SemaDeclCXX.cpp revision ac1303eca6cbe3e623fb5ec6fe7ec184ef4b0dfa
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/StmtVisitor.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/AST/TypeOrdering.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/ADT/DenseSet.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include <map>
39#include <set>
40
41using namespace clang;
42
43//===----------------------------------------------------------------------===//
44// CheckDefaultArgumentVisitor
45//===----------------------------------------------------------------------===//
46
47namespace {
48  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
49  /// the default argument of a parameter to determine whether it
50  /// contains any ill-formed subexpressions. For example, this will
51  /// diagnose the use of local variables or parameters within the
52  /// default argument expression.
53  class CheckDefaultArgumentVisitor
54    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
55    Expr *DefaultArg;
56    Sema *S;
57
58  public:
59    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
60      : DefaultArg(defarg), S(s) {}
61
62    bool VisitExpr(Expr *Node);
63    bool VisitDeclRefExpr(DeclRefExpr *DRE);
64    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
65    bool VisitLambdaExpr(LambdaExpr *Lambda);
66  };
67
68  /// VisitExpr - Visit all of the children of this expression.
69  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
70    bool IsInvalid = false;
71    for (Stmt::child_range I = Node->children(); I; ++I)
72      IsInvalid |= Visit(*I);
73    return IsInvalid;
74  }
75
76  /// VisitDeclRefExpr - Visit a reference to a declaration, to
77  /// determine whether this declaration can be used in the default
78  /// argument expression.
79  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
80    NamedDecl *Decl = DRE->getDecl();
81    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p9
83      //   Default arguments are evaluated each time the function is
84      //   called. The order of evaluation of function arguments is
85      //   unspecified. Consequently, parameters of a function shall not
86      //   be used in default argument expressions, even if they are not
87      //   evaluated. Parameters of a function declared before a default
88      //   argument expression are in scope and can hide namespace and
89      //   class member names.
90      return S->Diag(DRE->getSourceRange().getBegin(),
91                     diag::err_param_default_argument_references_param)
92         << Param->getDeclName() << DefaultArg->getSourceRange();
93    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
94      // C++ [dcl.fct.default]p7
95      //   Local variables shall not be used in default argument
96      //   expressions.
97      if (VDecl->isLocalVarDecl())
98        return S->Diag(DRE->getSourceRange().getBegin(),
99                       diag::err_param_default_argument_references_local)
100          << VDecl->getDeclName() << DefaultArg->getSourceRange();
101    }
102
103    return false;
104  }
105
106  /// VisitCXXThisExpr - Visit a C++ "this" expression.
107  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
108    // C++ [dcl.fct.default]p8:
109    //   The keyword this shall not be used in a default argument of a
110    //   member function.
111    return S->Diag(ThisE->getSourceRange().getBegin(),
112                   diag::err_param_default_argument_references_this)
113               << ThisE->getSourceRange();
114  }
115
116  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
117    // C++11 [expr.lambda.prim]p13:
118    //   A lambda-expression appearing in a default argument shall not
119    //   implicitly or explicitly capture any entity.
120    if (Lambda->capture_begin() == Lambda->capture_end())
121      return false;
122
123    return S->Diag(Lambda->getLocStart(),
124                   diag::err_lambda_capture_default_arg);
125  }
126}
127
128void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
129  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
130  // If we have an MSAny or unknown spec already, don't bother.
131  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
132    return;
133
134  const FunctionProtoType *Proto
135    = Method->getType()->getAs<FunctionProtoType>();
136
137  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
138
139  // If this function can throw any exceptions, make a note of that.
140  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
141    ClearExceptions();
142    ComputedEST = EST;
143    return;
144  }
145
146  // FIXME: If the call to this decl is using any of its default arguments, we
147  // need to search them for potentially-throwing calls.
148
149  // If this function has a basic noexcept, it doesn't affect the outcome.
150  if (EST == EST_BasicNoexcept)
151    return;
152
153  // If we have a throw-all spec at this point, ignore the function.
154  if (ComputedEST == EST_None)
155    return;
156
157  // If we're still at noexcept(true) and there's a nothrow() callee,
158  // change to that specification.
159  if (EST == EST_DynamicNone) {
160    if (ComputedEST == EST_BasicNoexcept)
161      ComputedEST = EST_DynamicNone;
162    return;
163  }
164
165  // Check out noexcept specs.
166  if (EST == EST_ComputedNoexcept) {
167    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
168    assert(NR != FunctionProtoType::NR_NoNoexcept &&
169           "Must have noexcept result for EST_ComputedNoexcept.");
170    assert(NR != FunctionProtoType::NR_Dependent &&
171           "Should not generate implicit declarations for dependent cases, "
172           "and don't know how to handle them anyway.");
173
174    // noexcept(false) -> no spec on the new function
175    if (NR == FunctionProtoType::NR_Throw) {
176      ClearExceptions();
177      ComputedEST = EST_None;
178    }
179    // noexcept(true) won't change anything either.
180    return;
181  }
182
183  assert(EST == EST_Dynamic && "EST case not considered earlier.");
184  assert(ComputedEST != EST_None &&
185         "Shouldn't collect exceptions when throw-all is guaranteed.");
186  ComputedEST = EST_Dynamic;
187  // Record the exceptions in this function's exception specification.
188  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
189                                          EEnd = Proto->exception_end();
190       E != EEnd; ++E)
191    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
192      Exceptions.push_back(*E);
193}
194
195void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
196  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
197    return;
198
199  // FIXME:
200  //
201  // C++0x [except.spec]p14:
202  //   [An] implicit exception-specification specifies the type-id T if and
203  // only if T is allowed by the exception-specification of a function directly
204  // invoked by f's implicit definition; f shall allow all exceptions if any
205  // function it directly invokes allows all exceptions, and f shall allow no
206  // exceptions if every function it directly invokes allows no exceptions.
207  //
208  // Note in particular that if an implicit exception-specification is generated
209  // for a function containing a throw-expression, that specification can still
210  // be noexcept(true).
211  //
212  // Note also that 'directly invoked' is not defined in the standard, and there
213  // is no indication that we should only consider potentially-evaluated calls.
214  //
215  // Ultimately we should implement the intent of the standard: the exception
216  // specification should be the set of exceptions which can be thrown by the
217  // implicit definition. For now, we assume that any non-nothrow expression can
218  // throw any exception.
219
220  if (E->CanThrow(*Context))
221    ComputedEST = EST_None;
222}
223
224bool
225Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
226                              SourceLocation EqualLoc) {
227  if (RequireCompleteType(Param->getLocation(), Param->getType(),
228                          diag::err_typecheck_decl_incomplete_type)) {
229    Param->setInvalidDecl();
230    return true;
231  }
232
233  // C++ [dcl.fct.default]p5
234  //   A default argument expression is implicitly converted (clause
235  //   4) to the parameter type. The default argument expression has
236  //   the same semantic constraints as the initializer expression in
237  //   a declaration of a variable of the parameter type, using the
238  //   copy-initialization semantics (8.5).
239  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
240                                                                    Param);
241  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
242                                                           EqualLoc);
243  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
244  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
245                                      MultiExprArg(*this, &Arg, 1));
246  if (Result.isInvalid())
247    return true;
248  Arg = Result.takeAs<Expr>();
249
250  CheckImplicitConversions(Arg, EqualLoc);
251  Arg = MaybeCreateExprWithCleanups(Arg);
252
253  // Okay: add the default argument to the parameter
254  Param->setDefaultArg(Arg);
255
256  // We have already instantiated this parameter; provide each of the
257  // instantiations with the uninstantiated default argument.
258  UnparsedDefaultArgInstantiationsMap::iterator InstPos
259    = UnparsedDefaultArgInstantiations.find(Param);
260  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
261    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
262      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
263
264    // We're done tracking this parameter's instantiations.
265    UnparsedDefaultArgInstantiations.erase(InstPos);
266  }
267
268  return false;
269}
270
271/// ActOnParamDefaultArgument - Check whether the default argument
272/// provided for a function parameter is well-formed. If so, attach it
273/// to the parameter declaration.
274void
275Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
276                                Expr *DefaultArg) {
277  if (!param || !DefaultArg)
278    return;
279
280  ParmVarDecl *Param = cast<ParmVarDecl>(param);
281  UnparsedDefaultArgLocs.erase(Param);
282
283  // Default arguments are only permitted in C++
284  if (!getLangOptions().CPlusPlus) {
285    Diag(EqualLoc, diag::err_param_default_argument)
286      << DefaultArg->getSourceRange();
287    Param->setInvalidDecl();
288    return;
289  }
290
291  // Check for unexpanded parameter packs.
292  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
293    Param->setInvalidDecl();
294    return;
295  }
296
297  // Check that the default argument is well-formed
298  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
299  if (DefaultArgChecker.Visit(DefaultArg)) {
300    Param->setInvalidDecl();
301    return;
302  }
303
304  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
305}
306
307/// ActOnParamUnparsedDefaultArgument - We've seen a default
308/// argument for a function parameter, but we can't parse it yet
309/// because we're inside a class definition. Note that this default
310/// argument will be parsed later.
311void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
312                                             SourceLocation EqualLoc,
313                                             SourceLocation ArgLoc) {
314  if (!param)
315    return;
316
317  ParmVarDecl *Param = cast<ParmVarDecl>(param);
318  if (Param)
319    Param->setUnparsedDefaultArg();
320
321  UnparsedDefaultArgLocs[Param] = ArgLoc;
322}
323
324/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
325/// the default argument for the parameter param failed.
326void Sema::ActOnParamDefaultArgumentError(Decl *param) {
327  if (!param)
328    return;
329
330  ParmVarDecl *Param = cast<ParmVarDecl>(param);
331
332  Param->setInvalidDecl();
333
334  UnparsedDefaultArgLocs.erase(Param);
335}
336
337/// CheckExtraCXXDefaultArguments - Check for any extra default
338/// arguments in the declarator, which is not a function declaration
339/// or definition and therefore is not permitted to have default
340/// arguments. This routine should be invoked for every declarator
341/// that is not a function declaration or definition.
342void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
343  // C++ [dcl.fct.default]p3
344  //   A default argument expression shall be specified only in the
345  //   parameter-declaration-clause of a function declaration or in a
346  //   template-parameter (14.1). It shall not be specified for a
347  //   parameter pack. If it is specified in a
348  //   parameter-declaration-clause, it shall not occur within a
349  //   declarator or abstract-declarator of a parameter-declaration.
350  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
351    DeclaratorChunk &chunk = D.getTypeObject(i);
352    if (chunk.Kind == DeclaratorChunk::Function) {
353      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
354        ParmVarDecl *Param =
355          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
356        if (Param->hasUnparsedDefaultArg()) {
357          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
358          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
359            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
360          delete Toks;
361          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
362        } else if (Param->getDefaultArg()) {
363          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
364            << Param->getDefaultArg()->getSourceRange();
365          Param->setDefaultArg(0);
366        }
367      }
368    }
369  }
370}
371
372// MergeCXXFunctionDecl - Merge two declarations of the same C++
373// function, once we already know that they have the same
374// type. Subroutine of MergeFunctionDecl. Returns true if there was an
375// error, false otherwise.
376bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
377  bool Invalid = false;
378
379  // C++ [dcl.fct.default]p4:
380  //   For non-template functions, default arguments can be added in
381  //   later declarations of a function in the same
382  //   scope. Declarations in different scopes have completely
383  //   distinct sets of default arguments. That is, declarations in
384  //   inner scopes do not acquire default arguments from
385  //   declarations in outer scopes, and vice versa. In a given
386  //   function declaration, all parameters subsequent to a
387  //   parameter with a default argument shall have default
388  //   arguments supplied in this or previous declarations. A
389  //   default argument shall not be redefined by a later
390  //   declaration (not even to the same value).
391  //
392  // C++ [dcl.fct.default]p6:
393  //   Except for member functions of class templates, the default arguments
394  //   in a member function definition that appears outside of the class
395  //   definition are added to the set of default arguments provided by the
396  //   member function declaration in the class definition.
397  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
398    ParmVarDecl *OldParam = Old->getParamDecl(p);
399    ParmVarDecl *NewParam = New->getParamDecl(p);
400
401    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
402
403      unsigned DiagDefaultParamID =
404        diag::err_param_default_argument_redefinition;
405
406      // MSVC accepts that default parameters be redefined for member functions
407      // of template class. The new default parameter's value is ignored.
408      Invalid = true;
409      if (getLangOptions().MicrosoftExt) {
410        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
411        if (MD && MD->getParent()->getDescribedClassTemplate()) {
412          // Merge the old default argument into the new parameter.
413          NewParam->setHasInheritedDefaultArg();
414          if (OldParam->hasUninstantiatedDefaultArg())
415            NewParam->setUninstantiatedDefaultArg(
416                                      OldParam->getUninstantiatedDefaultArg());
417          else
418            NewParam->setDefaultArg(OldParam->getInit());
419          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
420          Invalid = false;
421        }
422      }
423
424      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
425      // hint here. Alternatively, we could walk the type-source information
426      // for NewParam to find the last source location in the type... but it
427      // isn't worth the effort right now. This is the kind of test case that
428      // is hard to get right:
429      //   int f(int);
430      //   void g(int (*fp)(int) = f);
431      //   void g(int (*fp)(int) = &f);
432      Diag(NewParam->getLocation(), DiagDefaultParamID)
433        << NewParam->getDefaultArgRange();
434
435      // Look for the function declaration where the default argument was
436      // actually written, which may be a declaration prior to Old.
437      for (FunctionDecl *Older = Old->getPreviousDecl();
438           Older; Older = Older->getPreviousDecl()) {
439        if (!Older->getParamDecl(p)->hasDefaultArg())
440          break;
441
442        OldParam = Older->getParamDecl(p);
443      }
444
445      Diag(OldParam->getLocation(), diag::note_previous_definition)
446        << OldParam->getDefaultArgRange();
447    } else if (OldParam->hasDefaultArg()) {
448      // Merge the old default argument into the new parameter.
449      // It's important to use getInit() here;  getDefaultArg()
450      // strips off any top-level ExprWithCleanups.
451      NewParam->setHasInheritedDefaultArg();
452      if (OldParam->hasUninstantiatedDefaultArg())
453        NewParam->setUninstantiatedDefaultArg(
454                                      OldParam->getUninstantiatedDefaultArg());
455      else
456        NewParam->setDefaultArg(OldParam->getInit());
457    } else if (NewParam->hasDefaultArg()) {
458      if (New->getDescribedFunctionTemplate()) {
459        // Paragraph 4, quoted above, only applies to non-template functions.
460        Diag(NewParam->getLocation(),
461             diag::err_param_default_argument_template_redecl)
462          << NewParam->getDefaultArgRange();
463        Diag(Old->getLocation(), diag::note_template_prev_declaration)
464          << false;
465      } else if (New->getTemplateSpecializationKind()
466                   != TSK_ImplicitInstantiation &&
467                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
468        // C++ [temp.expr.spec]p21:
469        //   Default function arguments shall not be specified in a declaration
470        //   or a definition for one of the following explicit specializations:
471        //     - the explicit specialization of a function template;
472        //     - the explicit specialization of a member function template;
473        //     - the explicit specialization of a member function of a class
474        //       template where the class template specialization to which the
475        //       member function specialization belongs is implicitly
476        //       instantiated.
477        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
478          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
479          << New->getDeclName()
480          << NewParam->getDefaultArgRange();
481      } else if (New->getDeclContext()->isDependentContext()) {
482        // C++ [dcl.fct.default]p6 (DR217):
483        //   Default arguments for a member function of a class template shall
484        //   be specified on the initial declaration of the member function
485        //   within the class template.
486        //
487        // Reading the tea leaves a bit in DR217 and its reference to DR205
488        // leads me to the conclusion that one cannot add default function
489        // arguments for an out-of-line definition of a member function of a
490        // dependent type.
491        int WhichKind = 2;
492        if (CXXRecordDecl *Record
493              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
494          if (Record->getDescribedClassTemplate())
495            WhichKind = 0;
496          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
497            WhichKind = 1;
498          else
499            WhichKind = 2;
500        }
501
502        Diag(NewParam->getLocation(),
503             diag::err_param_default_argument_member_template_redecl)
504          << WhichKind
505          << NewParam->getDefaultArgRange();
506      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
507        CXXSpecialMember NewSM = getSpecialMember(Ctor),
508                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
509        if (NewSM != OldSM) {
510          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
511            << NewParam->getDefaultArgRange() << NewSM;
512          Diag(Old->getLocation(), diag::note_previous_declaration_special)
513            << OldSM;
514        }
515      }
516    }
517  }
518
519  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
520  // template has a constexpr specifier then all its declarations shall
521  // contain the constexpr specifier.
522  if (New->isConstexpr() != Old->isConstexpr()) {
523    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
524      << New << New->isConstexpr();
525    Diag(Old->getLocation(), diag::note_previous_declaration);
526    Invalid = true;
527  }
528
529  if (CheckEquivalentExceptionSpec(Old, New))
530    Invalid = true;
531
532  return Invalid;
533}
534
535/// \brief Merge the exception specifications of two variable declarations.
536///
537/// This is called when there's a redeclaration of a VarDecl. The function
538/// checks if the redeclaration might have an exception specification and
539/// validates compatibility and merges the specs if necessary.
540void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
541  // Shortcut if exceptions are disabled.
542  if (!getLangOptions().CXXExceptions)
543    return;
544
545  assert(Context.hasSameType(New->getType(), Old->getType()) &&
546         "Should only be called if types are otherwise the same.");
547
548  QualType NewType = New->getType();
549  QualType OldType = Old->getType();
550
551  // We're only interested in pointers and references to functions, as well
552  // as pointers to member functions.
553  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
554    NewType = R->getPointeeType();
555    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
556  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
557    NewType = P->getPointeeType();
558    OldType = OldType->getAs<PointerType>()->getPointeeType();
559  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
560    NewType = M->getPointeeType();
561    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
562  }
563
564  if (!NewType->isFunctionProtoType())
565    return;
566
567  // There's lots of special cases for functions. For function pointers, system
568  // libraries are hopefully not as broken so that we don't need these
569  // workarounds.
570  if (CheckEquivalentExceptionSpec(
571        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
572        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
573    New->setInvalidDecl();
574  }
575}
576
577/// CheckCXXDefaultArguments - Verify that the default arguments for a
578/// function declaration are well-formed according to C++
579/// [dcl.fct.default].
580void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
581  unsigned NumParams = FD->getNumParams();
582  unsigned p;
583
584  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
585                  isa<CXXMethodDecl>(FD) &&
586                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
587
588  // Find first parameter with a default argument
589  for (p = 0; p < NumParams; ++p) {
590    ParmVarDecl *Param = FD->getParamDecl(p);
591    if (Param->hasDefaultArg()) {
592      // C++11 [expr.prim.lambda]p5:
593      //   [...] Default arguments (8.3.6) shall not be specified in the
594      //   parameter-declaration-clause of a lambda-declarator.
595      //
596      // FIXME: Core issue 974 strikes this sentence, we only provide an
597      // extension warning.
598      if (IsLambda)
599        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
600          << Param->getDefaultArgRange();
601      break;
602    }
603  }
604
605  // C++ [dcl.fct.default]p4:
606  //   In a given function declaration, all parameters
607  //   subsequent to a parameter with a default argument shall
608  //   have default arguments supplied in this or previous
609  //   declarations. A default argument shall not be redefined
610  //   by a later declaration (not even to the same value).
611  unsigned LastMissingDefaultArg = 0;
612  for (; p < NumParams; ++p) {
613    ParmVarDecl *Param = FD->getParamDecl(p);
614    if (!Param->hasDefaultArg()) {
615      if (Param->isInvalidDecl())
616        /* We already complained about this parameter. */;
617      else if (Param->getIdentifier())
618        Diag(Param->getLocation(),
619             diag::err_param_default_argument_missing_name)
620          << Param->getIdentifier();
621      else
622        Diag(Param->getLocation(),
623             diag::err_param_default_argument_missing);
624
625      LastMissingDefaultArg = p;
626    }
627  }
628
629  if (LastMissingDefaultArg > 0) {
630    // Some default arguments were missing. Clear out all of the
631    // default arguments up to (and including) the last missing
632    // default argument, so that we leave the function parameters
633    // in a semantically valid state.
634    for (p = 0; p <= LastMissingDefaultArg; ++p) {
635      ParmVarDecl *Param = FD->getParamDecl(p);
636      if (Param->hasDefaultArg()) {
637        Param->setDefaultArg(0);
638      }
639    }
640  }
641}
642
643// CheckConstexprParameterTypes - Check whether a function's parameter types
644// are all literal types. If so, return true. If not, produce a suitable
645// diagnostic and return false.
646static bool CheckConstexprParameterTypes(Sema &SemaRef,
647                                         const FunctionDecl *FD) {
648  unsigned ArgIndex = 0;
649  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
650  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
651       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
652    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
653    SourceLocation ParamLoc = PD->getLocation();
654    if (!(*i)->isDependentType() &&
655        SemaRef.RequireLiteralType(ParamLoc, *i,
656                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
657                                     << ArgIndex+1 << PD->getSourceRange()
658                                     << isa<CXXConstructorDecl>(FD)))
659      return false;
660  }
661  return true;
662}
663
664// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
665// the requirements of a constexpr function definition or a constexpr
666// constructor definition. If so, return true. If not, produce appropriate
667// diagnostics and return false.
