SemaDeclCXX.cpp revision a55834a91ff6bdf483aba26c5da64669b2464e2f
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
111  ExprOwningPtr<Expr> DefaultArg(this, (Expr *)defarg.release());
112  QualType ParamType = Param->getType();
113
114  // Default arguments are only permitted in C++
115  if (!getLangOptions().CPlusPlus) {
116    Diag(EqualLoc, diag::err_param_default_argument)
117      << DefaultArg->getSourceRange();
118    Param->setInvalidDecl();
119    return;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  Expr *DefaultArgPtr = DefaultArg.get();
129  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
130                                                 EqualLoc,
131                                                 Param->getDeclName(),
132                                                 /*DirectInit=*/false);
133  if (DefaultArgPtr != DefaultArg.get()) {
134    DefaultArg.take();
135    DefaultArg.reset(DefaultArgPtr);
136  }
137  if (DefaultInitFailed) {
138    return;
139  }
140
141  // Check that the default argument is well-formed
142  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
143  if (DefaultArgChecker.Visit(DefaultArg.get())) {
144    Param->setInvalidDecl();
145    return;
146  }
147
148  // Okay: add the default argument to the parameter
149  Param->setDefaultArg(DefaultArg.take());
150}
151
152/// ActOnParamUnparsedDefaultArgument - We've seen a default
153/// argument for a function parameter, but we can't parse it yet
154/// because we're inside a class definition. Note that this default
155/// argument will be parsed later.
156void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
157                                             SourceLocation EqualLoc) {
158  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
159  if (Param)
160    Param->setUnparsedDefaultArg();
161}
162
163/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
164/// the default argument for the parameter param failed.
165void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
166  cast<ParmVarDecl>(param.getAs<Decl>())->setInvalidDecl();
167}
168
169/// CheckExtraCXXDefaultArguments - Check for any extra default
170/// arguments in the declarator, which is not a function declaration
171/// or definition and therefore is not permitted to have default
172/// arguments. This routine should be invoked for every declarator
173/// that is not a function declaration or definition.
174void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
175  // C++ [dcl.fct.default]p3
176  //   A default argument expression shall be specified only in the
177  //   parameter-declaration-clause of a function declaration or in a
178  //   template-parameter (14.1). It shall not be specified for a
179  //   parameter pack. If it is specified in a
180  //   parameter-declaration-clause, it shall not occur within a
181  //   declarator or abstract-declarator of a parameter-declaration.
182  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
183    DeclaratorChunk &chunk = D.getTypeObject(i);
184    if (chunk.Kind == DeclaratorChunk::Function) {
185      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
186        ParmVarDecl *Param =
187          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
188        if (Param->hasUnparsedDefaultArg()) {
189          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
190          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
191            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
192          delete Toks;
193          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
194        } else if (Param->getDefaultArg()) {
195          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
196            << Param->getDefaultArg()->getSourceRange();
197          Param->setDefaultArg(0);
198        }
199      }
200    }
201  }
202}
203
204// MergeCXXFunctionDecl - Merge two declarations of the same C++
205// function, once we already know that they have the same
206// type. Subroutine of MergeFunctionDecl. Returns true if there was an
207// error, false otherwise.
208bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
209  bool Invalid = false;
210
211  // C++ [dcl.fct.default]p4:
212  //
213  //   For non-template functions, default arguments can be added in
214  //   later declarations of a function in the same
215  //   scope. Declarations in different scopes have completely
216  //   distinct sets of default arguments. That is, declarations in
217  //   inner scopes do not acquire default arguments from
218  //   declarations in outer scopes, and vice versa. In a given
219  //   function declaration, all parameters subsequent to a
220  //   parameter with a default argument shall have default
221  //   arguments supplied in this or previous declarations. A
222  //   default argument shall not be redefined by a later
223  //   declaration (not even to the same value).
224  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
225    ParmVarDecl *OldParam = Old->getParamDecl(p);
226    ParmVarDecl *NewParam = New->getParamDecl(p);
227
228    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
229      Diag(NewParam->getLocation(),
230           diag::err_param_default_argument_redefinition)
231        << NewParam->getDefaultArg()->getSourceRange();
232      Diag(OldParam->getLocation(), diag::note_previous_definition);
233      Invalid = true;
234    } else if (OldParam->getDefaultArg()) {
235      // Merge the old default argument into the new parameter
236      NewParam->setDefaultArg(OldParam->getDefaultArg());
237    }
238  }
239
240  return Invalid;
241}
242
243/// CheckCXXDefaultArguments - Verify that the default arguments for a
244/// function declaration are well-formed according to C++
245/// [dcl.fct.default].
246void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
247  unsigned NumParams = FD->getNumParams();
248  unsigned p;
249
250  // Find first parameter with a default argument
251  for (p = 0; p < NumParams; ++p) {
252    ParmVarDecl *Param = FD->getParamDecl(p);
253    if (Param->getDefaultArg())
254      break;
255  }
256
257  // C++ [dcl.fct.default]p4:
258  //   In a given function declaration, all parameters
259  //   subsequent to a parameter with a default argument shall
260  //   have default arguments supplied in this or previous
261  //   declarations. A default argument shall not be redefined
262  //   by a later declaration (not even to the same value).
263  unsigned LastMissingDefaultArg = 0;
264  for(; p < NumParams; ++p) {
265    ParmVarDecl *Param = FD->getParamDecl(p);
266    if (!Param->getDefaultArg()) {
267      if (Param->isInvalidDecl())
268        /* We already complained about this parameter. */;
269      else if (Param->getIdentifier())
270        Diag(Param->getLocation(),
271             diag::err_param_default_argument_missing_name)
272          << Param->getIdentifier();
273      else
274        Diag(Param->getLocation(),
275             diag::err_param_default_argument_missing);
276
277      LastMissingDefaultArg = p;
278    }
279  }
280
281  if (LastMissingDefaultArg > 0) {
282    // Some default arguments were missing. Clear out all of the
283    // default arguments up to (and including) the last missing
284    // default argument, so that we leave the function parameters
285    // in a semantically valid state.
286    for (p = 0; p <= LastMissingDefaultArg; ++p) {
287      ParmVarDecl *Param = FD->getParamDecl(p);
288      if (Param->getDefaultArg()) {
289        if (!Param->hasUnparsedDefaultArg())
290          Param->getDefaultArg()->Destroy(Context);
291        Param->setDefaultArg(0);
292      }
293    }
294  }
295}
296
297/// isCurrentClassName - Determine whether the identifier II is the
298/// name of the class type currently being defined. In the case of
299/// nested classes, this will only return true if II is the name of
300/// the innermost class.
301bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
302                              const CXXScopeSpec *SS) {
303  CXXRecordDecl *CurDecl;
304  if (SS && SS->isSet() && !SS->isInvalid()) {
305    DeclContext *DC = computeDeclContext(*SS);
306    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
307  } else
308    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
309
310  if (CurDecl)
311    return &II == CurDecl->getIdentifier();
312  else
313    return false;
314}
315
316/// \brief Check the validity of a C++ base class specifier.
317///
318/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
319/// and returns NULL otherwise.
320CXXBaseSpecifier *
321Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
322                         SourceRange SpecifierRange,
323                         bool Virtual, AccessSpecifier Access,
324                         QualType BaseType,
325                         SourceLocation BaseLoc) {
326  // C++ [class.union]p1:
327  //   A union shall not have base classes.
328  if (Class->isUnion()) {
329    Diag(Class->getLocation(), diag::err_base_clause_on_union)
330      << SpecifierRange;
331    return 0;
332  }
333
334  if (BaseType->isDependentType())
335    return new CXXBaseSpecifier(SpecifierRange, Virtual,
336                                Class->getTagKind() == RecordDecl::TK_class,
337                                Access, BaseType);
338
339  // Base specifiers must be record types.
340  if (!BaseType->isRecordType()) {
341    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
342    return 0;
343  }
344
345  // C++ [class.union]p1:
346  //   A union shall not be used as a base class.
347  if (BaseType->isUnionType()) {
348    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
349    return 0;
350  }
351
352  // C++ [class.derived]p2:
353  //   The class-name in a base-specifier shall not be an incompletely
354  //   defined class.
355  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
356                          SpecifierRange))
357    return 0;
358
359  // If the base class is polymorphic, the new one is, too.
360  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
361  assert(BaseDecl && "Record type has no declaration");
362  BaseDecl = BaseDecl->getDefinition(Context);
363  assert(BaseDecl && "Base type is not incomplete, but has no definition");
364  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
365    Class->setPolymorphic(true);
366
367  // C++ [dcl.init.aggr]p1:
368  //   An aggregate is [...] a class with [...] no base classes [...].
369  Class->setAggregate(false);
370  Class->setPOD(false);
371
372  // Create the base specifier.
373  // FIXME: Allocate via ASTContext?
374  return new CXXBaseSpecifier(SpecifierRange, Virtual,
375                              Class->getTagKind() == RecordDecl::TK_class,
376                              Access, BaseType);
377}
378
379/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
380/// one entry in the base class list of a class specifier, for
381/// example:
382///    class foo : public bar, virtual private baz {
383/// 'public bar' and 'virtual private baz' are each base-specifiers.
384Sema::BaseResult
385Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
386                         bool Virtual, AccessSpecifier Access,
387                         TypeTy *basetype, SourceLocation BaseLoc) {
388  AdjustDeclIfTemplate(classdecl);
389  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
390  QualType BaseType = QualType::getFromOpaquePtr(basetype);
391  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
392                                                      Virtual, Access,
393                                                      BaseType, BaseLoc))
394    return BaseSpec;
395
396  return true;
397}
398
399/// \brief Performs the actual work of attaching the given base class
400/// specifiers to a C++ class.
401bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
402                                unsigned NumBases) {
403 if (NumBases == 0)
404    return false;
405
406  // Used to keep track of which base types we have already seen, so
407  // that we can properly diagnose redundant direct base types. Note
408  // that the key is always the unqualified canonical type of the base
409  // class.
410  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
411
412  // Copy non-redundant base specifiers into permanent storage.
413  unsigned NumGoodBases = 0;
414  bool Invalid = false;
415  for (unsigned idx = 0; idx < NumBases; ++idx) {
416    QualType NewBaseType
417      = Context.getCanonicalType(Bases[idx]->getType());
418    NewBaseType = NewBaseType.getUnqualifiedType();
419
420    if (KnownBaseTypes[NewBaseType]) {
421      // C++ [class.mi]p3:
422      //   A class shall not be specified as a direct base class of a
423      //   derived class more than once.
