SemaDeclCXX.cpp revision ab452ba8323d1985e08bade2bced588cddf2cc28
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  ParmVarDecl *Param = (ParmVarDecl *)param;
111  ExprOwningPtr<Expr> DefaultArg(this, (Expr *)defarg.release());
112  QualType ParamType = Param->getType();
113
114  // Default arguments are only permitted in C++
115  if (!getLangOptions().CPlusPlus) {
116    Diag(EqualLoc, diag::err_param_default_argument)
117      << DefaultArg->getSourceRange();
118    Param->setInvalidDecl();
119    return;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  Expr *DefaultArgPtr = DefaultArg.get();
129  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
130                                                 EqualLoc,
131                                                 Param->getDeclName(),
132                                                 /*DirectInit=*/false);
133  if (DefaultArgPtr != DefaultArg.get()) {
134    DefaultArg.take();
135    DefaultArg.reset(DefaultArgPtr);
136  }
137  if (DefaultInitFailed) {
138    return;
139  }
140
141  // Check that the default argument is well-formed
142  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
143  if (DefaultArgChecker.Visit(DefaultArg.get())) {
144    Param->setInvalidDecl();
145    return;
146  }
147
148  // Okay: add the default argument to the parameter
149  Param->setDefaultArg(DefaultArg.take());
150}
151
152/// ActOnParamUnparsedDefaultArgument - We've seen a default
153/// argument for a function parameter, but we can't parse it yet
154/// because we're inside a class definition. Note that this default
155/// argument will be parsed later.
156void Sema::ActOnParamUnparsedDefaultArgument(DeclTy *param,
157                                             SourceLocation EqualLoc) {
158  ParmVarDecl *Param = (ParmVarDecl*)param;
159  if (Param)
160    Param->setUnparsedDefaultArg();
161}
162
163/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
164/// the default argument for the parameter param failed.
165void Sema::ActOnParamDefaultArgumentError(DeclTy *param) {
166  ((ParmVarDecl*)param)->setInvalidDecl();
167}
168
169/// CheckExtraCXXDefaultArguments - Check for any extra default
170/// arguments in the declarator, which is not a function declaration
171/// or definition and therefore is not permitted to have default
172/// arguments. This routine should be invoked for every declarator
173/// that is not a function declaration or definition.
174void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
175  // C++ [dcl.fct.default]p3
176  //   A default argument expression shall be specified only in the
177  //   parameter-declaration-clause of a function declaration or in a
178  //   template-parameter (14.1). It shall not be specified for a
179  //   parameter pack. If it is specified in a
180  //   parameter-declaration-clause, it shall not occur within a
181  //   declarator or abstract-declarator of a parameter-declaration.
182  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
183    DeclaratorChunk &chunk = D.getTypeObject(i);
184    if (chunk.Kind == DeclaratorChunk::Function) {
185      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
186        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
187        if (Param->hasUnparsedDefaultArg()) {
188          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
189          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
190            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
191          delete Toks;
192          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
193        } else if (Param->getDefaultArg()) {
194          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
195            << Param->getDefaultArg()->getSourceRange();
196          Param->setDefaultArg(0);
197        }
198      }
199    }
200  }
201}
202
203// MergeCXXFunctionDecl - Merge two declarations of the same C++
204// function, once we already know that they have the same
205// type. Subroutine of MergeFunctionDecl. Returns true if there was an
206// error, false otherwise.
207bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
208  bool Invalid = false;
209
210  // C++ [dcl.fct.default]p4:
211  //
212  //   For non-template functions, default arguments can be added in
213  //   later declarations of a function in the same
214  //   scope. Declarations in different scopes have completely
215  //   distinct sets of default arguments. That is, declarations in
216  //   inner scopes do not acquire default arguments from
217  //   declarations in outer scopes, and vice versa. In a given
218  //   function declaration, all parameters subsequent to a
219  //   parameter with a default argument shall have default
220  //   arguments supplied in this or previous declarations. A
221  //   default argument shall not be redefined by a later
222  //   declaration (not even to the same value).
223  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
224    ParmVarDecl *OldParam = Old->getParamDecl(p);
225    ParmVarDecl *NewParam = New->getParamDecl(p);
226
227    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
228      Diag(NewParam->getLocation(),
229           diag::err_param_default_argument_redefinition)
230        << NewParam->getDefaultArg()->getSourceRange();
231      Diag(OldParam->getLocation(), diag::note_previous_definition);
232      Invalid = true;
233    } else if (OldParam->getDefaultArg()) {
234      // Merge the old default argument into the new parameter
235      NewParam->setDefaultArg(OldParam->getDefaultArg());
236    }
237  }
238
239  return Invalid;
240}
241
242/// CheckCXXDefaultArguments - Verify that the default arguments for a
243/// function declaration are well-formed according to C++
244/// [dcl.fct.default].
245void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
246  unsigned NumParams = FD->getNumParams();
247  unsigned p;
248
249  // Find first parameter with a default argument
250  for (p = 0; p < NumParams; ++p) {
251    ParmVarDecl *Param = FD->getParamDecl(p);
252    if (Param->getDefaultArg())
253      break;
254  }
255
256  // C++ [dcl.fct.default]p4:
257  //   In a given function declaration, all parameters
258  //   subsequent to a parameter with a default argument shall
259  //   have default arguments supplied in this or previous
260  //   declarations. A default argument shall not be redefined
261  //   by a later declaration (not even to the same value).
262  unsigned LastMissingDefaultArg = 0;
263  for(; p < NumParams; ++p) {
264    ParmVarDecl *Param = FD->getParamDecl(p);
265    if (!Param->getDefaultArg()) {
266      if (Param->isInvalidDecl())
267        /* We already complained about this parameter. */;
268      else if (Param->getIdentifier())
269        Diag(Param->getLocation(),
270             diag::err_param_default_argument_missing_name)
271          << Param->getIdentifier();
272      else
273        Diag(Param->getLocation(),
274             diag::err_param_default_argument_missing);
275
276      LastMissingDefaultArg = p;
277    }
278  }
279
280  if (LastMissingDefaultArg > 0) {
281    // Some default arguments were missing. Clear out all of the
282    // default arguments up to (and including) the last missing
283    // default argument, so that we leave the function parameters
284    // in a semantically valid state.
285    for (p = 0; p <= LastMissingDefaultArg; ++p) {
286      ParmVarDecl *Param = FD->getParamDecl(p);
287      if (Param->getDefaultArg()) {
288        if (!Param->hasUnparsedDefaultArg())
289          Param->getDefaultArg()->Destroy(Context);
290        Param->setDefaultArg(0);
291      }
292    }
293  }
294}
295
296/// isCurrentClassName - Determine whether the identifier II is the
297/// name of the class type currently being defined. In the case of
298/// nested classes, this will only return true if II is the name of
299/// the innermost class.
300bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
301                              const CXXScopeSpec *SS) {
302  CXXRecordDecl *CurDecl;
303  if (SS && SS->isSet() && !SS->isInvalid()) {
304    DeclContext *DC = computeDeclContext(*SS);
305    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
306  } else
307    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
308
309  if (CurDecl)
310    return &II == CurDecl->getIdentifier();
311  else
312    return false;
313}
314
315/// \brief Check the validity of a C++ base class specifier.
316///
317/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
318/// and returns NULL otherwise.
319CXXBaseSpecifier *
320Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
321                         SourceRange SpecifierRange,
322                         bool Virtual, AccessSpecifier Access,
323                         QualType BaseType,
324                         SourceLocation BaseLoc) {
325  // C++ [class.union]p1:
326  //   A union shall not have base classes.
327  if (Class->isUnion()) {
328    Diag(Class->getLocation(), diag::err_base_clause_on_union)
329      << SpecifierRange;
330    return 0;
331  }
332
333  if (BaseType->isDependentType())
334    return new CXXBaseSpecifier(SpecifierRange, Virtual,
335                                Class->getTagKind() == RecordDecl::TK_class,
336                                Access, BaseType);
337
338  // Base specifiers must be record types.
339  if (!BaseType->isRecordType()) {
340    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
341    return 0;
342  }
343
344  // C++ [class.union]p1:
345  //   A union shall not be used as a base class.
346  if (BaseType->isUnionType()) {
347    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
348    return 0;
349  }
350
351  // C++ [class.derived]p2:
352  //   The class-name in a base-specifier shall not be an incompletely
353  //   defined class.
354  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
355                          SpecifierRange))
356    return 0;
357
358  // If the base class is polymorphic, the new one is, too.
359  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
360  assert(BaseDecl && "Record type has no declaration");
361  BaseDecl = BaseDecl->getDefinition(Context);
362  assert(BaseDecl && "Base type is not incomplete, but has no definition");
363  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
364    Class->setPolymorphic(true);
365
366  // C++ [dcl.init.aggr]p1:
367  //   An aggregate is [...] a class with [...] no base classes [...].
368  Class->setAggregate(false);
369  Class->setPOD(false);
370
371  // Create the base specifier.
372  // FIXME: Allocate via ASTContext?
373  return new CXXBaseSpecifier(SpecifierRange, Virtual,
374                              Class->getTagKind() == RecordDecl::TK_class,
375                              Access, BaseType);
376}
377
378/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
379/// one entry in the base class list of a class specifier, for
380/// example:
381///    class foo : public bar, virtual private baz {
382/// 'public bar' and 'virtual private baz' are each base-specifiers.
383Sema::BaseResult
384Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
385                         bool Virtual, AccessSpecifier Access,
386                         TypeTy *basetype, SourceLocation BaseLoc) {
387  AdjustDeclIfTemplate(classdecl);
388  CXXRecordDecl *Class = cast<CXXRecordDecl>((Decl*)classdecl);
389  QualType BaseType = QualType::getFromOpaquePtr(basetype);
390  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
391                                                      Virtual, Access,
392                                                      BaseType, BaseLoc))
393    return BaseSpec;
394
395  return true;
396}
397
398/// \brief Performs the actual work of attaching the given base class
399/// specifiers to a C++ class.
400bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
401                                unsigned NumBases) {
402 if (NumBases == 0)
403    return false;
404
405  // Used to keep track of which base types we have already seen, so
406  // that we can properly diagnose redundant direct base types. Note
407  // that the key is always the unqualified canonical type of the base
408  // class.
409  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
410
411  // Copy non-redundant base specifiers into permanent storage.
412  unsigned NumGoodBases = 0;
413  bool Invalid = false;
414  for (unsigned idx = 0; idx < NumBases; ++idx) {
415    QualType NewBaseType
416      = Context.getCanonicalType(Bases[idx]->getType());
417    NewBaseType = NewBaseType.getUnqualifiedType();
418
419    if (KnownBaseTypes[NewBaseType]) {
420      // C++ [class.mi]p3:
421      //   A class shall not be specified as a direct base class of a
422      //   derived class more than once.
