SemaDeclCXX.cpp revision a4bb99cd0055ba0e1f3107890e5b6cbe31e6d1cc
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclVisitor.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallString.h"
40#include <map>
41#include <set>
42
43using namespace clang;
44
45//===----------------------------------------------------------------------===//
46// CheckDefaultArgumentVisitor
47//===----------------------------------------------------------------------===//
48
49namespace {
50  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
51  /// the default argument of a parameter to determine whether it
52  /// contains any ill-formed subexpressions. For example, this will
53  /// diagnose the use of local variables or parameters within the
54  /// default argument expression.
55  class CheckDefaultArgumentVisitor
56    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
57    Expr *DefaultArg;
58    Sema *S;
59
60  public:
61    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
62      : DefaultArg(defarg), S(s) {}
63
64    bool VisitExpr(Expr *Node);
65    bool VisitDeclRefExpr(DeclRefExpr *DRE);
66    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
67    bool VisitLambdaExpr(LambdaExpr *Lambda);
68    bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
69  };
70
71  /// VisitExpr - Visit all of the children of this expression.
72  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
73    bool IsInvalid = false;
74    for (Stmt::child_range I = Node->children(); I; ++I)
75      IsInvalid |= Visit(*I);
76    return IsInvalid;
77  }
78
79  /// VisitDeclRefExpr - Visit a reference to a declaration, to
80  /// determine whether this declaration can be used in the default
81  /// argument expression.
82  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
83    NamedDecl *Decl = DRE->getDecl();
84    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
85      // C++ [dcl.fct.default]p9
86      //   Default arguments are evaluated each time the function is
87      //   called. The order of evaluation of function arguments is
88      //   unspecified. Consequently, parameters of a function shall not
89      //   be used in default argument expressions, even if they are not
90      //   evaluated. Parameters of a function declared before a default
91      //   argument expression are in scope and can hide namespace and
92      //   class member names.
93      return S->Diag(DRE->getLocStart(),
94                     diag::err_param_default_argument_references_param)
95         << Param->getDeclName() << DefaultArg->getSourceRange();
96    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
97      // C++ [dcl.fct.default]p7
98      //   Local variables shall not be used in default argument
99      //   expressions.
100      if (VDecl->isLocalVarDecl())
101        return S->Diag(DRE->getLocStart(),
102                       diag::err_param_default_argument_references_local)
103          << VDecl->getDeclName() << DefaultArg->getSourceRange();
104    }
105
106    return false;
107  }
108
109  /// VisitCXXThisExpr - Visit a C++ "this" expression.
110  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
111    // C++ [dcl.fct.default]p8:
112    //   The keyword this shall not be used in a default argument of a
113    //   member function.
114    return S->Diag(ThisE->getLocStart(),
115                   diag::err_param_default_argument_references_this)
116               << ThisE->getSourceRange();
117  }
118
119  bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
120    bool Invalid = false;
121    for (PseudoObjectExpr::semantics_iterator
122           i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
123      Expr *E = *i;
124
125      // Look through bindings.
126      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
127        E = OVE->getSourceExpr();
128        assert(E && "pseudo-object binding without source expression?");
129      }
130
131      Invalid |= Visit(E);
132    }
133    return Invalid;
134  }
135
136  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
137    // C++11 [expr.lambda.prim]p13:
138    //   A lambda-expression appearing in a default argument shall not
139    //   implicitly or explicitly capture any entity.
140    if (Lambda->capture_begin() == Lambda->capture_end())
141      return false;
142
143    return S->Diag(Lambda->getLocStart(),
144                   diag::err_lambda_capture_default_arg);
145  }
146}
147
148void
149Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
150                                                 const CXXMethodDecl *Method) {
151  // If we have an MSAny spec already, don't bother.
152  if (!Method || ComputedEST == EST_MSAny)
153    return;
154
155  const FunctionProtoType *Proto
156    = Method->getType()->getAs<FunctionProtoType>();
157  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
158  if (!Proto)
159    return;
160
161  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
162
163  // If this function can throw any exceptions, make a note of that.
164  if (EST == EST_MSAny || EST == EST_None) {
165    ClearExceptions();
166    ComputedEST = EST;
167    return;
168  }
169
170  // FIXME: If the call to this decl is using any of its default arguments, we
171  // need to search them for potentially-throwing calls.
172
173  // If this function has a basic noexcept, it doesn't affect the outcome.
174  if (EST == EST_BasicNoexcept)
175    return;
176
177  // If we have a throw-all spec at this point, ignore the function.
178  if (ComputedEST == EST_None)
179    return;
180
181  // If we're still at noexcept(true) and there's a nothrow() callee,
182  // change to that specification.
183  if (EST == EST_DynamicNone) {
184    if (ComputedEST == EST_BasicNoexcept)
185      ComputedEST = EST_DynamicNone;
186    return;
187  }
188
189  // Check out noexcept specs.
190  if (EST == EST_ComputedNoexcept) {
191    FunctionProtoType::NoexceptResult NR =
192        Proto->getNoexceptSpec(Self->Context);
193    assert(NR != FunctionProtoType::NR_NoNoexcept &&
194           "Must have noexcept result for EST_ComputedNoexcept.");
195    assert(NR != FunctionProtoType::NR_Dependent &&
196           "Should not generate implicit declarations for dependent cases, "
197           "and don't know how to handle them anyway.");
198
199    // noexcept(false) -> no spec on the new function
200    if (NR == FunctionProtoType::NR_Throw) {
201      ClearExceptions();
202      ComputedEST = EST_None;
203    }
204    // noexcept(true) won't change anything either.
205    return;
206  }
207
208  assert(EST == EST_Dynamic && "EST case not considered earlier.");
209  assert(ComputedEST != EST_None &&
210         "Shouldn't collect exceptions when throw-all is guaranteed.");
211  ComputedEST = EST_Dynamic;
212  // Record the exceptions in this function's exception specification.
213  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
214                                          EEnd = Proto->exception_end();
215       E != EEnd; ++E)
216    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
217      Exceptions.push_back(*E);
218}
219
220void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
221  if (!E || ComputedEST == EST_MSAny)
222    return;
223
224  // FIXME:
225  //
226  // C++0x [except.spec]p14:
227  //   [An] implicit exception-specification specifies the type-id T if and
228  // only if T is allowed by the exception-specification of a function directly
229  // invoked by f's implicit definition; f shall allow all exceptions if any
230  // function it directly invokes allows all exceptions, and f shall allow no
231  // exceptions if every function it directly invokes allows no exceptions.
232  //
233  // Note in particular that if an implicit exception-specification is generated
234  // for a function containing a throw-expression, that specification can still
235  // be noexcept(true).
236  //
237  // Note also that 'directly invoked' is not defined in the standard, and there
238  // is no indication that we should only consider potentially-evaluated calls.
239  //
240  // Ultimately we should implement the intent of the standard: the exception
241  // specification should be the set of exceptions which can be thrown by the
242  // implicit definition. For now, we assume that any non-nothrow expression can
243  // throw any exception.
244
245  if (Self->canThrow(E))
246    ComputedEST = EST_None;
247}
248
249bool
250Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
251                              SourceLocation EqualLoc) {
252  if (RequireCompleteType(Param->getLocation(), Param->getType(),
253                          diag::err_typecheck_decl_incomplete_type)) {
254    Param->setInvalidDecl();
255    return true;
256  }
257
258  // C++ [dcl.fct.default]p5
259  //   A default argument expression is implicitly converted (clause
260  //   4) to the parameter type. The default argument expression has
261  //   the same semantic constraints as the initializer expression in
262  //   a declaration of a variable of the parameter type, using the
263  //   copy-initialization semantics (8.5).
264  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
265                                                                    Param);
266  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
267                                                           EqualLoc);
268  InitializationSequence InitSeq(*this, Entity, Kind, Arg);
269  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
270  if (Result.isInvalid())
271    return true;
272  Arg = Result.takeAs<Expr>();
273
274  CheckCompletedExpr(Arg, EqualLoc);
275  Arg = MaybeCreateExprWithCleanups(Arg);
276
277  // Okay: add the default argument to the parameter
278  Param->setDefaultArg(Arg);
279
280  // We have already instantiated this parameter; provide each of the
281  // instantiations with the uninstantiated default argument.
282  UnparsedDefaultArgInstantiationsMap::iterator InstPos
283    = UnparsedDefaultArgInstantiations.find(Param);
284  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
285    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
286      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
287
288    // We're done tracking this parameter's instantiations.
289    UnparsedDefaultArgInstantiations.erase(InstPos);
290  }
291
292  return false;
293}
294
295/// ActOnParamDefaultArgument - Check whether the default argument
296/// provided for a function parameter is well-formed. If so, attach it
297/// to the parameter declaration.
298void
299Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
300                                Expr *DefaultArg) {
301  if (!param || !DefaultArg)
302    return;
303
304  ParmVarDecl *Param = cast<ParmVarDecl>(param);
305  UnparsedDefaultArgLocs.erase(Param);
306
307  // Default arguments are only permitted in C++
308  if (!getLangOpts().CPlusPlus) {
309    Diag(EqualLoc, diag::err_param_default_argument)
310      << DefaultArg->getSourceRange();
311    Param->setInvalidDecl();
312    return;
313  }
314
315  // Check for unexpanded parameter packs.
316  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
317    Param->setInvalidDecl();
318    return;
319  }
320
321  // Check that the default argument is well-formed
322  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
323  if (DefaultArgChecker.Visit(DefaultArg)) {
324    Param->setInvalidDecl();
325    return;
326  }
327
328  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
329}
330
331/// ActOnParamUnparsedDefaultArgument - We've seen a default
332/// argument for a function parameter, but we can't parse it yet
333/// because we're inside a class definition. Note that this default
334/// argument will be parsed later.
335void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
336                                             SourceLocation EqualLoc,
337                                             SourceLocation ArgLoc) {
338  if (!param)
339    return;
340
341  ParmVarDecl *Param = cast<ParmVarDecl>(param);
342  if (Param)
343    Param->setUnparsedDefaultArg();
344
345  UnparsedDefaultArgLocs[Param] = ArgLoc;
346}
347
348/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
349/// the default argument for the parameter param failed.
350void Sema::ActOnParamDefaultArgumentError(Decl *param) {
351  if (!param)
352    return;
353
354  ParmVarDecl *Param = cast<ParmVarDecl>(param);
355
356  Param->setInvalidDecl();
357
358  UnparsedDefaultArgLocs.erase(Param);
359}
360
361/// CheckExtraCXXDefaultArguments - Check for any extra default
362/// arguments in the declarator, which is not a function declaration
363/// or definition and therefore is not permitted to have default
364/// arguments. This routine should be invoked for every declarator
365/// that is not a function declaration or definition.
366void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
367  // C++ [dcl.fct.default]p3
368  //   A default argument expression shall be specified only in the
369  //   parameter-declaration-clause of a function declaration or in a
370  //   template-parameter (14.1). It shall not be specified for a
371  //   parameter pack. If it is specified in a
372  //   parameter-declaration-clause, it shall not occur within a
373  //   declarator or abstract-declarator of a parameter-declaration.
374  bool MightBeFunction = D.isFunctionDeclarationContext();
375  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
376    DeclaratorChunk &chunk = D.getTypeObject(i);
377    if (chunk.Kind == DeclaratorChunk::Function) {
378      if (MightBeFunction) {
379        // This is a function declaration. It can have default arguments, but
380        // keep looking in case its return type is a function type with default
381        // arguments.
382        MightBeFunction = false;
383        continue;
384      }
385      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
386        ParmVarDecl *Param =
387          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
388        if (Param->hasUnparsedDefaultArg()) {
389          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
390          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
391            << SourceRange((*Toks)[1].getLocation(),
392                           Toks->back().getLocation());
393          delete Toks;
394          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
395        } else if (Param->getDefaultArg()) {
396          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
397            << Param->getDefaultArg()->getSourceRange();
398          Param->setDefaultArg(0);
399        }
400      }
401    } else if (chunk.Kind != DeclaratorChunk::Paren) {
402      MightBeFunction = false;
403    }
404  }
405}
406
407/// MergeCXXFunctionDecl - Merge two declarations of the same C++
408/// function, once we already know that they have the same
409/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
410/// error, false otherwise.
411bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
412                                Scope *S) {
413  bool Invalid = false;
414
415  // C++ [dcl.fct.default]p4:
416  //   For non-template functions, default arguments can be added in
417  //   later declarations of a function in the same
418  //   scope. Declarations in different scopes have completely
419  //   distinct sets of default arguments. That is, declarations in
420  //   inner scopes do not acquire default arguments from
421  //   declarations in outer scopes, and vice versa. In a given
422  //   function declaration, all parameters subsequent to a
423  //   parameter with a default argument shall have default
424  //   arguments supplied in this or previous declarations. A
425  //   default argument shall not be redefined by a later
426  //   declaration (not even to the same value).
427  //
428  // C++ [dcl.fct.default]p6:
429  //   Except for member functions of class templates, the default arguments
430  //   in a member function definition that appears outside of the class
431  //   definition are added to the set of default arguments provided by the
432  //   member function declaration in the class definition.
433  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
434    ParmVarDecl *OldParam = Old->getParamDecl(p);
435    ParmVarDecl *NewParam = New->getParamDecl(p);
436
437    bool OldParamHasDfl = OldParam->hasDefaultArg();
438    bool NewParamHasDfl = NewParam->hasDefaultArg();
439
440    NamedDecl *ND = Old;
441    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
442      // Ignore default parameters of old decl if they are not in
443      // the same scope.
444      OldParamHasDfl = false;
445
446    if (OldParamHasDfl && NewParamHasDfl) {
447
448      unsigned DiagDefaultParamID =
449        diag::err_param_default_argument_redefinition;
450
451      // MSVC accepts that default parameters be redefined for member functions
452      // of template class. The new default parameter's value is ignored.
453      Invalid = true;
454      if (getLangOpts().MicrosoftExt) {
455        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
456        if (MD && MD->getParent()->getDescribedClassTemplate()) {
457          // Merge the old default argument into the new parameter.
458          NewParam->setHasInheritedDefaultArg();
459          if (OldParam->hasUninstantiatedDefaultArg())
460            NewParam->setUninstantiatedDefaultArg(
461                                      OldParam->getUninstantiatedDefaultArg());
462          else
463            NewParam->setDefaultArg(OldParam->getInit());
464          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
465          Invalid = false;
466        }
467      }
468
469      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
470      // hint here. Alternatively, we could walk the type-source information
471      // for NewParam to find the last source location in the type... but it
472      // isn't worth the effort right now. This is the kind of test case that
473      // is hard to get right:
474      //   int f(int);
475      //   void g(int (*fp)(int) = f);
476      //   void g(int (*fp)(int) = &f);
477      Diag(NewParam->getLocation(), DiagDefaultParamID)
478        << NewParam->getDefaultArgRange();
479
480      // Look for the function declaration where the default argument was
481      // actually written, which may be a declaration prior to Old.
482      for (FunctionDecl *Older = Old->getPreviousDecl();
483           Older; Older = Older->getPreviousDecl()) {
484        if (!Older->getParamDecl(p)->hasDefaultArg())
485          break;
486
487        OldParam = Older->getParamDecl(p);
488      }
489
490      Diag(OldParam->getLocation(), diag::note_previous_definition)
491        << OldParam->getDefaultArgRange();
492    } else if (OldParamHasDfl) {
493      // Merge the old default argument into the new parameter.
494      // It's important to use getInit() here;  getDefaultArg()
495      // strips off any top-level ExprWithCleanups.
496      NewParam->setHasInheritedDefaultArg();
497      if (OldParam->hasUninstantiatedDefaultArg())
498        NewParam->setUninstantiatedDefaultArg(
499                                      OldParam->getUninstantiatedDefaultArg());
500      else
501        NewParam->setDefaultArg(OldParam->getInit());
502    } else if (NewParamHasDfl) {
503      if (New->getDescribedFunctionTemplate()) {
504        // Paragraph 4, quoted above, only applies to non-template functions.
505        Diag(NewParam->getLocation(),
506             diag::err_param_default_argument_template_redecl)
507          << NewParam->getDefaultArgRange();
508        Diag(Old->getLocation(), diag::note_template_prev_declaration)
509          << false;
510      } else if (New->getTemplateSpecializationKind()
511                   != TSK_ImplicitInstantiation &&
512                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
513        // C++ [temp.expr.spec]p21:
514        //   Default function arguments shall not be specified in a declaration
515        //   or a definition for one of the following explicit specializations:
516        //     - the explicit specialization of a function template;
517        //     - the explicit specialization of a member function template;
518        //     - the explicit specialization of a member function of a class
519        //       template where the class template specialization to which the
520        //       member function specialization belongs is implicitly
521        //       instantiated.
522        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
523          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
524          << New->getDeclName()
525          << NewParam->getDefaultArgRange();
526      } else if (New->getDeclContext()->isDependentContext()) {
527        // C++ [dcl.fct.default]p6 (DR217):
528        //   Default arguments for a member function of a class template shall
529        //   be specified on the initial declaration of the member function
530        //   within the class template.
531        //
532        // Reading the tea leaves a bit in DR217 and its reference to DR205
533        // leads me to the conclusion that one cannot add default function
534        // arguments for an out-of-line definition of a member function of a
535        // dependent type.
536        int WhichKind = 2;
537        if (CXXRecordDecl *Record
538              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
539          if (Record->getDescribedClassTemplate())
540            WhichKind = 0;
541          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
542            WhichKind = 1;
543          else
544            WhichKind = 2;
545        }
546
547        Diag(NewParam->getLocation(),
548             diag::err_param_default_argument_member_template_redecl)
549          << WhichKind
550          << NewParam->getDefaultArgRange();
551      }
552    }
553  }
554
555  // DR1344: If a default argument is added outside a class definition and that
556  // default argument makes the function a special member function, the program
557  // is ill-formed. This can only happen for constructors.
558  if (isa<CXXConstructorDecl>(New) &&
559      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
560    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
561                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
562    if (NewSM != OldSM) {
563      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
564      assert(NewParam->hasDefaultArg());
565      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
566        << NewParam->getDefaultArgRange() << NewSM;
567      Diag(Old->getLocation(), diag::note_previous_declaration);
568    }
569  }
570
571  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
572  // template has a constexpr specifier then all its declarations shall
573  // contain the constexpr specifier.
574  if (New->isConstexpr() != Old->isConstexpr()) {
575    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
576      << New << New->isConstexpr();
577    Diag(Old->getLocation(), diag::note_previous_declaration);
578    Invalid = true;
579  }
580
581  if (CheckEquivalentExceptionSpec(Old, New))
582    Invalid = true;
583
584  return Invalid;
585}
586
587/// \brief Merge the exception specifications of two variable declarations.
588///
589/// This is called when there's a redeclaration of a VarDecl. The function
590/// checks if the redeclaration might have an exception specification and
591/// validates compatibility and merges the specs if necessary.
592void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
593  // Shortcut if exceptions are disabled.
594  if (!getLangOpts().CXXExceptions)
595    return;
596
597  assert(Context.hasSameType(New->getType(), Old->getType()) &&
598         "Should only be called if types are otherwise the same.");
599
600  QualType NewType = New->getType();
601  QualType OldType = Old->getType();
602
603  // We're only interested in pointers and references to functions, as well
604  // as pointers to member functions.
605  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
606    NewType = R->getPointeeType();
607    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
608  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
609    NewType = P->getPointeeType();
610    OldType = OldType->getAs<PointerType>()->getPointeeType();
611  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
612    NewType = M->getPointeeType();
613    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
614  }
615
616  if (!NewType->isFunctionProtoType())
617    return;
618
619  // There's lots of special cases for functions. For function pointers, system
620  // libraries are hopefully not as broken so that we don't need these
621  // workarounds.
622  if (CheckEquivalentExceptionSpec(
623        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
624        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
625    New->setInvalidDecl();
626  }
627}
628
629/// CheckCXXDefaultArguments - Verify that the default arguments for a
630/// function declaration are well-formed according to C++
631/// [dcl.fct.default].
632void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
633  unsigned NumParams = FD->getNumParams();
634  unsigned p;
635
636  // Find first parameter with a default argument
637  for (p = 0; p < NumParams; ++p) {
638    ParmVarDecl *Param = FD->getParamDecl(p);
639    if (Param->hasDefaultArg())
640      break;
641  }
642
643  // C++ [dcl.fct.default]p4:
644  //   In a given function declaration, all parameters
645  //   subsequent to a parameter with a default argument shall
646  //   have default arguments supplied in this or previous
647  //   declarations. A default argument shall not be redefined
648  //   by a later declaration (not even to the same value).
649  unsigned LastMissingDefaultArg = 0;
650  for (; p < NumParams; ++p) {
651    ParmVarDecl *Param = FD->getParamDecl(p);
652    if (!Param->hasDefaultArg()) {
653      if (Param->isInvalidDecl())
654        /* We already complained about this parameter. */;
655      else if (Param->getIdentifier())
656        Diag(Param->getLocation(),
657             diag::err_param_default_argument_missing_name)
658          << Param->getIdentifier();
659      else
660        Diag(Param->getLocation(),
661             diag::err_param_default_argument_missing);
662
663      LastMissingDefaultArg = p;
664    }
665  }
666
667  if (LastMissingDefaultArg > 0) {
668    // Some default arguments were missing. Clear out all of the
669    // default arguments up to (and including) the last missing
670    // default argument, so that we leave the function parameters
671    // in a semantically valid state.
672    for (p = 0; p <= LastMissingDefaultArg; ++p) {
673      ParmVarDecl *Param = FD->getParamDecl(p);
674      if (Param->hasDefaultArg()) {
675        Param->setDefaultArg(0);
676      }
677    }
678  }
679}
680
681// CheckConstexprParameterTypes - Check whether a function's parameter types
682// are all literal types. If so, return true. If not, produce a suitable
683// diagnostic and return false.
684static bool CheckConstexprParameterTypes(Sema &SemaRef,
685                                         const FunctionDecl *FD) {
686  unsigned ArgIndex = 0;
687  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
688  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
689       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
690    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
691    SourceLocation ParamLoc = PD->getLocation();
692    if (!(*i)->isDependentType() &&
693        SemaRef.RequireLiteralType(ParamLoc, *i,
694                                   diag::err_constexpr_non_literal_param,
695                                   ArgIndex+1, PD->getSourceRange(),
696                                   isa<CXXConstructorDecl>(FD)))
697      return false;
698  }
699  return true;
700}
701
702/// \brief Get diagnostic %select index for tag kind for
703/// record diagnostic message.
704/// WARNING: Indexes apply to particular diagnostics only!
705///
706/// \returns diagnostic %select index.
707static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
708  switch (Tag) {
709  case TTK_Struct: return 0;
710  case TTK_Interface: return 1;
711  case TTK_Class:  return 2;
712  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
713  }
714}
715
716// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
717// the requirements of a constexpr function definition or a constexpr
718// constructor definition. If so, return true. If not, produce appropriate
719// diagnostics and return false.
720//
721// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
722bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
723  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
724  if (MD && MD->isInstance()) {
725    // C++11 [dcl.constexpr]p4:
726    //  The definition of a constexpr constructor shall satisfy the following
727    //  constraints:
728    //  - the class shall not have any virtual base classes;
729    const CXXRecordDecl *RD = MD->getParent();
730    if (RD->getNumVBases()) {
731      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
732        << isa<CXXConstructorDecl>(NewFD)
733        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
734      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
735             E = RD->vbases_end(); I != E; ++I)
736        Diag(I->getLocStart(),
737             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
738      return false;
739    }
740  }
741
742  if (!isa<CXXConstructorDecl>(NewFD)) {
743    // C++11 [dcl.constexpr]p3:
744    //  The definition of a constexpr function shall satisfy the following
745    //  constraints:
746    // - it shall not be virtual;
747    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
748    if (Method && Method->isVirtual()) {
749      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
750
751      // If it's not obvious why this function is virtual, find an overridden
752      // function which uses the 'virtual' keyword.
753      const CXXMethodDecl *WrittenVirtual = Method;
754      while (!WrittenVirtual->isVirtualAsWritten())
755        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
756      if (WrittenVirtual != Method)
757        Diag(WrittenVirtual->getLocation(),
758             diag::note_overridden_virtual_function);
759      return false;
760    }
761
762    // - its return type shall be a literal type;
763    QualType RT = NewFD->getResultType();
764    if (!RT->isDependentType() &&
765        RequireLiteralType(NewFD->getLocation(), RT,
766                           diag::err_constexpr_non_literal_return))
767      return false;
768  }
769
770  // - each of its parameter types shall be a literal type;
771  if (!CheckConstexprParameterTypes(*this, NewFD))
772    return false;
773
774  return true;
775}
776
777/// Check the given declaration statement is legal within a constexpr function
778/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
779///
780/// \return true if the body is OK (maybe only as an extension), false if we
781///         have diagnosed a problem.
782static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
783                                   DeclStmt *DS, SourceLocation &Cxx1yLoc) {
784  // C++11 [dcl.constexpr]p3 and p4:
785  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
786  //  contain only
787  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
788         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
789    switch ((*DclIt)->getKind()) {
790    case Decl::StaticAssert:
791    case Decl::Using:
792    case Decl::UsingShadow:
793    case Decl::UsingDirective:
794    case Decl::UnresolvedUsingTypename:
795    case Decl::UnresolvedUsingValue:
796      //   - static_assert-declarations
797      //   - using-declarations,
798      //   - using-directives,
799      continue;
800
801    case Decl::Typedef:
802    case Decl::TypeAlias: {
803      //   - typedef declarations and alias-declarations that do not define
804      //     classes or enumerations,
805      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
806      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
807        // Don't allow variably-modified types in constexpr functions.
808        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
809        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
810          << TL.getSourceRange() << TL.getType()
811          << isa<CXXConstructorDecl>(Dcl);
812        return false;
813      }
814      continue;
815    }
816
817    case Decl::Enum:
818    case Decl::CXXRecord:
819      // C++1y allows types to be defined, not just declared.
820      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition())
821        SemaRef.Diag(DS->getLocStart(),
822                     SemaRef.getLangOpts().CPlusPlus1y
823                       ? diag::warn_cxx11_compat_constexpr_type_definition
824                       : diag::ext_constexpr_type_definition)
825          << isa<CXXConstructorDecl>(Dcl);
826      continue;
827
828    case Decl::EnumConstant:
829    case Decl::IndirectField:
830    case Decl::ParmVar:
831      // These can only appear with other declarations which are banned in
832      // C++11 and permitted in C++1y, so ignore them.
833      continue;
834
835    case Decl::Var: {
836      // C++1y [dcl.constexpr]p3 allows anything except:
837      //   a definition of a variable of non-literal type or of static or
838      //   thread storage duration or for which no initialization is performed.
839      VarDecl *VD = cast<VarDecl>(*DclIt);
840      if (VD->isThisDeclarationADefinition()) {
841        if (VD->isStaticLocal()) {
842          SemaRef.Diag(VD->getLocation(),
843                       diag::err_constexpr_local_var_static)
844            << isa<CXXConstructorDecl>(Dcl)
845            << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
846          return false;
847        }
848        if (!VD->getType()->isDependentType() &&
849            SemaRef.RequireLiteralType(
850              VD->getLocation(), VD->getType(),
851              diag::err_constexpr_local_var_non_literal_type,
852              isa<CXXConstructorDecl>(Dcl)))
853          return false;
854        if (!VD->hasInit()) {
855          SemaRef.Diag(VD->getLocation(),
856                       diag::err_constexpr_local_var_no_init)
857            << isa<CXXConstructorDecl>(Dcl);
858          return false;
859        }
860      }
861      SemaRef.Diag(VD->getLocation(),
862                   SemaRef.getLangOpts().CPlusPlus1y
863                    ? diag::warn_cxx11_compat_constexpr_local_var
864                    : diag::ext_constexpr_local_var)
865        << isa<CXXConstructorDecl>(Dcl);
866      continue;
867    }
868
869    case Decl::NamespaceAlias:
870    case Decl::Function:
871      // These are disallowed in C++11 and permitted in C++1y. Allow them
872      // everywhere as an extension.
873      if (!Cxx1yLoc.isValid())
874        Cxx1yLoc = DS->getLocStart();
875      continue;
876
877    default:
878      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
879        << isa<CXXConstructorDecl>(Dcl);
880      return false;
881    }
882  }
883
884  return true;
885}
886
887/// Check that the given field is initialized within a constexpr constructor.
888///
889/// \param Dcl The constexpr constructor being checked.
890/// \param Field The field being checked. This may be a member of an anonymous
891///        struct or union nested within the class being checked.
892/// \param Inits All declarations, including anonymous struct/union members and
893///        indirect members, for which any initialization was provided.
894/// \param Diagnosed Set to true if an error is produced.
895static void CheckConstexprCtorInitializer(Sema &SemaRef,
896                                          const FunctionDecl *Dcl,
897                                          FieldDecl *Field,
898                                          llvm::SmallSet<Decl*, 16> &Inits,
899                                          bool &Diagnosed) {
900  if (Field->isUnnamedBitfield())
901    return;
902
903  if (Field->isAnonymousStructOrUnion() &&
904      Field->getType()->getAsCXXRecordDecl()->isEmpty())
905    return;
906
907  if (!Inits.count(Field)) {
908    if (!Diagnosed) {
909      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
910      Diagnosed = true;
911    }
912    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
913  } else if (Field->isAnonymousStructOrUnion()) {
914    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
915    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
916         I != E; ++I)
917      // If an anonymous union contains an anonymous struct of which any member
918      // is initialized, all members must be initialized.
919      if (!RD->isUnion() || Inits.count(*I))
920        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
921  }
922}
923
924/// Check the provided statement is allowed in a constexpr function
925/// definition.
926static bool
927CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
928                           llvm::SmallVectorImpl<SourceLocation> &ReturnStmts,
929                           SourceLocation &Cxx1yLoc) {
930  // - its function-body shall be [...] a compound-statement that contains only
931  switch (S->getStmtClass()) {
932  case Stmt::NullStmtClass:
933    //   - null statements,
934    return true;
935
936  case Stmt::DeclStmtClass:
937    //   - static_assert-declarations
938    //   - using-declarations,
939    //   - using-directives,
940    //   - typedef declarations and alias-declarations that do not define
941    //     classes or enumerations,
942    if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
943      return false;
944    return true;
945
946  case Stmt::ReturnStmtClass:
947    //   - and exactly one return statement;
948    if (isa<CXXConstructorDecl>(Dcl)) {
949      // C++1y allows return statements in constexpr constructors.
950      if (!Cxx1yLoc.isValid())
951        Cxx1yLoc = S->getLocStart();
952      return true;
953    }
954
955    ReturnStmts.push_back(S->getLocStart());
956    return true;
957
958  case Stmt::CompoundStmtClass: {
959    // C++1y allows compound-statements.
960    if (!Cxx1yLoc.isValid())
961      Cxx1yLoc = S->getLocStart();
962
963    CompoundStmt *CompStmt = cast<CompoundStmt>(S);
964    for (CompoundStmt::body_iterator BodyIt = CompStmt->body_begin(),
965           BodyEnd = CompStmt->body_end(); BodyIt != BodyEnd; ++BodyIt) {
966      if (!CheckConstexprFunctionStmt(SemaRef, Dcl, *BodyIt, ReturnStmts,
967                                      Cxx1yLoc))
968        return false;
969    }
970    return true;
971  }
972
973  case Stmt::AttributedStmtClass:
974    if (!Cxx1yLoc.isValid())
975      Cxx1yLoc = S->getLocStart();
976    return true;
977
978  case Stmt::IfStmtClass: {
979    // C++1y allows if-statements.
980    if (!Cxx1yLoc.isValid())
981      Cxx1yLoc = S->getLocStart();
982
983    IfStmt *If = cast<IfStmt>(S);
984    if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
985                                    Cxx1yLoc))
986      return false;
987    if (If->getElse() &&
988        !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
989                                    Cxx1yLoc))
990      return false;
991    return true;
992  }
993
994  case Stmt::WhileStmtClass:
995  case Stmt::DoStmtClass:
996  case Stmt::ForStmtClass:
997  case Stmt::CXXForRangeStmtClass:
998  case Stmt::ContinueStmtClass:
999    // C++1y allows all of these. We don't allow them as extensions in C++11,
1000    // because they don't make sense without variable mutation.
1001    if (!SemaRef.getLangOpts().CPlusPlus1y)
1002      break;
1003    if (!Cxx1yLoc.isValid())
1004      Cxx1yLoc = S->getLocStart();
1005    for (Stmt::child_range Children = S->children(); Children; ++Children)
1006      if (*Children &&
1007          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1008                                      Cxx1yLoc))
1009        return false;
1010    return true;
1011
1012  case Stmt::SwitchStmtClass:
1013  case Stmt::CaseStmtClass:
1014  case Stmt::DefaultStmtClass:
1015  case Stmt::BreakStmtClass:
1016    // C++1y allows switch-statements, and since they don't need variable
1017    // mutation, we can reasonably allow them in C++11 as an extension.
1018    if (!Cxx1yLoc.isValid())
1019      Cxx1yLoc = S->getLocStart();
1020    for (Stmt::child_range Children = S->children(); Children; ++Children)
1021      if (*Children &&
1022          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1023                                      Cxx1yLoc))
1024        return false;
1025    return true;
1026
1027  default:
1028    if (!isa<Expr>(S))
1029      break;
1030
1031    // C++1y allows expression-statements.
1032    if (!Cxx1yLoc.isValid())
1033      Cxx1yLoc = S->getLocStart();
1034    return true;
1035  }
1036
1037  SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1038    << isa<CXXConstructorDecl>(Dcl);
1039  return false;
1040}
1041
1042/// Check the body for the given constexpr function declaration only contains
1043/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1044///
1045/// \return true if the body is OK, false if we have diagnosed a problem.
1046bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1047  if (isa<CXXTryStmt>(Body)) {
1048    // C++11 [dcl.constexpr]p3:
1049    //  The definition of a constexpr function shall satisfy the following
1050    //  constraints: [...]
1051    // - its function-body shall be = delete, = default, or a
1052    //   compound-statement
1053    //
1054    // C++11 [dcl.constexpr]p4:
1055    //  In the definition of a constexpr constructor, [...]
1056    // - its function-body shall not be a function-try-block;
1057    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1058      << isa<CXXConstructorDecl>(Dcl);
1059    return false;
1060  }
1061
1062  SmallVector<SourceLocation, 4> ReturnStmts;
1063
1064  // - its function-body shall be [...] a compound-statement that contains only
1065  //   [... list of cases ...]
1066  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1067  SourceLocation Cxx1yLoc;
1068  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
1069         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
1070    if (!CheckConstexprFunctionStmt(*this, Dcl, *BodyIt, ReturnStmts, Cxx1yLoc))
1071      return false;
1072  }
1073
1074  if (Cxx1yLoc.isValid())
1075    Diag(Cxx1yLoc,
1076         getLangOpts().CPlusPlus1y
1077           ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1078           : diag::ext_constexpr_body_invalid_stmt)
1079      << isa<CXXConstructorDecl>(Dcl);
1080
1081  if (const CXXConstructorDecl *Constructor
1082        = dyn_cast<CXXConstructorDecl>(Dcl)) {
1083    const CXXRecordDecl *RD = Constructor->getParent();
1084    // DR1359:
1085    // - every non-variant non-static data member and base class sub-object
1086    //   shall be initialized;
1087    // - if the class is a non-empty union, or for each non-empty anonymous
1088    //   union member of a non-union class, exactly one non-static data member
1089    //   shall be initialized;
1090    if (RD->isUnion()) {
1091      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
1092        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1093        return false;
1094      }
1095    } else if (!Constructor->isDependentContext() &&
1096               !Constructor->isDelegatingConstructor()) {
1097      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1098
1099      // Skip detailed checking if we have enough initializers, and we would
1100      // allow at most one initializer per member.
1101      bool AnyAnonStructUnionMembers = false;
1102      unsigned Fields = 0;
1103      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1104           E = RD->field_end(); I != E; ++I, ++Fields) {
1105        if (I->isAnonymousStructOrUnion()) {
1106          AnyAnonStructUnionMembers = true;
1107          break;
1108        }
1109      }
1110      if (AnyAnonStructUnionMembers ||
1111          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1112        // Check initialization of non-static data members. Base classes are
1113        // always initialized so do not need to be checked. Dependent bases
1114        // might not have initializers in the member initializer list.
1115        llvm::SmallSet<Decl*, 16> Inits;
1116        for (CXXConstructorDecl::init_const_iterator
1117               I = Constructor->init_begin(), E = Constructor->init_end();
1118             I != E; ++I) {
1119          if (FieldDecl *FD = (*I)->getMember())
1120            Inits.insert(FD);
1121          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
1122            Inits.insert(ID->chain_begin(), ID->chain_end());
1123        }
1124
1125        bool Diagnosed = false;
1126        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1127             E = RD->field_end(); I != E; ++I)
1128          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
1129        if (Diagnosed)
1130          return false;
1131      }
1132    }
1133  } else {
1134    if (ReturnStmts.empty()) {
1135      // C++1y doesn't require constexpr functions to contain a 'return'
1136      // statement. We still do, unless the return type is void, because
1137      // otherwise if there's no return statement, the function cannot
1138      // be used in a core constant expression.
1139      bool OK = getLangOpts().CPlusPlus1y && Dcl->getResultType()->isVoidType();
1140      Diag(Dcl->getLocation(),
1141           OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1142              : diag::err_constexpr_body_no_return);
1143      return OK;
1144    }
1145    if (ReturnStmts.size() > 1) {
1146      Diag(ReturnStmts.back(),
1147           getLangOpts().CPlusPlus1y
1148             ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1149             : diag::ext_constexpr_body_multiple_return);
1150      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1151        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1152    }
1153  }
1154
1155  // C++11 [dcl.constexpr]p5:
1156  //   if no function argument values exist such that the function invocation
1157  //   substitution would produce a constant expression, the program is
1158  //   ill-formed; no diagnostic required.
1159  // C++11 [dcl.constexpr]p3:
1160  //   - every constructor call and implicit conversion used in initializing the
1161  //     return value shall be one of those allowed in a constant expression.
1162  // C++11 [dcl.constexpr]p4:
1163  //   - every constructor involved in initializing non-static data members and
1164  //     base class sub-objects shall be a constexpr constructor.
1165  SmallVector<PartialDiagnosticAt, 8> Diags;
1166  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1167    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1168      << isa<CXXConstructorDecl>(Dcl);
1169    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1170      Diag(Diags[I].first, Diags[I].second);
1171    // Don't return false here: we allow this for compatibility in
1172    // system headers.
1173  }
1174
1175  return true;
1176}
1177
1178/// isCurrentClassName - Determine whether the identifier II is the
1179/// name of the class type currently being defined. In the case of
1180/// nested classes, this will only return true if II is the name of
1181/// the innermost class.
1182bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1183                              const CXXScopeSpec *SS) {
1184  assert(getLangOpts().CPlusPlus && "No class names in C!");
1185
1186  CXXRecordDecl *CurDecl;
1187  if (SS && SS->isSet() && !SS->isInvalid()) {
1188    DeclContext *DC = computeDeclContext(*SS, true);
1189    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1190  } else
1191    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1192
1193  if (CurDecl && CurDecl->getIdentifier())
1194    return &II == CurDecl->getIdentifier();
1195  else
1196    return false;
1197}
1198
1199/// \brief Determine whether the given class is a base class of the given
1200/// class, including looking at dependent bases.
1201static bool findCircularInheritance(const CXXRecordDecl *Class,
1202                                    const CXXRecordDecl *Current) {
1203  SmallVector<const CXXRecordDecl*, 8> Queue;
1204
1205  Class = Class->getCanonicalDecl();
1206  while (true) {
1207    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1208                                                  E = Current->bases_end();
1209         I != E; ++I) {
1210      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1211      if (!Base)
1212        continue;
1213
1214      Base = Base->getDefinition();
1215      if (!Base)
1216        continue;
1217
1218      if (Base->getCanonicalDecl() == Class)
1219        return true;
1220
1221      Queue.push_back(Base);
1222    }
1223
1224    if (Queue.empty())
1225      return false;
1226
1227    Current = Queue.back();
1228    Queue.pop_back();
1229  }
1230
1231  return false;
1232}
1233
1234/// \brief Check the validity of a C++ base class specifier.
1235///
1236/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1237/// and returns NULL otherwise.
1238CXXBaseSpecifier *
1239Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1240                         SourceRange SpecifierRange,
1241                         bool Virtual, AccessSpecifier Access,
1242                         TypeSourceInfo *TInfo,
1243                         SourceLocation EllipsisLoc) {
1244  QualType BaseType = TInfo->getType();
1245
1246  // C++ [class.union]p1:
1247  //   A union shall not have base classes.
1248  if (Class->isUnion()) {
1249    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1250      << SpecifierRange;
1251    return 0;
1252  }
1253
1254  if (EllipsisLoc.isValid() &&
1255      !TInfo->getType()->containsUnexpandedParameterPack()) {
1256    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1257      << TInfo->getTypeLoc().getSourceRange();
1258    EllipsisLoc = SourceLocation();
1259  }
1260
1261  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1262
1263  if (BaseType->isDependentType()) {
1264    // Make sure that we don't have circular inheritance among our dependent
1265    // bases. For non-dependent bases, the check for completeness below handles
1266    // this.
1267    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1268      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1269          ((BaseDecl = BaseDecl->getDefinition()) &&
1270           findCircularInheritance(Class, BaseDecl))) {
1271        Diag(BaseLoc, diag::err_circular_inheritance)
1272          << BaseType << Context.getTypeDeclType(Class);
1273
1274        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1275          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1276            << BaseType;
1277
1278        return 0;
1279      }
1280    }
1281
1282    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1283                                          Class->getTagKind() == TTK_Class,
1284                                          Access, TInfo, EllipsisLoc);
1285  }
1286
1287  // Base specifiers must be record types.
1288  if (!BaseType->isRecordType()) {
1289    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1290    return 0;
1291  }
1292
1293  // C++ [class.union]p1:
1294  //   A union shall not be used as a base class.
1295  if (BaseType->isUnionType()) {
1296    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1297    return 0;
1298  }
1299
1300  // C++ [class.derived]p2:
1301  //   The class-name in a base-specifier shall not be an incompletely
1302  //   defined class.
1303  if (RequireCompleteType(BaseLoc, BaseType,
1304                          diag::err_incomplete_base_class, SpecifierRange)) {
1305    Class->setInvalidDecl();
1306    return 0;
1307  }
1308
1309  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1310  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1311  assert(BaseDecl && "Record type has no declaration");
1312  BaseDecl = BaseDecl->getDefinition();
1313  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1314  CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1315  assert(CXXBaseDecl && "Base type is not a C++ type");
1316
1317  // C++ [class]p3:
1318  //   If a class is marked final and it appears as a base-type-specifier in
1319  //   base-clause, the program is ill-formed.
1320  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1321    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1322      << CXXBaseDecl->getDeclName();
1323    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1324      << CXXBaseDecl->getDeclName();
1325    return 0;
1326  }
1327
1328  if (BaseDecl->isInvalidDecl())
1329    Class->setInvalidDecl();
1330
1331  // Create the base specifier.
1332  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1333                                        Class->getTagKind() == TTK_Class,
1334                                        Access, TInfo, EllipsisLoc);
1335}
1336
1337/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1338/// one entry in the base class list of a class specifier, for
1339/// example:
1340///    class foo : public bar, virtual private baz {
1341/// 'public bar' and 'virtual private baz' are each base-specifiers.
1342BaseResult
1343Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1344                         ParsedAttributes &Attributes,
1345                         bool Virtual, AccessSpecifier Access,
1346                         ParsedType basetype, SourceLocation BaseLoc,
1347                         SourceLocation EllipsisLoc) {
1348  if (!classdecl)
1349    return true;
1350
1351  AdjustDeclIfTemplate(classdecl);
1352  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1353  if (!Class)
1354    return true;
1355
1356  // We do not support any C++11 attributes on base-specifiers yet.
1357  // Diagnose any attributes we see.
1358  if (!Attributes.empty()) {
1359    for (AttributeList *Attr = Attributes.getList(); Attr;
1360         Attr = Attr->getNext()) {
1361      if (Attr->isInvalid() ||
1362          Attr->getKind() == AttributeList::IgnoredAttribute)
1363        continue;
1364      Diag(Attr->getLoc(),
1365           Attr->getKind() == AttributeList::UnknownAttribute
1366             ? diag::warn_unknown_attribute_ignored
1367             : diag::err_base_specifier_attribute)
1368        << Attr->getName();
1369    }
1370  }
1371
1372  TypeSourceInfo *TInfo = 0;
1373  GetTypeFromParser(basetype, &TInfo);
1374
1375  if (EllipsisLoc.isInvalid() &&
1376      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1377                                      UPPC_BaseType))
1378    return true;
1379
1380  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1381                                                      Virtual, Access, TInfo,
1382                                                      EllipsisLoc))
1383    return BaseSpec;
1384  else
1385    Class->setInvalidDecl();
1386
1387  return true;
1388}
1389
1390/// \brief Performs the actual work of attaching the given base class
1391/// specifiers to a C++ class.
1392bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1393                                unsigned NumBases) {
1394 if (NumBases == 0)
1395    return false;
1396
1397  // Used to keep track of which base types we have already seen, so
1398  // that we can properly diagnose redundant direct base types. Note
1399  // that the key is always the unqualified canonical type of the base
1400  // class.
1401  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1402
1403  // Copy non-redundant base specifiers into permanent storage.
1404  unsigned NumGoodBases = 0;
1405  bool Invalid = false;
1406  for (unsigned idx = 0; idx < NumBases; ++idx) {
1407    QualType NewBaseType
1408      = Context.getCanonicalType(Bases[idx]->getType());
1409    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1410
1411    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1412    if (KnownBase) {
1413      // C++ [class.mi]p3:
1414      //   A class shall not be specified as a direct base class of a
1415      //   derived class more than once.
1416      Diag(Bases[idx]->getLocStart(),
1417           diag::err_duplicate_base_class)
1418        << KnownBase->getType()
1419        << Bases[idx]->getSourceRange();
1420
1421      // Delete the duplicate base class specifier; we're going to
1422      // overwrite its pointer later.
1423      Context.Deallocate(Bases[idx]);
1424
1425      Invalid = true;
1426    } else {
1427      // Okay, add this new base class.
1428      KnownBase = Bases[idx];
1429      Bases[NumGoodBases++] = Bases[idx];
1430      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1431        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1432        if (Class->isInterface() &&
1433              (!RD->isInterface() ||
1434               KnownBase->getAccessSpecifier() != AS_public)) {
1435          // The Microsoft extension __interface does not permit bases that
1436          // are not themselves public interfaces.
1437          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1438            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1439            << RD->getSourceRange();
1440          Invalid = true;
1441        }
1442        if (RD->hasAttr<WeakAttr>())
1443          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1444      }
1445    }
1446  }
1447
1448  // Attach the remaining base class specifiers to the derived class.
1449  Class->setBases(Bases, NumGoodBases);
1450
1451  // Delete the remaining (good) base class specifiers, since their
1452  // data has been copied into the CXXRecordDecl.
1453  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1454    Context.Deallocate(Bases[idx]);
1455
1456  return Invalid;
1457}
1458
1459/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1460/// class, after checking whether there are any duplicate base
1461/// classes.
1462void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1463                               unsigned NumBases) {
1464  if (!ClassDecl || !Bases || !NumBases)
1465    return;
1466
1467  AdjustDeclIfTemplate(ClassDecl);
1468  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1469                       (CXXBaseSpecifier**)(Bases), NumBases);
1470}
1471
1472/// \brief Determine whether the type \p Derived is a C++ class that is
1473/// derived from the type \p Base.
1474bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1475  if (!getLangOpts().CPlusPlus)
1476    return false;
1477
1478  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1479  if (!DerivedRD)
1480    return false;
1481
1482  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1483  if (!BaseRD)
1484    return false;
1485
1486  // If either the base or the derived type is invalid, don't try to
1487  // check whether one is derived from the other.
1488  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1489    return false;
1490
1491  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1492  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1493}
1494
1495/// \brief Determine whether the type \p Derived is a C++ class that is
1496/// derived from the type \p Base.
1497bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1498  if (!getLangOpts().CPlusPlus)
1499    return false;
1500
1501  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1502  if (!DerivedRD)
1503    return false;
1504
1505  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1506  if (!BaseRD)
1507    return false;
1508
1509  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1510}
1511
1512void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1513                              CXXCastPath &BasePathArray) {
1514  assert(BasePathArray.empty() && "Base path array must be empty!");
1515  assert(Paths.isRecordingPaths() && "Must record paths!");
1516
1517  const CXXBasePath &Path = Paths.front();
1518
1519  // We first go backward and check if we have a virtual base.
1520  // FIXME: It would be better if CXXBasePath had the base specifier for
1521  // the nearest virtual base.
1522  unsigned Start = 0;
1523  for (unsigned I = Path.size(); I != 0; --I) {
1524    if (Path[I - 1].Base->isVirtual()) {
1525      Start = I - 1;
1526      break;
1527    }
1528  }
1529
1530  // Now add all bases.
1531  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1532    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1533}
1534
1535/// \brief Determine whether the given base path includes a virtual
1536/// base class.
1537bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1538  for (CXXCastPath::const_iterator B = BasePath.begin(),
1539                                BEnd = BasePath.end();
1540       B != BEnd; ++B)
1541    if ((*B)->isVirtual())
1542      return true;
1543
1544  return false;
1545}
1546
1547/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1548/// conversion (where Derived and Base are class types) is
1549/// well-formed, meaning that the conversion is unambiguous (and
1550/// that all of the base classes are accessible). Returns true
1551/// and emits a diagnostic if the code is ill-formed, returns false
1552/// otherwise. Loc is the location where this routine should point to
1553/// if there is an error, and Range is the source range to highlight
1554/// if there is an error.