424      Diag(Bases[idx]->getSourceRange().getBegin(),
425           diag::err_duplicate_base_class)
426        << KnownBaseTypes[NewBaseType]->getType()
427        << Bases[idx]->getSourceRange();
428
429      // Delete the duplicate base class specifier; we're going to
430      // overwrite its pointer later.
431      delete Bases[idx];
432
433      Invalid = true;
434    } else {
435      // Okay, add this new base class.
436      KnownBaseTypes[NewBaseType] = Bases[idx];
437      Bases[NumGoodBases++] = Bases[idx];
438    }
439  }
440
441  // Attach the remaining base class specifiers to the derived class.
442  Class->setBases(Bases, NumGoodBases);
443
444  // Delete the remaining (good) base class specifiers, since their
445  // data has been copied into the CXXRecordDecl.
446  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
447    delete Bases[idx];
448
449  return Invalid;
450}
451
452/// ActOnBaseSpecifiers - Attach the given base specifiers to the
453/// class, after checking whether there are any duplicate base
454/// classes.
455void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
456                               unsigned NumBases) {
457  if (!ClassDecl || !Bases || !NumBases)
458    return;
459
460  AdjustDeclIfTemplate(ClassDecl);
461  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
462                       (CXXBaseSpecifier**)(Bases), NumBases);
463}
464
465//===----------------------------------------------------------------------===//
466// C++ class member Handling
467//===----------------------------------------------------------------------===//
468
469/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
470/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
471/// bitfield width if there is one and 'InitExpr' specifies the initializer if
472/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
473/// declarators on it.
474Sema::DeclPtrTy
475Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
476                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
477  const DeclSpec &DS = D.getDeclSpec();
478  DeclarationName Name = GetNameForDeclarator(D);
479  Expr *BitWidth = static_cast<Expr*>(BW);
480  Expr *Init = static_cast<Expr*>(InitExpr);
481  SourceLocation Loc = D.getIdentifierLoc();
482
483  bool isFunc = D.isFunctionDeclarator();
484
485  // C++ 9.2p6: A member shall not be declared to have automatic storage
486  // duration (auto, register) or with the extern storage-class-specifier.
487  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
488  // data members and cannot be applied to names declared const or static,
489  // and cannot be applied to reference members.
490  switch (DS.getStorageClassSpec()) {
491    case DeclSpec::SCS_unspecified:
492    case DeclSpec::SCS_typedef:
493    case DeclSpec::SCS_static:
494      // FALL THROUGH.
495      break;
496    case DeclSpec::SCS_mutable:
497      if (isFunc) {
498        if (DS.getStorageClassSpecLoc().isValid())
499          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
500        else
501          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
502
503        // FIXME: It would be nicer if the keyword was ignored only for this
504        // declarator. Otherwise we could get follow-up errors.
505        D.getMutableDeclSpec().ClearStorageClassSpecs();
506      } else {
507        QualType T = GetTypeForDeclarator(D, S);
508        diag::kind err = static_cast<diag::kind>(0);
509        if (T->isReferenceType())
510          err = diag::err_mutable_reference;
511        else if (T.isConstQualified())
512          err = diag::err_mutable_const;
513        if (err != 0) {
514          if (DS.getStorageClassSpecLoc().isValid())
515            Diag(DS.getStorageClassSpecLoc(), err);
516          else
517            Diag(DS.getThreadSpecLoc(), err);
518          // FIXME: It would be nicer if the keyword was ignored only for this
519          // declarator. Otherwise we could get follow-up errors.
520          D.getMutableDeclSpec().ClearStorageClassSpecs();
521        }
522      }
523      break;
524    default:
525      if (DS.getStorageClassSpecLoc().isValid())
526        Diag(DS.getStorageClassSpecLoc(),
527             diag::err_storageclass_invalid_for_member);
528      else
529        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
530      D.getMutableDeclSpec().ClearStorageClassSpecs();
531  }
532
533  if (!isFunc &&
534      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
535      D.getNumTypeObjects() == 0) {
536    // Check also for this case:
537    //
538    // typedef int f();
539    // f a;
540    //
541    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
542    isFunc = TDType->isFunctionType();
543  }
544
545  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
546                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
547                      !isFunc);
548
549  Decl *Member;
550  if (isInstField) {
551    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
552                         AS);
553    assert(Member && "HandleField never returns null");
554  } else {
555    Member = ActOnDeclarator(S, D).getAs<Decl>();
556    if (!Member) {
557      if (BitWidth) DeleteExpr(BitWidth);
558      return DeclPtrTy();
559    }
560
561    // Non-instance-fields can't have a bitfield.
562    if (BitWidth) {
563      if (Member->isInvalidDecl()) {
564        // don't emit another diagnostic.
565      } else if (isa<VarDecl>(Member)) {
566        // C++ 9.6p3: A bit-field shall not be a static member.
567        // "static member 'A' cannot be a bit-field"
568        Diag(Loc, diag::err_static_not_bitfield)
569          << Name << BitWidth->getSourceRange();
570      } else if (isa<TypedefDecl>(Member)) {
571        // "typedef member 'x' cannot be a bit-field"
572        Diag(Loc, diag::err_typedef_not_bitfield)
573          << Name << BitWidth->getSourceRange();
574      } else {
575        // A function typedef ("typedef int f(); f a;").
576        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
577        Diag(Loc, diag::err_not_integral_type_bitfield)
578          << Name << cast<ValueDecl>(Member)->getType()
579          << BitWidth->getSourceRange();
580      }
581
582      DeleteExpr(BitWidth);
583      BitWidth = 0;
584      Member->setInvalidDecl();
585    }
586
587    Member->setAccess(AS);
588  }
589
590  assert((Name || isInstField) && "No identifier for non-field ?");
591
592  if (Init)
593    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
594  if (Deleted) // FIXME: Source location is not very good.
595    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
596
597  if (isInstField) {
598    FieldCollector->Add(cast<FieldDecl>(Member));
599    return DeclPtrTy();
600  }
601  return DeclPtrTy::make(Member);
602}
603
604/// ActOnMemInitializer - Handle a C++ member initializer.
605Sema::MemInitResult
606Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
607                          Scope *S,
608                          IdentifierInfo *MemberOrBase,
609                          SourceLocation IdLoc,
610                          SourceLocation LParenLoc,
611                          ExprTy **Args, unsigned NumArgs,
612                          SourceLocation *CommaLocs,
613                          SourceLocation RParenLoc) {
614  CXXConstructorDecl *Constructor
615    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
616  if (!Constructor) {
617    // The user wrote a constructor initializer on a function that is
618    // not a C++ constructor. Ignore the error for now, because we may
619    // have more member initializers coming; we'll diagnose it just
620    // once in ActOnMemInitializers.
621    return true;
622  }
623
624  CXXRecordDecl *ClassDecl = Constructor->getParent();
625
626  // C++ [class.base.init]p2:
627  //   Names in a mem-initializer-id are looked up in the scope of the
628  //   constructor’s class and, if not found in that scope, are looked
629  //   up in the scope containing the constructor’s
630  //   definition. [Note: if the constructor’s class contains a member
631  //   with the same name as a direct or virtual base class of the
632  //   class, a mem-initializer-id naming the member or base class and
633  //   composed of a single identifier refers to the class member. A
634  //   mem-initializer-id for the hidden base class may be specified
635  //   using a qualified name. ]
636  // Look for a member, first.
637  FieldDecl *Member = 0;
638  DeclContext::lookup_result Result
639    = ClassDecl->lookup(Context, MemberOrBase);
640  if (Result.first != Result.second)
641    Member = dyn_cast<FieldDecl>(*Result.first);
642
643  // FIXME: Handle members of an anonymous union.
644
645  if (Member) {
646    // FIXME: Perform direct initialization of the member.
647    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
648  }
649
650  // It didn't name a member, so see if it names a class.
651  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
652  if (!BaseTy)
653    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
654      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
655
656  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
657  if (!BaseType->isRecordType())
658    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
659      << BaseType << SourceRange(IdLoc, RParenLoc);
660
661  // C++ [class.base.init]p2:
662  //   [...] Unless the mem-initializer-id names a nonstatic data
663  //   member of the constructor’s class or a direct or virtual base
664  //   of that class, the mem-initializer is ill-formed. A
665  //   mem-initializer-list can initialize a base class using any
666  //   name that denotes that base class type.
667
668  // First, check for a direct base class.
669  const CXXBaseSpecifier *DirectBaseSpec = 0;
670  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
671       Base != ClassDecl->bases_end(); ++Base) {
672    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
673        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
674      // We found a direct base of this type. That's what we're
675      // initializing.
676      DirectBaseSpec = &*Base;
677      break;
678    }
679  }
680
681  // Check for a virtual base class.
682  // FIXME: We might be able to short-circuit this if we know in
683  // advance that there are no virtual bases.
684  const CXXBaseSpecifier *VirtualBaseSpec = 0;
685  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
686    // We haven't found a base yet; search the class hierarchy for a
687    // virtual base class.
688    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
689                    /*DetectVirtual=*/false);
690    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
691      for (BasePaths::paths_iterator Path = Paths.begin();
692           Path != Paths.end(); ++Path) {
693        if (Path->back().Base->isVirtual()) {
694          VirtualBaseSpec = Path->back().Base;
695          break;
696        }
697      }
698    }
699  }
700
701  // C++ [base.class.init]p2:
702  //   If a mem-initializer-id is ambiguous because it designates both
703  //   a direct non-virtual base class and an inherited virtual base
704  //   class, the mem-initializer is ill-formed.
705  if (DirectBaseSpec && VirtualBaseSpec)
706    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
707      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
708
709  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
710}
711
712void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
713                                SourceLocation ColonLoc,
714                                MemInitTy **MemInits, unsigned NumMemInits) {
715  CXXConstructorDecl *Constructor =
716  dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
717
718  if (!Constructor) {
719    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
720    return;
721  }
722}
723
724namespace {
725  /// PureVirtualMethodCollector - traverses a class and its superclasses
726  /// and determines if it has any pure virtual methods.
727  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
728    ASTContext &Context;
729
730  public:
731    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
732
733  private:
734    MethodList Methods;
735
736    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
737
738  public:
739    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
740      : Context(Ctx) {
741
742      MethodList List;
743      Collect(RD, List);
744
745      // Copy the temporary list to methods, and make sure to ignore any
746      // null entries.
747      for (size_t i = 0, e = List.size(); i != e; ++i) {
748        if (List[i])
749          Methods.push_back(List[i]);
750      }
751    }
752
753    bool empty() const { return Methods.empty(); }
754
755    MethodList::const_iterator methods_begin() { return Methods.begin(); }
756    MethodList::const_iterator methods_end() { return Methods.end(); }
757  };
758
759  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
760                                           MethodList& Methods) {
761    // First, collect the pure virtual methods for the base classes.
