SemaDeclCXX.cpp revision ab6e38adbcdbdb4e7d211b4ff7a52d871ea0e994
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  return Invalid;
262}
263
264/// CheckCXXDefaultArguments - Verify that the default arguments for a
265/// function declaration are well-formed according to C++
266/// [dcl.fct.default].
267void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
268  unsigned NumParams = FD->getNumParams();
269  unsigned p;
270
271  // Find first parameter with a default argument
272  for (p = 0; p < NumParams; ++p) {
273    ParmVarDecl *Param = FD->getParamDecl(p);
274    if (Param->getDefaultArg())
275      break;
276  }
277
278  // C++ [dcl.fct.default]p4:
279  //   In a given function declaration, all parameters
280  //   subsequent to a parameter with a default argument shall
281  //   have default arguments supplied in this or previous
282  //   declarations. A default argument shall not be redefined
283  //   by a later declaration (not even to the same value).
284  unsigned LastMissingDefaultArg = 0;
285  for(; p < NumParams; ++p) {
286    ParmVarDecl *Param = FD->getParamDecl(p);
287    if (!Param->getDefaultArg()) {
288      if (Param->isInvalidDecl())
289        /* We already complained about this parameter. */;
290      else if (Param->getIdentifier())
291        Diag(Param->getLocation(),
292             diag::err_param_default_argument_missing_name)
293          << Param->getIdentifier();
294      else
295        Diag(Param->getLocation(),
296             diag::err_param_default_argument_missing);
297
298      LastMissingDefaultArg = p;
299    }
300  }
301
302  if (LastMissingDefaultArg > 0) {
303    // Some default arguments were missing. Clear out all of the
304    // default arguments up to (and including) the last missing
305    // default argument, so that we leave the function parameters
306    // in a semantically valid state.
307    for (p = 0; p <= LastMissingDefaultArg; ++p) {
308      ParmVarDecl *Param = FD->getParamDecl(p);
309      if (Param->hasDefaultArg()) {
310        if (!Param->hasUnparsedDefaultArg())
311          Param->getDefaultArg()->Destroy(Context);
312        Param->setDefaultArg(0);
313      }
314    }
315  }
316}
317
318/// isCurrentClassName - Determine whether the identifier II is the
319/// name of the class type currently being defined. In the case of
320/// nested classes, this will only return true if II is the name of
321/// the innermost class.
322bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
323                              const CXXScopeSpec *SS) {
324  CXXRecordDecl *CurDecl;
325  if (SS && SS->isSet() && !SS->isInvalid()) {
326    DeclContext *DC = computeDeclContext(*SS);
327    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
328  } else
329    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
330
331  if (CurDecl)
332    return &II == CurDecl->getIdentifier();
333  else
334    return false;
335}
336
337/// \brief Check the validity of a C++ base class specifier.
338///
339/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
340/// and returns NULL otherwise.
341CXXBaseSpecifier *
342Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
343                         SourceRange SpecifierRange,
344                         bool Virtual, AccessSpecifier Access,
345                         QualType BaseType,
346                         SourceLocation BaseLoc) {
347  // C++ [class.union]p1:
348  //   A union shall not have base classes.
349  if (Class->isUnion()) {
350    Diag(Class->getLocation(), diag::err_base_clause_on_union)
351      << SpecifierRange;
352    return 0;
353  }
354
355  if (BaseType->isDependentType())
356    return new CXXBaseSpecifier(SpecifierRange, Virtual,
357                                Class->getTagKind() == RecordDecl::TK_class,
358                                Access, BaseType);
359
360  // Base specifiers must be record types.
361  if (!BaseType->isRecordType()) {
362    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
363    return 0;
364  }
365
366  // C++ [class.union]p1:
367  //   A union shall not be used as a base class.
368  if (BaseType->isUnionType()) {
369    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
370    return 0;
371  }
372
373  // C++ [class.derived]p2:
374  //   The class-name in a base-specifier shall not be an incompletely
375  //   defined class.
376  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
377                          SpecifierRange))
378    return 0;
379
380  // If the base class is polymorphic, the new one is, too.
381  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
382  assert(BaseDecl && "Record type has no declaration");
383  BaseDecl = BaseDecl->getDefinition(Context);
384  assert(BaseDecl && "Base type is not incomplete, but has no definition");
385  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
386    Class->setPolymorphic(true);
387
388  // C++ [dcl.init.aggr]p1:
389  //   An aggregate is [...] a class with [...] no base classes [...].
390  Class->setAggregate(false);
391  Class->setPOD(false);
392
393  if (Virtual) {
394    // C++ [class.ctor]p5:
395    //   A constructor is trivial if its class has no virtual base classes.
396    Class->setHasTrivialConstructor(false);
397  } else {
398    // C++ [class.ctor]p5:
399    //   A constructor is trivial if all the direct base classes of its
400    //   class have trivial constructors.
401    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
402                                    hasTrivialConstructor());
403  }
404
405  // C++ [class.ctor]p3:
406  //   A destructor is trivial if all the direct base classes of its class
407  //   have trivial destructors.
408  Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
409                                 hasTrivialDestructor());
410
411  // Create the base specifier.
412  // FIXME: Allocate via ASTContext?
413  return new CXXBaseSpecifier(SpecifierRange, Virtual,
414                              Class->getTagKind() == RecordDecl::TK_class,
415                              Access, BaseType);
416}
417
418/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
419/// one entry in the base class list of a class specifier, for
420/// example:
421///    class foo : public bar, virtual private baz {
422/// 'public bar' and 'virtual private baz' are each base-specifiers.
423Sema::BaseResult
424Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
425                         bool Virtual, AccessSpecifier Access,
426                         TypeTy *basetype, SourceLocation BaseLoc) {
427  if (!classdecl)
428    return true;
429
430  AdjustDeclIfTemplate(classdecl);
431  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
432  QualType BaseType = QualType::getFromOpaquePtr(basetype);
433  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
434                                                      Virtual, Access,
435                                                      BaseType, BaseLoc))
436    return BaseSpec;
437
438  return true;
439}
440
441/// \brief Performs the actual work of attaching the given base class
442/// specifiers to a C++ class.
443bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
444                                unsigned NumBases) {
445 if (NumBases == 0)
446    return false;
447
448  // Used to keep track of which base types we have already seen, so
449  // that we can properly diagnose redundant direct base types. Note
450  // that the key is always the unqualified canonical type of the base
451  // class.
452  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
453
454  // Copy non-redundant base specifiers into permanent storage.
455  unsigned NumGoodBases = 0;
456  bool Invalid = false;
457  for (unsigned idx = 0; idx < NumBases; ++idx) {
458    QualType NewBaseType
459      = Context.getCanonicalType(Bases[idx]->getType());
460    NewBaseType = NewBaseType.getUnqualifiedType();
461
462    if (KnownBaseTypes[NewBaseType]) {
463      // C++ [class.mi]p3:
464      //   A class shall not be specified as a direct base class of a
465      //   derived class more than once.
466      Diag(Bases[idx]->getSourceRange().getBegin(),
467           diag::err_duplicate_base_class)
468        << KnownBaseTypes[NewBaseType]->getType()
469        << Bases[idx]->getSourceRange();
470
471      // Delete the duplicate base class specifier; we're going to
472      // overwrite its pointer later.
473      delete Bases[idx];
474
475      Invalid = true;
476    } else {
477      // Okay, add this new base class.
478      KnownBaseTypes[NewBaseType] = Bases[idx];
479      Bases[NumGoodBases++] = Bases[idx];
480    }
481  }
482
483  // Attach the remaining base class specifiers to the derived class.
484  Class->setBases(Bases, NumGoodBases);
485
486  // Delete the remaining (good) base class specifiers, since their
487  // data has been copied into the CXXRecordDecl.
488  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
489    delete Bases[idx];
490
491  return Invalid;
492}
493
494/// ActOnBaseSpecifiers - Attach the given base specifiers to the
495/// class, after checking whether there are any duplicate base
496/// classes.
497void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
498                               unsigned NumBases) {
499  if (!ClassDecl || !Bases || !NumBases)
500    return;
501
502  AdjustDeclIfTemplate(ClassDecl);
503  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
504                       (CXXBaseSpecifier**)(Bases), NumBases);
505}
506
507//===----------------------------------------------------------------------===//
508// C++ class member Handling
509//===----------------------------------------------------------------------===//
510
511/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
512/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
513/// bitfield width if there is one and 'InitExpr' specifies the initializer if
514/// any.
515Sema::DeclPtrTy
516Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
517                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
518  const DeclSpec &DS = D.getDeclSpec();
519  DeclarationName Name = GetNameForDeclarator(D);
520  Expr *BitWidth = static_cast<Expr*>(BW);
521  Expr *Init = static_cast<Expr*>(InitExpr);
522  SourceLocation Loc = D.getIdentifierLoc();
523
524  bool isFunc = D.isFunctionDeclarator();
525
526  // C++ 9.2p6: A member shall not be declared to have automatic storage
527  // duration (auto, register) or with the extern storage-class-specifier.
528  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
529  // data members and cannot be applied to names declared const or static,
530  // and cannot be applied to reference members.
531  switch (DS.getStorageClassSpec()) {
532    case DeclSpec::SCS_unspecified:
533    case DeclSpec::SCS_typedef:
534    case DeclSpec::SCS_static:
535      // FALL THROUGH.
536      break;
537    case DeclSpec::SCS_mutable:
538      if (isFunc) {
539        if (DS.getStorageClassSpecLoc().isValid())
540          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
541        else
542          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
543
544        // FIXME: It would be nicer if the keyword was ignored only for this
545        // declarator. Otherwise we could get follow-up errors.
546        D.getMutableDeclSpec().ClearStorageClassSpecs();
547      } else {
548        QualType T = GetTypeForDeclarator(D, S);
549        diag::kind err = static_cast<diag::kind>(0);
550        if (T->isReferenceType())
551          err = diag::err_mutable_reference;
552        else if (T.isConstQualified())
553          err = diag::err_mutable_const;
554        if (err != 0) {
555          if (DS.getStorageClassSpecLoc().isValid())
556            Diag(DS.getStorageClassSpecLoc(), err);
557          else
558            Diag(DS.getThreadSpecLoc(), err);
559          // FIXME: It would be nicer if the keyword was ignored only for this
560          // declarator. Otherwise we could get follow-up errors.
561          D.getMutableDeclSpec().ClearStorageClassSpecs();
562        }
563      }
564      break;
565    default:
566      if (DS.getStorageClassSpecLoc().isValid())
567        Diag(DS.getStorageClassSpecLoc(),
568             diag::err_storageclass_invalid_for_member);
569      else
570        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
571      D.getMutableDeclSpec().ClearStorageClassSpecs();
572  }
573
574  if (!isFunc &&
575      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
576      D.getNumTypeObjects() == 0) {
577    // Check also for this case:
578    //
579    // typedef int f();
580    // f a;
581    //
582    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
583    isFunc = TDType->isFunctionType();
584  }
585
586  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
587                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
588                      !isFunc);
589
590  Decl *Member;
591  if (isInstField) {
592    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
593                         AS);
594    assert(Member && "HandleField never returns null");
595  } else {
596    Member = ActOnDeclarator(S, D).getAs<Decl>();
597    if (!Member) {
598      if (BitWidth) DeleteExpr(BitWidth);
599      return DeclPtrTy();
600    }
601
602    // Non-instance-fields can't have a bitfield.
603    if (BitWidth) {
604      if (Member->isInvalidDecl()) {
605        // don't emit another diagnostic.
606      } else if (isa<VarDecl>(Member)) {
607        // C++ 9.6p3: A bit-field shall not be a static member.
608        // "static member 'A' cannot be a bit-field"
609        Diag(Loc, diag::err_static_not_bitfield)
610          << Name << BitWidth->getSourceRange();
611      } else if (isa<TypedefDecl>(Member)) {
612        // "typedef member 'x' cannot be a bit-field"
613        Diag(Loc, diag::err_typedef_not_bitfield)
614          << Name << BitWidth->getSourceRange();
615      } else {
616        // A function typedef ("typedef int f(); f a;").