668//
669// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
670bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
671  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
672  if (MD && MD->isInstance()) {
673    // C++11 [dcl.constexpr]p4:
674    //  The definition of a constexpr constructor shall satisfy the following
675    //  constraints:
676    //  - the class shall not have any virtual base classes;
677    const CXXRecordDecl *RD = MD->getParent();
678    if (RD->getNumVBases()) {
679      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
680        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
681        << RD->getNumVBases();
682      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
683             E = RD->vbases_end(); I != E; ++I)
684        Diag(I->getSourceRange().getBegin(),
685             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
686      return false;
687    }
688  }
689
690  if (!isa<CXXConstructorDecl>(NewFD)) {
691    // C++11 [dcl.constexpr]p3:
692    //  The definition of a constexpr function shall satisfy the following
693    //  constraints:
694    // - it shall not be virtual;
695    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
696    if (Method && Method->isVirtual()) {
697      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
698
699      // If it's not obvious why this function is virtual, find an overridden
700      // function which uses the 'virtual' keyword.
701      const CXXMethodDecl *WrittenVirtual = Method;
702      while (!WrittenVirtual->isVirtualAsWritten())
703        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
704      if (WrittenVirtual != Method)
705        Diag(WrittenVirtual->getLocation(),
706             diag::note_overridden_virtual_function);
707      return false;
708    }
709
710    // - its return type shall be a literal type;
711    QualType RT = NewFD->getResultType();
712    if (!RT->isDependentType() &&
713        RequireLiteralType(NewFD->getLocation(), RT,
714                           PDiag(diag::err_constexpr_non_literal_return)))
715      return false;
716  }
717
718  // - each of its parameter types shall be a literal type;
719  if (!CheckConstexprParameterTypes(*this, NewFD))
720    return false;
721
722  return true;
723}
724
725/// Check the given declaration statement is legal within a constexpr function
726/// body. C++0x [dcl.constexpr]p3,p4.
727///
728/// \return true if the body is OK, false if we have diagnosed a problem.
729static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
730                                   DeclStmt *DS) {
731  // C++0x [dcl.constexpr]p3 and p4:
732  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
733  //  contain only
734  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
735         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
736    switch ((*DclIt)->getKind()) {
737    case Decl::StaticAssert:
738    case Decl::Using:
739    case Decl::UsingShadow:
740    case Decl::UsingDirective:
741    case Decl::UnresolvedUsingTypename:
742      //   - static_assert-declarations
743      //   - using-declarations,
744      //   - using-directives,
745      continue;
746
747    case Decl::Typedef:
748    case Decl::TypeAlias: {
749      //   - typedef declarations and alias-declarations that do not define
750      //     classes or enumerations,
751      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
752      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
753        // Don't allow variably-modified types in constexpr functions.
754        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
755        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
756          << TL.getSourceRange() << TL.getType()
757          << isa<CXXConstructorDecl>(Dcl);
758        return false;
759      }
760      continue;
761    }
762
763    case Decl::Enum:
764    case Decl::CXXRecord:
765      // As an extension, we allow the declaration (but not the definition) of
766      // classes and enumerations in all declarations, not just in typedef and
767      // alias declarations.
768      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
769        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
770          << isa<CXXConstructorDecl>(Dcl);
771        return false;
772      }
773      continue;
774
775    case Decl::Var:
776      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
777        << isa<CXXConstructorDecl>(Dcl);
778      return false;
779
780    default:
781      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
782        << isa<CXXConstructorDecl>(Dcl);
783      return false;
784    }
785  }
786
787  return true;
788}
789
790/// Check that the given field is initialized within a constexpr constructor.
791///
792/// \param Dcl The constexpr constructor being checked.
793/// \param Field The field being checked. This may be a member of an anonymous
794///        struct or union nested within the class being checked.
795/// \param Inits All declarations, including anonymous struct/union members and
796///        indirect members, for which any initialization was provided.
797/// \param Diagnosed Set to true if an error is produced.
798static void CheckConstexprCtorInitializer(Sema &SemaRef,
799                                          const FunctionDecl *Dcl,
800                                          FieldDecl *Field,
801                                          llvm::SmallSet<Decl*, 16> &Inits,
802                                          bool &Diagnosed) {
803  if (Field->isUnnamedBitfield())
804    return;
805
806  if (Field->isAnonymousStructOrUnion() &&
807      Field->getType()->getAsCXXRecordDecl()->isEmpty())
808    return;
809
810  if (!Inits.count(Field)) {
811    if (!Diagnosed) {
812      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
813      Diagnosed = true;
814    }
815    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
816  } else if (Field->isAnonymousStructOrUnion()) {
817    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
818    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
819         I != E; ++I)
820      // If an anonymous union contains an anonymous struct of which any member
821      // is initialized, all members must be initialized.
822      if (!RD->isUnion() || Inits.count(*I))
823        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
824  }
825}
826
827/// Check the body for the given constexpr function declaration only contains
828/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
829///
830/// \return true if the body is OK, false if we have diagnosed a problem.
831bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
832  if (isa<CXXTryStmt>(Body)) {
833    // C++11 [dcl.constexpr]p3:
834    //  The definition of a constexpr function shall satisfy the following
835    //  constraints: [...]
836    // - its function-body shall be = delete, = default, or a
837    //   compound-statement
838    //
839    // C++11 [dcl.constexpr]p4:
840    //  In the definition of a constexpr constructor, [...]
841    // - its function-body shall not be a function-try-block;
842    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
843      << isa<CXXConstructorDecl>(Dcl);
844    return false;
845  }
846
847  // - its function-body shall be [...] a compound-statement that contains only
848  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
849
850  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
851  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
852         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
853    switch ((*BodyIt)->getStmtClass()) {
854    case Stmt::NullStmtClass:
855      //   - null statements,
856      continue;
857
858    case Stmt::DeclStmtClass:
859      //   - static_assert-declarations
860      //   - using-declarations,
861      //   - using-directives,
862      //   - typedef declarations and alias-declarations that do not define
863      //     classes or enumerations,
864      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
865        return false;
866      continue;
867
868    case Stmt::ReturnStmtClass:
869      //   - and exactly one return statement;
870      if (isa<CXXConstructorDecl>(Dcl))
871        break;
872
873      ReturnStmts.push_back((*BodyIt)->getLocStart());
874      continue;
875
876    default:
877      break;
878    }
879
880    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
881      << isa<CXXConstructorDecl>(Dcl);
882    return false;
883  }
884
885  if (const CXXConstructorDecl *Constructor
886        = dyn_cast<CXXConstructorDecl>(Dcl)) {
887    const CXXRecordDecl *RD = Constructor->getParent();
888    // DR1359:
889    // - every non-variant non-static data member and base class sub-object
890    //   shall be initialized;
891    // - if the class is a non-empty union, or for each non-empty anonymous
892    //   union member of a non-union class, exactly one non-static data member
893    //   shall be initialized;
894    if (RD->isUnion()) {
895      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
896        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
897        return false;
898      }
899    } else if (!Constructor->isDependentContext() &&
900               !Constructor->isDelegatingConstructor()) {
901      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
902
903      // Skip detailed checking if we have enough initializers, and we would
904      // allow at most one initializer per member.
905      bool AnyAnonStructUnionMembers = false;
906      unsigned Fields = 0;
907      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
908           E = RD->field_end(); I != E; ++I, ++Fields) {
909        if ((*I)->isAnonymousStructOrUnion()) {
910          AnyAnonStructUnionMembers = true;
911          break;
912        }
913      }
914      if (AnyAnonStructUnionMembers ||
915          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
916        // Check initialization of non-static data members. Base classes are
917        // always initialized so do not need to be checked. Dependent bases
918        // might not have initializers in the member initializer list.
919        llvm::SmallSet<Decl*, 16> Inits;
920        for (CXXConstructorDecl::init_const_iterator
921               I = Constructor->init_begin(), E = Constructor->init_end();
922             I != E; ++I) {
923          if (FieldDecl *FD = (*I)->getMember())
924            Inits.insert(FD);
925          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
926            Inits.insert(ID->chain_begin(), ID->chain_end());
927        }
928
929        bool Diagnosed = false;
930        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
931             E = RD->field_end(); I != E; ++I)
932          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
933        if (Diagnosed)
934          return false;
935      }
936    }
937  } else {
938    if (ReturnStmts.empty()) {
939      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
940      return false;
941    }
942    if (ReturnStmts.size() > 1) {
943      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
944      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
945        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
946      return false;
947    }
948  }
949
950  // C++11 [dcl.constexpr]p5:
951  //   if no function argument values exist such that the function invocation
952  //   substitution would produce a constant expression, the program is
953  //   ill-formed; no diagnostic required.
954  // C++11 [dcl.constexpr]p3:
955  //   - every constructor call and implicit conversion used in initializing the
956  //     return value shall be one of those allowed in a constant expression.
957  // C++11 [dcl.constexpr]p4:
958  //   - every constructor involved in initializing non-static data members and
959  //     base class sub-objects shall be a constexpr constructor.
960  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
961  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
962    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
963      << isa<CXXConstructorDecl>(Dcl);
964    for (size_t I = 0, N = Diags.size(); I != N; ++I)
965      Diag(Diags[I].first, Diags[I].second);
966    return false;
967  }
968
969  return true;
970}
971
972/// isCurrentClassName - Determine whether the identifier II is the
973/// name of the class type currently being defined. In the case of
974/// nested classes, this will only return true if II is the name of
975/// the innermost class.
976bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
977                              const CXXScopeSpec *SS) {
978  assert(getLangOptions().CPlusPlus && "No class names in C!");
979
980  CXXRecordDecl *CurDecl;
981  if (SS && SS->isSet() && !SS->isInvalid()) {
982    DeclContext *DC = computeDeclContext(*SS, true);
983    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
984  } else
985    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
986
987  if (CurDecl && CurDecl->getIdentifier())
988    return &II == CurDecl->getIdentifier();
989  else
990    return false;
991}
992
993/// \brief Check the validity of a C++ base class specifier.
994///
995/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
996/// and returns NULL otherwise.
997CXXBaseSpecifier *
998Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
999                         SourceRange SpecifierRange,
1000                         bool Virtual, AccessSpecifier Access,
1001                         TypeSourceInfo *TInfo,
1002                         SourceLocation EllipsisLoc) {
1003  QualType BaseType = TInfo->getType();
1004
1005  // C++ [class.union]p1:
1006  //   A union shall not have base classes.
1007  if (Class->isUnion()) {
1008    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1009      << SpecifierRange;
1010    return 0;
1011  }
1012
1013  if (EllipsisLoc.isValid() &&
1014      !TInfo->getType()->containsUnexpandedParameterPack()) {
1015    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1016      << TInfo->getTypeLoc().getSourceRange();
1017    EllipsisLoc = SourceLocation();
1018  }
1019
1020  if (BaseType->isDependentType())
1021    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1022                                          Class->getTagKind() == TTK_Class,
1023                                          Access, TInfo, EllipsisLoc);
1024
1025  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1026
1027  // Base specifiers must be record types.
1028  if (!BaseType->isRecordType()) {
1029    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1030    return 0;
1031  }
1032
1033  // C++ [class.union]p1:
1034  //   A union shall not be used as a base class.
1035  if (BaseType->isUnionType()) {
1036    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1037    return 0;
1038  }
1039
1040  // C++ [class.derived]p2:
1041  //   The class-name in a base-specifier shall not be an incompletely
1042  //   defined class.
1043  if (RequireCompleteType(BaseLoc, BaseType,
1044                          PDiag(diag::err_incomplete_base_class)
1045                            << SpecifierRange)) {
1046    Class->setInvalidDecl();
1047    return 0;
1048  }
1049
1050  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1051  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1052  assert(BaseDecl && "Record type has no declaration");
1053  BaseDecl = BaseDecl->getDefinition();
1054  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1055  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1056  assert(CXXBaseDecl && "Base type is not a C++ type");
1057
1058  // C++ [class]p3:
1059  //   If a class is marked final and it appears as a base-type-specifier in
1060  //   base-clause, the program is ill-formed.
1061  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1062    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1063      << CXXBaseDecl->getDeclName();
1064    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1065      << CXXBaseDecl->getDeclName();
1066    return 0;
1067  }
1068
1069  if (BaseDecl->isInvalidDecl())
1070    Class->setInvalidDecl();
1071
1072  // Create the base specifier.
1073  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1074                                        Class->getTagKind() == TTK_Class,
1075                                        Access, TInfo, EllipsisLoc);
1076}
1077
1078/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1079/// one entry in the base class list of a class specifier, for
1080/// example:
1081///    class foo : public bar, virtual private baz {
1082/// 'public bar' and 'virtual private baz' are each base-specifiers.
1083BaseResult
1084Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1085                         bool Virtual, AccessSpecifier Access,
1086                         ParsedType basetype, SourceLocation BaseLoc,
1087                         SourceLocation EllipsisLoc) {
1088  if (!classdecl)
1089    return true;
1090
1091  AdjustDeclIfTemplate(classdecl);
1092  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1093  if (!Class)
1094    return true;
1095
1096  TypeSourceInfo *TInfo = 0;
1097  GetTypeFromParser(basetype, &TInfo);
1098
1099  if (EllipsisLoc.isInvalid() &&
1100      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1101                                      UPPC_BaseType))
1102    return true;
1103
1104  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1105                                                      Virtual, Access, TInfo,
1106                                                      EllipsisLoc))
1107    return BaseSpec;
1108
1109  return true;
1110}
1111
1112/// \brief Performs the actual work of attaching the given base class
1113/// specifiers to a C++ class.
1114bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1115                                unsigned NumBases) {
1116 if (NumBases == 0)
1117    return false;
1118
1119  // Used to keep track of which base types we have already seen, so
1120  // that we can properly diagnose redundant direct base types. Note
1121  // that the key is always the unqualified canonical type of the base
1122  // class.
1123  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1124
1125  // Copy non-redundant base specifiers into permanent storage.
1126  unsigned NumGoodBases = 0;
1127  bool Invalid = false;
1128  for (unsigned idx = 0; idx < NumBases; ++idx) {
1129    QualType NewBaseType
1130      = Context.getCanonicalType(Bases[idx]->getType());
1131    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1132    if (KnownBaseTypes[NewBaseType]) {
1133      // C++ [class.mi]p3:
1134      //   A class shall not be specified as a direct base class of a
1135      //   derived class more than once.
1136      Diag(Bases[idx]->getSourceRange().getBegin(),
1137           diag::err_duplicate_base_class)
1138        << KnownBaseTypes[NewBaseType]->getType()
1139        << Bases[idx]->getSourceRange();
1140
1141      // Delete the duplicate base class specifier; we're going to
1142      // overwrite its pointer later.
1143      Context.Deallocate(Bases[idx]);
1144
1145      Invalid = true;
1146    } else {
1147      // Okay, add this new base class.
1148      KnownBaseTypes[NewBaseType] = Bases[idx];
1149      Bases[NumGoodBases++] = Bases[idx];
1150      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1151        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1152          if (RD->hasAttr<WeakAttr>())
1153            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1154    }
1155  }
1156
1157  // Attach the remaining base class specifiers to the derived class.
1158  Class->setBases(Bases, NumGoodBases);
1159
1160  // Delete the remaining (good) base class specifiers, since their
1161  // data has been copied into the CXXRecordDecl.
1162  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1163    Context.Deallocate(Bases[idx]);
1164
1165  return Invalid;
1166}
1167
1168/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1169/// class, after checking whether there are any duplicate base
1170/// classes.
1171void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1172                               unsigned NumBases) {
1173  if (!ClassDecl || !Bases || !NumBases)
1174    return;
1175
1176  AdjustDeclIfTemplate(ClassDecl);
1177  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1178                       (CXXBaseSpecifier**)(Bases), NumBases);
1179}
1180
1181static CXXRecordDecl *GetClassForType(QualType T) {
1182  if (const RecordType *RT = T->getAs<RecordType>())
1183    return cast<CXXRecordDecl>(RT->getDecl());
1184  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1185    return ICT->getDecl();
1186  else
1187    return 0;
1188}
1189
1190/// \brief Determine whether the type \p Derived is a C++ class that is
1191/// derived from the type \p Base.
1192bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1193  if (!getLangOptions().CPlusPlus)
1194    return false;
1195
1196  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1197  if (!DerivedRD)
1198    return false;
1199
1200  CXXRecordDecl *BaseRD = GetClassForType(Base);
1201  if (!BaseRD)
1202    return false;
1203
1204  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1205  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1206}
1207
1208/// \brief Determine whether the type \p Derived is a C++ class that is
1209/// derived from the type \p Base.
1210bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1211  if (!getLangOptions().CPlusPlus)
1212    return false;
1213
1214  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1215  if (!DerivedRD)
1216    return false;
1217
1218  CXXRecordDecl *BaseRD = GetClassForType(Base);
1219  if (!BaseRD)
1220    return false;
1221
1222  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1223}
1224
1225void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1226                              CXXCastPath &BasePathArray) {
1227  assert(BasePathArray.empty() && "Base path array must be empty!");
1228  assert(Paths.isRecordingPaths() && "Must record paths!");
1229
1230  const CXXBasePath &Path = Paths.front();
1231
1232  // We first go backward and check if we have a virtual base.
1233  // FIXME: It would be better if CXXBasePath had the base specifier for
1234  // the nearest virtual base.
1235  unsigned Start = 0;
1236  for (unsigned I = Path.size(); I != 0; --I) {
1237    if (Path[I - 1].Base->isVirtual()) {
1238      Start = I - 1;
1239      break;
1240    }
1241  }
1242
1243  // Now add all bases.
1244  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1245    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1246}
1247
1248/// \brief Determine whether the given base path includes a virtual
1249/// base class.
1250bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1251  for (CXXCastPath::const_iterator B = BasePath.begin(),
1252                                BEnd = BasePath.end();
1253       B != BEnd; ++B)
1254    if ((*B)->isVirtual())
1255      return true;
1256
1257  return false;
1258}
1259
1260/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1261/// conversion (where Derived and Base are class types) is
1262/// well-formed, meaning that the conversion is unambiguous (and
1263/// that all of the base classes are accessible). Returns true
1264/// and emits a diagnostic if the code is ill-formed, returns false
1265/// otherwise. Loc is the location where this routine should point to
1266/// if there is an error, and Range is the source range to highlight
1267/// if there is an error.
1268bool
1269Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1270                                   unsigned InaccessibleBaseID,
1271                                   unsigned AmbigiousBaseConvID,
1272                                   SourceLocation Loc, SourceRange Range,
1273                                   DeclarationName Name,
1274                                   CXXCastPath *BasePath) {
1275  // First, determine whether the path from Derived to Base is
1276  // ambiguous. This is slightly more expensive than checking whether
1277  // the Derived to Base conversion exists, because here we need to
1278  // explore multiple paths to determine if there is an ambiguity.
1279  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1280                     /*DetectVirtual=*/false);
1281  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1282  assert(DerivationOkay &&
1283         "Can only be used with a derived-to-base conversion");
1284  (void)DerivationOkay;
1285
1286  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1287    if (InaccessibleBaseID) {
1288      // Check that the base class can be accessed.
1289      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1290                                   InaccessibleBaseID)) {
1291        case AR_inaccessible:
1292          return true;
1293        case AR_accessible:
1294        case AR_dependent:
1295        case AR_delayed:
1296          break;
1297      }
1298    }
1299
1300    // Build a base path if necessary.
1301    if (BasePath)
1302      BuildBasePathArray(Paths, *BasePath);
1303    return false;
1304  }
1305
1306  // We know that the derived-to-base conversion is ambiguous, and
1307  // we're going to produce a diagnostic. Perform the derived-to-base
1308  // search just one more time to compute all of the possible paths so
1309  // that we can print them out. This is more expensive than any of
1310  // the previous derived-to-base checks we've done, but at this point
1311  // performance isn't as much of an issue.
1312  Paths.clear();
1313  Paths.setRecordingPaths(true);
1314  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1315  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1316  (void)StillOkay;
1317
1318  // Build up a textual representation of the ambiguous paths, e.g.,
1319  // D -> B -> A, that will be used to illustrate the ambiguous
1320  // conversions in the diagnostic. We only print one of the paths
1321  // to each base class subobject.
1322  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1323
1324  Diag(Loc, AmbigiousBaseConvID)
1325  << Derived << Base << PathDisplayStr << Range << Name;
1326  return true;
1327}
1328
1329bool
1330Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1331                                   SourceLocation Loc, SourceRange Range,
1332                                   CXXCastPath *BasePath,
1333                                   bool IgnoreAccess) {
1334  return CheckDerivedToBaseConversion(Derived, Base,
1335                                      IgnoreAccess ? 0
1336                                       : diag::err_upcast_to_inaccessible_base,
1337                                      diag::err_ambiguous_derived_to_base_conv,
1338                                      Loc, Range, DeclarationName(),
1339                                      BasePath);
1340}
1341
1342
1343/// @brief Builds a string representing ambiguous paths from a
1344/// specific derived class to different subobjects of the same base
1345/// class.
1346///
1347/// This function builds a string that can be used in error messages
1348/// to show the different paths that one can take through the
1349/// inheritance hierarchy to go from the derived class to different
1350/// subobjects of a base class. The result looks something like this:
1351/// @code
1352/// struct D -> struct B -> struct A
1353/// struct D -> struct C -> struct A
1354/// @endcode
1355std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1356  std::string PathDisplayStr;
1357  std::set<unsigned> DisplayedPaths;
1358  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1359       Path != Paths.end(); ++Path) {
1360    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1361      // We haven't displayed a path to this particular base
1362      // class subobject yet.