762    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
763         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
764      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
765        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
766        if (BaseDecl && BaseDecl->isAbstract())
767          Collect(BaseDecl, Methods);
768      }
769    }
770
771    // Next, zero out any pure virtual methods that this class overrides.
772    for (size_t i = 0, e = Methods.size(); i != e; ++i) {
773      const CXXMethodDecl *VMD = dyn_cast_or_null<CXXMethodDecl>(Methods[i]);
774      if (!VMD)
775        continue;
776
777      DeclContext::lookup_const_iterator I, E;
778      for (llvm::tie(I, E) = RD->lookup(Context, VMD->getDeclName());
779           I != E; ++I) {
780        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I)) {
781          if (Context.getCanonicalType(MD->getType()) ==
782              Context.getCanonicalType(VMD->getType())) {
783            // We did find a matching method, which means that this is not a
784            // pure virtual method in the current class. Zero it out.
785            Methods[i] = 0;
786          }
787        }
788      }
789    }
790
791    // Finally, add pure virtual methods from this class.
792    for (RecordDecl::decl_iterator i = RD->decls_begin(Context),
793                                   e = RD->decls_end(Context);
794         i != e; ++i) {
795      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
796        if (MD->isPure())
797          Methods.push_back(MD);
798      }
799    }
800  }
801}
802
803bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
804                                  unsigned DiagID, AbstractDiagSelID SelID,
805                                  const CXXRecordDecl *CurrentRD) {
806
807  if (!getLangOptions().CPlusPlus)
808    return false;
809
810  if (const ArrayType *AT = Context.getAsArrayType(T))
811    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
812                                  CurrentRD);
813
814  if (const PointerType *PT = T->getAsPointerType()) {
815    // Find the innermost pointer type.
816    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
817      PT = T;
818
819    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
820      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
821                                    CurrentRD);
822  }
823
824  const RecordType *RT = T->getAsRecordType();
825  if (!RT)
826    return false;
827
828  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
829  if (!RD)
830    return false;
831
832  if (CurrentRD && CurrentRD != RD)
833    return false;
834
835  if (!RD->isAbstract())
836    return false;
837
838  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
839
840  // Check if we've already emitted the list of pure virtual functions for this
841  // class.
842  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
843    return true;
844
845  PureVirtualMethodCollector Collector(Context, RD);
846
847  for (PureVirtualMethodCollector::MethodList::const_iterator I =
848       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
849    const CXXMethodDecl *MD = *I;
850
851    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
852      MD->getDeclName();
853  }
854
855  if (!PureVirtualClassDiagSet)
856    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
857  PureVirtualClassDiagSet->insert(RD);
858
859  return true;
860}
861
862namespace {
863  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
864    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
865    Sema &SemaRef;
866    CXXRecordDecl *AbstractClass;
867
868    bool VisitDeclContext(const DeclContext *DC) {
869      bool Invalid = false;
870
871      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(SemaRef.Context),
872           E = DC->decls_end(SemaRef.Context); I != E; ++I)
873        Invalid |= Visit(*I);
874
875      return Invalid;
876    }
877
878  public:
879    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
880      : SemaRef(SemaRef), AbstractClass(ac) {
881        Visit(SemaRef.Context.getTranslationUnitDecl());
882    }
883
884    bool VisitFunctionDecl(const FunctionDecl *FD) {
885      if (FD->isThisDeclarationADefinition()) {
886        // No need to do the check if we're in a definition, because it requires
887        // that the return/param types are complete.
888        // because that requires
889        return VisitDeclContext(FD);
890      }
891
892      // Check the return type.
893      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
894      bool Invalid =
895        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
896                                       diag::err_abstract_type_in_decl,
897                                       Sema::AbstractReturnType,
898                                       AbstractClass);
899
900      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
901           E = FD->param_end(); I != E; ++I) {
902        const ParmVarDecl *VD = *I;
903        Invalid |=
904          SemaRef.RequireNonAbstractType(VD->getLocation(),
905                                         VD->getOriginalType(),
906                                         diag::err_abstract_type_in_decl,
907                                         Sema::AbstractParamType,
908                                         AbstractClass);
909      }
910
911      return Invalid;
912    }
913
914    bool VisitDecl(const Decl* D) {
915      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
916        return VisitDeclContext(DC);
917
918      return false;
919    }
920  };
921}
922
923void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
924                                             DeclPtrTy TagDecl,
925                                             SourceLocation LBrac,
926                                             SourceLocation RBrac) {
927  TemplateDecl *Template = AdjustDeclIfTemplate(TagDecl);
928  ActOnFields(S, RLoc, TagDecl,
929              (DeclPtrTy*)FieldCollector->getCurFields(),
930              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
931
932  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
933  if (!RD->isAbstract()) {
934    // Collect all the pure virtual methods and see if this is an abstract
935    // class after all.
936    PureVirtualMethodCollector Collector(Context, RD);
937    if (!Collector.empty())
938      RD->setAbstract(true);
939  }
940
941  if (RD->isAbstract())
942    AbstractClassUsageDiagnoser(*this, RD);
943
944  if (!Template)
945    AddImplicitlyDeclaredMembersToClass(RD);
946}
947
948/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
949/// special functions, such as the default constructor, copy
950/// constructor, or destructor, to the given C++ class (C++
951/// [special]p1).  This routine can only be executed just before the
952/// definition of the class is complete.
953void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
954  QualType ClassType = Context.getTypeDeclType(ClassDecl);
955  ClassType = Context.getCanonicalType(ClassType);
956
957  if (!ClassDecl->hasUserDeclaredConstructor()) {
958    // C++ [class.ctor]p5:
959    //   A default constructor for a class X is a constructor of class X
960    //   that can be called without an argument. If there is no
961    //   user-declared constructor for class X, a default constructor is
962    //   implicitly declared. An implicitly-declared default constructor
963    //   is an inline public member of its class.
964    DeclarationName Name
965      = Context.DeclarationNames.getCXXConstructorName(ClassType);
966    CXXConstructorDecl *DefaultCon =
967      CXXConstructorDecl::Create(Context, ClassDecl,
968                                 ClassDecl->getLocation(), Name,
969                                 Context.getFunctionType(Context.VoidTy,
970                                                         0, 0, false, 0),
971                                 /*isExplicit=*/false,
972                                 /*isInline=*/true,
973                                 /*isImplicitlyDeclared=*/true);
974    DefaultCon->setAccess(AS_public);
975    DefaultCon->setImplicit();
976    ClassDecl->addDecl(Context, DefaultCon);
977
978    // Notify the class that we've added a constructor.
979    ClassDecl->addedConstructor(Context, DefaultCon);
980  }
981
982  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
983    // C++ [class.copy]p4:
984    //   If the class definition does not explicitly declare a copy
985    //   constructor, one is declared implicitly.
986
987    // C++ [class.copy]p5:
988    //   The implicitly-declared copy constructor for a class X will
989    //   have the form
990    //
991    //       X::X(const X&)
992    //
993    //   if
994    bool HasConstCopyConstructor = true;
995
996    //     -- each direct or virtual base class B of X has a copy
997    //        constructor whose first parameter is of type const B& or
998    //        const volatile B&, and
999    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1000         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1001      const CXXRecordDecl *BaseClassDecl
1002        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1003      HasConstCopyConstructor
1004        = BaseClassDecl->hasConstCopyConstructor(Context);
1005    }
1006
1007    //     -- for all the nonstatic data members of X that are of a
1008    //        class type M (or array thereof), each such class type
1009    //        has a copy constructor whose first parameter is of type
1010    //        const M& or const volatile M&.
1011    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1012         HasConstCopyConstructor && Field != ClassDecl->field_end(Context);
1013         ++Field) {
1014      QualType FieldType = (*Field)->getType();
1015      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1016        FieldType = Array->getElementType();
1017      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1018        const CXXRecordDecl *FieldClassDecl
1019          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1020        HasConstCopyConstructor
1021          = FieldClassDecl->hasConstCopyConstructor(Context);
1022      }
1023    }
1024
1025    //   Otherwise, the implicitly declared copy constructor will have
1026    //   the form
1027    //
1028    //       X::X(X&)
1029    QualType ArgType = ClassType;
1030    if (HasConstCopyConstructor)
1031      ArgType = ArgType.withConst();
1032    ArgType = Context.getLValueReferenceType(ArgType);
1033
1034    //   An implicitly-declared copy constructor is an inline public
1035    //   member of its class.
1036    DeclarationName Name
1037      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1038    CXXConstructorDecl *CopyConstructor
1039      = CXXConstructorDecl::Create(Context, ClassDecl,
1040                                   ClassDecl->getLocation(), Name,
1041                                   Context.getFunctionType(Context.VoidTy,
1042                                                           &ArgType, 1,
1043                                                           false, 0),
1044                                   /*isExplicit=*/false,
1045                                   /*isInline=*/true,
1046                                   /*isImplicitlyDeclared=*/true);
1047    CopyConstructor->setAccess(AS_public);
1048    CopyConstructor->setImplicit();
1049
1050    // Add the parameter to the constructor.
1051    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1052                                                 ClassDecl->getLocation(),
1053                                                 /*IdentifierInfo=*/0,
1054                                                 ArgType, VarDecl::None, 0);
1055    CopyConstructor->setParams(Context, &FromParam, 1);
1056
1057    ClassDecl->addedConstructor(Context, CopyConstructor);
1058    ClassDecl->addDecl(Context, CopyConstructor);
1059  }
1060
1061  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1062    // Note: The following rules are largely analoguous to the copy
1063    // constructor rules. Note that virtual bases are not taken into account
1064    // for determining the argument type of the operator. Note also that
1065    // operators taking an object instead of a reference are allowed.
1066    //
1067    // C++ [class.copy]p10:
1068    //   If the class definition does not explicitly declare a copy
1069    //   assignment operator, one is declared implicitly.
1070    //   The implicitly-defined copy assignment operator for a class X
1071    //   will have the form
1072    //
1073    //       X& X::operator=(const X&)
1074    //
1075    //   if
1076    bool HasConstCopyAssignment = true;
1077
1078    //       -- each direct base class B of X has a copy assignment operator
1079    //          whose parameter is of type const B&, const volatile B& or B,
1080    //          and
1081    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1082         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1083      const CXXRecordDecl *BaseClassDecl
1084        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1085      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1086    }
1087
1088    //       -- for all the nonstatic data members of X that are of a class
1089    //          type M (or array thereof), each such class type has a copy
1090    //          assignment operator whose parameter is of type const M&,
1091    //          const volatile M& or M.
