Viable_Function:
4168    case OR_Ambiguous:
4169      // Overload resolution failed. Return nothing.
4170      return 0;
4171  }
4172
4173  // Silence GCC warning
4174  return 0;
4175}
4176
4177/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
4178/// may occur as part of direct-initialization or copy-initialization.
4179///
4180/// \param ClassType the type of the object being initialized, which must have
4181/// class type.
4182///
4183/// \param ArgsPtr the arguments provided to initialize the object
4184///
4185/// \param Loc the source location where the initialization occurs
4186///
4187/// \param Range the source range that covers the entire initialization
4188///
4189/// \param InitEntity the name of the entity being initialized, if known
4190///
4191/// \param Kind the type of initialization being performed
4192///
4193/// \param ConvertedArgs a vector that will be filled in with the
4194/// appropriately-converted arguments to the constructor (if initialization
4195/// succeeded).
4196///
4197/// \returns the constructor used to initialize the object, if successful.
4198/// Otherwise, emits a diagnostic and returns NULL.
4199CXXConstructorDecl *
4200Sema::PerformInitializationByConstructor(QualType ClassType,
4201                                         MultiExprArg ArgsPtr,
4202                                         SourceLocation Loc, SourceRange Range,
4203                                         DeclarationName InitEntity,
4204                                         InitializationKind Kind,
4205                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4206
4207  // Build the overload candidate set
4208  Expr **Args = (Expr **)ArgsPtr.get();
4209  unsigned NumArgs = ArgsPtr.size();
4210  OverloadCandidateSet CandidateSet;
4211  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4212                                         CandidateSet);
4213
4214  OverloadCandidateSet::iterator Best;
4215  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4216  case OR_Success:
4217    // We found a constructor. Break out so that we can convert the arguments
4218    // appropriately.
4219    break;
4220
4221  case OR_No_Viable_Function:
4222    if (InitEntity)
4223      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
4224        << InitEntity << Range;
4225    else
4226      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
4227        << ClassType << Range;
4228    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
4229    return 0;
4230
4231  case OR_Ambiguous:
4232    if (InitEntity)
4233      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
4234    else
4235      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
4236    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
4237    return 0;
4238
4239  case OR_Deleted:
4240    if (InitEntity)
4241      Diag(Loc, diag::err_ovl_deleted_init)
4242        << Best->Function->isDeleted()
4243        << InitEntity << Range;
4244    else {
4245      const CXXRecordDecl *RD =
4246          cast<CXXRecordDecl>(ClassType->getAs<RecordType>()->getDecl());
4247      Diag(Loc, diag::err_ovl_deleted_init)
4248        << Best->Function->isDeleted()
4249        << RD->getDeclName() << Range;
4250    }
4251    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
4252    return 0;
4253  }
4254
4255  // Convert the arguments, fill in default arguments, etc.
4256  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4257  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
4258    return 0;
4259
4260  return Constructor;
4261}
4262
4263/// \brief Given a constructor and the set of arguments provided for the
4264/// constructor, convert the arguments and add any required default arguments
4265/// to form a proper call to this constructor.
4266///
4267/// \returns true if an error occurred, false otherwise.
4268bool
4269Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4270                              MultiExprArg ArgsPtr,
4271                              SourceLocation Loc,
4272                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4273  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4274  unsigned NumArgs = ArgsPtr.size();
4275  Expr **Args = (Expr **)ArgsPtr.get();
4276
4277  const FunctionProtoType *Proto
4278    = Constructor->getType()->getAs<FunctionProtoType>();
4279  assert(Proto && "Constructor without a prototype?");
4280  unsigned NumArgsInProto = Proto->getNumArgs();
4281
4282  // If too few arguments are available, we'll fill in the rest with defaults.
4283  if (NumArgs < NumArgsInProto)
4284    ConvertedArgs.reserve(NumArgsInProto);
4285  else
4286    ConvertedArgs.reserve(NumArgs);
4287
4288  VariadicCallType CallType =
4289    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4290  llvm::SmallVector<Expr *, 8> AllArgs;
4291  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4292                                        Proto, 0, Args, NumArgs, AllArgs,
4293                                        CallType);
4294  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4295    ConvertedArgs.push_back(AllArgs[i]);
4296  return Invalid;
4297}
4298
4299/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4300/// determine whether they are reference-related,
4301/// reference-compatible, reference-compatible with added
4302/// qualification, or incompatible, for use in C++ initialization by
4303/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4304/// type, and the first type (T1) is the pointee type of the reference
4305/// type being initialized.
4306Sema::ReferenceCompareResult
4307Sema::CompareReferenceRelationship(SourceLocation Loc,
4308                                   QualType OrigT1, QualType OrigT2,
4309                                   bool& DerivedToBase) {
4310  assert(!OrigT1->isReferenceType() &&
4311    "T1 must be the pointee type of the reference type");
4312  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4313
4314  QualType T1 = Context.getCanonicalType(OrigT1);
4315  QualType T2 = Context.getCanonicalType(OrigT2);
4316  Qualifiers T1Quals, T2Quals;
4317  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4318  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4319
4320  // C++ [dcl.init.ref]p4:
4321  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4322  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4323  //   T1 is a base class of T2.
4324  if (UnqualT1 == UnqualT2)
4325    DerivedToBase = false;
4326  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4327           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4328           IsDerivedFrom(UnqualT2, UnqualT1))
4329    DerivedToBase = true;
4330  else
4331    return Ref_Incompatible;
4332
4333  // At this point, we know that T1 and T2 are reference-related (at
4334  // least).
4335
4336  // If the type is an array type, promote the element qualifiers to the type
4337  // for comparison.
4338  if (isa<ArrayType>(T1) && T1Quals)
4339    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4340  if (isa<ArrayType>(T2) && T2Quals)
4341    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4342
4343  // C++ [dcl.init.ref]p4:
4344  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4345  //   reference-related to T2 and cv1 is the same cv-qualification
4346  //   as, or greater cv-qualification than, cv2. For purposes of
4347  //   overload resolution, cases for which cv1 is greater
4348  //   cv-qualification than cv2 are identified as
4349  //   reference-compatible with added qualification (see 13.3.3.2).
4350  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
4351    return Ref_Compatible;
4352  else if (T1.isMoreQualifiedThan(T2))
4353    return Ref_Compatible_With_Added_Qualification;
4354  else
4355    return Ref_Related;
4356}
4357
4358/// CheckReferenceInit - Check the initialization of a reference
4359/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4360/// the initializer (either a simple initializer or an initializer
4361/// list), and DeclType is the type of the declaration. When ICS is
4362/// non-null, this routine will compute the implicit conversion
4363/// sequence according to C++ [over.ics.ref] and will not produce any
4364/// diagnostics; when ICS is null, it will emit diagnostics when any
4365/// errors are found. Either way, a return value of true indicates
4366/// that there was a failure, a return value of false indicates that
4367/// the reference initialization succeeded.
4368///
4369/// When @p SuppressUserConversions, user-defined conversions are
4370/// suppressed.
4371/// When @p AllowExplicit, we also permit explicit user-defined
4372/// conversion functions.
4373/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4374/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4375/// This is used when this is called from a C-style cast.