423      Diag(Bases[idx]->getSourceRange().getBegin(),
424           diag::err_duplicate_base_class)
425        << KnownBaseTypes[NewBaseType]->getType()
426        << Bases[idx]->getSourceRange();
427
428      // Delete the duplicate base class specifier; we're going to
429      // overwrite its pointer later.
430      delete Bases[idx];
431
432      Invalid = true;
433    } else {
434      // Okay, add this new base class.
435      KnownBaseTypes[NewBaseType] = Bases[idx];
436      Bases[NumGoodBases++] = Bases[idx];
437    }
438  }
439
440  // Attach the remaining base class specifiers to the derived class.
441  Class->setBases(Bases, NumGoodBases);
442
443  // Delete the remaining (good) base class specifiers, since their
444  // data has been copied into the CXXRecordDecl.
445  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
446    delete Bases[idx];
447
448  return Invalid;
449}
450
451/// ActOnBaseSpecifiers - Attach the given base specifiers to the
452/// class, after checking whether there are any duplicate base
453/// classes.
454void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
455                               unsigned NumBases) {
456  if (!ClassDecl || !Bases || !NumBases)
457    return;
458
459  AdjustDeclIfTemplate(ClassDecl);
460  AttachBaseSpecifiers(cast<CXXRecordDecl>((Decl*)ClassDecl),
461                       (CXXBaseSpecifier**)(Bases), NumBases);
462}
463
464//===----------------------------------------------------------------------===//
465// C++ class member Handling
466//===----------------------------------------------------------------------===//
467
468/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
469/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
470/// bitfield width if there is one and 'InitExpr' specifies the initializer if
471/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
472/// declarators on it.
473Sema::DeclTy *
474Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
475                               ExprTy *BW, ExprTy *InitExpr,
476                               DeclTy *LastInGroup) {
477  const DeclSpec &DS = D.getDeclSpec();
478  DeclarationName Name = GetNameForDeclarator(D);
479  Expr *BitWidth = static_cast<Expr*>(BW);
480  Expr *Init = static_cast<Expr*>(InitExpr);
481  SourceLocation Loc = D.getIdentifierLoc();
482
483  bool isFunc = D.isFunctionDeclarator();
484
485  // C++ 9.2p6: A member shall not be declared to have automatic storage
486  // duration (auto, register) or with the extern storage-class-specifier.
487  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
488  // data members and cannot be applied to names declared const or static,
489  // and cannot be applied to reference members.
490  switch (DS.getStorageClassSpec()) {
491    case DeclSpec::SCS_unspecified:
492    case DeclSpec::SCS_typedef:
493    case DeclSpec::SCS_static:
494      // FALL THROUGH.
495      break;
496    case DeclSpec::SCS_mutable:
497      if (isFunc) {
498        if (DS.getStorageClassSpecLoc().isValid())
499          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
500        else
501          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
502
503        // FIXME: It would be nicer if the keyword was ignored only for this
504        // declarator. Otherwise we could get follow-up errors.
505        D.getMutableDeclSpec().ClearStorageClassSpecs();
506      } else {
507        QualType T = GetTypeForDeclarator(D, S);
508        diag::kind err = static_cast<diag::kind>(0);
509        if (T->isReferenceType())
510          err = diag::err_mutable_reference;
511        else if (T.isConstQualified())
512          err = diag::err_mutable_const;
513        if (err != 0) {
514          if (DS.getStorageClassSpecLoc().isValid())
515            Diag(DS.getStorageClassSpecLoc(), err);
516          else
517            Diag(DS.getThreadSpecLoc(), err);
518          // FIXME: It would be nicer if the keyword was ignored only for this
519          // declarator. Otherwise we could get follow-up errors.
520          D.getMutableDeclSpec().ClearStorageClassSpecs();
521        }
522      }
523      break;
524    default:
525      if (DS.getStorageClassSpecLoc().isValid())
526        Diag(DS.getStorageClassSpecLoc(),
527             diag::err_storageclass_invalid_for_member);
528      else
529        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
530      D.getMutableDeclSpec().ClearStorageClassSpecs();
531  }
532
533  if (!isFunc &&
534      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
535      D.getNumTypeObjects() == 0) {
536    // Check also for this case:
537    //
538    // typedef int f();
539    // f a;
540    //
541    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
542    isFunc = TDType->isFunctionType();
543  }
544
545  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
546                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
547                      !isFunc);
548
549  Decl *Member;
550  if (isInstField) {
551    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
552                         AS);
553    assert(Member && "HandleField never returns null");
554  } else {
555    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
556    if (!Member) {
557      if (BitWidth) DeleteExpr(BitWidth);
558      return LastInGroup;
559    }
560
561    // Non-instance-fields can't have a bitfield.
562    if (BitWidth) {
563      if (Member->isInvalidDecl()) {
564        // don't emit another diagnostic.
565      } else if (isa<VarDecl>(Member)) {
566        // C++ 9.6p3: A bit-field shall not be a static member.
567        // "static member 'A' cannot be a bit-field"
568        Diag(Loc, diag::err_static_not_bitfield)
569          << Name << BitWidth->getSourceRange();
570      } else if (isa<TypedefDecl>(Member)) {
571        // "typedef member 'x' cannot be a bit-field"
572        Diag(Loc, diag::err_typedef_not_bitfield)
573          << Name << BitWidth->getSourceRange();
574      } else {
575        // A function typedef ("typedef int f(); f a;").
576        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
577        Diag(Loc, diag::err_not_integral_type_bitfield)
578          << Name << cast<ValueDecl>(Member)->getType()
579          << BitWidth->getSourceRange();
580      }
581
582      DeleteExpr(BitWidth);
583      BitWidth = 0;
584      Member->setInvalidDecl();
585    }
586
587    Member->setAccess(AS);
588  }
589
590  assert((Name || isInstField) && "No identifier for non-field ?");
591
592  if (Init)
593    AddInitializerToDecl(Member, ExprArg(*this, Init), false);
594
595  if (isInstField) {
596    FieldCollector->Add(cast<FieldDecl>(Member));
597    return LastInGroup;
598  }
599  return Member;
600}
601
602/// ActOnMemInitializer - Handle a C++ member initializer.
603Sema::MemInitResult
604Sema::ActOnMemInitializer(DeclTy *ConstructorD,
605                          Scope *S,
606                          IdentifierInfo *MemberOrBase,
607                          SourceLocation IdLoc,
608                          SourceLocation LParenLoc,
609                          ExprTy **Args, unsigned NumArgs,
610                          SourceLocation *CommaLocs,
611                          SourceLocation RParenLoc) {
612  CXXConstructorDecl *Constructor
613    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
614  if (!Constructor) {
615    // The user wrote a constructor initializer on a function that is
616    // not a C++ constructor. Ignore the error for now, because we may
617    // have more member initializers coming; we'll diagnose it just
618    // once in ActOnMemInitializers.
619    return true;
620  }
621
622  CXXRecordDecl *ClassDecl = Constructor->getParent();
623
624  // C++ [class.base.init]p2:
625  //   Names in a mem-initializer-id are looked up in the scope of the
626  //   constructor’s class and, if not found in that scope, are looked
627  //   up in the scope containing the constructor’s
628  //   definition. [Note: if the constructor’s class contains a member
629  //   with the same name as a direct or virtual base class of the
630  //   class, a mem-initializer-id naming the member or base class and
631  //   composed of a single identifier refers to the class member. A
632  //   mem-initializer-id for the hidden base class may be specified
633  //   using a qualified name. ]
634  // Look for a member, first.
635  FieldDecl *Member = 0;
636  DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
637  if (Result.first != Result.second)
638    Member = dyn_cast<FieldDecl>(*Result.first);
639
640  // FIXME: Handle members of an anonymous union.
641
642  if (Member) {
643    // FIXME: Perform direct initialization of the member.
644    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
645  }
646
647  // It didn't name a member, so see if it names a class.
648  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
649  if (!BaseTy)
650    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
651      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
652
653  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
654  if (!BaseType->isRecordType())
655    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
656      << BaseType << SourceRange(IdLoc, RParenLoc);
657
658  // C++ [class.base.init]p2:
659  //   [...] Unless the mem-initializer-id names a nonstatic data
660  //   member of the constructor’s class or a direct or virtual base
661  //   of that class, the mem-initializer is ill-formed. A
662  //   mem-initializer-list can initialize a base class using any
663  //   name that denotes that base class type.
664
665  // First, check for a direct base class.
666  const CXXBaseSpecifier *DirectBaseSpec = 0;
667  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
668       Base != ClassDecl->bases_end(); ++Base) {
669    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
670        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
671      // We found a direct base of this type. That's what we're
672      // initializing.
673      DirectBaseSpec = &*Base;
674      break;
675    }
676  }
677
678  // Check for a virtual base class.
679  // FIXME: We might be able to short-circuit this if we know in
680  // advance that there are no virtual bases.
681  const CXXBaseSpecifier *VirtualBaseSpec = 0;
682  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
683    // We haven't found a base yet; search the class hierarchy for a
684    // virtual base class.
685    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
686                    /*DetectVirtual=*/false);
687    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
688      for (BasePaths::paths_iterator Path = Paths.begin();
689           Path != Paths.end(); ++Path) {
690        if (Path->back().Base->isVirtual()) {
691          VirtualBaseSpec = Path->back().Base;
692          break;
693        }
694      }
695    }
696  }
697
698  // C++ [base.class.init]p2:
699  //   If a mem-initializer-id is ambiguous because it designates both
700  //   a direct non-virtual base class and an inherited virtual base
701  //   class, the mem-initializer is ill-formed.
702  if (DirectBaseSpec && VirtualBaseSpec)
703    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
704      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
705
706  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
707}
708
709void Sema::ActOnMemInitializers(DeclTy *ConstructorDecl,
710                                SourceLocation ColonLoc,
711                                MemInitTy **MemInits, unsigned NumMemInits) {
712  CXXConstructorDecl *Constructor =
713  dyn_cast<CXXConstructorDecl>((Decl *)ConstructorDecl);
714
715  if (!Constructor) {
716    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
717    return;
718  }
719}
720
721namespace {
722  /// PureVirtualMethodCollector - traverses a class and its superclasses
723  /// and determines if it has any pure virtual methods.