1092    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1093         HasConstCopyAssignment && Field != ClassDecl->field_end(Context);
1094         ++Field) {
1095      QualType FieldType = (*Field)->getType();
1096      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1097        FieldType = Array->getElementType();
1098      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1099        const CXXRecordDecl *FieldClassDecl
1100          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1101        HasConstCopyAssignment
1102          = FieldClassDecl->hasConstCopyAssignment(Context);
1103      }
1104    }
1105
1106    //   Otherwise, the implicitly declared copy assignment operator will
1107    //   have the form
1108    //
1109    //       X& X::operator=(X&)
1110    QualType ArgType = ClassType;
1111    QualType RetType = Context.getLValueReferenceType(ArgType);
1112    if (HasConstCopyAssignment)
1113      ArgType = ArgType.withConst();
1114    ArgType = Context.getLValueReferenceType(ArgType);
1115
1116    //   An implicitly-declared copy assignment operator is an inline public
1117    //   member of its class.
1118    DeclarationName Name =
1119      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1120    CXXMethodDecl *CopyAssignment =
1121      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1122                            Context.getFunctionType(RetType, &ArgType, 1,
1123                                                    false, 0),
1124                            /*isStatic=*/false, /*isInline=*/true);
1125    CopyAssignment->setAccess(AS_public);
1126    CopyAssignment->setImplicit();
1127
1128    // Add the parameter to the operator.
1129    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1130                                                 ClassDecl->getLocation(),
1131                                                 /*IdentifierInfo=*/0,
1132                                                 ArgType, VarDecl::None, 0);
1133    CopyAssignment->setParams(Context, &FromParam, 1);
1134
1135    // Don't call addedAssignmentOperator. There is no way to distinguish an
1136    // implicit from an explicit assignment operator.
1137    ClassDecl->addDecl(Context, CopyAssignment);
1138  }
1139
1140  if (!ClassDecl->hasUserDeclaredDestructor()) {
1141    // C++ [class.dtor]p2:
1142    //   If a class has no user-declared destructor, a destructor is
1143    //   declared implicitly. An implicitly-declared destructor is an
1144    //   inline public member of its class.
1145    DeclarationName Name
1146      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1147    CXXDestructorDecl *Destructor
1148      = CXXDestructorDecl::Create(Context, ClassDecl,
1149                                  ClassDecl->getLocation(), Name,
1150                                  Context.getFunctionType(Context.VoidTy,
1151                                                          0, 0, false, 0),
1152                                  /*isInline=*/true,
1153                                  /*isImplicitlyDeclared=*/true);
1154    Destructor->setAccess(AS_public);
1155    Destructor->setImplicit();
1156    ClassDecl->addDecl(Context, Destructor);
1157  }
1158}
1159
1160/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1161/// parsing a top-level (non-nested) C++ class, and we are now
1162/// parsing those parts of the given Method declaration that could
1163/// not be parsed earlier (C++ [class.mem]p2), such as default
1164/// arguments. This action should enter the scope of the given
1165/// Method declaration as if we had just parsed the qualified method
1166/// name. However, it should not bring the parameters into scope;
1167/// that will be performed by ActOnDelayedCXXMethodParameter.
1168void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1169  CXXScopeSpec SS;
1170  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1171  QualType ClassTy
1172    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1173  SS.setScopeRep(
1174    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1175  ActOnCXXEnterDeclaratorScope(S, SS);
1176}
1177
1178/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1179/// C++ method declaration. We're (re-)introducing the given
1180/// function parameter into scope for use in parsing later parts of
1181/// the method declaration. For example, we could see an
1182/// ActOnParamDefaultArgument event for this parameter.
1183void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1184  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1185
1186  // If this parameter has an unparsed default argument, clear it out
1187  // to make way for the parsed default argument.
1188  if (Param->hasUnparsedDefaultArg())
1189    Param->setDefaultArg(0);
1190
1191  S->AddDecl(DeclPtrTy::make(Param));
1192  if (Param->getDeclName())
1193    IdResolver.AddDecl(Param);
1194}
1195
1196/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1197/// processing the delayed method declaration for Method. The method
1198/// declaration is now considered finished. There may be a separate
1199/// ActOnStartOfFunctionDef action later (not necessarily
1200/// immediately!) for this method, if it was also defined inside the
1201/// class body.
1202void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1203  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1204  CXXScopeSpec SS;
1205  QualType ClassTy
1206    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1207  SS.setScopeRep(
1208    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1209  ActOnCXXExitDeclaratorScope(S, SS);
1210
1211  // Now that we have our default arguments, check the constructor
1212  // again. It could produce additional diagnostics or affect whether
1213  // the class has implicitly-declared destructors, among other
1214  // things.
1215  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
1216    if (CheckConstructor(Constructor))
1217      Constructor->setInvalidDecl();
1218  }
1219
1220  // Check the default arguments, which we may have added.
1221  if (!Method->isInvalidDecl())
1222    CheckCXXDefaultArguments(Method);
1223}
1224
1225/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1226/// the well-formedness of the constructor declarator @p D with type @p
1227/// R. If there are any errors in the declarator, this routine will
1228/// emit diagnostics and return true. Otherwise, it will return
1229/// false. Either way, the type @p R will be updated to reflect a
1230/// well-formed type for the constructor.
1231bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
1232                                      FunctionDecl::StorageClass& SC) {
1233  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1234  bool isInvalid = false;
1235
1236  // C++ [class.ctor]p3:
1237  //   A constructor shall not be virtual (10.3) or static (9.4). A
1238  //   constructor can be invoked for a const, volatile or const
1239  //   volatile object. A constructor shall not be declared const,
1240  //   volatile, or const volatile (9.3.2).
1241  if (isVirtual) {
1242    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1243      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1244      << SourceRange(D.getIdentifierLoc());
1245    isInvalid = true;
1246  }
1247  if (SC == FunctionDecl::Static) {
1248    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1249      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1250      << SourceRange(D.getIdentifierLoc());
1251    isInvalid = true;
1252    SC = FunctionDecl::None;
1253  }
1254  if (D.getDeclSpec().hasTypeSpecifier()) {
1255    // Constructors don't have return types, but the parser will
1256    // happily parse something like:
1257    //
1258    //   class X {
1259    //     float X(float);
1260    //   };
1261    //
1262    // The return type will be eliminated later.
1263    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
1264      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1265      << SourceRange(D.getIdentifierLoc());
1266  }
1267  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1268    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1269    if (FTI.TypeQuals & QualType::Const)
1270      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1271        << "const" << SourceRange(D.getIdentifierLoc());
1272    if (FTI.TypeQuals & QualType::Volatile)
1273      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1274        << "volatile" << SourceRange(D.getIdentifierLoc());
1275    if (FTI.TypeQuals & QualType::Restrict)
1276      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1277        << "restrict" << SourceRange(D.getIdentifierLoc());
1278  }
1279
1280  // Rebuild the function type "R" without any type qualifiers (in
1281  // case any of the errors above fired) and with "void" as the
1282  // return type, since constructors don't have return types. We
1283  // *always* have to do this, because GetTypeForDeclarator will
1284  // put in a result type of "int" when none was specified.
1285  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1286  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1287                              Proto->getNumArgs(),
1288                              Proto->isVariadic(),
1289                              0);
1290
1291  return isInvalid;
1292}
1293
1294/// CheckConstructor - Checks a fully-formed constructor for
1295/// well-formedness, issuing any diagnostics required. Returns true if
1296/// the constructor declarator is invalid.
1297bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1298  CXXRecordDecl *ClassDecl
1299    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1300  if (!ClassDecl)
1301    return true;
1302
1303  bool Invalid = Constructor->isInvalidDecl();
1304
1305  // C++ [class.copy]p3:
1306  //   A declaration of a constructor for a class X is ill-formed if
1307  //   its first parameter is of type (optionally cv-qualified) X and
1308  //   either there are no other parameters or else all other
1309  //   parameters have default arguments.
1310  if (!Constructor->isInvalidDecl() &&
1311      ((Constructor->getNumParams() == 1) ||
1312       (Constructor->getNumParams() > 1 &&
1313        Constructor->getParamDecl(1)->getDefaultArg() != 0))) {
1314    QualType ParamType = Constructor->getParamDecl(0)->getType();
1315    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1316    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1317      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1318      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1319        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1320      Invalid = true;
1321    }
1322  }
1323
1324  // Notify the class that we've added a constructor.
1325  ClassDecl->addedConstructor(Context, Constructor);
1326
1327  return Invalid;
1328}
1329
1330/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1331/// the well-formednes of the destructor declarator @p D with type @p
1332/// R. If there are any errors in the declarator, this routine will
1333/// emit diagnostics and return true. Otherwise, it will return
1334/// false. Either way, the type @p R will be updated to reflect a
1335/// well-formed type for the destructor.
1336bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1337                                     FunctionDecl::StorageClass& SC) {
1338  bool isInvalid = false;
1339
1340  // C++ [class.dtor]p1:
1341  //   [...] A typedef-name that names a class is a class-name
1342  //   (7.1.3); however, a typedef-name that names a class shall not
1343  //   be used as the identifier in the declarator for a destructor
1344  //   declaration.
1345  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1346  if (DeclaratorType->getAsTypedefType()) {
1347    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1348      << DeclaratorType;
1349    isInvalid = true;
1350  }
1351
1352  // C++ [class.dtor]p2:
1353  //   A destructor is used to destroy objects of its class type. A
1354  //   destructor takes no parameters, and no return type can be
1355  //   specified for it (not even void). The address of a destructor
1356  //   shall not be taken. A destructor shall not be static. A
1357  //   destructor can be invoked for a const, volatile or const
1358  //   volatile object. A destructor shall not be declared const,
1359  //   volatile or const volatile (9.3.2).
1360  if (SC == FunctionDecl::Static) {
1361    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1362      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1363      << SourceRange(D.getIdentifierLoc());
1364    isInvalid = true;
1365    SC = FunctionDecl::None;
1366  }
1367  if (D.getDeclSpec().hasTypeSpecifier()) {
1368    // Destructors don't have return types, but the parser will
1369    // happily parse something like:
1370    //
1371    //   class X {
1372    //     float ~X();
1373    //   };
1374    //
1375    // The return type will be eliminated later.
1376    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1377      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1378      << SourceRange(D.getIdentifierLoc());
1379  }
1380  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1381    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1382    if (FTI.TypeQuals & QualType::Const)
1383      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1384        << "const" << SourceRange(D.getIdentifierLoc());
1385    if (FTI.TypeQuals & QualType::Volatile)
1386      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1387        << "volatile" << SourceRange(D.getIdentifierLoc());
1388    if (FTI.TypeQuals & QualType::Restrict)
1389      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1390        << "restrict" << SourceRange(D.getIdentifierLoc());
1391  }
1392
1393  // Make sure we don't have any parameters.