617        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
618        Diag(Loc, diag::err_not_integral_type_bitfield)
619          << Name << cast<ValueDecl>(Member)->getType()
620          << BitWidth->getSourceRange();
621      }
622
623      DeleteExpr(BitWidth);
624      BitWidth = 0;
625      Member->setInvalidDecl();
626    }
627
628    Member->setAccess(AS);
629  }
630
631  assert((Name || isInstField) && "No identifier for non-field ?");
632
633  if (Init)
634    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
635  if (Deleted) // FIXME: Source location is not very good.
636    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
637
638  if (isInstField) {
639    FieldCollector->Add(cast<FieldDecl>(Member));
640    return DeclPtrTy();
641  }
642  return DeclPtrTy::make(Member);
643}
644
645/// ActOnMemInitializer - Handle a C++ member initializer.
646Sema::MemInitResult
647Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
648                          Scope *S,
649                          IdentifierInfo *MemberOrBase,
650                          SourceLocation IdLoc,
651                          SourceLocation LParenLoc,
652                          ExprTy **Args, unsigned NumArgs,
653                          SourceLocation *CommaLocs,
654                          SourceLocation RParenLoc) {
655  if (!ConstructorD)
656    return true;
657
658  CXXConstructorDecl *Constructor
659    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
660  if (!Constructor) {
661    // The user wrote a constructor initializer on a function that is
662    // not a C++ constructor. Ignore the error for now, because we may
663    // have more member initializers coming; we'll diagnose it just
664    // once in ActOnMemInitializers.
665    return true;
666  }
667
668  CXXRecordDecl *ClassDecl = Constructor->getParent();
669
670  // C++ [class.base.init]p2:
671  //   Names in a mem-initializer-id are looked up in the scope of the
672  //   constructor’s class and, if not found in that scope, are looked
673  //   up in the scope containing the constructor’s
674  //   definition. [Note: if the constructor’s class contains a member
675  //   with the same name as a direct or virtual base class of the
676  //   class, a mem-initializer-id naming the member or base class and
677  //   composed of a single identifier refers to the class member. A
678  //   mem-initializer-id for the hidden base class may be specified
679  //   using a qualified name. ]
680  // Look for a member, first.
681  FieldDecl *Member = 0;
682  DeclContext::lookup_result Result
683    = ClassDecl->lookup(MemberOrBase);
684  if (Result.first != Result.second)
685    Member = dyn_cast<FieldDecl>(*Result.first);
686
687  // FIXME: Handle members of an anonymous union.
688
689  if (Member) {
690    // FIXME: Perform direct initialization of the member.
691    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs,
692                                          IdLoc);
693  }
694
695  // It didn't name a member, so see if it names a class.
696  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
697  if (!BaseTy)
698    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
699      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
700
701  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
702  if (!BaseType->isRecordType())
703    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
704      << BaseType << SourceRange(IdLoc, RParenLoc);
705
706  // C++ [class.base.init]p2:
707  //   [...] Unless the mem-initializer-id names a nonstatic data
708  //   member of the constructor’s class or a direct or virtual base
709  //   of that class, the mem-initializer is ill-formed. A
710  //   mem-initializer-list can initialize a base class using any
711  //   name that denotes that base class type.
712
713  // First, check for a direct base class.
714  const CXXBaseSpecifier *DirectBaseSpec = 0;
715  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
716       Base != ClassDecl->bases_end(); ++Base) {
717    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
718        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
719      // We found a direct base of this type. That's what we're
720      // initializing.
721      DirectBaseSpec = &*Base;
722      break;
723    }
724  }
725
726  // Check for a virtual base class.
727  // FIXME: We might be able to short-circuit this if we know in advance that
728  // there are no virtual bases.
729  const CXXBaseSpecifier *VirtualBaseSpec = 0;
730  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
731    // We haven't found a base yet; search the class hierarchy for a
732    // virtual base class.
733    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
734                    /*DetectVirtual=*/false);
735    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
736      for (BasePaths::paths_iterator Path = Paths.begin();
737           Path != Paths.end(); ++Path) {
738        if (Path->back().Base->isVirtual()) {
739          VirtualBaseSpec = Path->back().Base;
740          break;
741        }
742      }
743    }
744  }
745
746  // C++ [base.class.init]p2:
747  //   If a mem-initializer-id is ambiguous because it designates both
748  //   a direct non-virtual base class and an inherited virtual base
749  //   class, the mem-initializer is ill-formed.
750  if (DirectBaseSpec && VirtualBaseSpec)
751    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
752      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
753
754  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs,
755                                        IdLoc);
756}
757
758void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
759                                SourceLocation ColonLoc,
760                                MemInitTy **MemInits, unsigned NumMemInits) {
761  if (!ConstructorDecl)
762    return;
763
764  CXXConstructorDecl *Constructor
765    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
766
767  if (!Constructor) {
768    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
769    return;
770  }
771  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
772
773  for (unsigned i = 0; i < NumMemInits; i++) {
774    CXXBaseOrMemberInitializer *Member =
775      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
776    CXXBaseOrMemberInitializer *&PrevMember = Members[Member->getBaseOrMember()];
777    if (!PrevMember) {
778      PrevMember = Member;
779      continue;
780    }
781    if (FieldDecl *Field = Member->getMember())
782      Diag(Member->getSourceLocation(),
783           diag::error_multiple_mem_initialization)
784      << Field->getNameAsString();
785    else {
786      Type *BaseClass = Member->getBaseClass();
787      assert(BaseClass && "ActOnMemInitializers - neither field or base");
788      Diag(Member->getSourceLocation(),
789           diag::error_multiple_base_initialization)
790        << BaseClass->getDesugaredType(true);
791    }
792    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
793      << 0;
794  }
795}
796
797namespace {
798  /// PureVirtualMethodCollector - traverses a class and its superclasses
799  /// and determines if it has any pure virtual methods.
800  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
801    ASTContext &Context;
802
803  public:
804    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
805
806  private:
807    MethodList Methods;
808
809    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
810
811  public:
812    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
813      : Context(Ctx) {
814
815      MethodList List;
816      Collect(RD, List);
817
818      // Copy the temporary list to methods, and make sure to ignore any
819      // null entries.
820      for (size_t i = 0, e = List.size(); i != e; ++i) {
821        if (List[i])
822          Methods.push_back(List[i]);
823      }
824    }
825
826    bool empty() const { return Methods.empty(); }
827
828    MethodList::const_iterator methods_begin() { return Methods.begin(); }
829    MethodList::const_iterator methods_end() { return Methods.end(); }
830  };
831
832  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
833                                           MethodList& Methods) {
834    // First, collect the pure virtual methods for the base classes.
835    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
836         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
837      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
838        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
839        if (BaseDecl && BaseDecl->isAbstract())
840          Collect(BaseDecl, Methods);
841      }
842    }
843
844    // Next, zero out any pure virtual methods that this class overrides.
845    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
846
847    MethodSetTy OverriddenMethods;
848    size_t MethodsSize = Methods.size();
849
850    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
851         i != e; ++i) {
852      // Traverse the record, looking for methods.
853      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
854        // If the method is pre virtual, add it to the methods vector.
855        if (MD->isPure()) {
856          Methods.push_back(MD);
857          continue;
858        }
859
860        // Otherwise, record all the overridden methods in our set.
861        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
862             E = MD->end_overridden_methods(); I != E; ++I) {
863          // Keep track of the overridden methods.
864          OverriddenMethods.insert(*I);
865        }
866      }
867    }
868
869    // Now go through the methods and zero out all the ones we know are
870    // overridden.
871    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
872      if (OverriddenMethods.count(Methods[i]))
873        Methods[i] = 0;
874    }
875
876  }
877}
878
879bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
880                                  unsigned DiagID, AbstractDiagSelID SelID,
881                                  const CXXRecordDecl *CurrentRD) {
882
883  if (!getLangOptions().CPlusPlus)
884    return false;
885
886  if (const ArrayType *AT = Context.getAsArrayType(T))
887    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
888                                  CurrentRD);
889
890  if (const PointerType *PT = T->getAsPointerType()) {
891    // Find the innermost pointer type.
892    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
893      PT = T;
894
895    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
896      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
897                                    CurrentRD);
898  }
899
900  const RecordType *RT = T->getAsRecordType();
901  if (!RT)
902    return false;
903
904  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
905  if (!RD)
906    return false;
907
908  if (CurrentRD && CurrentRD != RD)
909    return false;
910
911  if (!RD->isAbstract())
912    return false;
913
914  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
915
916  // Check if we've already emitted the list of pure virtual functions for this
917  // class.
918  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
919    return true;
920
921  PureVirtualMethodCollector Collector(Context, RD);
922
923  for (PureVirtualMethodCollector::MethodList::const_iterator I =
924       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
925    const CXXMethodDecl *MD = *I;
926
927    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
928      MD->getDeclName();
929  }
930
931  if (!PureVirtualClassDiagSet)
932    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
933  PureVirtualClassDiagSet->insert(RD);
934
935  return true;
936}
937
938namespace {
939  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
940    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
941    Sema &SemaRef;
942    CXXRecordDecl *AbstractClass;
943
944    bool VisitDeclContext(const DeclContext *DC) {
945      bool Invalid = false;
946
947      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
948           E = DC->decls_end(); I != E; ++I)
949        Invalid |= Visit(*I);
950
951      return Invalid;
952    }
953
954  public:
955    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
956      : SemaRef(SemaRef), AbstractClass(ac) {
957        Visit(SemaRef.Context.getTranslationUnitDecl());
958    }
959
960    bool VisitFunctionDecl(const FunctionDecl *FD) {
961      if (FD->isThisDeclarationADefinition()) {
962        // No need to do the check if we're in a definition, because it requires
963        // that the return/param types are complete.
964        // because that requires
965        return VisitDeclContext(FD);
966      }
967
968      // Check the return type.
969      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
970      bool Invalid =
971        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
972                                       diag::err_abstract_type_in_decl,
973                                       Sema::AbstractReturnType,
974                                       AbstractClass);
975
976      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
977           E = FD->param_end(); I != E; ++I) {
978        const ParmVarDecl *VD = *I;
979        Invalid |=
980          SemaRef.RequireNonAbstractType(VD->getLocation(),
981                                         VD->getOriginalType(),
982                                         diag::err_abstract_type_in_decl,
983                                         Sema::AbstractParamType,
984                                         AbstractClass);
985      }
986
987      return Invalid;
988    }
989
990    bool VisitDecl(const Decl* D) {
991      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
992        return VisitDeclContext(DC);
993
994      return false;
995    }
996  };
997}
998
999void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1000                                             DeclPtrTy TagDecl,
1001                                             SourceLocation LBrac,
1002                                             SourceLocation RBrac) {
1003  if (!TagDecl)
1004    return;
1005
1006  AdjustDeclIfTemplate(TagDecl);
1007  ActOnFields(S, RLoc, TagDecl,
1008              (DeclPtrTy*)FieldCollector->getCurFields(),
1009              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1010
1011  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1012  if (!RD->isAbstract()) {
1013    // Collect all the pure virtual methods and see if this is an abstract
1014    // class after all.
1015    PureVirtualMethodCollector Collector(Context, RD);
1016    if (!Collector.empty())
1017      RD->setAbstract(true);
1018  }
1019
1020  if (RD->isAbstract())
1021    AbstractClassUsageDiagnoser(*this, RD);
1022
1023  if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
1024    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1025         i != e; ++i) {
1026      // All the nonstatic data members must have trivial constructors.
1027      QualType FTy = i->getType();
1028      while (const ArrayType *AT = Context.getAsArrayType(FTy))
1029        FTy = AT->getElementType();
1030
1031      if (const RecordType *RT = FTy->getAsRecordType()) {
1032        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
1033
1034        if (!FieldRD->hasTrivialConstructor())
1035          RD->setHasTrivialConstructor(false);
1036        if (!FieldRD->hasTrivialDestructor())
1037          RD->setHasTrivialDestructor(false);
1038
1039        // If RD has neither a trivial constructor nor a trivial destructor
1040        // we don't need to continue checking.
1041        if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
1042          break;
1043      }
1044    }
1045  }
1046
1047  if (!RD->isDependentType())
1048    AddImplicitlyDeclaredMembersToClass(RD);
1049}
1050
1051/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1052/// special functions, such as the default constructor, copy
1053/// constructor, or destructor, to the given C++ class (C++
1054/// [special]p1).  This routine can only be executed just before the
1055/// definition of the class is complete.
1056void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1057  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1058  ClassType = Context.getCanonicalType(ClassType);
1059
1060  // FIXME: Implicit declarations have exception specifications, which are
1061  // the union of the specifications of the implicitly called functions.