1555bool
1556Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1557                                   unsigned InaccessibleBaseID,
1558                                   unsigned AmbigiousBaseConvID,
1559                                   SourceLocation Loc, SourceRange Range,
1560                                   DeclarationName Name,
1561                                   CXXCastPath *BasePath) {
1562  // First, determine whether the path from Derived to Base is
1563  // ambiguous. This is slightly more expensive than checking whether
1564  // the Derived to Base conversion exists, because here we need to
1565  // explore multiple paths to determine if there is an ambiguity.
1566  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1567                     /*DetectVirtual=*/false);
1568  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1569  assert(DerivationOkay &&
1570         "Can only be used with a derived-to-base conversion");
1571  (void)DerivationOkay;
1572
1573  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1574    if (InaccessibleBaseID) {
1575      // Check that the base class can be accessed.
1576      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1577                                   InaccessibleBaseID)) {
1578        case AR_inaccessible:
1579          return true;
1580        case AR_accessible:
1581        case AR_dependent:
1582        case AR_delayed:
1583          break;
1584      }
1585    }
1586
1587    // Build a base path if necessary.
1588    if (BasePath)
1589      BuildBasePathArray(Paths, *BasePath);
1590    return false;
1591  }
1592
1593  // We know that the derived-to-base conversion is ambiguous, and
1594  // we're going to produce a diagnostic. Perform the derived-to-base
1595  // search just one more time to compute all of the possible paths so
1596  // that we can print them out. This is more expensive than any of
1597  // the previous derived-to-base checks we've done, but at this point
1598  // performance isn't as much of an issue.
1599  Paths.clear();
1600  Paths.setRecordingPaths(true);
1601  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1602  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1603  (void)StillOkay;
1604
1605  // Build up a textual representation of the ambiguous paths, e.g.,
1606  // D -> B -> A, that will be used to illustrate the ambiguous
1607  // conversions in the diagnostic. We only print one of the paths
1608  // to each base class subobject.
1609  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1610
1611  Diag(Loc, AmbigiousBaseConvID)
1612  << Derived << Base << PathDisplayStr << Range << Name;
1613  return true;
1614}
1615
1616bool
1617Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1618                                   SourceLocation Loc, SourceRange Range,
1619                                   CXXCastPath *BasePath,
1620                                   bool IgnoreAccess) {
1621  return CheckDerivedToBaseConversion(Derived, Base,
1622                                      IgnoreAccess ? 0
1623                                       : diag::err_upcast_to_inaccessible_base,
1624                                      diag::err_ambiguous_derived_to_base_conv,
1625                                      Loc, Range, DeclarationName(),
1626                                      BasePath);
1627}
1628
1629
1630/// @brief Builds a string representing ambiguous paths from a
1631/// specific derived class to different subobjects of the same base
1632/// class.
1633///
1634/// This function builds a string that can be used in error messages
1635/// to show the different paths that one can take through the
1636/// inheritance hierarchy to go from the derived class to different
1637/// subobjects of a base class. The result looks something like this:
1638/// @code
1639/// struct D -> struct B -> struct A
1640/// struct D -> struct C -> struct A
1641/// @endcode
1642std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1643  std::string PathDisplayStr;
1644  std::set<unsigned> DisplayedPaths;
1645  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1646       Path != Paths.end(); ++Path) {
1647    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1648      // We haven't displayed a path to this particular base
1649      // class subobject yet.
1650      PathDisplayStr += "\n    ";
1651      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1652      for (CXXBasePath::const_iterator Element = Path->begin();
1653           Element != Path->end(); ++Element)
1654        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1655    }
1656  }
1657
1658  return PathDisplayStr;
1659}
1660
1661//===----------------------------------------------------------------------===//
1662// C++ class member Handling
1663//===----------------------------------------------------------------------===//
1664
1665/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1666bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1667                                SourceLocation ASLoc,
1668                                SourceLocation ColonLoc,
1669                                AttributeList *Attrs) {
1670  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1671  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1672                                                  ASLoc, ColonLoc);
1673  CurContext->addHiddenDecl(ASDecl);
1674  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1675}
1676
1677/// CheckOverrideControl - Check C++11 override control semantics.
1678void Sema::CheckOverrideControl(Decl *D) {
1679  if (D->isInvalidDecl())
1680    return;
1681
1682  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1683
1684  // Do we know which functions this declaration might be overriding?
1685  bool OverridesAreKnown = !MD ||
1686      (!MD->getParent()->hasAnyDependentBases() &&
1687       !MD->getType()->isDependentType());
1688
1689  if (!MD || !MD->isVirtual()) {
1690    if (OverridesAreKnown) {
1691      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1692        Diag(OA->getLocation(),
1693             diag::override_keyword_only_allowed_on_virtual_member_functions)
1694          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1695        D->dropAttr<OverrideAttr>();
1696      }
1697      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1698        Diag(FA->getLocation(),
1699             diag::override_keyword_only_allowed_on_virtual_member_functions)
1700          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1701        D->dropAttr<FinalAttr>();
1702      }
1703    }
1704    return;
1705  }
1706
1707  if (!OverridesAreKnown)
1708    return;
1709
1710  // C++11 [class.virtual]p5:
1711  //   If a virtual function is marked with the virt-specifier override and
1712  //   does not override a member function of a base class, the program is
1713  //   ill-formed.
1714  bool HasOverriddenMethods =
1715    MD->begin_overridden_methods() != MD->end_overridden_methods();
1716  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1717    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1718      << MD->getDeclName();
1719}
1720
1721/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1722/// function overrides a virtual member function marked 'final', according to
1723/// C++11 [class.virtual]p4.
1724bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1725                                                  const CXXMethodDecl *Old) {
1726  if (!Old->hasAttr<FinalAttr>())
1727    return false;
1728
1729  Diag(New->getLocation(), diag::err_final_function_overridden)
1730    << New->getDeclName();
1731  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1732  return true;
1733}
1734
1735static bool InitializationHasSideEffects(const FieldDecl &FD) {
1736  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1737  // FIXME: Destruction of ObjC lifetime types has side-effects.
1738  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1739    return !RD->isCompleteDefinition() ||
1740           !RD->hasTrivialDefaultConstructor() ||
1741           !RD->hasTrivialDestructor();
1742  return false;
1743}
1744
1745static AttributeList *getMSPropertyAttr(AttributeList *list) {
1746  for (AttributeList* it = list; it != 0; it = it->getNext())
1747    if (it->isDeclspecPropertyAttribute())
1748      return it;
1749  return 0;
1750}
1751
1752/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1753/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1754/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1755/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1756/// present (but parsing it has been deferred).
1757NamedDecl *
1758Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1759                               MultiTemplateParamsArg TemplateParameterLists,
1760                               Expr *BW, const VirtSpecifiers &VS,
1761                               InClassInitStyle InitStyle) {
1762  const DeclSpec &DS = D.getDeclSpec();
1763  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1764  DeclarationName Name = NameInfo.getName();
1765  SourceLocation Loc = NameInfo.getLoc();
1766
1767  // For anonymous bitfields, the location should point to the type.
1768  if (Loc.isInvalid())
1769    Loc = D.getLocStart();
1770
1771  Expr *BitWidth = static_cast<Expr*>(BW);
1772
1773  assert(isa<CXXRecordDecl>(CurContext));
1774  assert(!DS.isFriendSpecified());
1775
1776  bool isFunc = D.isDeclarationOfFunction();
1777
1778  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1779    // The Microsoft extension __interface only permits public member functions
1780    // and prohibits constructors, destructors, operators, non-public member
1781    // functions, static methods and data members.
1782    unsigned InvalidDecl;
1783    bool ShowDeclName = true;
1784    if (!isFunc)
1785      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1786    else if (AS != AS_public)
1787      InvalidDecl = 2;
1788    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1789      InvalidDecl = 3;
1790    else switch (Name.getNameKind()) {
1791      case DeclarationName::CXXConstructorName:
1792        InvalidDecl = 4;
1793        ShowDeclName = false;
1794        break;
1795
1796      case DeclarationName::CXXDestructorName:
1797        InvalidDecl = 5;
1798        ShowDeclName = false;
1799        break;
1800
1801      case DeclarationName::CXXOperatorName:
1802      case DeclarationName::CXXConversionFunctionName:
1803        InvalidDecl = 6;
1804        break;
1805
1806      default:
1807        InvalidDecl = 0;
1808        break;
1809    }
1810
1811    if (InvalidDecl) {
1812      if (ShowDeclName)
1813        Diag(Loc, diag::err_invalid_member_in_interface)
1814          << (InvalidDecl-1) << Name;
1815      else
1816        Diag(Loc, diag::err_invalid_member_in_interface)
1817          << (InvalidDecl-1) << "";
1818      return 0;
1819    }
1820  }
1821
1822  // C++ 9.2p6: A member shall not be declared to have automatic storage
1823  // duration (auto, register) or with the extern storage-class-specifier.
1824  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1825  // data members and cannot be applied to names declared const or static,
1826  // and cannot be applied to reference members.
1827  switch (DS.getStorageClassSpec()) {
1828  case DeclSpec::SCS_unspecified:
1829  case DeclSpec::SCS_typedef:
1830  case DeclSpec::SCS_static:
1831    break;
1832  case DeclSpec::SCS_mutable:
1833    if (isFunc) {
1834      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1835
1836      // FIXME: It would be nicer if the keyword was ignored only for this
1837      // declarator. Otherwise we could get follow-up errors.
1838      D.getMutableDeclSpec().ClearStorageClassSpecs();
1839    }
1840    break;
1841  default:
1842    Diag(DS.getStorageClassSpecLoc(),
1843         diag::err_storageclass_invalid_for_member);
1844    D.getMutableDeclSpec().ClearStorageClassSpecs();
1845    break;
1846  }
1847
1848  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1849                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1850                      !isFunc);
1851
1852  if (DS.isConstexprSpecified() && isInstField) {
1853    SemaDiagnosticBuilder B =
1854        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1855    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1856    if (InitStyle == ICIS_NoInit) {
1857      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1858      D.getMutableDeclSpec().ClearConstexprSpec();
1859      const char *PrevSpec;
1860      unsigned DiagID;
1861      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1862                                         PrevSpec, DiagID, getLangOpts());
1863      (void)Failed;
1864      assert(!Failed && "Making a constexpr member const shouldn't fail");
1865    } else {
1866      B << 1;
1867      const char *PrevSpec;
1868      unsigned DiagID;
1869      if (D.getMutableDeclSpec().SetStorageClassSpec(
1870          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1871        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1872               "This is the only DeclSpec that should fail to be applied");
1873        B << 1;
1874      } else {
1875        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1876        isInstField = false;
1877      }
1878    }
1879  }
1880
1881  NamedDecl *Member;
1882  if (isInstField) {
1883    CXXScopeSpec &SS = D.getCXXScopeSpec();
1884
1885    // Data members must have identifiers for names.
1886    if (!Name.isIdentifier()) {
1887      Diag(Loc, diag::err_bad_variable_name)
1888        << Name;
1889      return 0;
1890    }
1891
1892    IdentifierInfo *II = Name.getAsIdentifierInfo();
1893
1894    // Member field could not be with "template" keyword.
1895    // So TemplateParameterLists should be empty in this case.
1896    if (TemplateParameterLists.size()) {
1897      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1898      if (TemplateParams->size()) {
1899        // There is no such thing as a member field template.
1900        Diag(D.getIdentifierLoc(), diag::err_template_member)
1901            << II
1902            << SourceRange(TemplateParams->getTemplateLoc(),
1903                TemplateParams->getRAngleLoc());
1904      } else {
1905        // There is an extraneous 'template<>' for this member.
1906        Diag(TemplateParams->getTemplateLoc(),
1907            diag::err_template_member_noparams)
1908            << II
1909            << SourceRange(TemplateParams->getTemplateLoc(),
1910                TemplateParams->getRAngleLoc());
1911      }
1912      return 0;
1913    }
1914
1915    if (SS.isSet() && !SS.isInvalid()) {
1916      // The user provided a superfluous scope specifier inside a class
1917      // definition:
1918      //
1919      // class X {
1920      //   int X::member;
1921      // };
1922      if (DeclContext *DC = computeDeclContext(SS, false))
1923        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1924      else
1925        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1926          << Name << SS.getRange();
1927
1928      SS.clear();
1929    }
1930
1931    AttributeList *MSPropertyAttr =
1932      getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
1933    if (MSPropertyAttr) {
1934      Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1935                                BitWidth, InitStyle, AS, MSPropertyAttr);
1936      isInstField = false;
1937    } else {
1938      Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1939                                BitWidth, InitStyle, AS);
1940    }
1941    assert(Member && "HandleField never returns null");
1942  } else {
1943    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
1944
1945    Member = HandleDeclarator(S, D, TemplateParameterLists);
1946    if (!Member) {
1947      return 0;
1948    }
1949
1950    // Non-instance-fields can't have a bitfield.
1951    if (BitWidth) {
1952      if (Member->isInvalidDecl()) {
1953        // don't emit another diagnostic.
1954      } else if (isa<VarDecl>(Member)) {
1955        // C++ 9.6p3: A bit-field shall not be a static member.
1956        // "static member 'A' cannot be a bit-field"
1957        Diag(Loc, diag::err_static_not_bitfield)
1958          << Name << BitWidth->getSourceRange();
1959      } else if (isa<TypedefDecl>(Member)) {
1960        // "typedef member 'x' cannot be a bit-field"
1961        Diag(Loc, diag::err_typedef_not_bitfield)
1962          << Name << BitWidth->getSourceRange();
1963      } else {
1964        // A function typedef ("typedef int f(); f a;").
1965        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1966        Diag(Loc, diag::err_not_integral_type_bitfield)
1967          << Name << cast<ValueDecl>(Member)->getType()
1968          << BitWidth->getSourceRange();
1969      }
1970
1971      BitWidth = 0;
1972      Member->setInvalidDecl();
1973    }
1974
1975    Member->setAccess(AS);
1976
1977    // If we have declared a member function template, set the access of the
1978    // templated declaration as well.
1979    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1980      FunTmpl->getTemplatedDecl()->setAccess(AS);
1981  }
1982
1983  if (VS.isOverrideSpecified())
1984    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1985  if (VS.isFinalSpecified())
1986    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1987
1988  if (VS.getLastLocation().isValid()) {
1989    // Update the end location of a method that has a virt-specifiers.
1990    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1991      MD->setRangeEnd(VS.getLastLocation());
1992  }
1993
1994  CheckOverrideControl(Member);
1995
1996  assert((Name || isInstField) && "No identifier for non-field ?");
1997
1998  if (isInstField) {
1999    FieldDecl *FD = cast<FieldDecl>(Member);
2000    FieldCollector->Add(FD);
2001
2002    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
2003                                 FD->getLocation())
2004          != DiagnosticsEngine::Ignored) {
2005      // Remember all explicit private FieldDecls that have a name, no side
2006      // effects and are not part of a dependent type declaration.
2007      if (!FD->isImplicit() && FD->getDeclName() &&
2008          FD->getAccess() == AS_private &&
2009          !FD->hasAttr<UnusedAttr>() &&
2010          !FD->getParent()->isDependentContext() &&
2011          !InitializationHasSideEffects(*FD))
2012        UnusedPrivateFields.insert(FD);
2013    }
2014  }
2015
2016  return Member;
2017}
2018
2019namespace {
2020  class UninitializedFieldVisitor
2021      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2022    Sema &S;
2023    ValueDecl *VD;
2024  public:
2025    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2026    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
2027                                                        S(S) {
2028      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
2029        this->VD = IFD->getAnonField();
2030      else
2031        this->VD = VD;
2032    }
2033
2034    void HandleExpr(Expr *E) {
2035      if (!E) return;
2036
2037      // Expressions like x(x) sometimes lack the surrounding expressions
2038      // but need to be checked anyways.
2039      HandleValue(E);
2040      Visit(E);
2041    }
2042
2043    void HandleValue(Expr *E) {
2044      E = E->IgnoreParens();
2045
2046      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2047        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2048          return;
2049
2050        // FieldME is the inner-most MemberExpr that is not an anonymous struct
2051        // or union.
2052        MemberExpr *FieldME = ME;
2053
2054        Expr *Base = E;
2055        while (isa<MemberExpr>(Base)) {
2056          ME = cast<MemberExpr>(Base);
2057
2058          if (isa<VarDecl>(ME->getMemberDecl()))
2059            return;
2060
2061          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2062            if (!FD->isAnonymousStructOrUnion())
2063              FieldME = ME;
2064
2065          Base = ME->getBase();
2066        }
2067
2068        if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
2069          unsigned diag = VD->getType()->isReferenceType()
2070              ? diag::warn_reference_field_is_uninit
2071              : diag::warn_field_is_uninit;
2072          S.Diag(FieldME->getExprLoc(), diag) << VD;
2073        }
2074        return;
2075      }
2076
2077      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2078        HandleValue(CO->getTrueExpr());
2079        HandleValue(CO->getFalseExpr());
2080        return;
2081      }
2082
2083      if (BinaryConditionalOperator *BCO =
2084              dyn_cast<BinaryConditionalOperator>(E)) {
2085        HandleValue(BCO->getCommon());
2086        HandleValue(BCO->getFalseExpr());
2087        return;
2088      }
2089
2090      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2091        switch (BO->getOpcode()) {
2092        default:
2093          return;
2094        case(BO_PtrMemD):
2095        case(BO_PtrMemI):
2096          HandleValue(BO->getLHS());
2097          return;
2098        case(BO_Comma):
2099          HandleValue(BO->getRHS());
2100          return;
2101        }
2102      }
2103    }
2104
2105    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2106      if (E->getCastKind() == CK_LValueToRValue)
2107        HandleValue(E->getSubExpr());
2108
2109      Inherited::VisitImplicitCastExpr(E);
2110    }
2111
2112    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2113      Expr *Callee = E->getCallee();
2114      if (isa<MemberExpr>(Callee))
2115        HandleValue(Callee);
2116
2117      Inherited::VisitCXXMemberCallExpr(E);
2118    }
2119  };
2120  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
2121                                                       ValueDecl *VD) {
2122    UninitializedFieldVisitor(S, VD).HandleExpr(E);
2123  }
2124} // namespace
2125
2126/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
2127/// in-class initializer for a non-static C++ class member, and after
2128/// instantiating an in-class initializer in a class template. Such actions
2129/// are deferred until the class is complete.
2130void
2131Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
2132                                       Expr *InitExpr) {
2133  FieldDecl *FD = cast<FieldDecl>(D);
2134  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
2135         "must set init style when field is created");
2136
2137  if (!InitExpr) {
2138    FD->setInvalidDecl();
2139    FD->removeInClassInitializer();
2140    return;
2141  }
2142
2143  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2144    FD->setInvalidDecl();
2145    FD->removeInClassInitializer();
2146    return;
2147  }
2148
2149  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
2150      != DiagnosticsEngine::Ignored) {
2151    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
2152  }
2153
2154  ExprResult Init = InitExpr;
2155  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2156    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
2157      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
2158        << /*at end of ctor*/1 << InitExpr->getSourceRange();
2159    }
2160    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2161    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2162        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2163        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2164    InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2165    Init = Seq.Perform(*this, Entity, Kind, InitExpr);
2166    if (Init.isInvalid()) {
2167      FD->setInvalidDecl();
2168      return;
2169    }
2170  }
2171
2172  // C++11 [class.base.init]p7:
2173  //   The initialization of each base and member constitutes a
2174  //   full-expression.
2175  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2176  if (Init.isInvalid()) {
2177    FD->setInvalidDecl();
2178    return;
2179  }
2180
2181  InitExpr = Init.release();
2182
2183  FD->setInClassInitializer(InitExpr);
2184}
2185
2186/// \brief Find the direct and/or virtual base specifiers that
2187/// correspond to the given base type, for use in base initialization
2188/// within a constructor.
2189static bool FindBaseInitializer(Sema &SemaRef,
2190                                CXXRecordDecl *ClassDecl,
2191                                QualType BaseType,
2192                                const CXXBaseSpecifier *&DirectBaseSpec,
2193                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2194  // First, check for a direct base class.
2195  DirectBaseSpec = 0;
2196  for (CXXRecordDecl::base_class_const_iterator Base
2197         = ClassDecl->bases_begin();
2198       Base != ClassDecl->bases_end(); ++Base) {
2199    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2200      // We found a direct base of this type. That's what we're
2201      // initializing.
2202      DirectBaseSpec = &*Base;
2203      break;
2204    }
2205  }
2206
2207  // Check for a virtual base class.
2208  // FIXME: We might be able to short-circuit this if we know in advance that
2209  // there are no virtual bases.
2210  VirtualBaseSpec = 0;
2211  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2212    // We haven't found a base yet; search the class hierarchy for a
2213    // virtual base class.
2214    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2215                       /*DetectVirtual=*/false);
2216    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2217                              BaseType, Paths)) {
2218      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2219           Path != Paths.end(); ++Path) {
2220        if (Path->back().Base->isVirtual()) {
2221          VirtualBaseSpec = Path->back().Base;
2222          break;
2223        }
2224      }
2225    }
2226  }
2227
2228  return DirectBaseSpec || VirtualBaseSpec;
2229}
2230
2231/// \brief Handle a C++ member initializer using braced-init-list syntax.
2232MemInitResult
2233Sema::ActOnMemInitializer(Decl *ConstructorD,
2234                          Scope *S,
2235                          CXXScopeSpec &SS,
2236                          IdentifierInfo *MemberOrBase,
2237                          ParsedType TemplateTypeTy,
2238                          const DeclSpec &DS,
2239                          SourceLocation IdLoc,
2240                          Expr *InitList,
2241                          SourceLocation EllipsisLoc) {
2242  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2243                             DS, IdLoc, InitList,
2244                             EllipsisLoc);
2245}
2246
2247/// \brief Handle a C++ member initializer using parentheses syntax.
2248MemInitResult
2249Sema::ActOnMemInitializer(Decl *ConstructorD,
2250                          Scope *S,
2251                          CXXScopeSpec &SS,
2252                          IdentifierInfo *MemberOrBase,
2253                          ParsedType TemplateTypeTy,
2254                          const DeclSpec &DS,
2255                          SourceLocation IdLoc,
2256                          SourceLocation LParenLoc,
2257                          ArrayRef<Expr *> Args,
2258                          SourceLocation RParenLoc,
2259                          SourceLocation EllipsisLoc) {
2260  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2261                                           Args, RParenLoc);
2262  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2263                             DS, IdLoc, List, EllipsisLoc);
2264}
2265
2266namespace {
2267
2268// Callback to only accept typo corrections that can be a valid C++ member
2269// intializer: either a non-static field member or a base class.
2270class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2271 public:
2272  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2273      : ClassDecl(ClassDecl) {}
2274
2275  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
2276    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2277      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2278        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2279      else
2280        return isa<TypeDecl>(ND);
2281    }
2282    return false;
2283  }
2284
2285 private:
2286  CXXRecordDecl *ClassDecl;
2287};
2288
2289}
2290
2291/// \brief Handle a C++ member initializer.
2292MemInitResult
2293Sema::BuildMemInitializer(Decl *ConstructorD,
2294                          Scope *S,
2295                          CXXScopeSpec &SS,
2296                          IdentifierInfo *MemberOrBase,
2297                          ParsedType TemplateTypeTy,
2298                          const DeclSpec &DS,
2299                          SourceLocation IdLoc,
2300                          Expr *Init,
2301                          SourceLocation EllipsisLoc) {
2302  if (!ConstructorD)
2303    return true;
2304
2305  AdjustDeclIfTemplate(ConstructorD);
2306
2307  CXXConstructorDecl *Constructor
2308    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2309  if (!Constructor) {
2310    // The user wrote a constructor initializer on a function that is
2311    // not a C++ constructor. Ignore the error for now, because we may
2312    // have more member initializers coming; we'll diagnose it just
2313    // once in ActOnMemInitializers.
2314    return true;
2315  }
2316
2317  CXXRecordDecl *ClassDecl = Constructor->getParent();
2318
2319  // C++ [class.base.init]p2:
2320  //   Names in a mem-initializer-id are looked up in the scope of the
2321  //   constructor's class and, if not found in that scope, are looked
2322  //   up in the scope containing the constructor's definition.
2323  //   [Note: if the constructor's class contains a member with the
2324  //   same name as a direct or virtual base class of the class, a
2325  //   mem-initializer-id naming the member or base class and composed
2326  //   of a single identifier refers to the class member. A
2327  //   mem-initializer-id for the hidden base class may be specified
2328  //   using a qualified name. ]
2329  if (!SS.getScopeRep() && !TemplateTypeTy) {
2330    // Look for a member, first.
2331    DeclContext::lookup_result Result
2332      = ClassDecl->lookup(MemberOrBase);
2333    if (!Result.empty()) {
2334      ValueDecl *Member;
2335      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2336          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2337        if (EllipsisLoc.isValid())
2338          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2339            << MemberOrBase
2340            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2341
2342        return BuildMemberInitializer(Member, Init, IdLoc);
2343      }
2344    }
2345  }
2346  // It didn't name a member, so see if it names a class.
2347  QualType BaseType;
2348  TypeSourceInfo *TInfo = 0;
2349
2350  if (TemplateTypeTy) {
2351    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2352  } else if (DS.getTypeSpecType() == TST_decltype) {
2353    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2354  } else {
2355    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2356    LookupParsedName(R, S, &SS);
2357
2358    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2359    if (!TyD) {
2360      if (R.isAmbiguous()) return true;
2361
2362      // We don't want access-control diagnostics here.
2363      R.suppressDiagnostics();
2364
2365      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2366        bool NotUnknownSpecialization = false;
2367        DeclContext *DC = computeDeclContext(SS, false);
2368        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2369          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2370
2371        if (!NotUnknownSpecialization) {
2372          // When the scope specifier can refer to a member of an unknown
2373          // specialization, we take it as a type name.
2374          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2375                                       SS.getWithLocInContext(Context),
2376                                       *MemberOrBase, IdLoc);
2377          if (BaseType.isNull())
2378            return true;
2379
2380          R.clear();
2381          R.setLookupName(MemberOrBase);
2382        }
2383      }
2384
2385      // If no results were found, try to correct typos.
2386      TypoCorrection Corr;
2387      MemInitializerValidatorCCC Validator(ClassDecl);
2388      if (R.empty() && BaseType.isNull() &&
2389          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2390                              Validator, ClassDecl))) {
2391        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2392        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2393        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2394          // We have found a non-static data member with a similar
2395          // name to what was typed; complain and initialize that
2396          // member.
2397          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2398            << MemberOrBase << true << CorrectedQuotedStr
2399            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2400          Diag(Member->getLocation(), diag::note_previous_decl)
2401            << CorrectedQuotedStr;
2402
2403          return BuildMemberInitializer(Member, Init, IdLoc);
2404        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2405          const CXXBaseSpecifier *DirectBaseSpec;
2406          const CXXBaseSpecifier *VirtualBaseSpec;
2407          if (FindBaseInitializer(*this, ClassDecl,
2408                                  Context.getTypeDeclType(Type),
2409                                  DirectBaseSpec, VirtualBaseSpec)) {
2410            // We have found a direct or virtual base class with a
2411            // similar name to what was typed; complain and initialize
2412            // that base class.
2413            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2414              << MemberOrBase << false << CorrectedQuotedStr
2415              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2416
2417            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2418                                                             : VirtualBaseSpec;
2419            Diag(BaseSpec->getLocStart(),
2420                 diag::note_base_class_specified_here)
2421              << BaseSpec->getType()
2422              << BaseSpec->getSourceRange();
2423
2424            TyD = Type;
2425          }
2426        }
2427      }
2428
2429      if (!TyD && BaseType.isNull()) {
2430        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2431          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2432        return true;
2433      }
2434    }
2435
2436    if (BaseType.isNull()) {
2437      BaseType = Context.getTypeDeclType(TyD);
2438      if (SS.isSet()) {
2439        NestedNameSpecifier *Qualifier =
2440          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2441
2442        // FIXME: preserve source range information
2443        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2444      }
2445    }
2446  }
2447
2448  if (!TInfo)
2449    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2450
2451  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2452}
2453
2454/// Checks a member initializer expression for cases where reference (or
2455/// pointer) members are bound to by-value parameters (or their addresses).
2456static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2457                                               Expr *Init,
2458                                               SourceLocation IdLoc) {
2459  QualType MemberTy = Member->getType();
2460
2461  // We only handle pointers and references currently.
2462  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2463  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2464    return;
2465
2466  const bool IsPointer = MemberTy->isPointerType();
2467  if (IsPointer) {
2468    if (const UnaryOperator *Op
2469          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2470      // The only case we're worried about with pointers requires taking the
2471      // address.
2472      if (Op->getOpcode() != UO_AddrOf)
2473        return;
2474
2475      Init = Op->getSubExpr();
2476    } else {
2477      // We only handle address-of expression initializers for pointers.
2478      return;
2479    }
2480  }
2481
2482  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2483    // We only warn when referring to a non-reference parameter declaration.
2484    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2485    if (!Parameter || Parameter->getType()->isReferenceType())
2486      return;
2487
2488    S.Diag(Init->getExprLoc(),
2489           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2490                     : diag::warn_bind_ref_member_to_parameter)
2491      << Member << Parameter << Init->getSourceRange();
2492  } else {
2493    // Other initializers are fine.
2494    return;
2495  }
2496
2497  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2498    << (unsigned)IsPointer;
2499}
2500
2501MemInitResult
2502Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2503                             SourceLocation IdLoc) {
2504  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2505  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2506  assert((DirectMember || IndirectMember) &&
2507         "Member must be a FieldDecl or IndirectFieldDecl");
2508
2509  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2510    return true;
2511
2512  if (Member->isInvalidDecl())
2513    return true;
2514
2515  // Diagnose value-uses of fields to initialize themselves, e.g.
2516  //   foo(foo)
2517  // where foo is not also a parameter to the constructor.
2518  // TODO: implement -Wuninitialized and fold this into that framework.
2519  MultiExprArg Args;
2520  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2521    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2522  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2523    Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
2524  } else {
2525    // Template instantiation doesn't reconstruct ParenListExprs for us.
2526    Args = Init;
2527  }
2528
2529  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2530        != DiagnosticsEngine::Ignored)
2531    for (unsigned i = 0, e = Args.size(); i != e; ++i)
2532      // FIXME: Warn about the case when other fields are used before being
2533      // initialized. For example, let this field be the i'th field. When
2534      // initializing the i'th field, throw a warning if any of the >= i'th
2535      // fields are used, as they are not yet initialized.
2536      // Right now we are only handling the case where the i'th field uses
2537      // itself in its initializer.
2538      // Also need to take into account that some fields may be initialized by
2539      // in-class initializers, see C++11 [class.base.init]p9.
2540      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2541
2542  SourceRange InitRange = Init->getSourceRange();
2543
2544  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2545    // Can't check initialization for a member of dependent type or when
2546    // any of the arguments are type-dependent expressions.
2547    DiscardCleanupsInEvaluationContext();
2548  } else {
2549    bool InitList = false;
2550    if (isa<InitListExpr>(Init)) {
2551      InitList = true;
2552      Args = Init;
2553
2554      if (isStdInitializerList(Member->getType(), 0)) {
2555        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2556            << /*at end of ctor*/1 << InitRange;
2557      }
2558    }
2559
2560    // Initialize the member.
2561    InitializedEntity MemberEntity =
2562      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2563                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2564    InitializationKind Kind =
2565      InitList ? InitializationKind::CreateDirectList(IdLoc)
2566               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2567                                                  InitRange.getEnd());
2568
2569    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
2570    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 0);
2571    if (MemberInit.isInvalid())
2572      return true;
2573
2574    CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
2575
2576    // C++11 [class.base.init]p7:
2577    //   The initialization of each base and member constitutes a
2578    //   full-expression.
2579    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2580    if (MemberInit.isInvalid())
2581      return true;
2582
2583    Init = MemberInit.get();
2584  }
2585
2586  if (DirectMember) {
2587    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2588                                            InitRange.getBegin(), Init,
2589                                            InitRange.getEnd());
2590  } else {
2591    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2592                                            InitRange.getBegin(), Init,
2593                                            InitRange.getEnd());
2594  }
2595}
2596
2597MemInitResult
2598Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2599                                 CXXRecordDecl *ClassDecl) {
2600  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2601  if (!LangOpts.CPlusPlus11)
2602    return Diag(NameLoc, diag::err_delegating_ctor)
2603      << TInfo->getTypeLoc().getLocalSourceRange();
2604  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2605
2606  bool InitList = true;
2607  MultiExprArg Args = Init;
2608  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2609    InitList = false;
2610    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2611  }
2612
2613  SourceRange InitRange = Init->getSourceRange();
2614  // Initialize the object.
2615  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2616                                     QualType(ClassDecl->getTypeForDecl(), 0));
2617  InitializationKind Kind =
2618    InitList ? InitializationKind::CreateDirectList(NameLoc)
2619             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2620                                                InitRange.getEnd());
2621  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
2622  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2623                                              Args, 0);
2624  if (DelegationInit.isInvalid())
2625    return true;
2626
2627  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2628         "Delegating constructor with no target?");
2629
2630  // C++11 [class.base.init]p7:
2631  //   The initialization of each base and member constitutes a
2632  //   full-expression.
2633  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2634                                       InitRange.getBegin());
2635  if (DelegationInit.isInvalid())
2636    return true;
2637
2638  // If we are in a dependent context, template instantiation will
2639  // perform this type-checking again. Just save the arguments that we
2640  // received in a ParenListExpr.
2641  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2642  // of the information that we have about the base
2643  // initializer. However, deconstructing the ASTs is a dicey process,
2644  // and this approach is far more likely to get the corner cases right.
2645  if (CurContext->isDependentContext())
2646    DelegationInit = Owned(Init);
2647
2648  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2649                                          DelegationInit.takeAs<Expr>(),
2650                                          InitRange.getEnd());
2651}
2652
2653MemInitResult
2654Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2655                           Expr *Init, CXXRecordDecl *ClassDecl,
2656                           SourceLocation EllipsisLoc) {
2657  SourceLocation BaseLoc
2658    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2659
2660  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2661    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2662             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2663
2664  // C++ [class.base.init]p2:
2665  //   [...] Unless the mem-initializer-id names a nonstatic data
2666  //   member of the constructor's class or a direct or virtual base
2667  //   of that class, the mem-initializer is ill-formed. A
2668  //   mem-initializer-list can initialize a base class using any
2669  //   name that denotes that base class type.
2670  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2671
2672  SourceRange InitRange = Init->getSourceRange();
2673  if (EllipsisLoc.isValid()) {
2674    // This is a pack expansion.
2675    if (!BaseType->containsUnexpandedParameterPack())  {
2676      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2677        << SourceRange(BaseLoc, InitRange.getEnd());
2678
2679      EllipsisLoc = SourceLocation();
2680    }
2681  } else {
2682    // Check for any unexpanded parameter packs.
2683    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2684      return true;
2685
2686    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2687      return true;
2688  }
2689
2690  // Check for direct and virtual base classes.
2691  const CXXBaseSpecifier *DirectBaseSpec = 0;
2692  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2693  if (!Dependent) {
2694    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2695                                       BaseType))
2696      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2697
2698    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2699                        VirtualBaseSpec);
2700
2701    // C++ [base.class.init]p2:
2702    // Unless the mem-initializer-id names a nonstatic data member of the
2703    // constructor's class or a direct or virtual base of that class, the
2704    // mem-initializer is ill-formed.
2705    if (!DirectBaseSpec && !VirtualBaseSpec) {
2706      // If the class has any dependent bases, then it's possible that
2707      // one of those types will resolve to the same type as
2708      // BaseType. Therefore, just treat this as a dependent base
2709      // class initialization.  FIXME: Should we try to check the
2710      // initialization anyway? It seems odd.
2711      if (ClassDecl->hasAnyDependentBases())
2712        Dependent = true;
2713      else
2714        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2715          << BaseType << Context.getTypeDeclType(ClassDecl)
2716          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2717    }
2718  }
2719
2720  if (Dependent) {
2721    DiscardCleanupsInEvaluationContext();
2722
2723    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2724                                            /*IsVirtual=*/false,
2725                                            InitRange.getBegin(), Init,
2726                                            InitRange.getEnd(), EllipsisLoc);
2727  }
2728
2729  // C++ [base.class.init]p2:
2730  //   If a mem-initializer-id is ambiguous because it designates both
2731  //   a direct non-virtual base class and an inherited virtual base
2732  //   class, the mem-initializer is ill-formed.
2733  if (DirectBaseSpec && VirtualBaseSpec)
2734    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2735      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2736
2737  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2738  if (!BaseSpec)
2739    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2740
2741  // Initialize the base.
2742  bool InitList = true;
2743  MultiExprArg Args = Init;
2744  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2745    InitList = false;
2746    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2747  }
2748
2749  InitializedEntity BaseEntity =
2750    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2751  InitializationKind Kind =
2752    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2753             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2754                                                InitRange.getEnd());
2755  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
2756  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, 0);
2757  if (BaseInit.isInvalid())
2758    return true;
2759
2760  // C++11 [class.base.init]p7:
2761  //   The initialization of each base and member constitutes a
2762  //   full-expression.
2763  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2764  if (BaseInit.isInvalid())
2765    return true;
2766
2767  // If we are in a dependent context, template instantiation will
2768  // perform this type-checking again. Just save the arguments that we
2769  // received in a ParenListExpr.
2770  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2771  // of the information that we have about the base
2772  // initializer. However, deconstructing the ASTs is a dicey process,
2773  // and this approach is far more likely to get the corner cases right.
2774  if (CurContext->isDependentContext())
2775    BaseInit = Owned(Init);
2776
2777  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2778                                          BaseSpec->isVirtual(),
2779                                          InitRange.getBegin(),
2780                                          BaseInit.takeAs<Expr>(),
2781                                          InitRange.getEnd(), EllipsisLoc);
2782}
2783
2784// Create a static_cast\<T&&>(expr).
2785static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2786  if (T.isNull()) T = E->getType();
2787  QualType TargetType = SemaRef.BuildReferenceType(
2788      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2789  SourceLocation ExprLoc = E->getLocStart();
2790  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2791      TargetType, ExprLoc);
2792
2793  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2794                                   SourceRange(ExprLoc, ExprLoc),
2795                                   E->getSourceRange()).take();
2796}
2797
2798/// ImplicitInitializerKind - How an implicit base or member initializer should
2799/// initialize its base or member.
2800enum ImplicitInitializerKind {
2801  IIK_Default,
2802  IIK_Copy,
2803  IIK_Move,
2804  IIK_Inherit
2805};
2806
2807static bool
2808BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2809                             ImplicitInitializerKind ImplicitInitKind,
2810                             CXXBaseSpecifier *BaseSpec,
2811                             bool IsInheritedVirtualBase,
2812                             CXXCtorInitializer *&CXXBaseInit) {
2813  InitializedEntity InitEntity
2814    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2815                                        IsInheritedVirtualBase);
2816
2817  ExprResult BaseInit;
2818
2819  switch (ImplicitInitKind) {
2820  case IIK_Inherit: {
2821    const CXXRecordDecl *Inherited =
2822        Constructor->getInheritedConstructor()->getParent();
2823    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2824    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2825      // C++11 [class.inhctor]p8:
2826      //   Each expression in the expression-list is of the form
2827      //   static_cast<T&&>(p), where p is the name of the corresponding
2828      //   constructor parameter and T is the declared type of p.
2829      SmallVector<Expr*, 16> Args;
2830      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
2831        ParmVarDecl *PD = Constructor->getParamDecl(I);
2832        ExprResult ArgExpr =
2833            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
2834                                     VK_LValue, SourceLocation());
2835        if (ArgExpr.isInvalid())
2836          return true;
2837        Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
2838      }
2839
2840      InitializationKind InitKind = InitializationKind::CreateDirect(
2841          Constructor->getLocation(), SourceLocation(), SourceLocation());
2842      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
2843      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
2844      break;
2845    }
2846  }
2847  // Fall through.
2848  case IIK_Default: {
2849    InitializationKind InitKind
2850      = InitializationKind::CreateDefault(Constructor->getLocation());
2851    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
2852    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
2853    break;
2854  }
2855
2856  case IIK_Move:
2857  case IIK_Copy: {
2858    bool Moving = ImplicitInitKind == IIK_Move;
2859    ParmVarDecl *Param = Constructor->getParamDecl(0);
2860    QualType ParamType = Param->getType().getNonReferenceType();
2861
2862    Expr *CopyCtorArg =
2863      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2864                          SourceLocation(), Param, false,
2865                          Constructor->getLocation(), ParamType,
2866                          VK_LValue, 0);
2867
2868    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2869
2870    // Cast to the base class to avoid ambiguities.
2871    QualType ArgTy =
2872      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2873                                       ParamType.getQualifiers());
2874
2875    if (Moving) {
2876      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2877    }
2878
2879    CXXCastPath BasePath;
2880    BasePath.push_back(BaseSpec);
2881    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2882                                            CK_UncheckedDerivedToBase,
2883                                            Moving ? VK_XValue : VK_LValue,
2884                                            &BasePath).take();
2885
2886    InitializationKind InitKind
2887      = InitializationKind::CreateDirect(Constructor->getLocation(),
2888                                         SourceLocation(), SourceLocation());
2889    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
2890    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
2891    break;
2892  }
2893  }
2894
2895  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2896  if (BaseInit.isInvalid())
2897    return true;
2898
2899  CXXBaseInit =
2900    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2901               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2902                                                        SourceLocation()),
2903                                             BaseSpec->isVirtual(),
2904                                             SourceLocation(),
2905                                             BaseInit.takeAs<Expr>(),
2906                                             SourceLocation(),
2907                                             SourceLocation());
2908
2909  return false;
2910}
2911
2912static bool RefersToRValueRef(Expr *MemRef) {
2913  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2914  return Referenced->getType()->isRValueReferenceType();
2915}
2916
2917static bool
2918BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2919                               ImplicitInitializerKind ImplicitInitKind,
2920                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2921                               CXXCtorInitializer *&CXXMemberInit) {
2922  if (Field->isInvalidDecl())
2923    return true;
2924
2925  SourceLocation Loc = Constructor->getLocation();
2926
2927  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2928    bool Moving = ImplicitInitKind == IIK_Move;
2929    ParmVarDecl *Param = Constructor->getParamDecl(0);
2930    QualType ParamType = Param->getType().getNonReferenceType();
2931
2932    // Suppress copying zero-width bitfields.
2933    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2934      return false;
2935
2936    Expr *MemberExprBase =
2937      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2938                          SourceLocation(), Param, false,
2939                          Loc, ParamType, VK_LValue, 0);
2940
2941    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2942
2943    if (Moving) {
2944      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2945    }
2946
2947    // Build a reference to this field within the parameter.
2948    CXXScopeSpec SS;
2949    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2950                              Sema::LookupMemberName);
2951    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2952                                  : cast<ValueDecl>(Field), AS_public);
2953    MemberLookup.resolveKind();
2954    ExprResult CtorArg
2955      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2956                                         ParamType, Loc,
2957                                         /*IsArrow=*/false,
2958                                         SS,
2959                                         /*TemplateKWLoc=*/SourceLocation(),
2960                                         /*FirstQualifierInScope=*/0,
2961                                         MemberLookup,
2962                                         /*TemplateArgs=*/0);
2963    if (CtorArg.isInvalid())
2964      return true;
2965
2966    // C++11 [class.copy]p15:
2967    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2968    //     with static_cast<T&&>(x.m);
2969    if (RefersToRValueRef(CtorArg.get())) {
2970      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2971    }
2972
2973    // When the field we are copying is an array, create index variables for
2974    // each dimension of the array. We use these index variables to subscript
2975    // the source array, and other clients (e.g., CodeGen) will perform the
2976    // necessary iteration with these index variables.
2977    SmallVector<VarDecl *, 4> IndexVariables;
2978    QualType BaseType = Field->getType();
2979    QualType SizeType = SemaRef.Context.getSizeType();
2980    bool InitializingArray = false;
2981    while (const ConstantArrayType *Array
2982                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2983      InitializingArray = true;
2984      // Create the iteration variable for this array index.
2985      IdentifierInfo *IterationVarName = 0;
2986      {
2987        SmallString<8> Str;
2988        llvm::raw_svector_ostream OS(Str);
2989        OS << "__i" << IndexVariables.size();
2990        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2991      }
2992      VarDecl *IterationVar
2993        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2994                          IterationVarName, SizeType,
2995                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2996                          SC_None);
2997      IndexVariables.push_back(IterationVar);
2998
2999      // Create a reference to the iteration variable.
3000      ExprResult IterationVarRef
3001        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3002      assert(!IterationVarRef.isInvalid() &&
3003             "Reference to invented variable cannot fail!");
3004      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
3005      assert(!IterationVarRef.isInvalid() &&
3006             "Conversion of invented variable cannot fail!");
3007
3008      // Subscript the array with this iteration variable.
3009      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
3010                                                        IterationVarRef.take(),
3011                                                        Loc);
3012      if (CtorArg.isInvalid())
3013        return true;
3014
3015      BaseType = Array->getElementType();
3016    }
3017
3018    // The array subscript expression is an lvalue, which is wrong for moving.
3019    if (Moving && InitializingArray)
3020      CtorArg = CastForMoving(SemaRef, CtorArg.take());
3021
3022    // Construct the entity that we will be initializing. For an array, this
3023    // will be first element in the array, which may require several levels
3024    // of array-subscript entities.
3025    SmallVector<InitializedEntity, 4> Entities;
3026    Entities.reserve(1 + IndexVariables.size());
3027    if (Indirect)
3028      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3029    else
3030      Entities.push_back(InitializedEntity::InitializeMember(Field));
3031    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3032      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3033                                                              0,
3034                                                              Entities.back()));
3035
3036    // Direct-initialize to use the copy constructor.
3037    InitializationKind InitKind =
3038      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3039
3040    Expr *CtorArgE = CtorArg.takeAs<Expr>();
3041    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, CtorArgE);
3042
3043    ExprResult MemberInit
3044      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3045                        MultiExprArg(&CtorArgE, 1));
3046    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3047    if (MemberInit.isInvalid())
3048      return true;
3049
3050    if (Indirect) {
3051      assert(IndexVariables.size() == 0 &&
3052             "Indirect field improperly initialized");
3053      CXXMemberInit
3054        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3055                                                   Loc, Loc,
3056                                                   MemberInit.takeAs<Expr>(),
3057                                                   Loc);
3058    } else
3059      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3060                                                 Loc, MemberInit.takeAs<Expr>(),
3061                                                 Loc,
3062                                                 IndexVariables.data(),
3063                                                 IndexVariables.size());
3064    return false;
3065  }
3066
3067  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3068         "Unhandled implicit init kind!");
3069
3070  QualType FieldBaseElementType =
3071    SemaRef.Context.getBaseElementType(Field->getType());
3072
3073  if (FieldBaseElementType->isRecordType()) {
3074    InitializedEntity InitEntity
3075      = Indirect? InitializedEntity::InitializeMember(Indirect)
3076                : InitializedEntity::InitializeMember(Field);
3077    InitializationKind InitKind =
3078      InitializationKind::CreateDefault(Loc);
3079
3080    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3081    ExprResult MemberInit =
3082      InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3083
3084    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3085    if (MemberInit.isInvalid())
3086      return true;
3087
3088    if (Indirect)
3089      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3090                                                               Indirect, Loc,
3091                                                               Loc,
3092                                                               MemberInit.get(),
3093                                                               Loc);
3094    else
3095      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3096                                                               Field, Loc, Loc,
3097                                                               MemberInit.get(),
3098                                                               Loc);
3099    return false;
3100  }
3101
3102  if (!Field->getParent()->isUnion()) {
3103    if (FieldBaseElementType->isReferenceType()) {
3104      SemaRef.Diag(Constructor->getLocation(),
3105                   diag::err_uninitialized_member_in_ctor)
3106      << (int)Constructor->isImplicit()
3107      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3108      << 0 << Field->getDeclName();
3109      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3110      return true;
3111    }
3112
3113    if (FieldBaseElementType.isConstQualified()) {
3114      SemaRef.Diag(Constructor->getLocation(),
3115                   diag::err_uninitialized_member_in_ctor)
3116      << (int)Constructor->isImplicit()
3117      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3118      << 1 << Field->getDeclName();
3119      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3120      return true;
3121    }
3122  }
3123
3124  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3125      FieldBaseElementType->isObjCRetainableType() &&
3126      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3127      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3128    // ARC:
3129    //   Default-initialize Objective-C pointers to NULL.
3130    CXXMemberInit
3131      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3132                                                 Loc, Loc,
3133                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3134                                                 Loc);
3135    return false;
3136  }
3137
3138  // Nothing to initialize.
3139  CXXMemberInit = 0;
3140  return false;
3141}
3142
3143namespace {
3144struct BaseAndFieldInfo {
3145  Sema &S;
3146  CXXConstructorDecl *Ctor;
3147  bool AnyErrorsInInits;
3148  ImplicitInitializerKind IIK;
3149  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3150  SmallVector<CXXCtorInitializer*, 8> AllToInit;
3151
3152  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3153    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3154    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3155    if (Generated && Ctor->isCopyConstructor())
3156      IIK = IIK_Copy;
3157    else if (Generated && Ctor->isMoveConstructor())
3158      IIK = IIK_Move;
3159    else if (Ctor->getInheritedConstructor())
3160      IIK = IIK_Inherit;
3161    else
3162      IIK = IIK_Default;
3163  }
3164
3165  bool isImplicitCopyOrMove() const {
3166    switch (IIK) {
3167    case IIK_Copy:
3168    case IIK_Move:
3169      return true;
3170
3171    case IIK_Default:
3172    case IIK_Inherit:
3173      return false;
3174    }
3175
3176    llvm_unreachable("Invalid ImplicitInitializerKind!");
3177  }
3178
3179  bool addFieldInitializer(CXXCtorInitializer *Init) {
3180    AllToInit.push_back(Init);
3181
3182    // Check whether this initializer makes the field "used".