1394  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1395    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1396
1397    // Delete the parameters.
1398    D.getTypeObject(0).Fun.freeArgs();
1399  }
1400
1401  // Make sure the destructor isn't variadic.
1402  if (R->getAsFunctionProtoType()->isVariadic())
1403    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1404
1405  // Rebuild the function type "R" without any type qualifiers or
1406  // parameters (in case any of the errors above fired) and with
1407  // "void" as the return type, since destructors don't have return
1408  // types. We *always* have to do this, because GetTypeForDeclarator
1409  // will put in a result type of "int" when none was specified.
1410  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1411
1412  return isInvalid;
1413}
1414
1415/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1416/// well-formednes of the conversion function declarator @p D with
1417/// type @p R. If there are any errors in the declarator, this routine
1418/// will emit diagnostics and return true. Otherwise, it will return
1419/// false. Either way, the type @p R will be updated to reflect a
1420/// well-formed type for the conversion operator.
1421bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1422                                     FunctionDecl::StorageClass& SC) {
1423  bool isInvalid = false;
1424
1425  // C++ [class.conv.fct]p1:
1426  //   Neither parameter types nor return type can be specified. The
1427  //   type of a conversion function (8.3.5) is “function taking no
1428  //   parameter returning conversion-type-id.”
1429  if (SC == FunctionDecl::Static) {
1430    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1431      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1432      << SourceRange(D.getIdentifierLoc());
1433    isInvalid = true;
1434    SC = FunctionDecl::None;
1435  }
1436  if (D.getDeclSpec().hasTypeSpecifier()) {
1437    // Conversion functions don't have return types, but the parser will
1438    // happily parse something like:
1439    //
1440    //   class X {
1441    //     float operator bool();
1442    //   };
1443    //
1444    // The return type will be changed later anyway.
1445    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1446      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1447      << SourceRange(D.getIdentifierLoc());
1448  }
1449
1450  // Make sure we don't have any parameters.
1451  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1452    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1453
1454    // Delete the parameters.
1455    D.getTypeObject(0).Fun.freeArgs();
1456  }
1457
1458  // Make sure the conversion function isn't variadic.
1459  if (R->getAsFunctionProtoType()->isVariadic())
1460    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1461
1462  // C++ [class.conv.fct]p4:
1463  //   The conversion-type-id shall not represent a function type nor
1464  //   an array type.
1465  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1466  if (ConvType->isArrayType()) {
1467    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1468    ConvType = Context.getPointerType(ConvType);
1469  } else if (ConvType->isFunctionType()) {
1470    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1471    ConvType = Context.getPointerType(ConvType);
1472  }
1473
1474  // Rebuild the function type "R" without any parameters (in case any
1475  // of the errors above fired) and with the conversion type as the
1476  // return type.
1477  R = Context.getFunctionType(ConvType, 0, 0, false,
1478                              R->getAsFunctionProtoType()->getTypeQuals());
1479
1480  // C++0x explicit conversion operators.
1481  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1482    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1483         diag::warn_explicit_conversion_functions)
1484      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1485
1486  return isInvalid;
1487}
1488
1489/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1490/// the declaration of the given C++ conversion function. This routine
1491/// is responsible for recording the conversion function in the C++
1492/// class, if possible.
1493Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1494  assert(Conversion && "Expected to receive a conversion function declaration");
1495
1496  // Set the lexical context of this conversion function
1497  Conversion->setLexicalDeclContext(CurContext);
1498
1499  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1500
1501  // Make sure we aren't redeclaring the conversion function.
1502  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1503
1504  // C++ [class.conv.fct]p1:
1505  //   [...] A conversion function is never used to convert a
1506  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1507  //   same object type (or a reference to it), to a (possibly
1508  //   cv-qualified) base class of that type (or a reference to it),
1509  //   or to (possibly cv-qualified) void.
1510  // FIXME: Suppress this warning if the conversion function ends up
1511  // being a virtual function that overrides a virtual function in a
1512  // base class.
1513  QualType ClassType
1514    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1515  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1516    ConvType = ConvTypeRef->getPointeeType();
1517  if (ConvType->isRecordType()) {
1518    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1519    if (ConvType == ClassType)
1520      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1521        << ClassType;
1522    else if (IsDerivedFrom(ClassType, ConvType))
1523      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1524        <<  ClassType << ConvType;
1525  } else if (ConvType->isVoidType()) {
1526    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1527      << ClassType << ConvType;
1528  }
1529
1530  if (Conversion->getPreviousDeclaration()) {
1531    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1532    for (OverloadedFunctionDecl::function_iterator
1533           Conv = Conversions->function_begin(),
1534           ConvEnd = Conversions->function_end();
1535         Conv != ConvEnd; ++Conv) {
1536      if (*Conv == Conversion->getPreviousDeclaration()) {
1537        *Conv = Conversion;
1538        return DeclPtrTy::make(Conversion);
1539      }
1540    }
1541    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1542  } else
1543    ClassDecl->addConversionFunction(Context, Conversion);
1544
1545  return DeclPtrTy::make(Conversion);
1546}
1547
1548//===----------------------------------------------------------------------===//
1549// Namespace Handling
1550//===----------------------------------------------------------------------===//
1551
1552/// ActOnStartNamespaceDef - This is called at the start of a namespace
1553/// definition.
1554Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1555                                             SourceLocation IdentLoc,
1556                                             IdentifierInfo *II,
1557                                             SourceLocation LBrace) {
1558  NamespaceDecl *Namespc =
1559      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1560  Namespc->setLBracLoc(LBrace);
1561
1562  Scope *DeclRegionScope = NamespcScope->getParent();
1563
1564  if (II) {
1565    // C++ [namespace.def]p2:
1566    // The identifier in an original-namespace-definition shall not have been
1567    // previously defined in the declarative region in which the
1568    // original-namespace-definition appears. The identifier in an
1569    // original-namespace-definition is the name of the namespace. Subsequently
1570    // in that declarative region, it is treated as an original-namespace-name.
1571
1572    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1573                                     true);
1574
1575    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1576      // This is an extended namespace definition.
1577      // Attach this namespace decl to the chain of extended namespace
1578      // definitions.
1579      OrigNS->setNextNamespace(Namespc);
1580      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1581
1582      // Remove the previous declaration from the scope.
1583      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1584        IdResolver.RemoveDecl(OrigNS);
1585        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1586      }
1587    } else if (PrevDecl) {
1588      // This is an invalid name redefinition.
1589      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1590       << Namespc->getDeclName();
1591      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1592      Namespc->setInvalidDecl();
1593      // Continue on to push Namespc as current DeclContext and return it.
1594    }
1595
1596    PushOnScopeChains(Namespc, DeclRegionScope);
1597  } else {
1598    // FIXME: Handle anonymous namespaces
1599  }
1600
1601  // Although we could have an invalid decl (i.e. the namespace name is a
1602  // redefinition), push it as current DeclContext and try to continue parsing.
1603  // FIXME: We should be able to push Namespc here, so that the
1604  // each DeclContext for the namespace has the declarations
1605  // that showed up in that particular namespace definition.
1606  PushDeclContext(NamespcScope, Namespc);
1607  return DeclPtrTy::make(Namespc);
1608}
1609
1610/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1611/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1612void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1613  Decl *Dcl = D.getAs<Decl>();
1614  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1615  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1616  Namespc->setRBracLoc(RBrace);
1617  PopDeclContext();
1618}
1619
1620Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1621                                          SourceLocation UsingLoc,
1622                                          SourceLocation NamespcLoc,
1623                                          const CXXScopeSpec &SS,
1624                                          SourceLocation IdentLoc,
1625                                          IdentifierInfo *NamespcName,
1626                                          AttributeList *AttrList) {
1627  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1628  assert(NamespcName && "Invalid NamespcName.");
1629  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1630  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1631
1632  UsingDirectiveDecl *UDir = 0;
1633
1634  // Lookup namespace name.
1635  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1636                                    LookupNamespaceName, false);
1637  if (R.isAmbiguous()) {
1638    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1639    return DeclPtrTy();
1640  }
1641  if (NamedDecl *NS = R) {
1642    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1643    // C++ [namespace.udir]p1:
1644    //   A using-directive specifies that the names in the nominated
1645    //   namespace can be used in the scope in which the
1646    //   using-directive appears after the using-directive. During
1647    //   unqualified name lookup (3.4.1), the names appear as if they
1648    //   were declared in the nearest enclosing namespace which
1649    //   contains both the using-directive and the nominated
1650    //   namespace. [Note: in this context, “contains” means “contains
1651    //   directly or indirectly”. ]
1652
1653    // Find enclosing context containing both using-directive and
1654    // nominated namespace.
1655    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1656    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1657      CommonAncestor = CommonAncestor->getParent();
1658
1659    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc,
1660                                      NamespcLoc, IdentLoc,
1661                                      cast<NamespaceDecl>(NS),
1662                                      CommonAncestor);
1663    PushUsingDirective(S, UDir);
1664  } else {
1665    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1666  }
1667
1668  // FIXME: We ignore attributes for now.
1669  delete AttrList;
1670  return DeclPtrTy::make(UDir);
1671}
1672
1673void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1674  // If scope has associated entity, then using directive is at namespace
1675  // or translation unit scope. We add UsingDirectiveDecls, into
1676  // it's lookup structure.
1677  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1678    Ctx->addDecl(Context, UDir);
1679  else
1680    // Otherwise it is block-sope. using-directives will affect lookup
1681    // only to the end of scope.
1682    S->PushUsingDirective(DeclPtrTy::make(UDir));
1683}
1684
1685/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1686/// is a namespace alias, returns the namespace it points to.
1687static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1688  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1689    return AD->getNamespace();
1690  return dyn_cast_or_null<NamespaceDecl>(D);
1691}
1692
1693Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1694                                             SourceLocation NamespaceLoc,
1695                                             SourceLocation AliasLoc,
1696                                             IdentifierInfo *Alias,
1697                                             const CXXScopeSpec &SS,
1698                                             SourceLocation IdentLoc,
1699                                             IdentifierInfo *Ident) {
1700
1701  // Lookup the namespace name.
1702  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1703
1704  // Check if we have a previous declaration with the same name.
1705  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1706    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1707      // We already have an alias with the same name that points to the same
1708      // namespace, so don't create a new one.