1363      PathDisplayStr += "\n    ";
1364      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1365      for (CXXBasePath::const_iterator Element = Path->begin();
1366           Element != Path->end(); ++Element)
1367        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1368    }
1369  }
1370
1371  return PathDisplayStr;
1372}
1373
1374//===----------------------------------------------------------------------===//
1375// C++ class member Handling
1376//===----------------------------------------------------------------------===//
1377
1378/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1379bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1380                                SourceLocation ASLoc,
1381                                SourceLocation ColonLoc,
1382                                AttributeList *Attrs) {
1383  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1384  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1385                                                  ASLoc, ColonLoc);
1386  CurContext->addHiddenDecl(ASDecl);
1387  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1388}
1389
1390/// CheckOverrideControl - Check C++0x override control semantics.
1391void Sema::CheckOverrideControl(const Decl *D) {
1392  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1393  if (!MD || !MD->isVirtual())
1394    return;
1395
1396  if (MD->isDependentContext())
1397    return;
1398
1399  // C++0x [class.virtual]p3:
1400  //   If a virtual function is marked with the virt-specifier override and does
1401  //   not override a member function of a base class,
1402  //   the program is ill-formed.
1403  bool HasOverriddenMethods =
1404    MD->begin_overridden_methods() != MD->end_overridden_methods();
1405  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1406    Diag(MD->getLocation(),
1407                 diag::err_function_marked_override_not_overriding)
1408      << MD->getDeclName();
1409    return;
1410  }
1411}
1412
1413/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1414/// function overrides a virtual member function marked 'final', according to
1415/// C++0x [class.virtual]p3.
1416bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1417                                                  const CXXMethodDecl *Old) {
1418  if (!Old->hasAttr<FinalAttr>())
1419    return false;
1420
1421  Diag(New->getLocation(), diag::err_final_function_overridden)
1422    << New->getDeclName();
1423  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1424  return true;
1425}
1426
1427/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1428/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1429/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1430/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1431/// present but parsing it has been deferred.
1432Decl *
1433Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1434                               MultiTemplateParamsArg TemplateParameterLists,
1435                               Expr *BW, const VirtSpecifiers &VS,
1436                               bool HasDeferredInit) {
1437  const DeclSpec &DS = D.getDeclSpec();
1438  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1439  DeclarationName Name = NameInfo.getName();
1440  SourceLocation Loc = NameInfo.getLoc();
1441
1442  // For anonymous bitfields, the location should point to the type.
1443  if (Loc.isInvalid())
1444    Loc = D.getSourceRange().getBegin();
1445
1446  Expr *BitWidth = static_cast<Expr*>(BW);
1447
1448  assert(isa<CXXRecordDecl>(CurContext));
1449  assert(!DS.isFriendSpecified());
1450
1451  bool isFunc = D.isDeclarationOfFunction();
1452
1453  // C++ 9.2p6: A member shall not be declared to have automatic storage
1454  // duration (auto, register) or with the extern storage-class-specifier.
1455  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1456  // data members and cannot be applied to names declared const or static,
1457  // and cannot be applied to reference members.
1458  switch (DS.getStorageClassSpec()) {
1459    case DeclSpec::SCS_unspecified:
1460    case DeclSpec::SCS_typedef:
1461    case DeclSpec::SCS_static:
1462      // FALL THROUGH.
1463      break;
1464    case DeclSpec::SCS_mutable:
1465      if (isFunc) {
1466        if (DS.getStorageClassSpecLoc().isValid())
1467          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1468        else
1469          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1470
1471        // FIXME: It would be nicer if the keyword was ignored only for this
1472        // declarator. Otherwise we could get follow-up errors.
1473        D.getMutableDeclSpec().ClearStorageClassSpecs();
1474      }
1475      break;
1476    default:
1477      if (DS.getStorageClassSpecLoc().isValid())
1478        Diag(DS.getStorageClassSpecLoc(),
1479             diag::err_storageclass_invalid_for_member);
1480      else
1481        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1482      D.getMutableDeclSpec().ClearStorageClassSpecs();
1483  }
1484
1485  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1486                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1487                      !isFunc);
1488
1489  Decl *Member;
1490  if (isInstField) {
1491    CXXScopeSpec &SS = D.getCXXScopeSpec();
1492
1493    // Data members must have identifiers for names.
1494    if (Name.getNameKind() != DeclarationName::Identifier) {
1495      Diag(Loc, diag::err_bad_variable_name)
1496        << Name;
1497      return 0;
1498    }
1499
1500    IdentifierInfo *II = Name.getAsIdentifierInfo();
1501
1502    // Member field could not be with "template" keyword.
1503    // So TemplateParameterLists should be empty in this case.
1504    if (TemplateParameterLists.size()) {
1505      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1506      if (TemplateParams->size()) {
1507        // There is no such thing as a member field template.
1508        Diag(D.getIdentifierLoc(), diag::err_template_member)
1509            << II
1510            << SourceRange(TemplateParams->getTemplateLoc(),
1511                TemplateParams->getRAngleLoc());
1512      } else {
1513        // There is an extraneous 'template<>' for this member.
1514        Diag(TemplateParams->getTemplateLoc(),
1515            diag::err_template_member_noparams)
1516            << II
1517            << SourceRange(TemplateParams->getTemplateLoc(),
1518                TemplateParams->getRAngleLoc());
1519      }
1520      return 0;
1521    }
1522
1523    if (SS.isSet() && !SS.isInvalid()) {
1524      // The user provided a superfluous scope specifier inside a class
1525      // definition:
1526      //
1527      // class X {
1528      //   int X::member;
1529      // };
1530      DeclContext *DC = 0;
1531      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1532        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1533          << Name << FixItHint::CreateRemoval(SS.getRange());
1534      else
1535        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1536          << Name << SS.getRange();
1537
1538      SS.clear();
1539    }
1540
1541    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1542                         HasDeferredInit, AS);
1543    assert(Member && "HandleField never returns null");
1544  } else {
1545    assert(!HasDeferredInit);
1546
1547    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1548    if (!Member) {
1549      return 0;
1550    }
1551
1552    // Non-instance-fields can't have a bitfield.
1553    if (BitWidth) {
1554      if (Member->isInvalidDecl()) {
1555        // don't emit another diagnostic.
1556      } else if (isa<VarDecl>(Member)) {
1557        // C++ 9.6p3: A bit-field shall not be a static member.
1558        // "static member 'A' cannot be a bit-field"
1559        Diag(Loc, diag::err_static_not_bitfield)
1560          << Name << BitWidth->getSourceRange();
1561      } else if (isa<TypedefDecl>(Member)) {
1562        // "typedef member 'x' cannot be a bit-field"
1563        Diag(Loc, diag::err_typedef_not_bitfield)
1564          << Name << BitWidth->getSourceRange();
1565      } else {
1566        // A function typedef ("typedef int f(); f a;").
1567        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1568        Diag(Loc, diag::err_not_integral_type_bitfield)
1569          << Name << cast<ValueDecl>(Member)->getType()
1570          << BitWidth->getSourceRange();
1571      }
1572
1573      BitWidth = 0;
1574      Member->setInvalidDecl();
1575    }
1576
1577    Member->setAccess(AS);
1578
1579    // If we have declared a member function template, set the access of the
1580    // templated declaration as well.
1581    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1582      FunTmpl->getTemplatedDecl()->setAccess(AS);
1583  }
1584
1585  if (VS.isOverrideSpecified()) {
1586    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1587    if (!MD || !MD->isVirtual()) {
1588      Diag(Member->getLocStart(),
1589           diag::override_keyword_only_allowed_on_virtual_member_functions)
1590        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1591    } else
1592      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1593  }
1594  if (VS.isFinalSpecified()) {
1595    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1596    if (!MD || !MD->isVirtual()) {
1597      Diag(Member->getLocStart(),
1598           diag::override_keyword_only_allowed_on_virtual_member_functions)
1599      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1600    } else
1601      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1602  }
1603
1604  if (VS.getLastLocation().isValid()) {
1605    // Update the end location of a method that has a virt-specifiers.
1606    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1607      MD->setRangeEnd(VS.getLastLocation());
1608  }
1609
1610  CheckOverrideControl(Member);
1611
1612  assert((Name || isInstField) && "No identifier for non-field ?");
1613
1614  if (isInstField)
1615    FieldCollector->Add(cast<FieldDecl>(Member));
1616  return Member;
1617}
1618
1619/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1620/// in-class initializer for a non-static C++ class member, and after
1621/// instantiating an in-class initializer in a class template. Such actions
1622/// are deferred until the class is complete.
1623void
1624Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1625                                       Expr *InitExpr) {
1626  FieldDecl *FD = cast<FieldDecl>(D);
1627
1628  if (!InitExpr) {
1629    FD->setInvalidDecl();
1630    FD->removeInClassInitializer();
1631    return;
1632  }
1633
1634  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1635    FD->setInvalidDecl();
1636    FD->removeInClassInitializer();
1637    return;
1638  }
1639
1640  ExprResult Init = InitExpr;
1641  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1642    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1643    Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1644        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1645    }
1646    // FIXME: if there is no EqualLoc, this is list-initialization.
1647    Init = PerformCopyInitialization(
1648      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1649    if (Init.isInvalid()) {
1650      FD->setInvalidDecl();
1651      return;
1652    }
1653
1654    CheckImplicitConversions(Init.get(), EqualLoc);
1655  }
1656
1657  // C++0x [class.base.init]p7:
1658  //   The initialization of each base and member constitutes a
1659  //   full-expression.
1660  Init = MaybeCreateExprWithCleanups(Init);
1661  if (Init.isInvalid()) {
1662    FD->setInvalidDecl();
1663    return;
1664  }
1665
1666  InitExpr = Init.release();
1667
1668  FD->setInClassInitializer(InitExpr);
1669}
1670
1671/// \brief Find the direct and/or virtual base specifiers that
1672/// correspond to the given base type, for use in base initialization
1673/// within a constructor.
1674static bool FindBaseInitializer(Sema &SemaRef,
1675                                CXXRecordDecl *ClassDecl,
1676                                QualType BaseType,
1677                                const CXXBaseSpecifier *&DirectBaseSpec,
1678                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1679  // First, check for a direct base class.
1680  DirectBaseSpec = 0;
1681  for (CXXRecordDecl::base_class_const_iterator Base
1682         = ClassDecl->bases_begin();
1683       Base != ClassDecl->bases_end(); ++Base) {
1684    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1685      // We found a direct base of this type. That's what we're
1686      // initializing.
1687      DirectBaseSpec = &*Base;
1688      break;
1689    }
1690  }
1691
1692  // Check for a virtual base class.
1693  // FIXME: We might be able to short-circuit this if we know in advance that
1694  // there are no virtual bases.
1695  VirtualBaseSpec = 0;
1696  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1697    // We haven't found a base yet; search the class hierarchy for a
1698    // virtual base class.
1699    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1700                       /*DetectVirtual=*/false);
1701    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1702                              BaseType, Paths)) {
1703      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1704           Path != Paths.end(); ++Path) {
1705        if (Path->back().Base->isVirtual()) {
1706          VirtualBaseSpec = Path->back().Base;
1707          break;
1708        }
1709      }
1710    }
1711  }
1712
1713  return DirectBaseSpec || VirtualBaseSpec;
1714}
1715
1716/// \brief Handle a C++ member initializer using braced-init-list syntax.
1717MemInitResult
1718Sema::ActOnMemInitializer(Decl *ConstructorD,
1719                          Scope *S,
1720                          CXXScopeSpec &SS,
1721                          IdentifierInfo *MemberOrBase,
1722                          ParsedType TemplateTypeTy,
1723                          const DeclSpec &DS,
1724                          SourceLocation IdLoc,
1725                          Expr *InitList,
1726                          SourceLocation EllipsisLoc) {
1727  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1728                             DS, IdLoc, InitList,
1729                             EllipsisLoc);
1730}
1731
1732/// \brief Handle a C++ member initializer using parentheses syntax.
1733MemInitResult
1734Sema::ActOnMemInitializer(Decl *ConstructorD,
1735                          Scope *S,
1736                          CXXScopeSpec &SS,
1737                          IdentifierInfo *MemberOrBase,
1738                          ParsedType TemplateTypeTy,
1739                          const DeclSpec &DS,
1740                          SourceLocation IdLoc,
1741                          SourceLocation LParenLoc,
1742                          Expr **Args, unsigned NumArgs,
1743                          SourceLocation RParenLoc,
1744                          SourceLocation EllipsisLoc) {
1745  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1746                                           RParenLoc);
1747  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1748                             DS, IdLoc, List, EllipsisLoc);
1749}
1750
1751namespace {
1752
1753// Callback to only accept typo corrections that can be a valid C++ member
1754// intializer: either a non-static field member or a base class.
1755class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1756 public:
1757  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1758      : ClassDecl(ClassDecl) {}
1759
1760  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1761    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1762      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1763        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1764      else
1765        return isa<TypeDecl>(ND);
1766    }
1767    return false;
1768  }
1769
1770 private:
1771  CXXRecordDecl *ClassDecl;
1772};
1773
1774}
1775
1776/// \brief Handle a C++ member initializer.
1777MemInitResult
1778Sema::BuildMemInitializer(Decl *ConstructorD,
1779                          Scope *S,
1780                          CXXScopeSpec &SS,
1781                          IdentifierInfo *MemberOrBase,
1782                          ParsedType TemplateTypeTy,
1783                          const DeclSpec &DS,
1784                          SourceLocation IdLoc,
1785                          Expr *Init,
1786                          SourceLocation EllipsisLoc) {
1787  if (!ConstructorD)
1788    return true;
1789
1790  AdjustDeclIfTemplate(ConstructorD);
1791
1792  CXXConstructorDecl *Constructor
1793    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1794  if (!Constructor) {
1795    // The user wrote a constructor initializer on a function that is
1796    // not a C++ constructor. Ignore the error for now, because we may
1797    // have more member initializers coming; we'll diagnose it just
1798    // once in ActOnMemInitializers.
1799    return true;
1800  }
1801
1802  CXXRecordDecl *ClassDecl = Constructor->getParent();
1803
1804  // C++ [class.base.init]p2:
1805  //   Names in a mem-initializer-id are looked up in the scope of the
1806  //   constructor's class and, if not found in that scope, are looked
1807  //   up in the scope containing the constructor's definition.
1808  //   [Note: if the constructor's class contains a member with the
1809  //   same name as a direct or virtual base class of the class, a
1810  //   mem-initializer-id naming the member or base class and composed
1811  //   of a single identifier refers to the class member. A
1812  //   mem-initializer-id for the hidden base class may be specified
1813  //   using a qualified name. ]
1814  if (!SS.getScopeRep() && !TemplateTypeTy) {
1815    // Look for a member, first.
1816    DeclContext::lookup_result Result
1817      = ClassDecl->lookup(MemberOrBase);
1818    if (Result.first != Result.second) {
1819      ValueDecl *Member;
1820      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1821          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1822        if (EllipsisLoc.isValid())
1823          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1824            << MemberOrBase
1825            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1826
1827        return BuildMemberInitializer(Member, Init, IdLoc);
1828      }
1829    }
1830  }
1831  // It didn't name a member, so see if it names a class.
1832  QualType BaseType;
1833  TypeSourceInfo *TInfo = 0;
1834
1835  if (TemplateTypeTy) {
1836    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1837  } else if (DS.getTypeSpecType() == TST_decltype) {
1838    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1839  } else {
1840    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1841    LookupParsedName(R, S, &SS);
1842
1843    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1844    if (!TyD) {
1845      if (R.isAmbiguous()) return true;
1846
1847      // We don't want access-control diagnostics here.
1848      R.suppressDiagnostics();
1849
1850      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1851        bool NotUnknownSpecialization = false;
1852        DeclContext *DC = computeDeclContext(SS, false);
1853        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1854          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1855
1856        if (!NotUnknownSpecialization) {
1857          // When the scope specifier can refer to a member of an unknown
1858          // specialization, we take it as a type name.
1859          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1860                                       SS.getWithLocInContext(Context),
1861                                       *MemberOrBase, IdLoc);
1862          if (BaseType.isNull())
1863            return true;
1864
1865          R.clear();
1866          R.setLookupName(MemberOrBase);
1867        }
1868      }
1869
1870      // If no results were found, try to correct typos.
1871      TypoCorrection Corr;
1872      MemInitializerValidatorCCC Validator(ClassDecl);
1873      if (R.empty() && BaseType.isNull() &&
1874          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1875                              Validator, ClassDecl))) {
1876        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1877        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1878        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1879          // We have found a non-static data member with a similar
1880          // name to what was typed; complain and initialize that
1881          // member.
1882          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1883            << MemberOrBase << true << CorrectedQuotedStr
1884            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1885          Diag(Member->getLocation(), diag::note_previous_decl)
1886            << CorrectedQuotedStr;
1887
1888          return BuildMemberInitializer(Member, Init, IdLoc);
1889        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1890          const CXXBaseSpecifier *DirectBaseSpec;
1891          const CXXBaseSpecifier *VirtualBaseSpec;
1892          if (FindBaseInitializer(*this, ClassDecl,
1893                                  Context.getTypeDeclType(Type),
1894                                  DirectBaseSpec, VirtualBaseSpec)) {
1895            // We have found a direct or virtual base class with a
1896            // similar name to what was typed; complain and initialize
1897            // that base class.
1898            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1899              << MemberOrBase << false << CorrectedQuotedStr
1900              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1901
1902            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1903                                                             : VirtualBaseSpec;
1904            Diag(BaseSpec->getSourceRange().getBegin(),
1905                 diag::note_base_class_specified_here)
1906              << BaseSpec->getType()
1907              << BaseSpec->getSourceRange();
1908
1909            TyD = Type;
1910          }
1911        }
1912      }
1913
1914      if (!TyD && BaseType.isNull()) {
1915        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1916          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1917        return true;
1918      }
1919    }
1920
1921    if (BaseType.isNull()) {
1922      BaseType = Context.getTypeDeclType(TyD);
1923      if (SS.isSet()) {
1924        NestedNameSpecifier *Qualifier =
1925          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1926
1927        // FIXME: preserve source range information
1928        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1929      }
1930    }
1931  }
1932
1933  if (!TInfo)
1934    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1935
1936  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1937}
1938
1939/// Checks a member initializer expression for cases where reference (or
1940/// pointer) members are bound to by-value parameters (or their addresses).
1941static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1942                                               Expr *Init,
1943                                               SourceLocation IdLoc) {
1944  QualType MemberTy = Member->getType();
1945
1946  // We only handle pointers and references currently.
1947  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1948  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1949    return;
1950
1951  const bool IsPointer = MemberTy->isPointerType();
1952  if (IsPointer) {
1953    if (const UnaryOperator *Op
1954          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1955      // The only case we're worried about with pointers requires taking the
1956      // address.
1957      if (Op->getOpcode() != UO_AddrOf)
1958        return;
1959
1960      Init = Op->getSubExpr();
1961    } else {
1962      // We only handle address-of expression initializers for pointers.
1963      return;
1964    }
1965  }
1966
1967  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1968    // Taking the address of a temporary will be diagnosed as a hard error.
1969    if (IsPointer)
1970      return;
1971
1972    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1973      << Member << Init->getSourceRange();
1974  } else if (const DeclRefExpr *DRE
1975               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1976    // We only warn when referring to a non-reference parameter declaration.
1977    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1978    if (!Parameter || Parameter->getType()->isReferenceType())
1979      return;
1980
1981    S.Diag(Init->getExprLoc(),
1982           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1983                     : diag::warn_bind_ref_member_to_parameter)
1984      << Member << Parameter << Init->getSourceRange();
1985  } else {
1986    // Other initializers are fine.
1987    return;
1988  }
1989
1990  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1991    << (unsigned)IsPointer;
1992}
1993
1994/// Checks an initializer expression for use of uninitialized fields, such as
1995/// containing the field that is being initialized. Returns true if there is an
1996/// uninitialized field was used an updates the SourceLocation parameter; false
1997/// otherwise.
1998static bool InitExprContainsUninitializedFields(const Stmt *S,
1999                                                const ValueDecl *LhsField,
2000                                                SourceLocation *L) {
2001  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2002
2003  if (isa<CallExpr>(S)) {
2004    // Do not descend into function calls or constructors, as the use
2005    // of an uninitialized field may be valid. One would have to inspect
2006    // the contents of the function/ctor to determine if it is safe or not.
2007    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2008    // may be safe, depending on what the function/ctor does.
2009    return false;
2010  }
2011  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2012    const NamedDecl *RhsField = ME->getMemberDecl();
2013
2014    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2015      // The member expression points to a static data member.
2016      assert(VD->isStaticDataMember() &&
2017             "Member points to non-static data member!");
2018      (void)VD;
2019      return false;
2020    }
2021
2022    if (isa<EnumConstantDecl>(RhsField)) {
2023      // The member expression points to an enum.
2024      return false;
2025    }
2026
2027    if (RhsField == LhsField) {
2028      // Initializing a field with itself. Throw a warning.
2029      // But wait; there are exceptions!
2030      // Exception #1:  The field may not belong to this record.