3183    if (Init->getInit()->HasSideEffects(S.Context))
3184      S.UnusedPrivateFields.remove(Init->getAnyMember());
3185
3186    return false;
3187  }
3188};
3189}
3190
3191/// \brief Determine whether the given indirect field declaration is somewhere
3192/// within an anonymous union.
3193static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3194  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3195                                      CEnd = F->chain_end();
3196       C != CEnd; ++C)
3197    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3198      if (Record->isUnion())
3199        return true;
3200
3201  return false;
3202}
3203
3204/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3205/// array type.
3206static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3207  if (T->isIncompleteArrayType())
3208    return true;
3209
3210  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3211    if (!ArrayT->getSize())
3212      return true;
3213
3214    T = ArrayT->getElementType();
3215  }
3216
3217  return false;
3218}
3219
3220static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3221                                    FieldDecl *Field,
3222                                    IndirectFieldDecl *Indirect = 0) {
3223
3224  // Overwhelmingly common case: we have a direct initializer for this field.
3225  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3226    return Info.addFieldInitializer(Init);
3227
3228  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3229  // has a brace-or-equal-initializer, the entity is initialized as specified
3230  // in [dcl.init].
3231  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3232    Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
3233                                           Info.Ctor->getLocation(), Field);
3234    CXXCtorInitializer *Init;
3235    if (Indirect)
3236      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3237                                                      SourceLocation(),
3238                                                      SourceLocation(), DIE,
3239                                                      SourceLocation());
3240    else
3241      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3242                                                      SourceLocation(),
3243                                                      SourceLocation(), DIE,
3244                                                      SourceLocation());
3245    return Info.addFieldInitializer(Init);
3246  }
3247
3248  // Don't build an implicit initializer for union members if none was
3249  // explicitly specified.
3250  if (Field->getParent()->isUnion() ||
3251      (Indirect && isWithinAnonymousUnion(Indirect)))
3252    return false;
3253
3254  // Don't initialize incomplete or zero-length arrays.
3255  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3256    return false;
3257
3258  // Don't try to build an implicit initializer if there were semantic
3259  // errors in any of the initializers (and therefore we might be
3260  // missing some that the user actually wrote).
3261  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
3262    return false;
3263
3264  CXXCtorInitializer *Init = 0;
3265  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3266                                     Indirect, Init))
3267    return true;
3268
3269  if (!Init)
3270    return false;
3271
3272  return Info.addFieldInitializer(Init);
3273}
3274
3275bool
3276Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3277                               CXXCtorInitializer *Initializer) {
3278  assert(Initializer->isDelegatingInitializer());
3279  Constructor->setNumCtorInitializers(1);
3280  CXXCtorInitializer **initializer =
3281    new (Context) CXXCtorInitializer*[1];
3282  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3283  Constructor->setCtorInitializers(initializer);
3284
3285  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3286    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3287    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3288  }
3289
3290  DelegatingCtorDecls.push_back(Constructor);
3291
3292  return false;
3293}
3294
3295bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3296                               ArrayRef<CXXCtorInitializer *> Initializers) {
3297  if (Constructor->isDependentContext()) {
3298    // Just store the initializers as written, they will be checked during
3299    // instantiation.
3300    if (!Initializers.empty()) {
3301      Constructor->setNumCtorInitializers(Initializers.size());
3302      CXXCtorInitializer **baseOrMemberInitializers =
3303        new (Context) CXXCtorInitializer*[Initializers.size()];
3304      memcpy(baseOrMemberInitializers, Initializers.data(),
3305             Initializers.size() * sizeof(CXXCtorInitializer*));
3306      Constructor->setCtorInitializers(baseOrMemberInitializers);
3307    }
3308
3309    // Let template instantiation know whether we had errors.
3310    if (AnyErrors)
3311      Constructor->setInvalidDecl();
3312
3313    return false;
3314  }
3315
3316  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3317
3318  // We need to build the initializer AST according to order of construction
3319  // and not what user specified in the Initializers list.
3320  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3321  if (!ClassDecl)
3322    return true;
3323
3324  bool HadError = false;
3325
3326  for (unsigned i = 0; i < Initializers.size(); i++) {
3327    CXXCtorInitializer *Member = Initializers[i];
3328
3329    if (Member->isBaseInitializer())
3330      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3331    else
3332      Info.AllBaseFields[Member->getAnyMember()] = Member;
3333  }
3334
3335  // Keep track of the direct virtual bases.
3336  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3337  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3338       E = ClassDecl->bases_end(); I != E; ++I) {
3339    if (I->isVirtual())
3340      DirectVBases.insert(I);
3341  }
3342
3343  // Push virtual bases before others.
3344  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3345       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3346
3347    if (CXXCtorInitializer *Value
3348        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3349      Info.AllToInit.push_back(Value);
3350    } else if (!AnyErrors) {
3351      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3352      CXXCtorInitializer *CXXBaseInit;
3353      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3354                                       VBase, IsInheritedVirtualBase,
3355                                       CXXBaseInit)) {
3356        HadError = true;
3357        continue;
3358      }
3359
3360      Info.AllToInit.push_back(CXXBaseInit);
3361    }
3362  }
3363
3364  // Non-virtual bases.
3365  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3366       E = ClassDecl->bases_end(); Base != E; ++Base) {
3367    // Virtuals are in the virtual base list and already constructed.
3368    if (Base->isVirtual())
3369      continue;
3370
3371    if (CXXCtorInitializer *Value
3372          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3373      Info.AllToInit.push_back(Value);
3374    } else if (!AnyErrors) {
3375      CXXCtorInitializer *CXXBaseInit;
3376      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3377                                       Base, /*IsInheritedVirtualBase=*/false,
3378                                       CXXBaseInit)) {
3379        HadError = true;
3380        continue;
3381      }
3382
3383      Info.AllToInit.push_back(CXXBaseInit);
3384    }
3385  }
3386
3387  // Fields.
3388  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3389                               MemEnd = ClassDecl->decls_end();
3390       Mem != MemEnd; ++Mem) {
3391    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3392      // C++ [class.bit]p2:
3393      //   A declaration for a bit-field that omits the identifier declares an
3394      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3395      //   initialized.
3396      if (F->isUnnamedBitfield())
3397        continue;
3398
3399      // If we're not generating the implicit copy/move constructor, then we'll
3400      // handle anonymous struct/union fields based on their individual
3401      // indirect fields.
3402      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3403        continue;
3404
3405      if (CollectFieldInitializer(*this, Info, F))
3406        HadError = true;
3407      continue;
3408    }
3409
3410    // Beyond this point, we only consider default initialization.
3411    if (Info.isImplicitCopyOrMove())
3412      continue;
3413
3414    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3415      if (F->getType()->isIncompleteArrayType()) {
3416        assert(ClassDecl->hasFlexibleArrayMember() &&
3417               "Incomplete array type is not valid");
3418        continue;
3419      }
3420
3421      // Initialize each field of an anonymous struct individually.
3422      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3423        HadError = true;
3424
3425      continue;
3426    }
3427  }
3428
3429  unsigned NumInitializers = Info.AllToInit.size();
3430  if (NumInitializers > 0) {
3431    Constructor->setNumCtorInitializers(NumInitializers);
3432    CXXCtorInitializer **baseOrMemberInitializers =
3433      new (Context) CXXCtorInitializer*[NumInitializers];
3434    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3435           NumInitializers * sizeof(CXXCtorInitializer*));
3436    Constructor->setCtorInitializers(baseOrMemberInitializers);
3437
3438    // Constructors implicitly reference the base and member
3439    // destructors.
3440    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3441                                           Constructor->getParent());
3442  }
3443
3444  return HadError;
3445}
3446
3447static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3448  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3449    const RecordDecl *RD = RT->getDecl();
3450    if (RD->isAnonymousStructOrUnion()) {
3451      for (RecordDecl::field_iterator Field = RD->field_begin(),
3452          E = RD->field_end(); Field != E; ++Field)
3453        PopulateKeysForFields(*Field, IdealInits);
3454      return;
3455    }
3456  }
3457  IdealInits.push_back(Field);
3458}
3459
3460static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3461  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3462}
3463
3464static void *GetKeyForMember(ASTContext &Context,
3465                             CXXCtorInitializer *Member) {
3466  if (!Member->isAnyMemberInitializer())
3467    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3468
3469  return Member->getAnyMember();
3470}
3471
3472static void DiagnoseBaseOrMemInitializerOrder(
3473    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3474    ArrayRef<CXXCtorInitializer *> Inits) {
3475  if (Constructor->getDeclContext()->isDependentContext())
3476    return;
3477
3478  // Don't check initializers order unless the warning is enabled at the
3479  // location of at least one initializer.
3480  bool ShouldCheckOrder = false;
3481  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3482    CXXCtorInitializer *Init = Inits[InitIndex];
3483    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3484                                         Init->getSourceLocation())
3485          != DiagnosticsEngine::Ignored) {
3486      ShouldCheckOrder = true;
3487      break;
3488    }
3489  }
3490  if (!ShouldCheckOrder)
3491    return;
3492
3493  // Build the list of bases and members in the order that they'll
3494  // actually be initialized.  The explicit initializers should be in
3495  // this same order but may be missing things.
3496  SmallVector<const void*, 32> IdealInitKeys;
3497
3498  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3499
3500  // 1. Virtual bases.
3501  for (CXXRecordDecl::base_class_const_iterator VBase =
3502       ClassDecl->vbases_begin(),
3503       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3504    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3505
3506  // 2. Non-virtual bases.
3507  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3508       E = ClassDecl->bases_end(); Base != E; ++Base) {
3509    if (Base->isVirtual())
3510      continue;
3511    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3512  }
3513
3514  // 3. Direct fields.
3515  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3516       E = ClassDecl->field_end(); Field != E; ++Field) {
3517    if (Field->isUnnamedBitfield())
3518      continue;
3519
3520    PopulateKeysForFields(*Field, IdealInitKeys);
3521  }
3522
3523  unsigned NumIdealInits = IdealInitKeys.size();
3524  unsigned IdealIndex = 0;
3525
3526  CXXCtorInitializer *PrevInit = 0;
3527  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3528    CXXCtorInitializer *Init = Inits[InitIndex];
3529    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3530
3531    // Scan forward to try to find this initializer in the idealized
3532    // initializers list.
3533    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3534      if (InitKey == IdealInitKeys[IdealIndex])
3535        break;
3536
3537    // If we didn't find this initializer, it must be because we
3538    // scanned past it on a previous iteration.  That can only
3539    // happen if we're out of order;  emit a warning.
3540    if (IdealIndex == NumIdealInits && PrevInit) {
3541      Sema::SemaDiagnosticBuilder D =
3542        SemaRef.Diag(PrevInit->getSourceLocation(),
3543                     diag::warn_initializer_out_of_order);
3544
3545      if (PrevInit->isAnyMemberInitializer())
3546        D << 0 << PrevInit->getAnyMember()->getDeclName();
3547      else
3548        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3549
3550      if (Init->isAnyMemberInitializer())
3551        D << 0 << Init->getAnyMember()->getDeclName();
3552      else
3553        D << 1 << Init->getTypeSourceInfo()->getType();
3554
3555      // Move back to the initializer's location in the ideal list.
3556      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3557        if (InitKey == IdealInitKeys[IdealIndex])
3558          break;
3559
3560      assert(IdealIndex != NumIdealInits &&
3561             "initializer not found in initializer list");
3562    }
3563
3564    PrevInit = Init;
3565  }
3566}
3567
3568namespace {
3569bool CheckRedundantInit(Sema &S,
3570                        CXXCtorInitializer *Init,
3571                        CXXCtorInitializer *&PrevInit) {
3572  if (!PrevInit) {
3573    PrevInit = Init;
3574    return false;
3575  }
3576
3577  if (FieldDecl *Field = Init->getAnyMember())
3578    S.Diag(Init->getSourceLocation(),
3579           diag::err_multiple_mem_initialization)
3580      << Field->getDeclName()
3581      << Init->getSourceRange();
3582  else {
3583    const Type *BaseClass = Init->getBaseClass();
3584    assert(BaseClass && "neither field nor base");
3585    S.Diag(Init->getSourceLocation(),
3586           diag::err_multiple_base_initialization)
3587      << QualType(BaseClass, 0)
3588      << Init->getSourceRange();
3589  }
3590  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3591    << 0 << PrevInit->getSourceRange();
3592
3593  return true;
3594}
3595
3596typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3597typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3598
3599bool CheckRedundantUnionInit(Sema &S,
3600                             CXXCtorInitializer *Init,
3601                             RedundantUnionMap &Unions) {
3602  FieldDecl *Field = Init->getAnyMember();
3603  RecordDecl *Parent = Field->getParent();
3604  NamedDecl *Child = Field;
3605
3606  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3607    if (Parent->isUnion()) {
3608      UnionEntry &En = Unions[Parent];
3609      if (En.first && En.first != Child) {
3610        S.Diag(Init->getSourceLocation(),
3611               diag::err_multiple_mem_union_initialization)
3612          << Field->getDeclName()
3613          << Init->getSourceRange();
3614        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3615          << 0 << En.second->getSourceRange();
3616        return true;
3617      }
3618      if (!En.first) {
3619        En.first = Child;
3620        En.second = Init;
3621      }
3622      if (!Parent->isAnonymousStructOrUnion())
3623        return false;
3624    }
3625
3626    Child = Parent;
3627    Parent = cast<RecordDecl>(Parent->getDeclContext());
3628  }
3629
3630  return false;
3631}
3632}
3633
3634/// ActOnMemInitializers - Handle the member initializers for a constructor.
3635void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3636                                SourceLocation ColonLoc,
3637                                ArrayRef<CXXCtorInitializer*> MemInits,
3638                                bool AnyErrors) {
3639  if (!ConstructorDecl)
3640    return;
3641
3642  AdjustDeclIfTemplate(ConstructorDecl);
3643
3644  CXXConstructorDecl *Constructor
3645    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3646
3647  if (!Constructor) {
3648    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3649    return;
3650  }
3651
3652  // Mapping for the duplicate initializers check.
3653  // For member initializers, this is keyed with a FieldDecl*.
3654  // For base initializers, this is keyed with a Type*.
3655  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3656
3657  // Mapping for the inconsistent anonymous-union initializers check.
3658  RedundantUnionMap MemberUnions;
3659
3660  bool HadError = false;
3661  for (unsigned i = 0; i < MemInits.size(); i++) {
3662    CXXCtorInitializer *Init = MemInits[i];
3663
3664    // Set the source order index.
3665    Init->setSourceOrder(i);
3666
3667    if (Init->isAnyMemberInitializer()) {
3668      FieldDecl *Field = Init->getAnyMember();
3669      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3670          CheckRedundantUnionInit(*this, Init, MemberUnions))
3671        HadError = true;
3672    } else if (Init->isBaseInitializer()) {
3673      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3674      if (CheckRedundantInit(*this, Init, Members[Key]))
3675        HadError = true;
3676    } else {
3677      assert(Init->isDelegatingInitializer());
3678      // This must be the only initializer
3679      if (MemInits.size() != 1) {
3680        Diag(Init->getSourceLocation(),
3681             diag::err_delegating_initializer_alone)
3682          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3683        // We will treat this as being the only initializer.
3684      }
3685      SetDelegatingInitializer(Constructor, MemInits[i]);
3686      // Return immediately as the initializer is set.
3687      return;
3688    }
3689  }
3690
3691  if (HadError)
3692    return;
3693
3694  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3695
3696  SetCtorInitializers(Constructor, AnyErrors, MemInits);
3697}
3698
3699void
3700Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3701                                             CXXRecordDecl *ClassDecl) {
3702  // Ignore dependent contexts. Also ignore unions, since their members never
3703  // have destructors implicitly called.
3704  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3705    return;
3706
3707  // FIXME: all the access-control diagnostics are positioned on the
3708  // field/base declaration.  That's probably good; that said, the
3709  // user might reasonably want to know why the destructor is being
3710  // emitted, and we currently don't say.
3711
3712  // Non-static data members.
3713  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3714       E = ClassDecl->field_end(); I != E; ++I) {
3715    FieldDecl *Field = *I;
3716    if (Field->isInvalidDecl())
3717      continue;
3718
3719    // Don't destroy incomplete or zero-length arrays.
3720    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3721      continue;
3722
3723    QualType FieldType = Context.getBaseElementType(Field->getType());
3724
3725    const RecordType* RT = FieldType->getAs<RecordType>();
3726    if (!RT)
3727      continue;
3728
3729    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3730    if (FieldClassDecl->isInvalidDecl())
3731      continue;
3732    if (FieldClassDecl->hasIrrelevantDestructor())
3733      continue;
3734    // The destructor for an implicit anonymous union member is never invoked.
3735    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3736      continue;
3737
3738    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3739    assert(Dtor && "No dtor found for FieldClassDecl!");
3740    CheckDestructorAccess(Field->getLocation(), Dtor,
3741                          PDiag(diag::err_access_dtor_field)
3742                            << Field->getDeclName()
3743                            << FieldType);
3744
3745    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3746    DiagnoseUseOfDecl(Dtor, Location);
3747  }
3748
3749  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3750
3751  // Bases.
3752  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3753       E = ClassDecl->bases_end(); Base != E; ++Base) {
3754    // Bases are always records in a well-formed non-dependent class.
3755    const RecordType *RT = Base->getType()->getAs<RecordType>();
3756
3757    // Remember direct virtual bases.
3758    if (Base->isVirtual())
3759      DirectVirtualBases.insert(RT);
3760
3761    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3762    // If our base class is invalid, we probably can't get its dtor anyway.
3763    if (BaseClassDecl->isInvalidDecl())
3764      continue;
3765    if (BaseClassDecl->hasIrrelevantDestructor())
3766      continue;
3767
3768    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3769    assert(Dtor && "No dtor found for BaseClassDecl!");
3770
3771    // FIXME: caret should be on the start of the class name
3772    CheckDestructorAccess(Base->getLocStart(), Dtor,
3773                          PDiag(diag::err_access_dtor_base)
3774                            << Base->getType()
3775                            << Base->getSourceRange(),
3776                          Context.getTypeDeclType(ClassDecl));
3777
3778    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3779    DiagnoseUseOfDecl(Dtor, Location);
3780  }
3781
3782  // Virtual bases.
3783  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3784       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3785
3786    // Bases are always records in a well-formed non-dependent class.
3787    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3788
3789    // Ignore direct virtual bases.
3790    if (DirectVirtualBases.count(RT))
3791      continue;
3792
3793    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3794    // If our base class is invalid, we probably can't get its dtor anyway.
3795    if (BaseClassDecl->isInvalidDecl())
3796      continue;
3797    if (BaseClassDecl->hasIrrelevantDestructor())
3798      continue;
3799
3800    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3801    assert(Dtor && "No dtor found for BaseClassDecl!");
3802    if (CheckDestructorAccess(
3803            ClassDecl->getLocation(), Dtor,
3804            PDiag(diag::err_access_dtor_vbase)
3805                << Context.getTypeDeclType(ClassDecl) << VBase->getType(),
3806            Context.getTypeDeclType(ClassDecl)) ==
3807        AR_accessible) {
3808      CheckDerivedToBaseConversion(
3809          Context.getTypeDeclType(ClassDecl), VBase->getType(),
3810          diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
3811          SourceRange(), DeclarationName(), 0);
3812    }
3813
3814    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3815    DiagnoseUseOfDecl(Dtor, Location);
3816  }
3817}
3818
3819void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3820  if (!CDtorDecl)
3821    return;
3822
3823  if (CXXConstructorDecl *Constructor
3824      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3825    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
3826}
3827
3828bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3829                                  unsigned DiagID, AbstractDiagSelID SelID) {
3830  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3831    unsigned DiagID;
3832    AbstractDiagSelID SelID;
3833
3834  public:
3835    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3836      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3837
3838    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3839      if (Suppressed) return;
3840      if (SelID == -1)
3841        S.Diag(Loc, DiagID) << T;
3842      else
3843        S.Diag(Loc, DiagID) << SelID << T;
3844    }
3845  } Diagnoser(DiagID, SelID);
3846
3847  return RequireNonAbstractType(Loc, T, Diagnoser);
3848}
3849
3850bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3851                                  TypeDiagnoser &Diagnoser) {
3852  if (!getLangOpts().CPlusPlus)
3853    return false;
3854
3855  if (const ArrayType *AT = Context.getAsArrayType(T))
3856    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3857
3858  if (const PointerType *PT = T->getAs<PointerType>()) {
3859    // Find the innermost pointer type.
3860    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3861      PT = T;
3862
3863    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3864      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3865  }
3866
3867  const RecordType *RT = T->getAs<RecordType>();
3868  if (!RT)
3869    return false;
3870
3871  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3872
3873  // We can't answer whether something is abstract until it has a
3874  // definition.  If it's currently being defined, we'll walk back
3875  // over all the declarations when we have a full definition.
3876  const CXXRecordDecl *Def = RD->getDefinition();
3877  if (!Def || Def->isBeingDefined())
3878    return false;
3879
3880  if (!RD->isAbstract())
3881    return false;
3882
3883  Diagnoser.diagnose(*this, Loc, T);
3884  DiagnoseAbstractType(RD);
3885
3886  return true;
3887}
3888
3889void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3890  // Check if we've already emitted the list of pure virtual functions
3891  // for this class.
3892  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3893    return;
3894
3895  CXXFinalOverriderMap FinalOverriders;
3896  RD->getFinalOverriders(FinalOverriders);
3897
3898  // Keep a set of seen pure methods so we won't diagnose the same method
3899  // more than once.
3900  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3901
3902  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3903                                   MEnd = FinalOverriders.end();
3904       M != MEnd;
3905       ++M) {
3906    for (OverridingMethods::iterator SO = M->second.begin(),
3907                                  SOEnd = M->second.end();
3908         SO != SOEnd; ++SO) {
3909      // C++ [class.abstract]p4:
3910      //   A class is abstract if it contains or inherits at least one
3911      //   pure virtual function for which the final overrider is pure
3912      //   virtual.
3913
3914      //
3915      if (SO->second.size() != 1)
3916        continue;
3917
3918      if (!SO->second.front().Method->isPure())
3919        continue;
3920
3921      if (!SeenPureMethods.insert(SO->second.front().Method))
3922        continue;
3923
3924      Diag(SO->second.front().Method->getLocation(),
3925           diag::note_pure_virtual_function)
3926        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3927    }
3928  }
3929
3930  if (!PureVirtualClassDiagSet)
3931    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3932  PureVirtualClassDiagSet->insert(RD);
3933}
3934
3935namespace {
3936struct AbstractUsageInfo {
3937  Sema &S;
3938  CXXRecordDecl *Record;
3939  CanQualType AbstractType;
3940  bool Invalid;
3941
3942  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3943    : S(S), Record(Record),
3944      AbstractType(S.Context.getCanonicalType(
3945                   S.Context.getTypeDeclType(Record))),
3946      Invalid(false) {}
3947
3948  void DiagnoseAbstractType() {
3949    if (Invalid) return;
3950    S.DiagnoseAbstractType(Record);
3951    Invalid = true;
3952  }
3953
3954  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3955};
3956
3957struct CheckAbstractUsage {
3958  AbstractUsageInfo &Info;
3959  const NamedDecl *Ctx;
3960
3961  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3962    : Info(Info), Ctx(Ctx) {}
3963
3964  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3965    switch (TL.getTypeLocClass()) {
3966#define ABSTRACT_TYPELOC(CLASS, PARENT)
3967#define TYPELOC(CLASS, PARENT) \
3968    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
3969#include "clang/AST/TypeLocNodes.def"
3970    }
3971  }
3972
3973  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3974    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3975    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3976      if (!TL.getArg(I))
3977        continue;
3978
3979      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3980      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3981    }
3982  }
3983
3984  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3985    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3986  }
3987
3988  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3989    // Visit the type parameters from a permissive context.
3990    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3991      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3992      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3993        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3994          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3995      // TODO: other template argument types?
3996    }
3997  }
3998
3999  // Visit pointee types from a permissive context.
4000#define CheckPolymorphic(Type) \
4001  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4002    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4003  }
4004  CheckPolymorphic(PointerTypeLoc)
4005  CheckPolymorphic(ReferenceTypeLoc)
4006  CheckPolymorphic(MemberPointerTypeLoc)
4007  CheckPolymorphic(BlockPointerTypeLoc)
4008  CheckPolymorphic(AtomicTypeLoc)
4009
4010  /// Handle all the types we haven't given a more specific
4011  /// implementation for above.
4012  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4013    // Every other kind of type that we haven't called out already
4014    // that has an inner type is either (1) sugar or (2) contains that
4015    // inner type in some way as a subobject.
4016    if (TypeLoc Next = TL.getNextTypeLoc())
4017      return Visit(Next, Sel);
4018
4019    // If there's no inner type and we're in a permissive context,
4020    // don't diagnose.
4021    if (Sel == Sema::AbstractNone) return;
4022
4023    // Check whether the type matches the abstract type.
4024    QualType T = TL.getType();
4025    if (T->isArrayType()) {
4026      Sel = Sema::AbstractArrayType;
4027      T = Info.S.Context.getBaseElementType(T);
4028    }
4029    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4030    if (CT != Info.AbstractType) return;
4031
4032    // It matched; do some magic.
4033    if (Sel == Sema::AbstractArrayType) {
4034      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4035        << T << TL.getSourceRange();
4036    } else {
4037      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4038        << Sel << T << TL.getSourceRange();
4039    }
4040    Info.DiagnoseAbstractType();
4041  }
4042};
4043
4044void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4045                                  Sema::AbstractDiagSelID Sel) {
4046  CheckAbstractUsage(*this, D).Visit(TL, Sel);
4047}
4048
4049}
4050
4051/// Check for invalid uses of an abstract type in a method declaration.
4052static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4053                                    CXXMethodDecl *MD) {
4054  // No need to do the check on definitions, which require that
4055  // the return/param types be complete.
4056  if (MD->doesThisDeclarationHaveABody())
4057    return;
4058
4059  // For safety's sake, just ignore it if we don't have type source
4060  // information.  This should never happen for non-implicit methods,
4061  // but...
4062  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4063    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4064}
4065
4066/// Check for invalid uses of an abstract type within a class definition.
4067static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4068                                    CXXRecordDecl *RD) {
4069  for (CXXRecordDecl::decl_iterator
4070         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
4071    Decl *D = *I;
4072    if (D->isImplicit()) continue;
4073
4074    // Methods and method templates.
4075    if (isa<CXXMethodDecl>(D)) {
4076      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4077    } else if (isa<FunctionTemplateDecl>(D)) {
4078      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4079      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4080
4081    // Fields and static variables.
4082    } else if (isa<FieldDecl>(D)) {
4083      FieldDecl *FD = cast<FieldDecl>(D);
4084      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4085        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4086    } else if (isa<VarDecl>(D)) {
4087      VarDecl *VD = cast<VarDecl>(D);
4088      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4089        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4090
4091    // Nested classes and class templates.
4092    } else if (isa<CXXRecordDecl>(D)) {
4093      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4094    } else if (isa<ClassTemplateDecl>(D)) {
4095      CheckAbstractClassUsage(Info,
4096                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4097    }
4098  }
4099}
4100
4101/// \brief Perform semantic checks on a class definition that has been
4102/// completing, introducing implicitly-declared members, checking for
4103/// abstract types, etc.
4104void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4105  if (!Record)
4106    return;
4107
4108  if (Record->isAbstract() && !Record->isInvalidDecl()) {
4109    AbstractUsageInfo Info(*this, Record);
4110    CheckAbstractClassUsage(Info, Record);
4111  }
4112
4113  // If this is not an aggregate type and has no user-declared constructor,
4114  // complain about any non-static data members of reference or const scalar
4115  // type, since they will never get initializers.
4116  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4117      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4118      !Record->isLambda()) {
4119    bool Complained = false;
4120    for (RecordDecl::field_iterator F = Record->field_begin(),
4121                                 FEnd = Record->field_end();
4122         F != FEnd; ++F) {
4123      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4124        continue;
4125
4126      if (F->getType()->isReferenceType() ||
4127          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4128        if (!Complained) {
4129          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4130            << Record->getTagKind() << Record;
4131          Complained = true;
4132        }
4133
4134        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4135          << F->getType()->isReferenceType()
4136          << F->getDeclName();
4137      }
4138    }
4139  }
4140
4141  if (Record->isDynamicClass() && !Record->isDependentType())
4142    DynamicClasses.push_back(Record);
4143
4144  if (Record->getIdentifier()) {
4145    // C++ [class.mem]p13:
4146    //   If T is the name of a class, then each of the following shall have a
4147    //   name different from T:
4148    //     - every member of every anonymous union that is a member of class T.
4149    //
4150    // C++ [class.mem]p14:
4151    //   In addition, if class T has a user-declared constructor (12.1), every
4152    //   non-static data member of class T shall have a name different from T.
4153    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4154    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4155         ++I) {
4156      NamedDecl *D = *I;
4157      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4158          isa<IndirectFieldDecl>(D)) {
4159        Diag(D->getLocation(), diag::err_member_name_of_class)
4160          << D->getDeclName();
4161        break;
4162      }
4163    }
4164  }
4165
4166  // Warn if the class has virtual methods but non-virtual public destructor.
4167  if (Record->isPolymorphic() && !Record->isDependentType()) {
4168    CXXDestructorDecl *dtor = Record->getDestructor();
4169    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4170      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4171           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4172  }
4173
4174  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
4175    Diag(Record->getLocation(), diag::warn_abstract_final_class);
4176    DiagnoseAbstractType(Record);
4177  }
4178
4179  if (!Record->isDependentType()) {
4180    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4181                                     MEnd = Record->method_end();
4182         M != MEnd; ++M) {
4183      // See if a method overloads virtual methods in a base
4184      // class without overriding any.
4185      if (!M->isStatic())
4186        DiagnoseHiddenVirtualMethods(Record, *M);
4187
4188      // Check whether the explicitly-defaulted special members are valid.
4189      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4190        CheckExplicitlyDefaultedSpecialMember(*M);
4191
4192      // For an explicitly defaulted or deleted special member, we defer
4193      // determining triviality until the class is complete. That time is now!
4194      if (!M->isImplicit() && !M->isUserProvided()) {
4195        CXXSpecialMember CSM = getSpecialMember(*M);
4196        if (CSM != CXXInvalid) {
4197          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4198
4199          // Inform the class that we've finished declaring this member.
4200          Record->finishedDefaultedOrDeletedMember(*M);
4201        }
4202      }
4203    }
4204  }
4205
4206  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4207  // function that is not a constructor declares that member function to be
4208  // const. [...] The class of which that function is a member shall be
4209  // a literal type.
4210  //
4211  // If the class has virtual bases, any constexpr members will already have
4212  // been diagnosed by the checks performed on the member declaration, so
4213  // suppress this (less useful) diagnostic.
4214  //
4215  // We delay this until we know whether an explicitly-defaulted (or deleted)
4216  // destructor for the class is trivial.
4217  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4218      !Record->isLiteral() && !Record->getNumVBases()) {
4219    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4220                                     MEnd = Record->method_end();
4221         M != MEnd; ++M) {
4222      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4223        switch (Record->getTemplateSpecializationKind()) {
4224        case TSK_ImplicitInstantiation:
4225        case TSK_ExplicitInstantiationDeclaration:
4226        case TSK_ExplicitInstantiationDefinition:
4227          // If a template instantiates to a non-literal type, but its members
4228          // instantiate to constexpr functions, the template is technically
4229          // ill-formed, but we allow it for sanity.
4230          continue;
4231
4232        case TSK_Undeclared:
4233        case TSK_ExplicitSpecialization:
4234          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4235                             diag::err_constexpr_method_non_literal);
4236          break;
4237        }
4238
4239        // Only produce one error per class.
4240        break;
4241      }
4242    }
4243  }
4244
4245  // Declare inheriting constructors. We do this eagerly here because:
4246  // - The standard requires an eager diagnostic for conflicting inheriting
4247  //   constructors from different classes.
4248  // - The lazy declaration of the other implicit constructors is so as to not
4249  //   waste space and performance on classes that are not meant to be
4250  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4251  //   have inheriting constructors.
4252  DeclareInheritingConstructors(Record);
4253}
4254
4255/// Is the special member function which would be selected to perform the
4256/// specified operation on the specified class type a constexpr constructor?
4257static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4258                                     Sema::CXXSpecialMember CSM,
4259                                     bool ConstArg) {
4260  Sema::SpecialMemberOverloadResult *SMOR =
4261      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4262                            false, false, false, false);
4263  if (!SMOR || !SMOR->getMethod())
4264    // A constructor we wouldn't select can't be "involved in initializing"
4265    // anything.
4266    return true;
4267  return SMOR->getMethod()->isConstexpr();
4268}
4269
4270/// Determine whether the specified special member function would be constexpr
4271/// if it were implicitly defined.
4272static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4273                                              Sema::CXXSpecialMember CSM,
4274                                              bool ConstArg) {
4275  if (!S.getLangOpts().CPlusPlus11)
4276    return false;
4277
4278  // C++11 [dcl.constexpr]p4:
4279  // In the definition of a constexpr constructor [...]
4280  bool Ctor = true;
4281  switch (CSM) {
4282  case Sema::CXXDefaultConstructor:
4283    // Since default constructor lookup is essentially trivial (and cannot
4284    // involve, for instance, template instantiation), we compute whether a
4285    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4286    //
4287    // This is important for performance; we need to know whether the default
4288    // constructor is constexpr to determine whether the type is a literal type.
4289    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4290
4291  case Sema::CXXCopyConstructor:
4292  case Sema::CXXMoveConstructor:
4293    // For copy or move constructors, we need to perform overload resolution.
4294    break;
4295
4296  case Sema::CXXCopyAssignment:
4297  case Sema::CXXMoveAssignment:
4298    if (!S.getLangOpts().CPlusPlus1y)
4299      return false;
4300    // In C++1y, we need to perform overload resolution.
4301    Ctor = false;
4302    break;
4303
4304  case Sema::CXXDestructor:
4305  case Sema::CXXInvalid:
4306    return false;
4307  }
4308
4309  //   -- if the class is a non-empty union, or for each non-empty anonymous
4310  //      union member of a non-union class, exactly one non-static data member
4311  //      shall be initialized; [DR1359]
4312  //
4313  // If we squint, this is guaranteed, since exactly one non-static data member
4314  // will be initialized (if the constructor isn't deleted), we just don't know
4315  // which one.
4316  if (Ctor && ClassDecl->isUnion())
4317    return true;
4318
4319  //   -- the class shall not have any virtual base classes;
4320  if (Ctor && ClassDecl->getNumVBases())
4321    return false;
4322
4323  // C++1y [class.copy]p26:
4324  //   -- [the class] is a literal type, and
4325  if (!Ctor && !ClassDecl->isLiteral())
4326    return false;
4327
4328  //   -- every constructor involved in initializing [...] base class
4329  //      sub-objects shall be a constexpr constructor;
4330  //   -- the assignment operator selected to copy/move each direct base
4331  //      class is a constexpr function, and
4332  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4333                                       BEnd = ClassDecl->bases_end();
4334       B != BEnd; ++B) {
4335    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4336    if (!BaseType) continue;
4337
4338    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4339    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4340      return false;
4341  }
4342
4343  //   -- every constructor involved in initializing non-static data members
4344  //      [...] shall be a constexpr constructor;
4345  //   -- every non-static data member and base class sub-object shall be
4346  //      initialized
4347  //   -- for each non-stastic data member of X that is of class type (or array
4348  //      thereof), the assignment operator selected to copy/move that member is
4349  //      a constexpr function
4350  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4351                               FEnd = ClassDecl->field_end();
4352       F != FEnd; ++F) {
4353    if (F->isInvalidDecl())
4354      continue;
4355    if (const RecordType *RecordTy =
4356            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4357      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4358      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4359        return false;
4360    }
4361  }
4362
4363  // All OK, it's constexpr!
4364  return true;
4365}
4366
4367static Sema::ImplicitExceptionSpecification
4368computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4369  switch (S.getSpecialMember(MD)) {
4370  case Sema::CXXDefaultConstructor:
4371    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4372  case Sema::CXXCopyConstructor:
4373    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4374  case Sema::CXXCopyAssignment:
4375    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4376  case Sema::CXXMoveConstructor:
4377    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4378  case Sema::CXXMoveAssignment:
4379    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4380  case Sema::CXXDestructor:
4381    return S.ComputeDefaultedDtorExceptionSpec(MD);
4382  case Sema::CXXInvalid:
4383    break;
4384  }
4385  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4386         "only special members have implicit exception specs");
4387  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4388}
4389
4390static void
4391updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4392                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4393  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4394  ExceptSpec.getEPI(EPI);
4395  FD->setType(S.Context.getFunctionType(FPT->getResultType(),
4396                                        FPT->getArgTypes(), EPI));
4397}
4398
4399void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4400  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4401  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4402    return;
4403
4404  // Evaluate the exception specification.
4405  ImplicitExceptionSpecification ExceptSpec =
4406      computeImplicitExceptionSpec(*this, Loc, MD);
4407
4408  // Update the type of the special member to use it.
4409  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4410
4411  // A user-provided destructor can be defined outside the class. When that
4412  // happens, be sure to update the exception specification on both
4413  // declarations.
4414  const FunctionProtoType *CanonicalFPT =
4415    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4416  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4417    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4418                        CanonicalFPT, ExceptSpec);
4419}
4420
4421void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4422  CXXRecordDecl *RD = MD->getParent();
4423  CXXSpecialMember CSM = getSpecialMember(MD);
4424
4425  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4426         "not an explicitly-defaulted special member");
4427
4428  // Whether this was the first-declared instance of the constructor.
4429  // This affects whether we implicitly add an exception spec and constexpr.
4430  bool First = MD == MD->getCanonicalDecl();
4431
4432  bool HadError = false;
4433
4434  // C++11 [dcl.fct.def.default]p1:
4435  //   A function that is explicitly defaulted shall
4436  //     -- be a special member function (checked elsewhere),
4437  //     -- have the same type (except for ref-qualifiers, and except that a
4438  //        copy operation can take a non-const reference) as an implicit
4439  //        declaration, and
4440  //     -- not have default arguments.
4441  unsigned ExpectedParams = 1;
4442  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4443    ExpectedParams = 0;
4444  if (MD->getNumParams() != ExpectedParams) {
4445    // This also checks for default arguments: a copy or move constructor with a
4446    // default argument is classified as a default constructor, and assignment
4447    // operations and destructors can't have default arguments.
4448    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4449      << CSM << MD->getSourceRange();
4450    HadError = true;
4451  } else if (MD->isVariadic()) {
4452    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4453      << CSM << MD->getSourceRange();
4454    HadError = true;
4455  }
4456
4457  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4458
4459  bool CanHaveConstParam = false;
4460  if (CSM == CXXCopyConstructor)
4461    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4462  else if (CSM == CXXCopyAssignment)
4463    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4464
4465  QualType ReturnType = Context.VoidTy;
4466  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4467    // Check for return type matching.
4468    ReturnType = Type->getResultType();
4469    QualType ExpectedReturnType =
4470        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4471    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4472      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4473        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4474      HadError = true;
4475    }
4476
4477    // A defaulted special member cannot have cv-qualifiers.
4478    if (Type->getTypeQuals()) {
4479      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4480        << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus1y;
4481      HadError = true;
4482    }
4483  }
4484
4485  // Check for parameter type matching.
4486  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4487  bool HasConstParam = false;
4488  if (ExpectedParams && ArgType->isReferenceType()) {
4489    // Argument must be reference to possibly-const T.
4490    QualType ReferentType = ArgType->getPointeeType();
4491    HasConstParam = ReferentType.isConstQualified();
4492
4493    if (ReferentType.isVolatileQualified()) {
4494      Diag(MD->getLocation(),
4495           diag::err_defaulted_special_member_volatile_param) << CSM;
4496      HadError = true;
4497    }
4498
4499    if (HasConstParam && !CanHaveConstParam) {
4500      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4501        Diag(MD->getLocation(),
4502             diag::err_defaulted_special_member_copy_const_param)
4503          << (CSM == CXXCopyAssignment);
4504        // FIXME: Explain why this special member can't be const.
4505      } else {
4506        Diag(MD->getLocation(),
4507             diag::err_defaulted_special_member_move_const_param)
4508          << (CSM == CXXMoveAssignment);
4509      }
4510      HadError = true;
4511    }
4512  } else if (ExpectedParams) {
4513    // A copy assignment operator can take its argument by value, but a
4514    // defaulted one cannot.
4515    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4516    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4517    HadError = true;
4518  }
4519
4520  // C++11 [dcl.fct.def.default]p2:
4521  //   An explicitly-defaulted function may be declared constexpr only if it
4522  //   would have been implicitly declared as constexpr,
4523  // Do not apply this rule to members of class templates, since core issue 1358
4524  // makes such functions always instantiate to constexpr functions. For
4525  // functions which cannot be constexpr (for non-constructors in C++11 and for
4526  // destructors in C++1y), this is checked elsewhere.
4527  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4528                                                     HasConstParam);
4529  if ((getLangOpts().CPlusPlus1y ? !isa<CXXDestructorDecl>(MD)
4530                                 : isa<CXXConstructorDecl>(MD)) &&
4531      MD->isConstexpr() && !Constexpr &&
4532      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4533    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4534    // FIXME: Explain why the special member can't be constexpr.
4535    HadError = true;
4536  }
4537
4538  //   and may have an explicit exception-specification only if it is compatible
4539  //   with the exception-specification on the implicit declaration.
4540  if (Type->hasExceptionSpec()) {
4541    // Delay the check if this is the first declaration of the special member,
4542    // since we may not have parsed some necessary in-class initializers yet.
4543    if (First) {
4544      // If the exception specification needs to be instantiated, do so now,
4545      // before we clobber it with an EST_Unevaluated specification below.
4546      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4547        InstantiateExceptionSpec(MD->getLocStart(), MD);
4548        Type = MD->getType()->getAs<FunctionProtoType>();
4549      }
4550      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4551    } else
4552      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4553  }
4554
4555  //   If a function is explicitly defaulted on its first declaration,
4556  if (First) {
4557    //  -- it is implicitly considered to be constexpr if the implicit
4558    //     definition would be,
4559    MD->setConstexpr(Constexpr);
4560
4561    //  -- it is implicitly considered to have the same exception-specification
4562    //     as if it had been implicitly declared,
4563    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4564    EPI.ExceptionSpecType = EST_Unevaluated;
4565    EPI.ExceptionSpecDecl = MD;
4566    MD->setType(Context.getFunctionType(ReturnType,
4567                                        ArrayRef<QualType>(&ArgType,
4568                                                           ExpectedParams),
4569                                        EPI));
4570  }
4571
4572  if (ShouldDeleteSpecialMember(MD, CSM)) {
4573    if (First) {
4574      SetDeclDeleted(MD, MD->getLocation());
4575    } else {
4576      // C++11 [dcl.fct.def.default]p4:
4577      //   [For a] user-provided explicitly-defaulted function [...] if such a
4578      //   function is implicitly defined as deleted, the program is ill-formed.
4579      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4580      HadError = true;
4581    }
4582  }
4583
4584  if (HadError)
4585    MD->setInvalidDecl();
4586}
4587
4588/// Check whether the exception specification provided for an
4589/// explicitly-defaulted special member matches the exception specification
4590/// that would have been generated for an implicit special member, per
4591/// C++11 [dcl.fct.def.default]p2.
4592void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4593    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4594  // Compute the implicit exception specification.
4595  FunctionProtoType::ExtProtoInfo EPI;
4596  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4597  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4598    Context.getFunctionType(Context.VoidTy, None, EPI));
4599
4600  // Ensure that it matches.
4601  CheckEquivalentExceptionSpec(
4602    PDiag(diag::err_incorrect_defaulted_exception_spec)
4603      << getSpecialMember(MD), PDiag(),
4604    ImplicitType, SourceLocation(),
4605    SpecifiedType, MD->getLocation());
4606}
4607
4608void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
4609  for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
4610       I != N; ++I)
4611    CheckExplicitlyDefaultedMemberExceptionSpec(
4612      DelayedDefaultedMemberExceptionSpecs[I].first,
4613      DelayedDefaultedMemberExceptionSpecs[I].second);
4614
4615  DelayedDefaultedMemberExceptionSpecs.clear();
4616}
4617
4618namespace {
4619struct SpecialMemberDeletionInfo {
4620  Sema &S;
4621  CXXMethodDecl *MD;
4622  Sema::CXXSpecialMember CSM;
4623  bool Diagnose;
4624
4625  // Properties of the special member, computed for convenience.
4626  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4627  SourceLocation Loc;
4628
4629  bool AllFieldsAreConst;
4630
4631  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4632                            Sema::CXXSpecialMember CSM, bool Diagnose)
4633    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4634      IsConstructor(false), IsAssignment(false), IsMove(false),
4635      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4636      AllFieldsAreConst(true) {
4637    switch (CSM) {
4638      case Sema::CXXDefaultConstructor:
4639      case Sema::CXXCopyConstructor:
4640        IsConstructor = true;
4641        break;
4642      case Sema::CXXMoveConstructor:
4643        IsConstructor = true;
4644        IsMove = true;
4645        break;
4646      case Sema::CXXCopyAssignment:
4647        IsAssignment = true;
4648        break;
4649      case Sema::CXXMoveAssignment:
4650        IsAssignment = true;
4651        IsMove = true;
4652        break;
4653      case Sema::CXXDestructor:
4654        break;
4655      case Sema::CXXInvalid:
4656        llvm_unreachable("invalid special member kind");
4657    }
4658
4659    if (MD->getNumParams()) {
4660      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4661      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4662    }
4663  }
4664
4665  bool inUnion() const { return MD->getParent()->isUnion(); }
4666
4667  /// Look up the corresponding special member in the given class.
4668  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4669                                              unsigned Quals) {
4670    unsigned TQ = MD->getTypeQualifiers();
4671    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4672    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4673      Quals = 0;
4674    return S.LookupSpecialMember(Class, CSM,
4675                                 ConstArg || (Quals & Qualifiers::Const),
4676                                 VolatileArg || (Quals & Qualifiers::Volatile),
4677                                 MD->getRefQualifier() == RQ_RValue,
4678                                 TQ & Qualifiers::Const,
4679                                 TQ & Qualifiers::Volatile);
4680  }
4681
4682  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4683
4684  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4685  bool shouldDeleteForField(FieldDecl *FD);
4686  bool shouldDeleteForAllConstMembers();
4687
4688  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4689                                     unsigned Quals);
4690  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4691                                    Sema::SpecialMemberOverloadResult *SMOR,
4692                                    bool IsDtorCallInCtor);
4693
4694  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4695};
4696}
4697
4698/// Is the given special member inaccessible when used on the given
4699/// sub-object.
4700bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4701                                             CXXMethodDecl *target) {
4702  /// If we're operating on a base class, the object type is the
4703  /// type of this special member.
4704  QualType objectTy;
4705  AccessSpecifier access = target->getAccess();
4706  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4707    objectTy = S.Context.getTypeDeclType(MD->getParent());
4708    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4709
4710  // If we're operating on a field, the object type is the type of the field.
4711  } else {
4712    objectTy = S.Context.getTypeDeclType(target->getParent());
4713  }
4714
4715  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4716}
4717
4718/// Check whether we should delete a special member due to the implicit
4719/// definition containing a call to a special member of a subobject.
4720bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4721    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4722    bool IsDtorCallInCtor) {
4723  CXXMethodDecl *Decl = SMOR->getMethod();
4724  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4725
4726  int DiagKind = -1;
4727
4728  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4729    DiagKind = !Decl ? 0 : 1;
4730  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4731    DiagKind = 2;
4732  else if (!isAccessible(Subobj, Decl))
4733    DiagKind = 3;
4734  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4735           !Decl->isTrivial()) {
4736    // A member of a union must have a trivial corresponding special member.
4737    // As a weird special case, a destructor call from a union's constructor
4738    // must be accessible and non-deleted, but need not be trivial. Such a
4739    // destructor is never actually called, but is semantically checked as
4740    // if it were.
4741    DiagKind = 4;
4742  }
4743
4744  if (DiagKind == -1)
4745    return false;
4746
4747  if (Diagnose) {
4748    if (Field) {
4749      S.Diag(Field->getLocation(),
4750             diag::note_deleted_special_member_class_subobject)
4751        << CSM << MD->getParent() << /*IsField*/true
4752        << Field << DiagKind << IsDtorCallInCtor;
4753    } else {
4754      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4755      S.Diag(Base->getLocStart(),
4756             diag::note_deleted_special_member_class_subobject)
4757        << CSM << MD->getParent() << /*IsField*/false
4758        << Base->getType() << DiagKind << IsDtorCallInCtor;
4759    }
4760
4761    if (DiagKind == 1)
4762      S.NoteDeletedFunction(Decl);
4763    // FIXME: Explain inaccessibility if DiagKind == 3.
4764  }
4765
4766  return true;
4767}
4768
4769/// Check whether we should delete a special member function due to having a
4770/// direct or virtual base class or non-static data member of class type M.