724  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
725    ASTContext &Context;
726
727  public:
728    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
729
730  private:
731    MethodList Methods;
732
733    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
734
735  public:
736    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
737      : Context(Ctx) {
738
739      MethodList List;
740      Collect(RD, List);
741
742      // Copy the temporary list to methods, and make sure to ignore any
743      // null entries.
744      for (size_t i = 0, e = List.size(); i != e; ++i) {
745        if (List[i])
746          Methods.push_back(List[i]);
747      }
748    }
749
750    bool empty() const { return Methods.empty(); }
751
752    MethodList::const_iterator methods_begin() { return Methods.begin(); }
753    MethodList::const_iterator methods_end() { return Methods.end(); }
754  };
755
756  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
757                                           MethodList& Methods) {
758    // First, collect the pure virtual methods for the base classes.
759    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
760         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
761      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
762        const CXXRecordDecl *BaseDecl
763          = cast<CXXRecordDecl>(RT->getDecl());
764        if (BaseDecl && BaseDecl->isAbstract())
765          Collect(BaseDecl, Methods);
766      }
767    }
768
769    // Next, zero out any pure virtual methods that this class overrides.
770    for (size_t i = 0, e = Methods.size(); i != e; ++i) {
771      const CXXMethodDecl *VMD = dyn_cast_or_null<CXXMethodDecl>(Methods[i]);
772      if (!VMD)
773        continue;
774
775      DeclContext::lookup_const_iterator I, E;
776      for (llvm::tie(I, E) = RD->lookup(VMD->getDeclName()); I != E; ++I) {
777        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I)) {
778          if (Context.getCanonicalType(MD->getType()) ==
779              Context.getCanonicalType(VMD->getType())) {
780            // We did find a matching method, which means that this is not a
781            // pure virtual method in the current class. Zero it out.
782            Methods[i] = 0;
783          }
784        }
785      }
786    }
787
788    // Finally, add pure virtual methods from this class.
789    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
790         i != e; ++i) {
791      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
792        if (MD->isPure())
793          Methods.push_back(MD);
794      }
795    }
796  }
797}
798
799bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
800                                  unsigned DiagID, AbstractDiagSelID SelID,
801                                  const CXXRecordDecl *CurrentRD) {
802
803  if (!getLangOptions().CPlusPlus)
804    return false;
805
806  if (const ArrayType *AT = Context.getAsArrayType(T))
807    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
808                                  CurrentRD);
809
810  if (const PointerType *PT = T->getAsPointerType()) {
811    // Find the innermost pointer type.
812    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
813      PT = T;
814
815    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
816      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
817                                    CurrentRD);
818  }
819
820  const RecordType *RT = T->getAsRecordType();
821  if (!RT)
822    return false;
823
824  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
825  if (!RD)
826    return false;
827
828  if (CurrentRD && CurrentRD != RD)
829    return false;
830
831  if (!RD->isAbstract())
832    return false;
833
834  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
835
836  // Check if we've already emitted the list of pure virtual functions for this
837  // class.
838  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
839    return true;
840
841  PureVirtualMethodCollector Collector(Context, RD);
842
843  for (PureVirtualMethodCollector::MethodList::const_iterator I =
844       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
845    const CXXMethodDecl *MD = *I;
846
847    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
848      MD->getDeclName();
849  }
850
851  if (!PureVirtualClassDiagSet)
852    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
853  PureVirtualClassDiagSet->insert(RD);
854
855  return true;
856}
857
858namespace {
859  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
860    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
861    Sema &SemaRef;
862    CXXRecordDecl *AbstractClass;
863
864    bool VisitDeclContext(const DeclContext *DC) {
865      bool Invalid = false;
866
867      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
868           E = DC->decls_end(); I != E; ++I)
869        Invalid |= Visit(*I);
870
871      return Invalid;
872    }
873
874  public:
875    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
876      : SemaRef(SemaRef), AbstractClass(ac) {
877        Visit(SemaRef.Context.getTranslationUnitDecl());
878    }
879
880    bool VisitFunctionDecl(const FunctionDecl *FD) {
881      if (FD->isThisDeclarationADefinition()) {
882        // No need to do the check if we're in a definition, because it requires
883        // that the return/param types are complete.
884        // because that requires
885        return VisitDeclContext(FD);
886      }
887
888      // Check the return type.
889      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
890      bool Invalid =
891        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
892                                       diag::err_abstract_type_in_decl,
893                                       Sema::AbstractReturnType,
894                                       AbstractClass);
895
896      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
897           E = FD->param_end(); I != E; ++I) {
898        const ParmVarDecl *VD = *I;
899        Invalid |=
900          SemaRef.RequireNonAbstractType(VD->getLocation(),
901                                         VD->getOriginalType(),
902                                         diag::err_abstract_type_in_decl,
903                                         Sema::AbstractParamType,
904                                         AbstractClass);
905      }
906
907      return Invalid;
908    }
909
910    bool VisitDecl(const Decl* D) {
911      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
912        return VisitDeclContext(DC);
913
914      return false;
915    }
916  };
917}
918
919void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
920                                             DeclTy *TagDecl,
921                                             SourceLocation LBrac,
922                                             SourceLocation RBrac) {
923  TemplateDecl *Template = AdjustDeclIfTemplate(TagDecl);
924  ActOnFields(S, RLoc, TagDecl,
925              (DeclTy**)FieldCollector->getCurFields(),
926              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
927
928  CXXRecordDecl *RD = cast<CXXRecordDecl>((Decl*)TagDecl);
929  if (!RD->isAbstract()) {
930    // Collect all the pure virtual methods and see if this is an abstract
931    // class after all.
932    PureVirtualMethodCollector Collector(Context, RD);
933    if (!Collector.empty())
934      RD->setAbstract(true);
935  }
936
937  if (RD->isAbstract())
938    AbstractClassUsageDiagnoser(*this, RD);
939
940  if (!Template)
941    AddImplicitlyDeclaredMembersToClass(RD);
942}
943
944/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
945/// special functions, such as the default constructor, copy
946/// constructor, or destructor, to the given C++ class (C++
947/// [special]p1).  This routine can only be executed just before the
948/// definition of the class is complete.
949void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
950  QualType ClassType = Context.getTypeDeclType(ClassDecl);
951  ClassType = Context.getCanonicalType(ClassType);
952
953  if (!ClassDecl->hasUserDeclaredConstructor()) {
954    // C++ [class.ctor]p5:
955    //   A default constructor for a class X is a constructor of class X
956    //   that can be called without an argument. If there is no
957    //   user-declared constructor for class X, a default constructor is
958    //   implicitly declared. An implicitly-declared default constructor
959    //   is an inline public member of its class.
960    DeclarationName Name
961      = Context.DeclarationNames.getCXXConstructorName(ClassType);
962    CXXConstructorDecl *DefaultCon =
963      CXXConstructorDecl::Create(Context, ClassDecl,
964                                 ClassDecl->getLocation(), Name,
965                                 Context.getFunctionType(Context.VoidTy,
966                                                         0, 0, false, 0),
967                                 /*isExplicit=*/false,
968                                 /*isInline=*/true,
969                                 /*isImplicitlyDeclared=*/true);
970    DefaultCon->setAccess(AS_public);
971    DefaultCon->setImplicit();
972    ClassDecl->addDecl(DefaultCon);
973
974    // Notify the class that we've added a constructor.
975    ClassDecl->addedConstructor(Context, DefaultCon);
976  }
977
978  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
979    // C++ [class.copy]p4:
980    //   If the class definition does not explicitly declare a copy
981    //   constructor, one is declared implicitly.
982
983    // C++ [class.copy]p5:
984    //   The implicitly-declared copy constructor for a class X will
985    //   have the form
986    //
987    //       X::X(const X&)
988    //
989    //   if
990    bool HasConstCopyConstructor = true;
991
992    //     -- each direct or virtual base class B of X has a copy
993    //        constructor whose first parameter is of type const B& or
994    //        const volatile B&, and
995    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
996         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
997      const CXXRecordDecl *BaseClassDecl
998        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
999      HasConstCopyConstructor
1000        = BaseClassDecl->hasConstCopyConstructor(Context);
1001    }
1002
1003    //     -- for all the nonstatic data members of X that are of a
1004    //        class type M (or array thereof), each such class type
1005    //        has a copy constructor whose first parameter is of type
1006    //        const M& or const volatile M&.
1007    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1008         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
1009      QualType FieldType = (*Field)->getType();
1010      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1011        FieldType = Array->getElementType();
1012      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1013        const CXXRecordDecl *FieldClassDecl
1014          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1015        HasConstCopyConstructor
1016          = FieldClassDecl->hasConstCopyConstructor(Context);
1017      }
1018    }
1019
1020    //   Otherwise, the implicitly declared copy constructor will have
1021    //   the form
1022    //
1023    //       X::X(X&)
1024    QualType ArgType = ClassType;
1025    if (HasConstCopyConstructor)
1026      ArgType = ArgType.withConst();
1027    ArgType = Context.getLValueReferenceType(ArgType);
1028
1029    //   An implicitly-declared copy constructor is an inline public
1030    //   member of its class.
1031    DeclarationName Name
1032      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1033    CXXConstructorDecl *CopyConstructor
1034      = CXXConstructorDecl::Create(Context, ClassDecl,
1035                                   ClassDecl->getLocation(), Name,
1036                                   Context.getFunctionType(Context.VoidTy,
1037                                                           &ArgType, 1,
1038                                                           false, 0),
1039                                   /*isExplicit=*/false,
1040                                   /*isInline=*/true,
1041                                   /*isImplicitlyDeclared=*/true);
1042    CopyConstructor->setAccess(AS_public);
1043    CopyConstructor->setImplicit();
1044
1045    // Add the parameter to the constructor.
1046    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1047                                                 ClassDecl->getLocation(),
1048                                                 /*IdentifierInfo=*/0,
1049                                                 ArgType, VarDecl::None, 0);
1050    CopyConstructor->setParams(Context, &FromParam, 1);
1051
1052    ClassDecl->addedConstructor(Context, CopyConstructor);
1053    ClassDecl->addDecl(CopyConstructor);
1054  }
1055
1056  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1057    // Note: The following rules are largely analoguous to the copy
1058    // constructor rules. Note that virtual bases are not taken into account
1059    // for determining the argument type of the operator. Note also that
1060    // operators taking an object instead of a reference are allowed.
1061    //
1062    // C++ [class.copy]p10:
1063    //   If the class definition does not explicitly declare a copy
1064    //   assignment operator, one is declared implicitly.