4376bool
4377Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4378                         SourceLocation DeclLoc,
4379                         bool SuppressUserConversions,
4380                         bool AllowExplicit, bool ForceRValue,
4381                         ImplicitConversionSequence *ICS,
4382                         bool IgnoreBaseAccess) {
4383  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4384
4385  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4386  QualType T2 = Init->getType();
4387
4388  // If the initializer is the address of an overloaded function, try
4389  // to resolve the overloaded function. If all goes well, T2 is the
4390  // type of the resulting function.
4391  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4392    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4393                                                          ICS != 0);
4394    if (Fn) {
4395      // Since we're performing this reference-initialization for
4396      // real, update the initializer with the resulting function.
4397      if (!ICS) {
4398        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4399          return true;
4400
4401        Init = FixOverloadedFunctionReference(Init, Fn);
4402      }
4403
4404      T2 = Fn->getType();
4405    }
4406  }
4407
4408  // Compute some basic properties of the types and the initializer.
4409  bool isRValRef = DeclType->isRValueReferenceType();
4410  bool DerivedToBase = false;
4411  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4412                                                  Init->isLvalue(Context);
4413  ReferenceCompareResult RefRelationship
4414    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4415
4416  // Most paths end in a failed conversion.
4417  if (ICS) {
4418    ICS->setBad();
4419    ICS->Bad.init(BadConversionSequence::no_conversion, Init, DeclType);
4420  }
4421
4422  // C++ [dcl.init.ref]p5:
4423  //   A reference to type "cv1 T1" is initialized by an expression
4424  //   of type "cv2 T2" as follows:
4425
4426  //     -- If the initializer expression
4427
4428  // Rvalue references cannot bind to lvalues (N2812).
4429  // There is absolutely no situation where they can. In particular, note that
4430  // this is ill-formed, even if B has a user-defined conversion to A&&:
4431  //   B b;
4432  //   A&& r = b;
4433  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4434    if (!ICS)
4435      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4436        << Init->getSourceRange();
4437    return true;
4438  }
4439
4440  bool BindsDirectly = false;
4441  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4442  //          reference-compatible with "cv2 T2," or
4443  //
4444  // Note that the bit-field check is skipped if we are just computing
4445  // the implicit conversion sequence (C++ [over.best.ics]p2).
4446  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4447      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4448    BindsDirectly = true;
4449
4450    if (ICS) {
4451      // C++ [over.ics.ref]p1:
4452      //   When a parameter of reference type binds directly (8.5.3)
4453      //   to an argument expression, the implicit conversion sequence
4454      //   is the identity conversion, unless the argument expression
4455      //   has a type that is a derived class of the parameter type,
4456      //   in which case the implicit conversion sequence is a
4457      //   derived-to-base Conversion (13.3.3.1).
4458      ICS->setStandard();
4459      ICS->Standard.First = ICK_Identity;
4460      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4461      ICS->Standard.Third = ICK_Identity;
4462      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4463      ICS->Standard.setToType(0, T2);
4464      ICS->Standard.setToType(1, T1);
4465      ICS->Standard.setToType(2, T1);
4466      ICS->Standard.ReferenceBinding = true;
4467      ICS->Standard.DirectBinding = true;
4468      ICS->Standard.RRefBinding = false;
4469      ICS->Standard.CopyConstructor = 0;
4470
4471      // Nothing more to do: the inaccessibility/ambiguity check for
4472      // derived-to-base conversions is suppressed when we're
4473      // computing the implicit conversion sequence (C++
4474      // [over.best.ics]p2).
4475      return false;
4476    } else {
4477      // Perform the conversion.
4478      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4479      if (DerivedToBase)
4480        CK = CastExpr::CK_DerivedToBase;
4481      else if(CheckExceptionSpecCompatibility(Init, T1))
4482        return true;
4483      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4484    }
4485  }
4486
4487  //       -- has a class type (i.e., T2 is a class type) and can be
4488  //          implicitly converted to an lvalue of type "cv3 T3,"
4489  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4490  //          92) (this conversion is selected by enumerating the
4491  //          applicable conversion functions (13.3.1.6) and choosing
4492  //          the best one through overload resolution (13.3)),
4493  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4494      !RequireCompleteType(DeclLoc, T2, 0)) {
4495    CXXRecordDecl *T2RecordDecl
4496      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4497
4498    OverloadCandidateSet CandidateSet;
4499    const UnresolvedSetImpl *Conversions
4500      = T2RecordDecl->getVisibleConversionFunctions();
4501    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4502           E = Conversions->end(); I != E; ++I) {
4503      NamedDecl *D = *I;
4504      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4505      if (isa<UsingShadowDecl>(D))
4506        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4507
4508      FunctionTemplateDecl *ConvTemplate
4509        = dyn_cast<FunctionTemplateDecl>(D);
4510      CXXConversionDecl *Conv;
4511      if (ConvTemplate)
4512        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4513      else
4514        Conv = cast<CXXConversionDecl>(D);
4515
4516      // If the conversion function doesn't return a reference type,
4517      // it can't be considered for this conversion.
4518      if (Conv->getConversionType()->isLValueReferenceType() &&
4519          (AllowExplicit || !Conv->isExplicit())) {
4520        if (ConvTemplate)
4521          AddTemplateConversionCandidate(ConvTemplate, I.getAccess(), ActingDC,
4522                                         Init, DeclType, CandidateSet);
4523        else
4524          AddConversionCandidate(Conv, I.getAccess(), ActingDC, Init,
4525                                 DeclType, CandidateSet);
4526      }
4527    }
4528
4529    OverloadCandidateSet::iterator Best;
4530    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4531    case OR_Success:
4532      // This is a direct binding.
4533      BindsDirectly = true;
4534
4535      if (ICS) {
4536        // C++ [over.ics.ref]p1:
4537        //
4538        //   [...] If the parameter binds directly to the result of
4539        //   applying a conversion function to the argument
4540        //   expression, the implicit conversion sequence is a
4541        //   user-defined conversion sequence (13.3.3.1.2), with the
4542        //   second standard conversion sequence either an identity
4543        //   conversion or, if the conversion function returns an
4544        //   entity of a type that is a derived class of the parameter
4545        //   type, a derived-to-base Conversion.
4546        ICS->setUserDefined();
4547        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4548        ICS->UserDefined.After = Best->FinalConversion;
4549        ICS->UserDefined.ConversionFunction = Best->Function;
4550        ICS->UserDefined.EllipsisConversion = false;
4551        assert(ICS->UserDefined.After.ReferenceBinding &&
4552               ICS->UserDefined.After.DirectBinding &&
4553               "Expected a direct reference binding!");
4554        return false;
4555      } else {
4556        OwningExprResult InitConversion =
4557          BuildCXXCastArgument(DeclLoc, QualType(),
4558                               CastExpr::CK_UserDefinedConversion,
4559                               cast<CXXMethodDecl>(Best->Function),
4560                               Owned(Init));
4561        Init = InitConversion.takeAs<Expr>();
4562
4563        if (CheckExceptionSpecCompatibility(Init, T1))
4564          return true;
4565        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4566                          /*isLvalue=*/true);
4567      }
4568      break;
4569
4570    case OR_Ambiguous:
4571      if (ICS) {
4572        ICS->setAmbiguous();
4573        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4574             Cand != CandidateSet.end(); ++Cand)
4575          if (Cand->Viable)
4576            ICS->Ambiguous.addConversion(Cand->Function);
4577        break;
4578      }
4579      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4580            << Init->getSourceRange();
4581      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Init, 1);
4582      return true;
4583
4584    case OR_No_Viable_Function:
4585    case OR_Deleted:
4586      // There was no suitable conversion, or we found a deleted
4587      // conversion; continue with other checks.