4771bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4772    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4773  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4774
4775  // C++11 [class.ctor]p5:
4776  // -- any direct or virtual base class, or non-static data member with no
4777  //    brace-or-equal-initializer, has class type M (or array thereof) and
4778  //    either M has no default constructor or overload resolution as applied
4779  //    to M's default constructor results in an ambiguity or in a function
4780  //    that is deleted or inaccessible
4781  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4782  // -- a direct or virtual base class B that cannot be copied/moved because
4783  //    overload resolution, as applied to B's corresponding special member,
4784  //    results in an ambiguity or a function that is deleted or inaccessible
4785  //    from the defaulted special member
4786  // C++11 [class.dtor]p5:
4787  // -- any direct or virtual base class [...] has a type with a destructor
4788  //    that is deleted or inaccessible
4789  if (!(CSM == Sema::CXXDefaultConstructor &&
4790        Field && Field->hasInClassInitializer()) &&
4791      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4792    return true;
4793
4794  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4795  // -- any direct or virtual base class or non-static data member has a
4796  //    type with a destructor that is deleted or inaccessible
4797  if (IsConstructor) {
4798    Sema::SpecialMemberOverloadResult *SMOR =
4799        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4800                              false, false, false, false, false);
4801    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4802      return true;
4803  }
4804
4805  return false;
4806}
4807
4808/// Check whether we should delete a special member function due to the class
4809/// having a particular direct or virtual base class.
4810bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4811  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4812  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4813}
4814
4815/// Check whether we should delete a special member function due to the class
4816/// having a particular non-static data member.
4817bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4818  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4819  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4820
4821  if (CSM == Sema::CXXDefaultConstructor) {
4822    // For a default constructor, all references must be initialized in-class
4823    // and, if a union, it must have a non-const member.
4824    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4825      if (Diagnose)
4826        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4827          << MD->getParent() << FD << FieldType << /*Reference*/0;
4828      return true;
4829    }
4830    // C++11 [class.ctor]p5: any non-variant non-static data member of
4831    // const-qualified type (or array thereof) with no
4832    // brace-or-equal-initializer does not have a user-provided default
4833    // constructor.
4834    if (!inUnion() && FieldType.isConstQualified() &&
4835        !FD->hasInClassInitializer() &&
4836        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4837      if (Diagnose)
4838        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4839          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4840      return true;
4841    }
4842
4843    if (inUnion() && !FieldType.isConstQualified())
4844      AllFieldsAreConst = false;
4845  } else if (CSM == Sema::CXXCopyConstructor) {
4846    // For a copy constructor, data members must not be of rvalue reference
4847    // type.
4848    if (FieldType->isRValueReferenceType()) {
4849      if (Diagnose)
4850        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4851          << MD->getParent() << FD << FieldType;
4852      return true;
4853    }
4854  } else if (IsAssignment) {
4855    // For an assignment operator, data members must not be of reference type.
4856    if (FieldType->isReferenceType()) {
4857      if (Diagnose)
4858        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4859          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4860      return true;
4861    }
4862    if (!FieldRecord && FieldType.isConstQualified()) {
4863      // C++11 [class.copy]p23:
4864      // -- a non-static data member of const non-class type (or array thereof)
4865      if (Diagnose)
4866        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4867          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4868      return true;
4869    }
4870  }
4871
4872  if (FieldRecord) {
4873    // Some additional restrictions exist on the variant members.
4874    if (!inUnion() && FieldRecord->isUnion() &&
4875        FieldRecord->isAnonymousStructOrUnion()) {
4876      bool AllVariantFieldsAreConst = true;
4877
4878      // FIXME: Handle anonymous unions declared within anonymous unions.
4879      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4880                                         UE = FieldRecord->field_end();
4881           UI != UE; ++UI) {
4882        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4883
4884        if (!UnionFieldType.isConstQualified())
4885          AllVariantFieldsAreConst = false;
4886
4887        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4888        if (UnionFieldRecord &&
4889            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4890                                          UnionFieldType.getCVRQualifiers()))
4891          return true;
4892      }
4893
4894      // At least one member in each anonymous union must be non-const
4895      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4896          FieldRecord->field_begin() != FieldRecord->field_end()) {
4897        if (Diagnose)
4898          S.Diag(FieldRecord->getLocation(),
4899                 diag::note_deleted_default_ctor_all_const)
4900            << MD->getParent() << /*anonymous union*/1;
4901        return true;
4902      }
4903
4904      // Don't check the implicit member of the anonymous union type.
4905      // This is technically non-conformant, but sanity demands it.
4906      return false;
4907    }
4908
4909    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4910                                      FieldType.getCVRQualifiers()))
4911      return true;
4912  }
4913
4914  return false;
4915}
4916
4917/// C++11 [class.ctor] p5:
4918///   A defaulted default constructor for a class X is defined as deleted if
4919/// X is a union and all of its variant members are of const-qualified type.
4920bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4921  // This is a silly definition, because it gives an empty union a deleted
4922  // default constructor. Don't do that.
4923  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4924      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4925    if (Diagnose)
4926      S.Diag(MD->getParent()->getLocation(),
4927             diag::note_deleted_default_ctor_all_const)
4928        << MD->getParent() << /*not anonymous union*/0;
4929    return true;
4930  }
4931  return false;
4932}
4933
4934/// Determine whether a defaulted special member function should be defined as
4935/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4936/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4937bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4938                                     bool Diagnose) {
4939  if (MD->isInvalidDecl())
4940    return false;
4941  CXXRecordDecl *RD = MD->getParent();
4942  assert(!RD->isDependentType() && "do deletion after instantiation");
4943  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
4944    return false;
4945
4946  // C++11 [expr.lambda.prim]p19:
4947  //   The closure type associated with a lambda-expression has a
4948  //   deleted (8.4.3) default constructor and a deleted copy
4949  //   assignment operator.
4950  if (RD->isLambda() &&
4951      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4952    if (Diagnose)
4953      Diag(RD->getLocation(), diag::note_lambda_decl);
4954    return true;
4955  }
4956
4957  // For an anonymous struct or union, the copy and assignment special members
4958  // will never be used, so skip the check. For an anonymous union declared at
4959  // namespace scope, the constructor and destructor are used.
4960  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4961      RD->isAnonymousStructOrUnion())
4962    return false;
4963
4964  // C++11 [class.copy]p7, p18:
4965  //   If the class definition declares a move constructor or move assignment
4966  //   operator, an implicitly declared copy constructor or copy assignment
4967  //   operator is defined as deleted.
4968  if (MD->isImplicit() &&
4969      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4970    CXXMethodDecl *UserDeclaredMove = 0;
4971
4972    // In Microsoft mode, a user-declared move only causes the deletion of the
4973    // corresponding copy operation, not both copy operations.
4974    if (RD->hasUserDeclaredMoveConstructor() &&
4975        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4976      if (!Diagnose) return true;
4977
4978      // Find any user-declared move constructor.
4979      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
4980                                        E = RD->ctor_end(); I != E; ++I) {
4981        if (I->isMoveConstructor()) {
4982          UserDeclaredMove = *I;
4983          break;
4984        }
4985      }
4986      assert(UserDeclaredMove);
4987    } else if (RD->hasUserDeclaredMoveAssignment() &&
4988               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4989      if (!Diagnose) return true;
4990
4991      // Find any user-declared move assignment operator.
4992      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
4993                                          E = RD->method_end(); I != E; ++I) {
4994        if (I->isMoveAssignmentOperator()) {
4995          UserDeclaredMove = *I;
4996          break;
4997        }
4998      }
4999      assert(UserDeclaredMove);
5000    }
5001
5002    if (UserDeclaredMove) {
5003      Diag(UserDeclaredMove->getLocation(),
5004           diag::note_deleted_copy_user_declared_move)
5005        << (CSM == CXXCopyAssignment) << RD
5006        << UserDeclaredMove->isMoveAssignmentOperator();
5007      return true;
5008    }
5009  }
5010
5011  // Do access control from the special member function
5012  ContextRAII MethodContext(*this, MD);
5013
5014  // C++11 [class.dtor]p5:
5015  // -- for a virtual destructor, lookup of the non-array deallocation function
5016  //    results in an ambiguity or in a function that is deleted or inaccessible
5017  if (CSM == CXXDestructor && MD->isVirtual()) {
5018    FunctionDecl *OperatorDelete = 0;
5019    DeclarationName Name =
5020      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5021    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5022                                 OperatorDelete, false)) {
5023      if (Diagnose)
5024        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5025      return true;
5026    }
5027  }
5028
5029  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5030
5031  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5032                                          BE = RD->bases_end(); BI != BE; ++BI)
5033    if (!BI->isVirtual() &&
5034        SMI.shouldDeleteForBase(BI))
5035      return true;
5036
5037  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
5038                                          BE = RD->vbases_end(); BI != BE; ++BI)
5039    if (SMI.shouldDeleteForBase(BI))
5040      return true;
5041
5042  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5043                                     FE = RD->field_end(); FI != FE; ++FI)
5044    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5045        SMI.shouldDeleteForField(*FI))
5046      return true;
5047
5048  if (SMI.shouldDeleteForAllConstMembers())
5049    return true;
5050
5051  return false;
5052}
5053
5054/// Perform lookup for a special member of the specified kind, and determine
5055/// whether it is trivial. If the triviality can be determined without the
5056/// lookup, skip it. This is intended for use when determining whether a
5057/// special member of a containing object is trivial, and thus does not ever
5058/// perform overload resolution for default constructors.
5059///
5060/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5061/// member that was most likely to be intended to be trivial, if any.
5062static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5063                                     Sema::CXXSpecialMember CSM, unsigned Quals,
5064                                     CXXMethodDecl **Selected) {
5065  if (Selected)
5066    *Selected = 0;
5067
5068  switch (CSM) {
5069  case Sema::CXXInvalid:
5070    llvm_unreachable("not a special member");
5071
5072  case Sema::CXXDefaultConstructor:
5073    // C++11 [class.ctor]p5:
5074    //   A default constructor is trivial if:
5075    //    - all the [direct subobjects] have trivial default constructors
5076    //
5077    // Note, no overload resolution is performed in this case.
5078    if (RD->hasTrivialDefaultConstructor())
5079      return true;
5080
5081    if (Selected) {
5082      // If there's a default constructor which could have been trivial, dig it
5083      // out. Otherwise, if there's any user-provided default constructor, point
5084      // to that as an example of why there's not a trivial one.
5085      CXXConstructorDecl *DefCtor = 0;
5086      if (RD->needsImplicitDefaultConstructor())
5087        S.DeclareImplicitDefaultConstructor(RD);
5088      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
5089                                        CE = RD->ctor_end(); CI != CE; ++CI) {
5090        if (!CI->isDefaultConstructor())
5091          continue;
5092        DefCtor = *CI;
5093        if (!DefCtor->isUserProvided())
5094          break;
5095      }
5096
5097      *Selected = DefCtor;
5098    }
5099
5100    return false;
5101
5102  case Sema::CXXDestructor:
5103    // C++11 [class.dtor]p5:
5104    //   A destructor is trivial if:
5105    //    - all the direct [subobjects] have trivial destructors
5106    if (RD->hasTrivialDestructor())
5107      return true;
5108
5109    if (Selected) {
5110      if (RD->needsImplicitDestructor())
5111        S.DeclareImplicitDestructor(RD);
5112      *Selected = RD->getDestructor();
5113    }
5114
5115    return false;
5116
5117  case Sema::CXXCopyConstructor:
5118    // C++11 [class.copy]p12:
5119    //   A copy constructor is trivial if:
5120    //    - the constructor selected to copy each direct [subobject] is trivial
5121    if (RD->hasTrivialCopyConstructor()) {
5122      if (Quals == Qualifiers::Const)
5123        // We must either select the trivial copy constructor or reach an
5124        // ambiguity; no need to actually perform overload resolution.
5125        return true;
5126    } else if (!Selected) {
5127      return false;
5128    }
5129    // In C++98, we are not supposed to perform overload resolution here, but we
5130    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5131    // cases like B as having a non-trivial copy constructor:
5132    //   struct A { template<typename T> A(T&); };
5133    //   struct B { mutable A a; };
5134    goto NeedOverloadResolution;
5135
5136  case Sema::CXXCopyAssignment:
5137    // C++11 [class.copy]p25:
5138    //   A copy assignment operator is trivial if:
5139    //    - the assignment operator selected to copy each direct [subobject] is
5140    //      trivial
5141    if (RD->hasTrivialCopyAssignment()) {
5142      if (Quals == Qualifiers::Const)
5143        return true;
5144    } else if (!Selected) {
5145      return false;
5146    }
5147    // In C++98, we are not supposed to perform overload resolution here, but we
5148    // treat that as a language defect.
5149    goto NeedOverloadResolution;
5150
5151  case Sema::CXXMoveConstructor:
5152  case Sema::CXXMoveAssignment:
5153  NeedOverloadResolution:
5154    Sema::SpecialMemberOverloadResult *SMOR =
5155      S.LookupSpecialMember(RD, CSM,
5156                            Quals & Qualifiers::Const,
5157                            Quals & Qualifiers::Volatile,
5158                            /*RValueThis*/false, /*ConstThis*/false,
5159                            /*VolatileThis*/false);
5160
5161    // The standard doesn't describe how to behave if the lookup is ambiguous.
5162    // We treat it as not making the member non-trivial, just like the standard
5163    // mandates for the default constructor. This should rarely matter, because
5164    // the member will also be deleted.
5165    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5166      return true;
5167
5168    if (!SMOR->getMethod()) {
5169      assert(SMOR->getKind() ==
5170             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5171      return false;
5172    }
5173
5174    // We deliberately don't check if we found a deleted special member. We're
5175    // not supposed to!
5176    if (Selected)
5177      *Selected = SMOR->getMethod();
5178    return SMOR->getMethod()->isTrivial();
5179  }
5180
5181  llvm_unreachable("unknown special method kind");
5182}
5183
5184static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5185  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5186       CI != CE; ++CI)
5187    if (!CI->isImplicit())
5188      return *CI;
5189
5190  // Look for constructor templates.
5191  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5192  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5193    if (CXXConstructorDecl *CD =
5194          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5195      return CD;
5196  }
5197
5198  return 0;
5199}
5200
5201/// The kind of subobject we are checking for triviality. The values of this
5202/// enumeration are used in diagnostics.
5203enum TrivialSubobjectKind {
5204  /// The subobject is a base class.
5205  TSK_BaseClass,
5206  /// The subobject is a non-static data member.
5207  TSK_Field,
5208  /// The object is actually the complete object.
5209  TSK_CompleteObject
5210};
5211
5212/// Check whether the special member selected for a given type would be trivial.
5213static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5214                                      QualType SubType,
5215                                      Sema::CXXSpecialMember CSM,
5216                                      TrivialSubobjectKind Kind,
5217                                      bool Diagnose) {
5218  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5219  if (!SubRD)
5220    return true;
5221
5222  CXXMethodDecl *Selected;
5223  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5224                               Diagnose ? &Selected : 0))
5225    return true;
5226
5227  if (Diagnose) {
5228    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5229      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5230        << Kind << SubType.getUnqualifiedType();
5231      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5232        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5233    } else if (!Selected)
5234      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5235        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5236    else if (Selected->isUserProvided()) {
5237      if (Kind == TSK_CompleteObject)
5238        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5239          << Kind << SubType.getUnqualifiedType() << CSM;
5240      else {
5241        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5242          << Kind << SubType.getUnqualifiedType() << CSM;
5243        S.Diag(Selected->getLocation(), diag::note_declared_at);
5244      }
5245    } else {
5246      if (Kind != TSK_CompleteObject)
5247        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5248          << Kind << SubType.getUnqualifiedType() << CSM;
5249
5250      // Explain why the defaulted or deleted special member isn't trivial.
5251      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5252    }
5253  }
5254
5255  return false;
5256}
5257
5258/// Check whether the members of a class type allow a special member to be
5259/// trivial.
5260static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5261                                     Sema::CXXSpecialMember CSM,
5262                                     bool ConstArg, bool Diagnose) {
5263  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5264                                     FE = RD->field_end(); FI != FE; ++FI) {
5265    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5266      continue;
5267
5268    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5269
5270    // Pretend anonymous struct or union members are members of this class.
5271    if (FI->isAnonymousStructOrUnion()) {
5272      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5273                                    CSM, ConstArg, Diagnose))
5274        return false;
5275      continue;
5276    }
5277
5278    // C++11 [class.ctor]p5:
5279    //   A default constructor is trivial if [...]
5280    //    -- no non-static data member of its class has a
5281    //       brace-or-equal-initializer
5282    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5283      if (Diagnose)
5284        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5285      return false;
5286    }
5287
5288    // Objective C ARC 4.3.5:
5289    //   [...] nontrivally ownership-qualified types are [...] not trivially
5290    //   default constructible, copy constructible, move constructible, copy
5291    //   assignable, move assignable, or destructible [...]
5292    if (S.getLangOpts().ObjCAutoRefCount &&
5293        FieldType.hasNonTrivialObjCLifetime()) {
5294      if (Diagnose)
5295        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5296          << RD << FieldType.getObjCLifetime();
5297      return false;
5298    }
5299
5300    if (ConstArg && !FI->isMutable())
5301      FieldType.addConst();
5302    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5303                                   TSK_Field, Diagnose))
5304      return false;
5305  }
5306
5307  return true;
5308}
5309
5310/// Diagnose why the specified class does not have a trivial special member of
5311/// the given kind.
5312void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5313  QualType Ty = Context.getRecordType(RD);
5314  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5315    Ty.addConst();
5316
5317  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5318                            TSK_CompleteObject, /*Diagnose*/true);
5319}
5320
5321/// Determine whether a defaulted or deleted special member function is trivial,
5322/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5323/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5324bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5325                                  bool Diagnose) {
5326  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5327
5328  CXXRecordDecl *RD = MD->getParent();
5329
5330  bool ConstArg = false;
5331
5332  // C++11 [class.copy]p12, p25:
5333  //   A [special member] is trivial if its declared parameter type is the same
5334  //   as if it had been implicitly declared [...]
5335  switch (CSM) {
5336  case CXXDefaultConstructor:
5337  case CXXDestructor:
5338    // Trivial default constructors and destructors cannot have parameters.
5339    break;
5340
5341  case CXXCopyConstructor:
5342  case CXXCopyAssignment: {
5343    // Trivial copy operations always have const, non-volatile parameter types.
5344    ConstArg = true;
5345    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5346    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5347    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5348      if (Diagnose)
5349        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5350          << Param0->getSourceRange() << Param0->getType()
5351          << Context.getLValueReferenceType(
5352               Context.getRecordType(RD).withConst());
5353      return false;
5354    }
5355    break;
5356  }
5357
5358  case CXXMoveConstructor:
5359  case CXXMoveAssignment: {
5360    // Trivial move operations always have non-cv-qualified parameters.
5361    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5362    const RValueReferenceType *RT =
5363      Param0->getType()->getAs<RValueReferenceType>();
5364    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5365      if (Diagnose)
5366        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5367          << Param0->getSourceRange() << Param0->getType()
5368          << Context.getRValueReferenceType(Context.getRecordType(RD));
5369      return false;
5370    }
5371    break;
5372  }
5373
5374  case CXXInvalid:
5375    llvm_unreachable("not a special member");
5376  }
5377
5378  // FIXME: We require that the parameter-declaration-clause is equivalent to
5379  // that of an implicit declaration, not just that the declared parameter type
5380  // matches, in order to prevent absuridities like a function simultaneously
5381  // being a trivial copy constructor and a non-trivial default constructor.
5382  // This issue has not yet been assigned a core issue number.
5383  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5384    if (Diagnose)
5385      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5386           diag::note_nontrivial_default_arg)
5387        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5388    return false;
5389  }
5390  if (MD->isVariadic()) {
5391    if (Diagnose)
5392      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5393    return false;
5394  }
5395
5396  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5397  //   A copy/move [constructor or assignment operator] is trivial if
5398  //    -- the [member] selected to copy/move each direct base class subobject
5399  //       is trivial
5400  //
5401  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5402  //   A [default constructor or destructor] is trivial if
5403  //    -- all the direct base classes have trivial [default constructors or
5404  //       destructors]
5405  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5406                                          BE = RD->bases_end(); BI != BE; ++BI)
5407    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5408                                   ConstArg ? BI->getType().withConst()
5409                                            : BI->getType(),
5410                                   CSM, TSK_BaseClass, Diagnose))
5411      return false;
5412
5413  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5414  //   A copy/move [constructor or assignment operator] for a class X is
5415  //   trivial if
5416  //    -- for each non-static data member of X that is of class type (or array
5417  //       thereof), the constructor selected to copy/move that member is
5418  //       trivial
5419  //
5420  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5421  //   A [default constructor or destructor] is trivial if
5422  //    -- for all of the non-static data members of its class that are of class
5423  //       type (or array thereof), each such class has a trivial [default
5424  //       constructor or destructor]
5425  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5426    return false;
5427
5428  // C++11 [class.dtor]p5:
5429  //   A destructor is trivial if [...]
5430  //    -- the destructor is not virtual
5431  if (CSM == CXXDestructor && MD->isVirtual()) {
5432    if (Diagnose)
5433      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5434    return false;
5435  }
5436
5437  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5438  //   A [special member] for class X is trivial if [...]
5439  //    -- class X has no virtual functions and no virtual base classes
5440  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5441    if (!Diagnose)
5442      return false;
5443
5444    if (RD->getNumVBases()) {
5445      // Check for virtual bases. We already know that the corresponding
5446      // member in all bases is trivial, so vbases must all be direct.
5447      CXXBaseSpecifier &BS = *RD->vbases_begin();
5448      assert(BS.isVirtual());
5449      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5450      return false;
5451    }
5452
5453    // Must have a virtual method.
5454    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5455                                        ME = RD->method_end(); MI != ME; ++MI) {
5456      if (MI->isVirtual()) {
5457        SourceLocation MLoc = MI->getLocStart();
5458        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5459        return false;
5460      }
5461    }
5462
5463    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5464  }
5465
5466  // Looks like it's trivial!
5467  return true;
5468}
5469
5470/// \brief Data used with FindHiddenVirtualMethod
5471namespace {
5472  struct FindHiddenVirtualMethodData {
5473    Sema *S;
5474    CXXMethodDecl *Method;
5475    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5476    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5477  };
5478}
5479
5480/// \brief Check whether any most overriden method from MD in Methods
5481static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5482                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5483  if (MD->size_overridden_methods() == 0)
5484    return Methods.count(MD->getCanonicalDecl());
5485  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5486                                      E = MD->end_overridden_methods();
5487       I != E; ++I)
5488    if (CheckMostOverridenMethods(*I, Methods))
5489      return true;
5490  return false;
5491}
5492
5493/// \brief Member lookup function that determines whether a given C++
5494/// method overloads virtual methods in a base class without overriding any,
5495/// to be used with CXXRecordDecl::lookupInBases().
5496static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5497                                    CXXBasePath &Path,
5498                                    void *UserData) {
5499  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5500
5501  FindHiddenVirtualMethodData &Data
5502    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5503
5504  DeclarationName Name = Data.Method->getDeclName();
5505  assert(Name.getNameKind() == DeclarationName::Identifier);
5506
5507  bool foundSameNameMethod = false;
5508  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5509  for (Path.Decls = BaseRecord->lookup(Name);
5510       !Path.Decls.empty();
5511       Path.Decls = Path.Decls.slice(1)) {
5512    NamedDecl *D = Path.Decls.front();
5513    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5514      MD = MD->getCanonicalDecl();
5515      foundSameNameMethod = true;
5516      // Interested only in hidden virtual methods.
5517      if (!MD->isVirtual())
5518        continue;
5519      // If the method we are checking overrides a method from its base
5520      // don't warn about the other overloaded methods.
5521      if (!Data.S->IsOverload(Data.Method, MD, false))
5522        return true;
5523      // Collect the overload only if its hidden.
5524      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5525        overloadedMethods.push_back(MD);
5526    }
5527  }
5528
5529  if (foundSameNameMethod)
5530    Data.OverloadedMethods.append(overloadedMethods.begin(),
5531                                   overloadedMethods.end());
5532  return foundSameNameMethod;
5533}
5534
5535/// \brief Add the most overriden methods from MD to Methods
5536static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5537                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5538  if (MD->size_overridden_methods() == 0)
5539    Methods.insert(MD->getCanonicalDecl());
5540  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5541                                      E = MD->end_overridden_methods();
5542       I != E; ++I)
5543    AddMostOverridenMethods(*I, Methods);
5544}
5545
5546/// \brief See if a method overloads virtual methods in a base class without
5547/// overriding any.
5548void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5549  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5550                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5551    return;
5552  if (!MD->getDeclName().isIdentifier())
5553    return;
5554
5555  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5556                     /*bool RecordPaths=*/false,
5557                     /*bool DetectVirtual=*/false);
5558  FindHiddenVirtualMethodData Data;
5559  Data.Method = MD;
5560  Data.S = this;
5561
5562  // Keep the base methods that were overriden or introduced in the subclass
5563  // by 'using' in a set. A base method not in this set is hidden.
5564  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5565  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5566    NamedDecl *ND = *I;
5567    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5568      ND = shad->getTargetDecl();
5569    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5570      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5571  }
5572
5573  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5574      !Data.OverloadedMethods.empty()) {
5575    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5576      << MD << (Data.OverloadedMethods.size() > 1);
5577
5578    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5579      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5580      PartialDiagnostic PD = PDiag(
5581           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5582      HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
5583      Diag(overloadedMD->getLocation(), PD);
5584    }
5585  }
5586}
5587
5588void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5589                                             Decl *TagDecl,
5590                                             SourceLocation LBrac,
5591                                             SourceLocation RBrac,
5592                                             AttributeList *AttrList) {
5593  if (!TagDecl)
5594    return;
5595
5596  AdjustDeclIfTemplate(TagDecl);
5597
5598  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5599    if (l->getKind() != AttributeList::AT_Visibility)
5600      continue;
5601    l->setInvalid();
5602    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5603      l->getName();
5604  }
5605
5606  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5607              // strict aliasing violation!
5608              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5609              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5610
5611  CheckCompletedCXXClass(
5612                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5613}
5614
5615/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5616/// special functions, such as the default constructor, copy
5617/// constructor, or destructor, to the given C++ class (C++
5618/// [special]p1).  This routine can only be executed just before the
5619/// definition of the class is complete.
5620void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5621  if (!ClassDecl->hasUserDeclaredConstructor())
5622    ++ASTContext::NumImplicitDefaultConstructors;
5623
5624  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5625    ++ASTContext::NumImplicitCopyConstructors;
5626
5627    // If the properties or semantics of the copy constructor couldn't be
5628    // determined while the class was being declared, force a declaration
5629    // of it now.
5630    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5631      DeclareImplicitCopyConstructor(ClassDecl);
5632  }
5633
5634  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5635    ++ASTContext::NumImplicitMoveConstructors;
5636
5637    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5638      DeclareImplicitMoveConstructor(ClassDecl);
5639  }
5640
5641  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5642    ++ASTContext::NumImplicitCopyAssignmentOperators;
5643
5644    // If we have a dynamic class, then the copy assignment operator may be
5645    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5646    // it shows up in the right place in the vtable and that we diagnose
5647    // problems with the implicit exception specification.
5648    if (ClassDecl->isDynamicClass() ||
5649        ClassDecl->needsOverloadResolutionForCopyAssignment())
5650      DeclareImplicitCopyAssignment(ClassDecl);
5651  }
5652
5653  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5654    ++ASTContext::NumImplicitMoveAssignmentOperators;
5655
5656    // Likewise for the move assignment operator.
5657    if (ClassDecl->isDynamicClass() ||
5658        ClassDecl->needsOverloadResolutionForMoveAssignment())
5659      DeclareImplicitMoveAssignment(ClassDecl);
5660  }
5661
5662  if (!ClassDecl->hasUserDeclaredDestructor()) {
5663    ++ASTContext::NumImplicitDestructors;
5664
5665    // If we have a dynamic class, then the destructor may be virtual, so we
5666    // have to declare the destructor immediately. This ensures that, e.g., it
5667    // shows up in the right place in the vtable and that we diagnose problems
5668    // with the implicit exception specification.
5669    if (ClassDecl->isDynamicClass() ||
5670        ClassDecl->needsOverloadResolutionForDestructor())
5671      DeclareImplicitDestructor(ClassDecl);
5672  }
5673}
5674
5675void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5676  if (!D)
5677    return;
5678
5679  int NumParamList = D->getNumTemplateParameterLists();
5680  for (int i = 0; i < NumParamList; i++) {
5681    TemplateParameterList* Params = D->getTemplateParameterList(i);
5682    for (TemplateParameterList::iterator Param = Params->begin(),
5683                                      ParamEnd = Params->end();
5684          Param != ParamEnd; ++Param) {
5685      NamedDecl *Named = cast<NamedDecl>(*Param);
5686      if (Named->getDeclName()) {
5687        S->AddDecl(Named);
5688        IdResolver.AddDecl(Named);
5689      }
5690    }
5691  }
5692}
5693
5694void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5695  if (!D)
5696    return;
5697
5698  TemplateParameterList *Params = 0;
5699  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5700    Params = Template->getTemplateParameters();
5701  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5702           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5703    Params = PartialSpec->getTemplateParameters();
5704  else
5705    return;
5706
5707  for (TemplateParameterList::iterator Param = Params->begin(),
5708                                    ParamEnd = Params->end();
5709       Param != ParamEnd; ++Param) {
5710    NamedDecl *Named = cast<NamedDecl>(*Param);
5711    if (Named->getDeclName()) {
5712      S->AddDecl(Named);
5713      IdResolver.AddDecl(Named);
5714    }
5715  }
5716}
5717
5718void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5719  if (!RecordD) return;
5720  AdjustDeclIfTemplate(RecordD);
5721  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5722  PushDeclContext(S, Record);
5723}
5724
5725void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5726  if (!RecordD) return;
5727  PopDeclContext();
5728}
5729
5730/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5731/// parsing a top-level (non-nested) C++ class, and we are now
5732/// parsing those parts of the given Method declaration that could
5733/// not be parsed earlier (C++ [class.mem]p2), such as default
5734/// arguments. This action should enter the scope of the given
5735/// Method declaration as if we had just parsed the qualified method
5736/// name. However, it should not bring the parameters into scope;
5737/// that will be performed by ActOnDelayedCXXMethodParameter.
5738void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5739}
5740
5741/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5742/// C++ method declaration. We're (re-)introducing the given
5743/// function parameter into scope for use in parsing later parts of
5744/// the method declaration. For example, we could see an
5745/// ActOnParamDefaultArgument event for this parameter.
5746void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5747  if (!ParamD)
5748    return;
5749
5750  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5751
5752  // If this parameter has an unparsed default argument, clear it out
5753  // to make way for the parsed default argument.
5754  if (Param->hasUnparsedDefaultArg())
5755    Param->setDefaultArg(0);
5756
5757  S->AddDecl(Param);
5758  if (Param->getDeclName())
5759    IdResolver.AddDecl(Param);
5760}
5761
5762/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5763/// processing the delayed method declaration for Method. The method
5764/// declaration is now considered finished. There may be a separate
5765/// ActOnStartOfFunctionDef action later (not necessarily
5766/// immediately!) for this method, if it was also defined inside the
5767/// class body.
5768void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5769  if (!MethodD)
5770    return;
5771
5772  AdjustDeclIfTemplate(MethodD);
5773
5774  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5775
5776  // Now that we have our default arguments, check the constructor
5777  // again. It could produce additional diagnostics or affect whether
5778  // the class has implicitly-declared destructors, among other
5779  // things.
5780  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5781    CheckConstructor(Constructor);
5782
5783  // Check the default arguments, which we may have added.
5784  if (!Method->isInvalidDecl())
5785    CheckCXXDefaultArguments(Method);
5786}
5787
5788/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5789/// the well-formedness of the constructor declarator @p D with type @p
5790/// R. If there are any errors in the declarator, this routine will
5791/// emit diagnostics and set the invalid bit to true.  In any case, the type
5792/// will be updated to reflect a well-formed type for the constructor and
5793/// returned.
5794QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5795                                          StorageClass &SC) {
5796  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5797
5798  // C++ [class.ctor]p3:
5799  //   A constructor shall not be virtual (10.3) or static (9.4). A
5800  //   constructor can be invoked for a const, volatile or const
5801  //   volatile object. A constructor shall not be declared const,
5802  //   volatile, or const volatile (9.3.2).
5803  if (isVirtual) {
5804    if (!D.isInvalidType())
5805      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5806        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5807        << SourceRange(D.getIdentifierLoc());
5808    D.setInvalidType();
5809  }
5810  if (SC == SC_Static) {
5811    if (!D.isInvalidType())
5812      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5813        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5814        << SourceRange(D.getIdentifierLoc());
5815    D.setInvalidType();
5816    SC = SC_None;
5817  }
5818
5819  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5820  if (FTI.TypeQuals != 0) {
5821    if (FTI.TypeQuals & Qualifiers::Const)
5822      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5823        << "const" << SourceRange(D.getIdentifierLoc());
5824    if (FTI.TypeQuals & Qualifiers::Volatile)
5825      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5826        << "volatile" << SourceRange(D.getIdentifierLoc());
5827    if (FTI.TypeQuals & Qualifiers::Restrict)
5828      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5829        << "restrict" << SourceRange(D.getIdentifierLoc());
5830    D.setInvalidType();
5831  }
5832
5833  // C++0x [class.ctor]p4:
5834  //   A constructor shall not be declared with a ref-qualifier.
5835  if (FTI.hasRefQualifier()) {
5836    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5837      << FTI.RefQualifierIsLValueRef
5838      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5839    D.setInvalidType();
5840  }
5841
5842  // Rebuild the function type "R" without any type qualifiers (in
5843  // case any of the errors above fired) and with "void" as the
5844  // return type, since constructors don't have return types.
5845  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5846  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5847    return R;
5848
5849  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5850  EPI.TypeQuals = 0;
5851  EPI.RefQualifier = RQ_None;
5852
5853  return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
5854}
5855
5856/// CheckConstructor - Checks a fully-formed constructor for
5857/// well-formedness, issuing any diagnostics required. Returns true if
5858/// the constructor declarator is invalid.
5859void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5860  CXXRecordDecl *ClassDecl
5861    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5862  if (!ClassDecl)
5863    return Constructor->setInvalidDecl();
5864
5865  // C++ [class.copy]p3:
5866  //   A declaration of a constructor for a class X is ill-formed if
5867  //   its first parameter is of type (optionally cv-qualified) X and
5868  //   either there are no other parameters or else all other
5869  //   parameters have default arguments.
5870  if (!Constructor->isInvalidDecl() &&
5871      ((Constructor->getNumParams() == 1) ||
5872       (Constructor->getNumParams() > 1 &&
5873        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5874      Constructor->getTemplateSpecializationKind()
5875                                              != TSK_ImplicitInstantiation) {
5876    QualType ParamType = Constructor->getParamDecl(0)->getType();
5877    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5878    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5879      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5880      const char *ConstRef
5881        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5882                                                        : " const &";
5883      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5884        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5885
5886      // FIXME: Rather that making the constructor invalid, we should endeavor
5887      // to fix the type.
5888      Constructor->setInvalidDecl();
5889    }
5890  }
5891}
5892
5893/// CheckDestructor - Checks a fully-formed destructor definition for
5894/// well-formedness, issuing any diagnostics required.  Returns true
5895/// on error.
5896bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5897  CXXRecordDecl *RD = Destructor->getParent();
5898
5899  if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
5900    SourceLocation Loc;
5901
5902    if (!Destructor->isImplicit())
5903      Loc = Destructor->getLocation();
5904    else
5905      Loc = RD->getLocation();
5906
5907    // If we have a virtual destructor, look up the deallocation function
5908    FunctionDecl *OperatorDelete = 0;
5909    DeclarationName Name =
5910    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5911    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5912      return true;
5913
5914    MarkFunctionReferenced(Loc, OperatorDelete);
5915
5916    Destructor->setOperatorDelete(OperatorDelete);
5917  }
5918
5919  return false;
5920}
5921
5922static inline bool
5923FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5924  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5925          FTI.ArgInfo[0].Param &&
5926          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5927}
5928
5929/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5930/// the well-formednes of the destructor declarator @p D with type @p
5931/// R. If there are any errors in the declarator, this routine will
5932/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5933/// will be updated to reflect a well-formed type for the destructor and
5934/// returned.
5935QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5936                                         StorageClass& SC) {
5937  // C++ [class.dtor]p1:
5938  //   [...] A typedef-name that names a class is a class-name
5939  //   (7.1.3); however, a typedef-name that names a class shall not
5940  //   be used as the identifier in the declarator for a destructor
5941  //   declaration.
5942  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5943  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5944    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5945      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5946  else if (const TemplateSpecializationType *TST =
5947             DeclaratorType->getAs<TemplateSpecializationType>())
5948    if (TST->isTypeAlias())
5949      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5950        << DeclaratorType << 1;
5951
5952  // C++ [class.dtor]p2:
5953  //   A destructor is used to destroy objects of its class type. A
5954  //   destructor takes no parameters, and no return type can be
5955  //   specified for it (not even void). The address of a destructor
5956  //   shall not be taken. A destructor shall not be static. A
5957  //   destructor can be invoked for a const, volatile or const
5958  //   volatile object. A destructor shall not be declared const,
5959  //   volatile or const volatile (9.3.2).
5960  if (SC == SC_Static) {
5961    if (!D.isInvalidType())
5962      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5963        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5964        << SourceRange(D.getIdentifierLoc())
5965        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5966
5967    SC = SC_None;
5968  }
5969  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5970    // Destructors don't have return types, but the parser will
5971    // happily parse something like:
5972    //
5973    //   class X {
5974    //     float ~X();
5975    //   };
5976    //
5977    // The return type will be eliminated later.
5978    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5979      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5980      << SourceRange(D.getIdentifierLoc());
5981  }
5982
5983  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5984  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5985    if (FTI.TypeQuals & Qualifiers::Const)
5986      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5987        << "const" << SourceRange(D.getIdentifierLoc());
5988    if (FTI.TypeQuals & Qualifiers::Volatile)
5989      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5990        << "volatile" << SourceRange(D.getIdentifierLoc());
5991    if (FTI.TypeQuals & Qualifiers::Restrict)
5992      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5993        << "restrict" << SourceRange(D.getIdentifierLoc());
5994    D.setInvalidType();
5995  }
5996
5997  // C++0x [class.dtor]p2:
5998  //   A destructor shall not be declared with a ref-qualifier.
5999  if (FTI.hasRefQualifier()) {
6000    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6001      << FTI.RefQualifierIsLValueRef
6002      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6003    D.setInvalidType();
6004  }
6005
6006  // Make sure we don't have any parameters.
6007  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
6008    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6009
6010    // Delete the parameters.
6011    FTI.freeArgs();
6012    D.setInvalidType();
6013  }
6014
6015  // Make sure the destructor isn't variadic.
6016  if (FTI.isVariadic) {
6017    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6018    D.setInvalidType();
6019  }
6020
6021  // Rebuild the function type "R" without any type qualifiers or
6022  // parameters (in case any of the errors above fired) and with
6023  // "void" as the return type, since destructors don't have return
6024  // types.
6025  if (!D.isInvalidType())
6026    return R;
6027
6028  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6029  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6030  EPI.Variadic = false;
6031  EPI.TypeQuals = 0;
6032  EPI.RefQualifier = RQ_None;
6033  return Context.getFunctionType(Context.VoidTy, None, EPI);
6034}
6035
6036/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6037/// well-formednes of the conversion function declarator @p D with
6038/// type @p R. If there are any errors in the declarator, this routine
6039/// will emit diagnostics and return true. Otherwise, it will return
6040/// false. Either way, the type @p R will be updated to reflect a
6041/// well-formed type for the conversion operator.
6042void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6043                                     StorageClass& SC) {
6044  // C++ [class.conv.fct]p1:
6045  //   Neither parameter types nor return type can be specified. The
6046  //   type of a conversion function (8.3.5) is "function taking no
6047  //   parameter returning conversion-type-id."
6048  if (SC == SC_Static) {
6049    if (!D.isInvalidType())
6050      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6051        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6052        << SourceRange(D.getIdentifierLoc());
6053    D.setInvalidType();
6054    SC = SC_None;
6055  }
6056
6057  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
6058
6059  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6060    // Conversion functions don't have return types, but the parser will
6061    // happily parse something like:
6062    //
6063    //   class X {
6064    //     float operator bool();
6065    //   };
6066    //
6067    // The return type will be changed later anyway.
6068    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6069      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6070      << SourceRange(D.getIdentifierLoc());
6071    D.setInvalidType();
6072  }
6073
6074  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6075
6076  // Make sure we don't have any parameters.
6077  if (Proto->getNumArgs() > 0) {
6078    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6079
6080    // Delete the parameters.
6081    D.getFunctionTypeInfo().freeArgs();
6082    D.setInvalidType();
6083  } else if (Proto->isVariadic()) {
6084    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6085    D.setInvalidType();
6086  }
6087
6088  // Diagnose "&operator bool()" and other such nonsense.  This
6089  // is actually a gcc extension which we don't support.
6090  if (Proto->getResultType() != ConvType) {
6091    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
6092      << Proto->getResultType();
6093    D.setInvalidType();
6094    ConvType = Proto->getResultType();
6095  }
6096
6097  // C++ [class.conv.fct]p4:
6098  //   The conversion-type-id shall not represent a function type nor
6099  //   an array type.
6100  if (ConvType->isArrayType()) {
6101    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
6102    ConvType = Context.getPointerType(ConvType);
6103    D.setInvalidType();
6104  } else if (ConvType->isFunctionType()) {
6105    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
6106    ConvType = Context.getPointerType(ConvType);
6107    D.setInvalidType();
6108  }
6109
6110  // Rebuild the function type "R" without any parameters (in case any
6111  // of the errors above fired) and with the conversion type as the
6112  // return type.
6113  if (D.isInvalidType())
6114    R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
6115
6116  // C++0x explicit conversion operators.
6117  if (D.getDeclSpec().isExplicitSpecified())
6118    Diag(D.getDeclSpec().getExplicitSpecLoc(),
6119         getLangOpts().CPlusPlus11 ?
6120           diag::warn_cxx98_compat_explicit_conversion_functions :
6121           diag::ext_explicit_conversion_functions)
6122      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
6123}
6124
6125/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
6126/// the declaration of the given C++ conversion function. This routine
6127/// is responsible for recording the conversion function in the C++
6128/// class, if possible.
6129Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
6130  assert(Conversion && "Expected to receive a conversion function declaration");
6131
6132  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
6133
6134  // Make sure we aren't redeclaring the conversion function.
6135  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
6136
6137  // C++ [class.conv.fct]p1:
6138  //   [...] A conversion function is never used to convert a
6139  //   (possibly cv-qualified) object to the (possibly cv-qualified)
6140  //   same object type (or a reference to it), to a (possibly
6141  //   cv-qualified) base class of that type (or a reference to it),
6142  //   or to (possibly cv-qualified) void.
6143  // FIXME: Suppress this warning if the conversion function ends up being a
6144  // virtual function that overrides a virtual function in a base class.
6145  QualType ClassType
6146    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6147  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
6148    ConvType = ConvTypeRef->getPointeeType();
6149  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
6150      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
6151    /* Suppress diagnostics for instantiations. */;
6152  else if (ConvType->isRecordType()) {
6153    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6154    if (ConvType == ClassType)
6155      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6156        << ClassType;
6157    else if (IsDerivedFrom(ClassType, ConvType))
6158      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6159        <<  ClassType << ConvType;
6160  } else if (ConvType->isVoidType()) {
6161    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6162      << ClassType << ConvType;
6163  }
6164
6165  if (FunctionTemplateDecl *ConversionTemplate
6166                                = Conversion->getDescribedFunctionTemplate())
6167    return ConversionTemplate;
6168
6169  return Conversion;
6170}
6171
6172//===----------------------------------------------------------------------===//
6173// Namespace Handling
6174//===----------------------------------------------------------------------===//
6175
6176/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6177/// reopened.
6178static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6179                                            SourceLocation Loc,
6180                                            IdentifierInfo *II, bool *IsInline,
6181                                            NamespaceDecl *PrevNS) {
6182  assert(*IsInline != PrevNS->isInline());
6183
6184  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6185  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6186  // inline namespaces, with the intention of bringing names into namespace std.
6187  //
6188  // We support this just well enough to get that case working; this is not
6189  // sufficient to support reopening namespaces as inline in general.
6190  if (*IsInline && II && II->getName().startswith("__atomic") &&
6191      S.getSourceManager().isInSystemHeader(Loc)) {
6192    // Mark all prior declarations of the namespace as inline.
6193    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6194         NS = NS->getPreviousDecl())
6195      NS->setInline(*IsInline);
6196    // Patch up the lookup table for the containing namespace. This isn't really
6197    // correct, but it's good enough for this particular case.
6198    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6199                                    E = PrevNS->decls_end(); I != E; ++I)
6200      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6201        PrevNS->getParent()->makeDeclVisibleInContext(ND);
6202    return;
6203  }
6204
6205  if (PrevNS->isInline())
6206    // The user probably just forgot the 'inline', so suggest that it
6207    // be added back.
6208    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6209      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6210  else
6211    S.Diag(Loc, diag::err_inline_namespace_mismatch)
6212      << IsInline;
6213
6214  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6215  *IsInline = PrevNS->isInline();
6216}
6217
6218/// ActOnStartNamespaceDef - This is called at the start of a namespace
6219/// definition.
6220Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6221                                   SourceLocation InlineLoc,
6222                                   SourceLocation NamespaceLoc,
6223                                   SourceLocation IdentLoc,
6224                                   IdentifierInfo *II,
6225                                   SourceLocation LBrace,
6226                                   AttributeList *AttrList) {
6227  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6228  // For anonymous namespace, take the location of the left brace.
6229  SourceLocation Loc = II ? IdentLoc : LBrace;
6230  bool IsInline = InlineLoc.isValid();
6231  bool IsInvalid = false;
6232  bool IsStd = false;
6233  bool AddToKnown = false;
6234  Scope *DeclRegionScope = NamespcScope->getParent();
6235
6236  NamespaceDecl *PrevNS = 0;
6237  if (II) {
6238    // C++ [namespace.def]p2:
6239    //   The identifier in an original-namespace-definition shall not
6240    //   have been previously defined in the declarative region in
6241    //   which the original-namespace-definition appears. The
6242    //   identifier in an original-namespace-definition is the name of
6243    //   the namespace. Subsequently in that declarative region, it is
6244    //   treated as an original-namespace-name.
6245    //
6246    // Since namespace names are unique in their scope, and we don't
6247    // look through using directives, just look for any ordinary names.
6248
6249    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6250    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6251    Decl::IDNS_Namespace;
6252    NamedDecl *PrevDecl = 0;
6253    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6254    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6255         ++I) {
6256      if ((*I)->getIdentifierNamespace() & IDNS) {
6257        PrevDecl = *I;
6258        break;
6259      }
6260    }
6261
6262    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6263
6264    if (PrevNS) {
6265      // This is an extended namespace definition.
6266      if (IsInline != PrevNS->isInline())
6267        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6268                                        &IsInline, PrevNS);
6269    } else if (PrevDecl) {
6270      // This is an invalid name redefinition.
6271      Diag(Loc, diag::err_redefinition_different_kind)
6272        << II;
6273      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6274      IsInvalid = true;
6275      // Continue on to push Namespc as current DeclContext and return it.
6276    } else if (II->isStr("std") &&
6277               CurContext->getRedeclContext()->isTranslationUnit()) {
6278      // This is the first "real" definition of the namespace "std", so update
6279      // our cache of the "std" namespace to point at this definition.
6280      PrevNS = getStdNamespace();
6281      IsStd = true;
6282      AddToKnown = !IsInline;
6283    } else {
6284      // We've seen this namespace for the first time.
6285      AddToKnown = !IsInline;
6286    }
6287  } else {
6288    // Anonymous namespaces.
6289
6290    // Determine whether the parent already has an anonymous namespace.
6291    DeclContext *Parent = CurContext->getRedeclContext();
6292    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6293      PrevNS = TU->getAnonymousNamespace();
6294    } else {
6295      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6296      PrevNS = ND->getAnonymousNamespace();
6297    }
6298
6299    if (PrevNS && IsInline != PrevNS->isInline())
6300      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6301                                      &IsInline, PrevNS);
6302  }
6303
6304  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6305                                                 StartLoc, Loc, II, PrevNS);
6306  if (IsInvalid)
6307    Namespc->setInvalidDecl();
6308
6309  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6310
6311  // FIXME: Should we be merging attributes?
6312  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6313    PushNamespaceVisibilityAttr(Attr, Loc);
6314
6315  if (IsStd)
6316    StdNamespace = Namespc;
6317  if (AddToKnown)
6318    KnownNamespaces[Namespc] = false;
6319
6320  if (II) {
6321    PushOnScopeChains(Namespc, DeclRegionScope);
6322  } else {
6323    // Link the anonymous namespace into its parent.
6324    DeclContext *Parent = CurContext->getRedeclContext();
6325    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6326      TU->setAnonymousNamespace(Namespc);
6327    } else {
6328      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6329    }
6330
6331    CurContext->addDecl(Namespc);
6332
6333    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6334    //   behaves as if it were replaced by
6335    //     namespace unique { /* empty body */ }
6336    //     using namespace unique;
6337    //     namespace unique { namespace-body }
6338    //   where all occurrences of 'unique' in a translation unit are
6339    //   replaced by the same identifier and this identifier differs
6340    //   from all other identifiers in the entire program.
6341
6342    // We just create the namespace with an empty name and then add an
6343    // implicit using declaration, just like the standard suggests.
6344    //
6345    // CodeGen enforces the "universally unique" aspect by giving all
6346    // declarations semantically contained within an anonymous
6347    // namespace internal linkage.