1709      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1710        return DeclPtrTy();
1711    }
1712
1713    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1714      diag::err_redefinition_different_kind;
1715    Diag(AliasLoc, DiagID) << Alias;
1716    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1717    return DeclPtrTy();
1718  }
1719
1720  if (R.isAmbiguous()) {
1721    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1722    return DeclPtrTy();
1723  }
1724
1725  if (!R) {
1726    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
1727    return DeclPtrTy();
1728  }
1729
1730  NamespaceAliasDecl *AliasDecl =
1731    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, Alias,
1732                               IdentLoc, R);
1733
1734  CurContext->addDecl(Context, AliasDecl);
1735  return DeclPtrTy::make(AliasDecl);
1736}
1737
1738/// AddCXXDirectInitializerToDecl - This action is called immediately after
1739/// ActOnDeclarator, when a C++ direct initializer is present.
1740/// e.g: "int x(1);"
1741void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
1742                                         SourceLocation LParenLoc,
1743                                         MultiExprArg Exprs,
1744                                         SourceLocation *CommaLocs,
1745                                         SourceLocation RParenLoc) {
1746  unsigned NumExprs = Exprs.size();
1747  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
1748  Decl *RealDecl = Dcl.getAs<Decl>();
1749
1750  // If there is no declaration, there was an error parsing it.  Just ignore
1751  // the initializer.
1752  if (RealDecl == 0)
1753    return;
1754
1755  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1756  if (!VDecl) {
1757    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1758    RealDecl->setInvalidDecl();
1759    return;
1760  }
1761
1762  // FIXME: Need to handle dependent types and expressions here.
1763
1764  // We will treat direct-initialization as a copy-initialization:
1765  //    int x(1);  -as-> int x = 1;
1766  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1767  //
1768  // Clients that want to distinguish between the two forms, can check for
1769  // direct initializer using VarDecl::hasCXXDirectInitializer().
1770  // A major benefit is that clients that don't particularly care about which
1771  // exactly form was it (like the CodeGen) can handle both cases without
1772  // special case code.
1773
1774  // C++ 8.5p11:
1775  // The form of initialization (using parentheses or '=') is generally
1776  // insignificant, but does matter when the entity being initialized has a
1777  // class type.
1778  QualType DeclInitType = VDecl->getType();
1779  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1780    DeclInitType = Array->getElementType();
1781
1782  // FIXME: This isn't the right place to complete the type.
1783  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
1784                          diag::err_typecheck_decl_incomplete_type)) {
1785    VDecl->setInvalidDecl();
1786    return;
1787  }
1788
1789  if (VDecl->getType()->isRecordType()) {
1790    CXXConstructorDecl *Constructor
1791      = PerformInitializationByConstructor(DeclInitType,
1792                                           (Expr **)Exprs.get(), NumExprs,
1793                                           VDecl->getLocation(),
1794                                           SourceRange(VDecl->getLocation(),
1795                                                       RParenLoc),
1796                                           VDecl->getDeclName(),
1797                                           IK_Direct);
1798    if (!Constructor)
1799      RealDecl->setInvalidDecl();
1800    else
1801      Exprs.release();
1802
1803    // Let clients know that initialization was done with a direct
1804    // initializer.
1805    VDecl->setCXXDirectInitializer(true);
1806
1807    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1808    // the initializer.
1809    return;
1810  }
1811
1812  if (NumExprs > 1) {
1813    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1814      << SourceRange(VDecl->getLocation(), RParenLoc);
1815    RealDecl->setInvalidDecl();
1816    return;
1817  }
1818
1819  // Let clients know that initialization was done with a direct initializer.
1820  VDecl->setCXXDirectInitializer(true);
1821
1822  assert(NumExprs == 1 && "Expected 1 expression");
1823  // Set the init expression, handles conversions.
1824  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
1825                       /*DirectInit=*/true);
1826}
1827
1828/// PerformInitializationByConstructor - Perform initialization by
1829/// constructor (C++ [dcl.init]p14), which may occur as part of
1830/// direct-initialization or copy-initialization. We are initializing
1831/// an object of type @p ClassType with the given arguments @p
1832/// Args. @p Loc is the location in the source code where the
1833/// initializer occurs (e.g., a declaration, member initializer,
1834/// functional cast, etc.) while @p Range covers the whole
1835/// initialization. @p InitEntity is the entity being initialized,
1836/// which may by the name of a declaration or a type. @p Kind is the
1837/// kind of initialization we're performing, which affects whether
1838/// explicit constructors will be considered. When successful, returns
1839/// the constructor that will be used to perform the initialization;
1840/// when the initialization fails, emits a diagnostic and returns
1841/// null.
1842CXXConstructorDecl *
1843Sema::PerformInitializationByConstructor(QualType ClassType,
1844                                         Expr **Args, unsigned NumArgs,
1845                                         SourceLocation Loc, SourceRange Range,
1846                                         DeclarationName InitEntity,
1847                                         InitializationKind Kind) {
1848  const RecordType *ClassRec = ClassType->getAsRecordType();
1849  assert(ClassRec && "Can only initialize a class type here");
1850
1851  // C++ [dcl.init]p14:
1852  //
1853  //   If the initialization is direct-initialization, or if it is
1854  //   copy-initialization where the cv-unqualified version of the
1855  //   source type is the same class as, or a derived class of, the
1856  //   class of the destination, constructors are considered. The
1857  //   applicable constructors are enumerated (13.3.1.3), and the
1858  //   best one is chosen through overload resolution (13.3). The
1859  //   constructor so selected is called to initialize the object,
1860  //   with the initializer expression(s) as its argument(s). If no
1861  //   constructor applies, or the overload resolution is ambiguous,
1862  //   the initialization is ill-formed.
1863  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1864  OverloadCandidateSet CandidateSet;
1865
1866  // Add constructors to the overload set.
1867  DeclarationName ConstructorName
1868    = Context.DeclarationNames.getCXXConstructorName(
1869                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1870  DeclContext::lookup_const_iterator Con, ConEnd;
1871  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(Context, ConstructorName);
1872       Con != ConEnd; ++Con) {
1873    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1874    if ((Kind == IK_Direct) ||
1875        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1876        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1877      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1878  }
1879
1880  // FIXME: When we decide not to synthesize the implicitly-declared
1881  // constructors, we'll need to make them appear here.
1882
1883  OverloadCandidateSet::iterator Best;
1884  switch (BestViableFunction(CandidateSet, Best)) {
1885  case OR_Success:
1886    // We found a constructor. Return it.
1887    return cast<CXXConstructorDecl>(Best->Function);
1888
1889  case OR_No_Viable_Function:
1890    if (InitEntity)
1891      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1892        << InitEntity << Range;
1893    else
1894      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1895        << ClassType << Range;
1896    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1897    return 0;
1898
1899  case OR_Ambiguous:
1900    if (InitEntity)
1901      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1902    else
1903      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1904    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1905    return 0;
1906
1907  case OR_Deleted:
1908    if (InitEntity)
1909      Diag(Loc, diag::err_ovl_deleted_init)
1910        << Best->Function->isDeleted()
1911        << InitEntity << Range;
1912    else
1913      Diag(Loc, diag::err_ovl_deleted_init)
1914        << Best->Function->isDeleted()
1915        << InitEntity << Range;
1916    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1917    return 0;
1918  }
1919
1920  return 0;
1921}
1922
1923/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1924/// determine whether they are reference-related,
1925/// reference-compatible, reference-compatible with added
1926/// qualification, or incompatible, for use in C++ initialization by
1927/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1928/// type, and the first type (T1) is the pointee type of the reference
1929/// type being initialized.
1930Sema::ReferenceCompareResult
1931Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1932                                   bool& DerivedToBase) {
1933  assert(!T1->isReferenceType() &&
1934    "T1 must be the pointee type of the reference type");
1935  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1936
1937  T1 = Context.getCanonicalType(T1);
1938  T2 = Context.getCanonicalType(T2);
1939  QualType UnqualT1 = T1.getUnqualifiedType();
1940  QualType UnqualT2 = T2.getUnqualifiedType();
1941
1942  // C++ [dcl.init.ref]p4:
1943  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1944  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1945  //   T1 is a base class of T2.
1946  if (UnqualT1 == UnqualT2)
1947    DerivedToBase = false;
1948  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1949    DerivedToBase = true;
1950  else
1951    return Ref_Incompatible;
1952
1953  // At this point, we know that T1 and T2 are reference-related (at
1954  // least).
1955
1956  // C++ [dcl.init.ref]p4:
1957  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1958  //   reference-related to T2 and cv1 is the same cv-qualification
1959  //   as, or greater cv-qualification than, cv2. For purposes of
1960  //   overload resolution, cases for which cv1 is greater
1961  //   cv-qualification than cv2 are identified as
1962  //   reference-compatible with added qualification (see 13.3.3.2).
1963  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1964    return Ref_Compatible;
1965  else if (T1.isMoreQualifiedThan(T2))
1966    return Ref_Compatible_With_Added_Qualification;
1967  else
1968    return Ref_Related;
1969}
1970
1971/// CheckReferenceInit - Check the initialization of a reference
1972/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1973/// the initializer (either a simple initializer or an initializer
1974/// list), and DeclType is the type of the declaration. When ICS is
1975/// non-null, this routine will compute the implicit conversion
1976/// sequence according to C++ [over.ics.ref] and will not produce any
1977/// diagnostics; when ICS is null, it will emit diagnostics when any
1978/// errors are found. Either way, a return value of true indicates
1979/// that there was a failure, a return value of false indicates that
1980/// the reference initialization succeeded.
1981///
1982/// When @p SuppressUserConversions, user-defined conversions are
1983/// suppressed.
1984/// When @p AllowExplicit, we also permit explicit user-defined
1985/// conversion functions.
1986/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
1987bool
1988Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1989                         ImplicitConversionSequence *ICS,
1990                         bool SuppressUserConversions,
1991                         bool AllowExplicit, bool ForceRValue) {
1992  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1993
1994  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1995  QualType T2 = Init->getType();
1996
1997  // If the initializer is the address of an overloaded function, try
1998  // to resolve the overloaded function. If all goes well, T2 is the
1999  // type of the resulting function.
2000  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2001    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2002                                                          ICS != 0);
2003    if (Fn) {
2004      // Since we're performing this reference-initialization for
2005      // real, update the initializer with the resulting function.
2006      if (!ICS) {
2007        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2008          return true;
2009
2010        FixOverloadedFunctionReference(Init, Fn);
2011      }
2012
2013      T2 = Fn->getType();
2014    }
2015  }
2016
2017  // Compute some basic properties of the types and the initializer.
2018  bool isRValRef = DeclType->isRValueReferenceType();
2019  bool DerivedToBase = false;
2020  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2021                                                  Init->isLvalue(Context);
2022  ReferenceCompareResult RefRelationship
2023    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2024
2025  // Most paths end in a failed conversion.