2031      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2032      const Expr *base = ME->getBase();
2033      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2034        // Even though the field matches, it does not belong to this record.
2035        return false;
2036      }
2037      // None of the exceptions triggered; return true to indicate an
2038      // uninitialized field was used.
2039      *L = ME->getMemberLoc();
2040      return true;
2041    }
2042  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2043    // sizeof/alignof doesn't reference contents, do not warn.
2044    return false;
2045  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2046    // address-of doesn't reference contents (the pointer may be dereferenced
2047    // in the same expression but it would be rare; and weird).
2048    if (UOE->getOpcode() == UO_AddrOf)
2049      return false;
2050  }
2051  for (Stmt::const_child_range it = S->children(); it; ++it) {
2052    if (!*it) {
2053      // An expression such as 'member(arg ?: "")' may trigger this.
2054      continue;
2055    }
2056    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2057      return true;
2058  }
2059  return false;
2060}
2061
2062MemInitResult
2063Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2064                             SourceLocation IdLoc) {
2065  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2066  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2067  assert((DirectMember || IndirectMember) &&
2068         "Member must be a FieldDecl or IndirectFieldDecl");
2069
2070  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2071    return true;
2072
2073  if (Member->isInvalidDecl())
2074    return true;
2075
2076  // Diagnose value-uses of fields to initialize themselves, e.g.
2077  //   foo(foo)
2078  // where foo is not also a parameter to the constructor.
2079  // TODO: implement -Wuninitialized and fold this into that framework.
2080  Expr **Args;
2081  unsigned NumArgs;
2082  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2083    Args = ParenList->getExprs();
2084    NumArgs = ParenList->getNumExprs();
2085  } else {
2086    InitListExpr *InitList = cast<InitListExpr>(Init);
2087    Args = InitList->getInits();
2088    NumArgs = InitList->getNumInits();
2089  }
2090  for (unsigned i = 0; i < NumArgs; ++i) {
2091    SourceLocation L;
2092    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
2093      // FIXME: Return true in the case when other fields are used before being
2094      // uninitialized. For example, let this field be the i'th field. When
2095      // initializing the i'th field, throw a warning if any of the >= i'th
2096      // fields are used, as they are not yet initialized.
2097      // Right now we are only handling the case where the i'th field uses
2098      // itself in its initializer.
2099      Diag(L, diag::warn_field_is_uninit);
2100    }
2101  }
2102
2103  SourceRange InitRange = Init->getSourceRange();
2104
2105  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2106    // Can't check initialization for a member of dependent type or when
2107    // any of the arguments are type-dependent expressions.
2108    DiscardCleanupsInEvaluationContext();
2109  } else {
2110    bool InitList = false;
2111    if (isa<InitListExpr>(Init)) {
2112      InitList = true;
2113      Args = &Init;
2114      NumArgs = 1;
2115
2116      if (isStdInitializerList(Member->getType(), 0)) {
2117        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2118            << /*at end of ctor*/1 << InitRange;
2119      }
2120    }
2121
2122    // Initialize the member.
2123    InitializedEntity MemberEntity =
2124      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2125                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2126    InitializationKind Kind =
2127      InitList ? InitializationKind::CreateDirectList(IdLoc)
2128               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2129                                                  InitRange.getEnd());
2130
2131    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2132    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2133                                            MultiExprArg(*this, Args, NumArgs),
2134                                            0);
2135    if (MemberInit.isInvalid())
2136      return true;
2137
2138    CheckImplicitConversions(MemberInit.get(),
2139                             InitRange.getBegin());
2140
2141    // C++0x [class.base.init]p7:
2142    //   The initialization of each base and member constitutes a
2143    //   full-expression.
2144    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2145    if (MemberInit.isInvalid())
2146      return true;
2147
2148    // If we are in a dependent context, template instantiation will
2149    // perform this type-checking again. Just save the arguments that we
2150    // received.
2151    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2152    // of the information that we have about the member
2153    // initializer. However, deconstructing the ASTs is a dicey process,
2154    // and this approach is far more likely to get the corner cases right.
2155    if (CurContext->isDependentContext()) {
2156      // The existing Init will do fine.
2157    } else {
2158      Init = MemberInit.get();
2159      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2160    }
2161  }
2162
2163  if (DirectMember) {
2164    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2165                                            InitRange.getBegin(), Init,
2166                                            InitRange.getEnd());
2167  } else {
2168    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2169                                            InitRange.getBegin(), Init,
2170                                            InitRange.getEnd());
2171  }
2172}
2173
2174MemInitResult
2175Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2176                                 CXXRecordDecl *ClassDecl) {
2177  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2178  if (!LangOpts.CPlusPlus0x)
2179    return Diag(NameLoc, diag::err_delegating_ctor)
2180      << TInfo->getTypeLoc().getLocalSourceRange();
2181  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2182
2183  bool InitList = true;
2184  Expr **Args = &Init;
2185  unsigned NumArgs = 1;
2186  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2187    InitList = false;
2188    Args = ParenList->getExprs();
2189    NumArgs = ParenList->getNumExprs();
2190  }
2191
2192  SourceRange InitRange = Init->getSourceRange();
2193  // Initialize the object.
2194  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2195                                     QualType(ClassDecl->getTypeForDecl(), 0));
2196  InitializationKind Kind =
2197    InitList ? InitializationKind::CreateDirectList(NameLoc)
2198             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2199                                                InitRange.getEnd());
2200  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2201  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2202                                              MultiExprArg(*this, Args,NumArgs),
2203                                              0);
2204  if (DelegationInit.isInvalid())
2205    return true;
2206
2207  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2208         "Delegating constructor with no target?");
2209
2210  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2211
2212  // C++0x [class.base.init]p7:
2213  //   The initialization of each base and member constitutes a
2214  //   full-expression.
2215  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2216  if (DelegationInit.isInvalid())
2217    return true;
2218
2219  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2220                                          DelegationInit.takeAs<Expr>(),
2221                                          InitRange.getEnd());
2222}
2223
2224MemInitResult
2225Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2226                           Expr *Init, CXXRecordDecl *ClassDecl,
2227                           SourceLocation EllipsisLoc) {
2228  SourceLocation BaseLoc
2229    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2230
2231  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2232    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2233             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2234
2235  // C++ [class.base.init]p2:
2236  //   [...] Unless the mem-initializer-id names a nonstatic data
2237  //   member of the constructor's class or a direct or virtual base
2238  //   of that class, the mem-initializer is ill-formed. A
2239  //   mem-initializer-list can initialize a base class using any
2240  //   name that denotes that base class type.
2241  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2242
2243  SourceRange InitRange = Init->getSourceRange();
2244  if (EllipsisLoc.isValid()) {
2245    // This is a pack expansion.
2246    if (!BaseType->containsUnexpandedParameterPack())  {
2247      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2248        << SourceRange(BaseLoc, InitRange.getEnd());
2249
2250      EllipsisLoc = SourceLocation();
2251    }
2252  } else {
2253    // Check for any unexpanded parameter packs.
2254    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2255      return true;
2256
2257    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2258      return true;
2259  }
2260
2261  // Check for direct and virtual base classes.
2262  const CXXBaseSpecifier *DirectBaseSpec = 0;
2263  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2264  if (!Dependent) {
2265    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2266                                       BaseType))
2267      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2268
2269    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2270                        VirtualBaseSpec);
2271
2272    // C++ [base.class.init]p2:
2273    // Unless the mem-initializer-id names a nonstatic data member of the
2274    // constructor's class or a direct or virtual base of that class, the
2275    // mem-initializer is ill-formed.
2276    if (!DirectBaseSpec && !VirtualBaseSpec) {
2277      // If the class has any dependent bases, then it's possible that
2278      // one of those types will resolve to the same type as
2279      // BaseType. Therefore, just treat this as a dependent base
2280      // class initialization.  FIXME: Should we try to check the
2281      // initialization anyway? It seems odd.
2282      if (ClassDecl->hasAnyDependentBases())
2283        Dependent = true;
2284      else
2285        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2286          << BaseType << Context.getTypeDeclType(ClassDecl)
2287          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2288    }
2289  }
2290
2291  if (Dependent) {
2292    DiscardCleanupsInEvaluationContext();
2293
2294    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2295                                            /*IsVirtual=*/false,
2296                                            InitRange.getBegin(), Init,
2297                                            InitRange.getEnd(), EllipsisLoc);
2298  }
2299
2300  // C++ [base.class.init]p2:
2301  //   If a mem-initializer-id is ambiguous because it designates both
2302  //   a direct non-virtual base class and an inherited virtual base
2303  //   class, the mem-initializer is ill-formed.
2304  if (DirectBaseSpec && VirtualBaseSpec)
2305    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2306      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2307
2308  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2309  if (!BaseSpec)
2310    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2311
2312  // Initialize the base.
2313  bool InitList = true;
2314  Expr **Args = &Init;
2315  unsigned NumArgs = 1;
2316  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2317    InitList = false;
2318    Args = ParenList->getExprs();
2319    NumArgs = ParenList->getNumExprs();
2320  }
2321
2322  InitializedEntity BaseEntity =
2323    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2324  InitializationKind Kind =
2325    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2326             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2327                                                InitRange.getEnd());
2328  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2329  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2330                                          MultiExprArg(*this, Args, NumArgs),
2331                                          0);
2332  if (BaseInit.isInvalid())
2333    return true;
2334
2335  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2336
2337  // C++0x [class.base.init]p7:
2338  //   The initialization of each base and member constitutes a
2339  //   full-expression.
2340  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2341  if (BaseInit.isInvalid())
2342    return true;
2343
2344  // If we are in a dependent context, template instantiation will
2345  // perform this type-checking again. Just save the arguments that we
2346  // received in a ParenListExpr.
2347  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2348  // of the information that we have about the base
2349  // initializer. However, deconstructing the ASTs is a dicey process,
2350  // and this approach is far more likely to get the corner cases right.
2351  if (CurContext->isDependentContext())
2352    BaseInit = Owned(Init);
2353
2354  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2355                                          BaseSpec->isVirtual(),
2356                                          InitRange.getBegin(),
2357                                          BaseInit.takeAs<Expr>(),
2358                                          InitRange.getEnd(), EllipsisLoc);
2359}
2360
2361// Create a static_cast\<T&&>(expr).
2362static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2363  QualType ExprType = E->getType();
2364  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2365  SourceLocation ExprLoc = E->getLocStart();
2366  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2367      TargetType, ExprLoc);
2368
2369  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2370                                   SourceRange(ExprLoc, ExprLoc),
2371                                   E->getSourceRange()).take();
2372}
2373
2374/// ImplicitInitializerKind - How an implicit base or member initializer should
2375/// initialize its base or member.
2376enum ImplicitInitializerKind {
2377  IIK_Default,
2378  IIK_Copy,
2379  IIK_Move
2380};
2381
2382static bool
2383BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2384                             ImplicitInitializerKind ImplicitInitKind,
2385                             CXXBaseSpecifier *BaseSpec,
2386                             bool IsInheritedVirtualBase,
2387                             CXXCtorInitializer *&CXXBaseInit) {
2388  InitializedEntity InitEntity
2389    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2390                                        IsInheritedVirtualBase);
2391
2392  ExprResult BaseInit;
2393
2394  switch (ImplicitInitKind) {
2395  case IIK_Default: {
2396    InitializationKind InitKind
2397      = InitializationKind::CreateDefault(Constructor->getLocation());
2398    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2399    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2400                               MultiExprArg(SemaRef, 0, 0));
2401    break;
2402  }
2403
2404  case IIK_Move:
2405  case IIK_Copy: {
2406    bool Moving = ImplicitInitKind == IIK_Move;
2407    ParmVarDecl *Param = Constructor->getParamDecl(0);
2408    QualType ParamType = Param->getType().getNonReferenceType();
2409
2410    Expr *CopyCtorArg =
2411      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2412                          SourceLocation(), Param,
2413                          Constructor->getLocation(), ParamType,
2414                          VK_LValue, 0);
2415
2416    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2417
2418    // Cast to the base class to avoid ambiguities.
2419    QualType ArgTy =
2420      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2421                                       ParamType.getQualifiers());
2422
2423    if (Moving) {
2424      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2425    }
2426
2427    CXXCastPath BasePath;
2428    BasePath.push_back(BaseSpec);
2429    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2430                                            CK_UncheckedDerivedToBase,
2431                                            Moving ? VK_XValue : VK_LValue,
2432                                            &BasePath).take();
2433
2434    InitializationKind InitKind
2435      = InitializationKind::CreateDirect(Constructor->getLocation(),
2436                                         SourceLocation(), SourceLocation());
2437    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2438                                   &CopyCtorArg, 1);
2439    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2440                               MultiExprArg(&CopyCtorArg, 1));
2441    break;
2442  }
2443  }
2444
2445  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2446  if (BaseInit.isInvalid())
2447    return true;
2448
2449  CXXBaseInit =
2450    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2451               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2452                                                        SourceLocation()),
2453                                             BaseSpec->isVirtual(),
2454                                             SourceLocation(),
2455                                             BaseInit.takeAs<Expr>(),
2456                                             SourceLocation(),
2457                                             SourceLocation());
2458
2459  return false;
2460}
2461
2462static bool RefersToRValueRef(Expr *MemRef) {
2463  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2464  return Referenced->getType()->isRValueReferenceType();
2465}
2466
2467static bool
2468BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2469                               ImplicitInitializerKind ImplicitInitKind,
2470                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2471                               CXXCtorInitializer *&CXXMemberInit) {
2472  if (Field->isInvalidDecl())
2473    return true;
2474
2475  SourceLocation Loc = Constructor->getLocation();
2476
2477  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2478    bool Moving = ImplicitInitKind == IIK_Move;
2479    ParmVarDecl *Param = Constructor->getParamDecl(0);
2480    QualType ParamType = Param->getType().getNonReferenceType();
2481
2482    // Suppress copying zero-width bitfields.
2483    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2484      return false;
2485
2486    Expr *MemberExprBase =
2487      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2488                          SourceLocation(), Param,
2489                          Loc, ParamType, VK_LValue, 0);
2490
2491    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2492
2493    if (Moving) {
2494      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2495    }
2496
2497    // Build a reference to this field within the parameter.
2498    CXXScopeSpec SS;
2499    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2500                              Sema::LookupMemberName);
2501    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2502                                  : cast<ValueDecl>(Field), AS_public);
2503    MemberLookup.resolveKind();
2504    ExprResult CtorArg
2505      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2506                                         ParamType, Loc,
2507                                         /*IsArrow=*/false,
2508                                         SS,
2509                                         /*TemplateKWLoc=*/SourceLocation(),
2510                                         /*FirstQualifierInScope=*/0,
2511                                         MemberLookup,
2512                                         /*TemplateArgs=*/0);
2513    if (CtorArg.isInvalid())
2514      return true;
2515
2516    // C++11 [class.copy]p15:
2517    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2518    //     with static_cast<T&&>(x.m);
2519    if (RefersToRValueRef(CtorArg.get())) {
2520      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2521    }
2522
2523    // When the field we are copying is an array, create index variables for
2524    // each dimension of the array. We use these index variables to subscript
2525    // the source array, and other clients (e.g., CodeGen) will perform the
2526    // necessary iteration with these index variables.
2527    SmallVector<VarDecl *, 4> IndexVariables;
2528    QualType BaseType = Field->getType();
2529    QualType SizeType = SemaRef.Context.getSizeType();
2530    bool InitializingArray = false;
2531    while (const ConstantArrayType *Array
2532                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2533      InitializingArray = true;
2534      // Create the iteration variable for this array index.
2535      IdentifierInfo *IterationVarName = 0;
2536      {
2537        SmallString<8> Str;
2538        llvm::raw_svector_ostream OS(Str);
2539        OS << "__i" << IndexVariables.size();
2540        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2541      }
2542      VarDecl *IterationVar
2543        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2544                          IterationVarName, SizeType,
2545                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2546                          SC_None, SC_None);
2547      IndexVariables.push_back(IterationVar);
2548
2549      // Create a reference to the iteration variable.
2550      ExprResult IterationVarRef
2551        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2552      assert(!IterationVarRef.isInvalid() &&
2553             "Reference to invented variable cannot fail!");
2554      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2555      assert(!IterationVarRef.isInvalid() &&
2556             "Conversion of invented variable cannot fail!");
2557
2558      // Subscript the array with this iteration variable.
2559      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2560                                                        IterationVarRef.take(),
2561                                                        Loc);
2562      if (CtorArg.isInvalid())
2563        return true;
2564
2565      BaseType = Array->getElementType();
2566    }
2567
2568    // The array subscript expression is an lvalue, which is wrong for moving.
2569    if (Moving && InitializingArray)
2570      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2571
2572    // Construct the entity that we will be initializing. For an array, this
2573    // will be first element in the array, which may require several levels
2574    // of array-subscript entities.
2575    SmallVector<InitializedEntity, 4> Entities;
2576    Entities.reserve(1 + IndexVariables.size());
2577    if (Indirect)
2578      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2579    else
2580      Entities.push_back(InitializedEntity::InitializeMember(Field));
2581    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2582      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2583                                                              0,
2584                                                              Entities.back()));
2585
2586    // Direct-initialize to use the copy constructor.
2587    InitializationKind InitKind =
2588      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2589
2590    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2591    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2592                                   &CtorArgE, 1);
2593
2594    ExprResult MemberInit
2595      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2596                        MultiExprArg(&CtorArgE, 1));
2597    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2598    if (MemberInit.isInvalid())
2599      return true;
2600
2601    if (Indirect) {
2602      assert(IndexVariables.size() == 0 &&
2603             "Indirect field improperly initialized");
2604      CXXMemberInit
2605        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2606                                                   Loc, Loc,
2607                                                   MemberInit.takeAs<Expr>(),
2608                                                   Loc);
2609    } else
2610      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2611                                                 Loc, MemberInit.takeAs<Expr>(),
2612                                                 Loc,
2613                                                 IndexVariables.data(),
2614                                                 IndexVariables.size());
2615    return false;
2616  }
2617
2618  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2619
2620  QualType FieldBaseElementType =
2621    SemaRef.Context.getBaseElementType(Field->getType());
2622
2623  if (FieldBaseElementType->isRecordType()) {
2624    InitializedEntity InitEntity
2625      = Indirect? InitializedEntity::InitializeMember(Indirect)
2626                : InitializedEntity::InitializeMember(Field);
2627    InitializationKind InitKind =
2628      InitializationKind::CreateDefault(Loc);
2629
2630    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2631    ExprResult MemberInit =
2632      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2633
2634    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2635    if (MemberInit.isInvalid())
2636      return true;
2637
2638    if (Indirect)
2639      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2640                                                               Indirect, Loc,
2641                                                               Loc,
2642                                                               MemberInit.get(),
2643                                                               Loc);
2644    else
2645      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2646                                                               Field, Loc, Loc,
2647                                                               MemberInit.get(),
2648                                                               Loc);
2649    return false;
2650  }
2651
2652  if (!Field->getParent()->isUnion()) {
2653    if (FieldBaseElementType->isReferenceType()) {
2654      SemaRef.Diag(Constructor->getLocation(),
2655                   diag::err_uninitialized_member_in_ctor)
2656      << (int)Constructor->isImplicit()
2657      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2658      << 0 << Field->getDeclName();
2659      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2660      return true;
2661    }
2662
2663    if (FieldBaseElementType.isConstQualified()) {
2664      SemaRef.Diag(Constructor->getLocation(),
2665                   diag::err_uninitialized_member_in_ctor)
2666      << (int)Constructor->isImplicit()
2667      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2668      << 1 << Field->getDeclName();
2669      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2670      return true;
2671    }
2672  }
2673
2674  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2675      FieldBaseElementType->isObjCRetainableType() &&
2676      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2677      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2678    // Instant objects:
2679    //   Default-initialize Objective-C pointers to NULL.
2680    CXXMemberInit
2681      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2682                                                 Loc, Loc,
2683                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2684                                                 Loc);
2685    return false;
2686  }
2687
2688  // Nothing to initialize.
2689  CXXMemberInit = 0;
2690  return false;
2691}
2692
2693namespace {
2694struct BaseAndFieldInfo {
2695  Sema &S;
2696  CXXConstructorDecl *Ctor;
2697  bool AnyErrorsInInits;
2698  ImplicitInitializerKind IIK;
2699  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2700  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2701
2702  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2703    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2704    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2705    if (Generated && Ctor->isCopyConstructor())
2706      IIK = IIK_Copy;
2707    else if (Generated && Ctor->isMoveConstructor())
2708      IIK = IIK_Move;
2709    else
2710      IIK = IIK_Default;
2711  }
2712
2713  bool isImplicitCopyOrMove() const {
2714    switch (IIK) {
2715    case IIK_Copy:
2716    case IIK_Move:
2717      return true;
2718
2719    case IIK_Default:
2720      return false;
2721    }
2722
2723    llvm_unreachable("Invalid ImplicitInitializerKind!");
2724  }
2725};
2726}
2727
2728/// \brief Determine whether the given indirect field declaration is somewhere
2729/// within an anonymous union.
2730static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2731  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2732                                      CEnd = F->chain_end();
2733       C != CEnd; ++C)
2734    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2735      if (Record->isUnion())
2736        return true;
2737
2738  return false;
2739}
2740
2741/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2742/// array type.