6348
6349    if (!PrevNS) {
6350      UsingDirectiveDecl* UD
6351        = UsingDirectiveDecl::Create(Context, Parent,
6352                                     /* 'using' */ LBrace,
6353                                     /* 'namespace' */ SourceLocation(),
6354                                     /* qualifier */ NestedNameSpecifierLoc(),
6355                                     /* identifier */ SourceLocation(),
6356                                     Namespc,
6357                                     /* Ancestor */ Parent);
6358      UD->setImplicit();
6359      Parent->addDecl(UD);
6360    }
6361  }
6362
6363  ActOnDocumentableDecl(Namespc);
6364
6365  // Although we could have an invalid decl (i.e. the namespace name is a
6366  // redefinition), push it as current DeclContext and try to continue parsing.
6367  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6368  // for the namespace has the declarations that showed up in that particular
6369  // namespace definition.
6370  PushDeclContext(NamespcScope, Namespc);
6371  return Namespc;
6372}
6373
6374/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6375/// is a namespace alias, returns the namespace it points to.
6376static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6377  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6378    return AD->getNamespace();
6379  return dyn_cast_or_null<NamespaceDecl>(D);
6380}
6381
6382/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6383/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6384void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6385  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6386  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6387  Namespc->setRBraceLoc(RBrace);
6388  PopDeclContext();
6389  if (Namespc->hasAttr<VisibilityAttr>())
6390    PopPragmaVisibility(true, RBrace);
6391}
6392
6393CXXRecordDecl *Sema::getStdBadAlloc() const {
6394  return cast_or_null<CXXRecordDecl>(
6395                                  StdBadAlloc.get(Context.getExternalSource()));
6396}
6397
6398NamespaceDecl *Sema::getStdNamespace() const {
6399  return cast_or_null<NamespaceDecl>(
6400                                 StdNamespace.get(Context.getExternalSource()));
6401}
6402
6403/// \brief Retrieve the special "std" namespace, which may require us to
6404/// implicitly define the namespace.
6405NamespaceDecl *Sema::getOrCreateStdNamespace() {
6406  if (!StdNamespace) {
6407    // The "std" namespace has not yet been defined, so build one implicitly.
6408    StdNamespace = NamespaceDecl::Create(Context,
6409                                         Context.getTranslationUnitDecl(),
6410                                         /*Inline=*/false,
6411                                         SourceLocation(), SourceLocation(),
6412                                         &PP.getIdentifierTable().get("std"),
6413                                         /*PrevDecl=*/0);
6414    getStdNamespace()->setImplicit(true);
6415  }
6416
6417  return getStdNamespace();
6418}
6419
6420bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6421  assert(getLangOpts().CPlusPlus &&
6422         "Looking for std::initializer_list outside of C++.");
6423
6424  // We're looking for implicit instantiations of
6425  // template <typename E> class std::initializer_list.
6426
6427  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6428    return false;
6429
6430  ClassTemplateDecl *Template = 0;
6431  const TemplateArgument *Arguments = 0;
6432
6433  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6434
6435    ClassTemplateSpecializationDecl *Specialization =
6436        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6437    if (!Specialization)
6438      return false;
6439
6440    Template = Specialization->getSpecializedTemplate();
6441    Arguments = Specialization->getTemplateArgs().data();
6442  } else if (const TemplateSpecializationType *TST =
6443                 Ty->getAs<TemplateSpecializationType>()) {
6444    Template = dyn_cast_or_null<ClassTemplateDecl>(
6445        TST->getTemplateName().getAsTemplateDecl());
6446    Arguments = TST->getArgs();
6447  }
6448  if (!Template)
6449    return false;
6450
6451  if (!StdInitializerList) {
6452    // Haven't recognized std::initializer_list yet, maybe this is it.
6453    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6454    if (TemplateClass->getIdentifier() !=
6455            &PP.getIdentifierTable().get("initializer_list") ||
6456        !getStdNamespace()->InEnclosingNamespaceSetOf(
6457            TemplateClass->getDeclContext()))
6458      return false;
6459    // This is a template called std::initializer_list, but is it the right
6460    // template?
6461    TemplateParameterList *Params = Template->getTemplateParameters();
6462    if (Params->getMinRequiredArguments() != 1)
6463      return false;
6464    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6465      return false;
6466
6467    // It's the right template.
6468    StdInitializerList = Template;
6469  }
6470
6471  if (Template != StdInitializerList)
6472    return false;
6473
6474  // This is an instance of std::initializer_list. Find the argument type.
6475  if (Element)
6476    *Element = Arguments[0].getAsType();
6477  return true;
6478}
6479
6480static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6481  NamespaceDecl *Std = S.getStdNamespace();
6482  if (!Std) {
6483    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6484    return 0;
6485  }
6486
6487  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6488                      Loc, Sema::LookupOrdinaryName);
6489  if (!S.LookupQualifiedName(Result, Std)) {
6490    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6491    return 0;
6492  }
6493  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6494  if (!Template) {
6495    Result.suppressDiagnostics();
6496    // We found something weird. Complain about the first thing we found.
6497    NamedDecl *Found = *Result.begin();
6498    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6499    return 0;
6500  }
6501
6502  // We found some template called std::initializer_list. Now verify that it's
6503  // correct.
6504  TemplateParameterList *Params = Template->getTemplateParameters();
6505  if (Params->getMinRequiredArguments() != 1 ||
6506      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6507    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6508    return 0;
6509  }
6510
6511  return Template;
6512}
6513
6514QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6515  if (!StdInitializerList) {
6516    StdInitializerList = LookupStdInitializerList(*this, Loc);
6517    if (!StdInitializerList)
6518      return QualType();
6519  }
6520
6521  TemplateArgumentListInfo Args(Loc, Loc);
6522  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6523                                       Context.getTrivialTypeSourceInfo(Element,
6524                                                                        Loc)));
6525  return Context.getCanonicalType(
6526      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6527}
6528
6529bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6530  // C++ [dcl.init.list]p2:
6531  //   A constructor is an initializer-list constructor if its first parameter
6532  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6533  //   std::initializer_list<E> for some type E, and either there are no other
6534  //   parameters or else all other parameters have default arguments.
6535  if (Ctor->getNumParams() < 1 ||
6536      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6537    return false;
6538
6539  QualType ArgType = Ctor->getParamDecl(0)->getType();
6540  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6541    ArgType = RT->getPointeeType().getUnqualifiedType();
6542
6543  return isStdInitializerList(ArgType, 0);
6544}
6545
6546/// \brief Determine whether a using statement is in a context where it will be
6547/// apply in all contexts.
6548static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6549  switch (CurContext->getDeclKind()) {
6550    case Decl::TranslationUnit:
6551      return true;
6552    case Decl::LinkageSpec:
6553      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6554    default:
6555      return false;
6556  }
6557}
6558
6559namespace {
6560
6561// Callback to only accept typo corrections that are namespaces.
6562class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6563 public:
6564  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
6565    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
6566      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6567    }
6568    return false;
6569  }
6570};
6571
6572}
6573
6574static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6575                                       CXXScopeSpec &SS,
6576                                       SourceLocation IdentLoc,
6577                                       IdentifierInfo *Ident) {
6578  NamespaceValidatorCCC Validator;
6579  R.clear();
6580  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6581                                               R.getLookupKind(), Sc, &SS,
6582                                               Validator)) {
6583    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6584    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
6585    if (DeclContext *DC = S.computeDeclContext(SS, false))
6586      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6587        << Ident << DC << CorrectedQuotedStr << SS.getRange()
6588        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
6589                                        CorrectedStr);
6590    else
6591      S.Diag(IdentLoc, diag::err_using_directive_suggest)
6592        << Ident << CorrectedQuotedStr
6593        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6594
6595    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6596         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6597
6598    R.addDecl(Corrected.getCorrectionDecl());
6599    return true;
6600  }
6601  return false;
6602}
6603
6604Decl *Sema::ActOnUsingDirective(Scope *S,
6605                                          SourceLocation UsingLoc,
6606                                          SourceLocation NamespcLoc,
6607                                          CXXScopeSpec &SS,
6608                                          SourceLocation IdentLoc,
6609                                          IdentifierInfo *NamespcName,
6610                                          AttributeList *AttrList) {
6611  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6612  assert(NamespcName && "Invalid NamespcName.");
6613  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6614
6615  // This can only happen along a recovery path.
6616  while (S->getFlags() & Scope::TemplateParamScope)
6617    S = S->getParent();
6618  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6619
6620  UsingDirectiveDecl *UDir = 0;
6621  NestedNameSpecifier *Qualifier = 0;
6622  if (SS.isSet())
6623    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6624
6625  // Lookup namespace name.
6626  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6627  LookupParsedName(R, S, &SS);
6628  if (R.isAmbiguous())
6629    return 0;
6630
6631  if (R.empty()) {
6632    R.clear();
6633    // Allow "using namespace std;" or "using namespace ::std;" even if
6634    // "std" hasn't been defined yet, for GCC compatibility.
6635    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6636        NamespcName->isStr("std")) {
6637      Diag(IdentLoc, diag::ext_using_undefined_std);
6638      R.addDecl(getOrCreateStdNamespace());
6639      R.resolveKind();
6640    }
6641    // Otherwise, attempt typo correction.
6642    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6643  }
6644
6645  if (!R.empty()) {
6646    NamedDecl *Named = R.getFoundDecl();
6647    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6648        && "expected namespace decl");
6649    // C++ [namespace.udir]p1:
6650    //   A using-directive specifies that the names in the nominated
6651    //   namespace can be used in the scope in which the
6652    //   using-directive appears after the using-directive. During
6653    //   unqualified name lookup (3.4.1), the names appear as if they
6654    //   were declared in the nearest enclosing namespace which
6655    //   contains both the using-directive and the nominated
6656    //   namespace. [Note: in this context, "contains" means "contains
6657    //   directly or indirectly". ]
6658
6659    // Find enclosing context containing both using-directive and
6660    // nominated namespace.
6661    NamespaceDecl *NS = getNamespaceDecl(Named);
6662    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6663    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6664      CommonAncestor = CommonAncestor->getParent();
6665
6666    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6667                                      SS.getWithLocInContext(Context),
6668                                      IdentLoc, Named, CommonAncestor);
6669
6670    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6671        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6672      Diag(IdentLoc, diag::warn_using_directive_in_header);
6673    }
6674
6675    PushUsingDirective(S, UDir);
6676  } else {
6677    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6678  }
6679
6680  if (UDir)
6681    ProcessDeclAttributeList(S, UDir, AttrList);
6682
6683  return UDir;
6684}
6685
6686void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6687  // If the scope has an associated entity and the using directive is at
6688  // namespace or translation unit scope, add the UsingDirectiveDecl into
6689  // its lookup structure so qualified name lookup can find it.
6690  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6691  if (Ctx && !Ctx->isFunctionOrMethod())
6692    Ctx->addDecl(UDir);
6693  else
6694    // Otherwise, it is at block sope. The using-directives will affect lookup
6695    // only to the end of the scope.
6696    S->PushUsingDirective(UDir);
6697}
6698
6699
6700Decl *Sema::ActOnUsingDeclaration(Scope *S,
6701                                  AccessSpecifier AS,
6702                                  bool HasUsingKeyword,
6703                                  SourceLocation UsingLoc,
6704                                  CXXScopeSpec &SS,
6705                                  UnqualifiedId &Name,
6706                                  AttributeList *AttrList,
6707                                  bool IsTypeName,
6708                                  SourceLocation TypenameLoc) {
6709  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6710
6711  switch (Name.getKind()) {
6712  case UnqualifiedId::IK_ImplicitSelfParam:
6713  case UnqualifiedId::IK_Identifier:
6714  case UnqualifiedId::IK_OperatorFunctionId:
6715  case UnqualifiedId::IK_LiteralOperatorId:
6716  case UnqualifiedId::IK_ConversionFunctionId:
6717    break;
6718
6719  case UnqualifiedId::IK_ConstructorName:
6720  case UnqualifiedId::IK_ConstructorTemplateId:
6721    // C++11 inheriting constructors.
6722    Diag(Name.getLocStart(),
6723         getLangOpts().CPlusPlus11 ?
6724           diag::warn_cxx98_compat_using_decl_constructor :
6725           diag::err_using_decl_constructor)
6726      << SS.getRange();
6727
6728    if (getLangOpts().CPlusPlus11) break;
6729
6730    return 0;
6731
6732  case UnqualifiedId::IK_DestructorName:
6733    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6734      << SS.getRange();
6735    return 0;
6736
6737  case UnqualifiedId::IK_TemplateId:
6738    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6739      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6740    return 0;
6741  }
6742
6743  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6744  DeclarationName TargetName = TargetNameInfo.getName();
6745  if (!TargetName)
6746    return 0;
6747
6748  // Warn about access declarations.
6749  // TODO: store that the declaration was written without 'using' and
6750  // talk about access decls instead of using decls in the
6751  // diagnostics.
6752  if (!HasUsingKeyword) {
6753    UsingLoc = Name.getLocStart();
6754
6755    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6756      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6757  }
6758
6759  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6760      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6761    return 0;
6762
6763  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6764                                        TargetNameInfo, AttrList,
6765                                        /* IsInstantiation */ false,
6766                                        IsTypeName, TypenameLoc);
6767  if (UD)
6768    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6769
6770  return UD;
6771}
6772
6773/// \brief Determine whether a using declaration considers the given
6774/// declarations as "equivalent", e.g., if they are redeclarations of
6775/// the same entity or are both typedefs of the same type.
6776static bool
6777IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6778                         bool &SuppressRedeclaration) {
6779  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6780    SuppressRedeclaration = false;
6781    return true;
6782  }
6783
6784  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6785    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6786      SuppressRedeclaration = true;
6787      return Context.hasSameType(TD1->getUnderlyingType(),
6788                                 TD2->getUnderlyingType());
6789    }
6790
6791  return false;
6792}
6793
6794
6795/// Determines whether to create a using shadow decl for a particular
6796/// decl, given the set of decls existing prior to this using lookup.
6797bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6798                                const LookupResult &Previous) {
6799  // Diagnose finding a decl which is not from a base class of the
6800  // current class.  We do this now because there are cases where this
6801  // function will silently decide not to build a shadow decl, which
6802  // will pre-empt further diagnostics.
6803  //
6804  // We don't need to do this in C++0x because we do the check once on
6805  // the qualifier.
6806  //
6807  // FIXME: diagnose the following if we care enough:
6808  //   struct A { int foo; };
6809  //   struct B : A { using A::foo; };
6810  //   template <class T> struct C : A {};
6811  //   template <class T> struct D : C<T> { using B::foo; } // <---
6812  // This is invalid (during instantiation) in C++03 because B::foo
6813  // resolves to the using decl in B, which is not a base class of D<T>.
6814  // We can't diagnose it immediately because C<T> is an unknown
6815  // specialization.  The UsingShadowDecl in D<T> then points directly
6816  // to A::foo, which will look well-formed when we instantiate.
6817  // The right solution is to not collapse the shadow-decl chain.
6818  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
6819    DeclContext *OrigDC = Orig->getDeclContext();
6820
6821    // Handle enums and anonymous structs.
6822    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6823    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6824    while (OrigRec->isAnonymousStructOrUnion())
6825      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6826
6827    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6828      if (OrigDC == CurContext) {
6829        Diag(Using->getLocation(),
6830             diag::err_using_decl_nested_name_specifier_is_current_class)
6831          << Using->getQualifierLoc().getSourceRange();
6832        Diag(Orig->getLocation(), diag::note_using_decl_target);
6833        return true;
6834      }
6835
6836      Diag(Using->getQualifierLoc().getBeginLoc(),
6837           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6838        << Using->getQualifier()
6839        << cast<CXXRecordDecl>(CurContext)
6840        << Using->getQualifierLoc().getSourceRange();
6841      Diag(Orig->getLocation(), diag::note_using_decl_target);
6842      return true;
6843    }
6844  }
6845
6846  if (Previous.empty()) return false;
6847
6848  NamedDecl *Target = Orig;
6849  if (isa<UsingShadowDecl>(Target))
6850    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6851
6852  // If the target happens to be one of the previous declarations, we
6853  // don't have a conflict.
6854  //
6855  // FIXME: but we might be increasing its access, in which case we
6856  // should redeclare it.
6857  NamedDecl *NonTag = 0, *Tag = 0;
6858  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6859         I != E; ++I) {
6860    NamedDecl *D = (*I)->getUnderlyingDecl();
6861    bool Result;
6862    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6863      return Result;
6864
6865    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6866  }
6867
6868  if (Target->isFunctionOrFunctionTemplate()) {
6869    FunctionDecl *FD;
6870    if (isa<FunctionTemplateDecl>(Target))
6871      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6872    else
6873      FD = cast<FunctionDecl>(Target);
6874
6875    NamedDecl *OldDecl = 0;
6876    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6877    case Ovl_Overload:
6878      return false;
6879
6880    case Ovl_NonFunction:
6881      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6882      break;
6883
6884    // We found a decl with the exact signature.
6885    case Ovl_Match:
6886      // If we're in a record, we want to hide the target, so we
6887      // return true (without a diagnostic) to tell the caller not to
6888      // build a shadow decl.
6889      if (CurContext->isRecord())
6890        return true;
6891
6892      // If we're not in a record, this is an error.
6893      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6894      break;
6895    }
6896
6897    Diag(Target->getLocation(), diag::note_using_decl_target);
6898    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6899    return true;
6900  }
6901
6902  // Target is not a function.
6903
6904  if (isa<TagDecl>(Target)) {
6905    // No conflict between a tag and a non-tag.
6906    if (!Tag) return false;
6907
6908    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6909    Diag(Target->getLocation(), diag::note_using_decl_target);
6910    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6911    return true;
6912  }
6913
6914  // No conflict between a tag and a non-tag.
6915  if (!NonTag) return false;
6916
6917  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6918  Diag(Target->getLocation(), diag::note_using_decl_target);
6919  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6920  return true;
6921}
6922
6923/// Builds a shadow declaration corresponding to a 'using' declaration.
6924UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6925                                            UsingDecl *UD,
6926                                            NamedDecl *Orig) {
6927
6928  // If we resolved to another shadow declaration, just coalesce them.
6929  NamedDecl *Target = Orig;
6930  if (isa<UsingShadowDecl>(Target)) {
6931    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6932    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6933  }
6934
6935  UsingShadowDecl *Shadow
6936    = UsingShadowDecl::Create(Context, CurContext,
6937                              UD->getLocation(), UD, Target);
6938  UD->addShadowDecl(Shadow);
6939
6940  Shadow->setAccess(UD->getAccess());
6941  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6942    Shadow->setInvalidDecl();
6943
6944  if (S)
6945    PushOnScopeChains(Shadow, S);
6946  else
6947    CurContext->addDecl(Shadow);
6948
6949
6950  return Shadow;
6951}
6952
6953/// Hides a using shadow declaration.  This is required by the current
6954/// using-decl implementation when a resolvable using declaration in a
6955/// class is followed by a declaration which would hide or override
6956/// one or more of the using decl's targets; for example:
6957///
6958///   struct Base { void foo(int); };
6959///   struct Derived : Base {
6960///     using Base::foo;
6961///     void foo(int);
6962///   };
6963///
6964/// The governing language is C++03 [namespace.udecl]p12:
6965///
6966///   When a using-declaration brings names from a base class into a
6967///   derived class scope, member functions in the derived class
6968///   override and/or hide member functions with the same name and
6969///   parameter types in a base class (rather than conflicting).
6970///
6971/// There are two ways to implement this:
6972///   (1) optimistically create shadow decls when they're not hidden
6973///       by existing declarations, or
6974///   (2) don't create any shadow decls (or at least don't make them
6975///       visible) until we've fully parsed/instantiated the class.
6976/// The problem with (1) is that we might have to retroactively remove
6977/// a shadow decl, which requires several O(n) operations because the
6978/// decl structures are (very reasonably) not designed for removal.
6979/// (2) avoids this but is very fiddly and phase-dependent.
6980void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6981  if (Shadow->getDeclName().getNameKind() ==
6982        DeclarationName::CXXConversionFunctionName)
6983    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6984
6985  // Remove it from the DeclContext...
6986  Shadow->getDeclContext()->removeDecl(Shadow);
6987
6988  // ...and the scope, if applicable...
6989  if (S) {
6990    S->RemoveDecl(Shadow);
6991    IdResolver.RemoveDecl(Shadow);
6992  }
6993
6994  // ...and the using decl.
6995  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6996
6997  // TODO: complain somehow if Shadow was used.  It shouldn't
6998  // be possible for this to happen, because...?
6999}
7000
7001/// Builds a using declaration.
7002///
7003/// \param IsInstantiation - Whether this call arises from an
7004///   instantiation of an unresolved using declaration.  We treat
7005///   the lookup differently for these declarations.
7006NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
7007                                       SourceLocation UsingLoc,
7008                                       CXXScopeSpec &SS,
7009                                       const DeclarationNameInfo &NameInfo,
7010                                       AttributeList *AttrList,
7011                                       bool IsInstantiation,
7012                                       bool IsTypeName,
7013                                       SourceLocation TypenameLoc) {
7014  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7015  SourceLocation IdentLoc = NameInfo.getLoc();
7016  assert(IdentLoc.isValid() && "Invalid TargetName location.");
7017
7018  // FIXME: We ignore attributes for now.
7019
7020  if (SS.isEmpty()) {
7021    Diag(IdentLoc, diag::err_using_requires_qualname);
7022    return 0;
7023  }
7024
7025  // Do the redeclaration lookup in the current scope.
7026  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
7027                        ForRedeclaration);
7028  Previous.setHideTags(false);
7029  if (S) {
7030    LookupName(Previous, S);
7031
7032    // It is really dumb that we have to do this.
7033    LookupResult::Filter F = Previous.makeFilter();
7034    while (F.hasNext()) {
7035      NamedDecl *D = F.next();
7036      if (!isDeclInScope(D, CurContext, S))
7037        F.erase();
7038    }
7039    F.done();
7040  } else {
7041    assert(IsInstantiation && "no scope in non-instantiation");
7042    assert(CurContext->isRecord() && "scope not record in instantiation");
7043    LookupQualifiedName(Previous, CurContext);
7044  }
7045
7046  // Check for invalid redeclarations.
7047  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
7048    return 0;
7049
7050  // Check for bad qualifiers.
7051  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
7052    return 0;
7053
7054  DeclContext *LookupContext = computeDeclContext(SS);
7055  NamedDecl *D;
7056  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7057  if (!LookupContext) {
7058    if (IsTypeName) {
7059      // FIXME: not all declaration name kinds are legal here
7060      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
7061                                              UsingLoc, TypenameLoc,
7062                                              QualifierLoc,
7063                                              IdentLoc, NameInfo.getName());
7064    } else {
7065      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
7066                                           QualifierLoc, NameInfo);
7067    }
7068  } else {
7069    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
7070                          NameInfo, IsTypeName);
7071  }
7072  D->setAccess(AS);
7073  CurContext->addDecl(D);
7074
7075  if (!LookupContext) return D;
7076  UsingDecl *UD = cast<UsingDecl>(D);
7077
7078  if (RequireCompleteDeclContext(SS, LookupContext)) {
7079    UD->setInvalidDecl();
7080    return UD;
7081  }
7082
7083  // The normal rules do not apply to inheriting constructor declarations.
7084  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
7085    if (CheckInheritingConstructorUsingDecl(UD))
7086      UD->setInvalidDecl();
7087    return UD;
7088  }
7089
7090  // Otherwise, look up the target name.
7091
7092  LookupResult R(*this, NameInfo, LookupOrdinaryName);
7093
7094  // Unlike most lookups, we don't always want to hide tag
7095  // declarations: tag names are visible through the using declaration
7096  // even if hidden by ordinary names, *except* in a dependent context
7097  // where it's important for the sanity of two-phase lookup.
7098  if (!IsInstantiation)
7099    R.setHideTags(false);
7100
7101  // For the purposes of this lookup, we have a base object type
7102  // equal to that of the current context.
7103  if (CurContext->isRecord()) {
7104    R.setBaseObjectType(
7105                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
7106  }
7107
7108  LookupQualifiedName(R, LookupContext);
7109
7110  if (R.empty()) {
7111    Diag(IdentLoc, diag::err_no_member)
7112      << NameInfo.getName() << LookupContext << SS.getRange();
7113    UD->setInvalidDecl();
7114    return UD;
7115  }
7116
7117  if (R.isAmbiguous()) {
7118    UD->setInvalidDecl();
7119    return UD;
7120  }
7121
7122  if (IsTypeName) {
7123    // If we asked for a typename and got a non-type decl, error out.
7124    if (!R.getAsSingle<TypeDecl>()) {
7125      Diag(IdentLoc, diag::err_using_typename_non_type);
7126      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
7127        Diag((*I)->getUnderlyingDecl()->getLocation(),
7128             diag::note_using_decl_target);
7129      UD->setInvalidDecl();
7130      return UD;
7131    }
7132  } else {
7133    // If we asked for a non-typename and we got a type, error out,
7134    // but only if this is an instantiation of an unresolved using
7135    // decl.  Otherwise just silently find the type name.
7136    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
7137      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
7138      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
7139      UD->setInvalidDecl();
7140      return UD;
7141    }
7142  }
7143
7144  // C++0x N2914 [namespace.udecl]p6:
7145  // A using-declaration shall not name a namespace.
7146  if (R.getAsSingle<NamespaceDecl>()) {
7147    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
7148      << SS.getRange();
7149    UD->setInvalidDecl();
7150    return UD;
7151  }
7152
7153  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7154    if (!CheckUsingShadowDecl(UD, *I, Previous))
7155      BuildUsingShadowDecl(S, UD, *I);
7156  }
7157
7158  return UD;
7159}
7160
7161/// Additional checks for a using declaration referring to a constructor name.
7162bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7163  assert(!UD->isTypeName() && "expecting a constructor name");
7164
7165  const Type *SourceType = UD->getQualifier()->getAsType();
7166  assert(SourceType &&
7167         "Using decl naming constructor doesn't have type in scope spec.");
7168  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7169
7170  // Check whether the named type is a direct base class.
7171  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7172  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7173  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7174       BaseIt != BaseE; ++BaseIt) {
7175    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7176    if (CanonicalSourceType == BaseType)
7177      break;
7178    if (BaseIt->getType()->isDependentType())
7179      break;
7180  }
7181
7182  if (BaseIt == BaseE) {
7183    // Did not find SourceType in the bases.
7184    Diag(UD->getUsingLocation(),
7185         diag::err_using_decl_constructor_not_in_direct_base)
7186      << UD->getNameInfo().getSourceRange()
7187      << QualType(SourceType, 0) << TargetClass;
7188    return true;
7189  }
7190
7191  if (!CurContext->isDependentContext())
7192    BaseIt->setInheritConstructors();
7193
7194  return false;
7195}
7196
7197/// Checks that the given using declaration is not an invalid
7198/// redeclaration.  Note that this is checking only for the using decl
7199/// itself, not for any ill-formedness among the UsingShadowDecls.
7200bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7201                                       bool isTypeName,
7202                                       const CXXScopeSpec &SS,
7203                                       SourceLocation NameLoc,
7204                                       const LookupResult &Prev) {
7205  // C++03 [namespace.udecl]p8:
7206  // C++0x [namespace.udecl]p10:
7207  //   A using-declaration is a declaration and can therefore be used
7208  //   repeatedly where (and only where) multiple declarations are
7209  //   allowed.
7210  //
7211  // That's in non-member contexts.
7212  if (!CurContext->getRedeclContext()->isRecord())
7213    return false;
7214
7215  NestedNameSpecifier *Qual
7216    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7217
7218  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7219    NamedDecl *D = *I;
7220
7221    bool DTypename;
7222    NestedNameSpecifier *DQual;
7223    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7224      DTypename = UD->isTypeName();
7225      DQual = UD->getQualifier();
7226    } else if (UnresolvedUsingValueDecl *UD
7227                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7228      DTypename = false;
7229      DQual = UD->getQualifier();
7230    } else if (UnresolvedUsingTypenameDecl *UD
7231                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7232      DTypename = true;
7233      DQual = UD->getQualifier();
7234    } else continue;
7235
7236    // using decls differ if one says 'typename' and the other doesn't.
7237    // FIXME: non-dependent using decls?
7238    if (isTypeName != DTypename) continue;
7239
7240    // using decls differ if they name different scopes (but note that
7241    // template instantiation can cause this check to trigger when it
7242    // didn't before instantiation).
7243    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7244        Context.getCanonicalNestedNameSpecifier(DQual))
7245      continue;
7246
7247    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7248    Diag(D->getLocation(), diag::note_using_decl) << 1;
7249    return true;
7250  }
7251
7252  return false;
7253}
7254
7255
7256/// Checks that the given nested-name qualifier used in a using decl
7257/// in the current context is appropriately related to the current
7258/// scope.  If an error is found, diagnoses it and returns true.
7259bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7260                                   const CXXScopeSpec &SS,
7261                                   SourceLocation NameLoc) {
7262  DeclContext *NamedContext = computeDeclContext(SS);
7263
7264  if (!CurContext->isRecord()) {
7265    // C++03 [namespace.udecl]p3:
7266    // C++0x [namespace.udecl]p8:
7267    //   A using-declaration for a class member shall be a member-declaration.
7268
7269    // If we weren't able to compute a valid scope, it must be a
7270    // dependent class scope.
7271    if (!NamedContext || NamedContext->isRecord()) {
7272      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7273        << SS.getRange();
7274      return true;
7275    }
7276
7277    // Otherwise, everything is known to be fine.
7278    return false;
7279  }
7280
7281  // The current scope is a record.
7282
7283  // If the named context is dependent, we can't decide much.
7284  if (!NamedContext) {
7285    // FIXME: in C++0x, we can diagnose if we can prove that the
7286    // nested-name-specifier does not refer to a base class, which is
7287    // still possible in some cases.
7288
7289    // Otherwise we have to conservatively report that things might be
7290    // okay.
7291    return false;
7292  }
7293
7294  if (!NamedContext->isRecord()) {
7295    // Ideally this would point at the last name in the specifier,
7296    // but we don't have that level of source info.
7297    Diag(SS.getRange().getBegin(),
7298         diag::err_using_decl_nested_name_specifier_is_not_class)
7299      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7300    return true;
7301  }
7302
7303  if (!NamedContext->isDependentContext() &&
7304      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7305    return true;
7306
7307  if (getLangOpts().CPlusPlus11) {
7308    // C++0x [namespace.udecl]p3:
7309    //   In a using-declaration used as a member-declaration, the
7310    //   nested-name-specifier shall name a base class of the class
7311    //   being defined.
7312
7313    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7314                                 cast<CXXRecordDecl>(NamedContext))) {
7315      if (CurContext == NamedContext) {
7316        Diag(NameLoc,
7317             diag::err_using_decl_nested_name_specifier_is_current_class)
7318          << SS.getRange();
7319        return true;
7320      }
7321
7322      Diag(SS.getRange().getBegin(),
7323           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7324        << (NestedNameSpecifier*) SS.getScopeRep()
7325        << cast<CXXRecordDecl>(CurContext)
7326        << SS.getRange();
7327      return true;
7328    }
7329
7330    return false;
7331  }
7332
7333  // C++03 [namespace.udecl]p4:
7334  //   A using-declaration used as a member-declaration shall refer
7335  //   to a member of a base class of the class being defined [etc.].
7336
7337  // Salient point: SS doesn't have to name a base class as long as
7338  // lookup only finds members from base classes.  Therefore we can
7339  // diagnose here only if we can prove that that can't happen,
7340  // i.e. if the class hierarchies provably don't intersect.
7341
7342  // TODO: it would be nice if "definitely valid" results were cached
7343  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7344  // need to be repeated.
7345
7346  struct UserData {
7347    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7348
7349    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7350      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7351      Data->Bases.insert(Base);
7352      return true;
7353    }
7354
7355    bool hasDependentBases(const CXXRecordDecl *Class) {
7356      return !Class->forallBases(collect, this);
7357    }
7358
7359    /// Returns true if the base is dependent or is one of the
7360    /// accumulated base classes.
7361    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7362      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7363      return !Data->Bases.count(Base);
7364    }
7365
7366    bool mightShareBases(const CXXRecordDecl *Class) {
7367      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7368    }
7369  };
7370
7371  UserData Data;
7372
7373  // Returns false if we find a dependent base.
7374  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7375    return false;
7376
7377  // Returns false if the class has a dependent base or if it or one
7378  // of its bases is present in the base set of the current context.
7379  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7380    return false;
7381
7382  Diag(SS.getRange().getBegin(),
7383       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7384    << (NestedNameSpecifier*) SS.getScopeRep()
7385    << cast<CXXRecordDecl>(CurContext)
7386    << SS.getRange();
7387
7388  return true;
7389}
7390
7391Decl *Sema::ActOnAliasDeclaration(Scope *S,
7392                                  AccessSpecifier AS,
7393                                  MultiTemplateParamsArg TemplateParamLists,
7394                                  SourceLocation UsingLoc,
7395                                  UnqualifiedId &Name,
7396                                  AttributeList *AttrList,
7397                                  TypeResult Type) {
7398  // Skip up to the relevant declaration scope.
7399  while (S->getFlags() & Scope::TemplateParamScope)
7400    S = S->getParent();
7401  assert((S->getFlags() & Scope::DeclScope) &&
7402         "got alias-declaration outside of declaration scope");
7403
7404  if (Type.isInvalid())
7405    return 0;
7406
7407  bool Invalid = false;
7408  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7409  TypeSourceInfo *TInfo = 0;
7410  GetTypeFromParser(Type.get(), &TInfo);
7411
7412  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7413    return 0;
7414
7415  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7416                                      UPPC_DeclarationType)) {
7417    Invalid = true;
7418    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7419                                             TInfo->getTypeLoc().getBeginLoc());
7420  }
7421
7422  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7423  LookupName(Previous, S);
7424
7425  // Warn about shadowing the name of a template parameter.
7426  if (Previous.isSingleResult() &&
7427      Previous.getFoundDecl()->isTemplateParameter()) {
7428    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7429    Previous.clear();
7430  }
7431
7432  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7433         "name in alias declaration must be an identifier");
7434  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7435                                               Name.StartLocation,
7436                                               Name.Identifier, TInfo);
7437
7438  NewTD->setAccess(AS);
7439
7440  if (Invalid)
7441    NewTD->setInvalidDecl();
7442
7443  ProcessDeclAttributeList(S, NewTD, AttrList);
7444
7445  CheckTypedefForVariablyModifiedType(S, NewTD);
7446  Invalid |= NewTD->isInvalidDecl();
7447
7448  bool Redeclaration = false;
7449
7450  NamedDecl *NewND;
7451  if (TemplateParamLists.size()) {
7452    TypeAliasTemplateDecl *OldDecl = 0;
7453    TemplateParameterList *OldTemplateParams = 0;
7454
7455    if (TemplateParamLists.size() != 1) {
7456      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7457        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7458         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7459    }
7460    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7461
7462    // Only consider previous declarations in the same scope.
7463    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7464                         /*ExplicitInstantiationOrSpecialization*/false);
7465    if (!Previous.empty()) {
7466      Redeclaration = true;
7467
7468      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7469      if (!OldDecl && !Invalid) {
7470        Diag(UsingLoc, diag::err_redefinition_different_kind)
7471          << Name.Identifier;
7472
7473        NamedDecl *OldD = Previous.getRepresentativeDecl();
7474        if (OldD->getLocation().isValid())
7475          Diag(OldD->getLocation(), diag::note_previous_definition);
7476
7477        Invalid = true;
7478      }
7479
7480      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7481        if (TemplateParameterListsAreEqual(TemplateParams,
7482                                           OldDecl->getTemplateParameters(),
7483                                           /*Complain=*/true,
7484                                           TPL_TemplateMatch))
7485          OldTemplateParams = OldDecl->getTemplateParameters();
7486        else
7487          Invalid = true;
7488
7489        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7490        if (!Invalid &&
7491            !Context.hasSameType(OldTD->getUnderlyingType(),
7492                                 NewTD->getUnderlyingType())) {
7493          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7494          // but we can't reasonably accept it.
7495          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7496            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7497          if (OldTD->getLocation().isValid())
7498            Diag(OldTD->getLocation(), diag::note_previous_definition);
7499          Invalid = true;
7500        }
7501      }
7502    }
7503
7504    // Merge any previous default template arguments into our parameters,
7505    // and check the parameter list.
7506    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7507                                   TPC_TypeAliasTemplate))
7508      return 0;
7509
7510    TypeAliasTemplateDecl *NewDecl =
7511      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7512                                    Name.Identifier, TemplateParams,
7513                                    NewTD);
7514
7515    NewDecl->setAccess(AS);
7516
7517    if (Invalid)
7518      NewDecl->setInvalidDecl();
7519    else if (OldDecl)
7520      NewDecl->setPreviousDeclaration(OldDecl);
7521
7522    NewND = NewDecl;
7523  } else {
7524    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7525    NewND = NewTD;
7526  }
7527
7528  if (!Redeclaration)
7529    PushOnScopeChains(NewND, S);
7530
7531  ActOnDocumentableDecl(NewND);
7532  return NewND;
7533}
7534
7535Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7536                                             SourceLocation NamespaceLoc,
7537                                             SourceLocation AliasLoc,
7538                                             IdentifierInfo *Alias,
7539                                             CXXScopeSpec &SS,
7540                                             SourceLocation IdentLoc,
7541                                             IdentifierInfo *Ident) {
7542
7543  // Lookup the namespace name.
7544  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7545  LookupParsedName(R, S, &SS);
7546
7547  // Check if we have a previous declaration with the same name.
7548  NamedDecl *PrevDecl
7549    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7550                       ForRedeclaration);
7551  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7552    PrevDecl = 0;
7553
7554  if (PrevDecl) {
7555    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7556      // We already have an alias with the same name that points to the same
7557      // namespace, so don't create a new one.
7558      // FIXME: At some point, we'll want to create the (redundant)
7559      // declaration to maintain better source information.
7560      if (!R.isAmbiguous() && !R.empty() &&
7561          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7562        return 0;
7563    }
7564
7565    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7566      diag::err_redefinition_different_kind;
7567    Diag(AliasLoc, DiagID) << Alias;
7568    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7569    return 0;
7570  }
7571
7572  if (R.isAmbiguous())
7573    return 0;
7574
7575  if (R.empty()) {
7576    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7577      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7578      return 0;
7579    }
7580  }
7581
7582  NamespaceAliasDecl *AliasDecl =
7583    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7584                               Alias, SS.getWithLocInContext(Context),
7585                               IdentLoc, R.getFoundDecl());
7586
7587  PushOnScopeChains(AliasDecl, S);
7588  return AliasDecl;
7589}
7590
7591Sema::ImplicitExceptionSpecification
7592Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7593                                               CXXMethodDecl *MD) {
7594  CXXRecordDecl *ClassDecl = MD->getParent();
7595
7596  // C++ [except.spec]p14:
7597  //   An implicitly declared special member function (Clause 12) shall have an
7598  //   exception-specification. [...]
7599  ImplicitExceptionSpecification ExceptSpec(*this);
7600  if (ClassDecl->isInvalidDecl())
7601    return ExceptSpec;
7602
7603  // Direct base-class constructors.
7604  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7605                                       BEnd = ClassDecl->bases_end();
7606       B != BEnd; ++B) {
7607    if (B->isVirtual()) // Handled below.
7608      continue;
7609
7610    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7611      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7612      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7613      // If this is a deleted function, add it anyway. This might be conformant
7614      // with the standard. This might not. I'm not sure. It might not matter.
7615      if (Constructor)
7616        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7617    }
7618  }
7619
7620  // Virtual base-class constructors.
7621  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7622                                       BEnd = ClassDecl->vbases_end();
7623       B != BEnd; ++B) {
7624    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7625      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7626      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7627      // If this is a deleted function, add it anyway. This might be conformant
7628      // with the standard. This might not. I'm not sure. It might not matter.
7629      if (Constructor)
7630        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7631    }
7632  }
7633
7634  // Field constructors.
7635  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7636                               FEnd = ClassDecl->field_end();
7637       F != FEnd; ++F) {
7638    if (F->hasInClassInitializer()) {
7639      if (Expr *E = F->getInClassInitializer())
7640        ExceptSpec.CalledExpr(E);
7641      else if (!F->isInvalidDecl())
7642        // DR1351:
7643        //   If the brace-or-equal-initializer of a non-static data member
7644        //   invokes a defaulted default constructor of its class or of an
7645        //   enclosing class in a potentially evaluated subexpression, the
7646        //   program is ill-formed.
7647        //
7648        // This resolution is unworkable: the exception specification of the
7649        // default constructor can be needed in an unevaluated context, in
7650        // particular, in the operand of a noexcept-expression, and we can be
7651        // unable to compute an exception specification for an enclosed class.
7652        //
7653        // We do not allow an in-class initializer to require the evaluation
7654        // of the exception specification for any in-class initializer whose
7655        // definition is not lexically complete.
7656        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7657    } else if (const RecordType *RecordTy
7658              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7659      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7660      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7661      // If this is a deleted function, add it anyway. This might be conformant
7662      // with the standard. This might not. I'm not sure. It might not matter.
7663      // In particular, the problem is that this function never gets called. It
7664      // might just be ill-formed because this function attempts to refer to
7665      // a deleted function here.
7666      if (Constructor)
7667        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7668    }
7669  }
7670
7671  return ExceptSpec;
7672}
7673
7674Sema::ImplicitExceptionSpecification
7675Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
7676  CXXRecordDecl *ClassDecl = CD->getParent();
7677
7678  // C++ [except.spec]p14:
7679  //   An inheriting constructor [...] shall have an exception-specification. [...]
7680  ImplicitExceptionSpecification ExceptSpec(*this);
7681  if (ClassDecl->isInvalidDecl())
7682    return ExceptSpec;
7683
7684  // Inherited constructor.
7685  const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
7686  const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
7687  // FIXME: Copying or moving the parameters could add extra exceptions to the
7688  // set, as could the default arguments for the inherited constructor. This
7689  // will be addressed when we implement the resolution of core issue 1351.
7690  ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
7691
7692  // Direct base-class constructors.
7693  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7694                                       BEnd = ClassDecl->bases_end();
7695       B != BEnd; ++B) {
7696    if (B->isVirtual()) // Handled below.
7697      continue;
7698
7699    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7700      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7701      if (BaseClassDecl == InheritedDecl)
7702        continue;
7703      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7704      if (Constructor)
7705        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7706    }
7707  }
7708
7709  // Virtual base-class constructors.
7710  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7711                                       BEnd = ClassDecl->vbases_end();
7712       B != BEnd; ++B) {
7713    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7714      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7715      if (BaseClassDecl == InheritedDecl)
7716        continue;
7717      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7718      if (Constructor)
7719        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7720    }
7721  }
7722
7723  // Field constructors.
7724  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7725                               FEnd = ClassDecl->field_end();
7726       F != FEnd; ++F) {
7727    if (F->hasInClassInitializer()) {
7728      if (Expr *E = F->getInClassInitializer())
7729        ExceptSpec.CalledExpr(E);
7730      else if (!F->isInvalidDecl())
7731        Diag(CD->getLocation(),
7732             diag::err_in_class_initializer_references_def_ctor) << CD;
7733    } else if (const RecordType *RecordTy
7734              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7735      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7736      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7737      if (Constructor)
7738        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7739    }
7740  }
7741
7742  return ExceptSpec;
7743}
7744
7745namespace {
7746/// RAII object to register a special member as being currently declared.
7747struct DeclaringSpecialMember {
7748  Sema &S;
7749  Sema::SpecialMemberDecl D;
7750  bool WasAlreadyBeingDeclared;
7751
7752  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
7753    : S(S), D(RD, CSM) {
7754    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
7755    if (WasAlreadyBeingDeclared)
7756      // This almost never happens, but if it does, ensure that our cache
7757      // doesn't contain a stale result.
7758      S.SpecialMemberCache.clear();
7759
7760    // FIXME: Register a note to be produced if we encounter an error while
7761    // declaring the special member.
7762  }
7763  ~DeclaringSpecialMember() {
7764    if (!WasAlreadyBeingDeclared)
7765      S.SpecialMembersBeingDeclared.erase(D);
7766  }
7767
7768  /// \brief Are we already trying to declare this special member?
7769  bool isAlreadyBeingDeclared() const {
7770    return WasAlreadyBeingDeclared;
7771  }
7772};
7773}
7774
7775CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7776                                                     CXXRecordDecl *ClassDecl) {
7777  // C++ [class.ctor]p5:
7778  //   A default constructor for a class X is a constructor of class X
7779  //   that can be called without an argument. If there is no
7780  //   user-declared constructor for class X, a default constructor is
7781  //   implicitly declared. An implicitly-declared default constructor
7782  //   is an inline public member of its class.
7783  assert(ClassDecl->needsImplicitDefaultConstructor() &&
7784         "Should not build implicit default constructor!");
7785
7786  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
7787  if (DSM.isAlreadyBeingDeclared())
7788    return 0;
7789
7790  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
7791                                                     CXXDefaultConstructor,
7792                                                     false);
7793
7794  // Create the actual constructor declaration.
7795  CanQualType ClassType
7796    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7797  SourceLocation ClassLoc = ClassDecl->getLocation();
7798  DeclarationName Name
7799    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7800  DeclarationNameInfo NameInfo(Name, ClassLoc);
7801  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7802      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
7803      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7804      Constexpr);
7805  DefaultCon->setAccess(AS_public);
7806  DefaultCon->setDefaulted();
7807  DefaultCon->setImplicit();
7808
7809  // Build an exception specification pointing back at this constructor.
7810  FunctionProtoType::ExtProtoInfo EPI;
7811  EPI.ExceptionSpecType = EST_Unevaluated;
7812  EPI.ExceptionSpecDecl = DefaultCon;
7813  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
7814
7815  // We don't need to use SpecialMemberIsTrivial here; triviality for default
7816  // constructors is easy to compute.
7817  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7818
7819  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7820    SetDeclDeleted(DefaultCon, ClassLoc);
7821
7822  // Note that we have declared this constructor.
7823  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7824
7825  if (Scope *S = getScopeForContext(ClassDecl))
7826    PushOnScopeChains(DefaultCon, S, false);
7827  ClassDecl->addDecl(DefaultCon);
7828
7829  return DefaultCon;
7830}
7831
7832void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7833                                            CXXConstructorDecl *Constructor) {
7834  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7835          !Constructor->doesThisDeclarationHaveABody() &&
7836          !Constructor->isDeleted()) &&
7837    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7838
7839  CXXRecordDecl *ClassDecl = Constructor->getParent();
7840  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7841
7842  SynthesizedFunctionScope Scope(*this, Constructor);
7843  DiagnosticErrorTrap Trap(Diags);
7844  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7845      Trap.hasErrorOccurred()) {
7846    Diag(CurrentLocation, diag::note_member_synthesized_at)
7847      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7848    Constructor->setInvalidDecl();
7849    return;
7850  }
7851
7852  SourceLocation Loc = Constructor->getLocation();
7853  Constructor->setBody(new (Context) CompoundStmt(Loc));
7854
7855  Constructor->setUsed();
7856  MarkVTableUsed(CurrentLocation, ClassDecl);
7857
7858  if (ASTMutationListener *L = getASTMutationListener()) {
7859    L->CompletedImplicitDefinition(Constructor);
7860  }
7861}
7862
7863void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7864  // Check that any explicitly-defaulted methods have exception specifications
7865  // compatible with their implicit exception specifications.
7866  CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
7867}
7868
7869namespace {
7870/// Information on inheriting constructors to declare.
7871class InheritingConstructorInfo {
7872public:
7873  InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
7874      : SemaRef(SemaRef), Derived(Derived) {
7875    // Mark the constructors that we already have in the derived class.
7876    //
7877    // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7878    //   unless there is a user-declared constructor with the same signature in
7879    //   the class where the using-declaration appears.
7880    visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
7881  }
7882
7883  void inheritAll(CXXRecordDecl *RD) {
7884    visitAll(RD, &InheritingConstructorInfo::inherit);
7885  }
7886
7887private:
7888  /// Information about an inheriting constructor.
7889  struct InheritingConstructor {
7890    InheritingConstructor()
7891      : DeclaredInDerived(false), BaseCtor(0), DerivedCtor(0) {}
7892
7893    /// If \c true, a constructor with this signature is already declared
7894    /// in the derived class.
7895    bool DeclaredInDerived;
7896
7897    /// The constructor which is inherited.
7898    const CXXConstructorDecl *BaseCtor;
7899
7900    /// The derived constructor we declared.
7901    CXXConstructorDecl *DerivedCtor;
7902  };
7903
7904  /// Inheriting constructors with a given canonical type. There can be at
7905  /// most one such non-template constructor, and any number of templated
7906  /// constructors.
7907  struct InheritingConstructorsForType {
7908    InheritingConstructor NonTemplate;
7909    llvm::SmallVector<
7910      std::pair<TemplateParameterList*, InheritingConstructor>, 4> Templates;
7911
7912    InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
7913      if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
7914        TemplateParameterList *ParamList = FTD->getTemplateParameters();
7915        for (unsigned I = 0, N = Templates.size(); I != N; ++I)
7916          if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
7917                                               false, S.TPL_TemplateMatch))
7918            return Templates[I].second;
7919        Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
7920        return Templates.back().second;
7921      }
7922
7923      return NonTemplate;
7924    }
7925  };
7926
7927  /// Get or create the inheriting constructor record for a constructor.
7928  InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
7929                                  QualType CtorType) {
7930    return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
7931        .getEntry(SemaRef, Ctor);
7932  }
7933
7934  typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
7935
7936  /// Process all constructors for a class.
7937  void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
7938    for (CXXRecordDecl::ctor_iterator CtorIt = RD->ctor_begin(),
7939                                      CtorE = RD->ctor_end();
7940         CtorIt != CtorE; ++CtorIt)
7941      (this->*Callback)(*CtorIt);
7942    for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
7943             I(RD->decls_begin()), E(RD->decls_end());
7944         I != E; ++I) {
7945      const FunctionDecl *FD = (*I)->getTemplatedDecl();
7946      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
7947        (this->*Callback)(CD);
7948    }
7949  }
7950
7951  /// Note that a constructor (or constructor template) was declared in Derived.