1065    //   The implicitly-defined copy assignment operator for a class X
1066    //   will have the form
1067    //
1068    //       X& X::operator=(const X&)
1069    //
1070    //   if
1071    bool HasConstCopyAssignment = true;
1072
1073    //       -- each direct base class B of X has a copy assignment operator
1074    //          whose parameter is of type const B&, const volatile B& or B,
1075    //          and
1076    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1077         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1078      const CXXRecordDecl *BaseClassDecl
1079        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1080      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1081    }
1082
1083    //       -- for all the nonstatic data members of X that are of a class
1084    //          type M (or array thereof), each such class type has a copy
1085    //          assignment operator whose parameter is of type const M&,
1086    //          const volatile M& or M.
1087    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1088         HasConstCopyAssignment && Field != ClassDecl->field_end(); ++Field) {
1089      QualType FieldType = (*Field)->getType();
1090      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1091        FieldType = Array->getElementType();
1092      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1093        const CXXRecordDecl *FieldClassDecl
1094          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1095        HasConstCopyAssignment
1096          = FieldClassDecl->hasConstCopyAssignment(Context);
1097      }
1098    }
1099
1100    //   Otherwise, the implicitly declared copy assignment operator will
1101    //   have the form
1102    //
1103    //       X& X::operator=(X&)
1104    QualType ArgType = ClassType;
1105    QualType RetType = Context.getLValueReferenceType(ArgType);
1106    if (HasConstCopyAssignment)
1107      ArgType = ArgType.withConst();
1108    ArgType = Context.getLValueReferenceType(ArgType);
1109
1110    //   An implicitly-declared copy assignment operator is an inline public
1111    //   member of its class.
1112    DeclarationName Name =
1113      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1114    CXXMethodDecl *CopyAssignment =
1115      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1116                            Context.getFunctionType(RetType, &ArgType, 1,
1117                                                    false, 0),
1118                            /*isStatic=*/false, /*isInline=*/true);
1119    CopyAssignment->setAccess(AS_public);
1120    CopyAssignment->setImplicit();
1121
1122    // Add the parameter to the operator.
1123    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1124                                                 ClassDecl->getLocation(),
1125                                                 /*IdentifierInfo=*/0,
1126                                                 ArgType, VarDecl::None, 0);
1127    CopyAssignment->setParams(Context, &FromParam, 1);
1128
1129    // Don't call addedAssignmentOperator. There is no way to distinguish an
1130    // implicit from an explicit assignment operator.
1131    ClassDecl->addDecl(CopyAssignment);
1132  }
1133
1134  if (!ClassDecl->hasUserDeclaredDestructor()) {
1135    // C++ [class.dtor]p2:
1136    //   If a class has no user-declared destructor, a destructor is
1137    //   declared implicitly. An implicitly-declared destructor is an
1138    //   inline public member of its class.
1139    DeclarationName Name
1140      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1141    CXXDestructorDecl *Destructor
1142      = CXXDestructorDecl::Create(Context, ClassDecl,
1143                                  ClassDecl->getLocation(), Name,
1144                                  Context.getFunctionType(Context.VoidTy,
1145                                                          0, 0, false, 0),
1146                                  /*isInline=*/true,
1147                                  /*isImplicitlyDeclared=*/true);
1148    Destructor->setAccess(AS_public);
1149    Destructor->setImplicit();
1150    ClassDecl->addDecl(Destructor);
1151  }
1152}
1153
1154/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1155/// parsing a top-level (non-nested) C++ class, and we are now
1156/// parsing those parts of the given Method declaration that could
1157/// not be parsed earlier (C++ [class.mem]p2), such as default
1158/// arguments. This action should enter the scope of the given
1159/// Method declaration as if we had just parsed the qualified method
1160/// name. However, it should not bring the parameters into scope;
1161/// that will be performed by ActOnDelayedCXXMethodParameter.
1162void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclTy *MethodD) {
1163  CXXScopeSpec SS;
1164  FunctionDecl *Method = (FunctionDecl*)MethodD;
1165  QualType ClassTy
1166    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1167  SS.setScopeRep(
1168    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1169  ActOnCXXEnterDeclaratorScope(S, SS);
1170}
1171
1172/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1173/// C++ method declaration. We're (re-)introducing the given
1174/// function parameter into scope for use in parsing later parts of
1175/// the method declaration. For example, we could see an
1176/// ActOnParamDefaultArgument event for this parameter.
1177void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclTy *ParamD) {
1178  ParmVarDecl *Param = (ParmVarDecl*)ParamD;
1179
1180  // If this parameter has an unparsed default argument, clear it out
1181  // to make way for the parsed default argument.
1182  if (Param->hasUnparsedDefaultArg())
1183    Param->setDefaultArg(0);
1184
1185  S->AddDecl(Param);
1186  if (Param->getDeclName())
1187    IdResolver.AddDecl(Param);
1188}
1189
1190/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1191/// processing the delayed method declaration for Method. The method
1192/// declaration is now considered finished. There may be a separate
1193/// ActOnStartOfFunctionDef action later (not necessarily
1194/// immediately!) for this method, if it was also defined inside the
1195/// class body.
1196void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclTy *MethodD) {
1197  FunctionDecl *Method = (FunctionDecl*)MethodD;
1198  CXXScopeSpec SS;
1199  QualType ClassTy
1200    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1201  SS.setScopeRep(
1202    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1203  ActOnCXXExitDeclaratorScope(S, SS);
1204
1205  // Now that we have our default arguments, check the constructor
1206  // again. It could produce additional diagnostics or affect whether
1207  // the class has implicitly-declared destructors, among other
1208  // things.
1209  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
1210    if (CheckConstructor(Constructor))
1211      Constructor->setInvalidDecl();
1212  }
1213
1214  // Check the default arguments, which we may have added.
1215  if (!Method->isInvalidDecl())
1216    CheckCXXDefaultArguments(Method);
1217}
1218
1219/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1220/// the well-formedness of the constructor declarator @p D with type @p
1221/// R. If there are any errors in the declarator, this routine will
1222/// emit diagnostics and return true. Otherwise, it will return
1223/// false. Either way, the type @p R will be updated to reflect a
1224/// well-formed type for the constructor.
1225bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
1226                                      FunctionDecl::StorageClass& SC) {
1227  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1228  bool isInvalid = false;
1229
1230  // C++ [class.ctor]p3:
1231  //   A constructor shall not be virtual (10.3) or static (9.4). A
1232  //   constructor can be invoked for a const, volatile or const
1233  //   volatile object. A constructor shall not be declared const,
1234  //   volatile, or const volatile (9.3.2).
1235  if (isVirtual) {
1236    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1237      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1238      << SourceRange(D.getIdentifierLoc());
1239    isInvalid = true;
1240  }
1241  if (SC == FunctionDecl::Static) {
1242    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1243      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1244      << SourceRange(D.getIdentifierLoc());
1245    isInvalid = true;
1246    SC = FunctionDecl::None;
1247  }
1248  if (D.getDeclSpec().hasTypeSpecifier()) {
1249    // Constructors don't have return types, but the parser will
1250    // happily parse something like:
1251    //
1252    //   class X {
1253    //     float X(float);
1254    //   };
1255    //
1256    // The return type will be eliminated later.
1257    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
1258      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1259      << SourceRange(D.getIdentifierLoc());
1260  }
1261  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1262    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1263    if (FTI.TypeQuals & QualType::Const)
1264      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1265        << "const" << SourceRange(D.getIdentifierLoc());
1266    if (FTI.TypeQuals & QualType::Volatile)
1267      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1268        << "volatile" << SourceRange(D.getIdentifierLoc());
1269    if (FTI.TypeQuals & QualType::Restrict)
1270      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1271        << "restrict" << SourceRange(D.getIdentifierLoc());
1272  }
1273
1274  // Rebuild the function type "R" without any type qualifiers (in
1275  // case any of the errors above fired) and with "void" as the
1276  // return type, since constructors don't have return types. We
1277  // *always* have to do this, because GetTypeForDeclarator will
1278  // put in a result type of "int" when none was specified.
1279  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1280  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1281                              Proto->getNumArgs(),
1282                              Proto->isVariadic(),
1283                              0);
1284
1285  return isInvalid;
1286}
1287
1288/// CheckConstructor - Checks a fully-formed constructor for
1289/// well-formedness, issuing any diagnostics required. Returns true if
1290/// the constructor declarator is invalid.
1291bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1292  if (Constructor->isInvalidDecl())
1293    return true;
1294
1295  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1296  bool Invalid = false;
1297
1298  // C++ [class.copy]p3:
1299  //   A declaration of a constructor for a class X is ill-formed if
1300  //   its first parameter is of type (optionally cv-qualified) X and
1301  //   either there are no other parameters or else all other
1302  //   parameters have default arguments.
1303  if ((Constructor->getNumParams() == 1) ||
1304      (Constructor->getNumParams() > 1 &&
1305       Constructor->getParamDecl(1)->getDefaultArg() != 0)) {
1306    QualType ParamType = Constructor->getParamDecl(0)->getType();
1307    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1308    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1309      Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg)
1310        << SourceRange(Constructor->getParamDecl(0)->getLocation());
1311      Invalid = true;
1312    }
1313  }
1314
1315  // Notify the class that we've added a constructor.
1316  ClassDecl->addedConstructor(Context, Constructor);
1317
1318  return Invalid;
1319}
1320
1321/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1322/// the well-formednes of the destructor declarator @p D with type @p
1323/// R. If there are any errors in the declarator, this routine will
1324/// emit diagnostics and return true. Otherwise, it will return
1325/// false. Either way, the type @p R will be updated to reflect a
1326/// well-formed type for the destructor.
1327bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1328                                     FunctionDecl::StorageClass& SC) {
1329  bool isInvalid = false;
1330
1331  // C++ [class.dtor]p1:
1332  //   [...] A typedef-name that names a class is a class-name
1333  //   (7.1.3); however, a typedef-name that names a class shall not
1334  //   be used as the identifier in the declarator for a destructor
1335  //   declaration.
1336  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1337  if (DeclaratorType->getAsTypedefType()) {
1338    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1339      << DeclaratorType;
1340    isInvalid = true;
1341  }
1342
1343  // C++ [class.dtor]p2:
1344  //   A destructor is used to destroy objects of its class type. A
1345  //   destructor takes no parameters, and no return type can be
1346  //   specified for it (not even void). The address of a destructor
1347  //   shall not be taken. A destructor shall not be static. A
1348  //   destructor can be invoked for a const, volatile or const
1349  //   volatile object. A destructor shall not be declared const,
1350  //   volatile or const volatile (9.3.2).