2743static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2744  if (T->isIncompleteArrayType())
2745    return true;
2746
2747  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2748    if (!ArrayT->getSize())
2749      return true;
2750
2751    T = ArrayT->getElementType();
2752  }
2753
2754  return false;
2755}
2756
2757static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2758                                    FieldDecl *Field,
2759                                    IndirectFieldDecl *Indirect = 0) {
2760
2761  // Overwhelmingly common case: we have a direct initializer for this field.
2762  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2763    Info.AllToInit.push_back(Init);
2764    return false;
2765  }
2766
2767  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2768  // has a brace-or-equal-initializer, the entity is initialized as specified
2769  // in [dcl.init].
2770  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2771    CXXCtorInitializer *Init;
2772    if (Indirect)
2773      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2774                                                      SourceLocation(),
2775                                                      SourceLocation(), 0,
2776                                                      SourceLocation());
2777    else
2778      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2779                                                      SourceLocation(),
2780                                                      SourceLocation(), 0,
2781                                                      SourceLocation());
2782    Info.AllToInit.push_back(Init);
2783    return false;
2784  }
2785
2786  // Don't build an implicit initializer for union members if none was
2787  // explicitly specified.
2788  if (Field->getParent()->isUnion() ||
2789      (Indirect && isWithinAnonymousUnion(Indirect)))
2790    return false;
2791
2792  // Don't initialize incomplete or zero-length arrays.
2793  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2794    return false;
2795
2796  // Don't try to build an implicit initializer if there were semantic
2797  // errors in any of the initializers (and therefore we might be
2798  // missing some that the user actually wrote).
2799  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2800    return false;
2801
2802  CXXCtorInitializer *Init = 0;
2803  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2804                                     Indirect, Init))
2805    return true;
2806
2807  if (Init)
2808    Info.AllToInit.push_back(Init);
2809
2810  return false;
2811}
2812
2813bool
2814Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2815                               CXXCtorInitializer *Initializer) {
2816  assert(Initializer->isDelegatingInitializer());
2817  Constructor->setNumCtorInitializers(1);
2818  CXXCtorInitializer **initializer =
2819    new (Context) CXXCtorInitializer*[1];
2820  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2821  Constructor->setCtorInitializers(initializer);
2822
2823  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2824    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2825    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2826  }
2827
2828  DelegatingCtorDecls.push_back(Constructor);
2829
2830  return false;
2831}
2832
2833bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2834                               CXXCtorInitializer **Initializers,
2835                               unsigned NumInitializers,
2836                               bool AnyErrors) {
2837  if (Constructor->isDependentContext()) {
2838    // Just store the initializers as written, they will be checked during
2839    // instantiation.
2840    if (NumInitializers > 0) {
2841      Constructor->setNumCtorInitializers(NumInitializers);
2842      CXXCtorInitializer **baseOrMemberInitializers =
2843        new (Context) CXXCtorInitializer*[NumInitializers];
2844      memcpy(baseOrMemberInitializers, Initializers,
2845             NumInitializers * sizeof(CXXCtorInitializer*));
2846      Constructor->setCtorInitializers(baseOrMemberInitializers);
2847    }
2848
2849    return false;
2850  }
2851
2852  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2853
2854  // We need to build the initializer AST according to order of construction
2855  // and not what user specified in the Initializers list.
2856  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2857  if (!ClassDecl)
2858    return true;
2859
2860  bool HadError = false;
2861
2862  for (unsigned i = 0; i < NumInitializers; i++) {
2863    CXXCtorInitializer *Member = Initializers[i];
2864
2865    if (Member->isBaseInitializer())
2866      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2867    else
2868      Info.AllBaseFields[Member->getAnyMember()] = Member;
2869  }
2870
2871  // Keep track of the direct virtual bases.
2872  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2873  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2874       E = ClassDecl->bases_end(); I != E; ++I) {
2875    if (I->isVirtual())
2876      DirectVBases.insert(I);
2877  }
2878
2879  // Push virtual bases before others.
2880  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2881       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2882
2883    if (CXXCtorInitializer *Value
2884        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2885      Info.AllToInit.push_back(Value);
2886    } else if (!AnyErrors) {
2887      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2888      CXXCtorInitializer *CXXBaseInit;
2889      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2890                                       VBase, IsInheritedVirtualBase,
2891                                       CXXBaseInit)) {
2892        HadError = true;
2893        continue;
2894      }
2895
2896      Info.AllToInit.push_back(CXXBaseInit);
2897    }
2898  }
2899
2900  // Non-virtual bases.
2901  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2902       E = ClassDecl->bases_end(); Base != E; ++Base) {
2903    // Virtuals are in the virtual base list and already constructed.
2904    if (Base->isVirtual())
2905      continue;
2906
2907    if (CXXCtorInitializer *Value
2908          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2909      Info.AllToInit.push_back(Value);
2910    } else if (!AnyErrors) {
2911      CXXCtorInitializer *CXXBaseInit;
2912      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2913                                       Base, /*IsInheritedVirtualBase=*/false,
2914                                       CXXBaseInit)) {
2915        HadError = true;
2916        continue;
2917      }
2918
2919      Info.AllToInit.push_back(CXXBaseInit);
2920    }
2921  }
2922
2923  // Fields.
2924  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2925                               MemEnd = ClassDecl->decls_end();
2926       Mem != MemEnd; ++Mem) {
2927    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2928      // C++ [class.bit]p2:
2929      //   A declaration for a bit-field that omits the identifier declares an
2930      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2931      //   initialized.
2932      if (F->isUnnamedBitfield())
2933        continue;
2934
2935      // If we're not generating the implicit copy/move constructor, then we'll
2936      // handle anonymous struct/union fields based on their individual
2937      // indirect fields.
2938      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2939        continue;
2940
2941      if (CollectFieldInitializer(*this, Info, F))
2942        HadError = true;
2943      continue;
2944    }
2945
2946    // Beyond this point, we only consider default initialization.
2947    if (Info.IIK != IIK_Default)
2948      continue;
2949
2950    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2951      if (F->getType()->isIncompleteArrayType()) {
2952        assert(ClassDecl->hasFlexibleArrayMember() &&
2953               "Incomplete array type is not valid");
2954        continue;
2955      }
2956
2957      // Initialize each field of an anonymous struct individually.
2958      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2959        HadError = true;
2960
2961      continue;
2962    }
2963  }
2964
2965  NumInitializers = Info.AllToInit.size();
2966  if (NumInitializers > 0) {
2967    Constructor->setNumCtorInitializers(NumInitializers);
2968    CXXCtorInitializer **baseOrMemberInitializers =
2969      new (Context) CXXCtorInitializer*[NumInitializers];
2970    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2971           NumInitializers * sizeof(CXXCtorInitializer*));
2972    Constructor->setCtorInitializers(baseOrMemberInitializers);
2973
2974    // Constructors implicitly reference the base and member
2975    // destructors.
2976    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2977                                           Constructor->getParent());
2978  }
2979
2980  return HadError;
2981}
2982
2983static void *GetKeyForTopLevelField(FieldDecl *Field) {
2984  // For anonymous unions, use the class declaration as the key.
2985  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2986    if (RT->getDecl()->isAnonymousStructOrUnion())
2987      return static_cast<void *>(RT->getDecl());
2988  }
2989  return static_cast<void *>(Field);
2990}
2991
2992static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2993  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2994}
2995
2996static void *GetKeyForMember(ASTContext &Context,
2997                             CXXCtorInitializer *Member) {
2998  if (!Member->isAnyMemberInitializer())
2999    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3000
3001  // For fields injected into the class via declaration of an anonymous union,
3002  // use its anonymous union class declaration as the unique key.
3003  FieldDecl *Field = Member->getAnyMember();
3004
3005  // If the field is a member of an anonymous struct or union, our key
3006  // is the anonymous record decl that's a direct child of the class.
3007  RecordDecl *RD = Field->getParent();
3008  if (RD->isAnonymousStructOrUnion()) {
3009    while (true) {
3010      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3011      if (Parent->isAnonymousStructOrUnion())
3012        RD = Parent;
3013      else
3014        break;
3015    }
3016
3017    return static_cast<void *>(RD);
3018  }
3019
3020  return static_cast<void *>(Field);
3021}
3022
3023static void
3024DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3025                                  const CXXConstructorDecl *Constructor,
3026                                  CXXCtorInitializer **Inits,
3027                                  unsigned NumInits) {
3028  if (Constructor->getDeclContext()->isDependentContext())
3029    return;
3030
3031  // Don't check initializers order unless the warning is enabled at the
3032  // location of at least one initializer.
3033  bool ShouldCheckOrder = false;
3034  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3035    CXXCtorInitializer *Init = Inits[InitIndex];
3036    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3037                                         Init->getSourceLocation())
3038          != DiagnosticsEngine::Ignored) {
3039      ShouldCheckOrder = true;
3040      break;
3041    }
3042  }
3043  if (!ShouldCheckOrder)
3044    return;
3045
3046  // Build the list of bases and members in the order that they'll
3047  // actually be initialized.  The explicit initializers should be in
3048  // this same order but may be missing things.
3049  SmallVector<const void*, 32> IdealInitKeys;
3050
3051  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3052
3053  // 1. Virtual bases.
3054  for (CXXRecordDecl::base_class_const_iterator VBase =
3055       ClassDecl->vbases_begin(),
3056       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3057    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3058
3059  // 2. Non-virtual bases.
3060  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3061       E = ClassDecl->bases_end(); Base != E; ++Base) {
3062    if (Base->isVirtual())
3063      continue;
3064    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3065  }
3066
3067  // 3. Direct fields.
3068  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3069       E = ClassDecl->field_end(); Field != E; ++Field) {
3070    if (Field->isUnnamedBitfield())
3071      continue;
3072
3073    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3074  }
3075
3076  unsigned NumIdealInits = IdealInitKeys.size();
3077  unsigned IdealIndex = 0;
3078
3079  CXXCtorInitializer *PrevInit = 0;
3080  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3081    CXXCtorInitializer *Init = Inits[InitIndex];
3082    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3083
3084    // Scan forward to try to find this initializer in the idealized
3085    // initializers list.
3086    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3087      if (InitKey == IdealInitKeys[IdealIndex])
3088        break;
3089
3090    // If we didn't find this initializer, it must be because we
3091    // scanned past it on a previous iteration.  That can only
3092    // happen if we're out of order;  emit a warning.
3093    if (IdealIndex == NumIdealInits && PrevInit) {
3094      Sema::SemaDiagnosticBuilder D =
3095        SemaRef.Diag(PrevInit->getSourceLocation(),
3096                     diag::warn_initializer_out_of_order);
3097
3098      if (PrevInit->isAnyMemberInitializer())
3099        D << 0 << PrevInit->getAnyMember()->getDeclName();
3100      else
3101        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3102
3103      if (Init->isAnyMemberInitializer())
3104        D << 0 << Init->getAnyMember()->getDeclName();
3105      else
3106        D << 1 << Init->getTypeSourceInfo()->getType();
3107
3108      // Move back to the initializer's location in the ideal list.
3109      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3110        if (InitKey == IdealInitKeys[IdealIndex])
3111          break;
3112
3113      assert(IdealIndex != NumIdealInits &&
3114             "initializer not found in initializer list");
3115    }
3116
3117    PrevInit = Init;
3118  }
3119}
3120
3121namespace {
3122bool CheckRedundantInit(Sema &S,
3123                        CXXCtorInitializer *Init,
3124                        CXXCtorInitializer *&PrevInit) {
3125  if (!PrevInit) {
3126    PrevInit = Init;
3127    return false;
3128  }
3129
3130  if (FieldDecl *Field = Init->getMember())
3131    S.Diag(Init->getSourceLocation(),
3132           diag::err_multiple_mem_initialization)
3133      << Field->getDeclName()
3134      << Init->getSourceRange();
3135  else {
3136    const Type *BaseClass = Init->getBaseClass();
3137    assert(BaseClass && "neither field nor base");
3138    S.Diag(Init->getSourceLocation(),
3139           diag::err_multiple_base_initialization)
3140      << QualType(BaseClass, 0)
3141      << Init->getSourceRange();
3142  }
3143  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3144    << 0 << PrevInit->getSourceRange();
3145
3146  return true;
3147}
3148
3149typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3150typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3151
3152bool CheckRedundantUnionInit(Sema &S,
3153                             CXXCtorInitializer *Init,
3154                             RedundantUnionMap &Unions) {
3155  FieldDecl *Field = Init->getAnyMember();
3156  RecordDecl *Parent = Field->getParent();
3157  NamedDecl *Child = Field;
3158
3159  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3160    if (Parent->isUnion()) {
3161      UnionEntry &En = Unions[Parent];
3162      if (En.first && En.first != Child) {
3163        S.Diag(Init->getSourceLocation(),
3164               diag::err_multiple_mem_union_initialization)
3165          << Field->getDeclName()
3166          << Init->getSourceRange();
3167        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3168          << 0 << En.second->getSourceRange();
3169        return true;
3170      }
3171      if (!En.first) {
3172        En.first = Child;
3173        En.second = Init;
3174      }
3175      if (!Parent->isAnonymousStructOrUnion())
3176        return false;
3177    }
3178
3179    Child = Parent;
3180    Parent = cast<RecordDecl>(Parent->getDeclContext());
3181  }
3182
3183  return false;
3184}
3185}
3186
3187/// ActOnMemInitializers - Handle the member initializers for a constructor.
3188void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3189                                SourceLocation ColonLoc,
3190                                CXXCtorInitializer **meminits,
3191                                unsigned NumMemInits,
3192                                bool AnyErrors) {
3193  if (!ConstructorDecl)
3194    return;
3195
3196  AdjustDeclIfTemplate(ConstructorDecl);
3197
3198  CXXConstructorDecl *Constructor
3199    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3200
3201  if (!Constructor) {
3202    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3203    return;
3204  }
3205
3206  CXXCtorInitializer **MemInits =
3207    reinterpret_cast<CXXCtorInitializer **>(meminits);
3208
3209  // Mapping for the duplicate initializers check.
3210  // For member initializers, this is keyed with a FieldDecl*.
3211  // For base initializers, this is keyed with a Type*.
3212  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3213
3214  // Mapping for the inconsistent anonymous-union initializers check.
3215  RedundantUnionMap MemberUnions;
3216
3217  bool HadError = false;
3218  for (unsigned i = 0; i < NumMemInits; i++) {
3219    CXXCtorInitializer *Init = MemInits[i];
3220
3221    // Set the source order index.
3222    Init->setSourceOrder(i);
3223
3224    if (Init->isAnyMemberInitializer()) {
3225      FieldDecl *Field = Init->getAnyMember();
3226      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3227          CheckRedundantUnionInit(*this, Init, MemberUnions))
3228        HadError = true;
3229    } else if (Init->isBaseInitializer()) {
3230      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3231      if (CheckRedundantInit(*this, Init, Members[Key]))
3232        HadError = true;
3233    } else {
3234      assert(Init->isDelegatingInitializer());
3235      // This must be the only initializer
3236      if (i != 0 || NumMemInits > 1) {
3237        Diag(MemInits[0]->getSourceLocation(),
3238             diag::err_delegating_initializer_alone)
3239          << MemInits[0]->getSourceRange();
3240        HadError = true;
3241        // We will treat this as being the only initializer.
3242      }
3243      SetDelegatingInitializer(Constructor, MemInits[i]);
3244      // Return immediately as the initializer is set.
3245      return;
3246    }
3247  }
3248
3249  if (HadError)
3250    return;
3251
3252  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3253
3254  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3255}
3256
3257void
3258Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3259                                             CXXRecordDecl *ClassDecl) {
3260  // Ignore dependent contexts. Also ignore unions, since their members never
3261  // have destructors implicitly called.
3262  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3263    return;
3264
3265  // FIXME: all the access-control diagnostics are positioned on the
3266  // field/base declaration.  That's probably good; that said, the
3267  // user might reasonably want to know why the destructor is being
3268  // emitted, and we currently don't say.
3269
3270  // Non-static data members.
3271  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3272       E = ClassDecl->field_end(); I != E; ++I) {
3273    FieldDecl *Field = *I;
3274    if (Field->isInvalidDecl())
3275      continue;
3276
3277    // Don't destroy incomplete or zero-length arrays.
3278    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3279      continue;
3280
3281    QualType FieldType = Context.getBaseElementType(Field->getType());
3282
3283    const RecordType* RT = FieldType->getAs<RecordType>();
3284    if (!RT)
3285      continue;
3286
3287    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3288    if (FieldClassDecl->isInvalidDecl())
3289      continue;
3290    if (FieldClassDecl->hasIrrelevantDestructor())
3291      continue;
3292
3293    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3294    assert(Dtor && "No dtor found for FieldClassDecl!");
3295    CheckDestructorAccess(Field->getLocation(), Dtor,
3296                          PDiag(diag::err_access_dtor_field)
3297                            << Field->getDeclName()
3298                            << FieldType);
3299
3300    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3301    DiagnoseUseOfDecl(Dtor, Location);
3302  }
3303
3304  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3305
3306  // Bases.
3307  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3308       E = ClassDecl->bases_end(); Base != E; ++Base) {
3309    // Bases are always records in a well-formed non-dependent class.
3310    const RecordType *RT = Base->getType()->getAs<RecordType>();
3311
3312    // Remember direct virtual bases.
3313    if (Base->isVirtual())
3314      DirectVirtualBases.insert(RT);
3315
3316    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3317    // If our base class is invalid, we probably can't get its dtor anyway.
3318    if (BaseClassDecl->isInvalidDecl())
3319      continue;
3320    if (BaseClassDecl->hasIrrelevantDestructor())
3321      continue;
3322
3323    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3324    assert(Dtor && "No dtor found for BaseClassDecl!");
3325
3326    // FIXME: caret should be on the start of the class name
3327    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3328                          PDiag(diag::err_access_dtor_base)
3329                            << Base->getType()
3330                            << Base->getSourceRange());
3331
3332    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3333    DiagnoseUseOfDecl(Dtor, Location);
3334  }
3335
3336  // Virtual bases.
3337  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3338       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3339
3340    // Bases are always records in a well-formed non-dependent class.
3341    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3342
3343    // Ignore direct virtual bases.
3344    if (DirectVirtualBases.count(RT))
3345      continue;
3346
3347    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3348    // If our base class is invalid, we probably can't get its dtor anyway.
3349    if (BaseClassDecl->isInvalidDecl())
3350      continue;
3351    if (BaseClassDecl->hasIrrelevantDestructor())
3352      continue;
3353
3354    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3355    assert(Dtor && "No dtor found for BaseClassDecl!");
3356    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3357                          PDiag(diag::err_access_dtor_vbase)
3358                            << VBase->getType());
3359
3360    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3361    DiagnoseUseOfDecl(Dtor, Location);
3362  }
3363}
3364
3365void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3366  if (!CDtorDecl)
3367    return;
3368
3369  if (CXXConstructorDecl *Constructor
3370      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3371    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3372}
3373
3374bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3375                                  unsigned DiagID, AbstractDiagSelID SelID) {
3376  if (SelID == -1)
3377    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3378  else
3379    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3380}
3381
3382bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3383                                  const PartialDiagnostic &PD) {
3384  if (!getLangOptions().CPlusPlus)
3385    return false;
3386
3387  if (const ArrayType *AT = Context.getAsArrayType(T))
3388    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3389
3390  if (const PointerType *PT = T->getAs<PointerType>()) {
3391    // Find the innermost pointer type.
3392    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3393      PT = T;
3394
3395    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3396      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3397  }
3398
3399  const RecordType *RT = T->getAs<RecordType>();
3400  if (!RT)
3401    return false;
3402
3403  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3404
3405  // We can't answer whether something is abstract until it has a
3406  // definition.  If it's currently being defined, we'll walk back
3407  // over all the declarations when we have a full definition.
3408  const CXXRecordDecl *Def = RD->getDefinition();
3409  if (!Def || Def->isBeingDefined())
3410    return false;
3411
3412  if (!RD->isAbstract())
3413    return false;
3414
3415  Diag(Loc, PD) << RD->getDeclName();
3416  DiagnoseAbstractType(RD);
3417
3418  return true;
3419}
3420
3421void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3422  // Check if we've already emitted the list of pure virtual functions
3423  // for this class.
3424  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3425    return;
3426
3427  CXXFinalOverriderMap FinalOverriders;
3428  RD->getFinalOverriders(FinalOverriders);
3429
3430  // Keep a set of seen pure methods so we won't diagnose the same method
3431  // more than once.
3432  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3433
3434  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3435                                   MEnd = FinalOverriders.end();
3436       M != MEnd;
3437       ++M) {
3438    for (OverridingMethods::iterator SO = M->second.begin(),
3439                                  SOEnd = M->second.end();
3440         SO != SOEnd; ++SO) {
3441      // C++ [class.abstract]p4:
3442      //   A class is abstract if it contains or inherits at least one
3443      //   pure virtual function for which the final overrider is pure
3444      //   virtual.