2026  if (ICS)
2027    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2028
2029  // C++ [dcl.init.ref]p5:
2030  //   A reference to type “cv1 T1” is initialized by an expression
2031  //   of type “cv2 T2” as follows:
2032
2033  //     -- If the initializer expression
2034
2035  // Rvalue references cannot bind to lvalues (N2812).
2036  // There is absolutely no situation where they can. In particular, note that
2037  // this is ill-formed, even if B has a user-defined conversion to A&&:
2038  //   B b;
2039  //   A&& r = b;
2040  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2041    if (!ICS)
2042      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2043        << Init->getSourceRange();
2044    return true;
2045  }
2046
2047  bool BindsDirectly = false;
2048  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2049  //          reference-compatible with “cv2 T2,” or
2050  //
2051  // Note that the bit-field check is skipped if we are just computing
2052  // the implicit conversion sequence (C++ [over.best.ics]p2).
2053  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
2054      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2055    BindsDirectly = true;
2056
2057    if (ICS) {
2058      // C++ [over.ics.ref]p1:
2059      //   When a parameter of reference type binds directly (8.5.3)
2060      //   to an argument expression, the implicit conversion sequence
2061      //   is the identity conversion, unless the argument expression
2062      //   has a type that is a derived class of the parameter type,
2063      //   in which case the implicit conversion sequence is a
2064      //   derived-to-base Conversion (13.3.3.1).
2065      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2066      ICS->Standard.First = ICK_Identity;
2067      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2068      ICS->Standard.Third = ICK_Identity;
2069      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2070      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2071      ICS->Standard.ReferenceBinding = true;
2072      ICS->Standard.DirectBinding = true;
2073      ICS->Standard.RRefBinding = false;
2074
2075      // Nothing more to do: the inaccessibility/ambiguity check for
2076      // derived-to-base conversions is suppressed when we're
2077      // computing the implicit conversion sequence (C++
2078      // [over.best.ics]p2).
2079      return false;
2080    } else {
2081      // Perform the conversion.
2082      // FIXME: Binding to a subobject of the lvalue is going to require
2083      // more AST annotation than this.
2084      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2085    }
2086  }
2087
2088  //       -- has a class type (i.e., T2 is a class type) and can be
2089  //          implicitly converted to an lvalue of type “cv3 T3,”
2090  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2091  //          92) (this conversion is selected by enumerating the
2092  //          applicable conversion functions (13.3.1.6) and choosing
2093  //          the best one through overload resolution (13.3)),
2094  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2095    // FIXME: Look for conversions in base classes!
2096    CXXRecordDecl *T2RecordDecl
2097      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2098
2099    OverloadCandidateSet CandidateSet;
2100    OverloadedFunctionDecl *Conversions
2101      = T2RecordDecl->getConversionFunctions();
2102    for (OverloadedFunctionDecl::function_iterator Func
2103           = Conversions->function_begin();
2104         Func != Conversions->function_end(); ++Func) {
2105      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2106
2107      // If the conversion function doesn't return a reference type,
2108      // it can't be considered for this conversion.
2109      if (Conv->getConversionType()->isLValueReferenceType() &&
2110          (AllowExplicit || !Conv->isExplicit()))
2111        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2112    }
2113
2114    OverloadCandidateSet::iterator Best;
2115    switch (BestViableFunction(CandidateSet, Best)) {
2116    case OR_Success:
2117      // This is a direct binding.
2118      BindsDirectly = true;
2119
2120      if (ICS) {
2121        // C++ [over.ics.ref]p1:
2122        //
2123        //   [...] If the parameter binds directly to the result of
2124        //   applying a conversion function to the argument
2125        //   expression, the implicit conversion sequence is a
2126        //   user-defined conversion sequence (13.3.3.1.2), with the
2127        //   second standard conversion sequence either an identity
2128        //   conversion or, if the conversion function returns an
2129        //   entity of a type that is a derived class of the parameter
2130        //   type, a derived-to-base Conversion.
2131        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2132        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2133        ICS->UserDefined.After = Best->FinalConversion;
2134        ICS->UserDefined.ConversionFunction = Best->Function;
2135        assert(ICS->UserDefined.After.ReferenceBinding &&
2136               ICS->UserDefined.After.DirectBinding &&
2137               "Expected a direct reference binding!");
2138        return false;
2139      } else {
2140        // Perform the conversion.
2141        // FIXME: Binding to a subobject of the lvalue is going to require
2142        // more AST annotation than this.
2143        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2144      }
2145      break;
2146
2147    case OR_Ambiguous:
2148      assert(false && "Ambiguous reference binding conversions not implemented.");
2149      return true;
2150
2151    case OR_No_Viable_Function:
2152    case OR_Deleted:
2153      // There was no suitable conversion, or we found a deleted
2154      // conversion; continue with other checks.
2155      break;
2156    }
2157  }
2158
2159  if (BindsDirectly) {
2160    // C++ [dcl.init.ref]p4:
2161    //   [...] In all cases where the reference-related or
2162    //   reference-compatible relationship of two types is used to
2163    //   establish the validity of a reference binding, and T1 is a
2164    //   base class of T2, a program that necessitates such a binding
2165    //   is ill-formed if T1 is an inaccessible (clause 11) or
2166    //   ambiguous (10.2) base class of T2.
2167    //
2168    // Note that we only check this condition when we're allowed to
2169    // complain about errors, because we should not be checking for
2170    // ambiguity (or inaccessibility) unless the reference binding
2171    // actually happens.
2172    if (DerivedToBase)
2173      return CheckDerivedToBaseConversion(T2, T1,
2174                                          Init->getSourceRange().getBegin(),
2175                                          Init->getSourceRange());
2176    else
2177      return false;
2178  }
2179
2180  //     -- Otherwise, the reference shall be to a non-volatile const
2181  //        type (i.e., cv1 shall be const), or the reference shall be an
2182  //        rvalue reference and the initializer expression shall be an rvalue.
2183  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2184    if (!ICS)
2185      Diag(Init->getSourceRange().getBegin(),
2186           diag::err_not_reference_to_const_init)
2187        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2188        << T2 << Init->getSourceRange();
2189    return true;
2190  }
2191
2192  //       -- If the initializer expression is an rvalue, with T2 a
2193  //          class type, and “cv1 T1” is reference-compatible with
2194  //          “cv2 T2,” the reference is bound in one of the
2195  //          following ways (the choice is implementation-defined):
2196  //
2197  //          -- The reference is bound to the object represented by
2198  //             the rvalue (see 3.10) or to a sub-object within that
2199  //             object.
2200  //
2201  //          -- A temporary of type “cv1 T2” [sic] is created, and
2202  //             a constructor is called to copy the entire rvalue
2203  //             object into the temporary. The reference is bound to
2204  //             the temporary or to a sub-object within the
2205  //             temporary.
2206  //
2207  //          The constructor that would be used to make the copy
2208  //          shall be callable whether or not the copy is actually
2209  //          done.
2210  //
2211  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2212  // freedom, so we will always take the first option and never build
2213  // a temporary in this case. FIXME: We will, however, have to check
2214  // for the presence of a copy constructor in C++98/03 mode.
2215  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2216      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2217    if (ICS) {
2218      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2219      ICS->Standard.First = ICK_Identity;
2220      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2221      ICS->Standard.Third = ICK_Identity;
2222      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2223      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2224      ICS->Standard.ReferenceBinding = true;
2225      ICS->Standard.DirectBinding = false;
2226      ICS->Standard.RRefBinding = isRValRef;
2227    } else {
2228      // FIXME: Binding to a subobject of the rvalue is going to require
2229      // more AST annotation than this.
2230      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2231    }
2232    return false;
2233  }
2234
2235  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2236  //          initialized from the initializer expression using the
2237  //          rules for a non-reference copy initialization (8.5). The
2238  //          reference is then bound to the temporary. If T1 is
2239  //          reference-related to T2, cv1 must be the same
2240  //          cv-qualification as, or greater cv-qualification than,
2241  //          cv2; otherwise, the program is ill-formed.
2242  if (RefRelationship == Ref_Related) {
2243    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2244    // we would be reference-compatible or reference-compatible with
2245    // added qualification. But that wasn't the case, so the reference
2246    // initialization fails.
2247    if (!ICS)
2248      Diag(Init->getSourceRange().getBegin(),
2249           diag::err_reference_init_drops_quals)
2250        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2251        << T2 << Init->getSourceRange();
2252    return true;
2253  }
2254
2255  // If at least one of the types is a class type, the types are not
2256  // related, and we aren't allowed any user conversions, the
2257  // reference binding fails. This case is important for breaking
2258  // recursion, since TryImplicitConversion below will attempt to
2259  // create a temporary through the use of a copy constructor.
2260  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2261      (T1->isRecordType() || T2->isRecordType())) {
2262    if (!ICS)
2263      Diag(Init->getSourceRange().getBegin(),
2264           diag::err_typecheck_convert_incompatible)
2265        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2266    return true;
2267  }
2268
2269  // Actually try to convert the initializer to T1.
2270  if (ICS) {
2271    // C++ [over.ics.ref]p2:
2272    //
2273    //   When a parameter of reference type is not bound directly to
2274    //   an argument expression, the conversion sequence is the one
2275    //   required to convert the argument expression to the
2276    //   underlying type of the reference according to
2277    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2278    //   to copy-initializing a temporary of the underlying type with
2279    //   the argument expression. Any difference in top-level
2280    //   cv-qualification is subsumed by the initialization itself
2281    //   and does not constitute a conversion.
2282    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2283    // Of course, that's still a reference binding.
2284    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2285      ICS->Standard.ReferenceBinding = true;
2286      ICS->Standard.RRefBinding = isRValRef;
2287    } else if(ICS->ConversionKind ==
2288              ImplicitConversionSequence::UserDefinedConversion) {
2289      ICS->UserDefined.After.ReferenceBinding = true;
2290      ICS->UserDefined.After.RRefBinding = isRValRef;
2291    }
2292    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2293  } else {
2294    return PerformImplicitConversion(Init, T1, "initializing");
2295  }
2296}
2297
2298/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2299/// of this overloaded operator is well-formed. If so, returns false;
2300/// otherwise, emits appropriate diagnostics and returns true.
2301bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2302  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2303         "Expected an overloaded operator declaration");
2304
2305  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2306
2307  // C++ [over.oper]p5:
2308  //   The allocation and deallocation functions, operator new,
2309  //   operator new[], operator delete and operator delete[], are
2310  //   described completely in 3.7.3. The attributes and restrictions
2311  //   found in the rest of this subclause do not apply to them unless
2312  //   explicitly stated in 3.7.3.
2313  // FIXME: Write a separate routine for checking this. For now, just
2314  // allow it.