4588      break;
4589    }
4590  }
4591
4592  if (BindsDirectly) {
4593    // C++ [dcl.init.ref]p4:
4594    //   [...] In all cases where the reference-related or
4595    //   reference-compatible relationship of two types is used to
4596    //   establish the validity of a reference binding, and T1 is a
4597    //   base class of T2, a program that necessitates such a binding
4598    //   is ill-formed if T1 is an inaccessible (clause 11) or
4599    //   ambiguous (10.2) base class of T2.
4600    //
4601    // Note that we only check this condition when we're allowed to
4602    // complain about errors, because we should not be checking for
4603    // ambiguity (or inaccessibility) unless the reference binding
4604    // actually happens.
4605    if (DerivedToBase)
4606      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4607                                          Init->getSourceRange(),
4608                                          IgnoreBaseAccess);
4609    else
4610      return false;
4611  }
4612
4613  //     -- Otherwise, the reference shall be to a non-volatile const
4614  //        type (i.e., cv1 shall be const), or the reference shall be an
4615  //        rvalue reference and the initializer expression shall be an rvalue.
4616  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4617    if (!ICS)
4618      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4619        << T1 << int(InitLvalue != Expr::LV_Valid)
4620        << T2 << Init->getSourceRange();
4621    return true;
4622  }
4623
4624  //       -- If the initializer expression is an rvalue, with T2 a
4625  //          class type, and "cv1 T1" is reference-compatible with
4626  //          "cv2 T2," the reference is bound in one of the
4627  //          following ways (the choice is implementation-defined):
4628  //
4629  //          -- The reference is bound to the object represented by
4630  //             the rvalue (see 3.10) or to a sub-object within that
4631  //             object.
4632  //
4633  //          -- A temporary of type "cv1 T2" [sic] is created, and
4634  //             a constructor is called to copy the entire rvalue
4635  //             object into the temporary. The reference is bound to
4636  //             the temporary or to a sub-object within the
4637  //             temporary.
4638  //
4639  //          The constructor that would be used to make the copy
4640  //          shall be callable whether or not the copy is actually
4641  //          done.
4642  //
4643  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4644  // freedom, so we will always take the first option and never build
4645  // a temporary in this case. FIXME: We will, however, have to check
4646  // for the presence of a copy constructor in C++98/03 mode.
4647  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4648      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4649    if (ICS) {
4650      ICS->setStandard();
4651      ICS->Standard.First = ICK_Identity;
4652      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4653      ICS->Standard.Third = ICK_Identity;
4654      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4655      ICS->Standard.setToType(0, T2);
4656      ICS->Standard.setToType(1, T1);
4657      ICS->Standard.setToType(2, T1);
4658      ICS->Standard.ReferenceBinding = true;
4659      ICS->Standard.DirectBinding = false;
4660      ICS->Standard.RRefBinding = isRValRef;
4661      ICS->Standard.CopyConstructor = 0;
4662    } else {
4663      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4664      if (DerivedToBase)
4665        CK = CastExpr::CK_DerivedToBase;
4666      else if(CheckExceptionSpecCompatibility(Init, T1))
4667        return true;
4668      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4669    }
4670    return false;
4671  }
4672
4673  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4674  //          initialized from the initializer expression using the
4675  //          rules for a non-reference copy initialization (8.5). The
4676  //          reference is then bound to the temporary. If T1 is
4677  //          reference-related to T2, cv1 must be the same
4678  //          cv-qualification as, or greater cv-qualification than,
4679  //          cv2; otherwise, the program is ill-formed.
4680  if (RefRelationship == Ref_Related) {
4681    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4682    // we would be reference-compatible or reference-compatible with
4683    // added qualification. But that wasn't the case, so the reference
4684    // initialization fails.
4685    if (!ICS)
4686      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4687        << T1 << int(InitLvalue != Expr::LV_Valid)
4688        << T2 << Init->getSourceRange();
4689    return true;
4690  }
4691
4692  // If at least one of the types is a class type, the types are not
4693  // related, and we aren't allowed any user conversions, the
4694  // reference binding fails. This case is important for breaking
4695  // recursion, since TryImplicitConversion below will attempt to
4696  // create a temporary through the use of a copy constructor.
4697  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4698      (T1->isRecordType() || T2->isRecordType())) {
4699    if (!ICS)
4700      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4701        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4702    return true;
4703  }
4704
4705  // Actually try to convert the initializer to T1.
4706  if (ICS) {
4707    // C++ [over.ics.ref]p2:
4708    //
4709    //   When a parameter of reference type is not bound directly to
4710    //   an argument expression, the conversion sequence is the one
4711    //   required to convert the argument expression to the
4712    //   underlying type of the reference according to
4713    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4714    //   to copy-initializing a temporary of the underlying type with
4715    //   the argument expression. Any difference in top-level
4716    //   cv-qualification is subsumed by the initialization itself
4717    //   and does not constitute a conversion.
4718    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4719                                 /*AllowExplicit=*/false,
4720                                 /*ForceRValue=*/false,
4721                                 /*InOverloadResolution=*/false);
4722
4723    // Of course, that's still a reference binding.
4724    if (ICS->isStandard()) {
4725      ICS->Standard.ReferenceBinding = true;
4726      ICS->Standard.RRefBinding = isRValRef;
4727    } else if (ICS->isUserDefined()) {
4728      ICS->UserDefined.After.ReferenceBinding = true;
4729      ICS->UserDefined.After.RRefBinding = isRValRef;
4730    }
4731    return ICS->isBad();
4732  } else {
4733    ImplicitConversionSequence Conversions;
4734    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4735                                                   false, false,
4736                                                   Conversions);
4737    if (badConversion) {
4738      if (Conversions.isAmbiguous()) {
4739        Diag(DeclLoc,
4740             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4741        for (int j = Conversions.Ambiguous.conversions().size()-1;
4742             j >= 0; j--) {
4743          FunctionDecl *Func = Conversions.Ambiguous.conversions()[j];
4744          NoteOverloadCandidate(Func);
4745        }
4746      }
4747      else {
4748        if (isRValRef)
4749          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4750            << Init->getSourceRange();
4751        else
4752          Diag(DeclLoc, diag::err_invalid_initialization)
4753            << DeclType << Init->getType() << Init->getSourceRange();
4754      }
4755    }
4756    return badConversion;
4757  }
4758}
4759
4760static inline bool
4761CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4762                                       const FunctionDecl *FnDecl) {
4763  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4764  if (isa<NamespaceDecl>(DC)) {
4765    return SemaRef.Diag(FnDecl->getLocation(),
4766                        diag::err_operator_new_delete_declared_in_namespace)
4767      << FnDecl->getDeclName();
4768  }
4769
4770  if (isa<TranslationUnitDecl>(DC) &&
4771      FnDecl->getStorageClass() == FunctionDecl::Static) {
4772    return SemaRef.Diag(FnDecl->getLocation(),
4773                        diag::err_operator_new_delete_declared_static)
4774      << FnDecl->getDeclName();
4775  }
4776
4777  return false;
4778}
4779
4780static inline bool
4781CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4782                            CanQualType ExpectedResultType,
4783                            CanQualType ExpectedFirstParamType,
4784                            unsigned DependentParamTypeDiag,
4785                            unsigned InvalidParamTypeDiag) {
4786  QualType ResultType =
4787    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4788
4789  // Check that the result type is not dependent.