1062
1063  if (!ClassDecl->hasUserDeclaredConstructor()) {
1064    // C++ [class.ctor]p5:
1065    //   A default constructor for a class X is a constructor of class X
1066    //   that can be called without an argument. If there is no
1067    //   user-declared constructor for class X, a default constructor is
1068    //   implicitly declared. An implicitly-declared default constructor
1069    //   is an inline public member of its class.
1070    DeclarationName Name
1071      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1072    CXXConstructorDecl *DefaultCon =
1073      CXXConstructorDecl::Create(Context, ClassDecl,
1074                                 ClassDecl->getLocation(), Name,
1075                                 Context.getFunctionType(Context.VoidTy,
1076                                                         0, 0, false, 0),
1077                                 /*isExplicit=*/false,
1078                                 /*isInline=*/true,
1079                                 /*isImplicitlyDeclared=*/true);
1080    DefaultCon->setAccess(AS_public);
1081    DefaultCon->setImplicit();
1082    ClassDecl->addDecl(DefaultCon);
1083  }
1084
1085  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1086    // C++ [class.copy]p4:
1087    //   If the class definition does not explicitly declare a copy
1088    //   constructor, one is declared implicitly.
1089
1090    // C++ [class.copy]p5:
1091    //   The implicitly-declared copy constructor for a class X will
1092    //   have the form
1093    //
1094    //       X::X(const X&)
1095    //
1096    //   if
1097    bool HasConstCopyConstructor = true;
1098
1099    //     -- each direct or virtual base class B of X has a copy
1100    //        constructor whose first parameter is of type const B& or
1101    //        const volatile B&, and
1102    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1103         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1104      const CXXRecordDecl *BaseClassDecl
1105        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1106      HasConstCopyConstructor
1107        = BaseClassDecl->hasConstCopyConstructor(Context);
1108    }
1109
1110    //     -- for all the nonstatic data members of X that are of a
1111    //        class type M (or array thereof), each such class type
1112    //        has a copy constructor whose first parameter is of type
1113    //        const M& or const volatile M&.
1114    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1115         HasConstCopyConstructor && Field != ClassDecl->field_end();
1116         ++Field) {
1117      QualType FieldType = (*Field)->getType();
1118      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1119        FieldType = Array->getElementType();
1120      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1121        const CXXRecordDecl *FieldClassDecl
1122          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1123        HasConstCopyConstructor
1124          = FieldClassDecl->hasConstCopyConstructor(Context);
1125      }
1126    }
1127
1128    //   Otherwise, the implicitly declared copy constructor will have
1129    //   the form
1130    //
1131    //       X::X(X&)
1132    QualType ArgType = ClassType;
1133    if (HasConstCopyConstructor)
1134      ArgType = ArgType.withConst();
1135    ArgType = Context.getLValueReferenceType(ArgType);
1136
1137    //   An implicitly-declared copy constructor is an inline public
1138    //   member of its class.
1139    DeclarationName Name
1140      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1141    CXXConstructorDecl *CopyConstructor
1142      = CXXConstructorDecl::Create(Context, ClassDecl,
1143                                   ClassDecl->getLocation(), Name,
1144                                   Context.getFunctionType(Context.VoidTy,
1145                                                           &ArgType, 1,
1146                                                           false, 0),
1147                                   /*isExplicit=*/false,
1148                                   /*isInline=*/true,
1149                                   /*isImplicitlyDeclared=*/true);
1150    CopyConstructor->setAccess(AS_public);
1151    CopyConstructor->setImplicit();
1152
1153    // Add the parameter to the constructor.
1154    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1155                                                 ClassDecl->getLocation(),
1156                                                 /*IdentifierInfo=*/0,
1157                                                 ArgType, VarDecl::None, 0);
1158    CopyConstructor->setParams(Context, &FromParam, 1);
1159    ClassDecl->addDecl(CopyConstructor);
1160  }
1161
1162  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1163    // Note: The following rules are largely analoguous to the copy
1164    // constructor rules. Note that virtual bases are not taken into account
1165    // for determining the argument type of the operator. Note also that
1166    // operators taking an object instead of a reference are allowed.
1167    //
1168    // C++ [class.copy]p10:
1169    //   If the class definition does not explicitly declare a copy
1170    //   assignment operator, one is declared implicitly.
1171    //   The implicitly-defined copy assignment operator for a class X
1172    //   will have the form
1173    //
1174    //       X& X::operator=(const X&)
1175    //
1176    //   if
1177    bool HasConstCopyAssignment = true;
1178
1179    //       -- each direct base class B of X has a copy assignment operator
1180    //          whose parameter is of type const B&, const volatile B& or B,
1181    //          and
1182    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1183         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1184      const CXXRecordDecl *BaseClassDecl
1185        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1186      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1187    }
1188
1189    //       -- for all the nonstatic data members of X that are of a class
1190    //          type M (or array thereof), each such class type has a copy
1191    //          assignment operator whose parameter is of type const M&,
1192    //          const volatile M& or M.
1193    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1194         HasConstCopyAssignment && Field != ClassDecl->field_end();
1195         ++Field) {
1196      QualType FieldType = (*Field)->getType();
1197      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1198        FieldType = Array->getElementType();
1199      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1200        const CXXRecordDecl *FieldClassDecl
1201          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1202        HasConstCopyAssignment
1203          = FieldClassDecl->hasConstCopyAssignment(Context);
1204      }
1205    }
1206
1207    //   Otherwise, the implicitly declared copy assignment operator will
1208    //   have the form
1209    //
1210    //       X& X::operator=(X&)
1211    QualType ArgType = ClassType;
1212    QualType RetType = Context.getLValueReferenceType(ArgType);
1213    if (HasConstCopyAssignment)
1214      ArgType = ArgType.withConst();
1215    ArgType = Context.getLValueReferenceType(ArgType);
1216
1217    //   An implicitly-declared copy assignment operator is an inline public
1218    //   member of its class.
1219    DeclarationName Name =
1220      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1221    CXXMethodDecl *CopyAssignment =
1222      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1223                            Context.getFunctionType(RetType, &ArgType, 1,
1224                                                    false, 0),
1225                            /*isStatic=*/false, /*isInline=*/true);
1226    CopyAssignment->setAccess(AS_public);
1227    CopyAssignment->setImplicit();
1228
1229    // Add the parameter to the operator.
1230    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1231                                                 ClassDecl->getLocation(),
1232                                                 /*IdentifierInfo=*/0,
1233                                                 ArgType, VarDecl::None, 0);
1234    CopyAssignment->setParams(Context, &FromParam, 1);
1235
1236    // Don't call addedAssignmentOperator. There is no way to distinguish an
1237    // implicit from an explicit assignment operator.
1238    ClassDecl->addDecl(CopyAssignment);
1239  }
1240
1241  if (!ClassDecl->hasUserDeclaredDestructor()) {
1242    // C++ [class.dtor]p2:
1243    //   If a class has no user-declared destructor, a destructor is
1244    //   declared implicitly. An implicitly-declared destructor is an
1245    //   inline public member of its class.
1246    DeclarationName Name
1247      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1248    CXXDestructorDecl *Destructor
1249      = CXXDestructorDecl::Create(Context, ClassDecl,
1250                                  ClassDecl->getLocation(), Name,
1251                                  Context.getFunctionType(Context.VoidTy,
1252                                                          0, 0, false, 0),
1253                                  /*isInline=*/true,
1254                                  /*isImplicitlyDeclared=*/true);
1255    Destructor->setAccess(AS_public);
1256    Destructor->setImplicit();
1257    ClassDecl->addDecl(Destructor);
1258  }
1259}
1260
1261void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1262  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1263  if (!Template)
1264    return;
1265
1266  TemplateParameterList *Params = Template->getTemplateParameters();
1267  for (TemplateParameterList::iterator Param = Params->begin(),
1268                                    ParamEnd = Params->end();
1269       Param != ParamEnd; ++Param) {
1270    NamedDecl *Named = cast<NamedDecl>(*Param);
1271    if (Named->getDeclName()) {
1272      S->AddDecl(DeclPtrTy::make(Named));
1273      IdResolver.AddDecl(Named);
1274    }
1275  }
1276}
1277
1278/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1279/// parsing a top-level (non-nested) C++ class, and we are now
1280/// parsing those parts of the given Method declaration that could
1281/// not be parsed earlier (C++ [class.mem]p2), such as default
1282/// arguments. This action should enter the scope of the given
1283/// Method declaration as if we had just parsed the qualified method
1284/// name. However, it should not bring the parameters into scope;
1285/// that will be performed by ActOnDelayedCXXMethodParameter.
1286void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1287  if (!MethodD)
1288    return;
1289
1290  CXXScopeSpec SS;
1291  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1292  QualType ClassTy
1293    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1294  SS.setScopeRep(
1295    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1296  ActOnCXXEnterDeclaratorScope(S, SS);
1297}
1298
1299/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1300/// C++ method declaration. We're (re-)introducing the given
1301/// function parameter into scope for use in parsing later parts of
1302/// the method declaration. For example, we could see an
1303/// ActOnParamDefaultArgument event for this parameter.
1304void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1305  if (!ParamD)
1306    return;
1307
1308  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1309
1310  // If this parameter has an unparsed default argument, clear it out
1311  // to make way for the parsed default argument.
1312  if (Param->hasUnparsedDefaultArg())
1313    Param->setDefaultArg(0);
1314
1315  S->AddDecl(DeclPtrTy::make(Param));
1316  if (Param->getDeclName())
1317    IdResolver.AddDecl(Param);
1318}
1319
1320/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1321/// processing the delayed method declaration for Method. The method
1322/// declaration is now considered finished. There may be a separate
1323/// ActOnStartOfFunctionDef action later (not necessarily
1324/// immediately!) for this method, if it was also defined inside the
1325/// class body.
1326void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1327  if (!MethodD)
1328    return;
1329
1330  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1331  CXXScopeSpec SS;
1332  QualType ClassTy
1333    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1334  SS.setScopeRep(
1335    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1336  ActOnCXXExitDeclaratorScope(S, SS);
1337
1338  // Now that we have our default arguments, check the constructor
1339  // again. It could produce additional diagnostics or affect whether
1340  // the class has implicitly-declared destructors, among other
1341  // things.
1342  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1343    CheckConstructor(Constructor);
1344
1345  // Check the default arguments, which we may have added.
1346  if (!Method->isInvalidDecl())
1347    CheckCXXDefaultArguments(Method);
1348}
1349
1350/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1351/// the well-formedness of the constructor declarator @p D with type @p
1352/// R. If there are any errors in the declarator, this routine will
1353/// emit diagnostics and set the invalid bit to true.  In any case, the type
1354/// will be updated to reflect a well-formed type for the constructor and
1355/// returned.
1356QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1357                                          FunctionDecl::StorageClass &SC) {
1358  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1359
1360  // C++ [class.ctor]p3:
1361  //   A constructor shall not be virtual (10.3) or static (9.4). A
1362  //   constructor can be invoked for a const, volatile or const
1363  //   volatile object. A constructor shall not be declared const,
1364  //   volatile, or const volatile (9.3.2).
1365  if (isVirtual) {
1366    if (!D.isInvalidType())
1367      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1368        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1369        << SourceRange(D.getIdentifierLoc());
1370    D.setInvalidType();
1371  }
1372  if (SC == FunctionDecl::Static) {
1373    if (!D.isInvalidType())
1374      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1375        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1376        << SourceRange(D.getIdentifierLoc());
1377    D.setInvalidType();
1378    SC = FunctionDecl::None;
1379  }
1380
1381  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1382  if (FTI.TypeQuals != 0) {
1383    if (FTI.TypeQuals & QualType::Const)
1384      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1385        << "const" << SourceRange(D.getIdentifierLoc());
1386    if (FTI.TypeQuals & QualType::Volatile)
1387      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1388        << "volatile" << SourceRange(D.getIdentifierLoc());
1389    if (FTI.TypeQuals & QualType::Restrict)
1390      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1391        << "restrict" << SourceRange(D.getIdentifierLoc());
1392  }
1393
1394  // Rebuild the function type "R" without any type qualifiers (in
1395  // case any of the errors above fired) and with "void" as the
1396  // return type, since constructors don't have return types. We
1397  // *always* have to do this, because GetTypeForDeclarator will
1398  // put in a result type of "int" when none was specified.