2315  if (Op == OO_New || Op == OO_Array_New ||
2316      Op == OO_Delete || Op == OO_Array_Delete)
2317    return false;
2318
2319  // C++ [over.oper]p6:
2320  //   An operator function shall either be a non-static member
2321  //   function or be a non-member function and have at least one
2322  //   parameter whose type is a class, a reference to a class, an
2323  //   enumeration, or a reference to an enumeration.
2324  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2325    if (MethodDecl->isStatic())
2326      return Diag(FnDecl->getLocation(),
2327                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2328  } else {
2329    bool ClassOrEnumParam = false;
2330    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2331                                   ParamEnd = FnDecl->param_end();
2332         Param != ParamEnd; ++Param) {
2333      QualType ParamType = (*Param)->getType().getNonReferenceType();
2334      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2335        ClassOrEnumParam = true;
2336        break;
2337      }
2338    }
2339
2340    if (!ClassOrEnumParam)
2341      return Diag(FnDecl->getLocation(),
2342                  diag::err_operator_overload_needs_class_or_enum)
2343        << FnDecl->getDeclName();
2344  }
2345
2346  // C++ [over.oper]p8:
2347  //   An operator function cannot have default arguments (8.3.6),
2348  //   except where explicitly stated below.
2349  //
2350  // Only the function-call operator allows default arguments
2351  // (C++ [over.call]p1).
2352  if (Op != OO_Call) {
2353    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2354         Param != FnDecl->param_end(); ++Param) {
2355      if ((*Param)->hasUnparsedDefaultArg())
2356        return Diag((*Param)->getLocation(),
2357                    diag::err_operator_overload_default_arg)
2358          << FnDecl->getDeclName();
2359      else if (Expr *DefArg = (*Param)->getDefaultArg())
2360        return Diag((*Param)->getLocation(),
2361                    diag::err_operator_overload_default_arg)
2362          << FnDecl->getDeclName() << DefArg->getSourceRange();
2363    }
2364  }
2365
2366  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2367    { false, false, false }
2368#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2369    , { Unary, Binary, MemberOnly }
2370#include "clang/Basic/OperatorKinds.def"
2371  };
2372
2373  bool CanBeUnaryOperator = OperatorUses[Op][0];
2374  bool CanBeBinaryOperator = OperatorUses[Op][1];
2375  bool MustBeMemberOperator = OperatorUses[Op][2];
2376
2377  // C++ [over.oper]p8:
2378  //   [...] Operator functions cannot have more or fewer parameters
2379  //   than the number required for the corresponding operator, as
2380  //   described in the rest of this subclause.
2381  unsigned NumParams = FnDecl->getNumParams()
2382                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2383  if (Op != OO_Call &&
2384      ((NumParams == 1 && !CanBeUnaryOperator) ||
2385       (NumParams == 2 && !CanBeBinaryOperator) ||
2386       (NumParams < 1) || (NumParams > 2))) {
2387    // We have the wrong number of parameters.
2388    unsigned ErrorKind;
2389    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2390      ErrorKind = 2;  // 2 -> unary or binary.
2391    } else if (CanBeUnaryOperator) {
2392      ErrorKind = 0;  // 0 -> unary
2393    } else {
2394      assert(CanBeBinaryOperator &&
2395             "All non-call overloaded operators are unary or binary!");
2396      ErrorKind = 1;  // 1 -> binary
2397    }
2398
2399    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2400      << FnDecl->getDeclName() << NumParams << ErrorKind;
2401  }
2402
2403  // Overloaded operators other than operator() cannot be variadic.
2404  if (Op != OO_Call &&
2405      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2406    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2407      << FnDecl->getDeclName();
2408  }
2409
2410  // Some operators must be non-static member functions.
2411  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2412    return Diag(FnDecl->getLocation(),
2413                diag::err_operator_overload_must_be_member)
2414      << FnDecl->getDeclName();
2415  }
2416
2417  // C++ [over.inc]p1:
2418  //   The user-defined function called operator++ implements the
2419  //   prefix and postfix ++ operator. If this function is a member
2420  //   function with no parameters, or a non-member function with one
2421  //   parameter of class or enumeration type, it defines the prefix
2422  //   increment operator ++ for objects of that type. If the function
2423  //   is a member function with one parameter (which shall be of type
2424  //   int) or a non-member function with two parameters (the second
2425  //   of which shall be of type int), it defines the postfix
2426  //   increment operator ++ for objects of that type.
2427  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2428    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2429    bool ParamIsInt = false;
2430    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2431      ParamIsInt = BT->getKind() == BuiltinType::Int;
2432
2433    if (!ParamIsInt)
2434      return Diag(LastParam->getLocation(),
2435                  diag::err_operator_overload_post_incdec_must_be_int)
2436        << LastParam->getType() << (Op == OO_MinusMinus);
2437  }
2438
2439  // Notify the class if it got an assignment operator.
2440  if (Op == OO_Equal) {
2441    // Would have returned earlier otherwise.
2442    assert(isa<CXXMethodDecl>(FnDecl) &&
2443      "Overloaded = not member, but not filtered.");
2444    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2445    Method->getParent()->addedAssignmentOperator(Context, Method);
2446  }
2447
2448  return false;
2449}
2450
2451/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2452/// linkage specification, including the language and (if present)
2453/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2454/// the location of the language string literal, which is provided
2455/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2456/// the '{' brace. Otherwise, this linkage specification does not
2457/// have any braces.
2458Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
2459                                                     SourceLocation ExternLoc,
2460                                                     SourceLocation LangLoc,
2461                                                     const char *Lang,
2462                                                     unsigned StrSize,
2463                                                     SourceLocation LBraceLoc) {
2464  LinkageSpecDecl::LanguageIDs Language;
2465  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2466    Language = LinkageSpecDecl::lang_c;
2467  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2468    Language = LinkageSpecDecl::lang_cxx;
2469  else {
2470    Diag(LangLoc, diag::err_bad_language);
2471    return DeclPtrTy();
2472  }
2473
2474  // FIXME: Add all the various semantics of linkage specifications
2475
2476  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2477                                               LangLoc, Language,
2478                                               LBraceLoc.isValid());
2479  CurContext->addDecl(Context, D);
2480  PushDeclContext(S, D);
2481  return DeclPtrTy::make(D);
2482}
2483
2484/// ActOnFinishLinkageSpecification - Completely the definition of
2485/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2486/// valid, it's the position of the closing '}' brace in a linkage
2487/// specification that uses braces.
2488Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
2489                                                      DeclPtrTy LinkageSpec,
2490                                                      SourceLocation RBraceLoc) {
2491  if (LinkageSpec)
2492    PopDeclContext();
2493  return LinkageSpec;
2494}
2495
2496/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2497/// handler.
2498Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
2499  QualType ExDeclType = GetTypeForDeclarator(D, S);
2500  SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin();
2501
2502  bool Invalid = false;
2503
2504  // Arrays and functions decay.
2505  if (ExDeclType->isArrayType())
2506    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2507  else if (ExDeclType->isFunctionType())
2508    ExDeclType = Context.getPointerType(ExDeclType);
2509
2510  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2511  // The exception-declaration shall not denote a pointer or reference to an
2512  // incomplete type, other than [cv] void*.
2513  // N2844 forbids rvalue references.
2514  if(ExDeclType->isRValueReferenceType()) {
2515    Diag(Begin, diag::err_catch_rvalue_ref) << D.getSourceRange();
2516    Invalid = true;
2517  }
2518  QualType BaseType = ExDeclType;
2519  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2520  unsigned DK = diag::err_catch_incomplete;
2521  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2522    BaseType = Ptr->getPointeeType();
2523    Mode = 1;
2524    DK = diag::err_catch_incomplete_ptr;
2525  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2526    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2527    BaseType = Ref->getPointeeType();
2528    Mode = 2;
2529    DK = diag::err_catch_incomplete_ref;
2530  }
2531  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2532      RequireCompleteType(Begin, BaseType, DK))
2533    Invalid = true;
2534
2535  // FIXME: Need to test for ability to copy-construct and destroy the
2536  // exception variable.
2537  // FIXME: Need to check for abstract classes.
2538
2539  IdentifierInfo *II = D.getIdentifier();
2540  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2541    // The scope should be freshly made just for us. There is just no way
2542    // it contains any previous declaration.
2543    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
2544    if (PrevDecl->isTemplateParameter()) {
2545      // Maybe we will complain about the shadowed template parameter.
2546      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2547    }
2548  }
2549
2550  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
2551                                    II, ExDeclType, VarDecl::None, Begin);
2552  if (D.getInvalidType() || Invalid)
2553    ExDecl->setInvalidDecl();
2554
2555  if (D.getCXXScopeSpec().isSet()) {
2556    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2557      << D.getCXXScopeSpec().getRange();
2558    ExDecl->setInvalidDecl();
2559  }
2560
2561  // Add the exception declaration into this scope.
2562  S->AddDecl(DeclPtrTy::make(ExDecl));
2563  if (II)
2564    IdResolver.AddDecl(ExDecl);
2565
2566  ProcessDeclAttributes(ExDecl, D);
2567  return DeclPtrTy::make(ExDecl);
2568}
2569
2570Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
2571                                                   ExprArg assertexpr,
2572                                                   ExprArg assertmessageexpr) {
2573  Expr *AssertExpr = (Expr *)assertexpr.get();
2574  StringLiteral *AssertMessage =
2575    cast<StringLiteral>((Expr *)assertmessageexpr.get());
2576
2577  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
2578    llvm::APSInt Value(32);
2579    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
2580      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
2581        AssertExpr->getSourceRange();
2582      return DeclPtrTy();
2583    }
2584
2585    if (Value == 0) {
2586      std::string str(AssertMessage->getStrData(),
2587                      AssertMessage->getByteLength());
2588      Diag(AssertLoc, diag::err_static_assert_failed)
2589        << str << AssertExpr->getSourceRange();
2590    }
2591  }
2592
2593  assertexpr.release();
2594  assertmessageexpr.release();
2595  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
2596                                        AssertExpr, AssertMessage);
2597
2598  CurContext->addDecl(Context, Decl);
2599  return DeclPtrTy::make(Decl);
2600}
2601
2602void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
2603  Decl *Dcl = dcl.getAs<Decl>();
2604  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
2605  if (!Fn) {
2606    Diag(DelLoc, diag::err_deleted_non_function);
2607    return;
2608  }
2609  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
2610    Diag(DelLoc, diag::err_deleted_decl_not_first);
2611    Diag(Prev->getLocation(), diag::note_previous_declaration);
2612    // If the declaration wasn't the first, we delete the function anyway for
2613    // recovery.
2614  }
2615  Fn->setDeleted();
2616}
2617