4790  if (ResultType->isDependentType())
4791    return SemaRef.Diag(FnDecl->getLocation(),
4792                        diag::err_operator_new_delete_dependent_result_type)
4793    << FnDecl->getDeclName() << ExpectedResultType;
4794
4795  // Check that the result type is what we expect.
4796  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4797    return SemaRef.Diag(FnDecl->getLocation(),
4798                        diag::err_operator_new_delete_invalid_result_type)
4799    << FnDecl->getDeclName() << ExpectedResultType;
4800
4801  // A function template must have at least 2 parameters.
4802  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4803    return SemaRef.Diag(FnDecl->getLocation(),
4804                      diag::err_operator_new_delete_template_too_few_parameters)
4805        << FnDecl->getDeclName();
4806
4807  // The function decl must have at least 1 parameter.
4808  if (FnDecl->getNumParams() == 0)
4809    return SemaRef.Diag(FnDecl->getLocation(),
4810                        diag::err_operator_new_delete_too_few_parameters)
4811      << FnDecl->getDeclName();
4812
4813  // Check the the first parameter type is not dependent.
4814  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4815  if (FirstParamType->isDependentType())
4816    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4817      << FnDecl->getDeclName() << ExpectedFirstParamType;
4818
4819  // Check that the first parameter type is what we expect.
4820  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4821      ExpectedFirstParamType)
4822    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4823    << FnDecl->getDeclName() << ExpectedFirstParamType;
4824
4825  return false;
4826}
4827
4828static bool
4829CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4830  // C++ [basic.stc.dynamic.allocation]p1:
4831  //   A program is ill-formed if an allocation function is declared in a
4832  //   namespace scope other than global scope or declared static in global
4833  //   scope.
4834  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4835    return true;
4836
4837  CanQualType SizeTy =
4838    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4839
4840  // C++ [basic.stc.dynamic.allocation]p1:
4841  //  The return type shall be void*. The first parameter shall have type
4842  //  std::size_t.
4843  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4844                                  SizeTy,
4845                                  diag::err_operator_new_dependent_param_type,
4846                                  diag::err_operator_new_param_type))
4847    return true;
4848
4849  // C++ [basic.stc.dynamic.allocation]p1:
4850  //  The first parameter shall not have an associated default argument.
4851  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4852    return SemaRef.Diag(FnDecl->getLocation(),
4853                        diag::err_operator_new_default_arg)
4854      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4855
4856  return false;
4857}
4858
4859static bool
4860CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4861  // C++ [basic.stc.dynamic.deallocation]p1:
4862  //   A program is ill-formed if deallocation functions are declared in a
4863  //   namespace scope other than global scope or declared static in global
4864  //   scope.
4865  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4866    return true;
4867
4868  // C++ [basic.stc.dynamic.deallocation]p2:
4869  //   Each deallocation function shall return void and its first parameter
4870  //   shall be void*.
4871  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4872                                  SemaRef.Context.VoidPtrTy,
4873                                 diag::err_operator_delete_dependent_param_type,
4874                                 diag::err_operator_delete_param_type))
4875    return true;
4876
4877  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4878  if (FirstParamType->isDependentType())
4879    return SemaRef.Diag(FnDecl->getLocation(),
4880                        diag::err_operator_delete_dependent_param_type)
4881    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4882
4883  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4884      SemaRef.Context.VoidPtrTy)
4885    return SemaRef.Diag(FnDecl->getLocation(),
4886                        diag::err_operator_delete_param_type)
4887      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4888
4889  return false;
4890}
4891
4892/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4893/// of this overloaded operator is well-formed. If so, returns false;
4894/// otherwise, emits appropriate diagnostics and returns true.
4895bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4896  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4897         "Expected an overloaded operator declaration");
4898
4899  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4900
4901  // C++ [over.oper]p5:
4902  //   The allocation and deallocation functions, operator new,
4903  //   operator new[], operator delete and operator delete[], are
4904  //   described completely in 3.7.3. The attributes and restrictions
4905  //   found in the rest of this subclause do not apply to them unless
4906  //   explicitly stated in 3.7.3.
4907  if (Op == OO_Delete || Op == OO_Array_Delete)
4908    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4909
4910  if (Op == OO_New || Op == OO_Array_New)
4911    return CheckOperatorNewDeclaration(*this, FnDecl);
4912
4913  // C++ [over.oper]p6:
4914  //   An operator function shall either be a non-static member
4915  //   function or be a non-member function and have at least one
4916  //   parameter whose type is a class, a reference to a class, an
4917  //   enumeration, or a reference to an enumeration.
4918  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4919    if (MethodDecl->isStatic())
4920      return Diag(FnDecl->getLocation(),
4921                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4922  } else {
4923    bool ClassOrEnumParam = false;
4924    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4925                                   ParamEnd = FnDecl->param_end();
4926         Param != ParamEnd; ++Param) {
4927      QualType ParamType = (*Param)->getType().getNonReferenceType();
4928      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4929          ParamType->isEnumeralType()) {
4930        ClassOrEnumParam = true;
4931        break;
4932      }
4933    }
4934
4935    if (!ClassOrEnumParam)
4936      return Diag(FnDecl->getLocation(),
4937                  diag::err_operator_overload_needs_class_or_enum)
4938        << FnDecl->getDeclName();
4939  }
4940
4941  // C++ [over.oper]p8:
4942  //   An operator function cannot have default arguments (8.3.6),
4943  //   except where explicitly stated below.
4944  //
4945  // Only the function-call operator allows default arguments
4946  // (C++ [over.call]p1).
4947  if (Op != OO_Call) {
4948    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4949         Param != FnDecl->param_end(); ++Param) {
4950      if ((*Param)->hasDefaultArg())
4951        return Diag((*Param)->getLocation(),
4952                    diag::err_operator_overload_default_arg)
4953          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4954    }
4955  }
4956
4957  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4958    { false, false, false }
4959#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4960    , { Unary, Binary, MemberOnly }
4961#include "clang/Basic/OperatorKinds.def"
4962  };
4963
4964  bool CanBeUnaryOperator = OperatorUses[Op][0];
4965  bool CanBeBinaryOperator = OperatorUses[Op][1];
4966  bool MustBeMemberOperator = OperatorUses[Op][2];
4967
4968  // C++ [over.oper]p8:
4969  //   [...] Operator functions cannot have more or fewer parameters
4970  //   than the number required for the corresponding operator, as
4971  //   described in the rest of this subclause.
4972  unsigned NumParams = FnDecl->getNumParams()
4973                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4974  if (Op != OO_Call &&
4975      ((NumParams == 1 && !CanBeUnaryOperator) ||
4976       (NumParams == 2 && !CanBeBinaryOperator) ||
4977       (NumParams < 1) || (NumParams > 2))) {
4978    // We have the wrong number of parameters.
4979    unsigned ErrorKind;
4980    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4981      ErrorKind = 2;  // 2 -> unary or binary.
4982    } else if (CanBeUnaryOperator) {
4983      ErrorKind = 0;  // 0 -> unary
4984    } else {
4985      assert(CanBeBinaryOperator &&
4986             "All non-call overloaded operators are unary or binary!");
4987      ErrorKind = 1;  // 1 -> binary
4988    }
4989
4990    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4991      << FnDecl->getDeclName() << NumParams << ErrorKind;
4992  }
4993
4994  // Overloaded operators other than operator() cannot be variadic.