1399  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1400  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1401                                 Proto->getNumArgs(),
1402                                 Proto->isVariadic(), 0);
1403}
1404
1405/// CheckConstructor - Checks a fully-formed constructor for
1406/// well-formedness, issuing any diagnostics required. Returns true if
1407/// the constructor declarator is invalid.
1408void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1409  CXXRecordDecl *ClassDecl
1410    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1411  if (!ClassDecl)
1412    return Constructor->setInvalidDecl();
1413
1414  // C++ [class.copy]p3:
1415  //   A declaration of a constructor for a class X is ill-formed if
1416  //   its first parameter is of type (optionally cv-qualified) X and
1417  //   either there are no other parameters or else all other
1418  //   parameters have default arguments.
1419  if (!Constructor->isInvalidDecl() &&
1420      ((Constructor->getNumParams() == 1) ||
1421       (Constructor->getNumParams() > 1 &&
1422        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1423    QualType ParamType = Constructor->getParamDecl(0)->getType();
1424    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1425    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1426      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1427      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1428        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1429      Constructor->setInvalidDecl();
1430    }
1431  }
1432
1433  // Notify the class that we've added a constructor.
1434  ClassDecl->addedConstructor(Context, Constructor);
1435}
1436
1437static inline bool
1438FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1439  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1440          FTI.ArgInfo[0].Param &&
1441          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1442}
1443
1444/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1445/// the well-formednes of the destructor declarator @p D with type @p
1446/// R. If there are any errors in the declarator, this routine will
1447/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1448/// will be updated to reflect a well-formed type for the destructor and
1449/// returned.
1450QualType Sema::CheckDestructorDeclarator(Declarator &D,
1451                                         FunctionDecl::StorageClass& SC) {
1452  // C++ [class.dtor]p1:
1453  //   [...] A typedef-name that names a class is a class-name
1454  //   (7.1.3); however, a typedef-name that names a class shall not
1455  //   be used as the identifier in the declarator for a destructor
1456  //   declaration.
1457  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1458  if (isa<TypedefType>(DeclaratorType)) {
1459    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1460      << DeclaratorType;
1461    D.setInvalidType();
1462  }
1463
1464  // C++ [class.dtor]p2:
1465  //   A destructor is used to destroy objects of its class type. A
1466  //   destructor takes no parameters, and no return type can be
1467  //   specified for it (not even void). The address of a destructor
1468  //   shall not be taken. A destructor shall not be static. A
1469  //   destructor can be invoked for a const, volatile or const
1470  //   volatile object. A destructor shall not be declared const,
1471  //   volatile or const volatile (9.3.2).
1472  if (SC == FunctionDecl::Static) {
1473    if (!D.isInvalidType())
1474      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1475        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1476        << SourceRange(D.getIdentifierLoc());
1477    SC = FunctionDecl::None;
1478    D.setInvalidType();
1479  }
1480  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1481    // Destructors don't have return types, but the parser will
1482    // happily parse something like:
1483    //
1484    //   class X {
1485    //     float ~X();
1486    //   };
1487    //
1488    // The return type will be eliminated later.
1489    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1490      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1491      << SourceRange(D.getIdentifierLoc());
1492  }
1493
1494  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1495  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1496    if (FTI.TypeQuals & QualType::Const)
1497      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1498        << "const" << SourceRange(D.getIdentifierLoc());
1499    if (FTI.TypeQuals & QualType::Volatile)
1500      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1501        << "volatile" << SourceRange(D.getIdentifierLoc());
1502    if (FTI.TypeQuals & QualType::Restrict)
1503      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1504        << "restrict" << SourceRange(D.getIdentifierLoc());
1505    D.setInvalidType();
1506  }
1507
1508  // Make sure we don't have any parameters.
1509  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1510    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1511
1512    // Delete the parameters.
1513    FTI.freeArgs();
1514    D.setInvalidType();
1515  }
1516
1517  // Make sure the destructor isn't variadic.
1518  if (FTI.isVariadic) {
1519    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1520    D.setInvalidType();
1521  }
1522
1523  // Rebuild the function type "R" without any type qualifiers or
1524  // parameters (in case any of the errors above fired) and with
1525  // "void" as the return type, since destructors don't have return
1526  // types. We *always* have to do this, because GetTypeForDeclarator
1527  // will put in a result type of "int" when none was specified.
1528  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1529}
1530
1531/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1532/// well-formednes of the conversion function declarator @p D with
1533/// type @p R. If there are any errors in the declarator, this routine
1534/// will emit diagnostics and return true. Otherwise, it will return
1535/// false. Either way, the type @p R will be updated to reflect a
1536/// well-formed type for the conversion operator.
1537void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1538                                     FunctionDecl::StorageClass& SC) {
1539  // C++ [class.conv.fct]p1:
1540  //   Neither parameter types nor return type can be specified. The
1541  //   type of a conversion function (8.3.5) is “function taking no
1542  //   parameter returning conversion-type-id.”
1543  if (SC == FunctionDecl::Static) {
1544    if (!D.isInvalidType())
1545      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1546        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1547        << SourceRange(D.getIdentifierLoc());
1548    D.setInvalidType();
1549    SC = FunctionDecl::None;
1550  }
1551  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1552    // Conversion functions don't have return types, but the parser will
1553    // happily parse something like:
1554    //
1555    //   class X {
1556    //     float operator bool();
1557    //   };
1558    //
1559    // The return type will be changed later anyway.
1560    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1561      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1562      << SourceRange(D.getIdentifierLoc());
1563  }
1564
1565  // Make sure we don't have any parameters.
1566  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1567    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1568
1569    // Delete the parameters.
1570    D.getTypeObject(0).Fun.freeArgs();
1571    D.setInvalidType();
1572  }
1573
1574  // Make sure the conversion function isn't variadic.
1575  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1576    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1577    D.setInvalidType();
1578  }
1579
1580  // C++ [class.conv.fct]p4:
1581  //   The conversion-type-id shall not represent a function type nor
1582  //   an array type.
1583  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1584  if (ConvType->isArrayType()) {
1585    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1586    ConvType = Context.getPointerType(ConvType);
1587    D.setInvalidType();
1588  } else if (ConvType->isFunctionType()) {
1589    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1590    ConvType = Context.getPointerType(ConvType);
1591    D.setInvalidType();
1592  }
1593
1594  // Rebuild the function type "R" without any parameters (in case any
1595  // of the errors above fired) and with the conversion type as the
1596  // return type.
1597  R = Context.getFunctionType(ConvType, 0, 0, false,
1598                              R->getAsFunctionProtoType()->getTypeQuals());
1599
1600  // C++0x explicit conversion operators.
1601  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1602    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1603         diag::warn_explicit_conversion_functions)
1604      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1605}
1606
1607/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1608/// the declaration of the given C++ conversion function. This routine
1609/// is responsible for recording the conversion function in the C++
1610/// class, if possible.
1611Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1612  assert(Conversion && "Expected to receive a conversion function declaration");
1613
1614  // Set the lexical context of this conversion function
1615  Conversion->setLexicalDeclContext(CurContext);
1616
1617  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1618
1619  // Make sure we aren't redeclaring the conversion function.
1620  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1621
1622  // C++ [class.conv.fct]p1:
1623  //   [...] A conversion function is never used to convert a
1624  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1625  //   same object type (or a reference to it), to a (possibly
1626  //   cv-qualified) base class of that type (or a reference to it),
1627  //   or to (possibly cv-qualified) void.
1628  // FIXME: Suppress this warning if the conversion function ends up being a
1629  // virtual function that overrides a virtual function in a base class.
1630  QualType ClassType
1631    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1632  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1633    ConvType = ConvTypeRef->getPointeeType();
1634  if (ConvType->isRecordType()) {
1635    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1636    if (ConvType == ClassType)
1637      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1638        << ClassType;
1639    else if (IsDerivedFrom(ClassType, ConvType))
1640      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1641        <<  ClassType << ConvType;
1642  } else if (ConvType->isVoidType()) {
1643    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1644      << ClassType << ConvType;
1645  }
1646
1647  if (Conversion->getPreviousDeclaration()) {
1648    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1649    for (OverloadedFunctionDecl::function_iterator
1650           Conv = Conversions->function_begin(),
1651           ConvEnd = Conversions->function_end();
1652         Conv != ConvEnd; ++Conv) {
1653      if (*Conv
1654            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1655        *Conv = Conversion;
1656        return DeclPtrTy::make(Conversion);
1657      }
1658    }
1659    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1660  } else
1661    ClassDecl->addConversionFunction(Context, Conversion);
1662
1663  return DeclPtrTy::make(Conversion);
1664}
1665
1666//===----------------------------------------------------------------------===//
1667// Namespace Handling
1668//===----------------------------------------------------------------------===//
1669
1670/// ActOnStartNamespaceDef - This is called at the start of a namespace
1671/// definition.
1672Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1673                                             SourceLocation IdentLoc,
1674                                             IdentifierInfo *II,
1675                                             SourceLocation LBrace) {
1676  NamespaceDecl *Namespc =
1677      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1678  Namespc->setLBracLoc(LBrace);
1679
1680  Scope *DeclRegionScope = NamespcScope->getParent();
1681
1682  if (II) {
1683    // C++ [namespace.def]p2:
1684    // The identifier in an original-namespace-definition shall not have been
1685    // previously defined in the declarative region in which the
1686    // original-namespace-definition appears. The identifier in an
1687    // original-namespace-definition is the name of the namespace. Subsequently
1688    // in that declarative region, it is treated as an original-namespace-name.
1689
1690    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1691                                     true);
1692
1693    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1694      // This is an extended namespace definition.
1695      // Attach this namespace decl to the chain of extended namespace
1696      // definitions.
1697      OrigNS->setNextNamespace(Namespc);
1698      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1699
1700      // Remove the previous declaration from the scope.
1701      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1702        IdResolver.RemoveDecl(OrigNS);
1703        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1704      }
1705    } else if (PrevDecl) {
1706      // This is an invalid name redefinition.
1707      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1708       << Namespc->getDeclName();
1709      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1710      Namespc->setInvalidDecl();
1711      // Continue on to push Namespc as current DeclContext and return it.
1712    }
1713
1714    PushOnScopeChains(Namespc, DeclRegionScope);
1715  } else {
1716    // FIXME: Handle anonymous namespaces
1717  }
1718
1719  // Although we could have an invalid decl (i.e. the namespace name is a
1720  // redefinition), push it as current DeclContext and try to continue parsing.
1721  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1722  // for the namespace has the declarations that showed up in that particular
1723  // namespace definition.
1724  PushDeclContext(NamespcScope, Namespc);
1725  return DeclPtrTy::make(Namespc);
1726}
1727
1728/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1729/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1730void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1731  Decl *Dcl = D.getAs<Decl>();
1732  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1733  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1734  Namespc->setRBracLoc(RBrace);
1735  PopDeclContext();
1736}
1737
1738Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1739                                          SourceLocation UsingLoc,
1740                                          SourceLocation NamespcLoc,
1741                                          const CXXScopeSpec &SS,
1742                                          SourceLocation IdentLoc,
1743                                          IdentifierInfo *NamespcName,
1744                                          AttributeList *AttrList) {
1745  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1746  assert(NamespcName && "Invalid NamespcName.");
1747  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1748  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1749
1750  UsingDirectiveDecl *UDir = 0;
1751
1752  // Lookup namespace name.
1753  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1754                                    LookupNamespaceName, false);
1755  if (R.isAmbiguous()) {
1756    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1757    return DeclPtrTy();
1758  }
1759  if (NamedDecl *NS = R) {
1760    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1761    // C++ [namespace.udir]p1:
1762    //   A using-directive specifies that the names in the nominated
1763    //   namespace can be used in the scope in which the
1764    //   using-directive appears after the using-directive. During
1765    //   unqualified name lookup (3.4.1), the names appear as if they
1766    //   were declared in the nearest enclosing namespace which
1767    //   contains both the using-directive and the nominated
1768    //   namespace. [Note: in this context, “contains” means “contains
1769    //   directly or indirectly”. ]
1770
1771    // Find enclosing context containing both using-directive and
1772    // nominated namespace.