1351  if (SC == FunctionDecl::Static) {
1352    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1353      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1354      << SourceRange(D.getIdentifierLoc());
1355    isInvalid = true;
1356    SC = FunctionDecl::None;
1357  }
1358  if (D.getDeclSpec().hasTypeSpecifier()) {
1359    // Destructors don't have return types, but the parser will
1360    // happily parse something like:
1361    //
1362    //   class X {
1363    //     float ~X();
1364    //   };
1365    //
1366    // The return type will be eliminated later.
1367    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1368      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1369      << SourceRange(D.getIdentifierLoc());
1370  }
1371  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1372    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1373    if (FTI.TypeQuals & QualType::Const)
1374      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1375        << "const" << SourceRange(D.getIdentifierLoc());
1376    if (FTI.TypeQuals & QualType::Volatile)
1377      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1378        << "volatile" << SourceRange(D.getIdentifierLoc());
1379    if (FTI.TypeQuals & QualType::Restrict)
1380      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1381        << "restrict" << SourceRange(D.getIdentifierLoc());
1382  }
1383
1384  // Make sure we don't have any parameters.
1385  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1386    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1387
1388    // Delete the parameters.
1389    D.getTypeObject(0).Fun.freeArgs();
1390  }
1391
1392  // Make sure the destructor isn't variadic.
1393  if (R->getAsFunctionProtoType()->isVariadic())
1394    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1395
1396  // Rebuild the function type "R" without any type qualifiers or
1397  // parameters (in case any of the errors above fired) and with
1398  // "void" as the return type, since destructors don't have return
1399  // types. We *always* have to do this, because GetTypeForDeclarator
1400  // will put in a result type of "int" when none was specified.
1401  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1402
1403  return isInvalid;
1404}
1405
1406/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1407/// well-formednes of the conversion function declarator @p D with
1408/// type @p R. If there are any errors in the declarator, this routine
1409/// will emit diagnostics and return true. Otherwise, it will return
1410/// false. Either way, the type @p R will be updated to reflect a
1411/// well-formed type for the conversion operator.
1412bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1413                                     FunctionDecl::StorageClass& SC) {
1414  bool isInvalid = false;
1415
1416  // C++ [class.conv.fct]p1:
1417  //   Neither parameter types nor return type can be specified. The
1418  //   type of a conversion function (8.3.5) is “function taking no
1419  //   parameter returning conversion-type-id.”
1420  if (SC == FunctionDecl::Static) {
1421    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1422      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1423      << SourceRange(D.getIdentifierLoc());
1424    isInvalid = true;
1425    SC = FunctionDecl::None;
1426  }
1427  if (D.getDeclSpec().hasTypeSpecifier()) {
1428    // Conversion functions don't have return types, but the parser will
1429    // happily parse something like:
1430    //
1431    //   class X {
1432    //     float operator bool();
1433    //   };
1434    //
1435    // The return type will be changed later anyway.
1436    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1437      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1438      << SourceRange(D.getIdentifierLoc());
1439  }
1440
1441  // Make sure we don't have any parameters.
1442  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1443    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1444
1445    // Delete the parameters.
1446    D.getTypeObject(0).Fun.freeArgs();
1447  }
1448
1449  // Make sure the conversion function isn't variadic.
1450  if (R->getAsFunctionProtoType()->isVariadic())
1451    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1452
1453  // C++ [class.conv.fct]p4:
1454  //   The conversion-type-id shall not represent a function type nor
1455  //   an array type.
1456  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1457  if (ConvType->isArrayType()) {
1458    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1459    ConvType = Context.getPointerType(ConvType);
1460  } else if (ConvType->isFunctionType()) {
1461    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1462    ConvType = Context.getPointerType(ConvType);
1463  }
1464
1465  // Rebuild the function type "R" without any parameters (in case any
1466  // of the errors above fired) and with the conversion type as the
1467  // return type.
1468  R = Context.getFunctionType(ConvType, 0, 0, false,
1469                              R->getAsFunctionProtoType()->getTypeQuals());
1470
1471  // C++0x explicit conversion operators.
1472  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1473    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1474         diag::warn_explicit_conversion_functions)
1475      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1476
1477  return isInvalid;
1478}
1479
1480/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1481/// the declaration of the given C++ conversion function. This routine
1482/// is responsible for recording the conversion function in the C++
1483/// class, if possible.
1484Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1485  assert(Conversion && "Expected to receive a conversion function declaration");
1486
1487  // Set the lexical context of this conversion function
1488  Conversion->setLexicalDeclContext(CurContext);
1489
1490  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1491
1492  // Make sure we aren't redeclaring the conversion function.
1493  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1494
1495  // C++ [class.conv.fct]p1:
1496  //   [...] A conversion function is never used to convert a
1497  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1498  //   same object type (or a reference to it), to a (possibly
1499  //   cv-qualified) base class of that type (or a reference to it),
1500  //   or to (possibly cv-qualified) void.
1501  // FIXME: Suppress this warning if the conversion function ends up
1502  // being a virtual function that overrides a virtual function in a
1503  // base class.
1504  QualType ClassType
1505    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1506  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1507    ConvType = ConvTypeRef->getPointeeType();
1508  if (ConvType->isRecordType()) {
1509    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1510    if (ConvType == ClassType)
1511      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1512        << ClassType;
1513    else if (IsDerivedFrom(ClassType, ConvType))
1514      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1515        <<  ClassType << ConvType;
1516  } else if (ConvType->isVoidType()) {
1517    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1518      << ClassType << ConvType;
1519  }
1520
1521  if (Conversion->getPreviousDeclaration()) {
1522    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1523    for (OverloadedFunctionDecl::function_iterator
1524           Conv = Conversions->function_begin(),
1525           ConvEnd = Conversions->function_end();
1526         Conv != ConvEnd; ++Conv) {
1527      if (*Conv == Conversion->getPreviousDeclaration()) {
1528        *Conv = Conversion;
1529        return (DeclTy *)Conversion;
1530      }
1531    }
1532    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1533  } else
1534    ClassDecl->addConversionFunction(Context, Conversion);
1535
1536  return (DeclTy *)Conversion;
1537}
1538
1539//===----------------------------------------------------------------------===//
1540// Namespace Handling
1541//===----------------------------------------------------------------------===//
1542
1543/// ActOnStartNamespaceDef - This is called at the start of a namespace
1544/// definition.
1545Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1546                                           SourceLocation IdentLoc,
1547                                           IdentifierInfo *II,
1548                                           SourceLocation LBrace) {
1549  NamespaceDecl *Namespc =
1550      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1551  Namespc->setLBracLoc(LBrace);
1552
1553  Scope *DeclRegionScope = NamespcScope->getParent();
1554
1555  if (II) {
1556    // C++ [namespace.def]p2:
1557    // The identifier in an original-namespace-definition shall not have been
1558    // previously defined in the declarative region in which the
1559    // original-namespace-definition appears. The identifier in an
1560    // original-namespace-definition is the name of the namespace. Subsequently
1561    // in that declarative region, it is treated as an original-namespace-name.
1562
1563    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1564                                     true);
1565
1566    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1567      // This is an extended namespace definition.
1568      // Attach this namespace decl to the chain of extended namespace
1569      // definitions.
1570      OrigNS->setNextNamespace(Namespc);
1571      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1572
1573      // Remove the previous declaration from the scope.
1574      if (DeclRegionScope->isDeclScope(OrigNS)) {
1575        IdResolver.RemoveDecl(OrigNS);
1576        DeclRegionScope->RemoveDecl(OrigNS);
1577      }
1578    } else if (PrevDecl) {
1579      // This is an invalid name redefinition.
1580      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1581       << Namespc->getDeclName();
1582      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1583      Namespc->setInvalidDecl();
1584      // Continue on to push Namespc as current DeclContext and return it.
1585    }
1586
1587    PushOnScopeChains(Namespc, DeclRegionScope);
1588  } else {
1589    // FIXME: Handle anonymous namespaces
1590  }
1591
1592  // Although we could have an invalid decl (i.e. the namespace name is a
1593  // redefinition), push it as current DeclContext and try to continue parsing.
1594  // FIXME: We should be able to push Namespc here, so that the
1595  // each DeclContext for the namespace has the declarations
1596  // that showed up in that particular namespace definition.
1597  PushDeclContext(NamespcScope, Namespc);
1598  return Namespc;
1599}
1600
1601/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1602/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1603void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
1604  Decl *Dcl = static_cast<Decl *>(D);
1605  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1606  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1607  Namespc->setRBracLoc(RBrace);
1608  PopDeclContext();
1609}
1610
1611Sema::DeclTy *Sema::ActOnUsingDirective(Scope *S,
1612                                        SourceLocation UsingLoc,
1613                                        SourceLocation NamespcLoc,
1614                                        const CXXScopeSpec &SS,
1615                                        SourceLocation IdentLoc,
1616                                        IdentifierInfo *NamespcName,
1617                                        AttributeList *AttrList) {
1618  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1619  assert(NamespcName && "Invalid NamespcName.");
1620  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1621  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1622
1623  UsingDirectiveDecl *UDir = 0;
1624
1625  // Lookup namespace name.
1626  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1627                                    LookupNamespaceName, false);
1628  if (R.isAmbiguous()) {
1629    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1630    return 0;
1631  }
1632  if (NamedDecl *NS = R) {
1633    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1634    // C++ [namespace.udir]p1:
1635    //   A using-directive specifies that the names in the nominated
1636    //   namespace can be used in the scope in which the
1637    //   using-directive appears after the using-directive. During
1638    //   unqualified name lookup (3.4.1), the names appear as if they
1639    //   were declared in the nearest enclosing namespace which
1640    //   contains both the using-directive and the nominated
1641    //   namespace. [Note: in this context, “contains” means “contains
1642    //   directly or indirectly”. ]
1643
1644    // Find enclosing context containing both using-directive and
1645    // nominated namespace.
1646    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1647    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1648      CommonAncestor = CommonAncestor->getParent();
1649
1650    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc,
1651                                      NamespcLoc, IdentLoc,
1652                                      cast<NamespaceDecl>(NS),
1653                                      CommonAncestor);
1654    PushUsingDirective(S, UDir);
1655  } else {
1656    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1657  }
1658
1659  // FIXME: We ignore attributes for now.
1660  delete AttrList;
1661  return UDir;
1662}
1663
1664void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1665  // If scope has associated entity, then using directive is at namespace
1666  // or translation unit scope. We add UsingDirectiveDecls, into
1667  // it's lookup structure.
1668  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1669    Ctx->addDecl(UDir);
1670  else
1671    // Otherwise it is block-sope. using-directives will affect lookup
1672    // only to the end of scope.