7952  void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
7953    getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
7954  }
7955
7956  /// Inherit a single constructor.
7957  void inherit(const CXXConstructorDecl *Ctor) {
7958    const FunctionProtoType *CtorType =
7959        Ctor->getType()->castAs<FunctionProtoType>();
7960    ArrayRef<QualType> ArgTypes(CtorType->getArgTypes());
7961    FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
7962
7963    SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
7964
7965    // Core issue (no number yet): the ellipsis is always discarded.
7966    if (EPI.Variadic) {
7967      SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
7968      SemaRef.Diag(Ctor->getLocation(),
7969                   diag::note_using_decl_constructor_ellipsis);
7970      EPI.Variadic = false;
7971    }
7972
7973    // Declare a constructor for each number of parameters.
7974    //
7975    // C++11 [class.inhctor]p1:
7976    //   The candidate set of inherited constructors from the class X named in
7977    //   the using-declaration consists of [... modulo defects ...] for each
7978    //   constructor or constructor template of X, the set of constructors or
7979    //   constructor templates that results from omitting any ellipsis parameter
7980    //   specification and successively omitting parameters with a default
7981    //   argument from the end of the parameter-type-list
7982    unsigned MinParams = minParamsToInherit(Ctor);
7983    unsigned Params = Ctor->getNumParams();
7984    if (Params >= MinParams) {
7985      do
7986        declareCtor(UsingLoc, Ctor,
7987                    SemaRef.Context.getFunctionType(
7988                        Ctor->getResultType(), ArgTypes.slice(0, Params), EPI));
7989      while (Params > MinParams &&
7990             Ctor->getParamDecl(--Params)->hasDefaultArg());
7991    }
7992  }
7993
7994  /// Find the using-declaration which specified that we should inherit the
7995  /// constructors of \p Base.
7996  SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
7997    // No fancy lookup required; just look for the base constructor name
7998    // directly within the derived class.
7999    ASTContext &Context = SemaRef.Context;
8000    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8001        Context.getCanonicalType(Context.getRecordType(Base)));
8002    DeclContext::lookup_const_result Decls = Derived->lookup(Name);
8003    return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
8004  }
8005
8006  unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
8007    // C++11 [class.inhctor]p3:
8008    //   [F]or each constructor template in the candidate set of inherited
8009    //   constructors, a constructor template is implicitly declared
8010    if (Ctor->getDescribedFunctionTemplate())
8011      return 0;
8012
8013    //   For each non-template constructor in the candidate set of inherited
8014    //   constructors other than a constructor having no parameters or a
8015    //   copy/move constructor having a single parameter, a constructor is
8016    //   implicitly declared [...]
8017    if (Ctor->getNumParams() == 0)
8018      return 1;
8019    if (Ctor->isCopyOrMoveConstructor())
8020      return 2;
8021
8022    // Per discussion on core reflector, never inherit a constructor which
8023    // would become a default, copy, or move constructor of Derived either.
8024    const ParmVarDecl *PD = Ctor->getParamDecl(0);
8025    const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
8026    return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
8027  }
8028
8029  /// Declare a single inheriting constructor, inheriting the specified
8030  /// constructor, with the given type.
8031  void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
8032                   QualType DerivedType) {
8033    InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
8034
8035    // C++11 [class.inhctor]p3:
8036    //   ... a constructor is implicitly declared with the same constructor
8037    //   characteristics unless there is a user-declared constructor with
8038    //   the same signature in the class where the using-declaration appears
8039    if (Entry.DeclaredInDerived)
8040      return;
8041
8042    // C++11 [class.inhctor]p7:
8043    //   If two using-declarations declare inheriting constructors with the
8044    //   same signature, the program is ill-formed
8045    if (Entry.DerivedCtor) {
8046      if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
8047        // Only diagnose this once per constructor.
8048        if (Entry.DerivedCtor->isInvalidDecl())
8049          return;
8050        Entry.DerivedCtor->setInvalidDecl();
8051
8052        SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
8053        SemaRef.Diag(BaseCtor->getLocation(),
8054                     diag::note_using_decl_constructor_conflict_current_ctor);
8055        SemaRef.Diag(Entry.BaseCtor->getLocation(),
8056                     diag::note_using_decl_constructor_conflict_previous_ctor);
8057        SemaRef.Diag(Entry.DerivedCtor->getLocation(),
8058                     diag::note_using_decl_constructor_conflict_previous_using);
8059      } else {
8060        // Core issue (no number): if the same inheriting constructor is
8061        // produced by multiple base class constructors from the same base
8062        // class, the inheriting constructor is defined as deleted.
8063        SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
8064      }
8065
8066      return;
8067    }
8068
8069    ASTContext &Context = SemaRef.Context;
8070    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8071        Context.getCanonicalType(Context.getRecordType(Derived)));
8072    DeclarationNameInfo NameInfo(Name, UsingLoc);
8073
8074    TemplateParameterList *TemplateParams = 0;
8075    if (const FunctionTemplateDecl *FTD =
8076            BaseCtor->getDescribedFunctionTemplate()) {
8077      TemplateParams = FTD->getTemplateParameters();
8078      // We're reusing template parameters from a different DeclContext. This
8079      // is questionable at best, but works out because the template depth in
8080      // both places is guaranteed to be 0.
8081      // FIXME: Rebuild the template parameters in the new context, and
8082      // transform the function type to refer to them.
8083    }
8084
8085    // Build type source info pointing at the using-declaration. This is
8086    // required by template instantiation.
8087    TypeSourceInfo *TInfo =
8088        Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
8089    FunctionProtoTypeLoc ProtoLoc =
8090        TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
8091
8092    CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
8093        Context, Derived, UsingLoc, NameInfo, DerivedType,
8094        TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
8095        /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
8096
8097    // Build an unevaluated exception specification for this constructor.
8098    const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
8099    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8100    EPI.ExceptionSpecType = EST_Unevaluated;
8101    EPI.ExceptionSpecDecl = DerivedCtor;
8102    DerivedCtor->setType(Context.getFunctionType(FPT->getResultType(),
8103                                                 FPT->getArgTypes(), EPI));
8104
8105    // Build the parameter declarations.
8106    SmallVector<ParmVarDecl *, 16> ParamDecls;
8107    for (unsigned I = 0, N = FPT->getNumArgs(); I != N; ++I) {
8108      TypeSourceInfo *TInfo =
8109          Context.getTrivialTypeSourceInfo(FPT->getArgType(I), UsingLoc);
8110      ParmVarDecl *PD = ParmVarDecl::Create(
8111          Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/0,
8112          FPT->getArgType(I), TInfo, SC_None, /*DefaultArg=*/0);
8113      PD->setScopeInfo(0, I);
8114      PD->setImplicit();
8115      ParamDecls.push_back(PD);
8116      ProtoLoc.setArg(I, PD);
8117    }
8118
8119    // Set up the new constructor.
8120    DerivedCtor->setAccess(BaseCtor->getAccess());
8121    DerivedCtor->setParams(ParamDecls);
8122    DerivedCtor->setInheritedConstructor(BaseCtor);
8123    if (BaseCtor->isDeleted())
8124      SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
8125
8126    // If this is a constructor template, build the template declaration.
8127    if (TemplateParams) {
8128      FunctionTemplateDecl *DerivedTemplate =
8129          FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
8130                                       TemplateParams, DerivedCtor);
8131      DerivedTemplate->setAccess(BaseCtor->getAccess());
8132      DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
8133      Derived->addDecl(DerivedTemplate);
8134    } else {
8135      Derived->addDecl(DerivedCtor);
8136    }
8137
8138    Entry.BaseCtor = BaseCtor;
8139    Entry.DerivedCtor = DerivedCtor;
8140  }
8141
8142  Sema &SemaRef;
8143  CXXRecordDecl *Derived;
8144  typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
8145  MapType Map;
8146};
8147}
8148
8149void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
8150  // Defer declaring the inheriting constructors until the class is
8151  // instantiated.
8152  if (ClassDecl->isDependentContext())
8153    return;
8154
8155  // Find base classes from which we might inherit constructors.
8156  SmallVector<CXXRecordDecl*, 4> InheritedBases;
8157  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
8158                                          BaseE = ClassDecl->bases_end();
8159       BaseIt != BaseE; ++BaseIt)
8160    if (BaseIt->getInheritConstructors())
8161      InheritedBases.push_back(BaseIt->getType()->getAsCXXRecordDecl());
8162
8163  // Go no further if we're not inheriting any constructors.
8164  if (InheritedBases.empty())
8165    return;
8166
8167  // Declare the inherited constructors.
8168  InheritingConstructorInfo ICI(*this, ClassDecl);
8169  for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
8170    ICI.inheritAll(InheritedBases[I]);
8171}
8172
8173void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
8174                                       CXXConstructorDecl *Constructor) {
8175  CXXRecordDecl *ClassDecl = Constructor->getParent();
8176  assert(Constructor->getInheritedConstructor() &&
8177         !Constructor->doesThisDeclarationHaveABody() &&
8178         !Constructor->isDeleted());
8179
8180  SynthesizedFunctionScope Scope(*this, Constructor);
8181  DiagnosticErrorTrap Trap(Diags);
8182  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8183      Trap.hasErrorOccurred()) {
8184    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
8185      << Context.getTagDeclType(ClassDecl);
8186    Constructor->setInvalidDecl();
8187    return;
8188  }
8189
8190  SourceLocation Loc = Constructor->getLocation();
8191  Constructor->setBody(new (Context) CompoundStmt(Loc));
8192
8193  Constructor->setUsed();
8194  MarkVTableUsed(CurrentLocation, ClassDecl);
8195
8196  if (ASTMutationListener *L = getASTMutationListener()) {
8197    L->CompletedImplicitDefinition(Constructor);
8198  }
8199}
8200
8201
8202Sema::ImplicitExceptionSpecification
8203Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
8204  CXXRecordDecl *ClassDecl = MD->getParent();
8205
8206  // C++ [except.spec]p14:
8207  //   An implicitly declared special member function (Clause 12) shall have
8208  //   an exception-specification.
8209  ImplicitExceptionSpecification ExceptSpec(*this);
8210  if (ClassDecl->isInvalidDecl())
8211    return ExceptSpec;
8212
8213  // Direct base-class destructors.
8214  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8215                                       BEnd = ClassDecl->bases_end();
8216       B != BEnd; ++B) {
8217    if (B->isVirtual()) // Handled below.
8218      continue;
8219
8220    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8221      ExceptSpec.CalledDecl(B->getLocStart(),
8222                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8223  }
8224
8225  // Virtual base-class destructors.
8226  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8227                                       BEnd = ClassDecl->vbases_end();
8228       B != BEnd; ++B) {
8229    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8230      ExceptSpec.CalledDecl(B->getLocStart(),
8231                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8232  }
8233
8234  // Field destructors.
8235  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8236                               FEnd = ClassDecl->field_end();
8237       F != FEnd; ++F) {
8238    if (const RecordType *RecordTy
8239        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
8240      ExceptSpec.CalledDecl(F->getLocation(),
8241                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
8242  }
8243
8244  return ExceptSpec;
8245}
8246
8247CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
8248  // C++ [class.dtor]p2:
8249  //   If a class has no user-declared destructor, a destructor is
8250  //   declared implicitly. An implicitly-declared destructor is an
8251  //   inline public member of its class.
8252  assert(ClassDecl->needsImplicitDestructor());
8253
8254  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
8255  if (DSM.isAlreadyBeingDeclared())
8256    return 0;
8257
8258  // Create the actual destructor declaration.
8259  CanQualType ClassType
8260    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8261  SourceLocation ClassLoc = ClassDecl->getLocation();
8262  DeclarationName Name
8263    = Context.DeclarationNames.getCXXDestructorName(ClassType);
8264  DeclarationNameInfo NameInfo(Name, ClassLoc);
8265  CXXDestructorDecl *Destructor
8266      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8267                                  QualType(), 0, /*isInline=*/true,
8268                                  /*isImplicitlyDeclared=*/true);
8269  Destructor->setAccess(AS_public);
8270  Destructor->setDefaulted();
8271  Destructor->setImplicit();
8272
8273  // Build an exception specification pointing back at this destructor.
8274  FunctionProtoType::ExtProtoInfo EPI;
8275  EPI.ExceptionSpecType = EST_Unevaluated;
8276  EPI.ExceptionSpecDecl = Destructor;
8277  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8278
8279  AddOverriddenMethods(ClassDecl, Destructor);
8280
8281  // We don't need to use SpecialMemberIsTrivial here; triviality for
8282  // destructors is easy to compute.
8283  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
8284
8285  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
8286    SetDeclDeleted(Destructor, ClassLoc);
8287
8288  // Note that we have declared this destructor.
8289  ++ASTContext::NumImplicitDestructorsDeclared;
8290
8291  // Introduce this destructor into its scope.
8292  if (Scope *S = getScopeForContext(ClassDecl))
8293    PushOnScopeChains(Destructor, S, false);
8294  ClassDecl->addDecl(Destructor);
8295
8296  return Destructor;
8297}
8298
8299void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
8300                                    CXXDestructorDecl *Destructor) {
8301  assert((Destructor->isDefaulted() &&
8302          !Destructor->doesThisDeclarationHaveABody() &&
8303          !Destructor->isDeleted()) &&
8304         "DefineImplicitDestructor - call it for implicit default dtor");
8305  CXXRecordDecl *ClassDecl = Destructor->getParent();
8306  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
8307
8308  if (Destructor->isInvalidDecl())
8309    return;
8310
8311  SynthesizedFunctionScope Scope(*this, Destructor);
8312
8313  DiagnosticErrorTrap Trap(Diags);
8314  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8315                                         Destructor->getParent());
8316
8317  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8318    Diag(CurrentLocation, diag::note_member_synthesized_at)
8319      << CXXDestructor << Context.getTagDeclType(ClassDecl);
8320
8321    Destructor->setInvalidDecl();
8322    return;
8323  }
8324
8325  SourceLocation Loc = Destructor->getLocation();
8326  Destructor->setBody(new (Context) CompoundStmt(Loc));
8327  Destructor->setImplicitlyDefined(true);
8328  Destructor->setUsed();
8329  MarkVTableUsed(CurrentLocation, ClassDecl);
8330
8331  if (ASTMutationListener *L = getASTMutationListener()) {
8332    L->CompletedImplicitDefinition(Destructor);
8333  }
8334}
8335
8336/// \brief Perform any semantic analysis which needs to be delayed until all
8337/// pending class member declarations have been parsed.
8338void Sema::ActOnFinishCXXMemberDecls() {
8339  // If the context is an invalid C++ class, just suppress these checks.
8340  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8341    if (Record->isInvalidDecl()) {
8342      DelayedDestructorExceptionSpecChecks.clear();
8343      return;
8344    }
8345  }
8346
8347  // Perform any deferred checking of exception specifications for virtual
8348  // destructors.
8349  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
8350       i != e; ++i) {
8351    const CXXDestructorDecl *Dtor =
8352        DelayedDestructorExceptionSpecChecks[i].first;
8353    assert(!Dtor->getParent()->isDependentType() &&
8354           "Should not ever add destructors of templates into the list.");
8355    CheckOverridingFunctionExceptionSpec(Dtor,
8356        DelayedDestructorExceptionSpecChecks[i].second);
8357  }
8358  DelayedDestructorExceptionSpecChecks.clear();
8359}
8360
8361void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8362                                         CXXDestructorDecl *Destructor) {
8363  assert(getLangOpts().CPlusPlus11 &&
8364         "adjusting dtor exception specs was introduced in c++11");
8365
8366  // C++11 [class.dtor]p3:
8367  //   A declaration of a destructor that does not have an exception-
8368  //   specification is implicitly considered to have the same exception-
8369  //   specification as an implicit declaration.
8370  const FunctionProtoType *DtorType = Destructor->getType()->
8371                                        getAs<FunctionProtoType>();
8372  if (DtorType->hasExceptionSpec())
8373    return;
8374
8375  // Replace the destructor's type, building off the existing one. Fortunately,
8376  // the only thing of interest in the destructor type is its extended info.
8377  // The return and arguments are fixed.
8378  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8379  EPI.ExceptionSpecType = EST_Unevaluated;
8380  EPI.ExceptionSpecDecl = Destructor;
8381  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8382
8383  // FIXME: If the destructor has a body that could throw, and the newly created
8384  // spec doesn't allow exceptions, we should emit a warning, because this
8385  // change in behavior can break conforming C++03 programs at runtime.
8386  // However, we don't have a body or an exception specification yet, so it
8387  // needs to be done somewhere else.
8388}
8389
8390/// When generating a defaulted copy or move assignment operator, if a field
8391/// should be copied with __builtin_memcpy rather than via explicit assignments,
8392/// do so. This optimization only applies for arrays of scalars, and for arrays
8393/// of class type where the selected copy/move-assignment operator is trivial.
8394static StmtResult
8395buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8396                           Expr *To, Expr *From) {
8397  // Compute the size of the memory buffer to be copied.
8398  QualType SizeType = S.Context.getSizeType();
8399  llvm::APInt Size(S.Context.getTypeSize(SizeType),
8400                   S.Context.getTypeSizeInChars(T).getQuantity());
8401
8402  // Take the address of the field references for "from" and "to". We
8403  // directly construct UnaryOperators here because semantic analysis
8404  // does not permit us to take the address of an xvalue.
8405  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8406                         S.Context.getPointerType(From->getType()),
8407                         VK_RValue, OK_Ordinary, Loc);
8408  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8409                       S.Context.getPointerType(To->getType()),
8410                       VK_RValue, OK_Ordinary, Loc);
8411
8412  const Type *E = T->getBaseElementTypeUnsafe();
8413  bool NeedsCollectableMemCpy =
8414    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8415
8416  // Create a reference to the __builtin_objc_memmove_collectable function
8417  StringRef MemCpyName = NeedsCollectableMemCpy ?
8418    "__builtin_objc_memmove_collectable" :
8419    "__builtin_memcpy";
8420  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8421                 Sema::LookupOrdinaryName);
8422  S.LookupName(R, S.TUScope, true);
8423
8424  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8425  if (!MemCpy)
8426    // Something went horribly wrong earlier, and we will have complained
8427    // about it.
8428    return StmtError();
8429
8430  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8431                                            VK_RValue, Loc, 0);
8432  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8433
8434  Expr *CallArgs[] = {
8435    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8436  };
8437  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8438                                    Loc, CallArgs, Loc);
8439
8440  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8441  return S.Owned(Call.takeAs<Stmt>());
8442}
8443
8444/// \brief Builds a statement that copies/moves the given entity from \p From to
8445/// \c To.
8446///
8447/// This routine is used to copy/move the members of a class with an
8448/// implicitly-declared copy/move assignment operator. When the entities being
8449/// copied are arrays, this routine builds for loops to copy them.
8450///
8451/// \param S The Sema object used for type-checking.
8452///
8453/// \param Loc The location where the implicit copy/move is being generated.
8454///
8455/// \param T The type of the expressions being copied/moved. Both expressions
8456/// must have this type.
8457///
8458/// \param To The expression we are copying/moving to.
8459///
8460/// \param From The expression we are copying/moving from.
8461///
8462/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8463/// Otherwise, it's a non-static member subobject.
8464///
8465/// \param Copying Whether we're copying or moving.
8466///
8467/// \param Depth Internal parameter recording the depth of the recursion.
8468///
8469/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8470/// if a memcpy should be used instead.
8471static StmtResult
8472buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8473                                 Expr *To, Expr *From,
8474                                 bool CopyingBaseSubobject, bool Copying,
8475                                 unsigned Depth = 0) {
8476  // C++11 [class.copy]p28:
8477  //   Each subobject is assigned in the manner appropriate to its type:
8478  //
8479  //     - if the subobject is of class type, as if by a call to operator= with
8480  //       the subobject as the object expression and the corresponding
8481  //       subobject of x as a single function argument (as if by explicit
8482  //       qualification; that is, ignoring any possible virtual overriding
8483  //       functions in more derived classes);
8484  //
8485  // C++03 [class.copy]p13:
8486  //     - if the subobject is of class type, the copy assignment operator for
8487  //       the class is used (as if by explicit qualification; that is,
8488  //       ignoring any possible virtual overriding functions in more derived
8489  //       classes);
8490  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8491    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8492
8493    // Look for operator=.
8494    DeclarationName Name
8495      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8496    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8497    S.LookupQualifiedName(OpLookup, ClassDecl, false);
8498
8499    // Prior to C++11, filter out any result that isn't a copy/move-assignment
8500    // operator.
8501    if (!S.getLangOpts().CPlusPlus11) {
8502      LookupResult::Filter F = OpLookup.makeFilter();
8503      while (F.hasNext()) {
8504        NamedDecl *D = F.next();
8505        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8506          if (Method->isCopyAssignmentOperator() ||
8507              (!Copying && Method->isMoveAssignmentOperator()))
8508            continue;
8509
8510        F.erase();
8511      }
8512      F.done();
8513    }
8514
8515    // Suppress the protected check (C++ [class.protected]) for each of the
8516    // assignment operators we found. This strange dance is required when
8517    // we're assigning via a base classes's copy-assignment operator. To
8518    // ensure that we're getting the right base class subobject (without
8519    // ambiguities), we need to cast "this" to that subobject type; to
8520    // ensure that we don't go through the virtual call mechanism, we need
8521    // to qualify the operator= name with the base class (see below). However,
8522    // this means that if the base class has a protected copy assignment
8523    // operator, the protected member access check will fail. So, we
8524    // rewrite "protected" access to "public" access in this case, since we
8525    // know by construction that we're calling from a derived class.
8526    if (CopyingBaseSubobject) {
8527      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8528           L != LEnd; ++L) {
8529        if (L.getAccess() == AS_protected)
8530          L.setAccess(AS_public);
8531      }
8532    }
8533
8534    // Create the nested-name-specifier that will be used to qualify the
8535    // reference to operator=; this is required to suppress the virtual
8536    // call mechanism.
8537    CXXScopeSpec SS;
8538    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
8539    SS.MakeTrivial(S.Context,
8540                   NestedNameSpecifier::Create(S.Context, 0, false,
8541                                               CanonicalT),
8542                   Loc);
8543
8544    // Create the reference to operator=.
8545    ExprResult OpEqualRef
8546      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
8547                                   /*TemplateKWLoc=*/SourceLocation(),
8548                                   /*FirstQualifierInScope=*/0,
8549                                   OpLookup,
8550                                   /*TemplateArgs=*/0,
8551                                   /*SuppressQualifierCheck=*/true);
8552    if (OpEqualRef.isInvalid())
8553      return StmtError();
8554
8555    // Build the call to the assignment operator.
8556
8557    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
8558                                                  OpEqualRef.takeAs<Expr>(),
8559                                                  Loc, From, Loc);
8560    if (Call.isInvalid())
8561      return StmtError();
8562
8563    // If we built a call to a trivial 'operator=' while copying an array,
8564    // bail out. We'll replace the whole shebang with a memcpy.
8565    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
8566    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
8567      return StmtResult((Stmt*)0);
8568
8569    // Convert to an expression-statement, and clean up any produced
8570    // temporaries.
8571    return S.ActOnExprStmt(Call);
8572  }
8573
8574  //     - if the subobject is of scalar type, the built-in assignment
8575  //       operator is used.
8576  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
8577  if (!ArrayTy) {
8578    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
8579    if (Assignment.isInvalid())
8580      return StmtError();
8581    return S.ActOnExprStmt(Assignment);
8582  }
8583
8584  //     - if the subobject is an array, each element is assigned, in the
8585  //       manner appropriate to the element type;
8586
8587  // Construct a loop over the array bounds, e.g.,
8588  //
8589  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
8590  //
8591  // that will copy each of the array elements.
8592  QualType SizeType = S.Context.getSizeType();
8593
8594  // Create the iteration variable.
8595  IdentifierInfo *IterationVarName = 0;
8596  {
8597    SmallString<8> Str;
8598    llvm::raw_svector_ostream OS(Str);
8599    OS << "__i" << Depth;
8600    IterationVarName = &S.Context.Idents.get(OS.str());
8601  }
8602  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
8603                                          IterationVarName, SizeType,
8604                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
8605                                          SC_None);
8606
8607  // Initialize the iteration variable to zero.
8608  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8609  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8610
8611  // Create a reference to the iteration variable; we'll use this several
8612  // times throughout.
8613  Expr *IterationVarRef
8614    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
8615  assert(IterationVarRef && "Reference to invented variable cannot fail!");
8616  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
8617  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
8618
8619  // Create the DeclStmt that holds the iteration variable.
8620  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
8621
8622  // Subscript the "from" and "to" expressions with the iteration variable.
8623  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
8624                                                         IterationVarRefRVal,
8625                                                         Loc));
8626  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
8627                                                       IterationVarRefRVal,
8628                                                       Loc));
8629  if (!Copying) // Cast to rvalue
8630    From = CastForMoving(S, From);
8631
8632  // Build the copy/move for an individual element of the array.
8633  StmtResult Copy =
8634    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
8635                                     To, From, CopyingBaseSubobject,
8636                                     Copying, Depth + 1);
8637  // Bail out if copying fails or if we determined that we should use memcpy.
8638  if (Copy.isInvalid() || !Copy.get())
8639    return Copy;
8640
8641  // Create the comparison against the array bound.
8642  llvm::APInt Upper
8643    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
8644  Expr *Comparison
8645    = new (S.Context) BinaryOperator(IterationVarRefRVal,
8646                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
8647                                     BO_NE, S.Context.BoolTy,
8648                                     VK_RValue, OK_Ordinary, Loc, false);
8649
8650  // Create the pre-increment of the iteration variable.
8651  Expr *Increment
8652    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
8653                                    VK_LValue, OK_Ordinary, Loc);
8654
8655  // Construct the loop that copies all elements of this array.
8656  return S.ActOnForStmt(Loc, Loc, InitStmt,
8657                        S.MakeFullExpr(Comparison),
8658                        0, S.MakeFullDiscardedValueExpr(Increment),
8659                        Loc, Copy.take());
8660}
8661
8662static StmtResult
8663buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
8664                      Expr *To, Expr *From,
8665                      bool CopyingBaseSubobject, bool Copying) {
8666  // Maybe we should use a memcpy?
8667  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
8668      T.isTriviallyCopyableType(S.Context))
8669    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8670
8671  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
8672                                                     CopyingBaseSubobject,
8673                                                     Copying, 0));
8674
8675  // If we ended up picking a trivial assignment operator for an array of a
8676  // non-trivially-copyable class type, just emit a memcpy.
8677  if (!Result.isInvalid() && !Result.get())
8678    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8679
8680  return Result;
8681}
8682
8683Sema::ImplicitExceptionSpecification
8684Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
8685  CXXRecordDecl *ClassDecl = MD->getParent();
8686
8687  ImplicitExceptionSpecification ExceptSpec(*this);
8688  if (ClassDecl->isInvalidDecl())
8689    return ExceptSpec;
8690
8691  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8692  assert(T->getNumArgs() == 1 && "not a copy assignment op");
8693  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8694
8695  // C++ [except.spec]p14:
8696  //   An implicitly declared special member function (Clause 12) shall have an
8697  //   exception-specification. [...]
8698
8699  // It is unspecified whether or not an implicit copy assignment operator
8700  // attempts to deduplicate calls to assignment operators of virtual bases are
8701  // made. As such, this exception specification is effectively unspecified.
8702  // Based on a similar decision made for constness in C++0x, we're erring on
8703  // the side of assuming such calls to be made regardless of whether they
8704  // actually happen.
8705  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8706                                       BaseEnd = ClassDecl->bases_end();
8707       Base != BaseEnd; ++Base) {
8708    if (Base->isVirtual())
8709      continue;
8710
8711    CXXRecordDecl *BaseClassDecl
8712      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8713    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8714                                                            ArgQuals, false, 0))
8715      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8716  }
8717
8718  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8719                                       BaseEnd = ClassDecl->vbases_end();
8720       Base != BaseEnd; ++Base) {
8721    CXXRecordDecl *BaseClassDecl
8722      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8723    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8724                                                            ArgQuals, false, 0))
8725      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8726  }
8727
8728  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8729                                  FieldEnd = ClassDecl->field_end();
8730       Field != FieldEnd;
8731       ++Field) {
8732    QualType FieldType = Context.getBaseElementType(Field->getType());
8733    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8734      if (CXXMethodDecl *CopyAssign =
8735          LookupCopyingAssignment(FieldClassDecl,
8736                                  ArgQuals | FieldType.getCVRQualifiers(),
8737                                  false, 0))
8738        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
8739    }
8740  }
8741
8742  return ExceptSpec;
8743}
8744
8745CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
8746  // Note: The following rules are largely analoguous to the copy
8747  // constructor rules. Note that virtual bases are not taken into account
8748  // for determining the argument type of the operator. Note also that
8749  // operators taking an object instead of a reference are allowed.
8750  assert(ClassDecl->needsImplicitCopyAssignment());
8751
8752  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
8753  if (DSM.isAlreadyBeingDeclared())
8754    return 0;
8755
8756  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8757  QualType RetType = Context.getLValueReferenceType(ArgType);
8758  bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
8759  if (Const)
8760    ArgType = ArgType.withConst();
8761  ArgType = Context.getLValueReferenceType(ArgType);
8762
8763  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8764                                                     CXXCopyAssignment,
8765                                                     Const);
8766
8767  //   An implicitly-declared copy assignment operator is an inline public
8768  //   member of its class.
8769  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8770  SourceLocation ClassLoc = ClassDecl->getLocation();
8771  DeclarationNameInfo NameInfo(Name, ClassLoc);
8772  CXXMethodDecl *CopyAssignment =
8773      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8774                            /*TInfo=*/ 0, /*StorageClass=*/ SC_None,
8775                            /*isInline=*/ true, Constexpr, SourceLocation());
8776  CopyAssignment->setAccess(AS_public);
8777  CopyAssignment->setDefaulted();
8778  CopyAssignment->setImplicit();
8779
8780  // Build an exception specification pointing back at this member.
8781  FunctionProtoType::ExtProtoInfo EPI;
8782  EPI.ExceptionSpecType = EST_Unevaluated;
8783  EPI.ExceptionSpecDecl = CopyAssignment;
8784  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
8785
8786  // Add the parameter to the operator.
8787  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
8788                                               ClassLoc, ClassLoc, /*Id=*/0,
8789                                               ArgType, /*TInfo=*/0,
8790                                               SC_None, 0);
8791  CopyAssignment->setParams(FromParam);
8792
8793  AddOverriddenMethods(ClassDecl, CopyAssignment);
8794
8795  CopyAssignment->setTrivial(
8796    ClassDecl->needsOverloadResolutionForCopyAssignment()
8797      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
8798      : ClassDecl->hasTrivialCopyAssignment());
8799
8800  // C++11 [class.copy]p19:
8801  //   ....  If the class definition does not explicitly declare a copy
8802  //   assignment operator, there is no user-declared move constructor, and
8803  //   there is no user-declared move assignment operator, a copy assignment
8804  //   operator is implicitly declared as defaulted.
8805  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
8806    SetDeclDeleted(CopyAssignment, ClassLoc);
8807
8808  // Note that we have added this copy-assignment operator.
8809  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
8810
8811  if (Scope *S = getScopeForContext(ClassDecl))
8812    PushOnScopeChains(CopyAssignment, S, false);
8813  ClassDecl->addDecl(CopyAssignment);
8814
8815  return CopyAssignment;
8816}
8817
8818void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
8819                                        CXXMethodDecl *CopyAssignOperator) {
8820  assert((CopyAssignOperator->isDefaulted() &&
8821          CopyAssignOperator->isOverloadedOperator() &&
8822          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
8823          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
8824          !CopyAssignOperator->isDeleted()) &&
8825         "DefineImplicitCopyAssignment called for wrong function");
8826
8827  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
8828
8829  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
8830    CopyAssignOperator->setInvalidDecl();
8831    return;
8832  }
8833
8834  CopyAssignOperator->setUsed();
8835
8836  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
8837  DiagnosticErrorTrap Trap(Diags);
8838
8839  // C++0x [class.copy]p30:
8840  //   The implicitly-defined or explicitly-defaulted copy assignment operator
8841  //   for a non-union class X performs memberwise copy assignment of its
8842  //   subobjects. The direct base classes of X are assigned first, in the
8843  //   order of their declaration in the base-specifier-list, and then the
8844  //   immediate non-static data members of X are assigned, in the order in
8845  //   which they were declared in the class definition.
8846
8847  // The statements that form the synthesized function body.
8848  SmallVector<Stmt*, 8> Statements;
8849
8850  // The parameter for the "other" object, which we are copying from.
8851  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
8852  Qualifiers OtherQuals = Other->getType().getQualifiers();
8853  QualType OtherRefType = Other->getType();
8854  if (const LValueReferenceType *OtherRef
8855                                = OtherRefType->getAs<LValueReferenceType>()) {
8856    OtherRefType = OtherRef->getPointeeType();
8857    OtherQuals = OtherRefType.getQualifiers();
8858  }
8859
8860  // Our location for everything implicitly-generated.
8861  SourceLocation Loc = CopyAssignOperator->getLocation();
8862
8863  // Construct a reference to the "other" object. We'll be using this
8864  // throughout the generated ASTs.
8865  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8866  assert(OtherRef && "Reference to parameter cannot fail!");
8867
8868  // Construct the "this" pointer. We'll be using this throughout the generated
8869  // ASTs.
8870  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8871  assert(This && "Reference to this cannot fail!");
8872
8873  // Assign base classes.
8874  bool Invalid = false;
8875  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8876       E = ClassDecl->bases_end(); Base != E; ++Base) {
8877    // Form the assignment:
8878    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
8879    QualType BaseType = Base->getType().getUnqualifiedType();
8880    if (!BaseType->isRecordType()) {
8881      Invalid = true;
8882      continue;
8883    }
8884
8885    CXXCastPath BasePath;
8886    BasePath.push_back(Base);
8887
8888    // Construct the "from" expression, which is an implicit cast to the
8889    // appropriately-qualified base type.
8890    Expr *From = OtherRef;
8891    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
8892                             CK_UncheckedDerivedToBase,
8893                             VK_LValue, &BasePath).take();
8894
8895    // Dereference "this".
8896    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8897
8898    // Implicitly cast "this" to the appropriately-qualified base type.
8899    To = ImpCastExprToType(To.take(),
8900                           Context.getCVRQualifiedType(BaseType,
8901                                     CopyAssignOperator->getTypeQualifiers()),
8902                           CK_UncheckedDerivedToBase,
8903                           VK_LValue, &BasePath);
8904
8905    // Build the copy.
8906    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
8907                                            To.get(), From,
8908                                            /*CopyingBaseSubobject=*/true,
8909                                            /*Copying=*/true);
8910    if (Copy.isInvalid()) {
8911      Diag(CurrentLocation, diag::note_member_synthesized_at)
8912        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8913      CopyAssignOperator->setInvalidDecl();
8914      return;
8915    }
8916
8917    // Success! Record the copy.
8918    Statements.push_back(Copy.takeAs<Expr>());
8919  }
8920
8921  // Assign non-static members.
8922  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8923                                  FieldEnd = ClassDecl->field_end();
8924       Field != FieldEnd; ++Field) {
8925    if (Field->isUnnamedBitfield())
8926      continue;
8927
8928    if (Field->isInvalidDecl()) {
8929      Invalid = true;
8930      continue;
8931    }
8932
8933    // Check for members of reference type; we can't copy those.
8934    if (Field->getType()->isReferenceType()) {
8935      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8936        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8937      Diag(Field->getLocation(), diag::note_declared_at);
8938      Diag(CurrentLocation, diag::note_member_synthesized_at)
8939        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8940      Invalid = true;
8941      continue;
8942    }
8943
8944    // Check for members of const-qualified, non-class type.
8945    QualType BaseType = Context.getBaseElementType(Field->getType());
8946    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8947      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8948        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8949      Diag(Field->getLocation(), diag::note_declared_at);
8950      Diag(CurrentLocation, diag::note_member_synthesized_at)
8951        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8952      Invalid = true;
8953      continue;
8954    }
8955
8956    // Suppress assigning zero-width bitfields.
8957    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8958      continue;
8959
8960    QualType FieldType = Field->getType().getNonReferenceType();
8961    if (FieldType->isIncompleteArrayType()) {
8962      assert(ClassDecl->hasFlexibleArrayMember() &&
8963             "Incomplete array type is not valid");
8964      continue;
8965    }
8966
8967    // Build references to the field in the object we're copying from and to.
8968    CXXScopeSpec SS; // Intentionally empty
8969    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8970                              LookupMemberName);
8971    MemberLookup.addDecl(*Field);
8972    MemberLookup.resolveKind();
8973    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8974                                               Loc, /*IsArrow=*/false,
8975                                               SS, SourceLocation(), 0,
8976                                               MemberLookup, 0);
8977    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8978                                             Loc, /*IsArrow=*/true,
8979                                             SS, SourceLocation(), 0,
8980                                             MemberLookup, 0);
8981    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8982    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8983
8984    // Build the copy of this field.
8985    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
8986                                            To.get(), From.get(),
8987                                            /*CopyingBaseSubobject=*/false,
8988                                            /*Copying=*/true);
8989    if (Copy.isInvalid()) {
8990      Diag(CurrentLocation, diag::note_member_synthesized_at)
8991        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8992      CopyAssignOperator->setInvalidDecl();
8993      return;
8994    }
8995
8996    // Success! Record the copy.
8997    Statements.push_back(Copy.takeAs<Stmt>());
8998  }
8999
9000  if (!Invalid) {
9001    // Add a "return *this;"
9002    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9003
9004    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9005    if (Return.isInvalid())
9006      Invalid = true;
9007    else {
9008      Statements.push_back(Return.takeAs<Stmt>());
9009
9010      if (Trap.hasErrorOccurred()) {
9011        Diag(CurrentLocation, diag::note_member_synthesized_at)
9012          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9013        Invalid = true;
9014      }
9015    }
9016  }
9017
9018  if (Invalid) {
9019    CopyAssignOperator->setInvalidDecl();
9020    return;
9021  }
9022
9023  StmtResult Body;
9024  {
9025    CompoundScopeRAII CompoundScope(*this);
9026    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9027                             /*isStmtExpr=*/false);
9028    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9029  }
9030  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
9031
9032  if (ASTMutationListener *L = getASTMutationListener()) {
9033    L->CompletedImplicitDefinition(CopyAssignOperator);
9034  }
9035}
9036
9037Sema::ImplicitExceptionSpecification
9038Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
9039  CXXRecordDecl *ClassDecl = MD->getParent();
9040
9041  ImplicitExceptionSpecification ExceptSpec(*this);
9042  if (ClassDecl->isInvalidDecl())
9043    return ExceptSpec;
9044
9045  // C++0x [except.spec]p14:
9046  //   An implicitly declared special member function (Clause 12) shall have an
9047  //   exception-specification. [...]
9048
9049  // It is unspecified whether or not an implicit move assignment operator
9050  // attempts to deduplicate calls to assignment operators of virtual bases are
9051  // made. As such, this exception specification is effectively unspecified.
9052  // Based on a similar decision made for constness in C++0x, we're erring on
9053  // the side of assuming such calls to be made regardless of whether they
9054  // actually happen.
9055  // Note that a move constructor is not implicitly declared when there are
9056  // virtual bases, but it can still be user-declared and explicitly defaulted.
9057  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9058                                       BaseEnd = ClassDecl->bases_end();
9059       Base != BaseEnd; ++Base) {
9060    if (Base->isVirtual())
9061      continue;
9062
9063    CXXRecordDecl *BaseClassDecl
9064      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9065    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9066                                                           0, false, 0))
9067      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9068  }
9069
9070  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9071                                       BaseEnd = ClassDecl->vbases_end();
9072       Base != BaseEnd; ++Base) {
9073    CXXRecordDecl *BaseClassDecl
9074      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9075    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9076                                                           0, false, 0))
9077      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9078  }
9079
9080  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9081                                  FieldEnd = ClassDecl->field_end();
9082       Field != FieldEnd;
9083       ++Field) {
9084    QualType FieldType = Context.getBaseElementType(Field->getType());
9085    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9086      if (CXXMethodDecl *MoveAssign =
9087              LookupMovingAssignment(FieldClassDecl,
9088                                     FieldType.getCVRQualifiers(),
9089                                     false, 0))
9090        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
9091    }
9092  }
9093
9094  return ExceptSpec;
9095}
9096
9097/// Determine whether the class type has any direct or indirect virtual base
9098/// classes which have a non-trivial move assignment operator.
9099static bool
9100hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
9101  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9102                                          BaseEnd = ClassDecl->vbases_end();
9103       Base != BaseEnd; ++Base) {
9104    CXXRecordDecl *BaseClass =
9105        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9106
9107    // Try to declare the move assignment. If it would be deleted, then the
9108    // class does not have a non-trivial move assignment.
9109    if (BaseClass->needsImplicitMoveAssignment())
9110      S.DeclareImplicitMoveAssignment(BaseClass);
9111
9112    if (BaseClass->hasNonTrivialMoveAssignment())
9113      return true;
9114  }
9115
9116  return false;
9117}
9118
9119/// Determine whether the given type either has a move constructor or is
9120/// trivially copyable.
9121static bool
9122hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
9123  Type = S.Context.getBaseElementType(Type);
9124
9125  // FIXME: Technically, non-trivially-copyable non-class types, such as
9126  // reference types, are supposed to return false here, but that appears
9127  // to be a standard defect.
9128  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
9129  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
9130    return true;
9131
9132  if (Type.isTriviallyCopyableType(S.Context))
9133    return true;
9134
9135  if (IsConstructor) {
9136    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
9137    // give the right answer.
9138    if (ClassDecl->needsImplicitMoveConstructor())
9139      S.DeclareImplicitMoveConstructor(ClassDecl);
9140    return ClassDecl->hasMoveConstructor();
9141  }
9142
9143  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
9144  // give the right answer.
9145  if (ClassDecl->needsImplicitMoveAssignment())
9146    S.DeclareImplicitMoveAssignment(ClassDecl);
9147  return ClassDecl->hasMoveAssignment();
9148}
9149
9150/// Determine whether all non-static data members and direct or virtual bases
9151/// of class \p ClassDecl have either a move operation, or are trivially
9152/// copyable.
9153static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
9154                                            bool IsConstructor) {
9155  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9156                                          BaseEnd = ClassDecl->bases_end();
9157       Base != BaseEnd; ++Base) {
9158    if (Base->isVirtual())
9159      continue;
9160
9161    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9162      return false;
9163  }
9164
9165  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9166                                          BaseEnd = ClassDecl->vbases_end();
9167       Base != BaseEnd; ++Base) {
9168    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9169      return false;
9170  }
9171
9172  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9173                                     FieldEnd = ClassDecl->field_end();
9174       Field != FieldEnd; ++Field) {
9175    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
9176      return false;
9177  }
9178
9179  return true;
9180}
9181
9182CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
9183  // C++11 [class.copy]p20:
9184  //   If the definition of a class X does not explicitly declare a move
9185  //   assignment operator, one will be implicitly declared as defaulted
9186  //   if and only if:
9187  //
9188  //   - [first 4 bullets]
9189  assert(ClassDecl->needsImplicitMoveAssignment());
9190
9191  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
9192  if (DSM.isAlreadyBeingDeclared())
9193    return 0;
9194
9195  // [Checked after we build the declaration]
9196  //   - the move assignment operator would not be implicitly defined as
9197  //     deleted,
9198
9199  // [DR1402]:
9200  //   - X has no direct or indirect virtual base class with a non-trivial
9201  //     move assignment operator, and
9202  //   - each of X's non-static data members and direct or virtual base classes
9203  //     has a type that either has a move assignment operator or is trivially
9204  //     copyable.
9205  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
9206      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
9207    ClassDecl->setFailedImplicitMoveAssignment();
9208    return 0;
9209  }
9210
9211  // Note: The following rules are largely analoguous to the move
9212  // constructor rules.
9213
9214  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9215  QualType RetType = Context.getLValueReferenceType(ArgType);
9216  ArgType = Context.getRValueReferenceType(ArgType);
9217
9218  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9219                                                     CXXMoveAssignment,
9220                                                     false);
9221
9222  //   An implicitly-declared move assignment operator is an inline public
9223  //   member of its class.
9224  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9225  SourceLocation ClassLoc = ClassDecl->getLocation();
9226  DeclarationNameInfo NameInfo(Name, ClassLoc);
9227  CXXMethodDecl *MoveAssignment =
9228      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9229                            /*TInfo=*/0, /*StorageClass=*/SC_None,
9230                            /*isInline=*/true, Constexpr, SourceLocation());
9231  MoveAssignment->setAccess(AS_public);
9232  MoveAssignment->setDefaulted();
9233  MoveAssignment->setImplicit();
9234
9235  // Build an exception specification pointing back at this member.
9236  FunctionProtoType::ExtProtoInfo EPI;
9237  EPI.ExceptionSpecType = EST_Unevaluated;
9238  EPI.ExceptionSpecDecl = MoveAssignment;
9239  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9240
9241  // Add the parameter to the operator.
9242  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
9243                                               ClassLoc, ClassLoc, /*Id=*/0,
9244                                               ArgType, /*TInfo=*/0,
9245                                               SC_None, 0);
9246  MoveAssignment->setParams(FromParam);
9247
9248  AddOverriddenMethods(ClassDecl, MoveAssignment);
9249
9250  MoveAssignment->setTrivial(
9251    ClassDecl->needsOverloadResolutionForMoveAssignment()
9252      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
9253      : ClassDecl->hasTrivialMoveAssignment());
9254
9255  // C++0x [class.copy]p9:
9256  //   If the definition of a class X does not explicitly declare a move
9257  //   assignment operator, one will be implicitly declared as defaulted if and
9258  //   only if:
9259  //   [...]
9260  //   - the move assignment operator would not be implicitly defined as
9261  //     deleted.
9262  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
9263    // Cache this result so that we don't try to generate this over and over
9264    // on every lookup, leaking memory and wasting time.
9265    ClassDecl->setFailedImplicitMoveAssignment();
9266    return 0;
9267  }
9268
9269  // Note that we have added this copy-assignment operator.
9270  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
9271
9272  if (Scope *S = getScopeForContext(ClassDecl))
9273    PushOnScopeChains(MoveAssignment, S, false);
9274  ClassDecl->addDecl(MoveAssignment);
9275
9276  return MoveAssignment;
9277}
9278
9279void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
9280                                        CXXMethodDecl *MoveAssignOperator) {
9281  assert((MoveAssignOperator->isDefaulted() &&
9282          MoveAssignOperator->isOverloadedOperator() &&
9283          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
9284          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
9285          !MoveAssignOperator->isDeleted()) &&
9286         "DefineImplicitMoveAssignment called for wrong function");
9287
9288  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
9289
9290  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
9291    MoveAssignOperator->setInvalidDecl();
9292    return;
9293  }
9294
9295  MoveAssignOperator->setUsed();
9296
9297  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
9298  DiagnosticErrorTrap Trap(Diags);
9299
9300  // C++0x [class.copy]p28:
9301  //   The implicitly-defined or move assignment operator for a non-union class
9302  //   X performs memberwise move assignment of its subobjects. The direct base
9303  //   classes of X are assigned first, in the order of their declaration in the
9304  //   base-specifier-list, and then the immediate non-static data members of X
9305  //   are assigned, in the order in which they were declared in the class
9306  //   definition.
9307
9308  // The statements that form the synthesized function body.
9309  SmallVector<Stmt*, 8> Statements;
9310
9311  // The parameter for the "other" object, which we are move from.
9312  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
9313  QualType OtherRefType = Other->getType()->
9314      getAs<RValueReferenceType>()->getPointeeType();
9315  assert(!OtherRefType.getQualifiers() &&
9316         "Bad argument type of defaulted move assignment");
9317
9318  // Our location for everything implicitly-generated.
9319  SourceLocation Loc = MoveAssignOperator->getLocation();
9320
9321  // Construct a reference to the "other" object. We'll be using this
9322  // throughout the generated ASTs.
9323  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
9324  assert(OtherRef && "Reference to parameter cannot fail!");
9325  // Cast to rvalue.
9326  OtherRef = CastForMoving(*this, OtherRef);
9327
9328  // Construct the "this" pointer. We'll be using this throughout the generated
9329  // ASTs.
9330  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
9331  assert(This && "Reference to this cannot fail!");
9332
9333  // Assign base classes.
9334  bool Invalid = false;
9335  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9336       E = ClassDecl->bases_end(); Base != E; ++Base) {
9337    // Form the assignment:
9338    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9339    QualType BaseType = Base->getType().getUnqualifiedType();
9340    if (!BaseType->isRecordType()) {
9341      Invalid = true;
9342      continue;
9343    }
9344
9345    CXXCastPath BasePath;
9346    BasePath.push_back(Base);
9347
9348    // Construct the "from" expression, which is an implicit cast to the
9349    // appropriately-qualified base type.
9350    Expr *From = OtherRef;
9351    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
9352                             VK_XValue, &BasePath).take();
9353
9354    // Dereference "this".
9355    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9356
9357    // Implicitly cast "this" to the appropriately-qualified base type.
9358    To = ImpCastExprToType(To.take(),
9359                           Context.getCVRQualifiedType(BaseType,
9360                                     MoveAssignOperator->getTypeQualifiers()),
9361                           CK_UncheckedDerivedToBase,
9362                           VK_LValue, &BasePath);
9363
9364    // Build the move.