1773    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1774    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1775      CommonAncestor = CommonAncestor->getParent();
1776
1777    UDir = UsingDirectiveDecl::Create(Context,
1778                                      CurContext, UsingLoc,
1779                                      NamespcLoc,
1780                                      SS.getRange(),
1781                                      (NestedNameSpecifier *)SS.getScopeRep(),
1782                                      IdentLoc,
1783                                      cast<NamespaceDecl>(NS),
1784                                      CommonAncestor);
1785    PushUsingDirective(S, UDir);
1786  } else {
1787    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1788  }
1789
1790  // FIXME: We ignore attributes for now.
1791  delete AttrList;
1792  return DeclPtrTy::make(UDir);
1793}
1794
1795void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1796  // If scope has associated entity, then using directive is at namespace
1797  // or translation unit scope. We add UsingDirectiveDecls, into
1798  // it's lookup structure.
1799  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1800    Ctx->addDecl(UDir);
1801  else
1802    // Otherwise it is block-sope. using-directives will affect lookup
1803    // only to the end of scope.
1804    S->PushUsingDirective(DeclPtrTy::make(UDir));
1805}
1806
1807
1808Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1809                                          SourceLocation UsingLoc,
1810                                          const CXXScopeSpec &SS,
1811                                          SourceLocation IdentLoc,
1812                                          IdentifierInfo *TargetName,
1813                                          OverloadedOperatorKind Op,
1814                                          AttributeList *AttrList,
1815                                          bool IsTypeName) {
1816  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1817  assert((TargetName || Op) && "Invalid TargetName.");
1818  assert(IdentLoc.isValid() && "Invalid TargetName location.");
1819  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1820
1821  UsingDecl *UsingAlias = 0;
1822
1823  DeclarationName Name;
1824  if (TargetName)
1825    Name = TargetName;
1826  else
1827    Name = Context.DeclarationNames.getCXXOperatorName(Op);
1828
1829  // Lookup target name.
1830  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
1831
1832  if (NamedDecl *NS = R) {
1833    if (IsTypeName && !isa<TypeDecl>(NS)) {
1834      Diag(IdentLoc, diag::err_using_typename_non_type);
1835    }
1836    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
1837        NS->getLocation(), UsingLoc, NS,
1838        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
1839        IsTypeName);
1840    PushOnScopeChains(UsingAlias, S);
1841  } else {
1842    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
1843  }
1844
1845  // FIXME: We ignore attributes for now.
1846  delete AttrList;
1847  return DeclPtrTy::make(UsingAlias);
1848}
1849
1850/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1851/// is a namespace alias, returns the namespace it points to.
1852static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1853  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1854    return AD->getNamespace();
1855  return dyn_cast_or_null<NamespaceDecl>(D);
1856}
1857
1858Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1859                                             SourceLocation NamespaceLoc,
1860                                             SourceLocation AliasLoc,
1861                                             IdentifierInfo *Alias,
1862                                             const CXXScopeSpec &SS,
1863                                             SourceLocation IdentLoc,
1864                                             IdentifierInfo *Ident) {
1865
1866  // Lookup the namespace name.
1867  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1868
1869  // Check if we have a previous declaration with the same name.
1870  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1871    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1872      // We already have an alias with the same name that points to the same
1873      // namespace, so don't create a new one.
1874      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1875        return DeclPtrTy();
1876    }
1877
1878    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1879      diag::err_redefinition_different_kind;
1880    Diag(AliasLoc, DiagID) << Alias;
1881    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1882    return DeclPtrTy();
1883  }
1884
1885  if (R.isAmbiguous()) {
1886    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1887    return DeclPtrTy();
1888  }
1889
1890  if (!R) {
1891    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
1892    return DeclPtrTy();
1893  }
1894
1895  NamespaceAliasDecl *AliasDecl =
1896    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
1897                               Alias, SS.getRange(),
1898                               (NestedNameSpecifier *)SS.getScopeRep(),
1899                               IdentLoc, R);
1900
1901  CurContext->addDecl(AliasDecl);
1902  return DeclPtrTy::make(AliasDecl);
1903}
1904
1905void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
1906                                            CXXConstructorDecl *Constructor) {
1907  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
1908          !Constructor->isUsed()) &&
1909    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
1910
1911  CXXRecordDecl *ClassDecl
1912    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1913  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
1914  // Before the implicitly-declared default constructor for a class is
1915  // implicitly defined, all the implicitly-declared default constructors
1916  // for its base class and its non-static data members shall have been
1917  // implicitly defined.
1918  bool err = false;
1919  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1920       Base != ClassDecl->bases_end(); ++Base) {
1921    CXXRecordDecl *BaseClassDecl
1922      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1923    if (!BaseClassDecl->hasTrivialConstructor()) {
1924      if (CXXConstructorDecl *BaseCtor =
1925            BaseClassDecl->getDefaultConstructor(Context))
1926        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
1927      else {
1928        Diag(CurrentLocation, diag::err_defining_default_ctor)
1929          << Context.getTagDeclType(ClassDecl) << 1
1930          << Context.getTagDeclType(BaseClassDecl);
1931        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
1932              << Context.getTagDeclType(BaseClassDecl);
1933        err = true;
1934      }
1935    }
1936  }
1937  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1938       Field != ClassDecl->field_end();
1939       ++Field) {
1940    QualType FieldType = Context.getCanonicalType((*Field)->getType());
1941    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1942      FieldType = Array->getElementType();
1943    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1944      CXXRecordDecl *FieldClassDecl
1945        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1946      if (!FieldClassDecl->hasTrivialConstructor()) {
1947        if (CXXConstructorDecl *FieldCtor =
1948            FieldClassDecl->getDefaultConstructor(Context))
1949          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
1950        else {
1951          Diag(CurrentLocation, diag::err_defining_default_ctor)
1952          << Context.getTagDeclType(ClassDecl) << 0 <<
1953              Context.getTagDeclType(FieldClassDecl);
1954          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
1955          << Context.getTagDeclType(FieldClassDecl);
1956          err = true;
1957        }
1958      }
1959    }
1960    else if (FieldType->isReferenceType()) {
1961      Diag(CurrentLocation, diag::err_unintialized_member)
1962        << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getNameAsCString();
1963      Diag((*Field)->getLocation(), diag::note_declared_at);
1964      err = true;
1965    }
1966    else if (FieldType.isConstQualified()) {
1967      Diag(CurrentLocation, diag::err_unintialized_member)
1968        << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getNameAsCString();
1969       Diag((*Field)->getLocation(), diag::note_declared_at);
1970      err = true;
1971    }
1972  }
1973  if (!err)
1974    Constructor->setUsed();
1975  else
1976    Constructor->setInvalidDecl();
1977}
1978
1979void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
1980                                            CXXDestructorDecl *Destructor) {
1981  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
1982         "DefineImplicitDestructor - call it for implicit default dtor");
1983
1984  CXXRecordDecl *ClassDecl
1985  = cast<CXXRecordDecl>(Destructor->getDeclContext());
1986  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
1987  // C++ [class.dtor] p5
1988  // Before the implicitly-declared default destructor for a class is
1989  // implicitly defined, all the implicitly-declared default destructors
1990  // for its base class and its non-static data members shall have been
1991  // implicitly defined.
1992  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1993       Base != ClassDecl->bases_end(); ++Base) {
1994    CXXRecordDecl *BaseClassDecl
1995      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1996    if (!BaseClassDecl->hasTrivialDestructor()) {
1997      if (CXXDestructorDecl *BaseDtor =
1998          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
1999        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2000      else
2001        assert(false &&
2002               "DefineImplicitDestructor - missing dtor in a base class");
2003    }
2004  }
2005
2006  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2007       Field != ClassDecl->field_end();
2008       ++Field) {
2009    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2010    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2011      FieldType = Array->getElementType();
2012    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2013      CXXRecordDecl *FieldClassDecl
2014        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2015      if (!FieldClassDecl->hasTrivialDestructor()) {
2016        if (CXXDestructorDecl *FieldDtor =
2017            const_cast<CXXDestructorDecl*>(
2018                                        FieldClassDecl->getDestructor(Context)))
2019          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2020        else
2021          assert(false &&
2022          "DefineImplicitDestructor - missing dtor in class of a data member");
2023      }
2024    }
2025  }
2026  Destructor->setUsed();
2027}
2028
2029void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2030                                          CXXMethodDecl *MethodDecl) {
2031  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2032          MethodDecl->getOverloadedOperator() == OO_Equal &&
2033          !MethodDecl->isUsed()) &&
2034         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2035
2036  CXXRecordDecl *ClassDecl
2037    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2038  assert(ClassDecl && "DefineImplicitOverloadedAssign - invalid constructor");
2039
2040  // C++[class.copy] p12
2041  // Before the implicitly-declared copy assignment operator for a class is
2042  // implicitly defined, all implicitly-declared copy assignment operators
2043  // for its direct base classes and its nonstatic data members shall have
2044  // been implicitly defined.
2045  bool err = false;
2046  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2047       Base != ClassDecl->bases_end(); ++Base) {
2048    CXXRecordDecl *BaseClassDecl
2049      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2050    if (CXXMethodDecl *BaseAssignOpMethod =
2051          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2052      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2053  }
2054  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2055       Field != ClassDecl->field_end();
2056       ++Field) {
2057    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2058    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2059      FieldType = Array->getElementType();
2060    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2061      CXXRecordDecl *FieldClassDecl
2062        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2063      if (CXXMethodDecl *FieldAssignOpMethod =
2064          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2065        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2066    }
2067    else if (FieldType->isReferenceType()) {
2068      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2069      << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getNameAsCString();
2070      Diag((*Field)->getLocation(), diag::note_declared_at);
2071      Diag(CurrentLocation, diag::note_first_required_here);
2072      err = true;
2073    }
2074    else if (FieldType.isConstQualified()) {
2075      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2076      << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getNameAsCString();
2077      Diag((*Field)->getLocation(), diag::note_declared_at);
2078      Diag(CurrentLocation, diag::note_first_required_here);
2079      err = true;
2080    }
2081  }
2082  if (!err)
2083    MethodDecl->setUsed();
2084}
2085
2086CXXMethodDecl *
2087Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2088                              CXXRecordDecl *ClassDecl) {
2089  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2090  QualType RHSType(LHSType);
2091  // If class's assignment operator argument is const/volatile qualified,
2092  // look for operator = (const/volatile B&). Otherwise, look for
2093  // operator = (B&).
2094  if (ParmDecl->getType().isConstQualified())
2095    RHSType.addConst();
2096  if (ParmDecl->getType().isVolatileQualified())
2097    RHSType.addVolatile();
2098  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2099                                                          LHSType,
2100                                                          SourceLocation()));
2101  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2102                                                          RHSType,
2103                                                          SourceLocation()));
2104  Expr *Args[2] = { &*LHS, &*RHS };
2105  OverloadCandidateSet CandidateSet;
2106  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2107                              CandidateSet);
2108  OverloadCandidateSet::iterator Best;
2109  if (BestViableFunction(CandidateSet,
2110                         ClassDecl->getLocation(), Best) == OR_Success)
2111    return cast<CXXMethodDecl>(Best->Function);
2112  assert(false &&
2113         "getAssignOperatorMethod - copy assignment operator method not found");
2114  return 0;
2115}
2116
2117void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2118                                   CXXConstructorDecl *CopyConstructor,
2119                                   unsigned TypeQuals) {
2120  assert((CopyConstructor->isImplicit() &&
2121          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2122          !CopyConstructor->isUsed()) &&
2123         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2124
2125  CXXRecordDecl *ClassDecl
2126    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2127  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2128  // C++ [class.copy] p209
2129  // Before the implicitly-declared copy constructor for a class is
2130  // implicitly defined, all the implicitly-declared copy constructors
2131  // for its base class and its non-static data members shall have been
2132  // implicitly defined.