1673    S->PushUsingDirective(UDir);
1674}
1675
1676/// AddCXXDirectInitializerToDecl - This action is called immediately after
1677/// ActOnDeclarator, when a C++ direct initializer is present.
1678/// e.g: "int x(1);"
1679void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
1680                                         MultiExprArg Exprs,
1681                                         SourceLocation *CommaLocs,
1682                                         SourceLocation RParenLoc) {
1683  unsigned NumExprs = Exprs.size();
1684  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
1685  Decl *RealDecl = static_cast<Decl *>(Dcl);
1686
1687  // If there is no declaration, there was an error parsing it.  Just ignore
1688  // the initializer.
1689  if (RealDecl == 0) {
1690    return;
1691  }
1692
1693  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1694  if (!VDecl) {
1695    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1696    RealDecl->setInvalidDecl();
1697    return;
1698  }
1699
1700  // FIXME: Need to handle dependent types and expressions here.
1701
1702  // We will treat direct-initialization as a copy-initialization:
1703  //    int x(1);  -as-> int x = 1;
1704  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1705  //
1706  // Clients that want to distinguish between the two forms, can check for
1707  // direct initializer using VarDecl::hasCXXDirectInitializer().
1708  // A major benefit is that clients that don't particularly care about which
1709  // exactly form was it (like the CodeGen) can handle both cases without
1710  // special case code.
1711
1712  // C++ 8.5p11:
1713  // The form of initialization (using parentheses or '=') is generally
1714  // insignificant, but does matter when the entity being initialized has a
1715  // class type.
1716  QualType DeclInitType = VDecl->getType();
1717  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1718    DeclInitType = Array->getElementType();
1719
1720  // FIXME: This isn't the right place to complete the type.
1721  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
1722                          diag::err_typecheck_decl_incomplete_type)) {
1723    VDecl->setInvalidDecl();
1724    return;
1725  }
1726
1727  if (VDecl->getType()->isRecordType()) {
1728    CXXConstructorDecl *Constructor
1729      = PerformInitializationByConstructor(DeclInitType,
1730                                           (Expr **)Exprs.get(), NumExprs,
1731                                           VDecl->getLocation(),
1732                                           SourceRange(VDecl->getLocation(),
1733                                                       RParenLoc),
1734                                           VDecl->getDeclName(),
1735                                           IK_Direct);
1736    if (!Constructor)
1737      RealDecl->setInvalidDecl();
1738    else
1739      Exprs.release();
1740
1741    // Let clients know that initialization was done with a direct
1742    // initializer.
1743    VDecl->setCXXDirectInitializer(true);
1744
1745    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1746    // the initializer.
1747    return;
1748  }
1749
1750  if (NumExprs > 1) {
1751    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1752      << SourceRange(VDecl->getLocation(), RParenLoc);
1753    RealDecl->setInvalidDecl();
1754    return;
1755  }
1756
1757  // Let clients know that initialization was done with a direct initializer.
1758  VDecl->setCXXDirectInitializer(true);
1759
1760  assert(NumExprs == 1 && "Expected 1 expression");
1761  // Set the init expression, handles conversions.
1762  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
1763                       /*DirectInit=*/true);
1764}
1765
1766/// PerformInitializationByConstructor - Perform initialization by
1767/// constructor (C++ [dcl.init]p14), which may occur as part of
1768/// direct-initialization or copy-initialization. We are initializing
1769/// an object of type @p ClassType with the given arguments @p
1770/// Args. @p Loc is the location in the source code where the
1771/// initializer occurs (e.g., a declaration, member initializer,
1772/// functional cast, etc.) while @p Range covers the whole
1773/// initialization. @p InitEntity is the entity being initialized,
1774/// which may by the name of a declaration or a type. @p Kind is the
1775/// kind of initialization we're performing, which affects whether
1776/// explicit constructors will be considered. When successful, returns
1777/// the constructor that will be used to perform the initialization;
1778/// when the initialization fails, emits a diagnostic and returns
1779/// null.
1780CXXConstructorDecl *
1781Sema::PerformInitializationByConstructor(QualType ClassType,
1782                                         Expr **Args, unsigned NumArgs,
1783                                         SourceLocation Loc, SourceRange Range,
1784                                         DeclarationName InitEntity,
1785                                         InitializationKind Kind) {
1786  const RecordType *ClassRec = ClassType->getAsRecordType();
1787  assert(ClassRec && "Can only initialize a class type here");
1788
1789  // C++ [dcl.init]p14:
1790  //
1791  //   If the initialization is direct-initialization, or if it is
1792  //   copy-initialization where the cv-unqualified version of the
1793  //   source type is the same class as, or a derived class of, the
1794  //   class of the destination, constructors are considered. The
1795  //   applicable constructors are enumerated (13.3.1.3), and the
1796  //   best one is chosen through overload resolution (13.3). The
1797  //   constructor so selected is called to initialize the object,
1798  //   with the initializer expression(s) as its argument(s). If no
1799  //   constructor applies, or the overload resolution is ambiguous,
1800  //   the initialization is ill-formed.
1801  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1802  OverloadCandidateSet CandidateSet;
1803
1804  // Add constructors to the overload set.
1805  DeclarationName ConstructorName
1806    = Context.DeclarationNames.getCXXConstructorName(
1807                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1808  DeclContext::lookup_const_iterator Con, ConEnd;
1809  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
1810       Con != ConEnd; ++Con) {
1811    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1812    if ((Kind == IK_Direct) ||
1813        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1814        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1815      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1816  }
1817
1818  // FIXME: When we decide not to synthesize the implicitly-declared
1819  // constructors, we'll need to make them appear here.
1820
1821  OverloadCandidateSet::iterator Best;
1822  switch (BestViableFunction(CandidateSet, Best)) {
1823  case OR_Success:
1824    // We found a constructor. Return it.
1825    return cast<CXXConstructorDecl>(Best->Function);
1826
1827  case OR_No_Viable_Function:
1828    if (InitEntity)
1829      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1830        << InitEntity << Range;
1831    else
1832      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1833        << ClassType << Range;
1834    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1835    return 0;
1836
1837  case OR_Ambiguous:
1838    if (InitEntity)
1839      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1840    else
1841      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1842    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1843    return 0;
1844
1845  case OR_Deleted:
1846    if (InitEntity)
1847      Diag(Loc, diag::err_ovl_deleted_init)
1848        << Best->Function->isDeleted()
1849        << InitEntity << Range;
1850    else
1851      Diag(Loc, diag::err_ovl_deleted_init)
1852        << Best->Function->isDeleted()
1853        << InitEntity << Range;
1854    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1855    return 0;
1856  }
1857
1858  return 0;
1859}
1860
1861/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1862/// determine whether they are reference-related,
1863/// reference-compatible, reference-compatible with added
1864/// qualification, or incompatible, for use in C++ initialization by
1865/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1866/// type, and the first type (T1) is the pointee type of the reference
1867/// type being initialized.
1868Sema::ReferenceCompareResult
1869Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1870                                   bool& DerivedToBase) {
1871  assert(!T1->isReferenceType() &&
1872    "T1 must be the pointee type of the reference type");
1873  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1874
1875  T1 = Context.getCanonicalType(T1);
1876  T2 = Context.getCanonicalType(T2);
1877  QualType UnqualT1 = T1.getUnqualifiedType();
1878  QualType UnqualT2 = T2.getUnqualifiedType();
1879
1880  // C++ [dcl.init.ref]p4:
1881  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1882  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1883  //   T1 is a base class of T2.
1884  if (UnqualT1 == UnqualT2)
1885    DerivedToBase = false;
1886  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1887    DerivedToBase = true;
1888  else
1889    return Ref_Incompatible;
1890
1891  // At this point, we know that T1 and T2 are reference-related (at
1892  // least).
1893
1894  // C++ [dcl.init.ref]p4:
1895  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1896  //   reference-related to T2 and cv1 is the same cv-qualification
1897  //   as, or greater cv-qualification than, cv2. For purposes of
1898  //   overload resolution, cases for which cv1 is greater
1899  //   cv-qualification than cv2 are identified as
1900  //   reference-compatible with added qualification (see 13.3.3.2).
1901  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1902    return Ref_Compatible;
1903  else if (T1.isMoreQualifiedThan(T2))
1904    return Ref_Compatible_With_Added_Qualification;
1905  else
1906    return Ref_Related;
1907}
1908
1909/// CheckReferenceInit - Check the initialization of a reference
1910/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1911/// the initializer (either a simple initializer or an initializer
1912/// list), and DeclType is the type of the declaration. When ICS is
1913/// non-null, this routine will compute the implicit conversion
1914/// sequence according to C++ [over.ics.ref] and will not produce any
1915/// diagnostics; when ICS is null, it will emit diagnostics when any
1916/// errors are found. Either way, a return value of true indicates
1917/// that there was a failure, a return value of false indicates that
1918/// the reference initialization succeeded.
1919///
1920/// When @p SuppressUserConversions, user-defined conversions are
1921/// suppressed.
1922/// When @p AllowExplicit, we also permit explicit user-defined
1923/// conversion functions.
1924bool
1925Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1926                         ImplicitConversionSequence *ICS,
1927                         bool SuppressUserConversions,
1928                         bool AllowExplicit) {
1929  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1930
1931  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1932  QualType T2 = Init->getType();
1933
1934  // If the initializer is the address of an overloaded function, try
1935  // to resolve the overloaded function. If all goes well, T2 is the
1936  // type of the resulting function.
1937  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
1938    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
1939                                                          ICS != 0);
1940    if (Fn) {
1941      // Since we're performing this reference-initialization for
1942      // real, update the initializer with the resulting function.
1943      if (!ICS) {
1944        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
1945          return true;
1946
1947        FixOverloadedFunctionReference(Init, Fn);
1948      }
1949
1950      T2 = Fn->getType();
1951    }
1952  }
1953
1954  // Compute some basic properties of the types and the initializer.
1955  bool isRValRef = DeclType->isRValueReferenceType();
1956  bool DerivedToBase = false;
1957  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1958  ReferenceCompareResult RefRelationship
1959    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1960
1961  // Most paths end in a failed conversion.
1962  if (ICS)
1963    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1964
1965  // C++ [dcl.init.ref]p5:
1966  //   A reference to type “cv1 T1” is initialized by an expression
1967  //   of type “cv2 T2” as follows:
1968
1969  //     -- If the initializer expression
1970
1971  bool BindsDirectly = false;
1972  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1973  //          reference-compatible with “cv2 T2,” or
1974  //
1975  // Note that the bit-field check is skipped if we are just computing
1976  // the implicit conversion sequence (C++ [over.best.ics]p2).