9365    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9366                                            To.get(), From,
9367                                            /*CopyingBaseSubobject=*/true,
9368                                            /*Copying=*/false);
9369    if (Move.isInvalid()) {
9370      Diag(CurrentLocation, diag::note_member_synthesized_at)
9371        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9372      MoveAssignOperator->setInvalidDecl();
9373      return;
9374    }
9375
9376    // Success! Record the move.
9377    Statements.push_back(Move.takeAs<Expr>());
9378  }
9379
9380  // Assign non-static members.
9381  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9382                                  FieldEnd = ClassDecl->field_end();
9383       Field != FieldEnd; ++Field) {
9384    if (Field->isUnnamedBitfield())
9385      continue;
9386
9387    if (Field->isInvalidDecl()) {
9388      Invalid = true;
9389      continue;
9390    }
9391
9392    // Check for members of reference type; we can't move those.
9393    if (Field->getType()->isReferenceType()) {
9394      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9395        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9396      Diag(Field->getLocation(), diag::note_declared_at);
9397      Diag(CurrentLocation, diag::note_member_synthesized_at)
9398        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9399      Invalid = true;
9400      continue;
9401    }
9402
9403    // Check for members of const-qualified, non-class type.
9404    QualType BaseType = Context.getBaseElementType(Field->getType());
9405    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9406      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9407        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9408      Diag(Field->getLocation(), diag::note_declared_at);
9409      Diag(CurrentLocation, diag::note_member_synthesized_at)
9410        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9411      Invalid = true;
9412      continue;
9413    }
9414
9415    // Suppress assigning zero-width bitfields.
9416    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9417      continue;
9418
9419    QualType FieldType = Field->getType().getNonReferenceType();
9420    if (FieldType->isIncompleteArrayType()) {
9421      assert(ClassDecl->hasFlexibleArrayMember() &&
9422             "Incomplete array type is not valid");
9423      continue;
9424    }
9425
9426    // Build references to the field in the object we're copying from and to.
9427    CXXScopeSpec SS; // Intentionally empty
9428    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9429                              LookupMemberName);
9430    MemberLookup.addDecl(*Field);
9431    MemberLookup.resolveKind();
9432    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9433                                               Loc, /*IsArrow=*/false,
9434                                               SS, SourceLocation(), 0,
9435                                               MemberLookup, 0);
9436    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9437                                             Loc, /*IsArrow=*/true,
9438                                             SS, SourceLocation(), 0,
9439                                             MemberLookup, 0);
9440    assert(!From.isInvalid() && "Implicit field reference cannot fail");
9441    assert(!To.isInvalid() && "Implicit field reference cannot fail");
9442
9443    assert(!From.get()->isLValue() && // could be xvalue or prvalue
9444        "Member reference with rvalue base must be rvalue except for reference "
9445        "members, which aren't allowed for move assignment.");
9446
9447    // Build the move of this field.
9448    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9449                                            To.get(), From.get(),
9450                                            /*CopyingBaseSubobject=*/false,
9451                                            /*Copying=*/false);
9452    if (Move.isInvalid()) {
9453      Diag(CurrentLocation, diag::note_member_synthesized_at)
9454        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9455      MoveAssignOperator->setInvalidDecl();
9456      return;
9457    }
9458
9459    // Success! Record the copy.
9460    Statements.push_back(Move.takeAs<Stmt>());
9461  }
9462
9463  if (!Invalid) {
9464    // Add a "return *this;"
9465    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9466
9467    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9468    if (Return.isInvalid())
9469      Invalid = true;
9470    else {
9471      Statements.push_back(Return.takeAs<Stmt>());
9472
9473      if (Trap.hasErrorOccurred()) {
9474        Diag(CurrentLocation, diag::note_member_synthesized_at)
9475          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9476        Invalid = true;
9477      }
9478    }
9479  }
9480
9481  if (Invalid) {
9482    MoveAssignOperator->setInvalidDecl();
9483    return;
9484  }
9485
9486  StmtResult Body;
9487  {
9488    CompoundScopeRAII CompoundScope(*this);
9489    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9490                             /*isStmtExpr=*/false);
9491    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9492  }
9493  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9494
9495  if (ASTMutationListener *L = getASTMutationListener()) {
9496    L->CompletedImplicitDefinition(MoveAssignOperator);
9497  }
9498}
9499
9500Sema::ImplicitExceptionSpecification
9501Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9502  CXXRecordDecl *ClassDecl = MD->getParent();
9503
9504  ImplicitExceptionSpecification ExceptSpec(*this);
9505  if (ClassDecl->isInvalidDecl())
9506    return ExceptSpec;
9507
9508  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9509  assert(T->getNumArgs() >= 1 && "not a copy ctor");
9510  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9511
9512  // C++ [except.spec]p14:
9513  //   An implicitly declared special member function (Clause 12) shall have an
9514  //   exception-specification. [...]
9515  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9516                                       BaseEnd = ClassDecl->bases_end();
9517       Base != BaseEnd;
9518       ++Base) {
9519    // Virtual bases are handled below.
9520    if (Base->isVirtual())
9521      continue;
9522
9523    CXXRecordDecl *BaseClassDecl
9524      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9525    if (CXXConstructorDecl *CopyConstructor =
9526          LookupCopyingConstructor(BaseClassDecl, Quals))
9527      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9528  }
9529  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9530                                       BaseEnd = ClassDecl->vbases_end();
9531       Base != BaseEnd;
9532       ++Base) {
9533    CXXRecordDecl *BaseClassDecl
9534      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9535    if (CXXConstructorDecl *CopyConstructor =
9536          LookupCopyingConstructor(BaseClassDecl, Quals))
9537      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9538  }
9539  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9540                                  FieldEnd = ClassDecl->field_end();
9541       Field != FieldEnd;
9542       ++Field) {
9543    QualType FieldType = Context.getBaseElementType(Field->getType());
9544    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9545      if (CXXConstructorDecl *CopyConstructor =
9546              LookupCopyingConstructor(FieldClassDecl,
9547                                       Quals | FieldType.getCVRQualifiers()))
9548      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
9549    }
9550  }
9551
9552  return ExceptSpec;
9553}
9554
9555CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
9556                                                    CXXRecordDecl *ClassDecl) {
9557  // C++ [class.copy]p4:
9558  //   If the class definition does not explicitly declare a copy
9559  //   constructor, one is declared implicitly.
9560  assert(ClassDecl->needsImplicitCopyConstructor());
9561
9562  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
9563  if (DSM.isAlreadyBeingDeclared())
9564    return 0;
9565
9566  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9567  QualType ArgType = ClassType;
9568  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
9569  if (Const)
9570    ArgType = ArgType.withConst();
9571  ArgType = Context.getLValueReferenceType(ArgType);
9572
9573  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9574                                                     CXXCopyConstructor,
9575                                                     Const);
9576
9577  DeclarationName Name
9578    = Context.DeclarationNames.getCXXConstructorName(
9579                                           Context.getCanonicalType(ClassType));
9580  SourceLocation ClassLoc = ClassDecl->getLocation();
9581  DeclarationNameInfo NameInfo(Name, ClassLoc);
9582
9583  //   An implicitly-declared copy constructor is an inline public
9584  //   member of its class.
9585  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
9586      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9587      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9588      Constexpr);
9589  CopyConstructor->setAccess(AS_public);
9590  CopyConstructor->setDefaulted();
9591
9592  // Build an exception specification pointing back at this member.
9593  FunctionProtoType::ExtProtoInfo EPI;
9594  EPI.ExceptionSpecType = EST_Unevaluated;
9595  EPI.ExceptionSpecDecl = CopyConstructor;
9596  CopyConstructor->setType(
9597      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9598
9599  // Add the parameter to the constructor.
9600  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
9601                                               ClassLoc, ClassLoc,
9602                                               /*IdentifierInfo=*/0,
9603                                               ArgType, /*TInfo=*/0,
9604                                               SC_None, 0);
9605  CopyConstructor->setParams(FromParam);
9606
9607  CopyConstructor->setTrivial(
9608    ClassDecl->needsOverloadResolutionForCopyConstructor()
9609      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
9610      : ClassDecl->hasTrivialCopyConstructor());
9611
9612  // C++11 [class.copy]p8:
9613  //   ... If the class definition does not explicitly declare a copy
9614  //   constructor, there is no user-declared move constructor, and there is no
9615  //   user-declared move assignment operator, a copy constructor is implicitly
9616  //   declared as defaulted.
9617  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
9618    SetDeclDeleted(CopyConstructor, ClassLoc);
9619
9620  // Note that we have declared this constructor.
9621  ++ASTContext::NumImplicitCopyConstructorsDeclared;
9622
9623  if (Scope *S = getScopeForContext(ClassDecl))
9624    PushOnScopeChains(CopyConstructor, S, false);
9625  ClassDecl->addDecl(CopyConstructor);
9626
9627  return CopyConstructor;
9628}
9629
9630void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
9631                                   CXXConstructorDecl *CopyConstructor) {
9632  assert((CopyConstructor->isDefaulted() &&
9633          CopyConstructor->isCopyConstructor() &&
9634          !CopyConstructor->doesThisDeclarationHaveABody() &&
9635          !CopyConstructor->isDeleted()) &&
9636         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
9637
9638  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
9639  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
9640
9641  SynthesizedFunctionScope Scope(*this, CopyConstructor);
9642  DiagnosticErrorTrap Trap(Diags);
9643
9644  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
9645      Trap.hasErrorOccurred()) {
9646    Diag(CurrentLocation, diag::note_member_synthesized_at)
9647      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
9648    CopyConstructor->setInvalidDecl();
9649  }  else {
9650    Sema::CompoundScopeRAII CompoundScope(*this);
9651    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
9652                                               CopyConstructor->getLocation(),
9653                                               MultiStmtArg(),
9654                                               /*isStmtExpr=*/false)
9655                                                              .takeAs<Stmt>());
9656    CopyConstructor->setImplicitlyDefined(true);
9657  }
9658
9659  CopyConstructor->setUsed();
9660  if (ASTMutationListener *L = getASTMutationListener()) {
9661    L->CompletedImplicitDefinition(CopyConstructor);
9662  }
9663}
9664
9665Sema::ImplicitExceptionSpecification
9666Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
9667  CXXRecordDecl *ClassDecl = MD->getParent();
9668
9669  // C++ [except.spec]p14:
9670  //   An implicitly declared special member function (Clause 12) shall have an
9671  //   exception-specification. [...]
9672  ImplicitExceptionSpecification ExceptSpec(*this);
9673  if (ClassDecl->isInvalidDecl())
9674    return ExceptSpec;
9675
9676  // Direct base-class constructors.
9677  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
9678                                       BEnd = ClassDecl->bases_end();
9679       B != BEnd; ++B) {
9680    if (B->isVirtual()) // Handled below.
9681      continue;
9682
9683    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9684      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9685      CXXConstructorDecl *Constructor =
9686          LookupMovingConstructor(BaseClassDecl, 0);
9687      // If this is a deleted function, add it anyway. This might be conformant
9688      // with the standard. This might not. I'm not sure. It might not matter.
9689      if (Constructor)
9690        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9691    }
9692  }
9693
9694  // Virtual base-class constructors.
9695  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
9696                                       BEnd = ClassDecl->vbases_end();
9697       B != BEnd; ++B) {
9698    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9699      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9700      CXXConstructorDecl *Constructor =
9701          LookupMovingConstructor(BaseClassDecl, 0);
9702      // If this is a deleted function, add it anyway. This might be conformant
9703      // with the standard. This might not. I'm not sure. It might not matter.
9704      if (Constructor)
9705        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9706    }
9707  }
9708
9709  // Field constructors.
9710  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
9711                               FEnd = ClassDecl->field_end();
9712       F != FEnd; ++F) {
9713    QualType FieldType = Context.getBaseElementType(F->getType());
9714    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
9715      CXXConstructorDecl *Constructor =
9716          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
9717      // If this is a deleted function, add it anyway. This might be conformant
9718      // with the standard. This might not. I'm not sure. It might not matter.
9719      // In particular, the problem is that this function never gets called. It
9720      // might just be ill-formed because this function attempts to refer to
9721      // a deleted function here.
9722      if (Constructor)
9723        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
9724    }
9725  }
9726
9727  return ExceptSpec;
9728}
9729
9730CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
9731                                                    CXXRecordDecl *ClassDecl) {
9732  // C++11 [class.copy]p9:
9733  //   If the definition of a class X does not explicitly declare a move
9734  //   constructor, one will be implicitly declared as defaulted if and only if:
9735  //
9736  //   - [first 4 bullets]
9737  assert(ClassDecl->needsImplicitMoveConstructor());
9738
9739  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
9740  if (DSM.isAlreadyBeingDeclared())
9741    return 0;
9742
9743  // [Checked after we build the declaration]
9744  //   - the move assignment operator would not be implicitly defined as
9745  //     deleted,
9746
9747  // [DR1402]:
9748  //   - each of X's non-static data members and direct or virtual base classes
9749  //     has a type that either has a move constructor or is trivially copyable.
9750  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
9751    ClassDecl->setFailedImplicitMoveConstructor();
9752    return 0;
9753  }
9754
9755  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9756  QualType ArgType = Context.getRValueReferenceType(ClassType);
9757
9758  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9759                                                     CXXMoveConstructor,
9760                                                     false);
9761
9762  DeclarationName Name
9763    = Context.DeclarationNames.getCXXConstructorName(
9764                                           Context.getCanonicalType(ClassType));
9765  SourceLocation ClassLoc = ClassDecl->getLocation();
9766  DeclarationNameInfo NameInfo(Name, ClassLoc);
9767
9768  // C++11 [class.copy]p11:
9769  //   An implicitly-declared copy/move constructor is an inline public
9770  //   member of its class.
9771  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
9772      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9773      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9774      Constexpr);
9775  MoveConstructor->setAccess(AS_public);
9776  MoveConstructor->setDefaulted();
9777
9778  // Build an exception specification pointing back at this member.
9779  FunctionProtoType::ExtProtoInfo EPI;
9780  EPI.ExceptionSpecType = EST_Unevaluated;
9781  EPI.ExceptionSpecDecl = MoveConstructor;
9782  MoveConstructor->setType(
9783      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9784
9785  // Add the parameter to the constructor.
9786  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
9787                                               ClassLoc, ClassLoc,
9788                                               /*IdentifierInfo=*/0,
9789                                               ArgType, /*TInfo=*/0,
9790                                               SC_None, 0);
9791  MoveConstructor->setParams(FromParam);
9792
9793  MoveConstructor->setTrivial(
9794    ClassDecl->needsOverloadResolutionForMoveConstructor()
9795      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
9796      : ClassDecl->hasTrivialMoveConstructor());
9797
9798  // C++0x [class.copy]p9:
9799  //   If the definition of a class X does not explicitly declare a move
9800  //   constructor, one will be implicitly declared as defaulted if and only if:
9801  //   [...]
9802  //   - the move constructor would not be implicitly defined as deleted.
9803  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9804    // Cache this result so that we don't try to generate this over and over
9805    // on every lookup, leaking memory and wasting time.
9806    ClassDecl->setFailedImplicitMoveConstructor();
9807    return 0;
9808  }
9809
9810  // Note that we have declared this constructor.
9811  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9812
9813  if (Scope *S = getScopeForContext(ClassDecl))
9814    PushOnScopeChains(MoveConstructor, S, false);
9815  ClassDecl->addDecl(MoveConstructor);
9816
9817  return MoveConstructor;
9818}
9819
9820void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9821                                   CXXConstructorDecl *MoveConstructor) {
9822  assert((MoveConstructor->isDefaulted() &&
9823          MoveConstructor->isMoveConstructor() &&
9824          !MoveConstructor->doesThisDeclarationHaveABody() &&
9825          !MoveConstructor->isDeleted()) &&
9826         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9827
9828  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9829  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9830
9831  SynthesizedFunctionScope Scope(*this, MoveConstructor);
9832  DiagnosticErrorTrap Trap(Diags);
9833
9834  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
9835      Trap.hasErrorOccurred()) {
9836    Diag(CurrentLocation, diag::note_member_synthesized_at)
9837      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9838    MoveConstructor->setInvalidDecl();
9839  }  else {
9840    Sema::CompoundScopeRAII CompoundScope(*this);
9841    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9842                                               MoveConstructor->getLocation(),
9843                                               MultiStmtArg(),
9844                                               /*isStmtExpr=*/false)
9845                                                              .takeAs<Stmt>());
9846    MoveConstructor->setImplicitlyDefined(true);
9847  }
9848
9849  MoveConstructor->setUsed();
9850
9851  if (ASTMutationListener *L = getASTMutationListener()) {
9852    L->CompletedImplicitDefinition(MoveConstructor);
9853  }
9854}
9855
9856bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
9857  return FD->isDeleted() &&
9858         (FD->isDefaulted() || FD->isImplicit()) &&
9859         isa<CXXMethodDecl>(FD);
9860}
9861
9862/// \brief Mark the call operator of the given lambda closure type as "used".
9863static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
9864  CXXMethodDecl *CallOperator
9865    = cast<CXXMethodDecl>(
9866        Lambda->lookup(
9867          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
9868  CallOperator->setReferenced();
9869  CallOperator->setUsed();
9870}
9871
9872void Sema::DefineImplicitLambdaToFunctionPointerConversion(
9873       SourceLocation CurrentLocation,
9874       CXXConversionDecl *Conv)
9875{
9876  CXXRecordDecl *Lambda = Conv->getParent();
9877
9878  // Make sure that the lambda call operator is marked used.
9879  markLambdaCallOperatorUsed(*this, Lambda);
9880
9881  Conv->setUsed();
9882
9883  SynthesizedFunctionScope Scope(*this, Conv);
9884  DiagnosticErrorTrap Trap(Diags);
9885
9886  // Return the address of the __invoke function.
9887  DeclarationName InvokeName = &Context.Idents.get("__invoke");
9888  CXXMethodDecl *Invoke
9889    = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
9890  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9891                                       VK_LValue, Conv->getLocation()).take();
9892  assert(FunctionRef && "Can't refer to __invoke function?");
9893  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9894  Conv->setBody(new (Context) CompoundStmt(Context, Return,
9895                                           Conv->getLocation(),
9896                                           Conv->getLocation()));
9897
9898  // Fill in the __invoke function with a dummy implementation. IR generation
9899  // will fill in the actual details.
9900  Invoke->setUsed();
9901  Invoke->setReferenced();
9902  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
9903
9904  if (ASTMutationListener *L = getASTMutationListener()) {
9905    L->CompletedImplicitDefinition(Conv);
9906    L->CompletedImplicitDefinition(Invoke);
9907  }
9908}
9909
9910void Sema::DefineImplicitLambdaToBlockPointerConversion(
9911       SourceLocation CurrentLocation,
9912       CXXConversionDecl *Conv)
9913{
9914  Conv->setUsed();
9915
9916  SynthesizedFunctionScope Scope(*this, Conv);
9917  DiagnosticErrorTrap Trap(Diags);
9918
9919  // Copy-initialize the lambda object as needed to capture it.
9920  Expr *This = ActOnCXXThis(CurrentLocation).take();
9921  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9922
9923  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9924                                                        Conv->getLocation(),
9925                                                        Conv, DerefThis);
9926
9927  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9928  // behavior.  Note that only the general conversion function does this
9929  // (since it's unusable otherwise); in the case where we inline the
9930  // block literal, it has block literal lifetime semantics.
9931  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9932    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9933                                          CK_CopyAndAutoreleaseBlockObject,
9934                                          BuildBlock.get(), 0, VK_RValue);
9935
9936  if (BuildBlock.isInvalid()) {
9937    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9938    Conv->setInvalidDecl();
9939    return;
9940  }
9941
9942  // Create the return statement that returns the block from the conversion
9943  // function.
9944  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9945  if (Return.isInvalid()) {
9946    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9947    Conv->setInvalidDecl();
9948    return;
9949  }
9950
9951  // Set the body of the conversion function.
9952  Stmt *ReturnS = Return.take();
9953  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
9954                                           Conv->getLocation(),
9955                                           Conv->getLocation()));
9956
9957  // We're done; notify the mutation listener, if any.
9958  if (ASTMutationListener *L = getASTMutationListener()) {
9959    L->CompletedImplicitDefinition(Conv);
9960  }
9961}
9962
9963/// \brief Determine whether the given list arguments contains exactly one
9964/// "real" (non-default) argument.
9965static bool hasOneRealArgument(MultiExprArg Args) {
9966  switch (Args.size()) {
9967  case 0:
9968    return false;
9969
9970  default:
9971    if (!Args[1]->isDefaultArgument())
9972      return false;
9973
9974    // fall through
9975  case 1:
9976    return !Args[0]->isDefaultArgument();
9977  }
9978
9979  return false;
9980}
9981
9982ExprResult
9983Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9984                            CXXConstructorDecl *Constructor,
9985                            MultiExprArg ExprArgs,
9986                            bool HadMultipleCandidates,
9987                            bool IsListInitialization,
9988                            bool RequiresZeroInit,
9989                            unsigned ConstructKind,
9990                            SourceRange ParenRange) {
9991  bool Elidable = false;
9992
9993  // C++0x [class.copy]p34:
9994  //   When certain criteria are met, an implementation is allowed to
9995  //   omit the copy/move construction of a class object, even if the
9996  //   copy/move constructor and/or destructor for the object have
9997  //   side effects. [...]
9998  //     - when a temporary class object that has not been bound to a
9999  //       reference (12.2) would be copied/moved to a class object
10000  //       with the same cv-unqualified type, the copy/move operation
10001  //       can be omitted by constructing the temporary object
10002  //       directly into the target of the omitted copy/move
10003  if (ConstructKind == CXXConstructExpr::CK_Complete &&
10004      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
10005    Expr *SubExpr = ExprArgs[0];
10006    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
10007  }
10008
10009  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
10010                               Elidable, ExprArgs, HadMultipleCandidates,
10011                               IsListInitialization, RequiresZeroInit,
10012                               ConstructKind, ParenRange);
10013}
10014
10015/// BuildCXXConstructExpr - Creates a complete call to a constructor,
10016/// including handling of its default argument expressions.
10017ExprResult
10018Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10019                            CXXConstructorDecl *Constructor, bool Elidable,
10020                            MultiExprArg ExprArgs,
10021                            bool HadMultipleCandidates,
10022                            bool IsListInitialization,
10023                            bool RequiresZeroInit,
10024                            unsigned ConstructKind,
10025                            SourceRange ParenRange) {
10026  MarkFunctionReferenced(ConstructLoc, Constructor);
10027  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
10028                                        Constructor, Elidable, ExprArgs,
10029                                        HadMultipleCandidates,
10030                                        IsListInitialization, RequiresZeroInit,
10031              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
10032                                        ParenRange));
10033}
10034
10035void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
10036  if (VD->isInvalidDecl()) return;
10037
10038  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
10039  if (ClassDecl->isInvalidDecl()) return;
10040  if (ClassDecl->hasIrrelevantDestructor()) return;
10041  if (ClassDecl->isDependentContext()) return;
10042
10043  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
10044  MarkFunctionReferenced(VD->getLocation(), Destructor);
10045  CheckDestructorAccess(VD->getLocation(), Destructor,
10046                        PDiag(diag::err_access_dtor_var)
10047                        << VD->getDeclName()
10048                        << VD->getType());
10049  DiagnoseUseOfDecl(Destructor, VD->getLocation());
10050
10051  if (!VD->hasGlobalStorage()) return;
10052
10053  // Emit warning for non-trivial dtor in global scope (a real global,
10054  // class-static, function-static).
10055  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
10056
10057  // TODO: this should be re-enabled for static locals by !CXAAtExit
10058  if (!VD->isStaticLocal())
10059    Diag(VD->getLocation(), diag::warn_global_destructor);
10060}
10061
10062/// \brief Given a constructor and the set of arguments provided for the
10063/// constructor, convert the arguments and add any required default arguments
10064/// to form a proper call to this constructor.
10065///
10066/// \returns true if an error occurred, false otherwise.
10067bool
10068Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
10069                              MultiExprArg ArgsPtr,
10070                              SourceLocation Loc,
10071                              SmallVectorImpl<Expr*> &ConvertedArgs,
10072                              bool AllowExplicit,
10073                              bool IsListInitialization) {
10074  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
10075  unsigned NumArgs = ArgsPtr.size();
10076  Expr **Args = ArgsPtr.data();
10077
10078  const FunctionProtoType *Proto
10079    = Constructor->getType()->getAs<FunctionProtoType>();
10080  assert(Proto && "Constructor without a prototype?");
10081  unsigned NumArgsInProto = Proto->getNumArgs();
10082
10083  // If too few arguments are available, we'll fill in the rest with defaults.
10084  if (NumArgs < NumArgsInProto)
10085    ConvertedArgs.reserve(NumArgsInProto);
10086  else
10087    ConvertedArgs.reserve(NumArgs);
10088
10089  VariadicCallType CallType =
10090    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
10091  SmallVector<Expr *, 8> AllArgs;
10092  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
10093                                        Proto, 0,
10094                                        llvm::makeArrayRef(Args, NumArgs),
10095                                        AllArgs,
10096                                        CallType, AllowExplicit,
10097                                        IsListInitialization);
10098  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
10099
10100  DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
10101
10102  CheckConstructorCall(Constructor,
10103                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
10104                                                        AllArgs.size()),
10105                       Proto, Loc);
10106
10107  return Invalid;
10108}
10109
10110static inline bool
10111CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
10112                                       const FunctionDecl *FnDecl) {
10113  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
10114  if (isa<NamespaceDecl>(DC)) {
10115    return SemaRef.Diag(FnDecl->getLocation(),
10116                        diag::err_operator_new_delete_declared_in_namespace)
10117      << FnDecl->getDeclName();
10118  }
10119
10120  if (isa<TranslationUnitDecl>(DC) &&
10121      FnDecl->getStorageClass() == SC_Static) {
10122    return SemaRef.Diag(FnDecl->getLocation(),
10123                        diag::err_operator_new_delete_declared_static)
10124      << FnDecl->getDeclName();
10125  }
10126
10127  return false;
10128}
10129
10130static inline bool
10131CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
10132                            CanQualType ExpectedResultType,
10133                            CanQualType ExpectedFirstParamType,
10134                            unsigned DependentParamTypeDiag,
10135                            unsigned InvalidParamTypeDiag) {
10136  QualType ResultType =
10137    FnDecl->getType()->getAs<FunctionType>()->getResultType();
10138
10139  // Check that the result type is not dependent.
10140  if (ResultType->isDependentType())
10141    return SemaRef.Diag(FnDecl->getLocation(),
10142                        diag::err_operator_new_delete_dependent_result_type)
10143    << FnDecl->getDeclName() << ExpectedResultType;
10144
10145  // Check that the result type is what we expect.
10146  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
10147    return SemaRef.Diag(FnDecl->getLocation(),
10148                        diag::err_operator_new_delete_invalid_result_type)
10149    << FnDecl->getDeclName() << ExpectedResultType;
10150
10151  // A function template must have at least 2 parameters.
10152  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
10153    return SemaRef.Diag(FnDecl->getLocation(),
10154                      diag::err_operator_new_delete_template_too_few_parameters)
10155        << FnDecl->getDeclName();
10156
10157  // The function decl must have at least 1 parameter.
10158  if (FnDecl->getNumParams() == 0)
10159    return SemaRef.Diag(FnDecl->getLocation(),
10160                        diag::err_operator_new_delete_too_few_parameters)
10161      << FnDecl->getDeclName();
10162
10163  // Check the first parameter type is not dependent.
10164  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
10165  if (FirstParamType->isDependentType())
10166    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
10167      << FnDecl->getDeclName() << ExpectedFirstParamType;
10168
10169  // Check that the first parameter type is what we expect.
10170  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
10171      ExpectedFirstParamType)
10172    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
10173    << FnDecl->getDeclName() << ExpectedFirstParamType;
10174
10175  return false;
10176}
10177
10178static bool
10179CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
10180  // C++ [basic.stc.dynamic.allocation]p1:
10181  //   A program is ill-formed if an allocation function is declared in a
10182  //   namespace scope other than global scope or declared static in global
10183  //   scope.
10184  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10185    return true;
10186
10187  CanQualType SizeTy =
10188    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
10189
10190  // C++ [basic.stc.dynamic.allocation]p1:
10191  //  The return type shall be void*. The first parameter shall have type
10192  //  std::size_t.
10193  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
10194                                  SizeTy,
10195                                  diag::err_operator_new_dependent_param_type,
10196                                  diag::err_operator_new_param_type))
10197    return true;
10198
10199  // C++ [basic.stc.dynamic.allocation]p1:
10200  //  The first parameter shall not have an associated default argument.
10201  if (FnDecl->getParamDecl(0)->hasDefaultArg())
10202    return SemaRef.Diag(FnDecl->getLocation(),
10203                        diag::err_operator_new_default_arg)
10204      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
10205
10206  return false;
10207}
10208
10209static bool
10210CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
10211  // C++ [basic.stc.dynamic.deallocation]p1:
10212  //   A program is ill-formed if deallocation functions are declared in a
10213  //   namespace scope other than global scope or declared static in global
10214  //   scope.
10215  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10216    return true;
10217
10218  // C++ [basic.stc.dynamic.deallocation]p2:
10219  //   Each deallocation function shall return void and its first parameter
10220  //   shall be void*.
10221  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
10222                                  SemaRef.Context.VoidPtrTy,
10223                                 diag::err_operator_delete_dependent_param_type,
10224                                 diag::err_operator_delete_param_type))
10225    return true;
10226
10227  return false;
10228}
10229
10230/// CheckOverloadedOperatorDeclaration - Check whether the declaration
10231/// of this overloaded operator is well-formed. If so, returns false;
10232/// otherwise, emits appropriate diagnostics and returns true.
10233bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
10234  assert(FnDecl && FnDecl->isOverloadedOperator() &&
10235         "Expected an overloaded operator declaration");
10236
10237  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
10238
10239  // C++ [over.oper]p5:
10240  //   The allocation and deallocation functions, operator new,
10241  //   operator new[], operator delete and operator delete[], are
10242  //   described completely in 3.7.3. The attributes and restrictions
10243  //   found in the rest of this subclause do not apply to them unless
10244  //   explicitly stated in 3.7.3.
10245  if (Op == OO_Delete || Op == OO_Array_Delete)
10246    return CheckOperatorDeleteDeclaration(*this, FnDecl);
10247
10248  if (Op == OO_New || Op == OO_Array_New)
10249    return CheckOperatorNewDeclaration(*this, FnDecl);
10250
10251  // C++ [over.oper]p6:
10252  //   An operator function shall either be a non-static member
10253  //   function or be a non-member function and have at least one
10254  //   parameter whose type is a class, a reference to a class, an
10255  //   enumeration, or a reference to an enumeration.
10256  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
10257    if (MethodDecl->isStatic())
10258      return Diag(FnDecl->getLocation(),
10259                  diag::err_operator_overload_static) << FnDecl->getDeclName();
10260  } else {
10261    bool ClassOrEnumParam = false;
10262    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10263                                   ParamEnd = FnDecl->param_end();
10264         Param != ParamEnd; ++Param) {
10265      QualType ParamType = (*Param)->getType().getNonReferenceType();
10266      if (ParamType->isDependentType() || ParamType->isRecordType() ||
10267          ParamType->isEnumeralType()) {
10268        ClassOrEnumParam = true;
10269        break;
10270      }
10271    }
10272
10273    if (!ClassOrEnumParam)
10274      return Diag(FnDecl->getLocation(),
10275                  diag::err_operator_overload_needs_class_or_enum)
10276        << FnDecl->getDeclName();
10277  }
10278
10279  // C++ [over.oper]p8:
10280  //   An operator function cannot have default arguments (8.3.6),
10281  //   except where explicitly stated below.
10282  //
10283  // Only the function-call operator allows default arguments
10284  // (C++ [over.call]p1).
10285  if (Op != OO_Call) {
10286    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
10287         Param != FnDecl->param_end(); ++Param) {
10288      if ((*Param)->hasDefaultArg())
10289        return Diag((*Param)->getLocation(),
10290                    diag::err_operator_overload_default_arg)
10291          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
10292    }
10293  }
10294
10295  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
10296    { false, false, false }
10297#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
10298    , { Unary, Binary, MemberOnly }
10299#include "clang/Basic/OperatorKinds.def"
10300  };
10301
10302  bool CanBeUnaryOperator = OperatorUses[Op][0];
10303  bool CanBeBinaryOperator = OperatorUses[Op][1];
10304  bool MustBeMemberOperator = OperatorUses[Op][2];
10305
10306  // C++ [over.oper]p8:
10307  //   [...] Operator functions cannot have more or fewer parameters
10308  //   than the number required for the corresponding operator, as
10309  //   described in the rest of this subclause.
10310  unsigned NumParams = FnDecl->getNumParams()
10311                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
10312  if (Op != OO_Call &&
10313      ((NumParams == 1 && !CanBeUnaryOperator) ||
10314       (NumParams == 2 && !CanBeBinaryOperator) ||
10315       (NumParams < 1) || (NumParams > 2))) {
10316    // We have the wrong number of parameters.
10317    unsigned ErrorKind;
10318    if (CanBeUnaryOperator && CanBeBinaryOperator) {
10319      ErrorKind = 2;  // 2 -> unary or binary.
10320    } else if (CanBeUnaryOperator) {
10321      ErrorKind = 0;  // 0 -> unary
10322    } else {
10323      assert(CanBeBinaryOperator &&
10324             "All non-call overloaded operators are unary or binary!");
10325      ErrorKind = 1;  // 1 -> binary
10326    }
10327
10328    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
10329      << FnDecl->getDeclName() << NumParams << ErrorKind;
10330  }
10331
10332  // Overloaded operators other than operator() cannot be variadic.
10333  if (Op != OO_Call &&
10334      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
10335    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
10336      << FnDecl->getDeclName();
10337  }
10338
10339  // Some operators must be non-static member functions.
10340  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
10341    return Diag(FnDecl->getLocation(),
10342                diag::err_operator_overload_must_be_member)
10343      << FnDecl->getDeclName();
10344  }
10345
10346  // C++ [over.inc]p1:
10347  //   The user-defined function called operator++ implements the
10348  //   prefix and postfix ++ operator. If this function is a member
10349  //   function with no parameters, or a non-member function with one
10350  //   parameter of class or enumeration type, it defines the prefix
10351  //   increment operator ++ for objects of that type. If the function
10352  //   is a member function with one parameter (which shall be of type
10353  //   int) or a non-member function with two parameters (the second
10354  //   of which shall be of type int), it defines the postfix
10355  //   increment operator ++ for objects of that type.
10356  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10357    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10358    bool ParamIsInt = false;
10359    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10360      ParamIsInt = BT->getKind() == BuiltinType::Int;
10361
10362    if (!ParamIsInt)
10363      return Diag(LastParam->getLocation(),
10364                  diag::err_operator_overload_post_incdec_must_be_int)
10365        << LastParam->getType() << (Op == OO_MinusMinus);
10366  }
10367
10368  return false;
10369}
10370
10371/// CheckLiteralOperatorDeclaration - Check whether the declaration
10372/// of this literal operator function is well-formed. If so, returns
10373/// false; otherwise, emits appropriate diagnostics and returns true.
10374bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10375  if (isa<CXXMethodDecl>(FnDecl)) {
10376    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10377      << FnDecl->getDeclName();
10378    return true;
10379  }
10380
10381  if (FnDecl->isExternC()) {
10382    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10383    return true;
10384  }
10385
10386  bool Valid = false;
10387
10388  // This might be the definition of a literal operator template.
10389  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10390  // This might be a specialization of a literal operator template.
10391  if (!TpDecl)
10392    TpDecl = FnDecl->getPrimaryTemplate();
10393
10394  // template <char...> type operator "" name() is the only valid template
10395  // signature, and the only valid signature with no parameters.
10396  if (TpDecl) {
10397    if (FnDecl->param_size() == 0) {
10398      // Must have only one template parameter
10399      TemplateParameterList *Params = TpDecl->getTemplateParameters();
10400      if (Params->size() == 1) {
10401        NonTypeTemplateParmDecl *PmDecl =
10402          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10403
10404        // The template parameter must be a char parameter pack.
10405        if (PmDecl && PmDecl->isTemplateParameterPack() &&
10406            Context.hasSameType(PmDecl->getType(), Context.CharTy))
10407          Valid = true;
10408      }
10409    }
10410  } else if (FnDecl->param_size()) {
10411    // Check the first parameter
10412    FunctionDecl::param_iterator Param = FnDecl->param_begin();
10413
10414    QualType T = (*Param)->getType().getUnqualifiedType();
10415
10416    // unsigned long long int, long double, and any character type are allowed
10417    // as the only parameters.
10418    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
10419        Context.hasSameType(T, Context.LongDoubleTy) ||
10420        Context.hasSameType(T, Context.CharTy) ||
10421        Context.hasSameType(T, Context.WideCharTy) ||
10422        Context.hasSameType(T, Context.Char16Ty) ||
10423        Context.hasSameType(T, Context.Char32Ty)) {
10424      if (++Param == FnDecl->param_end())
10425        Valid = true;
10426      goto FinishedParams;
10427    }
10428
10429    // Otherwise it must be a pointer to const; let's strip those qualifiers.
10430    const PointerType *PT = T->getAs<PointerType>();
10431    if (!PT)
10432      goto FinishedParams;
10433    T = PT->getPointeeType();
10434    if (!T.isConstQualified() || T.isVolatileQualified())
10435      goto FinishedParams;
10436    T = T.getUnqualifiedType();
10437
10438    // Move on to the second parameter;
10439    ++Param;
10440
10441    // If there is no second parameter, the first must be a const char *
10442    if (Param == FnDecl->param_end()) {
10443      if (Context.hasSameType(T, Context.CharTy))
10444        Valid = true;
10445      goto FinishedParams;
10446    }
10447
10448    // const char *, const wchar_t*, const char16_t*, and const char32_t*
10449    // are allowed as the first parameter to a two-parameter function
10450    if (!(Context.hasSameType(T, Context.CharTy) ||
10451          Context.hasSameType(T, Context.WideCharTy) ||
10452          Context.hasSameType(T, Context.Char16Ty) ||
10453          Context.hasSameType(T, Context.Char32Ty)))
10454      goto FinishedParams;
10455
10456    // The second and final parameter must be an std::size_t
10457    T = (*Param)->getType().getUnqualifiedType();
10458    if (Context.hasSameType(T, Context.getSizeType()) &&
10459        ++Param == FnDecl->param_end())
10460      Valid = true;
10461  }
10462
10463  // FIXME: This diagnostic is absolutely terrible.
10464FinishedParams:
10465  if (!Valid) {
10466    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
10467      << FnDecl->getDeclName();
10468    return true;
10469  }
10470
10471  // A parameter-declaration-clause containing a default argument is not
10472  // equivalent to any of the permitted forms.
10473  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10474                                    ParamEnd = FnDecl->param_end();
10475       Param != ParamEnd; ++Param) {
10476    if ((*Param)->hasDefaultArg()) {
10477      Diag((*Param)->getDefaultArgRange().getBegin(),
10478           diag::err_literal_operator_default_argument)
10479        << (*Param)->getDefaultArgRange();
10480      break;
10481    }
10482  }
10483
10484  StringRef LiteralName
10485    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
10486  if (LiteralName[0] != '_') {
10487    // C++11 [usrlit.suffix]p1:
10488    //   Literal suffix identifiers that do not start with an underscore
10489    //   are reserved for future standardization.
10490    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
10491  }
10492
10493  return false;
10494}
10495
10496/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10497/// linkage specification, including the language and (if present)
10498/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10499/// the location of the language string literal, which is provided
10500/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10501/// the '{' brace. Otherwise, this linkage specification does not
10502/// have any braces.
10503Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10504                                           SourceLocation LangLoc,
10505                                           StringRef Lang,
10506                                           SourceLocation LBraceLoc) {
10507  LinkageSpecDecl::LanguageIDs Language;
10508  if (Lang == "\"C\"")
10509    Language = LinkageSpecDecl::lang_c;
10510  else if (Lang == "\"C++\"")
10511    Language = LinkageSpecDecl::lang_cxx;
10512  else {
10513    Diag(LangLoc, diag::err_bad_language);
10514    return 0;
10515  }
10516
10517  // FIXME: Add all the various semantics of linkage specifications
10518
10519  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
10520                                               ExternLoc, LangLoc, Language,
10521                                               LBraceLoc.isValid());
10522  CurContext->addDecl(D);
10523  PushDeclContext(S, D);
10524  return D;
10525}
10526
10527/// ActOnFinishLinkageSpecification - Complete the definition of
10528/// the C++ linkage specification LinkageSpec. If RBraceLoc is
10529/// valid, it's the position of the closing '}' brace in a linkage
10530/// specification that uses braces.
10531Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
10532                                            Decl *LinkageSpec,
10533                                            SourceLocation RBraceLoc) {
10534  if (LinkageSpec) {
10535    if (RBraceLoc.isValid()) {
10536      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
10537      LSDecl->setRBraceLoc(RBraceLoc);
10538    }
10539    PopDeclContext();
10540  }
10541  return LinkageSpec;
10542}
10543
10544Decl *Sema::ActOnEmptyDeclaration(Scope *S,
10545                                  AttributeList *AttrList,
10546                                  SourceLocation SemiLoc) {
10547  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
10548  // Attribute declarations appertain to empty declaration so we handle
10549  // them here.
10550  if (AttrList)
10551    ProcessDeclAttributeList(S, ED, AttrList);
10552
10553  CurContext->addDecl(ED);
10554  return ED;
10555}
10556
10557/// \brief Perform semantic analysis for the variable declaration that
10558/// occurs within a C++ catch clause, returning the newly-created
10559/// variable.
10560VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
10561                                         TypeSourceInfo *TInfo,
10562                                         SourceLocation StartLoc,
10563                                         SourceLocation Loc,
10564                                         IdentifierInfo *Name) {
10565  bool Invalid = false;
10566  QualType ExDeclType = TInfo->getType();
10567
10568  // Arrays and functions decay.
10569  if (ExDeclType->isArrayType())
10570    ExDeclType = Context.getArrayDecayedType(ExDeclType);
10571  else if (ExDeclType->isFunctionType())
10572    ExDeclType = Context.getPointerType(ExDeclType);
10573
10574  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
10575  // The exception-declaration shall not denote a pointer or reference to an
10576  // incomplete type, other than [cv] void*.
10577  // N2844 forbids rvalue references.
10578  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
10579    Diag(Loc, diag::err_catch_rvalue_ref);
10580    Invalid = true;
10581  }
10582
10583  QualType BaseType = ExDeclType;
10584  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
10585  unsigned DK = diag::err_catch_incomplete;
10586  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
10587    BaseType = Ptr->getPointeeType();
10588    Mode = 1;
10589    DK = diag::err_catch_incomplete_ptr;
10590  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
10591    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
10592    BaseType = Ref->getPointeeType();
10593    Mode = 2;
10594    DK = diag::err_catch_incomplete_ref;
10595  }
10596  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
10597      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
10598    Invalid = true;
10599
10600  if (!Invalid && !ExDeclType->isDependentType() &&
10601      RequireNonAbstractType(Loc, ExDeclType,
10602                             diag::err_abstract_type_in_decl,
10603                             AbstractVariableType))
10604    Invalid = true;
10605
10606  // Only the non-fragile NeXT runtime currently supports C++ catches
10607  // of ObjC types, and no runtime supports catching ObjC types by value.
10608  if (!Invalid && getLangOpts().ObjC1) {
10609    QualType T = ExDeclType;
10610    if (const ReferenceType *RT = T->getAs<ReferenceType>())
10611      T = RT->getPointeeType();
10612
10613    if (T->isObjCObjectType()) {
10614      Diag(Loc, diag::err_objc_object_catch);
10615      Invalid = true;
10616    } else if (T->isObjCObjectPointerType()) {
10617      // FIXME: should this be a test for macosx-fragile specifically?
10618      if (getLangOpts().ObjCRuntime.isFragile())
10619        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
10620    }
10621  }
10622
10623  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
10624                                    ExDeclType, TInfo, SC_None);
10625  ExDecl->setExceptionVariable(true);
10626
10627  // In ARC, infer 'retaining' for variables of retainable type.
10628  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
10629    Invalid = true;
10630
10631  if (!Invalid && !ExDeclType->isDependentType()) {
10632    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
10633      // Insulate this from anything else we might currently be parsing.
10634      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
10635
10636      // C++ [except.handle]p16:
10637      //   The object declared in an exception-declaration or, if the
10638      //   exception-declaration does not specify a name, a temporary (12.2) is
10639      //   copy-initialized (8.5) from the exception object. [...]
10640      //   The object is destroyed when the handler exits, after the destruction
10641      //   of any automatic objects initialized within the handler.
10642      //
10643      // We just pretend to initialize the object with itself, then make sure
10644      // it can be destroyed later.
10645      QualType initType = ExDeclType;
10646
10647      InitializedEntity entity =
10648        InitializedEntity::InitializeVariable(ExDecl);
10649      InitializationKind initKind =
10650        InitializationKind::CreateCopy(Loc, SourceLocation());
10651
10652      Expr *opaqueValue =
10653        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
10654      InitializationSequence sequence(*this, entity, initKind, opaqueValue);
10655      ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
10656      if (result.isInvalid())
10657        Invalid = true;
10658      else {
10659        // If the constructor used was non-trivial, set this as the
10660        // "initializer".
10661        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
10662        if (!construct->getConstructor()->isTrivial()) {
10663          Expr *init = MaybeCreateExprWithCleanups(construct);
10664          ExDecl->setInit(init);
10665        }
10666
10667        // And make sure it's destructable.
10668        FinalizeVarWithDestructor(ExDecl, recordType);
10669      }
10670    }
10671  }
10672
10673  if (Invalid)
10674    ExDecl->setInvalidDecl();
10675
10676  return ExDecl;
10677}
10678
10679/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
10680/// handler.
10681Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
10682  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10683  bool Invalid = D.isInvalidType();
10684
10685  // Check for unexpanded parameter packs.
10686  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10687                                      UPPC_ExceptionType)) {
10688    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10689                                             D.getIdentifierLoc());
10690    Invalid = true;
10691  }
10692
10693  IdentifierInfo *II = D.getIdentifier();
10694  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
10695                                             LookupOrdinaryName,
10696                                             ForRedeclaration)) {
10697    // The scope should be freshly made just for us. There is just no way
10698    // it contains any previous declaration.
10699    assert(!S->isDeclScope(PrevDecl));
10700    if (PrevDecl->isTemplateParameter()) {
10701      // Maybe we will complain about the shadowed template parameter.
10702      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10703      PrevDecl = 0;
10704    }
10705  }
10706
10707  if (D.getCXXScopeSpec().isSet() && !Invalid) {
10708    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
10709      << D.getCXXScopeSpec().getRange();
10710    Invalid = true;
10711  }
10712
10713  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
10714                                              D.getLocStart(),
10715                                              D.getIdentifierLoc(),
10716                                              D.getIdentifier());
10717  if (Invalid)
10718    ExDecl->setInvalidDecl();
10719
10720  // Add the exception declaration into this scope.
10721  if (II)
10722    PushOnScopeChains(ExDecl, S);
10723  else
10724    CurContext->addDecl(ExDecl);
10725
10726  ProcessDeclAttributes(S, ExDecl, D);
10727  return ExDecl;
10728}
10729
10730Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10731                                         Expr *AssertExpr,
10732                                         Expr *AssertMessageExpr,
10733                                         SourceLocation RParenLoc) {
10734  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
10735
10736  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
10737    return 0;
10738
10739  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
10740                                      AssertMessage, RParenLoc, false);
10741}
10742
10743Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10744                                         Expr *AssertExpr,
10745                                         StringLiteral *AssertMessage,
10746                                         SourceLocation RParenLoc,
10747                                         bool Failed) {
10748  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
10749      !Failed) {
10750    // In a static_assert-declaration, the constant-expression shall be a
10751    // constant expression that can be contextually converted to bool.
10752    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
10753    if (Converted.isInvalid())
10754      Failed = true;
10755
10756    llvm::APSInt Cond;
10757    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
10758          diag::err_static_assert_expression_is_not_constant,
10759          /*AllowFold=*/false).isInvalid())
10760      Failed = true;
10761
10762    if (!Failed && !Cond) {
10763      SmallString<256> MsgBuffer;
10764      llvm::raw_svector_ostream Msg(MsgBuffer);
10765      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
10766      Diag(StaticAssertLoc, diag::err_static_assert_failed)
10767        << Msg.str() << AssertExpr->getSourceRange();
10768      Failed = true;
10769    }
10770  }
10771
10772  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
10773                                        AssertExpr, AssertMessage, RParenLoc,
10774                                        Failed);
10775
10776  CurContext->addDecl(Decl);
10777  return Decl;
10778}
10779
10780/// \brief Perform semantic analysis of the given friend type declaration.
10781///
10782/// \returns A friend declaration that.
10783FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
10784                                      SourceLocation FriendLoc,
10785                                      TypeSourceInfo *TSInfo) {
10786  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
10787
10788  QualType T = TSInfo->getType();
10789  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
10790
10791  // C++03 [class.friend]p2:
10792  //   An elaborated-type-specifier shall be used in a friend declaration
10793  //   for a class.*
10794  //
10795  //   * The class-key of the elaborated-type-specifier is required.
10796  if (!ActiveTemplateInstantiations.empty()) {
10797    // Do not complain about the form of friend template types during
10798    // template instantiation; we will already have complained when the
10799    // template was declared.
10800  } else {
10801    if (!T->isElaboratedTypeSpecifier()) {
10802      // If we evaluated the type to a record type, suggest putting
10803      // a tag in front.
10804      if (const RecordType *RT = T->getAs<RecordType>()) {
10805        RecordDecl *RD = RT->getDecl();
10806
10807        std::string InsertionText = std::string(" ") + RD->getKindName();
10808
10809        Diag(TypeRange.getBegin(),
10810             getLangOpts().CPlusPlus11 ?