2133  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2134       Base != ClassDecl->bases_end(); ++Base) {
2135    CXXRecordDecl *BaseClassDecl
2136      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2137    if (CXXConstructorDecl *BaseCopyCtor =
2138        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2139      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2140  }
2141  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2142                                  FieldEnd = ClassDecl->field_end();
2143       Field != FieldEnd; ++Field) {
2144    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2145    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2146      FieldType = Array->getElementType();
2147    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2148      CXXRecordDecl *FieldClassDecl
2149        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2150      if (CXXConstructorDecl *FieldCopyCtor =
2151          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2152        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2153    }
2154  }
2155  CopyConstructor->setUsed();
2156}
2157
2158void Sema::InitializeVarWithConstructor(VarDecl *VD,
2159                                        CXXConstructorDecl *Constructor,
2160                                        QualType DeclInitType,
2161                                        Expr **Exprs, unsigned NumExprs) {
2162  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2163                                        false, Exprs, NumExprs);
2164  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2165  VD->setInit(Context, Temp);
2166}
2167
2168void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2169{
2170  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2171                                  DeclInitType->getAsRecordType()->getDecl());
2172  if (!ClassDecl->hasTrivialDestructor())
2173    if (CXXDestructorDecl *Destructor =
2174        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2175      MarkDeclarationReferenced(Loc, Destructor);
2176}
2177
2178/// AddCXXDirectInitializerToDecl - This action is called immediately after
2179/// ActOnDeclarator, when a C++ direct initializer is present.
2180/// e.g: "int x(1);"
2181void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2182                                         SourceLocation LParenLoc,
2183                                         MultiExprArg Exprs,
2184                                         SourceLocation *CommaLocs,
2185                                         SourceLocation RParenLoc) {
2186  unsigned NumExprs = Exprs.size();
2187  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2188  Decl *RealDecl = Dcl.getAs<Decl>();
2189
2190  // If there is no declaration, there was an error parsing it.  Just ignore
2191  // the initializer.
2192  if (RealDecl == 0)
2193    return;
2194
2195  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2196  if (!VDecl) {
2197    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2198    RealDecl->setInvalidDecl();
2199    return;
2200  }
2201
2202  // FIXME: Need to handle dependent types and expressions here.
2203
2204  // We will treat direct-initialization as a copy-initialization:
2205  //    int x(1);  -as-> int x = 1;
2206  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2207  //
2208  // Clients that want to distinguish between the two forms, can check for
2209  // direct initializer using VarDecl::hasCXXDirectInitializer().
2210  // A major benefit is that clients that don't particularly care about which
2211  // exactly form was it (like the CodeGen) can handle both cases without
2212  // special case code.
2213
2214  // C++ 8.5p11:
2215  // The form of initialization (using parentheses or '=') is generally
2216  // insignificant, but does matter when the entity being initialized has a
2217  // class type.
2218  QualType DeclInitType = VDecl->getType();
2219  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2220    DeclInitType = Array->getElementType();
2221
2222  // FIXME: This isn't the right place to complete the type.
2223  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2224                          diag::err_typecheck_decl_incomplete_type)) {
2225    VDecl->setInvalidDecl();
2226    return;
2227  }
2228
2229  if (VDecl->getType()->isRecordType()) {
2230    CXXConstructorDecl *Constructor
2231      = PerformInitializationByConstructor(DeclInitType,
2232                                           (Expr **)Exprs.get(), NumExprs,
2233                                           VDecl->getLocation(),
2234                                           SourceRange(VDecl->getLocation(),
2235                                                       RParenLoc),
2236                                           VDecl->getDeclName(),
2237                                           IK_Direct);
2238    if (!Constructor)
2239      RealDecl->setInvalidDecl();
2240    else {
2241      VDecl->setCXXDirectInitializer(true);
2242      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2243                                   (Expr**)Exprs.release(), NumExprs);
2244      // FIXME. Must do all that is needed to destroy the object
2245      // on scope exit. For now, just mark the destructor as used.
2246      MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2247    }
2248    return;
2249  }
2250
2251  if (NumExprs > 1) {
2252    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2253      << SourceRange(VDecl->getLocation(), RParenLoc);
2254    RealDecl->setInvalidDecl();
2255    return;
2256  }
2257
2258  // Let clients know that initialization was done with a direct initializer.
2259  VDecl->setCXXDirectInitializer(true);
2260
2261  assert(NumExprs == 1 && "Expected 1 expression");
2262  // Set the init expression, handles conversions.
2263  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2264                       /*DirectInit=*/true);
2265}
2266
2267/// PerformInitializationByConstructor - Perform initialization by
2268/// constructor (C++ [dcl.init]p14), which may occur as part of
2269/// direct-initialization or copy-initialization. We are initializing
2270/// an object of type @p ClassType with the given arguments @p
2271/// Args. @p Loc is the location in the source code where the
2272/// initializer occurs (e.g., a declaration, member initializer,
2273/// functional cast, etc.) while @p Range covers the whole
2274/// initialization. @p InitEntity is the entity being initialized,
2275/// which may by the name of a declaration or a type. @p Kind is the
2276/// kind of initialization we're performing, which affects whether
2277/// explicit constructors will be considered. When successful, returns
2278/// the constructor that will be used to perform the initialization;
2279/// when the initialization fails, emits a diagnostic and returns
2280/// null.
2281CXXConstructorDecl *
2282Sema::PerformInitializationByConstructor(QualType ClassType,
2283                                         Expr **Args, unsigned NumArgs,
2284                                         SourceLocation Loc, SourceRange Range,
2285                                         DeclarationName InitEntity,
2286                                         InitializationKind Kind) {
2287  const RecordType *ClassRec = ClassType->getAsRecordType();
2288  assert(ClassRec && "Can only initialize a class type here");
2289
2290  // C++ [dcl.init]p14:
2291  //
2292  //   If the initialization is direct-initialization, or if it is
2293  //   copy-initialization where the cv-unqualified version of the
2294  //   source type is the same class as, or a derived class of, the
2295  //   class of the destination, constructors are considered. The
2296  //   applicable constructors are enumerated (13.3.1.3), and the
2297  //   best one is chosen through overload resolution (13.3). The
2298  //   constructor so selected is called to initialize the object,
2299  //   with the initializer expression(s) as its argument(s). If no
2300  //   constructor applies, or the overload resolution is ambiguous,
2301  //   the initialization is ill-formed.
2302  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2303  OverloadCandidateSet CandidateSet;
2304
2305  // Add constructors to the overload set.
2306  DeclarationName ConstructorName
2307    = Context.DeclarationNames.getCXXConstructorName(
2308                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2309  DeclContext::lookup_const_iterator Con, ConEnd;
2310  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2311       Con != ConEnd; ++Con) {
2312    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2313    if ((Kind == IK_Direct) ||
2314        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2315        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2316      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2317  }
2318
2319  // FIXME: When we decide not to synthesize the implicitly-declared
2320  // constructors, we'll need to make them appear here.
2321
2322  OverloadCandidateSet::iterator Best;
2323  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2324  case OR_Success:
2325    // We found a constructor. Return it.
2326    return cast<CXXConstructorDecl>(Best->Function);
2327
2328  case OR_No_Viable_Function:
2329    if (InitEntity)
2330      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2331        << InitEntity << Range;
2332    else
2333      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2334        << ClassType << Range;
2335    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2336    return 0;
2337
2338  case OR_Ambiguous:
2339    if (InitEntity)
2340      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2341    else
2342      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2343    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2344    return 0;
2345
2346  case OR_Deleted:
2347    if (InitEntity)
2348      Diag(Loc, diag::err_ovl_deleted_init)
2349        << Best->Function->isDeleted()
2350        << InitEntity << Range;
2351    else
2352      Diag(Loc, diag::err_ovl_deleted_init)
2353        << Best->Function->isDeleted()
2354        << InitEntity << Range;
2355    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2356    return 0;
2357  }
2358
2359  return 0;
2360}
2361
2362/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2363/// determine whether they are reference-related,
2364/// reference-compatible, reference-compatible with added
2365/// qualification, or incompatible, for use in C++ initialization by
2366/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2367/// type, and the first type (T1) is the pointee type of the reference
2368/// type being initialized.
2369Sema::ReferenceCompareResult
2370Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2371                                   bool& DerivedToBase) {
2372  assert(!T1->isReferenceType() &&
2373    "T1 must be the pointee type of the reference type");
2374  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2375
2376  T1 = Context.getCanonicalType(T1);
2377  T2 = Context.getCanonicalType(T2);
2378  QualType UnqualT1 = T1.getUnqualifiedType();
2379  QualType UnqualT2 = T2.getUnqualifiedType();
2380
2381  // C++ [dcl.init.ref]p4:
2382  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2383  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2384  //   T1 is a base class of T2.
2385  if (UnqualT1 == UnqualT2)
2386    DerivedToBase = false;
2387  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2388    DerivedToBase = true;
2389  else
2390    return Ref_Incompatible;
2391
2392  // At this point, we know that T1 and T2 are reference-related (at
2393  // least).
2394
2395  // C++ [dcl.init.ref]p4:
2396  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2397  //   reference-related to T2 and cv1 is the same cv-qualification
2398  //   as, or greater cv-qualification than, cv2. For purposes of
2399  //   overload resolution, cases for which cv1 is greater
2400  //   cv-qualification than cv2 are identified as
2401  //   reference-compatible with added qualification (see 13.3.3.2).
2402  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2403    return Ref_Compatible;
2404  else if (T1.isMoreQualifiedThan(T2))
2405    return Ref_Compatible_With_Added_Qualification;
2406  else
2407    return Ref_Related;
2408}
2409
2410/// CheckReferenceInit - Check the initialization of a reference
2411/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2412/// the initializer (either a simple initializer or an initializer
2413/// list), and DeclType is the type of the declaration. When ICS is
2414/// non-null, this routine will compute the implicit conversion
2415/// sequence according to C++ [over.ics.ref] and will not produce any
2416/// diagnostics; when ICS is null, it will emit diagnostics when any
2417/// errors are found. Either way, a return value of true indicates
2418/// that there was a failure, a return value of false indicates that
2419/// the reference initialization succeeded.
2420///
2421/// When @p SuppressUserConversions, user-defined conversions are
2422/// suppressed.
2423/// When @p AllowExplicit, we also permit explicit user-defined
2424/// conversion functions.
2425/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2426bool
2427Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2428                         ImplicitConversionSequence *ICS,
2429                         bool SuppressUserConversions,
2430                         bool AllowExplicit, bool ForceRValue) {
2431  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2432
2433  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2434  QualType T2 = Init->getType();
2435
2436  // If the initializer is the address of an overloaded function, try
2437  // to resolve the overloaded function. If all goes well, T2 is the
2438  // type of the resulting function.
2439  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2440    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2441                                                          ICS != 0);
2442    if (Fn) {
2443      // Since we're performing this reference-initialization for
2444      // real, update the initializer with the resulting function.
2445      if (!ICS) {
2446        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2447          return true;
2448
2449        FixOverloadedFunctionReference(Init, Fn);
2450      }
2451
2452      T2 = Fn->getType();
2453    }
2454  }
2455
2456  // Compute some basic properties of the types and the initializer.
2457  bool isRValRef = DeclType->isRValueReferenceType();
2458  bool DerivedToBase = false;
2459  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2460                                                  Init->isLvalue(Context);
2461  ReferenceCompareResult RefRelationship
2462    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2463
2464  // Most paths end in a failed conversion.
2465  if (ICS)
2466    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2467
2468  // C++ [dcl.init.ref]p5:
2469  //   A reference to type “cv1 T1” is initialized by an expression
2470  //   of type “cv2 T2” as follows:
2471
2472  //     -- If the initializer expression
2473
2474  // Rvalue references cannot bind to lvalues (N2812).
2475  // There is absolutely no situation where they can. In particular, note that
2476  // this is ill-formed, even if B has a user-defined conversion to A&&:
2477  //   B b;
2478  //   A&& r = b;
2479  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2480    if (!ICS)
2481      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2482        << Init->getSourceRange();
2483    return true;
2484  }
2485
2486  bool BindsDirectly = false;
2487  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2488  //          reference-compatible with “cv2 T2,” or
2489  //
2490  // Note that the bit-field check is skipped if we are just computing
2491  // the implicit conversion sequence (C++ [over.best.ics]p2).
2492  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2493      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2494    BindsDirectly = true;
2495
2496    if (ICS) {
2497      // C++ [over.ics.ref]p1:
2498      //   When a parameter of reference type binds directly (8.5.3)
2499      //   to an argument expression, the implicit conversion sequence
2500      //   is the identity conversion, unless the argument expression
2501      //   has a type that is a derived class of the parameter type,
2502      //   in which case the implicit conversion sequence is a
2503      //   derived-to-base Conversion (13.3.3.1).