4995  if (Op != OO_Call &&
4996      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4997    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4998      << FnDecl->getDeclName();
4999  }
5000
5001  // Some operators must be non-static member functions.
5002  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5003    return Diag(FnDecl->getLocation(),
5004                diag::err_operator_overload_must_be_member)
5005      << FnDecl->getDeclName();
5006  }
5007
5008  // C++ [over.inc]p1:
5009  //   The user-defined function called operator++ implements the
5010  //   prefix and postfix ++ operator. If this function is a member
5011  //   function with no parameters, or a non-member function with one
5012  //   parameter of class or enumeration type, it defines the prefix
5013  //   increment operator ++ for objects of that type. If the function
5014  //   is a member function with one parameter (which shall be of type
5015  //   int) or a non-member function with two parameters (the second
5016  //   of which shall be of type int), it defines the postfix
5017  //   increment operator ++ for objects of that type.
5018  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5019    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5020    bool ParamIsInt = false;
5021    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5022      ParamIsInt = BT->getKind() == BuiltinType::Int;
5023
5024    if (!ParamIsInt)
5025      return Diag(LastParam->getLocation(),
5026                  diag::err_operator_overload_post_incdec_must_be_int)
5027        << LastParam->getType() << (Op == OO_MinusMinus);
5028  }
5029
5030  // Notify the class if it got an assignment operator.
5031  if (Op == OO_Equal) {
5032    // Would have returned earlier otherwise.
5033    assert(isa<CXXMethodDecl>(FnDecl) &&
5034      "Overloaded = not member, but not filtered.");
5035    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5036    Method->getParent()->addedAssignmentOperator(Context, Method);
5037  }
5038
5039  return false;
5040}
5041
5042/// CheckLiteralOperatorDeclaration - Check whether the declaration
5043/// of this literal operator function is well-formed. If so, returns
5044/// false; otherwise, emits appropriate diagnostics and returns true.
5045bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5046  DeclContext *DC = FnDecl->getDeclContext();
5047  Decl::Kind Kind = DC->getDeclKind();
5048  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5049      Kind != Decl::LinkageSpec) {
5050    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5051      << FnDecl->getDeclName();
5052    return true;
5053  }
5054
5055  bool Valid = false;
5056
5057  // FIXME: Check for the one valid template signature
5058  // template <char...> type operator "" name();
5059
5060  if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
5061    // Check the first parameter
5062    QualType T = (*Param)->getType();
5063
5064    // unsigned long long int and long double are allowed, but only
5065    // alone.
5066    // We also allow any character type; their omission seems to be a bug
5067    // in n3000
5068    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5069        Context.hasSameType(T, Context.LongDoubleTy) ||
5070        Context.hasSameType(T, Context.CharTy) ||
5071        Context.hasSameType(T, Context.WCharTy) ||
5072        Context.hasSameType(T, Context.Char16Ty) ||
5073        Context.hasSameType(T, Context.Char32Ty)) {
5074      if (++Param == FnDecl->param_end())
5075        Valid = true;
5076      goto FinishedParams;
5077    }
5078
5079    // Otherwise it must be a pointer to const; let's strip those.
5080    const PointerType *PT = T->getAs<PointerType>();
5081    if (!PT)
5082      goto FinishedParams;
5083    T = PT->getPointeeType();
5084    if (!T.isConstQualified())
5085      goto FinishedParams;
5086    T = T.getUnqualifiedType();
5087
5088    // Move on to the second parameter;
5089    ++Param;
5090
5091    // If there is no second parameter, the first must be a const char *
5092    if (Param == FnDecl->param_end()) {
5093      if (Context.hasSameType(T, Context.CharTy))
5094        Valid = true;
5095      goto FinishedParams;
5096    }
5097
5098    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5099    // are allowed as the first parameter to a two-parameter function
5100    if (!(Context.hasSameType(T, Context.CharTy) ||
5101          Context.hasSameType(T, Context.WCharTy) ||
5102          Context.hasSameType(T, Context.Char16Ty) ||
5103          Context.hasSameType(T, Context.Char32Ty)))
5104      goto FinishedParams;
5105
5106    // The second and final parameter must be an std::size_t
5107    T = (*Param)->getType().getUnqualifiedType();
5108    if (Context.hasSameType(T, Context.getSizeType()) &&
5109        ++Param == FnDecl->param_end())
5110      Valid = true;
5111  }
5112
5113  // FIXME: This diagnostic is absolutely terrible.
5114FinishedParams:
5115  if (!Valid) {
5116    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5117      << FnDecl->getDeclName();
5118    return true;
5119  }
5120
5121  return false;
5122}
5123
5124/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5125/// linkage specification, including the language and (if present)
5126/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5127/// the location of the language string literal, which is provided
5128/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5129/// the '{' brace. Otherwise, this linkage specification does not
5130/// have any braces.
5131Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5132                                                     SourceLocation ExternLoc,
5133                                                     SourceLocation LangLoc,
5134                                                     const char *Lang,
5135                                                     unsigned StrSize,
5136                                                     SourceLocation LBraceLoc) {
5137  LinkageSpecDecl::LanguageIDs Language;
5138  if (strncmp(Lang, "\"C\"", StrSize) == 0)
5139    Language = LinkageSpecDecl::lang_c;
5140  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
5141    Language = LinkageSpecDecl::lang_cxx;
5142  else {
5143    Diag(LangLoc, diag::err_bad_language);
5144    return DeclPtrTy();
5145  }
5146
5147  // FIXME: Add all the various semantics of linkage specifications
5148
5149  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5150                                               LangLoc, Language,
5151                                               LBraceLoc.isValid());
5152  CurContext->addDecl(D);
5153  PushDeclContext(S, D);
5154  return DeclPtrTy::make(D);
5155}
5156
5157/// ActOnFinishLinkageSpecification - Completely the definition of
5158/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5159/// valid, it's the position of the closing '}' brace in a linkage
5160/// specification that uses braces.
5161Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5162                                                      DeclPtrTy LinkageSpec,
5163                                                      SourceLocation RBraceLoc) {
5164  if (LinkageSpec)
5165    PopDeclContext();
5166  return LinkageSpec;
5167}
5168
5169/// \brief Perform semantic analysis for the variable declaration that
5170/// occurs within a C++ catch clause, returning the newly-created
5171/// variable.
5172VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5173                                         TypeSourceInfo *TInfo,
5174                                         IdentifierInfo *Name,
5175                                         SourceLocation Loc,
5176                                         SourceRange Range) {
5177  bool Invalid = false;
5178
5179  // Arrays and functions decay.
5180  if (ExDeclType->isArrayType())
5181    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5182  else if (ExDeclType->isFunctionType())
5183    ExDeclType = Context.getPointerType(ExDeclType);
5184
5185  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5186  // The exception-declaration shall not denote a pointer or reference to an
5187  // incomplete type, other than [cv] void*.
5188  // N2844 forbids rvalue references.