10811               diag::warn_cxx98_compat_unelaborated_friend_type :
10812               diag::ext_unelaborated_friend_type)
10813          << (unsigned) RD->getTagKind()
10814          << T
10815          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10816                                        InsertionText);
10817      } else {
10818        Diag(FriendLoc,
10819             getLangOpts().CPlusPlus11 ?
10820               diag::warn_cxx98_compat_nonclass_type_friend :
10821               diag::ext_nonclass_type_friend)
10822          << T
10823          << TypeRange;
10824      }
10825    } else if (T->getAs<EnumType>()) {
10826      Diag(FriendLoc,
10827           getLangOpts().CPlusPlus11 ?
10828             diag::warn_cxx98_compat_enum_friend :
10829             diag::ext_enum_friend)
10830        << T
10831        << TypeRange;
10832    }
10833
10834    // C++11 [class.friend]p3:
10835    //   A friend declaration that does not declare a function shall have one
10836    //   of the following forms:
10837    //     friend elaborated-type-specifier ;
10838    //     friend simple-type-specifier ;
10839    //     friend typename-specifier ;
10840    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
10841      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
10842  }
10843
10844  //   If the type specifier in a friend declaration designates a (possibly
10845  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10846  //   the friend declaration is ignored.
10847  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
10848}
10849
10850/// Handle a friend tag declaration where the scope specifier was
10851/// templated.
10852Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10853                                    unsigned TagSpec, SourceLocation TagLoc,
10854                                    CXXScopeSpec &SS,
10855                                    IdentifierInfo *Name,
10856                                    SourceLocation NameLoc,
10857                                    AttributeList *Attr,
10858                                    MultiTemplateParamsArg TempParamLists) {
10859  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10860
10861  bool isExplicitSpecialization = false;
10862  bool Invalid = false;
10863
10864  if (TemplateParameterList *TemplateParams
10865        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10866                                                  TempParamLists.data(),
10867                                                  TempParamLists.size(),
10868                                                  /*friend*/ true,
10869                                                  isExplicitSpecialization,
10870                                                  Invalid)) {
10871    if (TemplateParams->size() > 0) {
10872      // This is a declaration of a class template.
10873      if (Invalid)
10874        return 0;
10875
10876      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10877                                SS, Name, NameLoc, Attr,
10878                                TemplateParams, AS_public,
10879                                /*ModulePrivateLoc=*/SourceLocation(),
10880                                TempParamLists.size() - 1,
10881                                TempParamLists.data()).take();
10882    } else {
10883      // The "template<>" header is extraneous.
10884      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10885        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10886      isExplicitSpecialization = true;
10887    }
10888  }
10889
10890  if (Invalid) return 0;
10891
10892  bool isAllExplicitSpecializations = true;
10893  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10894    if (TempParamLists[I]->size()) {
10895      isAllExplicitSpecializations = false;
10896      break;
10897    }
10898  }
10899
10900  // FIXME: don't ignore attributes.
10901
10902  // If it's explicit specializations all the way down, just forget
10903  // about the template header and build an appropriate non-templated
10904  // friend.  TODO: for source fidelity, remember the headers.
10905  if (isAllExplicitSpecializations) {
10906    if (SS.isEmpty()) {
10907      bool Owned = false;
10908      bool IsDependent = false;
10909      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10910                      Attr, AS_public,
10911                      /*ModulePrivateLoc=*/SourceLocation(),
10912                      MultiTemplateParamsArg(), Owned, IsDependent,
10913                      /*ScopedEnumKWLoc=*/SourceLocation(),
10914                      /*ScopedEnumUsesClassTag=*/false,
10915                      /*UnderlyingType=*/TypeResult());
10916    }
10917
10918    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10919    ElaboratedTypeKeyword Keyword
10920      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10921    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10922                                   *Name, NameLoc);
10923    if (T.isNull())
10924      return 0;
10925
10926    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10927    if (isa<DependentNameType>(T)) {
10928      DependentNameTypeLoc TL =
10929          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10930      TL.setElaboratedKeywordLoc(TagLoc);
10931      TL.setQualifierLoc(QualifierLoc);
10932      TL.setNameLoc(NameLoc);
10933    } else {
10934      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
10935      TL.setElaboratedKeywordLoc(TagLoc);
10936      TL.setQualifierLoc(QualifierLoc);
10937      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
10938    }
10939
10940    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10941                                            TSI, FriendLoc, TempParamLists);
10942    Friend->setAccess(AS_public);
10943    CurContext->addDecl(Friend);
10944    return Friend;
10945  }
10946
10947  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10948
10949
10950
10951  // Handle the case of a templated-scope friend class.  e.g.
10952  //   template <class T> class A<T>::B;
10953  // FIXME: we don't support these right now.
10954  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10955  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10956  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10957  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
10958  TL.setElaboratedKeywordLoc(TagLoc);
10959  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10960  TL.setNameLoc(NameLoc);
10961
10962  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10963                                          TSI, FriendLoc, TempParamLists);
10964  Friend->setAccess(AS_public);
10965  Friend->setUnsupportedFriend(true);
10966  CurContext->addDecl(Friend);
10967  return Friend;
10968}
10969
10970
10971/// Handle a friend type declaration.  This works in tandem with
10972/// ActOnTag.
10973///
10974/// Notes on friend class templates:
10975///
10976/// We generally treat friend class declarations as if they were
10977/// declaring a class.  So, for example, the elaborated type specifier
10978/// in a friend declaration is required to obey the restrictions of a
10979/// class-head (i.e. no typedefs in the scope chain), template
10980/// parameters are required to match up with simple template-ids, &c.
10981/// However, unlike when declaring a template specialization, it's
10982/// okay to refer to a template specialization without an empty
10983/// template parameter declaration, e.g.
10984///   friend class A<T>::B<unsigned>;
10985/// We permit this as a special case; if there are any template
10986/// parameters present at all, require proper matching, i.e.
10987///   template <> template \<class T> friend class A<int>::B;
10988Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10989                                MultiTemplateParamsArg TempParams) {
10990  SourceLocation Loc = DS.getLocStart();
10991
10992  assert(DS.isFriendSpecified());
10993  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10994
10995  // Try to convert the decl specifier to a type.  This works for
10996  // friend templates because ActOnTag never produces a ClassTemplateDecl
10997  // for a TUK_Friend.
10998  Declarator TheDeclarator(DS, Declarator::MemberContext);
10999  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
11000  QualType T = TSI->getType();
11001  if (TheDeclarator.isInvalidType())
11002    return 0;
11003
11004  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
11005    return 0;
11006
11007  // This is definitely an error in C++98.  It's probably meant to
11008  // be forbidden in C++0x, too, but the specification is just
11009  // poorly written.
11010  //
11011  // The problem is with declarations like the following:
11012  //   template <T> friend A<T>::foo;
11013  // where deciding whether a class C is a friend or not now hinges
11014  // on whether there exists an instantiation of A that causes
11015  // 'foo' to equal C.  There are restrictions on class-heads
11016  // (which we declare (by fiat) elaborated friend declarations to
11017  // be) that makes this tractable.
11018  //
11019  // FIXME: handle "template <> friend class A<T>;", which
11020  // is possibly well-formed?  Who even knows?
11021  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
11022    Diag(Loc, diag::err_tagless_friend_type_template)
11023      << DS.getSourceRange();
11024    return 0;
11025  }
11026
11027  // C++98 [class.friend]p1: A friend of a class is a function
11028  //   or class that is not a member of the class . . .
11029  // This is fixed in DR77, which just barely didn't make the C++03
11030  // deadline.  It's also a very silly restriction that seriously
11031  // affects inner classes and which nobody else seems to implement;
11032  // thus we never diagnose it, not even in -pedantic.
11033  //
11034  // But note that we could warn about it: it's always useless to
11035  // friend one of your own members (it's not, however, worthless to
11036  // friend a member of an arbitrary specialization of your template).
11037
11038  Decl *D;
11039  if (unsigned NumTempParamLists = TempParams.size())
11040    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
11041                                   NumTempParamLists,
11042                                   TempParams.data(),
11043                                   TSI,
11044                                   DS.getFriendSpecLoc());
11045  else
11046    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
11047
11048  if (!D)
11049    return 0;
11050
11051  D->setAccess(AS_public);
11052  CurContext->addDecl(D);
11053
11054  return D;
11055}
11056
11057NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
11058                                        MultiTemplateParamsArg TemplateParams) {
11059  const DeclSpec &DS = D.getDeclSpec();
11060
11061  assert(DS.isFriendSpecified());
11062  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11063
11064  SourceLocation Loc = D.getIdentifierLoc();
11065  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11066
11067  // C++ [class.friend]p1
11068  //   A friend of a class is a function or class....
11069  // Note that this sees through typedefs, which is intended.
11070  // It *doesn't* see through dependent types, which is correct
11071  // according to [temp.arg.type]p3:
11072  //   If a declaration acquires a function type through a
11073  //   type dependent on a template-parameter and this causes
11074  //   a declaration that does not use the syntactic form of a
11075  //   function declarator to have a function type, the program
11076  //   is ill-formed.
11077  if (!TInfo->getType()->isFunctionType()) {
11078    Diag(Loc, diag::err_unexpected_friend);
11079
11080    // It might be worthwhile to try to recover by creating an
11081    // appropriate declaration.
11082    return 0;
11083  }
11084
11085  // C++ [namespace.memdef]p3
11086  //  - If a friend declaration in a non-local class first declares a
11087  //    class or function, the friend class or function is a member
11088  //    of the innermost enclosing namespace.
11089  //  - The name of the friend is not found by simple name lookup
11090  //    until a matching declaration is provided in that namespace
11091  //    scope (either before or after the class declaration granting
11092  //    friendship).
11093  //  - If a friend function is called, its name may be found by the
11094  //    name lookup that considers functions from namespaces and
11095  //    classes associated with the types of the function arguments.
11096  //  - When looking for a prior declaration of a class or a function
11097  //    declared as a friend, scopes outside the innermost enclosing
11098  //    namespace scope are not considered.
11099
11100  CXXScopeSpec &SS = D.getCXXScopeSpec();
11101  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
11102  DeclarationName Name = NameInfo.getName();
11103  assert(Name);
11104
11105  // Check for unexpanded parameter packs.
11106  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
11107      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
11108      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
11109    return 0;
11110
11111  // The context we found the declaration in, or in which we should
11112  // create the declaration.
11113  DeclContext *DC;
11114  Scope *DCScope = S;
11115  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
11116                        ForRedeclaration);
11117
11118  // FIXME: there are different rules in local classes
11119
11120  // There are four cases here.
11121  //   - There's no scope specifier, in which case we just go to the
11122  //     appropriate scope and look for a function or function template
11123  //     there as appropriate.
11124  // Recover from invalid scope qualifiers as if they just weren't there.
11125  if (SS.isInvalid() || !SS.isSet()) {
11126    // C++0x [namespace.memdef]p3:
11127    //   If the name in a friend declaration is neither qualified nor
11128    //   a template-id and the declaration is a function or an
11129    //   elaborated-type-specifier, the lookup to determine whether
11130    //   the entity has been previously declared shall not consider
11131    //   any scopes outside the innermost enclosing namespace.
11132    // C++0x [class.friend]p11:
11133    //   If a friend declaration appears in a local class and the name
11134    //   specified is an unqualified name, a prior declaration is
11135    //   looked up without considering scopes that are outside the
11136    //   innermost enclosing non-class scope. For a friend function
11137    //   declaration, if there is no prior declaration, the program is
11138    //   ill-formed.
11139    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
11140    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
11141
11142    // Find the appropriate context according to the above.
11143    DC = CurContext;
11144
11145    // Skip class contexts.  If someone can cite chapter and verse
11146    // for this behavior, that would be nice --- it's what GCC and
11147    // EDG do, and it seems like a reasonable intent, but the spec
11148    // really only says that checks for unqualified existing
11149    // declarations should stop at the nearest enclosing namespace,
11150    // not that they should only consider the nearest enclosing
11151    // namespace.
11152    while (DC->isRecord())
11153      DC = DC->getParent();
11154
11155    DeclContext *LookupDC = DC;
11156    while (LookupDC->isTransparentContext())
11157      LookupDC = LookupDC->getParent();
11158
11159    while (true) {
11160      LookupQualifiedName(Previous, LookupDC);
11161
11162      // TODO: decide what we think about using declarations.
11163      if (isLocal)
11164        break;
11165
11166      if (!Previous.empty()) {
11167        DC = LookupDC;
11168        break;
11169      }
11170
11171      if (isTemplateId) {
11172        if (isa<TranslationUnitDecl>(LookupDC)) break;
11173      } else {
11174        if (LookupDC->isFileContext()) break;
11175      }
11176      LookupDC = LookupDC->getParent();
11177    }
11178
11179    DCScope = getScopeForDeclContext(S, DC);
11180
11181    // C++ [class.friend]p6:
11182    //   A function can be defined in a friend declaration of a class if and
11183    //   only if the class is a non-local class (9.8), the function name is
11184    //   unqualified, and the function has namespace scope.
11185    if (isLocal && D.isFunctionDefinition()) {
11186      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
11187    }
11188
11189  //   - There's a non-dependent scope specifier, in which case we
11190  //     compute it and do a previous lookup there for a function
11191  //     or function template.
11192  } else if (!SS.getScopeRep()->isDependent()) {
11193    DC = computeDeclContext(SS);
11194    if (!DC) return 0;
11195
11196    if (RequireCompleteDeclContext(SS, DC)) return 0;
11197
11198    LookupQualifiedName(Previous, DC);
11199
11200    // Ignore things found implicitly in the wrong scope.
11201    // TODO: better diagnostics for this case.  Suggesting the right
11202    // qualified scope would be nice...
11203    LookupResult::Filter F = Previous.makeFilter();
11204    while (F.hasNext()) {
11205      NamedDecl *D = F.next();
11206      if (!DC->InEnclosingNamespaceSetOf(
11207              D->getDeclContext()->getRedeclContext()))
11208        F.erase();
11209    }
11210    F.done();
11211
11212    if (Previous.empty()) {
11213      D.setInvalidType();
11214      Diag(Loc, diag::err_qualified_friend_not_found)
11215          << Name << TInfo->getType();
11216      return 0;
11217    }
11218
11219    // C++ [class.friend]p1: A friend of a class is a function or
11220    //   class that is not a member of the class . . .
11221    if (DC->Equals(CurContext))
11222      Diag(DS.getFriendSpecLoc(),
11223           getLangOpts().CPlusPlus11 ?
11224             diag::warn_cxx98_compat_friend_is_member :
11225             diag::err_friend_is_member);
11226
11227    if (D.isFunctionDefinition()) {
11228      // C++ [class.friend]p6:
11229      //   A function can be defined in a friend declaration of a class if and
11230      //   only if the class is a non-local class (9.8), the function name is
11231      //   unqualified, and the function has namespace scope.
11232      SemaDiagnosticBuilder DB
11233        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
11234
11235      DB << SS.getScopeRep();
11236      if (DC->isFileContext())
11237        DB << FixItHint::CreateRemoval(SS.getRange());
11238      SS.clear();
11239    }
11240
11241  //   - There's a scope specifier that does not match any template
11242  //     parameter lists, in which case we use some arbitrary context,
11243  //     create a method or method template, and wait for instantiation.
11244  //   - There's a scope specifier that does match some template
11245  //     parameter lists, which we don't handle right now.
11246  } else {
11247    if (D.isFunctionDefinition()) {
11248      // C++ [class.friend]p6:
11249      //   A function can be defined in a friend declaration of a class if and
11250      //   only if the class is a non-local class (9.8), the function name is
11251      //   unqualified, and the function has namespace scope.
11252      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
11253        << SS.getScopeRep();
11254    }
11255
11256    DC = CurContext;
11257    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
11258  }
11259
11260  if (!DC->isRecord()) {
11261    // This implies that it has to be an operator or function.
11262    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
11263        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
11264        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
11265      Diag(Loc, diag::err_introducing_special_friend) <<
11266        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
11267         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
11268      return 0;
11269    }
11270  }
11271
11272  // FIXME: This is an egregious hack to cope with cases where the scope stack
11273  // does not contain the declaration context, i.e., in an out-of-line
11274  // definition of a class.
11275  Scope FakeDCScope(S, Scope::DeclScope, Diags);
11276  if (!DCScope) {
11277    FakeDCScope.setEntity(DC);
11278    DCScope = &FakeDCScope;
11279  }
11280
11281  bool AddToScope = true;
11282  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
11283                                          TemplateParams, AddToScope);
11284  if (!ND) return 0;
11285
11286  assert(ND->getDeclContext() == DC);
11287  assert(ND->getLexicalDeclContext() == CurContext);
11288
11289  // Add the function declaration to the appropriate lookup tables,
11290  // adjusting the redeclarations list as necessary.  We don't
11291  // want to do this yet if the friending class is dependent.
11292  //
11293  // Also update the scope-based lookup if the target context's
11294  // lookup context is in lexical scope.
11295  if (!CurContext->isDependentContext()) {
11296    DC = DC->getRedeclContext();
11297    DC->makeDeclVisibleInContext(ND);
11298    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11299      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
11300  }
11301
11302  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
11303                                       D.getIdentifierLoc(), ND,
11304                                       DS.getFriendSpecLoc());
11305  FrD->setAccess(AS_public);
11306  CurContext->addDecl(FrD);
11307
11308  if (ND->isInvalidDecl()) {
11309    FrD->setInvalidDecl();
11310  } else {
11311    if (DC->isRecord()) CheckFriendAccess(ND);
11312
11313    FunctionDecl *FD;
11314    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
11315      FD = FTD->getTemplatedDecl();
11316    else
11317      FD = cast<FunctionDecl>(ND);
11318
11319    // Mark templated-scope function declarations as unsupported.
11320    if (FD->getNumTemplateParameterLists())
11321      FrD->setUnsupportedFriend(true);
11322  }
11323
11324  return ND;
11325}
11326
11327void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
11328  AdjustDeclIfTemplate(Dcl);
11329
11330  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
11331  if (!Fn) {
11332    Diag(DelLoc, diag::err_deleted_non_function);
11333    return;
11334  }
11335
11336  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
11337    // Don't consider the implicit declaration we generate for explicit
11338    // specializations. FIXME: Do not generate these implicit declarations.
11339    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
11340        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
11341      Diag(DelLoc, diag::err_deleted_decl_not_first);
11342      Diag(Prev->getLocation(), diag::note_previous_declaration);
11343    }
11344    // If the declaration wasn't the first, we delete the function anyway for
11345    // recovery.
11346    Fn = Fn->getCanonicalDecl();
11347  }
11348
11349  if (Fn->isDeleted())
11350    return;
11351
11352  // See if we're deleting a function which is already known to override a
11353  // non-deleted virtual function.
11354  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
11355    bool IssuedDiagnostic = false;
11356    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
11357                                        E = MD->end_overridden_methods();
11358         I != E; ++I) {
11359      if (!(*MD->begin_overridden_methods())->isDeleted()) {
11360        if (!IssuedDiagnostic) {
11361          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
11362          IssuedDiagnostic = true;
11363        }
11364        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
11365      }
11366    }
11367  }
11368
11369  Fn->setDeletedAsWritten();
11370}
11371
11372void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11373  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11374
11375  if (MD) {
11376    if (MD->getParent()->isDependentType()) {
11377      MD->setDefaulted();
11378      MD->setExplicitlyDefaulted();
11379      return;
11380    }
11381
11382    CXXSpecialMember Member = getSpecialMember(MD);
11383    if (Member == CXXInvalid) {
11384      Diag(DefaultLoc, diag::err_default_special_members);
11385      return;
11386    }
11387
11388    MD->setDefaulted();
11389    MD->setExplicitlyDefaulted();
11390
11391    // If this definition appears within the record, do the checking when
11392    // the record is complete.
11393    const FunctionDecl *Primary = MD;
11394    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
11395      // Find the uninstantiated declaration that actually had the '= default'
11396      // on it.
11397      Pattern->isDefined(Primary);
11398
11399    // If the method was defaulted on its first declaration, we will have
11400    // already performed the checking in CheckCompletedCXXClass. Such a
11401    // declaration doesn't trigger an implicit definition.
11402    if (Primary == Primary->getCanonicalDecl())
11403      return;
11404
11405    CheckExplicitlyDefaultedSpecialMember(MD);
11406
11407    // The exception specification is needed because we are defining the
11408    // function.
11409    ResolveExceptionSpec(DefaultLoc,
11410                         MD->getType()->castAs<FunctionProtoType>());
11411
11412    switch (Member) {
11413    case CXXDefaultConstructor: {
11414      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11415      if (!CD->isInvalidDecl())
11416        DefineImplicitDefaultConstructor(DefaultLoc, CD);
11417      break;
11418    }
11419
11420    case CXXCopyConstructor: {
11421      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11422      if (!CD->isInvalidDecl())
11423        DefineImplicitCopyConstructor(DefaultLoc, CD);
11424      break;
11425    }
11426
11427    case CXXCopyAssignment: {
11428      if (!MD->isInvalidDecl())
11429        DefineImplicitCopyAssignment(DefaultLoc, MD);
11430      break;
11431    }
11432
11433    case CXXDestructor: {
11434      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
11435      if (!DD->isInvalidDecl())
11436        DefineImplicitDestructor(DefaultLoc, DD);
11437      break;
11438    }
11439
11440    case CXXMoveConstructor: {
11441      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11442      if (!CD->isInvalidDecl())
11443        DefineImplicitMoveConstructor(DefaultLoc, CD);
11444      break;
11445    }
11446
11447    case CXXMoveAssignment: {
11448      if (!MD->isInvalidDecl())
11449        DefineImplicitMoveAssignment(DefaultLoc, MD);
11450      break;
11451    }
11452
11453    case CXXInvalid:
11454      llvm_unreachable("Invalid special member.");
11455    }
11456  } else {
11457    Diag(DefaultLoc, diag::err_default_special_members);
11458  }
11459}
11460
11461static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
11462  for (Stmt::child_range CI = S->children(); CI; ++CI) {
11463    Stmt *SubStmt = *CI;
11464    if (!SubStmt)
11465      continue;
11466    if (isa<ReturnStmt>(SubStmt))
11467      Self.Diag(SubStmt->getLocStart(),
11468           diag::err_return_in_constructor_handler);
11469    if (!isa<Expr>(SubStmt))
11470      SearchForReturnInStmt(Self, SubStmt);
11471  }
11472}
11473
11474void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
11475  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
11476    CXXCatchStmt *Handler = TryBlock->getHandler(I);
11477    SearchForReturnInStmt(*this, Handler);
11478  }
11479}
11480
11481bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
11482                                             const CXXMethodDecl *Old) {
11483  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
11484  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
11485
11486  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
11487
11488  // If the calling conventions match, everything is fine
11489  if (NewCC == OldCC)
11490    return false;
11491
11492  // If either of the calling conventions are set to "default", we need to pick
11493  // something more sensible based on the target. This supports code where the
11494  // one method explicitly sets thiscall, and another has no explicit calling
11495  // convention.
11496  CallingConv Default =
11497    Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
11498  if (NewCC == CC_Default)
11499    NewCC = Default;
11500  if (OldCC == CC_Default)
11501    OldCC = Default;
11502
11503  // If the calling conventions still don't match, then report the error
11504  if (NewCC != OldCC) {
11505    Diag(New->getLocation(),
11506         diag::err_conflicting_overriding_cc_attributes)
11507      << New->getDeclName() << New->getType() << Old->getType();
11508    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11509    return true;
11510  }
11511
11512  return false;
11513}
11514
11515bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
11516                                             const CXXMethodDecl *Old) {
11517  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
11518  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
11519
11520  if (Context.hasSameType(NewTy, OldTy) ||
11521      NewTy->isDependentType() || OldTy->isDependentType())
11522    return false;
11523
11524  // Check if the return types are covariant
11525  QualType NewClassTy, OldClassTy;
11526
11527  /// Both types must be pointers or references to classes.
11528  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
11529    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
11530      NewClassTy = NewPT->getPointeeType();
11531      OldClassTy = OldPT->getPointeeType();
11532    }
11533  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
11534    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
11535      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
11536        NewClassTy = NewRT->getPointeeType();
11537        OldClassTy = OldRT->getPointeeType();
11538      }
11539    }
11540  }
11541
11542  // The return types aren't either both pointers or references to a class type.
11543  if (NewClassTy.isNull()) {
11544    Diag(New->getLocation(),
11545         diag::err_different_return_type_for_overriding_virtual_function)
11546      << New->getDeclName() << NewTy << OldTy;
11547    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11548
11549    return true;
11550  }
11551
11552  // C++ [class.virtual]p6:
11553  //   If the return type of D::f differs from the return type of B::f, the
11554  //   class type in the return type of D::f shall be complete at the point of
11555  //   declaration of D::f or shall be the class type D.
11556  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
11557    if (!RT->isBeingDefined() &&
11558        RequireCompleteType(New->getLocation(), NewClassTy,
11559                            diag::err_covariant_return_incomplete,
11560                            New->getDeclName()))
11561    return true;
11562  }
11563
11564  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
11565    // Check if the new class derives from the old class.
11566    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
11567      Diag(New->getLocation(),
11568           diag::err_covariant_return_not_derived)
11569      << New->getDeclName() << NewTy << OldTy;
11570      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11571      return true;
11572    }
11573
11574    // Check if we the conversion from derived to base is valid.
11575    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
11576                    diag::err_covariant_return_inaccessible_base,
11577                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
11578                    // FIXME: Should this point to the return type?
11579                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
11580      // FIXME: this note won't trigger for delayed access control
11581      // diagnostics, and it's impossible to get an undelayed error
11582      // here from access control during the original parse because
11583      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
11584      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11585      return true;
11586    }
11587  }
11588
11589  // The qualifiers of the return types must be the same.
11590  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
11591    Diag(New->getLocation(),
11592         diag::err_covariant_return_type_different_qualifications)
11593    << New->getDeclName() << NewTy << OldTy;
11594    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11595    return true;
11596  };
11597
11598
11599  // The new class type must have the same or less qualifiers as the old type.
11600  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
11601    Diag(New->getLocation(),
11602         diag::err_covariant_return_type_class_type_more_qualified)
11603    << New->getDeclName() << NewTy << OldTy;
11604    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11605    return true;
11606  };
11607
11608  return false;
11609}
11610
11611/// \brief Mark the given method pure.
11612///
11613/// \param Method the method to be marked pure.
11614///
11615/// \param InitRange the source range that covers the "0" initializer.
11616bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
11617  SourceLocation EndLoc = InitRange.getEnd();
11618  if (EndLoc.isValid())
11619    Method->setRangeEnd(EndLoc);
11620
11621  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
11622    Method->setPure();
11623    return false;
11624  }
11625
11626  if (!Method->isInvalidDecl())
11627    Diag(Method->getLocation(), diag::err_non_virtual_pure)
11628      << Method->getDeclName() << InitRange;
11629  return true;
11630}
11631
11632/// \brief Determine whether the given declaration is a static data member.
11633static bool isStaticDataMember(Decl *D) {
11634  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
11635  if (!Var)
11636    return false;
11637
11638  return Var->isStaticDataMember();
11639}
11640/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
11641/// an initializer for the out-of-line declaration 'Dcl'.  The scope
11642/// is a fresh scope pushed for just this purpose.
11643///
11644/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
11645/// static data member of class X, names should be looked up in the scope of
11646/// class X.
11647void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
11648  // If there is no declaration, there was an error parsing it.
11649  if (D == 0 || D->isInvalidDecl()) return;
11650
11651  // We should only get called for declarations with scope specifiers, like:
11652  //   int foo::bar;
11653  assert(D->isOutOfLine());
11654  EnterDeclaratorContext(S, D->getDeclContext());
11655
11656  // If we are parsing the initializer for a static data member, push a
11657  // new expression evaluation context that is associated with this static
11658  // data member.
11659  if (isStaticDataMember(D))
11660    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
11661}
11662
11663/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
11664/// initializer for the out-of-line declaration 'D'.
11665void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
11666  // If there is no declaration, there was an error parsing it.
11667  if (D == 0 || D->isInvalidDecl()) return;
11668
11669  if (isStaticDataMember(D))
11670    PopExpressionEvaluationContext();
11671
11672  assert(D->isOutOfLine());
11673  ExitDeclaratorContext(S);
11674}
11675
11676/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
11677/// C++ if/switch/while/for statement.
11678/// e.g: "if (int x = f()) {...}"
11679DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
11680  // C++ 6.4p2:
11681  // The declarator shall not specify a function or an array.
11682  // The type-specifier-seq shall not contain typedef and shall not declare a
11683  // new class or enumeration.
11684  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
11685         "Parser allowed 'typedef' as storage class of condition decl.");
11686
11687  Decl *Dcl = ActOnDeclarator(S, D);
11688  if (!Dcl)
11689    return true;
11690
11691  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
11692    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
11693      << D.getSourceRange();
11694    return true;
11695  }
11696
11697  return Dcl;
11698}
11699
11700void Sema::LoadExternalVTableUses() {
11701  if (!ExternalSource)
11702    return;
11703
11704  SmallVector<ExternalVTableUse, 4> VTables;
11705  ExternalSource->ReadUsedVTables(VTables);
11706  SmallVector<VTableUse, 4> NewUses;
11707  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
11708    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
11709      = VTablesUsed.find(VTables[I].Record);
11710    // Even if a definition wasn't required before, it may be required now.
11711    if (Pos != VTablesUsed.end()) {
11712      if (!Pos->second && VTables[I].DefinitionRequired)
11713        Pos->second = true;
11714      continue;
11715    }
11716
11717    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
11718    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
11719  }
11720
11721  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
11722}
11723
11724void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
11725                          bool DefinitionRequired) {
11726  // Ignore any vtable uses in unevaluated operands or for classes that do
11727  // not have a vtable.
11728  if (!Class->isDynamicClass() || Class->isDependentContext() ||
11729      CurContext->isDependentContext() || isUnevaluatedContext())
11730    return;
11731
11732  // Try to insert this class into the map.
11733  LoadExternalVTableUses();
11734  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11735  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
11736    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
11737  if (!Pos.second) {
11738    // If we already had an entry, check to see if we are promoting this vtable
11739    // to required a definition. If so, we need to reappend to the VTableUses
11740    // list, since we may have already processed the first entry.
11741    if (DefinitionRequired && !Pos.first->second) {
11742      Pos.first->second = true;
11743    } else {
11744      // Otherwise, we can early exit.
11745      return;
11746    }
11747  }
11748
11749  // Local classes need to have their virtual members marked
11750  // immediately. For all other classes, we mark their virtual members
11751  // at the end of the translation unit.
11752  if (Class->isLocalClass())
11753    MarkVirtualMembersReferenced(Loc, Class);
11754  else
11755    VTableUses.push_back(std::make_pair(Class, Loc));
11756}
11757
11758bool Sema::DefineUsedVTables() {
11759  LoadExternalVTableUses();
11760  if (VTableUses.empty())
11761    return false;
11762
11763  // Note: The VTableUses vector could grow as a result of marking
11764  // the members of a class as "used", so we check the size each
11765  // time through the loop and prefer indices (which are stable) to
11766  // iterators (which are not).
11767  bool DefinedAnything = false;
11768  for (unsigned I = 0; I != VTableUses.size(); ++I) {
11769    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
11770    if (!Class)
11771      continue;
11772
11773    SourceLocation Loc = VTableUses[I].second;
11774
11775    bool DefineVTable = true;
11776
11777    // If this class has a key function, but that key function is
11778    // defined in another translation unit, we don't need to emit the
11779    // vtable even though we're using it.
11780    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
11781    if (KeyFunction && !KeyFunction->hasBody()) {
11782      switch (KeyFunction->getTemplateSpecializationKind()) {
11783      case TSK_Undeclared:
11784      case TSK_ExplicitSpecialization:
11785      case TSK_ExplicitInstantiationDeclaration:
11786        // The key function is in another translation unit.
11787        DefineVTable = false;
11788        break;
11789
11790      case TSK_ExplicitInstantiationDefinition:
11791      case TSK_ImplicitInstantiation:
11792        // We will be instantiating the key function.
11793        break;
11794      }
11795    } else if (!KeyFunction) {
11796      // If we have a class with no key function that is the subject
11797      // of an explicit instantiation declaration, suppress the
11798      // vtable; it will live with the explicit instantiation
11799      // definition.
11800      bool IsExplicitInstantiationDeclaration
11801        = Class->getTemplateSpecializationKind()
11802                                      == TSK_ExplicitInstantiationDeclaration;
11803      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
11804                                 REnd = Class->redecls_end();
11805           R != REnd; ++R) {
11806        TemplateSpecializationKind TSK
11807          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
11808        if (TSK == TSK_ExplicitInstantiationDeclaration)
11809          IsExplicitInstantiationDeclaration = true;
11810        else if (TSK == TSK_ExplicitInstantiationDefinition) {
11811          IsExplicitInstantiationDeclaration = false;
11812          break;
11813        }
11814      }
11815
11816      if (IsExplicitInstantiationDeclaration)
11817        DefineVTable = false;
11818    }
11819
11820    // The exception specifications for all virtual members may be needed even
11821    // if we are not providing an authoritative form of the vtable in this TU.
11822    // We may choose to emit it available_externally anyway.
11823    if (!DefineVTable) {
11824      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
11825      continue;
11826    }
11827
11828    // Mark all of the virtual members of this class as referenced, so
11829    // that we can build a vtable. Then, tell the AST consumer that a
11830    // vtable for this class is required.
11831    DefinedAnything = true;
11832    MarkVirtualMembersReferenced(Loc, Class);
11833    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11834    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
11835
11836    // Optionally warn if we're emitting a weak vtable.
11837    if (Class->isExternallyVisible() &&
11838        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
11839      const FunctionDecl *KeyFunctionDef = 0;
11840      if (!KeyFunction ||
11841          (KeyFunction->hasBody(KeyFunctionDef) &&
11842           KeyFunctionDef->isInlined()))
11843        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
11844             TSK_ExplicitInstantiationDefinition
11845             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
11846          << Class;
11847    }
11848  }
11849  VTableUses.clear();
11850
11851  return DefinedAnything;
11852}
11853
11854void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
11855                                                 const CXXRecordDecl *RD) {
11856  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
11857                                      E = RD->method_end(); I != E; ++I)
11858    if ((*I)->isVirtual() && !(*I)->isPure())
11859      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
11860}
11861
11862void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
11863                                        const CXXRecordDecl *RD) {
11864  // Mark all functions which will appear in RD's vtable as used.
11865  CXXFinalOverriderMap FinalOverriders;
11866  RD->getFinalOverriders(FinalOverriders);
11867  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
11868                                            E = FinalOverriders.end();
11869       I != E; ++I) {
11870    for (OverridingMethods::const_iterator OI = I->second.begin(),
11871                                           OE = I->second.end();
11872         OI != OE; ++OI) {
11873      assert(OI->second.size() > 0 && "no final overrider");
11874      CXXMethodDecl *Overrider = OI->second.front().Method;
11875
11876      // C++ [basic.def.odr]p2:
11877      //   [...] A virtual member function is used if it is not pure. [...]
11878      if (!Overrider->isPure())
11879        MarkFunctionReferenced(Loc, Overrider);
11880    }
11881  }
11882
11883  // Only classes that have virtual bases need a VTT.
11884  if (RD->getNumVBases() == 0)
11885    return;
11886
11887  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
11888           e = RD->bases_end(); i != e; ++i) {
11889    const CXXRecordDecl *Base =
11890        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
11891    if (Base->getNumVBases() == 0)
11892      continue;
11893    MarkVirtualMembersReferenced(Loc, Base);
11894  }
11895}
11896
11897/// SetIvarInitializers - This routine builds initialization ASTs for the
11898/// Objective-C implementation whose ivars need be initialized.
11899void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
11900  if (!getLangOpts().CPlusPlus)
11901    return;
11902  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
11903    SmallVector<ObjCIvarDecl*, 8> ivars;
11904    CollectIvarsToConstructOrDestruct(OID, ivars);
11905    if (ivars.empty())
11906      return;
11907    SmallVector<CXXCtorInitializer*, 32> AllToInit;
11908    for (unsigned i = 0; i < ivars.size(); i++) {
11909      FieldDecl *Field = ivars[i];
11910      if (Field->isInvalidDecl())
11911        continue;
11912
11913      CXXCtorInitializer *Member;
11914      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
11915      InitializationKind InitKind =
11916        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
11917
11918      InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
11919      ExprResult MemberInit =
11920        InitSeq.Perform(*this, InitEntity, InitKind, None);
11921      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
11922      // Note, MemberInit could actually come back empty if no initialization
11923      // is required (e.g., because it would call a trivial default constructor)
11924      if (!MemberInit.get() || MemberInit.isInvalid())
11925        continue;
11926
11927      Member =
11928        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
11929                                         SourceLocation(),
11930                                         MemberInit.takeAs<Expr>(),
11931                                         SourceLocation());
11932      AllToInit.push_back(Member);
11933
11934      // Be sure that the destructor is accessible and is marked as referenced.
11935      if (const RecordType *RecordTy
11936                  = Context.getBaseElementType(Field->getType())
11937                                                        ->getAs<RecordType>()) {
11938                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
11939        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
11940          MarkFunctionReferenced(Field->getLocation(), Destructor);
11941          CheckDestructorAccess(Field->getLocation(), Destructor,
11942                            PDiag(diag::err_access_dtor_ivar)
11943                              << Context.getBaseElementType(Field->getType()));
11944        }
11945      }
11946    }
11947    ObjCImplementation->setIvarInitializers(Context,
11948                                            AllToInit.data(), AllToInit.size());
11949  }
11950}
11951
11952static
11953void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11954                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11955                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11956                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11957                           Sema &S) {
11958  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11959                                                   CE = Current.end();
11960  if (Ctor->isInvalidDecl())
11961    return;
11962
11963  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
11964
11965  // Target may not be determinable yet, for instance if this is a dependent
11966  // call in an uninstantiated template.
11967  if (Target) {
11968    const FunctionDecl *FNTarget = 0;
11969    (void)Target->hasBody(FNTarget);
11970    Target = const_cast<CXXConstructorDecl*>(
11971      cast_or_null<CXXConstructorDecl>(FNTarget));
11972  }
11973
11974  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11975                     // Avoid dereferencing a null pointer here.
11976                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11977
11978  if (!Current.insert(Canonical))
11979    return;
11980
11981  // We know that beyond here, we aren't chaining into a cycle.
11982  if (!Target || !Target->isDelegatingConstructor() ||
11983      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11984    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11985      Valid.insert(*CI);
11986    Current.clear();
11987  // We've hit a cycle.
11988  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11989             Current.count(TCanonical)) {
11990    // If we haven't diagnosed this cycle yet, do so now.
11991    if (!Invalid.count(TCanonical)) {
11992      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11993             diag::warn_delegating_ctor_cycle)
11994        << Ctor;
11995
11996      // Don't add a note for a function delegating directly to itself.
11997      if (TCanonical != Canonical)
11998        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11999
12000      CXXConstructorDecl *C = Target;
12001      while (C->getCanonicalDecl() != Canonical) {
12002        const FunctionDecl *FNTarget = 0;
12003        (void)C->getTargetConstructor()->hasBody(FNTarget);
12004        assert(FNTarget && "Ctor cycle through bodiless function");
12005
12006        C = const_cast<CXXConstructorDecl*>(
12007          cast<CXXConstructorDecl>(FNTarget));
12008        S.Diag(C->getLocation(), diag::note_which_delegates_to);
12009      }
12010    }
12011
12012    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
12013      Invalid.insert(*CI);
12014    Current.clear();
12015  } else {
12016    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
12017  }
12018}
12019
12020
12021void Sema::CheckDelegatingCtorCycles() {
12022  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
12023
12024  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
12025                                                   CE = Current.end();
12026
12027  for (DelegatingCtorDeclsType::iterator
12028         I = DelegatingCtorDecls.begin(ExternalSource),
12029         E = DelegatingCtorDecls.end();
12030       I != E; ++I)
12031    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
12032
12033  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
12034    (*CI)->setInvalidDecl();
12035}
12036
12037namespace {
12038  /// \brief AST visitor that finds references to the 'this' expression.
12039  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
12040    Sema &S;
12041
12042  public:
12043    explicit FindCXXThisExpr(Sema &S) : S(S) { }
12044
12045    bool VisitCXXThisExpr(CXXThisExpr *E) {
12046      S.Diag(E->getLocation(), diag::err_this_static_member_func)
12047        << E->isImplicit();
12048      return false;
12049    }
12050  };
12051}
12052
12053bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
12054  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12055  if (!TSInfo)
12056    return false;
12057
12058  TypeLoc TL = TSInfo->getTypeLoc();
12059  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12060  if (!ProtoTL)
12061    return false;
12062
12063  // C++11 [expr.prim.general]p3:
12064  //   [The expression this] shall not appear before the optional
12065  //   cv-qualifier-seq and it shall not appear within the declaration of a
12066  //   static member function (although its type and value category are defined
12067  //   within a static member function as they are within a non-static member
12068  //   function). [ Note: this is because declaration matching does not occur
12069  //  until the complete declarator is known. - end note ]
12070  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12071  FindCXXThisExpr Finder(*this);
12072
12073  // If the return type came after the cv-qualifier-seq, check it now.
12074  if (Proto->hasTrailingReturn() &&
12075      !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
12076    return true;
12077
12078  // Check the exception specification.
12079  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
12080    return true;
12081
12082  return checkThisInStaticMemberFunctionAttributes(Method);
12083}
12084
12085bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
12086  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12087  if (!TSInfo)
12088    return false;
12089
12090  TypeLoc TL = TSInfo->getTypeLoc();
12091  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12092  if (!ProtoTL)
12093    return false;
12094
12095  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12096  FindCXXThisExpr Finder(*this);
12097
12098  switch (Proto->getExceptionSpecType()) {
12099  case EST_Uninstantiated:
12100  case EST_Unevaluated:
12101  case EST_BasicNoexcept:
12102  case EST_DynamicNone:
12103  case EST_MSAny:
12104  case EST_None:
12105    break;
12106
12107  case EST_ComputedNoexcept:
12108    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
12109      return true;
12110
12111  case EST_Dynamic:
12112    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
12113         EEnd = Proto->exception_end();
12114         E != EEnd; ++E) {
12115      if (!Finder.TraverseType(*E))
12116        return true;
12117    }
12118    break;
12119  }
12120
12121  return false;
12122}
12123
12124bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
12125  FindCXXThisExpr Finder(*this);
12126
12127  // Check attributes.
12128  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
12129       A != AEnd; ++A) {
12130    // FIXME: This should be emitted by tblgen.
12131    Expr *Arg = 0;
12132    ArrayRef<Expr *> Args;
12133    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
12134      Arg = G->getArg();
12135    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
12136      Arg = G->getArg();
12137    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
12138      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
12139    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
12140      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
12141    else if (ExclusiveLockFunctionAttr *ELF
12142               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
12143      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
12144    else if (SharedLockFunctionAttr *SLF
12145               = dyn_cast<SharedLockFunctionAttr>(*A))
12146      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
12147    else if (ExclusiveTrylockFunctionAttr *ETLF
12148               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
12149      Arg = ETLF->getSuccessValue();
12150      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
12151    } else if (SharedTrylockFunctionAttr *STLF
12152                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
12153      Arg = STLF->getSuccessValue();
12154      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
12155    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
12156      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
12157    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
12158      Arg = LR->getArg();
12159    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
12160      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
12161    else if (ExclusiveLocksRequiredAttr *ELR
12162               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
12163      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
12164    else if (SharedLocksRequiredAttr *SLR
12165               = dyn_cast<SharedLocksRequiredAttr>(*A))
12166      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
12167
12168    if (Arg && !Finder.TraverseStmt(Arg))
12169      return true;
12170
12171    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
12172      if (!Finder.TraverseStmt(Args[I]))
12173        return true;
12174    }
12175  }
12176
12177  return false;
12178}
12179
12180void
12181Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
12182                                  ArrayRef<ParsedType> DynamicExceptions,
12183                                  ArrayRef<SourceRange> DynamicExceptionRanges,
12184                                  Expr *NoexceptExpr,
12185                                  SmallVectorImpl<QualType> &Exceptions,
12186                                  FunctionProtoType::ExtProtoInfo &EPI) {
12187  Exceptions.clear();
12188  EPI.ExceptionSpecType = EST;
12189  if (EST == EST_Dynamic) {
12190    Exceptions.reserve(DynamicExceptions.size());
12191    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
12192      // FIXME: Preserve type source info.
12193      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
12194
12195      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12196      collectUnexpandedParameterPacks(ET, Unexpanded);
12197      if (!Unexpanded.empty()) {
12198        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
12199                                         UPPC_ExceptionType,
12200                                         Unexpanded);
12201        continue;
12202      }
12203
12204      // Check that the type is valid for an exception spec, and
12205      // drop it if not.
12206      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
12207        Exceptions.push_back(ET);
12208    }
12209    EPI.NumExceptions = Exceptions.size();
12210    EPI.Exceptions = Exceptions.data();
12211    return;
12212  }
12213
12214  if (EST == EST_ComputedNoexcept) {
12215    // If an error occurred, there's no expression here.
12216    if (NoexceptExpr) {
12217      assert((NoexceptExpr->isTypeDependent() ||
12218              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
12219              Context.BoolTy) &&
12220             "Parser should have made sure that the expression is boolean");
12221      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
12222        EPI.ExceptionSpecType = EST_BasicNoexcept;
12223        return;
12224      }
12225
12226      if (!NoexceptExpr->isValueDependent())
12227        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
12228                         diag::err_noexcept_needs_constant_expression,
12229                         /*AllowFold*/ false).take();
12230      EPI.NoexceptExpr = NoexceptExpr;
12231    }
12232    return;
12233  }
12234}
12235
12236/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
12237Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
12238  // Implicitly declared functions (e.g. copy constructors) are
12239  // __host__ __device__
12240  if (D->isImplicit())
12241    return CFT_HostDevice;
12242
12243  if (D->hasAttr<CUDAGlobalAttr>())
12244    return CFT_Global;
12245
12246  if (D->hasAttr<CUDADeviceAttr>()) {
12247    if (D->hasAttr<CUDAHostAttr>())
12248      return CFT_HostDevice;
12249    else
12250      return CFT_Device;
12251  }
12252
12253  return CFT_Host;
12254}
12255
12256bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
12257                           CUDAFunctionTarget CalleeTarget) {
12258  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
12259  // Callable from the device only."
12260  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
12261    return true;
12262
12263  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
12264  // Callable from the host only."
12265  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
12266  // Callable from the host only."
12267  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
12268      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
12269    return true;
12270
12271  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
12272    return true;
12273
12274  return false;
12275}
12276
12277/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
12278///
12279MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
12280                                       SourceLocation DeclStart,
12281                                       Declarator &D, Expr *BitWidth,
12282                                       InClassInitStyle InitStyle,
12283                                       AccessSpecifier AS,
12284                                       AttributeList *MSPropertyAttr) {
12285  IdentifierInfo *II = D.getIdentifier();
12286  if (!II) {
12287    Diag(DeclStart, diag::err_anonymous_property);
12288    return NULL;
12289  }
12290  SourceLocation Loc = D.getIdentifierLoc();
12291
12292  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12293  QualType T = TInfo->getType();
12294  if (getLangOpts().CPlusPlus) {
12295    CheckExtraCXXDefaultArguments(D);
12296
12297    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12298                                        UPPC_DataMemberType)) {
12299      D.setInvalidType();
12300      T = Context.IntTy;
12301      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12302    }
12303  }
12304
12305  DiagnoseFunctionSpecifiers(D.getDeclSpec());
12306
12307  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12308    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12309         diag::err_invalid_thread)
12310      << DeclSpec::getSpecifierName(TSCS);
12311
12312  // Check to see if this name was declared as a member previously
12313  NamedDecl *PrevDecl = 0;
12314  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12315  LookupName(Previous, S);
12316  switch (Previous.getResultKind()) {
12317  case LookupResult::Found:
12318  case LookupResult::FoundUnresolvedValue:
12319    PrevDecl = Previous.getAsSingle<NamedDecl>();
12320    break;
12321
12322  case LookupResult::FoundOverloaded:
12323    PrevDecl = Previous.getRepresentativeDecl();
12324    break;
12325
12326  case LookupResult::NotFound:
12327  case LookupResult::NotFoundInCurrentInstantiation:
12328  case LookupResult::Ambiguous:
12329    break;
12330  }
12331
12332  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12333    // Maybe we will complain about the shadowed template parameter.
12334    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12335    // Just pretend that we didn't see the previous declaration.
12336    PrevDecl = 0;
12337  }
12338
12339  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12340    PrevDecl = 0;
12341
12342  SourceLocation TSSL = D.getLocStart();
12343  MSPropertyDecl *NewPD;
12344  const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
12345  NewPD = new (Context) MSPropertyDecl(Record, Loc,
12346                                       II, T, TInfo, TSSL,
12347                                       Data.GetterId, Data.SetterId);
12348  ProcessDeclAttributes(TUScope, NewPD, D);
12349  NewPD->setAccess(AS);
12350
12351  if (NewPD->isInvalidDecl())
12352    Record->setInvalidDecl();
12353
12354  if (D.getDeclSpec().isModulePrivateSpecified())
12355    NewPD->setModulePrivate();
12356
12357  if (NewPD->isInvalidDecl() && PrevDecl) {
12358    // Don't introduce NewFD into scope; there's already something
12359    // with the same name in the same scope.
12360  } else if (II) {
12361    PushOnScopeChains(NewPD, S);
12362  } else
12363    Record->addDecl(NewPD);
12364
12365  return NewPD;
12366}
12367