3445
3446      //
3447      if (SO->second.size() != 1)
3448        continue;
3449
3450      if (!SO->second.front().Method->isPure())
3451        continue;
3452
3453      if (!SeenPureMethods.insert(SO->second.front().Method))
3454        continue;
3455
3456      Diag(SO->second.front().Method->getLocation(),
3457           diag::note_pure_virtual_function)
3458        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3459    }
3460  }
3461
3462  if (!PureVirtualClassDiagSet)
3463    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3464  PureVirtualClassDiagSet->insert(RD);
3465}
3466
3467namespace {
3468struct AbstractUsageInfo {
3469  Sema &S;
3470  CXXRecordDecl *Record;
3471  CanQualType AbstractType;
3472  bool Invalid;
3473
3474  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3475    : S(S), Record(Record),
3476      AbstractType(S.Context.getCanonicalType(
3477                   S.Context.getTypeDeclType(Record))),
3478      Invalid(false) {}
3479
3480  void DiagnoseAbstractType() {
3481    if (Invalid) return;
3482    S.DiagnoseAbstractType(Record);
3483    Invalid = true;
3484  }
3485
3486  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3487};
3488
3489struct CheckAbstractUsage {
3490  AbstractUsageInfo &Info;
3491  const NamedDecl *Ctx;
3492
3493  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3494    : Info(Info), Ctx(Ctx) {}
3495
3496  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3497    switch (TL.getTypeLocClass()) {
3498#define ABSTRACT_TYPELOC(CLASS, PARENT)
3499#define TYPELOC(CLASS, PARENT) \
3500    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3501#include "clang/AST/TypeLocNodes.def"
3502    }
3503  }
3504
3505  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3506    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3507    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3508      if (!TL.getArg(I))
3509        continue;
3510
3511      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3512      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3513    }
3514  }
3515
3516  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3517    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3518  }
3519
3520  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3521    // Visit the type parameters from a permissive context.
3522    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3523      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3524      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3525        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3526          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3527      // TODO: other template argument types?
3528    }
3529  }
3530
3531  // Visit pointee types from a permissive context.
3532#define CheckPolymorphic(Type) \
3533  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3534    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3535  }
3536  CheckPolymorphic(PointerTypeLoc)
3537  CheckPolymorphic(ReferenceTypeLoc)
3538  CheckPolymorphic(MemberPointerTypeLoc)
3539  CheckPolymorphic(BlockPointerTypeLoc)
3540  CheckPolymorphic(AtomicTypeLoc)
3541
3542  /// Handle all the types we haven't given a more specific
3543  /// implementation for above.
3544  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3545    // Every other kind of type that we haven't called out already
3546    // that has an inner type is either (1) sugar or (2) contains that
3547    // inner type in some way as a subobject.
3548    if (TypeLoc Next = TL.getNextTypeLoc())
3549      return Visit(Next, Sel);
3550
3551    // If there's no inner type and we're in a permissive context,
3552    // don't diagnose.
3553    if (Sel == Sema::AbstractNone) return;
3554
3555    // Check whether the type matches the abstract type.
3556    QualType T = TL.getType();
3557    if (T->isArrayType()) {
3558      Sel = Sema::AbstractArrayType;
3559      T = Info.S.Context.getBaseElementType(T);
3560    }
3561    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3562    if (CT != Info.AbstractType) return;
3563
3564    // It matched; do some magic.
3565    if (Sel == Sema::AbstractArrayType) {
3566      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3567        << T << TL.getSourceRange();
3568    } else {
3569      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3570        << Sel << T << TL.getSourceRange();
3571    }
3572    Info.DiagnoseAbstractType();
3573  }
3574};
3575
3576void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3577                                  Sema::AbstractDiagSelID Sel) {
3578  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3579}
3580
3581}
3582
3583/// Check for invalid uses of an abstract type in a method declaration.
3584static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3585                                    CXXMethodDecl *MD) {
3586  // No need to do the check on definitions, which require that
3587  // the return/param types be complete.
3588  if (MD->doesThisDeclarationHaveABody())
3589    return;
3590
3591  // For safety's sake, just ignore it if we don't have type source
3592  // information.  This should never happen for non-implicit methods,
3593  // but...
3594  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3595    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3596}
3597
3598/// Check for invalid uses of an abstract type within a class definition.
3599static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3600                                    CXXRecordDecl *RD) {
3601  for (CXXRecordDecl::decl_iterator
3602         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3603    Decl *D = *I;
3604    if (D->isImplicit()) continue;
3605
3606    // Methods and method templates.
3607    if (isa<CXXMethodDecl>(D)) {
3608      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3609    } else if (isa<FunctionTemplateDecl>(D)) {
3610      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3611      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3612
3613    // Fields and static variables.
3614    } else if (isa<FieldDecl>(D)) {
3615      FieldDecl *FD = cast<FieldDecl>(D);
3616      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3617        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3618    } else if (isa<VarDecl>(D)) {
3619      VarDecl *VD = cast<VarDecl>(D);
3620      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3621        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3622
3623    // Nested classes and class templates.
3624    } else if (isa<CXXRecordDecl>(D)) {
3625      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3626    } else if (isa<ClassTemplateDecl>(D)) {
3627      CheckAbstractClassUsage(Info,
3628                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3629    }
3630  }
3631}
3632
3633/// \brief Perform semantic checks on a class definition that has been
3634/// completing, introducing implicitly-declared members, checking for
3635/// abstract types, etc.
3636void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3637  if (!Record)
3638    return;
3639
3640  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3641    AbstractUsageInfo Info(*this, Record);
3642    CheckAbstractClassUsage(Info, Record);
3643  }
3644
3645  // If this is not an aggregate type and has no user-declared constructor,
3646  // complain about any non-static data members of reference or const scalar
3647  // type, since they will never get initializers.
3648  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3649      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3650      !Record->isLambda()) {
3651    bool Complained = false;
3652    for (RecordDecl::field_iterator F = Record->field_begin(),
3653                                 FEnd = Record->field_end();
3654         F != FEnd; ++F) {
3655      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3656        continue;
3657
3658      if (F->getType()->isReferenceType() ||
3659          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3660        if (!Complained) {
3661          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3662            << Record->getTagKind() << Record;
3663          Complained = true;
3664        }
3665
3666        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3667          << F->getType()->isReferenceType()
3668          << F->getDeclName();
3669      }
3670    }
3671  }
3672
3673  if (Record->isDynamicClass() && !Record->isDependentType())
3674    DynamicClasses.push_back(Record);
3675
3676  if (Record->getIdentifier()) {
3677    // C++ [class.mem]p13:
3678    //   If T is the name of a class, then each of the following shall have a
3679    //   name different from T:
3680    //     - every member of every anonymous union that is a member of class T.
3681    //
3682    // C++ [class.mem]p14:
3683    //   In addition, if class T has a user-declared constructor (12.1), every
3684    //   non-static data member of class T shall have a name different from T.
3685    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3686         R.first != R.second; ++R.first) {
3687      NamedDecl *D = *R.first;
3688      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3689          isa<IndirectFieldDecl>(D)) {
3690        Diag(D->getLocation(), diag::err_member_name_of_class)
3691          << D->getDeclName();
3692        break;
3693      }
3694    }
3695  }
3696
3697  // Warn if the class has virtual methods but non-virtual public destructor.
3698  if (Record->isPolymorphic() && !Record->isDependentType()) {
3699    CXXDestructorDecl *dtor = Record->getDestructor();
3700    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3701      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3702           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3703  }
3704
3705  // See if a method overloads virtual methods in a base
3706  /// class without overriding any.
3707  if (!Record->isDependentType()) {
3708    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3709                                     MEnd = Record->method_end();
3710         M != MEnd; ++M) {
3711      if (!(*M)->isStatic())
3712        DiagnoseHiddenVirtualMethods(Record, *M);
3713    }
3714  }
3715
3716  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3717  // function that is not a constructor declares that member function to be
3718  // const. [...] The class of which that function is a member shall be
3719  // a literal type.
3720  //
3721  // If the class has virtual bases, any constexpr members will already have
3722  // been diagnosed by the checks performed on the member declaration, so
3723  // suppress this (less useful) diagnostic.
3724  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3725      !Record->isLiteral() && !Record->getNumVBases()) {
3726    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3727                                     MEnd = Record->method_end();
3728         M != MEnd; ++M) {
3729      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3730        switch (Record->getTemplateSpecializationKind()) {
3731        case TSK_ImplicitInstantiation:
3732        case TSK_ExplicitInstantiationDeclaration:
3733        case TSK_ExplicitInstantiationDefinition:
3734          // If a template instantiates to a non-literal type, but its members
3735          // instantiate to constexpr functions, the template is technically
3736          // ill-formed, but we allow it for sanity.
3737          continue;
3738
3739        case TSK_Undeclared:
3740        case TSK_ExplicitSpecialization:
3741          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3742                             PDiag(diag::err_constexpr_method_non_literal));
3743          break;
3744        }
3745
3746        // Only produce one error per class.
3747        break;
3748      }
3749    }
3750  }
3751
3752  // Declare inherited constructors. We do this eagerly here because:
3753  // - The standard requires an eager diagnostic for conflicting inherited
3754  //   constructors from different classes.
3755  // - The lazy declaration of the other implicit constructors is so as to not
3756  //   waste space and performance on classes that are not meant to be
3757  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3758  //   have inherited constructors.
3759  DeclareInheritedConstructors(Record);
3760
3761  if (!Record->isDependentType())
3762    CheckExplicitlyDefaultedMethods(Record);
3763}
3764
3765void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3766  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3767                                      ME = Record->method_end();
3768       MI != ME; ++MI) {
3769    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3770      switch (getSpecialMember(*MI)) {
3771      case CXXDefaultConstructor:
3772        CheckExplicitlyDefaultedDefaultConstructor(
3773                                                  cast<CXXConstructorDecl>(*MI));
3774        break;
3775
3776      case CXXDestructor:
3777        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3778        break;
3779
3780      case CXXCopyConstructor:
3781        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3782        break;
3783
3784      case CXXCopyAssignment:
3785        CheckExplicitlyDefaultedCopyAssignment(*MI);
3786        break;
3787
3788      case CXXMoveConstructor:
3789        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3790        break;
3791
3792      case CXXMoveAssignment:
3793        CheckExplicitlyDefaultedMoveAssignment(*MI);
3794        break;
3795
3796      case CXXInvalid:
3797        llvm_unreachable("non-special member explicitly defaulted!");
3798      }
3799    }
3800  }
3801
3802}
3803
3804void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3805  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3806
3807  // Whether this was the first-declared instance of the constructor.
3808  // This affects whether we implicitly add an exception spec (and, eventually,
3809  // constexpr). It is also ill-formed to explicitly default a constructor such
3810  // that it would be deleted. (C++0x [decl.fct.def.default])
3811  bool First = CD == CD->getCanonicalDecl();
3812
3813  bool HadError = false;
3814  if (CD->getNumParams() != 0) {
3815    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3816      << CD->getSourceRange();
3817    HadError = true;
3818  }
3819
3820  ImplicitExceptionSpecification Spec
3821    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3822  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3823  if (EPI.ExceptionSpecType == EST_Delayed) {
3824    // Exception specification depends on some deferred part of the class. We'll
3825    // try again when the class's definition has been fully processed.
3826    return;
3827  }
3828  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3829                          *ExceptionType = Context.getFunctionType(
3830                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3831
3832  // C++11 [dcl.fct.def.default]p2:
3833  //   An explicitly-defaulted function may be declared constexpr only if it
3834  //   would have been implicitly declared as constexpr,
3835  // Do not apply this rule to templates, since core issue 1358 makes such
3836  // functions always instantiate to constexpr functions.
3837  if (CD->isConstexpr() &&
3838      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3839    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3840      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3841        << CXXDefaultConstructor;
3842      HadError = true;
3843    }
3844  }
3845  //   and may have an explicit exception-specification only if it is compatible
3846  //   with the exception-specification on the implicit declaration.
3847  if (CtorType->hasExceptionSpec()) {
3848    if (CheckEquivalentExceptionSpec(
3849          PDiag(diag::err_incorrect_defaulted_exception_spec)
3850            << CXXDefaultConstructor,
3851          PDiag(),
3852          ExceptionType, SourceLocation(),
3853          CtorType, CD->getLocation())) {
3854      HadError = true;
3855    }
3856  }
3857
3858  //   If a function is explicitly defaulted on its first declaration,
3859  if (First) {
3860    //  -- it is implicitly considered to be constexpr if the implicit
3861    //     definition would be,
3862    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3863
3864    //  -- it is implicitly considered to have the same
3865    //     exception-specification as if it had been implicitly declared
3866    //
3867    // FIXME: a compatible, but different, explicit exception specification
3868    // will be silently overridden. We should issue a warning if this happens.
3869    EPI.ExtInfo = CtorType->getExtInfo();
3870  }
3871
3872  if (HadError) {
3873    CD->setInvalidDecl();
3874    return;
3875  }
3876
3877  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3878    if (First) {
3879      CD->setDeletedAsWritten();
3880    } else {
3881      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3882        << CXXDefaultConstructor;
3883      CD->setInvalidDecl();
3884    }
3885  }
3886}
3887
3888void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3889  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3890
3891  // Whether this was the first-declared instance of the constructor.
3892  bool First = CD == CD->getCanonicalDecl();
3893
3894  bool HadError = false;
3895  if (CD->getNumParams() != 1) {
3896    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3897      << CD->getSourceRange();
3898    HadError = true;
3899  }
3900
3901  ImplicitExceptionSpecification Spec(Context);
3902  bool Const;
3903  llvm::tie(Spec, Const) =
3904    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3905
3906  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3907  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3908                          *ExceptionType = Context.getFunctionType(
3909                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3910
3911  // Check for parameter type matching.
3912  // This is a copy ctor so we know it's a cv-qualified reference to T.
3913  QualType ArgType = CtorType->getArgType(0);
3914  if (ArgType->getPointeeType().isVolatileQualified()) {
3915    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3916    HadError = true;
3917  }
3918  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3919    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3920    HadError = true;
3921  }
3922
3923  // C++11 [dcl.fct.def.default]p2:
3924  //   An explicitly-defaulted function may be declared constexpr only if it
3925  //   would have been implicitly declared as constexpr,
3926  // Do not apply this rule to templates, since core issue 1358 makes such
3927  // functions always instantiate to constexpr functions.
3928  if (CD->isConstexpr() &&
3929      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3930    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3931      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3932        << CXXCopyConstructor;
3933      HadError = true;
3934    }
3935  }
3936  //   and may have an explicit exception-specification only if it is compatible
3937  //   with the exception-specification on the implicit declaration.
3938  if (CtorType->hasExceptionSpec()) {
3939    if (CheckEquivalentExceptionSpec(
3940          PDiag(diag::err_incorrect_defaulted_exception_spec)
3941            << CXXCopyConstructor,
3942          PDiag(),
3943          ExceptionType, SourceLocation(),
3944          CtorType, CD->getLocation())) {
3945      HadError = true;
3946    }
3947  }
3948
3949  //   If a function is explicitly defaulted on its first declaration,
3950  if (First) {
3951    //  -- it is implicitly considered to be constexpr if the implicit
3952    //     definition would be,
3953    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3954
3955    //  -- it is implicitly considered to have the same
3956    //     exception-specification as if it had been implicitly declared, and
3957    //
3958    // FIXME: a compatible, but different, explicit exception specification
3959    // will be silently overridden. We should issue a warning if this happens.
3960    EPI.ExtInfo = CtorType->getExtInfo();
3961
3962    //  -- [...] it shall have the same parameter type as if it had been
3963    //     implicitly declared.
3964    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3965  }
3966
3967  if (HadError) {
3968    CD->setInvalidDecl();
3969    return;
3970  }
3971
3972  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3973    if (First) {
3974      CD->setDeletedAsWritten();
3975    } else {
3976      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3977        << CXXCopyConstructor;
3978      CD->setInvalidDecl();
3979    }
3980  }
3981}
3982
3983void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3984  assert(MD->isExplicitlyDefaulted());
3985
3986  // Whether this was the first-declared instance of the operator
3987  bool First = MD == MD->getCanonicalDecl();
3988
3989  bool HadError = false;
3990  if (MD->getNumParams() != 1) {
3991    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3992      << MD->getSourceRange();
3993    HadError = true;
3994  }
3995
3996  QualType ReturnType =
3997    MD->getType()->getAs<FunctionType>()->getResultType();
3998  if (!ReturnType->isLValueReferenceType() ||
3999      !Context.hasSameType(
4000        Context.getCanonicalType(ReturnType->getPointeeType()),
4001        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4002    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
4003    HadError = true;
4004  }
4005
4006  ImplicitExceptionSpecification Spec(Context);
4007  bool Const;
4008  llvm::tie(Spec, Const) =
4009    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
4010
4011  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4012  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4013                          *ExceptionType = Context.getFunctionType(
4014                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4015
4016  QualType ArgType = OperType->getArgType(0);
4017  if (!ArgType->isLValueReferenceType()) {
4018    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4019    HadError = true;
4020  } else {
4021    if (ArgType->getPointeeType().isVolatileQualified()) {
4022      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4023      HadError = true;
4024    }
4025    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4026      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4027      HadError = true;
4028    }
4029  }
4030
4031  if (OperType->getTypeQuals()) {
4032    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4033    HadError = true;
4034  }
4035
4036  if (OperType->hasExceptionSpec()) {
4037    if (CheckEquivalentExceptionSpec(
4038          PDiag(diag::err_incorrect_defaulted_exception_spec)
4039            << CXXCopyAssignment,
4040          PDiag(),
4041          ExceptionType, SourceLocation(),
4042          OperType, MD->getLocation())) {
4043      HadError = true;
4044    }
4045  }
4046  if (First) {
4047    // We set the declaration to have the computed exception spec here.
4048    // We duplicate the one parameter type.
4049    EPI.RefQualifier = OperType->getRefQualifier();
4050    EPI.ExtInfo = OperType->getExtInfo();
4051    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4052  }
4053
4054  if (HadError) {
4055    MD->setInvalidDecl();
4056    return;
4057  }
4058
4059  if (ShouldDeleteSpecialMember(MD, CXXCopyAssignment)) {
4060    if (First) {
4061      MD->setDeletedAsWritten();
4062    } else {
4063      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4064        << CXXCopyAssignment;
4065      MD->setInvalidDecl();
4066    }
4067  }
4068}
4069
4070void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4071  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4072
4073  // Whether this was the first-declared instance of the constructor.
4074  bool First = CD == CD->getCanonicalDecl();
4075
4076  bool HadError = false;
4077  if (CD->getNumParams() != 1) {
4078    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4079      << CD->getSourceRange();
4080    HadError = true;
4081  }
4082
4083  ImplicitExceptionSpecification Spec(
4084      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4085
4086  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4087  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4088                          *ExceptionType = Context.getFunctionType(
4089                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4090
4091  // Check for parameter type matching.
4092  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4093  QualType ArgType = CtorType->getArgType(0);
4094  if (ArgType->getPointeeType().isVolatileQualified()) {
4095    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4096    HadError = true;
4097  }
4098  if (ArgType->getPointeeType().isConstQualified()) {
4099    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4100    HadError = true;
4101  }
4102
4103  // C++11 [dcl.fct.def.default]p2:
4104  //   An explicitly-defaulted function may be declared constexpr only if it
4105  //   would have been implicitly declared as constexpr,
4106  // Do not apply this rule to templates, since core issue 1358 makes such
4107  // functions always instantiate to constexpr functions.
4108  if (CD->isConstexpr() &&
4109      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4110    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4111      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4112        << CXXMoveConstructor;
4113      HadError = true;
4114    }
4115  }
4116  //   and may have an explicit exception-specification only if it is compatible
4117  //   with the exception-specification on the implicit declaration.
4118  if (CtorType->hasExceptionSpec()) {
4119    if (CheckEquivalentExceptionSpec(
4120          PDiag(diag::err_incorrect_defaulted_exception_spec)
4121            << CXXMoveConstructor,
4122          PDiag(),
4123          ExceptionType, SourceLocation(),
4124          CtorType, CD->getLocation())) {
4125      HadError = true;
4126    }
4127  }
4128
4129  //   If a function is explicitly defaulted on its first declaration,
4130  if (First) {
4131    //  -- it is implicitly considered to be constexpr if the implicit
4132    //     definition would be,
4133    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4134
4135    //  -- it is implicitly considered to have the same
4136    //     exception-specification as if it had been implicitly declared, and
4137    //
4138    // FIXME: a compatible, but different, explicit exception specification
4139    // will be silently overridden. We should issue a warning if this happens.
4140    EPI.ExtInfo = CtorType->getExtInfo();
4141
4142    //  -- [...] it shall have the same parameter type as if it had been
4143    //     implicitly declared.
4144    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4145  }
4146
4147  if (HadError) {
4148    CD->setInvalidDecl();
4149    return;
4150  }
4151
4152  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4153    if (First) {
4154      CD->setDeletedAsWritten();
4155    } else {
4156      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4157        << CXXMoveConstructor;
4158      CD->setInvalidDecl();
4159    }
4160  }
4161}
4162
4163void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4164  assert(MD->isExplicitlyDefaulted());
4165
4166  // Whether this was the first-declared instance of the operator
4167  bool First = MD == MD->getCanonicalDecl();
4168
4169  bool HadError = false;
4170  if (MD->getNumParams() != 1) {
4171    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4172      << MD->getSourceRange();
4173    HadError = true;
4174  }
4175
4176  QualType ReturnType =
4177    MD->getType()->getAs<FunctionType>()->getResultType();
4178  if (!ReturnType->isLValueReferenceType() ||
4179      !Context.hasSameType(
4180        Context.getCanonicalType(ReturnType->getPointeeType()),
4181        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4182    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4183    HadError = true;
4184  }
4185
4186  ImplicitExceptionSpecification Spec(
4187      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4188
4189  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4190  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4191                          *ExceptionType = Context.getFunctionType(
4192                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4193
4194  QualType ArgType = OperType->getArgType(0);
4195  if (!ArgType->isRValueReferenceType()) {
4196    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4197    HadError = true;
4198  } else {
4199    if (ArgType->getPointeeType().isVolatileQualified()) {
4200      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4201      HadError = true;
4202    }
4203    if (ArgType->getPointeeType().isConstQualified()) {
4204      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4205      HadError = true;
4206    }
4207  }
4208
4209  if (OperType->getTypeQuals()) {
4210    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4211    HadError = true;
4212  }
4213
4214  if (OperType->hasExceptionSpec()) {
4215    if (CheckEquivalentExceptionSpec(
4216          PDiag(diag::err_incorrect_defaulted_exception_spec)
4217            << CXXMoveAssignment,
4218          PDiag(),
4219          ExceptionType, SourceLocation(),
4220          OperType, MD->getLocation())) {
4221      HadError = true;
4222    }
4223  }
4224  if (First) {
4225    // We set the declaration to have the computed exception spec here.