2504      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2505      ICS->Standard.First = ICK_Identity;
2506      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2507      ICS->Standard.Third = ICK_Identity;
2508      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2509      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2510      ICS->Standard.ReferenceBinding = true;
2511      ICS->Standard.DirectBinding = true;
2512      ICS->Standard.RRefBinding = false;
2513      ICS->Standard.CopyConstructor = 0;
2514
2515      // Nothing more to do: the inaccessibility/ambiguity check for
2516      // derived-to-base conversions is suppressed when we're
2517      // computing the implicit conversion sequence (C++
2518      // [over.best.ics]p2).
2519      return false;
2520    } else {
2521      // Perform the conversion.
2522      // FIXME: Binding to a subobject of the lvalue is going to require more
2523      // AST annotation than this.
2524      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2525    }
2526  }
2527
2528  //       -- has a class type (i.e., T2 is a class type) and can be
2529  //          implicitly converted to an lvalue of type “cv3 T3,”
2530  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2531  //          92) (this conversion is selected by enumerating the
2532  //          applicable conversion functions (13.3.1.6) and choosing
2533  //          the best one through overload resolution (13.3)),
2534  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2535    // FIXME: Look for conversions in base classes!
2536    CXXRecordDecl *T2RecordDecl
2537      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2538
2539    OverloadCandidateSet CandidateSet;
2540    OverloadedFunctionDecl *Conversions
2541      = T2RecordDecl->getConversionFunctions();
2542    for (OverloadedFunctionDecl::function_iterator Func
2543           = Conversions->function_begin();
2544         Func != Conversions->function_end(); ++Func) {
2545      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2546
2547      // If the conversion function doesn't return a reference type,
2548      // it can't be considered for this conversion.
2549      if (Conv->getConversionType()->isLValueReferenceType() &&
2550          (AllowExplicit || !Conv->isExplicit()))
2551        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2552    }
2553
2554    OverloadCandidateSet::iterator Best;
2555    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2556    case OR_Success:
2557      // This is a direct binding.
2558      BindsDirectly = true;
2559
2560      if (ICS) {
2561        // C++ [over.ics.ref]p1:
2562        //
2563        //   [...] If the parameter binds directly to the result of
2564        //   applying a conversion function to the argument
2565        //   expression, the implicit conversion sequence is a
2566        //   user-defined conversion sequence (13.3.3.1.2), with the
2567        //   second standard conversion sequence either an identity
2568        //   conversion or, if the conversion function returns an
2569        //   entity of a type that is a derived class of the parameter
2570        //   type, a derived-to-base Conversion.
2571        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2572        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2573        ICS->UserDefined.After = Best->FinalConversion;
2574        ICS->UserDefined.ConversionFunction = Best->Function;
2575        assert(ICS->UserDefined.After.ReferenceBinding &&
2576               ICS->UserDefined.After.DirectBinding &&
2577               "Expected a direct reference binding!");
2578        return false;
2579      } else {
2580        // Perform the conversion.
2581        // FIXME: Binding to a subobject of the lvalue is going to require more
2582        // AST annotation than this.
2583        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2584      }
2585      break;
2586
2587    case OR_Ambiguous:
2588      assert(false && "Ambiguous reference binding conversions not implemented.");
2589      return true;
2590
2591    case OR_No_Viable_Function:
2592    case OR_Deleted:
2593      // There was no suitable conversion, or we found a deleted
2594      // conversion; continue with other checks.
2595      break;
2596    }
2597  }
2598
2599  if (BindsDirectly) {
2600    // C++ [dcl.init.ref]p4:
2601    //   [...] In all cases where the reference-related or
2602    //   reference-compatible relationship of two types is used to
2603    //   establish the validity of a reference binding, and T1 is a
2604    //   base class of T2, a program that necessitates such a binding
2605    //   is ill-formed if T1 is an inaccessible (clause 11) or
2606    //   ambiguous (10.2) base class of T2.
2607    //
2608    // Note that we only check this condition when we're allowed to
2609    // complain about errors, because we should not be checking for
2610    // ambiguity (or inaccessibility) unless the reference binding
2611    // actually happens.
2612    if (DerivedToBase)
2613      return CheckDerivedToBaseConversion(T2, T1,
2614                                          Init->getSourceRange().getBegin(),
2615                                          Init->getSourceRange());
2616    else
2617      return false;
2618  }
2619
2620  //     -- Otherwise, the reference shall be to a non-volatile const
2621  //        type (i.e., cv1 shall be const), or the reference shall be an
2622  //        rvalue reference and the initializer expression shall be an rvalue.
2623  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2624    if (!ICS)
2625      Diag(Init->getSourceRange().getBegin(),
2626           diag::err_not_reference_to_const_init)
2627        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2628        << T2 << Init->getSourceRange();
2629    return true;
2630  }
2631
2632  //       -- If the initializer expression is an rvalue, with T2 a
2633  //          class type, and “cv1 T1” is reference-compatible with
2634  //          “cv2 T2,” the reference is bound in one of the
2635  //          following ways (the choice is implementation-defined):
2636  //
2637  //          -- The reference is bound to the object represented by
2638  //             the rvalue (see 3.10) or to a sub-object within that
2639  //             object.
2640  //
2641  //          -- A temporary of type “cv1 T2” [sic] is created, and
2642  //             a constructor is called to copy the entire rvalue
2643  //             object into the temporary. The reference is bound to
2644  //             the temporary or to a sub-object within the
2645  //             temporary.
2646  //
2647  //          The constructor that would be used to make the copy
2648  //          shall be callable whether or not the copy is actually
2649  //          done.
2650  //
2651  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2652  // freedom, so we will always take the first option and never build
2653  // a temporary in this case. FIXME: We will, however, have to check
2654  // for the presence of a copy constructor in C++98/03 mode.
2655  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2656      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2657    if (ICS) {
2658      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2659      ICS->Standard.First = ICK_Identity;
2660      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2661      ICS->Standard.Third = ICK_Identity;
2662      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2663      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2664      ICS->Standard.ReferenceBinding = true;
2665      ICS->Standard.DirectBinding = false;
2666      ICS->Standard.RRefBinding = isRValRef;
2667      ICS->Standard.CopyConstructor = 0;
2668    } else {
2669      // FIXME: Binding to a subobject of the rvalue is going to require more
2670      // AST annotation than this.
2671      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2672    }
2673    return false;
2674  }
2675
2676  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2677  //          initialized from the initializer expression using the
2678  //          rules for a non-reference copy initialization (8.5). The
2679  //          reference is then bound to the temporary. If T1 is
2680  //          reference-related to T2, cv1 must be the same
2681  //          cv-qualification as, or greater cv-qualification than,
2682  //          cv2; otherwise, the program is ill-formed.
2683  if (RefRelationship == Ref_Related) {
2684    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2685    // we would be reference-compatible or reference-compatible with
2686    // added qualification. But that wasn't the case, so the reference
2687    // initialization fails.
2688    if (!ICS)
2689      Diag(Init->getSourceRange().getBegin(),
2690           diag::err_reference_init_drops_quals)
2691        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2692        << T2 << Init->getSourceRange();
2693    return true;
2694  }
2695
2696  // If at least one of the types is a class type, the types are not
2697  // related, and we aren't allowed any user conversions, the
2698  // reference binding fails. This case is important for breaking
2699  // recursion, since TryImplicitConversion below will attempt to
2700  // create a temporary through the use of a copy constructor.
2701  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2702      (T1->isRecordType() || T2->isRecordType())) {
2703    if (!ICS)
2704      Diag(Init->getSourceRange().getBegin(),
2705           diag::err_typecheck_convert_incompatible)
2706        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2707    return true;
2708  }
2709
2710  // Actually try to convert the initializer to T1.
2711  if (ICS) {
2712    // C++ [over.ics.ref]p2:
2713    //
2714    //   When a parameter of reference type is not bound directly to
2715    //   an argument expression, the conversion sequence is the one
2716    //   required to convert the argument expression to the
2717    //   underlying type of the reference according to
2718    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2719    //   to copy-initializing a temporary of the underlying type with
2720    //   the argument expression. Any difference in top-level
2721    //   cv-qualification is subsumed by the initialization itself
2722    //   and does not constitute a conversion.
2723    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2724    // Of course, that's still a reference binding.
2725    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2726      ICS->Standard.ReferenceBinding = true;
2727      ICS->Standard.RRefBinding = isRValRef;
2728    } else if(ICS->ConversionKind ==
2729              ImplicitConversionSequence::UserDefinedConversion) {
2730      ICS->UserDefined.After.ReferenceBinding = true;
2731      ICS->UserDefined.After.RRefBinding = isRValRef;
2732    }
2733    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2734  } else {
2735    return PerformImplicitConversion(Init, T1, "initializing");
2736  }
2737}
2738
2739/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2740/// of this overloaded operator is well-formed. If so, returns false;
2741/// otherwise, emits appropriate diagnostics and returns true.
2742bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2743  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2744         "Expected an overloaded operator declaration");
2745
2746  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2747
2748  // C++ [over.oper]p5:
2749  //   The allocation and deallocation functions, operator new,
2750  //   operator new[], operator delete and operator delete[], are
2751  //   described completely in 3.7.3. The attributes and restrictions
2752  //   found in the rest of this subclause do not apply to them unless
2753  //   explicitly stated in 3.7.3.
2754  // FIXME: Write a separate routine for checking this. For now, just allow it.
2755  if (Op == OO_New || Op == OO_Array_New ||
2756      Op == OO_Delete || Op == OO_Array_Delete)
2757    return false;
2758
2759  // C++ [over.oper]p6:
2760  //   An operator function shall either be a non-static member
2761  //   function or be a non-member function and have at least one
2762  //   parameter whose type is a class, a reference to a class, an
2763  //   enumeration, or a reference to an enumeration.
2764  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2765    if (MethodDecl->isStatic())
2766      return Diag(FnDecl->getLocation(),
2767                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2768  } else {
2769    bool ClassOrEnumParam = false;
2770    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2771                                   ParamEnd = FnDecl->param_end();
2772         Param != ParamEnd; ++Param) {
2773      QualType ParamType = (*Param)->getType().getNonReferenceType();
2774      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2775          ParamType->isEnumeralType()) {
2776        ClassOrEnumParam = true;
2777        break;
2778      }
2779    }
2780
2781    if (!ClassOrEnumParam)
2782      return Diag(FnDecl->getLocation(),
2783                  diag::err_operator_overload_needs_class_or_enum)
2784        << FnDecl->getDeclName();
2785  }
2786
2787  // C++ [over.oper]p8:
2788  //   An operator function cannot have default arguments (8.3.6),
2789  //   except where explicitly stated below.
2790  //
2791  // Only the function-call operator allows default arguments
2792  // (C++ [over.call]p1).
2793  if (Op != OO_Call) {
2794    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2795         Param != FnDecl->param_end(); ++Param) {
2796      if ((*Param)->hasUnparsedDefaultArg())
2797        return Diag((*Param)->getLocation(),
2798                    diag::err_operator_overload_default_arg)
2799          << FnDecl->getDeclName();
2800      else if (Expr *DefArg = (*Param)->getDefaultArg())
2801        return Diag((*Param)->getLocation(),
2802                    diag::err_operator_overload_default_arg)
2803          << FnDecl->getDeclName() << DefArg->getSourceRange();
2804    }
2805  }
2806
2807  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2808    { false, false, false }
2809#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2810    , { Unary, Binary, MemberOnly }
2811#include "clang/Basic/OperatorKinds.def"
2812  };
2813
2814  bool CanBeUnaryOperator = OperatorUses[Op][0];
2815  bool CanBeBinaryOperator = OperatorUses[Op][1];
2816  bool MustBeMemberOperator = OperatorUses[Op][2];
2817
2818  // C++ [over.oper]p8:
2819  //   [...] Operator functions cannot have more or fewer parameters
2820  //   than the number required for the corresponding operator, as
2821  //   described in the rest of this subclause.
2822  unsigned NumParams = FnDecl->getNumParams()
2823                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2824  if (Op != OO_Call &&
2825      ((NumParams == 1 && !CanBeUnaryOperator) ||
2826       (NumParams == 2 && !CanBeBinaryOperator) ||
2827       (NumParams < 1) || (NumParams > 2))) {
2828    // We have the wrong number of parameters.
2829    unsigned ErrorKind;
2830    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2831      ErrorKind = 2;  // 2 -> unary or binary.