5189  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5190    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5191    Invalid = true;
5192  }
5193
5194  QualType BaseType = ExDeclType;
5195  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5196  unsigned DK = diag::err_catch_incomplete;
5197  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5198    BaseType = Ptr->getPointeeType();
5199    Mode = 1;
5200    DK = diag::err_catch_incomplete_ptr;
5201  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5202    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5203    BaseType = Ref->getPointeeType();
5204    Mode = 2;
5205    DK = diag::err_catch_incomplete_ref;
5206  }
5207  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5208      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
5209    Invalid = true;
5210
5211  if (!Invalid && !ExDeclType->isDependentType() &&
5212      RequireNonAbstractType(Loc, ExDeclType,
5213                             diag::err_abstract_type_in_decl,
5214                             AbstractVariableType))
5215    Invalid = true;
5216
5217  // FIXME: Need to test for ability to copy-construct and destroy the
5218  // exception variable.
5219
5220  // FIXME: Need to check for abstract classes.
5221
5222  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5223                                    Name, ExDeclType, TInfo, VarDecl::None);
5224
5225  if (Invalid)
5226    ExDecl->setInvalidDecl();
5227
5228  return ExDecl;
5229}
5230
5231/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5232/// handler.
5233Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5234  TypeSourceInfo *TInfo = 0;
5235  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5236
5237  bool Invalid = D.isInvalidType();
5238  IdentifierInfo *II = D.getIdentifier();
5239  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5240    // The scope should be freshly made just for us. There is just no way
5241    // it contains any previous declaration.
5242    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5243    if (PrevDecl->isTemplateParameter()) {
5244      // Maybe we will complain about the shadowed template parameter.
5245      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5246    }
5247  }
5248
5249  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5250    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5251      << D.getCXXScopeSpec().getRange();
5252    Invalid = true;
5253  }
5254
5255  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5256                                              D.getIdentifier(),
5257                                              D.getIdentifierLoc(),
5258                                            D.getDeclSpec().getSourceRange());
5259
5260  if (Invalid)
5261    ExDecl->setInvalidDecl();
5262
5263  // Add the exception declaration into this scope.
5264  if (II)
5265    PushOnScopeChains(ExDecl, S);
5266  else
5267    CurContext->addDecl(ExDecl);
5268
5269  ProcessDeclAttributes(S, ExDecl, D);
5270  return DeclPtrTy::make(ExDecl);
5271}
5272
5273Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5274                                                   ExprArg assertexpr,
5275                                                   ExprArg assertmessageexpr) {
5276  Expr *AssertExpr = (Expr *)assertexpr.get();
5277  StringLiteral *AssertMessage =
5278    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5279
5280  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5281    llvm::APSInt Value(32);
5282    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5283      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5284        AssertExpr->getSourceRange();
5285      return DeclPtrTy();
5286    }
5287
5288    if (Value == 0) {
5289      Diag(AssertLoc, diag::err_static_assert_failed)
5290        << AssertMessage->getString() << AssertExpr->getSourceRange();
5291    }
5292  }
5293
5294  assertexpr.release();
5295  assertmessageexpr.release();
5296  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5297                                        AssertExpr, AssertMessage);
5298
5299  CurContext->addDecl(Decl);
5300  return DeclPtrTy::make(Decl);
5301}
5302
5303/// Handle a friend type declaration.  This works in tandem with
5304/// ActOnTag.
5305///
5306/// Notes on friend class templates:
5307///
5308/// We generally treat friend class declarations as if they were
5309/// declaring a class.  So, for example, the elaborated type specifier
5310/// in a friend declaration is required to obey the restrictions of a
5311/// class-head (i.e. no typedefs in the scope chain), template
5312/// parameters are required to match up with simple template-ids, &c.
5313/// However, unlike when declaring a template specialization, it's
5314/// okay to refer to a template specialization without an empty
5315/// template parameter declaration, e.g.
5316///   friend class A<T>::B<unsigned>;
5317/// We permit this as a special case; if there are any template
5318/// parameters present at all, require proper matching, i.e.
5319///   template <> template <class T> friend class A<int>::B;
5320Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5321                                          MultiTemplateParamsArg TempParams) {
5322  SourceLocation Loc = DS.getSourceRange().getBegin();
5323
5324  assert(DS.isFriendSpecified());
5325  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5326
5327  // Try to convert the decl specifier to a type.  This works for
5328  // friend templates because ActOnTag never produces a ClassTemplateDecl
5329  // for a TUK_Friend.
5330  Declarator TheDeclarator(DS, Declarator::MemberContext);
5331  QualType T = GetTypeForDeclarator(TheDeclarator, S);
5332  if (TheDeclarator.isInvalidType())
5333    return DeclPtrTy();
5334
5335  // This is definitely an error in C++98.  It's probably meant to
5336  // be forbidden in C++0x, too, but the specification is just
5337  // poorly written.
5338  //
5339  // The problem is with declarations like the following:
5340  //   template <T> friend A<T>::foo;
5341  // where deciding whether a class C is a friend or not now hinges
5342  // on whether there exists an instantiation of A that causes
5343  // 'foo' to equal C.  There are restrictions on class-heads
5344  // (which we declare (by fiat) elaborated friend declarations to
5345  // be) that makes this tractable.
5346  //
5347  // FIXME: handle "template <> friend class A<T>;", which
5348  // is possibly well-formed?  Who even knows?
5349  if (TempParams.size() && !isa<ElaboratedType>(T)) {
5350    Diag(Loc, diag::err_tagless_friend_type_template)
5351      << DS.getSourceRange();
5352    return DeclPtrTy();
5353  }
5354
5355  // C++ [class.friend]p2:
5356  //   An elaborated-type-specifier shall be used in a friend declaration
5357  //   for a class.*
5358  //   * The class-key of the elaborated-type-specifier is required.
5359  // This is one of the rare places in Clang where it's legitimate to
5360  // ask about the "spelling" of the type.
5361  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
5362    // If we evaluated the type to a record type, suggest putting
5363    // a tag in front.
5364    if (const RecordType *RT = T->getAs<RecordType>()) {
5365      RecordDecl *RD = RT->getDecl();
5366
5367      std::string InsertionText = std::string(" ") + RD->getKindName();
5368
5369      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
5370        << (unsigned) RD->getTagKind()
5371        << T
5372        << SourceRange(DS.getFriendSpecLoc())
5373        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
5374                                                 InsertionText);
5375      return DeclPtrTy();
5376    }else {
5377      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
5378          << DS.getSourceRange();
5379      return DeclPtrTy();
5380    }
5381  }
5382
5383  // Enum types cannot be friends.
5384  if (T->getAs<EnumType>()) {
5385    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
5386      << SourceRange(DS.getFriendSpecLoc());
5387    return DeclPtrTy();
5388  }
5389
5390  // C++98 [class.friend]p1: A friend of a class is a function
5391  //   or class that is not a member of the class . . .
5392  // This is fixed in DR77, which just barely didn't make the C++03
5393  // deadline.  It's also a very silly restriction that seriously
5394  // affects inner classes and which nobody else seems to implement;
5395  // thus we never diagnose it, not even in -pedantic.
5396
5397  Decl *D;
5398  if (TempParams.size())
5399    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5400                                   TempParams.size(),
5401                                 (TemplateParameterList**) TempParams.release(),
5402                                   T.getTypePtr(),
5403                                   DS.getFriendSpecLoc());
5404  else
5405    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
5406                           DS.getFriendSpecLoc());
5407  D->setAccess(AS_public);
5408  CurContext->addDecl(D);
5409
5410  return DeclPtrTy::make(D);
5411}
5412
5413Sema::DeclPtrTy
5414Sema::ActOnFriendFunctionDecl(Scope *S,
5415                              Declarator &D,
5416                              bool IsDefinition,
5417                              MultiTemplateParamsArg TemplateParams) {
5418  const DeclSpec &DS = D.getDeclSpec();
5419
5420  assert(DS.isFriendSpecified());
5421  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5422
5423  SourceLocation Loc = D.getIdentifierLoc();
5424  TypeSourceInfo *TInfo = 0;
5425  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5426
5427  // C++ [class.friend]p1
5428  //   A friend of a class is a function or class....