4226    // We duplicate the one parameter type.
4227    EPI.RefQualifier = OperType->getRefQualifier();
4228    EPI.ExtInfo = OperType->getExtInfo();
4229    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4230  }
4231
4232  if (HadError) {
4233    MD->setInvalidDecl();
4234    return;
4235  }
4236
4237  if (ShouldDeleteSpecialMember(MD, CXXMoveAssignment)) {
4238    if (First) {
4239      MD->setDeletedAsWritten();
4240    } else {
4241      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4242        << CXXMoveAssignment;
4243      MD->setInvalidDecl();
4244    }
4245  }
4246}
4247
4248void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4249  assert(DD->isExplicitlyDefaulted());
4250
4251  // Whether this was the first-declared instance of the destructor.
4252  bool First = DD == DD->getCanonicalDecl();
4253
4254  ImplicitExceptionSpecification Spec
4255    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4256  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4257  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4258                          *ExceptionType = Context.getFunctionType(
4259                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4260
4261  if (DtorType->hasExceptionSpec()) {
4262    if (CheckEquivalentExceptionSpec(
4263          PDiag(diag::err_incorrect_defaulted_exception_spec)
4264            << CXXDestructor,
4265          PDiag(),
4266          ExceptionType, SourceLocation(),
4267          DtorType, DD->getLocation())) {
4268      DD->setInvalidDecl();
4269      return;
4270    }
4271  }
4272  if (First) {
4273    // We set the declaration to have the computed exception spec here.
4274    // There are no parameters.
4275    EPI.ExtInfo = DtorType->getExtInfo();
4276    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4277  }
4278
4279  if (ShouldDeleteSpecialMember(DD, CXXDestructor)) {
4280    if (First) {
4281      DD->setDeletedAsWritten();
4282    } else {
4283      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4284        << CXXDestructor;
4285      DD->setInvalidDecl();
4286    }
4287  }
4288}
4289
4290namespace {
4291struct SpecialMemberDeletionInfo {
4292  Sema &S;
4293  CXXMethodDecl *MD;
4294  Sema::CXXSpecialMember CSM;
4295
4296  // Properties of the special member, computed for convenience.
4297  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4298  SourceLocation Loc;
4299
4300  bool AllFieldsAreConst;
4301
4302  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4303                            Sema::CXXSpecialMember CSM)
4304    : S(S), MD(MD), CSM(CSM),
4305      IsConstructor(false), IsAssignment(false), IsMove(false),
4306      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4307      AllFieldsAreConst(true) {
4308    switch (CSM) {
4309      case Sema::CXXDefaultConstructor:
4310      case Sema::CXXCopyConstructor:
4311        IsConstructor = true;
4312        break;
4313      case Sema::CXXMoveConstructor:
4314        IsConstructor = true;
4315        IsMove = true;
4316        break;
4317      case Sema::CXXCopyAssignment:
4318        IsAssignment = true;
4319        break;
4320      case Sema::CXXMoveAssignment:
4321        IsAssignment = true;
4322        IsMove = true;
4323        break;
4324      case Sema::CXXDestructor:
4325        break;
4326      case Sema::CXXInvalid:
4327        llvm_unreachable("invalid special member kind");
4328    }
4329
4330    if (MD->getNumParams()) {
4331      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4332      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4333    }
4334  }
4335
4336  bool inUnion() const { return MD->getParent()->isUnion(); }
4337
4338  /// Look up the corresponding special member in the given class.
4339  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class) {
4340    unsigned TQ = MD->getTypeQualifiers();
4341    return S.LookupSpecialMember(Class, CSM, ConstArg, VolatileArg,
4342                                 MD->getRefQualifier() == RQ_RValue,
4343                                 TQ & Qualifiers::Const,
4344                                 TQ & Qualifiers::Volatile);
4345  }
4346
4347  bool shouldDeleteForBase(CXXRecordDecl *BaseDecl, bool IsVirtualBase);
4348  bool shouldDeleteForField(FieldDecl *FD);
4349  bool shouldDeleteForAllConstMembers();
4350};
4351}
4352
4353/// Check whether we should delete a special member function due to the class
4354/// having a particular direct or virtual base class.
4355bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXRecordDecl *BaseDecl,
4356                                                    bool IsVirtualBase) {
4357  // C++11 [class.copy]p23:
4358  // -- for the move assignment operator, any direct or indirect virtual
4359  //    base class.
4360  if (CSM == Sema::CXXMoveAssignment && IsVirtualBase)
4361    return true;
4362
4363  // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
4364  // -- any direct or virtual base class [...] has a type with a destructor
4365  //    that is deleted or inaccessible
4366  if (!IsAssignment) {
4367    CXXDestructorDecl *BaseDtor = S.LookupDestructor(BaseDecl);
4368    if (BaseDtor->isDeleted())
4369      return true;
4370    if (S.CheckDestructorAccess(Loc, BaseDtor, S.PDiag())
4371          != Sema::AR_accessible)
4372      return true;
4373  }
4374
4375  // C++11 [class.ctor]p5:
4376  // -- any direct or virtual base class [...] has class type M [...] and
4377  //    either M has no default constructor or overload resolution as applied
4378  //    to M's default constructor results in an ambiguity or in a function
4379  //    that is deleted or inaccessible
4380  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4381  // -- a direct or virtual base class B that cannot be copied/moved because
4382  //    overload resolution, as applied to B's corresponding special member,
4383  //    results in an ambiguity or a function that is deleted or inaccessible
4384  //    from the defaulted special member
4385  if (CSM != Sema::CXXDestructor) {
4386    Sema::SpecialMemberOverloadResult *SMOR = lookupIn(BaseDecl);
4387    if (!SMOR->hasSuccess())
4388      return true;
4389
4390    CXXMethodDecl *BaseMember = SMOR->getMethod();
4391    if (IsConstructor) {
4392      CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4393      if (S.CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4394                                   S.PDiag()) != Sema::AR_accessible)
4395        return true;
4396
4397      // -- for the move constructor, a [...] direct or virtual base class with
4398      //    a type that does not have a move constructor and is not trivially
4399      //    copyable.
4400      if (IsMove && !BaseCtor->isMoveConstructor() &&
4401          !BaseDecl->isTriviallyCopyable())
4402        return true;
4403    } else {
4404      assert(IsAssignment && "unexpected kind of special member");
4405      if (S.CheckDirectMemberAccess(Loc, BaseMember, S.PDiag())
4406            != Sema::AR_accessible)
4407        return true;
4408
4409      // -- for the move assignment operator, a direct base class with a type
4410      //    that does not have a move assignment operator and is not trivially
4411      //    copyable.
4412      if (IsMove && !BaseMember->isMoveAssignmentOperator() &&
4413          !BaseDecl->isTriviallyCopyable())
4414        return true;
4415    }
4416  }
4417
4418  // C++11 [class.dtor]p5:
4419  // -- for a virtual destructor, lookup of the non-array deallocation function
4420  //    results in an ambiguity or in a function that is deleted or inaccessible
4421  if (CSM == Sema::CXXDestructor && MD->isVirtual()) {
4422    FunctionDecl *OperatorDelete = 0;
4423    DeclarationName Name =
4424      S.Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4425    if (S.FindDeallocationFunction(Loc, MD->getParent(), Name,
4426                                   OperatorDelete, false))
4427      return true;
4428  }
4429
4430  return false;
4431}
4432
4433/// Check whether we should delete a special member function due to the class
4434/// having a particular non-static data member.
4435bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4436  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4437  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4438
4439  if (CSM == Sema::CXXDefaultConstructor) {
4440    // For a default constructor, all references must be initialized in-class
4441    // and, if a union, it must have a non-const member.
4442    if (FieldType->isReferenceType() && !FD->hasInClassInitializer())
4443      return true;
4444
4445    if (inUnion() && !FieldType.isConstQualified())
4446      AllFieldsAreConst = false;
4447  } else if (CSM == Sema::CXXCopyConstructor) {
4448    // For a copy constructor, data members must not be of rvalue reference
4449    // type.
4450    if (FieldType->isRValueReferenceType())
4451      return true;
4452  } else if (IsAssignment) {
4453    // For an assignment operator, data members must not be of reference type.
4454    if (FieldType->isReferenceType())
4455      return true;
4456  }
4457
4458  if (FieldRecord) {
4459    // For a default constructor, a const member must have a user-provided
4460    // default constructor or else be explicitly initialized.
4461    if (CSM == Sema::CXXDefaultConstructor && FieldType.isConstQualified() &&
4462        !FD->hasInClassInitializer() &&
4463        !FieldRecord->hasUserProvidedDefaultConstructor())
4464      return true;
4465
4466    // Some additional restrictions exist on the variant members.
4467    if (!inUnion() && FieldRecord->isUnion() &&
4468        FieldRecord->isAnonymousStructOrUnion()) {
4469      bool AllVariantFieldsAreConst = true;
4470
4471      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4472                                         UE = FieldRecord->field_end();
4473           UI != UE; ++UI) {
4474        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4475        CXXRecordDecl *UnionFieldRecord =
4476          UnionFieldType->getAsCXXRecordDecl();
4477
4478        if (!UnionFieldType.isConstQualified())
4479          AllVariantFieldsAreConst = false;
4480
4481        if (UnionFieldRecord) {
4482          // FIXME: Checking for accessibility and validity of this
4483          //        destructor is technically going beyond the
4484          //        standard, but this is believed to be a defect.
4485          if (!IsAssignment) {
4486            CXXDestructorDecl *FieldDtor = S.LookupDestructor(UnionFieldRecord);
4487            if (FieldDtor->isDeleted())
4488              return true;
4489            if (S.CheckDestructorAccess(Loc, FieldDtor, S.PDiag()) !=
4490                Sema::AR_accessible)
4491              return true;
4492            if (!FieldDtor->isTrivial())
4493              return true;
4494          }
4495
4496          // FIXME: in-class initializers should be handled here
4497          if (CSM != Sema::CXXDestructor) {
4498            Sema::SpecialMemberOverloadResult *SMOR =
4499                lookupIn(UnionFieldRecord);
4500            // FIXME: Checking for accessibility and validity of this
4501            //        corresponding member is technically going beyond the
4502            //        standard, but this is believed to be a defect.
4503            if (!SMOR->hasSuccess())
4504              return true;
4505
4506            CXXMethodDecl *FieldMember = SMOR->getMethod();
4507            // A member of a union must have a trivial corresponding
4508            // special member.
4509            if (!FieldMember->isTrivial())
4510              return true;
4511
4512            if (IsConstructor) {
4513              CXXConstructorDecl *FieldCtor =
4514                  cast<CXXConstructorDecl>(FieldMember);
4515              if (S.CheckConstructorAccess(Loc, FieldCtor,
4516                                           FieldCtor->getAccess(),
4517                                           S.PDiag()) != Sema::AR_accessible)
4518              return true;
4519            } else {
4520              assert(IsAssignment && "unexpected kind of special member");
4521              if (S.CheckDirectMemberAccess(Loc, FieldMember, S.PDiag())
4522                  != Sema::AR_accessible)
4523                return true;
4524            }
4525          }
4526        }
4527      }
4528
4529      // At least one member in each anonymous union must be non-const
4530      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst)
4531        return true;
4532
4533      // Don't try to initialize the anonymous union
4534      // This is technically non-conformant, but sanity demands it.
4535      return false;
4536    }
4537
4538    // Unless we're doing assignment, the field's destructor must be
4539    // accessible and not deleted.
4540    if (!IsAssignment) {
4541      CXXDestructorDecl *FieldDtor = S.LookupDestructor(FieldRecord);
4542      if (FieldDtor->isDeleted())
4543        return true;
4544      if (S.CheckDestructorAccess(Loc, FieldDtor, S.PDiag()) !=
4545          Sema::AR_accessible)
4546        return true;
4547    }
4548
4549    // Check that the corresponding member of the field is accessible,
4550    // unique, and non-deleted. We don't do this if it has an explicit
4551    // initialization when default-constructing.
4552    if (CSM != Sema::CXXDestructor &&
4553        !(CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())) {
4554      Sema::SpecialMemberOverloadResult *SMOR = lookupIn(FieldRecord);
4555      if (!SMOR->hasSuccess())
4556        return true;
4557
4558      CXXMethodDecl *FieldMember = SMOR->getMethod();
4559      if (IsConstructor) {
4560        CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4561        if (S.CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4562                                     S.PDiag()) != Sema::AR_accessible)
4563        return true;
4564
4565        // For a move operation, the corresponding operation must actually
4566        // be a move operation (and not a copy selected by overload
4567        // resolution) unless we are working on a trivially copyable class.
4568        if (IsMove && !FieldCtor->isMoveConstructor() &&
4569            !FieldRecord->isTriviallyCopyable())
4570          return true;
4571      } else {
4572        assert(IsAssignment && "unexpected kind of special member");
4573        if (S.CheckDirectMemberAccess(Loc, FieldMember, S.PDiag())
4574              != Sema::AR_accessible)
4575          return true;
4576
4577        // -- for the move assignment operator, a non-static data member with a
4578        //    type that does not have a move assignment operator and is not
4579        //    trivially copyable.
4580        if (IsMove && !FieldMember->isMoveAssignmentOperator() &&
4581            !FieldRecord->isTriviallyCopyable())
4582          return true;
4583      }
4584
4585      // We need the corresponding member of a union to be trivial so that
4586      // we can safely copy them all simultaneously.
4587      // FIXME: Note that performing the check here (where we rely on the lack
4588      // of an in-class initializer) is technically ill-formed. However, this
4589      // seems most obviously to be a bug in the standard.
4590      if (inUnion() && !FieldMember->isTrivial())
4591        return true;
4592    }
4593  } else if (CSM == Sema::CXXDefaultConstructor && !inUnion() &&
4594             FieldType.isConstQualified() && !FD->hasInClassInitializer()) {
4595    // We can't initialize a const member of non-class type to any value.
4596    return true;
4597  } else if (IsAssignment && FieldType.isConstQualified()) {
4598    // C++11 [class.copy]p23:
4599    // -- a non-static data member of const non-class type (or array thereof)
4600    return true;
4601  }
4602
4603  return false;
4604}
4605
4606/// C++11 [class.ctor] p5:
4607///   A defaulted default constructor for a class X is defined as deleted if
4608/// X is a union and all of its variant members are of const-qualified type.
4609bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4610  return CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst;
4611}
4612
4613/// Determine whether a defaulted special member function should be defined as
4614/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4615/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4616bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4617  assert(!MD->isInvalidDecl());
4618  CXXRecordDecl *RD = MD->getParent();
4619  assert(!RD->isDependentType() && "do deletion after instantiation");
4620  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4621    return false;
4622
4623  // C++11 [expr.lambda.prim]p19:
4624  //   The closure type associated with a lambda-expression has a
4625  //   deleted (8.4.3) default constructor and a deleted copy
4626  //   assignment operator.
4627  if (RD->isLambda() &&
4628      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment))
4629    return true;
4630
4631  // For an anonymous struct or union, the copy and assignment special members
4632  // will never be used, so skip the check. For an anonymous union declared at
4633  // namespace scope, the constructor and destructor are used.
4634  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4635      RD->isAnonymousStructOrUnion())
4636    return false;
4637
4638  // Do access control from the special member function
4639  ContextRAII MethodContext(*this, MD);
4640
4641  SpecialMemberDeletionInfo SMI(*this, MD, CSM);
4642
4643  // FIXME: We should put some diagnostic logic right into this function.
4644
4645  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4646                                          BE = RD->bases_end(); BI != BE; ++BI)
4647    if (!BI->isVirtual() &&
4648        SMI.shouldDeleteForBase(BI->getType()->getAsCXXRecordDecl(), false))
4649      return true;
4650
4651  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4652                                          BE = RD->vbases_end(); BI != BE; ++BI)
4653    if (SMI.shouldDeleteForBase(BI->getType()->getAsCXXRecordDecl(), true))
4654      return true;
4655
4656  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4657                                     FE = RD->field_end(); FI != FE; ++FI)
4658    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4659        SMI.shouldDeleteForField(*FI))
4660      return true;
4661
4662  if (SMI.shouldDeleteForAllConstMembers())
4663    return true;
4664
4665  return false;
4666}
4667
4668/// \brief Data used with FindHiddenVirtualMethod
4669namespace {
4670  struct FindHiddenVirtualMethodData {
4671    Sema *S;
4672    CXXMethodDecl *Method;
4673    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4674    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4675  };
4676}
4677
4678/// \brief Member lookup function that determines whether a given C++
4679/// method overloads virtual methods in a base class without overriding any,
4680/// to be used with CXXRecordDecl::lookupInBases().
4681static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4682                                    CXXBasePath &Path,
4683                                    void *UserData) {
4684  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4685
4686  FindHiddenVirtualMethodData &Data
4687    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4688
4689  DeclarationName Name = Data.Method->getDeclName();
4690  assert(Name.getNameKind() == DeclarationName::Identifier);
4691
4692  bool foundSameNameMethod = false;
4693  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4694  for (Path.Decls = BaseRecord->lookup(Name);
4695       Path.Decls.first != Path.Decls.second;
4696       ++Path.Decls.first) {
4697    NamedDecl *D = *Path.Decls.first;
4698    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4699      MD = MD->getCanonicalDecl();
4700      foundSameNameMethod = true;
4701      // Interested only in hidden virtual methods.
4702      if (!MD->isVirtual())
4703        continue;
4704      // If the method we are checking overrides a method from its base
4705      // don't warn about the other overloaded methods.
4706      if (!Data.S->IsOverload(Data.Method, MD, false))
4707        return true;
4708      // Collect the overload only if its hidden.
4709      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4710        overloadedMethods.push_back(MD);
4711    }
4712  }
4713
4714  if (foundSameNameMethod)
4715    Data.OverloadedMethods.append(overloadedMethods.begin(),
4716                                   overloadedMethods.end());
4717  return foundSameNameMethod;
4718}
4719
4720/// \brief See if a method overloads virtual methods in a base class without
4721/// overriding any.
4722void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4723  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4724                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4725    return;
4726  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4727    return;
4728
4729  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4730                     /*bool RecordPaths=*/false,
4731                     /*bool DetectVirtual=*/false);
4732  FindHiddenVirtualMethodData Data;
4733  Data.Method = MD;
4734  Data.S = this;
4735
4736  // Keep the base methods that were overriden or introduced in the subclass
4737  // by 'using' in a set. A base method not in this set is hidden.
4738  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4739       res.first != res.second; ++res.first) {
4740    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4741      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4742                                          E = MD->end_overridden_methods();
4743           I != E; ++I)
4744        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4745    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4746      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4747        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4748  }
4749
4750  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4751      !Data.OverloadedMethods.empty()) {
4752    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4753      << MD << (Data.OverloadedMethods.size() > 1);
4754
4755    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4756      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4757      Diag(overloadedMD->getLocation(),
4758           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4759    }
4760  }
4761}
4762
4763void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4764                                             Decl *TagDecl,
4765                                             SourceLocation LBrac,
4766                                             SourceLocation RBrac,
4767                                             AttributeList *AttrList) {
4768  if (!TagDecl)
4769    return;
4770
4771  AdjustDeclIfTemplate(TagDecl);
4772
4773  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4774              // strict aliasing violation!
4775              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4776              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4777
4778  CheckCompletedCXXClass(
4779                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4780}
4781
4782/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4783/// special functions, such as the default constructor, copy
4784/// constructor, or destructor, to the given C++ class (C++
4785/// [special]p1).  This routine can only be executed just before the
4786/// definition of the class is complete.
4787void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4788  if (!ClassDecl->hasUserDeclaredConstructor())
4789    ++ASTContext::NumImplicitDefaultConstructors;
4790
4791  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4792    ++ASTContext::NumImplicitCopyConstructors;
4793
4794  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4795    ++ASTContext::NumImplicitMoveConstructors;
4796
4797  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4798    ++ASTContext::NumImplicitCopyAssignmentOperators;
4799
4800    // If we have a dynamic class, then the copy assignment operator may be
4801    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4802    // it shows up in the right place in the vtable and that we diagnose
4803    // problems with the implicit exception specification.
4804    if (ClassDecl->isDynamicClass())
4805      DeclareImplicitCopyAssignment(ClassDecl);
4806  }
4807
4808  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
4809    ++ASTContext::NumImplicitMoveAssignmentOperators;
4810
4811    // Likewise for the move assignment operator.