1977  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1978      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1979    BindsDirectly = true;
1980
1981    // Rvalue references cannot bind to lvalues (N2812).
1982    if (isRValRef) {
1983      if (!ICS)
1984        Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
1985          << Init->getSourceRange();
1986      return true;
1987    }
1988
1989    if (ICS) {
1990      // C++ [over.ics.ref]p1:
1991      //   When a parameter of reference type binds directly (8.5.3)
1992      //   to an argument expression, the implicit conversion sequence
1993      //   is the identity conversion, unless the argument expression
1994      //   has a type that is a derived class of the parameter type,
1995      //   in which case the implicit conversion sequence is a
1996      //   derived-to-base Conversion (13.3.3.1).
1997      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1998      ICS->Standard.First = ICK_Identity;
1999      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2000      ICS->Standard.Third = ICK_Identity;
2001      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2002      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2003      ICS->Standard.ReferenceBinding = true;
2004      ICS->Standard.DirectBinding = true;
2005
2006      // Nothing more to do: the inaccessibility/ambiguity check for
2007      // derived-to-base conversions is suppressed when we're
2008      // computing the implicit conversion sequence (C++
2009      // [over.best.ics]p2).
2010      return false;
2011    } else {
2012      // Perform the conversion.
2013      // FIXME: Binding to a subobject of the lvalue is going to require
2014      // more AST annotation than this.
2015      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2016    }
2017  }
2018
2019  //       -- has a class type (i.e., T2 is a class type) and can be
2020  //          implicitly converted to an lvalue of type “cv3 T3,”
2021  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2022  //          92) (this conversion is selected by enumerating the
2023  //          applicable conversion functions (13.3.1.6) and choosing
2024  //          the best one through overload resolution (13.3)),
2025  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2026    // FIXME: Look for conversions in base classes!
2027    CXXRecordDecl *T2RecordDecl
2028      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2029
2030    OverloadCandidateSet CandidateSet;
2031    OverloadedFunctionDecl *Conversions
2032      = T2RecordDecl->getConversionFunctions();
2033    for (OverloadedFunctionDecl::function_iterator Func
2034           = Conversions->function_begin();
2035         Func != Conversions->function_end(); ++Func) {
2036      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2037
2038      // If the conversion function doesn't return a reference type,
2039      // it can't be considered for this conversion.
2040      if (Conv->getConversionType()->isLValueReferenceType() &&
2041          (AllowExplicit || !Conv->isExplicit()))
2042        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2043    }
2044
2045    OverloadCandidateSet::iterator Best;
2046    switch (BestViableFunction(CandidateSet, Best)) {
2047    case OR_Success:
2048      // This is a direct binding.
2049      BindsDirectly = true;
2050
2051      if (ICS) {
2052        // C++ [over.ics.ref]p1:
2053        //
2054        //   [...] If the parameter binds directly to the result of
2055        //   applying a conversion function to the argument
2056        //   expression, the implicit conversion sequence is a
2057        //   user-defined conversion sequence (13.3.3.1.2), with the
2058        //   second standard conversion sequence either an identity
2059        //   conversion or, if the conversion function returns an
2060        //   entity of a type that is a derived class of the parameter
2061        //   type, a derived-to-base Conversion.
2062        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2063        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2064        ICS->UserDefined.After = Best->FinalConversion;
2065        ICS->UserDefined.ConversionFunction = Best->Function;
2066        assert(ICS->UserDefined.After.ReferenceBinding &&
2067               ICS->UserDefined.After.DirectBinding &&
2068               "Expected a direct reference binding!");
2069        return false;
2070      } else {
2071        // Perform the conversion.
2072        // FIXME: Binding to a subobject of the lvalue is going to require
2073        // more AST annotation than this.
2074        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2075      }
2076      break;
2077
2078    case OR_Ambiguous:
2079      assert(false && "Ambiguous reference binding conversions not implemented.");
2080      return true;
2081
2082    case OR_No_Viable_Function:
2083    case OR_Deleted:
2084      // There was no suitable conversion, or we found a deleted
2085      // conversion; continue with other checks.
2086      break;
2087    }
2088  }
2089
2090  if (BindsDirectly) {
2091    // C++ [dcl.init.ref]p4:
2092    //   [...] In all cases where the reference-related or
2093    //   reference-compatible relationship of two types is used to
2094    //   establish the validity of a reference binding, and T1 is a
2095    //   base class of T2, a program that necessitates such a binding
2096    //   is ill-formed if T1 is an inaccessible (clause 11) or
2097    //   ambiguous (10.2) base class of T2.
2098    //
2099    // Note that we only check this condition when we're allowed to
2100    // complain about errors, because we should not be checking for
2101    // ambiguity (or inaccessibility) unless the reference binding
2102    // actually happens.
2103    if (DerivedToBase)
2104      return CheckDerivedToBaseConversion(T2, T1,
2105                                          Init->getSourceRange().getBegin(),
2106                                          Init->getSourceRange());
2107    else
2108      return false;
2109  }
2110
2111  //     -- Otherwise, the reference shall be to a non-volatile const
2112  //        type (i.e., cv1 shall be const), or shall be an rvalue reference.
2113  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2114    if (!ICS)
2115      Diag(Init->getSourceRange().getBegin(),
2116           diag::err_not_reference_to_const_init)
2117        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2118        << T2 << Init->getSourceRange();
2119    return true;
2120  }
2121
2122  //       -- If the initializer expression is an rvalue, with T2 a
2123  //          class type, and “cv1 T1” is reference-compatible with
2124  //          “cv2 T2,” the reference is bound in one of the
2125  //          following ways (the choice is implementation-defined):
2126  //
2127  //          -- The reference is bound to the object represented by
2128  //             the rvalue (see 3.10) or to a sub-object within that
2129  //             object.
2130  //
2131  //          -- A temporary of type “cv1 T2” [sic] is created, and
2132  //             a constructor is called to copy the entire rvalue
2133  //             object into the temporary. The reference is bound to
2134  //             the temporary or to a sub-object within the
2135  //             temporary.
2136  //
2137  //          The constructor that would be used to make the copy
2138  //          shall be callable whether or not the copy is actually
2139  //          done.
2140  //
2141  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
2142  // freedom, so we will always take the first option and never build
2143  // a temporary in this case. FIXME: We will, however, have to check
2144  // for the presence of a copy constructor in C++98/03 mode.
2145  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2146      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2147    if (ICS) {
2148      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2149      ICS->Standard.First = ICK_Identity;
2150      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2151      ICS->Standard.Third = ICK_Identity;
2152      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2153      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2154      ICS->Standard.ReferenceBinding = true;
2155      ICS->Standard.DirectBinding = false;
2156    } else {
2157      // FIXME: Binding to a subobject of the rvalue is going to require
2158      // more AST annotation than this.
2159      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2160    }
2161    return false;
2162  }
2163
2164  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2165  //          initialized from the initializer expression using the
2166  //          rules for a non-reference copy initialization (8.5). The
2167  //          reference is then bound to the temporary. If T1 is
2168  //          reference-related to T2, cv1 must be the same
2169  //          cv-qualification as, or greater cv-qualification than,
2170  //          cv2; otherwise, the program is ill-formed.
2171  if (RefRelationship == Ref_Related) {
2172    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2173    // we would be reference-compatible or reference-compatible with
2174    // added qualification. But that wasn't the case, so the reference
2175    // initialization fails.
2176    if (!ICS)
2177      Diag(Init->getSourceRange().getBegin(),
2178           diag::err_reference_init_drops_quals)
2179        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2180        << T2 << Init->getSourceRange();
2181    return true;
2182  }
2183
2184  // If at least one of the types is a class type, the types are not
2185  // related, and we aren't allowed any user conversions, the
2186  // reference binding fails. This case is important for breaking
2187  // recursion, since TryImplicitConversion below will attempt to
2188  // create a temporary through the use of a copy constructor.
2189  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2190      (T1->isRecordType() || T2->isRecordType())) {
2191    if (!ICS)
2192      Diag(Init->getSourceRange().getBegin(),
2193           diag::err_typecheck_convert_incompatible)
2194        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2195    return true;
2196  }
2197
2198  // Actually try to convert the initializer to T1.
2199  if (ICS) {
2200    /// C++ [over.ics.ref]p2:
2201    ///
2202    ///   When a parameter of reference type is not bound directly to
2203    ///   an argument expression, the conversion sequence is the one
2204    ///   required to convert the argument expression to the
2205    ///   underlying type of the reference according to
2206    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
2207    ///   to copy-initializing a temporary of the underlying type with
2208    ///   the argument expression. Any difference in top-level
2209    ///   cv-qualification is subsumed by the initialization itself
2210    ///   and does not constitute a conversion.
2211    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2212    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2213  } else {
2214    return PerformImplicitConversion(Init, T1, "initializing");
2215  }
2216}
2217
2218/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2219/// of this overloaded operator is well-formed. If so, returns false;
2220/// otherwise, emits appropriate diagnostics and returns true.
2221bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2222  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2223         "Expected an overloaded operator declaration");
2224
2225  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2226
2227  // C++ [over.oper]p5:
2228  //   The allocation and deallocation functions, operator new,
2229  //   operator new[], operator delete and operator delete[], are
2230  //   described completely in 3.7.3. The attributes and restrictions
2231  //   found in the rest of this subclause do not apply to them unless
2232  //   explicitly stated in 3.7.3.
2233  // FIXME: Write a separate routine for checking this. For now, just
2234  // allow it.
2235  if (Op == OO_New || Op == OO_Array_New ||
2236      Op == OO_Delete || Op == OO_Array_Delete)
2237    return false;
2238
2239  // C++ [over.oper]p6:
2240  //   An operator function shall either be a non-static member
2241  //   function or be a non-member function and have at least one
2242  //   parameter whose type is a class, a reference to a class, an
2243  //   enumeration, or a reference to an enumeration.
2244  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2245    if (MethodDecl->isStatic())
2246      return Diag(FnDecl->getLocation(),
2247                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2248  } else {
2249    bool ClassOrEnumParam = false;
2250    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2251                                   ParamEnd = FnDecl->param_end();
2252         Param != ParamEnd; ++Param) {
2253      QualType ParamType = (*Param)->getType().getNonReferenceType();
2254      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2255        ClassOrEnumParam = true;
2256        break;
2257      }
2258    }
2259
2260    if (!ClassOrEnumParam)
2261      return Diag(FnDecl->getLocation(),
2262                  diag::err_operator_overload_needs_class_or_enum)
2263        << FnDecl->getDeclName();
2264  }
2265
2266  // C++ [over.oper]p8:
2267  //   An operator function cannot have default arguments (8.3.6),
2268  //   except where explicitly stated below.