5429  // Note that this sees through typedefs, which is intended.
5430  // It *doesn't* see through dependent types, which is correct
5431  // according to [temp.arg.type]p3:
5432  //   If a declaration acquires a function type through a
5433  //   type dependent on a template-parameter and this causes
5434  //   a declaration that does not use the syntactic form of a
5435  //   function declarator to have a function type, the program
5436  //   is ill-formed.
5437  if (!T->isFunctionType()) {
5438    Diag(Loc, diag::err_unexpected_friend);
5439
5440    // It might be worthwhile to try to recover by creating an
5441    // appropriate declaration.
5442    return DeclPtrTy();
5443  }
5444
5445  // C++ [namespace.memdef]p3
5446  //  - If a friend declaration in a non-local class first declares a
5447  //    class or function, the friend class or function is a member
5448  //    of the innermost enclosing namespace.
5449  //  - The name of the friend is not found by simple name lookup
5450  //    until a matching declaration is provided in that namespace
5451  //    scope (either before or after the class declaration granting
5452  //    friendship).
5453  //  - If a friend function is called, its name may be found by the
5454  //    name lookup that considers functions from namespaces and
5455  //    classes associated with the types of the function arguments.
5456  //  - When looking for a prior declaration of a class or a function
5457  //    declared as a friend, scopes outside the innermost enclosing
5458  //    namespace scope are not considered.
5459
5460  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5461  DeclarationName Name = GetNameForDeclarator(D);
5462  assert(Name);
5463
5464  // The context we found the declaration in, or in which we should
5465  // create the declaration.
5466  DeclContext *DC;
5467
5468  // FIXME: handle local classes
5469
5470  // Recover from invalid scope qualifiers as if they just weren't there.
5471  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5472                        ForRedeclaration);
5473  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5474    // FIXME: RequireCompleteDeclContext
5475    DC = computeDeclContext(ScopeQual);
5476
5477    // FIXME: handle dependent contexts
5478    if (!DC) return DeclPtrTy();
5479
5480    LookupQualifiedName(Previous, DC);
5481
5482    // If searching in that context implicitly found a declaration in
5483    // a different context, treat it like it wasn't found at all.
5484    // TODO: better diagnostics for this case.  Suggesting the right
5485    // qualified scope would be nice...
5486    // FIXME: getRepresentativeDecl() is not right here at all
5487    if (Previous.empty() ||
5488        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5489      D.setInvalidType();
5490      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5491      return DeclPtrTy();
5492    }
5493
5494    // C++ [class.friend]p1: A friend of a class is a function or
5495    //   class that is not a member of the class . . .
5496    if (DC->Equals(CurContext))
5497      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5498
5499  // Otherwise walk out to the nearest namespace scope looking for matches.
5500  } else {
5501    // TODO: handle local class contexts.
5502
5503    DC = CurContext;
5504    while (true) {
5505      // Skip class contexts.  If someone can cite chapter and verse
5506      // for this behavior, that would be nice --- it's what GCC and
5507      // EDG do, and it seems like a reasonable intent, but the spec
5508      // really only says that checks for unqualified existing
5509      // declarations should stop at the nearest enclosing namespace,
5510      // not that they should only consider the nearest enclosing
5511      // namespace.
5512      while (DC->isRecord())
5513        DC = DC->getParent();
5514
5515      LookupQualifiedName(Previous, DC);
5516
5517      // TODO: decide what we think about using declarations.
5518      if (!Previous.empty())
5519        break;
5520
5521      if (DC->isFileContext()) break;
5522      DC = DC->getParent();
5523    }
5524
5525    // C++ [class.friend]p1: A friend of a class is a function or
5526    //   class that is not a member of the class . . .
5527    // C++0x changes this for both friend types and functions.
5528    // Most C++ 98 compilers do seem to give an error here, so
5529    // we do, too.
5530    if (!Previous.empty() && DC->Equals(CurContext)
5531        && !getLangOptions().CPlusPlus0x)
5532      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5533  }
5534
5535  if (DC->isFileContext()) {
5536    // This implies that it has to be an operator or function.
5537    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5538        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5539        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5540      Diag(Loc, diag::err_introducing_special_friend) <<
5541        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5542         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5543      return DeclPtrTy();
5544    }
5545  }
5546
5547  bool Redeclaration = false;
5548  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5549                                          move(TemplateParams),
5550                                          IsDefinition,
5551                                          Redeclaration);
5552  if (!ND) return DeclPtrTy();
5553
5554  assert(ND->getDeclContext() == DC);
5555  assert(ND->getLexicalDeclContext() == CurContext);
5556
5557  // Add the function declaration to the appropriate lookup tables,
5558  // adjusting the redeclarations list as necessary.  We don't
5559  // want to do this yet if the friending class is dependent.
5560  //
5561  // Also update the scope-based lookup if the target context's
5562  // lookup context is in lexical scope.
5563  if (!CurContext->isDependentContext()) {
5564    DC = DC->getLookupContext();
5565    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5566    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5567      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5568  }
5569
5570  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5571                                       D.getIdentifierLoc(), ND,
5572                                       DS.getFriendSpecLoc());
5573  FrD->setAccess(AS_public);
5574  CurContext->addDecl(FrD);
5575
5576  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId)
5577    FrD->setSpecialization(true);
5578
5579  return DeclPtrTy::make(ND);
5580}
5581
5582void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5583  AdjustDeclIfTemplate(dcl);
5584
5585  Decl *Dcl = dcl.getAs<Decl>();
5586  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5587  if (!Fn) {
5588    Diag(DelLoc, diag::err_deleted_non_function);
5589    return;
5590  }
5591  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5592    Diag(DelLoc, diag::err_deleted_decl_not_first);
5593    Diag(Prev->getLocation(), diag::note_previous_declaration);
5594    // If the declaration wasn't the first, we delete the function anyway for
5595    // recovery.
5596  }
5597  Fn->setDeleted();
5598}
5599
5600static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5601  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5602       ++CI) {
5603    Stmt *SubStmt = *CI;
5604    if (!SubStmt)
5605      continue;
5606    if (isa<ReturnStmt>(SubStmt))
5607      Self.Diag(SubStmt->getSourceRange().getBegin(),
5608           diag::err_return_in_constructor_handler);
5609    if (!isa<Expr>(SubStmt))
5610      SearchForReturnInStmt(Self, SubStmt);
5611  }
5612}
5613
5614void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5615  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5616    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5617    SearchForReturnInStmt(*this, Handler);
5618  }
5619}
5620
5621bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5622                                             const CXXMethodDecl *Old) {
5623  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5624  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5625
5626  if (Context.hasSameType(NewTy, OldTy))
5627    return false;
5628
5629  // Check if the return types are covariant
5630  QualType NewClassTy, OldClassTy;
5631
5632  /// Both types must be pointers or references to classes.
5633  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5634    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5635      NewClassTy = NewPT->getPointeeType();
5636      OldClassTy = OldPT->getPointeeType();
5637    }
5638  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5639    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5640      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5641        NewClassTy = NewRT->getPointeeType();
5642        OldClassTy = OldRT->getPointeeType();
5643      }
5644    }
5645  }
5646
5647  // The return types aren't either both pointers or references to a class type.