2832    } else if (CanBeUnaryOperator) {
2833      ErrorKind = 0;  // 0 -> unary
2834    } else {
2835      assert(CanBeBinaryOperator &&
2836             "All non-call overloaded operators are unary or binary!");
2837      ErrorKind = 1;  // 1 -> binary
2838    }
2839
2840    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2841      << FnDecl->getDeclName() << NumParams << ErrorKind;
2842  }
2843
2844  // Overloaded operators other than operator() cannot be variadic.
2845  if (Op != OO_Call &&
2846      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2847    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2848      << FnDecl->getDeclName();
2849  }
2850
2851  // Some operators must be non-static member functions.
2852  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2853    return Diag(FnDecl->getLocation(),
2854                diag::err_operator_overload_must_be_member)
2855      << FnDecl->getDeclName();
2856  }
2857
2858  // C++ [over.inc]p1:
2859  //   The user-defined function called operator++ implements the
2860  //   prefix and postfix ++ operator. If this function is a member
2861  //   function with no parameters, or a non-member function with one
2862  //   parameter of class or enumeration type, it defines the prefix
2863  //   increment operator ++ for objects of that type. If the function
2864  //   is a member function with one parameter (which shall be of type
2865  //   int) or a non-member function with two parameters (the second
2866  //   of which shall be of type int), it defines the postfix
2867  //   increment operator ++ for objects of that type.
2868  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2869    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2870    bool ParamIsInt = false;
2871    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2872      ParamIsInt = BT->getKind() == BuiltinType::Int;
2873
2874    if (!ParamIsInt)
2875      return Diag(LastParam->getLocation(),
2876                  diag::err_operator_overload_post_incdec_must_be_int)
2877        << LastParam->getType() << (Op == OO_MinusMinus);
2878  }
2879
2880  // Notify the class if it got an assignment operator.
2881  if (Op == OO_Equal) {
2882    // Would have returned earlier otherwise.
2883    assert(isa<CXXMethodDecl>(FnDecl) &&
2884      "Overloaded = not member, but not filtered.");
2885    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2886    Method->getParent()->addedAssignmentOperator(Context, Method);
2887  }
2888
2889  return false;
2890}
2891
2892/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2893/// linkage specification, including the language and (if present)
2894/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2895/// the location of the language string literal, which is provided
2896/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2897/// the '{' brace. Otherwise, this linkage specification does not
2898/// have any braces.
2899Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
2900                                                     SourceLocation ExternLoc,
2901                                                     SourceLocation LangLoc,
2902                                                     const char *Lang,
2903                                                     unsigned StrSize,
2904                                                     SourceLocation LBraceLoc) {
2905  LinkageSpecDecl::LanguageIDs Language;
2906  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2907    Language = LinkageSpecDecl::lang_c;
2908  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2909    Language = LinkageSpecDecl::lang_cxx;
2910  else {
2911    Diag(LangLoc, diag::err_bad_language);
2912    return DeclPtrTy();
2913  }
2914
2915  // FIXME: Add all the various semantics of linkage specifications
2916
2917  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2918                                               LangLoc, Language,
2919                                               LBraceLoc.isValid());
2920  CurContext->addDecl(D);
2921  PushDeclContext(S, D);
2922  return DeclPtrTy::make(D);
2923}
2924
2925/// ActOnFinishLinkageSpecification - Completely the definition of
2926/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2927/// valid, it's the position of the closing '}' brace in a linkage
2928/// specification that uses braces.
2929Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
2930                                                      DeclPtrTy LinkageSpec,
2931                                                      SourceLocation RBraceLoc) {
2932  if (LinkageSpec)
2933    PopDeclContext();
2934  return LinkageSpec;
2935}
2936
2937/// \brief Perform semantic analysis for the variable declaration that
2938/// occurs within a C++ catch clause, returning the newly-created
2939/// variable.
2940VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
2941                                         IdentifierInfo *Name,
2942                                         SourceLocation Loc,
2943                                         SourceRange Range) {
2944  bool Invalid = false;
2945
2946  // Arrays and functions decay.
2947  if (ExDeclType->isArrayType())
2948    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2949  else if (ExDeclType->isFunctionType())
2950    ExDeclType = Context.getPointerType(ExDeclType);
2951
2952  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2953  // The exception-declaration shall not denote a pointer or reference to an
2954  // incomplete type, other than [cv] void*.
2955  // N2844 forbids rvalue references.
2956  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
2957    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
2958    Invalid = true;
2959  }
2960
2961  QualType BaseType = ExDeclType;
2962  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2963  unsigned DK = diag::err_catch_incomplete;
2964  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2965    BaseType = Ptr->getPointeeType();
2966    Mode = 1;
2967    DK = diag::err_catch_incomplete_ptr;
2968  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2969    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2970    BaseType = Ref->getPointeeType();
2971    Mode = 2;
2972    DK = diag::err_catch_incomplete_ref;
2973  }
2974  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2975      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
2976    Invalid = true;
2977
2978  if (!Invalid && !ExDeclType->isDependentType() &&
2979      RequireNonAbstractType(Loc, ExDeclType,
2980                             diag::err_abstract_type_in_decl,
2981                             AbstractVariableType))
2982    Invalid = true;
2983
2984  // FIXME: Need to test for ability to copy-construct and destroy the
2985  // exception variable.
2986
2987  // FIXME: Need to check for abstract classes.
2988
2989  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
2990                                    Name, ExDeclType, VarDecl::None,
2991                                    Range.getBegin());
2992
2993  if (Invalid)
2994    ExDecl->setInvalidDecl();
2995
2996  return ExDecl;
2997}
2998
2999/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3000/// handler.
3001Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3002  QualType ExDeclType = GetTypeForDeclarator(D, S);
3003
3004  bool Invalid = D.isInvalidType();
3005  IdentifierInfo *II = D.getIdentifier();
3006  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3007    // The scope should be freshly made just for us. There is just no way
3008    // it contains any previous declaration.
3009    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3010    if (PrevDecl->isTemplateParameter()) {
3011      // Maybe we will complain about the shadowed template parameter.
3012      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3013    }
3014  }
3015
3016  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3017    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3018      << D.getCXXScopeSpec().getRange();
3019    Invalid = true;
3020  }
3021
3022  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3023                                              D.getIdentifier(),
3024                                              D.getIdentifierLoc(),
3025                                            D.getDeclSpec().getSourceRange());
3026
3027  if (Invalid)
3028    ExDecl->setInvalidDecl();
3029
3030  // Add the exception declaration into this scope.
3031  if (II)
3032    PushOnScopeChains(ExDecl, S);
3033  else
3034    CurContext->addDecl(ExDecl);
3035
3036  ProcessDeclAttributes(S, ExDecl, D);
3037  return DeclPtrTy::make(ExDecl);
3038}
3039
3040Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3041                                                   ExprArg assertexpr,
3042                                                   ExprArg assertmessageexpr) {
3043  Expr *AssertExpr = (Expr *)assertexpr.get();
3044  StringLiteral *AssertMessage =
3045    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3046
3047  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3048    llvm::APSInt Value(32);
3049    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3050      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3051        AssertExpr->getSourceRange();
3052      return DeclPtrTy();
3053    }
3054
3055    if (Value == 0) {
3056      std::string str(AssertMessage->getStrData(),
3057                      AssertMessage->getByteLength());
3058      Diag(AssertLoc, diag::err_static_assert_failed)
3059        << str << AssertExpr->getSourceRange();
3060    }
3061  }
3062
3063  assertexpr.release();
3064  assertmessageexpr.release();
3065  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3066                                        AssertExpr, AssertMessage);
3067
3068  CurContext->addDecl(Decl);
3069  return DeclPtrTy::make(Decl);
3070}
3071
3072bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3073  if (!(S->getFlags() & Scope::ClassScope)) {
3074    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3075    return true;
3076  }
3077
3078  return false;
3079}
3080
3081void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3082  Decl *Dcl = dcl.getAs<Decl>();
3083  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3084  if (!Fn) {
3085    Diag(DelLoc, diag::err_deleted_non_function);
3086    return;
3087  }
3088  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3089    Diag(DelLoc, diag::err_deleted_decl_not_first);
3090    Diag(Prev->getLocation(), diag::note_previous_declaration);
3091    // If the declaration wasn't the first, we delete the function anyway for
3092    // recovery.
3093  }
3094  Fn->setDeleted();
3095}
3096
3097static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3098  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3099       ++CI) {
3100    Stmt *SubStmt = *CI;
3101    if (!SubStmt)
3102      continue;
3103    if (isa<ReturnStmt>(SubStmt))
3104      Self.Diag(SubStmt->getSourceRange().getBegin(),
3105           diag::err_return_in_constructor_handler);
3106    if (!isa<Expr>(SubStmt))
3107      SearchForReturnInStmt(Self, SubStmt);
3108  }
3109}
3110
3111void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3112  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3113    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3114    SearchForReturnInStmt(*this, Handler);
3115  }
3116}
3117
3118bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3119                                             const CXXMethodDecl *Old) {
3120  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3121  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3122
3123  QualType CNewTy = Context.getCanonicalType(NewTy);
3124  QualType COldTy = Context.getCanonicalType(OldTy);
3125
3126  if (CNewTy == COldTy &&
3127      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3128    return false;
3129
3130  // Check if the return types are covariant
3131  QualType NewClassTy, OldClassTy;
3132
3133  /// Both types must be pointers or references to classes.
3134  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3135    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3136      NewClassTy = NewPT->getPointeeType();
3137      OldClassTy = OldPT->getPointeeType();
3138    }
3139  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3140    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3141      NewClassTy = NewRT->getPointeeType();
3142      OldClassTy = OldRT->getPointeeType();
3143    }
3144  }
3145
3146  // The return types aren't either both pointers or references to a class type.
3147  if (NewClassTy.isNull()) {
3148    Diag(New->getLocation(),
3149         diag::err_different_return_type_for_overriding_virtual_function)
3150      << New->getDeclName() << NewTy << OldTy;
3151    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3152
3153    return true;
3154  }
3155
3156  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3157    // Check if the new class derives from the old class.
3158    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3159      Diag(New->getLocation(),
3160           diag::err_covariant_return_not_derived)
3161      << New->getDeclName() << NewTy << OldTy;
3162      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3163      return true;
3164    }
3165
3166    // Check if we the conversion from derived to base is valid.
3167    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3168                      diag::err_covariant_return_inaccessible_base,
3169                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3170                      // FIXME: Should this point to the return type?
3171                      New->getLocation(), SourceRange(), New->getDeclName())) {
3172      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3173      return true;
3174    }
3175  }
3176
3177  // The qualifiers of the return types must be the same.
3178  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3179    Diag(New->getLocation(),
3180         diag::err_covariant_return_type_different_qualifications)
3181    << New->getDeclName() << NewTy << OldTy;
3182    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3183    return true;
3184  };
3185
3186
3187  // The new class type must have the same or less qualifiers as the old type.
3188  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3189    Diag(New->getLocation(),
3190         diag::err_covariant_return_type_class_type_more_qualified)
3191    << New->getDeclName() << NewTy << OldTy;
3192    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3193    return true;
3194  };
3195
3196  return false;
3197}
3198
3199/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3200/// initializer for the declaration 'Dcl'.
3201/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3202/// static data member of class X, names should be looked up in the scope of
3203/// class X.
3204void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3205  Decl *D = Dcl.getAs<Decl>();
3206  // If there is no declaration, there was an error parsing it.
3207  if (D == 0)
3208    return;
3209
3210  // Check whether it is a declaration with a nested name specifier like
3211  // int foo::bar;
3212  if (!D->isOutOfLine())
3213    return;
3214
3215  // C++ [basic.lookup.unqual]p13
3216  //
3217  // A name used in the definition of a static data member of class X
3218  // (after the qualified-id of the static member) is looked up as if the name
3219  // was used in a member function of X.
3220
3221  // Change current context into the context of the initializing declaration.
3222  EnterDeclaratorContext(S, D->getDeclContext());
3223}
3224
3225/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3226/// initializer for the declaration 'Dcl'.
3227void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3228  Decl *D = Dcl.getAs<Decl>();
3229  // If there is no declaration, there was an error parsing it.
3230  if (D == 0)
3231    return;
3232
3233  // Check whether it is a declaration with a nested name specifier like
3234  // int foo::bar;
3235  if (!D->isOutOfLine())
3236    return;
3237
3238  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3239  ExitDeclaratorContext(S);
3240}
3241