2269  //
2270  // Only the function-call operator allows default arguments
2271  // (C++ [over.call]p1).
2272  if (Op != OO_Call) {
2273    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2274         Param != FnDecl->param_end(); ++Param) {
2275      if ((*Param)->hasUnparsedDefaultArg())
2276        return Diag((*Param)->getLocation(),
2277                    diag::err_operator_overload_default_arg)
2278          << FnDecl->getDeclName();
2279      else if (Expr *DefArg = (*Param)->getDefaultArg())
2280        return Diag((*Param)->getLocation(),
2281                    diag::err_operator_overload_default_arg)
2282          << FnDecl->getDeclName() << DefArg->getSourceRange();
2283    }
2284  }
2285
2286  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2287    { false, false, false }
2288#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2289    , { Unary, Binary, MemberOnly }
2290#include "clang/Basic/OperatorKinds.def"
2291  };
2292
2293  bool CanBeUnaryOperator = OperatorUses[Op][0];
2294  bool CanBeBinaryOperator = OperatorUses[Op][1];
2295  bool MustBeMemberOperator = OperatorUses[Op][2];
2296
2297  // C++ [over.oper]p8:
2298  //   [...] Operator functions cannot have more or fewer parameters
2299  //   than the number required for the corresponding operator, as
2300  //   described in the rest of this subclause.
2301  unsigned NumParams = FnDecl->getNumParams()
2302                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2303  if (Op != OO_Call &&
2304      ((NumParams == 1 && !CanBeUnaryOperator) ||
2305       (NumParams == 2 && !CanBeBinaryOperator) ||
2306       (NumParams < 1) || (NumParams > 2))) {
2307    // We have the wrong number of parameters.
2308    unsigned ErrorKind;
2309    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2310      ErrorKind = 2;  // 2 -> unary or binary.
2311    } else if (CanBeUnaryOperator) {
2312      ErrorKind = 0;  // 0 -> unary
2313    } else {
2314      assert(CanBeBinaryOperator &&
2315             "All non-call overloaded operators are unary or binary!");
2316      ErrorKind = 1;  // 1 -> binary
2317    }
2318
2319    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2320      << FnDecl->getDeclName() << NumParams << ErrorKind;
2321  }
2322
2323  // Overloaded operators other than operator() cannot be variadic.
2324  if (Op != OO_Call &&
2325      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2326    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2327      << FnDecl->getDeclName();
2328  }
2329
2330  // Some operators must be non-static member functions.
2331  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2332    return Diag(FnDecl->getLocation(),
2333                diag::err_operator_overload_must_be_member)
2334      << FnDecl->getDeclName();
2335  }
2336
2337  // C++ [over.inc]p1:
2338  //   The user-defined function called operator++ implements the
2339  //   prefix and postfix ++ operator. If this function is a member
2340  //   function with no parameters, or a non-member function with one
2341  //   parameter of class or enumeration type, it defines the prefix
2342  //   increment operator ++ for objects of that type. If the function
2343  //   is a member function with one parameter (which shall be of type
2344  //   int) or a non-member function with two parameters (the second
2345  //   of which shall be of type int), it defines the postfix
2346  //   increment operator ++ for objects of that type.
2347  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2348    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2349    bool ParamIsInt = false;
2350    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2351      ParamIsInt = BT->getKind() == BuiltinType::Int;
2352
2353    if (!ParamIsInt)
2354      return Diag(LastParam->getLocation(),
2355                  diag::err_operator_overload_post_incdec_must_be_int)
2356        << LastParam->getType() << (Op == OO_MinusMinus);
2357  }
2358
2359  // Notify the class if it got an assignment operator.
2360  if (Op == OO_Equal) {
2361    // Would have returned earlier otherwise.
2362    assert(isa<CXXMethodDecl>(FnDecl) &&
2363      "Overloaded = not member, but not filtered.");
2364    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2365    Method->getParent()->addedAssignmentOperator(Context, Method);
2366  }
2367
2368  return false;
2369}
2370
2371/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2372/// linkage specification, including the language and (if present)
2373/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2374/// the location of the language string literal, which is provided
2375/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2376/// the '{' brace. Otherwise, this linkage specification does not
2377/// have any braces.
2378Sema::DeclTy *Sema::ActOnStartLinkageSpecification(Scope *S,
2379                                                   SourceLocation ExternLoc,
2380                                                   SourceLocation LangLoc,
2381                                                   const char *Lang,
2382                                                   unsigned StrSize,
2383                                                   SourceLocation LBraceLoc) {
2384  LinkageSpecDecl::LanguageIDs Language;
2385  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2386    Language = LinkageSpecDecl::lang_c;
2387  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2388    Language = LinkageSpecDecl::lang_cxx;
2389  else {
2390    Diag(LangLoc, diag::err_bad_language);
2391    return 0;
2392  }
2393
2394  // FIXME: Add all the various semantics of linkage specifications
2395
2396  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2397                                               LangLoc, Language,
2398                                               LBraceLoc.isValid());
2399  CurContext->addDecl(D);
2400  PushDeclContext(S, D);
2401  return D;
2402}
2403
2404/// ActOnFinishLinkageSpecification - Completely the definition of
2405/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2406/// valid, it's the position of the closing '}' brace in a linkage
2407/// specification that uses braces.
2408Sema::DeclTy *Sema::ActOnFinishLinkageSpecification(Scope *S,
2409                                                    DeclTy *LinkageSpec,
2410                                                    SourceLocation RBraceLoc) {
2411  if (LinkageSpec)
2412    PopDeclContext();
2413  return LinkageSpec;
2414}
2415
2416/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2417/// handler.
2418Sema::DeclTy *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D)
2419{
2420  QualType ExDeclType = GetTypeForDeclarator(D, S);
2421  SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin();
2422
2423  bool Invalid = false;
2424
2425  // Arrays and functions decay.
2426  if (ExDeclType->isArrayType())
2427    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2428  else if (ExDeclType->isFunctionType())
2429    ExDeclType = Context.getPointerType(ExDeclType);
2430
2431  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2432  // The exception-declaration shall not denote a pointer or reference to an
2433  // incomplete type, other than [cv] void*.
2434  // N2844 forbids rvalue references.
2435  if(ExDeclType->isRValueReferenceType()) {
2436    Diag(Begin, diag::err_catch_rvalue_ref) << D.getSourceRange();
2437    Invalid = true;
2438  }
2439  QualType BaseType = ExDeclType;
2440  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2441  unsigned DK = diag::err_catch_incomplete;
2442  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2443    BaseType = Ptr->getPointeeType();
2444    Mode = 1;
2445    DK = diag::err_catch_incomplete_ptr;
2446  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2447    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2448    BaseType = Ref->getPointeeType();
2449    Mode = 2;
2450    DK = diag::err_catch_incomplete_ref;
2451  }
2452  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2453      RequireCompleteType(Begin, BaseType, DK))
2454    Invalid = true;
2455
2456  // FIXME: Need to test for ability to copy-construct and destroy the
2457  // exception variable.
2458  // FIXME: Need to check for abstract classes.
2459
2460  IdentifierInfo *II = D.getIdentifier();
2461  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2462    // The scope should be freshly made just for us. There is just no way
2463    // it contains any previous declaration.
2464    assert(!S->isDeclScope(PrevDecl));
2465    if (PrevDecl->isTemplateParameter()) {
2466      // Maybe we will complain about the shadowed template parameter.
2467      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2468
2469    }
2470  }
2471
2472  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
2473                                    II, ExDeclType, VarDecl::None, Begin);
2474  if (D.getInvalidType() || Invalid)
2475    ExDecl->setInvalidDecl();
2476
2477  if (D.getCXXScopeSpec().isSet()) {
2478    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2479      << D.getCXXScopeSpec().getRange();
2480    ExDecl->setInvalidDecl();
2481  }
2482
2483  // Add the exception declaration into this scope.
2484  S->AddDecl(ExDecl);
2485  if (II)
2486    IdResolver.AddDecl(ExDecl);
2487
2488  ProcessDeclAttributes(ExDecl, D);
2489  return ExDecl;
2490}
2491
2492Sema::DeclTy *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
2493                                                 ExprArg assertexpr,
2494                                                 ExprArg assertmessageexpr) {
2495  Expr *AssertExpr = (Expr *)assertexpr.get();
2496  StringLiteral *AssertMessage =
2497    cast<StringLiteral>((Expr *)assertmessageexpr.get());
2498
2499  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
2500    llvm::APSInt Value(32);
2501    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
2502      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
2503        AssertExpr->getSourceRange();
2504      return 0;
2505    }
2506
2507    if (Value == 0) {
2508      std::string str(AssertMessage->getStrData(),
2509                      AssertMessage->getByteLength());
2510      Diag(AssertLoc, diag::err_static_assert_failed)
2511        << str << AssertExpr->getSourceRange();
2512    }
2513  }
2514
2515  assertexpr.release();
2516  assertmessageexpr.release();
2517  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
2518                                        AssertExpr, AssertMessage);
2519
2520  CurContext->addDecl(Decl);
2521  return Decl;
2522}
2523
2524void Sema::SetDeclDeleted(DeclTy *dcl, SourceLocation DelLoc) {
2525  Decl *Dcl = static_cast<Decl*>(dcl);
2526  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
2527  if (!Fn) {
2528    Diag(DelLoc, diag::err_deleted_non_function);
2529    return;
2530  }
2531  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
2532    Diag(DelLoc, diag::err_deleted_decl_not_first);
2533    Diag(Prev->getLocation(), diag::note_previous_declaration);
2534    // If the declaration wasn't the first, we delete the function anyway for
2535    // recovery.
2536  }
2537  Fn->setDeleted();
2538}
2539
2540bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
2541                                    NamedDecl *PrevMemberDecl,
2542                                    AccessSpecifier LexicalAS) {
2543  if (!PrevMemberDecl) {
2544    // Use the lexical access specifier.
2545    MemberDecl->setAccess(LexicalAS);
2546    return false;
2547  }
2548
2549  // C++ [class.access.spec]p3: When a member is redeclared its access
2550  // specifier must be same as its initial declaration.
2551  if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
2552    Diag(MemberDecl->getLocation(),
2553         diag::err_class_redeclared_with_different_access)
2554      << MemberDecl << LexicalAS;
2555    Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
2556      << PrevMemberDecl << PrevMemberDecl->getAccess();
2557    return true;
2558  }
2559
2560  MemberDecl->setAccess(PrevMemberDecl->getAccess());
2561  return false;
2562}
2563
2564