5648  if (NewClassTy.isNull()) {
5649    Diag(New->getLocation(),
5650         diag::err_different_return_type_for_overriding_virtual_function)
5651      << New->getDeclName() << NewTy << OldTy;
5652    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5653
5654    return true;
5655  }
5656
5657  // C++ [class.virtual]p6:
5658  //   If the return type of D::f differs from the return type of B::f, the
5659  //   class type in the return type of D::f shall be complete at the point of
5660  //   declaration of D::f or shall be the class type D.
5661  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5662    if (!RT->isBeingDefined() &&
5663        RequireCompleteType(New->getLocation(), NewClassTy,
5664                            PDiag(diag::err_covariant_return_incomplete)
5665                              << New->getDeclName()))
5666    return true;
5667  }
5668
5669  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5670    // Check if the new class derives from the old class.
5671    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5672      Diag(New->getLocation(),
5673           diag::err_covariant_return_not_derived)
5674      << New->getDeclName() << NewTy << OldTy;
5675      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5676      return true;
5677    }
5678
5679    // Check if we the conversion from derived to base is valid.
5680    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5681                      diag::err_covariant_return_inaccessible_base,
5682                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5683                      // FIXME: Should this point to the return type?
5684                      New->getLocation(), SourceRange(), New->getDeclName())) {
5685      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5686      return true;
5687    }
5688  }
5689
5690  // The qualifiers of the return types must be the same.
5691  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5692    Diag(New->getLocation(),
5693         diag::err_covariant_return_type_different_qualifications)
5694    << New->getDeclName() << NewTy << OldTy;
5695    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5696    return true;
5697  };
5698
5699
5700  // The new class type must have the same or less qualifiers as the old type.
5701  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5702    Diag(New->getLocation(),
5703         diag::err_covariant_return_type_class_type_more_qualified)
5704    << New->getDeclName() << NewTy << OldTy;
5705    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5706    return true;
5707  };
5708
5709  return false;
5710}
5711
5712bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5713                                             const CXXMethodDecl *Old)
5714{
5715  if (Old->hasAttr<FinalAttr>()) {
5716    Diag(New->getLocation(), diag::err_final_function_overridden)
5717      << New->getDeclName();
5718    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5719    return true;
5720  }
5721
5722  return false;
5723}
5724
5725/// \brief Mark the given method pure.
5726///
5727/// \param Method the method to be marked pure.
5728///
5729/// \param InitRange the source range that covers the "0" initializer.
5730bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5731  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5732    Method->setPure();
5733
5734    // A class is abstract if at least one function is pure virtual.
5735    Method->getParent()->setAbstract(true);
5736    return false;
5737  }
5738
5739  if (!Method->isInvalidDecl())
5740    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5741      << Method->getDeclName() << InitRange;
5742  return true;
5743}
5744
5745/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5746/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5747/// is a fresh scope pushed for just this purpose.
5748///
5749/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5750/// static data member of class X, names should be looked up in the scope of
5751/// class X.
5752void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5753  // If there is no declaration, there was an error parsing it.
5754  Decl *D = Dcl.getAs<Decl>();
5755  if (D == 0) return;
5756
5757  // We should only get called for declarations with scope specifiers, like:
5758  //   int foo::bar;
5759  assert(D->isOutOfLine());
5760  EnterDeclaratorContext(S, D->getDeclContext());
5761}
5762
5763/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5764/// initializer for the out-of-line declaration 'Dcl'.
5765void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5766  // If there is no declaration, there was an error parsing it.
5767  Decl *D = Dcl.getAs<Decl>();
5768  if (D == 0) return;
5769
5770  assert(D->isOutOfLine());
5771  ExitDeclaratorContext(S);
5772}
5773
5774/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5775/// C++ if/switch/while/for statement.
5776/// e.g: "if (int x = f()) {...}"
5777Action::DeclResult
5778Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5779  // C++ 6.4p2:
5780  // The declarator shall not specify a function or an array.
5781  // The type-specifier-seq shall not contain typedef and shall not declare a
5782  // new class or enumeration.
5783  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5784         "Parser allowed 'typedef' as storage class of condition decl.");
5785
5786  TypeSourceInfo *TInfo = 0;
5787  TagDecl *OwnedTag = 0;
5788  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5789
5790  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5791                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5792                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5793    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5794      << D.getSourceRange();
5795    return DeclResult();
5796  } else if (OwnedTag && OwnedTag->isDefinition()) {
5797    // The type-specifier-seq shall not declare a new class or enumeration.
5798    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5799  }
5800
5801  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5802  if (!Dcl)
5803    return DeclResult();
5804
5805  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5806  VD->setDeclaredInCondition(true);
5807  return Dcl;
5808}
5809
5810void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5811                                             CXXMethodDecl *MD) {
5812  // Ignore dependent types.
5813  if (MD->isDependentContext())
5814    return;
5815
5816  CXXRecordDecl *RD = MD->getParent();
5817
5818  // Ignore classes without a vtable.
5819  if (!RD->isDynamicClass())
5820    return;
5821
5822  // Ignore declarations that are not definitions.
5823  if (!MD->isThisDeclarationADefinition())
5824    return;
5825
5826  if (isa<CXXConstructorDecl>(MD)) {
5827    switch (MD->getParent()->getTemplateSpecializationKind()) {
5828    case TSK_Undeclared:
5829    case TSK_ExplicitSpecialization:
5830      // Classes that aren't instantiations of templates don't need their
5831      // virtual methods marked until we see the definition of the key
5832      // function.
5833      return;
5834
5835    case TSK_ImplicitInstantiation:
5836    case TSK_ExplicitInstantiationDeclaration:
5837    case TSK_ExplicitInstantiationDefinition:
5838      // This is a constructor of a class template; mark all of the virtual
5839      // members as referenced to ensure that they get instantiatied.
5840      break;
5841    }
5842  } else if (!MD->isOutOfLine()) {
5843    // Consider only out-of-line definitions of member functions. When we see
5844    // an inline definition, it's too early to compute the key function.
5845    return;
5846  } else if (const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD)) {
5847    // If this is not the key function, we don't need to mark virtual members.
5848    if (KeyFunction->getCanonicalDecl() != MD->getCanonicalDecl())
5849      return;
5850  } else {
5851    // The class has no key function, so we've already noted that we need to
5852    // mark the virtual members of this class.
5853    return;
5854  }
5855
5856  // We will need to mark all of the virtual members as referenced to build the
5857  // vtable.
5858  ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5859}
5860
5861bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5862  if (ClassesWithUnmarkedVirtualMembers.empty())
5863    return false;
5864
5865  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5866    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5867    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5868    ClassesWithUnmarkedVirtualMembers.pop_back();
5869    MarkVirtualMembersReferenced(Loc, RD);
5870  }
5871
5872  return true;
5873}
5874
5875void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, CXXRecordDecl *RD) {
5876  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5877       e = RD->method_end(); i != e; ++i) {
5878    CXXMethodDecl *MD = *i;
5879
5880    // C++ [basic.def.odr]p2:
5881    //   [...] A virtual member function is used if it is not pure. [...]
5882    if (MD->isVirtual() && !MD->isPure())
5883      MarkDeclarationReferenced(Loc, MD);
5884  }
5885}
5886
5887