4812    if (ClassDecl->isDynamicClass())
4813      DeclareImplicitMoveAssignment(ClassDecl);
4814  }
4815
4816  if (!ClassDecl->hasUserDeclaredDestructor()) {
4817    ++ASTContext::NumImplicitDestructors;
4818
4819    // If we have a dynamic class, then the destructor may be virtual, so we
4820    // have to declare the destructor immediately. This ensures that, e.g., it
4821    // shows up in the right place in the vtable and that we diagnose problems
4822    // with the implicit exception specification.
4823    if (ClassDecl->isDynamicClass())
4824      DeclareImplicitDestructor(ClassDecl);
4825  }
4826}
4827
4828void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4829  if (!D)
4830    return;
4831
4832  int NumParamList = D->getNumTemplateParameterLists();
4833  for (int i = 0; i < NumParamList; i++) {
4834    TemplateParameterList* Params = D->getTemplateParameterList(i);
4835    for (TemplateParameterList::iterator Param = Params->begin(),
4836                                      ParamEnd = Params->end();
4837          Param != ParamEnd; ++Param) {
4838      NamedDecl *Named = cast<NamedDecl>(*Param);
4839      if (Named->getDeclName()) {
4840        S->AddDecl(Named);
4841        IdResolver.AddDecl(Named);
4842      }
4843    }
4844  }
4845}
4846
4847void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4848  if (!D)
4849    return;
4850
4851  TemplateParameterList *Params = 0;
4852  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4853    Params = Template->getTemplateParameters();
4854  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4855           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4856    Params = PartialSpec->getTemplateParameters();
4857  else
4858    return;
4859
4860  for (TemplateParameterList::iterator Param = Params->begin(),
4861                                    ParamEnd = Params->end();
4862       Param != ParamEnd; ++Param) {
4863    NamedDecl *Named = cast<NamedDecl>(*Param);
4864    if (Named->getDeclName()) {
4865      S->AddDecl(Named);
4866      IdResolver.AddDecl(Named);
4867    }
4868  }
4869}
4870
4871void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4872  if (!RecordD) return;
4873  AdjustDeclIfTemplate(RecordD);
4874  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4875  PushDeclContext(S, Record);
4876}
4877
4878void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4879  if (!RecordD) return;
4880  PopDeclContext();
4881}
4882
4883/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4884/// parsing a top-level (non-nested) C++ class, and we are now
4885/// parsing those parts of the given Method declaration that could
4886/// not be parsed earlier (C++ [class.mem]p2), such as default
4887/// arguments. This action should enter the scope of the given
4888/// Method declaration as if we had just parsed the qualified method
4889/// name. However, it should not bring the parameters into scope;
4890/// that will be performed by ActOnDelayedCXXMethodParameter.
4891void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4892}
4893
4894/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4895/// C++ method declaration. We're (re-)introducing the given
4896/// function parameter into scope for use in parsing later parts of
4897/// the method declaration. For example, we could see an
4898/// ActOnParamDefaultArgument event for this parameter.
4899void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4900  if (!ParamD)
4901    return;
4902
4903  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4904
4905  // If this parameter has an unparsed default argument, clear it out
4906  // to make way for the parsed default argument.
4907  if (Param->hasUnparsedDefaultArg())
4908    Param->setDefaultArg(0);
4909
4910  S->AddDecl(Param);
4911  if (Param->getDeclName())
4912    IdResolver.AddDecl(Param);
4913}
4914
4915/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4916/// processing the delayed method declaration for Method. The method
4917/// declaration is now considered finished. There may be a separate
4918/// ActOnStartOfFunctionDef action later (not necessarily
4919/// immediately!) for this method, if it was also defined inside the
4920/// class body.
4921void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4922  if (!MethodD)
4923    return;
4924
4925  AdjustDeclIfTemplate(MethodD);
4926
4927  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4928
4929  // Now that we have our default arguments, check the constructor
4930  // again. It could produce additional diagnostics or affect whether
4931  // the class has implicitly-declared destructors, among other
4932  // things.
4933  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4934    CheckConstructor(Constructor);
4935
4936  // Check the default arguments, which we may have added.
4937  if (!Method->isInvalidDecl())
4938    CheckCXXDefaultArguments(Method);
4939}
4940
4941/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4942/// the well-formedness of the constructor declarator @p D with type @p
4943/// R. If there are any errors in the declarator, this routine will
4944/// emit diagnostics and set the invalid bit to true.  In any case, the type
4945/// will be updated to reflect a well-formed type for the constructor and
4946/// returned.
4947QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4948                                          StorageClass &SC) {
4949  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4950
4951  // C++ [class.ctor]p3:
4952  //   A constructor shall not be virtual (10.3) or static (9.4). A
4953  //   constructor can be invoked for a const, volatile or const
4954  //   volatile object. A constructor shall not be declared const,
4955  //   volatile, or const volatile (9.3.2).
4956  if (isVirtual) {
4957    if (!D.isInvalidType())
4958      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4959        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4960        << SourceRange(D.getIdentifierLoc());
4961    D.setInvalidType();
4962  }
4963  if (SC == SC_Static) {
4964    if (!D.isInvalidType())
4965      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4966        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4967        << SourceRange(D.getIdentifierLoc());
4968    D.setInvalidType();
4969    SC = SC_None;
4970  }
4971
4972  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4973  if (FTI.TypeQuals != 0) {
4974    if (FTI.TypeQuals & Qualifiers::Const)
4975      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4976        << "const" << SourceRange(D.getIdentifierLoc());
4977    if (FTI.TypeQuals & Qualifiers::Volatile)
4978      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4979        << "volatile" << SourceRange(D.getIdentifierLoc());
4980    if (FTI.TypeQuals & Qualifiers::Restrict)
4981      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4982        << "restrict" << SourceRange(D.getIdentifierLoc());
4983    D.setInvalidType();
4984  }
4985
4986  // C++0x [class.ctor]p4:
4987  //   A constructor shall not be declared with a ref-qualifier.
4988  if (FTI.hasRefQualifier()) {
4989    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4990      << FTI.RefQualifierIsLValueRef
4991      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4992    D.setInvalidType();
4993  }
4994
4995  // Rebuild the function type "R" without any type qualifiers (in
4996  // case any of the errors above fired) and with "void" as the
4997  // return type, since constructors don't have return types.
4998  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4999  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5000    return R;
5001
5002  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5003  EPI.TypeQuals = 0;
5004  EPI.RefQualifier = RQ_None;
5005
5006  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5007                                 Proto->getNumArgs(), EPI);
5008}
5009
5010/// CheckConstructor - Checks a fully-formed constructor for
5011/// well-formedness, issuing any diagnostics required. Returns true if
5012/// the constructor declarator is invalid.
5013void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5014  CXXRecordDecl *ClassDecl
5015    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5016  if (!ClassDecl)
5017    return Constructor->setInvalidDecl();
5018
5019  // C++ [class.copy]p3:
5020  //   A declaration of a constructor for a class X is ill-formed if
5021  //   its first parameter is of type (optionally cv-qualified) X and
5022  //   either there are no other parameters or else all other
5023  //   parameters have default arguments.
5024  if (!Constructor->isInvalidDecl() &&
5025      ((Constructor->getNumParams() == 1) ||
5026       (Constructor->getNumParams() > 1 &&
5027        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5028      Constructor->getTemplateSpecializationKind()
5029                                              != TSK_ImplicitInstantiation) {
5030    QualType ParamType = Constructor->getParamDecl(0)->getType();
5031    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5032    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5033      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5034      const char *ConstRef
5035        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5036                                                        : " const &";
5037      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5038        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5039
5040      // FIXME: Rather that making the constructor invalid, we should endeavor
5041      // to fix the type.
5042      Constructor->setInvalidDecl();
5043    }
5044  }
5045}
5046
5047/// CheckDestructor - Checks a fully-formed destructor definition for
5048/// well-formedness, issuing any diagnostics required.  Returns true
5049/// on error.
5050bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5051  CXXRecordDecl *RD = Destructor->getParent();
5052
5053  if (Destructor->isVirtual()) {
5054    SourceLocation Loc;
5055
5056    if (!Destructor->isImplicit())
5057      Loc = Destructor->getLocation();
5058    else
5059      Loc = RD->getLocation();
5060
5061    // If we have a virtual destructor, look up the deallocation function
5062    FunctionDecl *OperatorDelete = 0;
5063    DeclarationName Name =
5064    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5065    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5066      return true;
5067
5068    MarkFunctionReferenced(Loc, OperatorDelete);
5069
5070    Destructor->setOperatorDelete(OperatorDelete);
5071  }
5072
5073  return false;
5074}
5075
5076static inline bool
5077FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5078  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5079          FTI.ArgInfo[0].Param &&
5080          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5081}
5082
5083/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5084/// the well-formednes of the destructor declarator @p D with type @p
5085/// R. If there are any errors in the declarator, this routine will
5086/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5087/// will be updated to reflect a well-formed type for the destructor and
5088/// returned.
5089QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5090                                         StorageClass& SC) {
5091  // C++ [class.dtor]p1:
5092  //   [...] A typedef-name that names a class is a class-name
5093  //   (7.1.3); however, a typedef-name that names a class shall not
5094  //   be used as the identifier in the declarator for a destructor
5095  //   declaration.
5096  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5097  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5098    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5099      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5100  else if (const TemplateSpecializationType *TST =
5101             DeclaratorType->getAs<TemplateSpecializationType>())
5102    if (TST->isTypeAlias())
5103      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5104        << DeclaratorType << 1;
5105
5106  // C++ [class.dtor]p2:
5107  //   A destructor is used to destroy objects of its class type. A
5108  //   destructor takes no parameters, and no return type can be
5109  //   specified for it (not even void). The address of a destructor
5110  //   shall not be taken. A destructor shall not be static. A
5111  //   destructor can be invoked for a const, volatile or const
5112  //   volatile object. A destructor shall not be declared const,
5113  //   volatile or const volatile (9.3.2).
5114  if (SC == SC_Static) {
5115    if (!D.isInvalidType())
5116      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5117        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5118        << SourceRange(D.getIdentifierLoc())
5119        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5120
5121    SC = SC_None;
5122  }
5123  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5124    // Destructors don't have return types, but the parser will
5125    // happily parse something like:
5126    //
5127    //   class X {
5128    //     float ~X();
5129    //   };
5130    //
5131    // The return type will be eliminated later.
5132    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5133      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5134      << SourceRange(D.getIdentifierLoc());
5135  }
5136
5137  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5138  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5139    if (FTI.TypeQuals & Qualifiers::Const)
5140      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5141        << "const" << SourceRange(D.getIdentifierLoc());
5142    if (FTI.TypeQuals & Qualifiers::Volatile)
5143      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5144        << "volatile" << SourceRange(D.getIdentifierLoc());
5145    if (FTI.TypeQuals & Qualifiers::Restrict)
5146      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5147        << "restrict" << SourceRange(D.getIdentifierLoc());
5148    D.setInvalidType();
5149  }
5150
5151  // C++0x [class.dtor]p2:
5152  //   A destructor shall not be declared with a ref-qualifier.
5153  if (FTI.hasRefQualifier()) {
5154    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5155      << FTI.RefQualifierIsLValueRef
5156      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5157    D.setInvalidType();
5158  }
5159
5160  // Make sure we don't have any parameters.
5161  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5162    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5163
5164    // Delete the parameters.
5165    FTI.freeArgs();
5166    D.setInvalidType();
5167  }
5168
5169  // Make sure the destructor isn't variadic.
5170  if (FTI.isVariadic) {
5171    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5172    D.setInvalidType();
5173  }
5174
5175  // Rebuild the function type "R" without any type qualifiers or
5176  // parameters (in case any of the errors above fired) and with
5177  // "void" as the return type, since destructors don't have return
5178  // types.
5179  if (!D.isInvalidType())
5180    return R;
5181
5182  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5183  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5184  EPI.Variadic = false;
5185  EPI.TypeQuals = 0;
5186  EPI.RefQualifier = RQ_None;
5187  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5188}
5189
5190/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5191/// well-formednes of the conversion function declarator @p D with
5192/// type @p R. If there are any errors in the declarator, this routine
5193/// will emit diagnostics and return true. Otherwise, it will return
5194/// false. Either way, the type @p R will be updated to reflect a
5195/// well-formed type for the conversion operator.
5196void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5197                                     StorageClass& SC) {
5198  // C++ [class.conv.fct]p1:
5199  //   Neither parameter types nor return type can be specified. The
5200  //   type of a conversion function (8.3.5) is "function taking no
5201  //   parameter returning conversion-type-id."
5202  if (SC == SC_Static) {
5203    if (!D.isInvalidType())
5204      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5205        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5206        << SourceRange(D.getIdentifierLoc());
5207    D.setInvalidType();
5208    SC = SC_None;
5209  }
5210
5211  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5212
5213  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5214    // Conversion functions don't have return types, but the parser will
5215    // happily parse something like:
5216    //
5217    //   class X {
5218    //     float operator bool();
5219    //   };
5220    //
5221    // The return type will be changed later anyway.
5222    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5223      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5224      << SourceRange(D.getIdentifierLoc());
5225    D.setInvalidType();
5226  }
5227
5228  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5229
5230  // Make sure we don't have any parameters.
5231  if (Proto->getNumArgs() > 0) {
5232    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5233
5234    // Delete the parameters.
5235    D.getFunctionTypeInfo().freeArgs();
5236    D.setInvalidType();
5237  } else if (Proto->isVariadic()) {
5238    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5239    D.setInvalidType();
5240  }
5241
5242  // Diagnose "&operator bool()" and other such nonsense.  This
5243  // is actually a gcc extension which we don't support.
5244  if (Proto->getResultType() != ConvType) {
5245    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5246      << Proto->getResultType();
5247    D.setInvalidType();
5248    ConvType = Proto->getResultType();
5249  }
5250
5251  // C++ [class.conv.fct]p4:
5252  //   The conversion-type-id shall not represent a function type nor
5253  //   an array type.
5254  if (ConvType->isArrayType()) {
5255    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5256    ConvType = Context.getPointerType(ConvType);
5257    D.setInvalidType();
5258  } else if (ConvType->isFunctionType()) {
5259    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5260    ConvType = Context.getPointerType(ConvType);
5261    D.setInvalidType();
5262  }
5263
5264  // Rebuild the function type "R" without any parameters (in case any
5265  // of the errors above fired) and with the conversion type as the
5266  // return type.
5267  if (D.isInvalidType())
5268    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5269
5270  // C++0x explicit conversion operators.
5271  if (D.getDeclSpec().isExplicitSpecified())
5272    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5273         getLangOptions().CPlusPlus0x ?
5274           diag::warn_cxx98_compat_explicit_conversion_functions :
5275           diag::ext_explicit_conversion_functions)
5276      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5277}
5278
5279/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5280/// the declaration of the given C++ conversion function. This routine
5281/// is responsible for recording the conversion function in the C++
5282/// class, if possible.
5283Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5284  assert(Conversion && "Expected to receive a conversion function declaration");
5285
5286  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5287
5288  // Make sure we aren't redeclaring the conversion function.
5289  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5290
5291  // C++ [class.conv.fct]p1:
5292  //   [...] A conversion function is never used to convert a
5293  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5294  //   same object type (or a reference to it), to a (possibly
5295  //   cv-qualified) base class of that type (or a reference to it),
5296  //   or to (possibly cv-qualified) void.
5297  // FIXME: Suppress this warning if the conversion function ends up being a
5298  // virtual function that overrides a virtual function in a base class.
5299  QualType ClassType
5300    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5301  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5302    ConvType = ConvTypeRef->getPointeeType();
5303  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5304      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5305    /* Suppress diagnostics for instantiations. */;
5306  else if (ConvType->isRecordType()) {
5307    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5308    if (ConvType == ClassType)
5309      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5310        << ClassType;
5311    else if (IsDerivedFrom(ClassType, ConvType))
5312      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5313        <<  ClassType << ConvType;
5314  } else if (ConvType->isVoidType()) {
5315    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5316      << ClassType << ConvType;
5317  }
5318
5319  if (FunctionTemplateDecl *ConversionTemplate
5320                                = Conversion->getDescribedFunctionTemplate())
5321    return ConversionTemplate;
5322
5323  return Conversion;
5324}
5325
5326//===----------------------------------------------------------------------===//
5327// Namespace Handling
5328//===----------------------------------------------------------------------===//
5329
5330
5331
5332/// ActOnStartNamespaceDef - This is called at the start of a namespace
5333/// definition.
5334Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5335                                   SourceLocation InlineLoc,
5336                                   SourceLocation NamespaceLoc,
5337                                   SourceLocation IdentLoc,
5338                                   IdentifierInfo *II,
5339                                   SourceLocation LBrace,
5340                                   AttributeList *AttrList) {
5341  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5342  // For anonymous namespace, take the location of the left brace.
5343  SourceLocation Loc = II ? IdentLoc : LBrace;
5344  bool IsInline = InlineLoc.isValid();
5345  bool IsInvalid = false;
5346  bool IsStd = false;
5347  bool AddToKnown = false;
5348  Scope *DeclRegionScope = NamespcScope->getParent();
5349
5350  NamespaceDecl *PrevNS = 0;
5351  if (II) {
5352    // C++ [namespace.def]p2:
5353    //   The identifier in an original-namespace-definition shall not
5354    //   have been previously defined in the declarative region in
5355    //   which the original-namespace-definition appears. The
5356    //   identifier in an original-namespace-definition is the name of
5357    //   the namespace. Subsequently in that declarative region, it is
5358    //   treated as an original-namespace-name.
5359    //
5360    // Since namespace names are unique in their scope, and we don't
5361    // look through using directives, just look for any ordinary names.
5362
5363    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5364    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5365    Decl::IDNS_Namespace;
5366    NamedDecl *PrevDecl = 0;
5367    for (DeclContext::lookup_result R
5368         = CurContext->getRedeclContext()->lookup(II);
5369         R.first != R.second; ++R.first) {
5370      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5371        PrevDecl = *R.first;
5372        break;
5373      }
5374    }
5375
5376    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5377
5378    if (PrevNS) {
5379      // This is an extended namespace definition.
5380      if (IsInline != PrevNS->isInline()) {
5381        // inline-ness must match
5382        if (PrevNS->isInline()) {
5383          // The user probably just forgot the 'inline', so suggest that it
5384          // be added back.
5385          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5386            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5387        } else {
5388          Diag(Loc, diag::err_inline_namespace_mismatch)
5389            << IsInline;
5390        }
5391        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5392
5393        IsInline = PrevNS->isInline();
5394      }
5395    } else if (PrevDecl) {
5396      // This is an invalid name redefinition.
5397      Diag(Loc, diag::err_redefinition_different_kind)
5398        << II;
5399      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5400      IsInvalid = true;
5401      // Continue on to push Namespc as current DeclContext and return it.
5402    } else if (II->isStr("std") &&
5403               CurContext->getRedeclContext()->isTranslationUnit()) {
5404      // This is the first "real" definition of the namespace "std", so update
5405      // our cache of the "std" namespace to point at this definition.
5406      PrevNS = getStdNamespace();
5407      IsStd = true;
5408      AddToKnown = !IsInline;
5409    } else {
5410      // We've seen this namespace for the first time.
5411      AddToKnown = !IsInline;
5412    }
5413  } else {
5414    // Anonymous namespaces.
5415
5416    // Determine whether the parent already has an anonymous namespace.
5417    DeclContext *Parent = CurContext->getRedeclContext();
5418    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5419      PrevNS = TU->getAnonymousNamespace();
5420    } else {
5421      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5422      PrevNS = ND->getAnonymousNamespace();
5423    }
5424
5425    if (PrevNS && IsInline != PrevNS->isInline()) {
5426      // inline-ness must match
5427      Diag(Loc, diag::err_inline_namespace_mismatch)
5428        << IsInline;
5429      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5430
5431      // Recover by ignoring the new namespace's inline status.
5432      IsInline = PrevNS->isInline();
5433    }
5434  }
5435
5436  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5437                                                 StartLoc, Loc, II, PrevNS);
5438  if (IsInvalid)
5439    Namespc->setInvalidDecl();
5440
5441  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5442
5443  // FIXME: Should we be merging attributes?
5444  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5445    PushNamespaceVisibilityAttr(Attr, Loc);
5446
5447  if (IsStd)
5448    StdNamespace = Namespc;
5449  if (AddToKnown)
5450    KnownNamespaces[Namespc] = false;
5451
5452  if (II) {
5453    PushOnScopeChains(Namespc, DeclRegionScope);
5454  } else {
5455    // Link the anonymous namespace into its parent.
5456    DeclContext *Parent = CurContext->getRedeclContext();
5457    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5458      TU->setAnonymousNamespace(Namespc);
5459    } else {
5460      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5461    }
5462
5463    CurContext->addDecl(Namespc);
5464
5465    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5466    //   behaves as if it were replaced by
5467    //     namespace unique { /* empty body */ }
5468    //     using namespace unique;
5469    //     namespace unique { namespace-body }
5470    //   where all occurrences of 'unique' in a translation unit are
5471    //   replaced by the same identifier and this identifier differs
5472    //   from all other identifiers in the entire program.
5473
5474    // We just create the namespace with an empty name and then add an
5475    // implicit using declaration, just like the standard suggests.
5476    //
5477    // CodeGen enforces the "universally unique" aspect by giving all
5478    // declarations semantically contained within an anonymous
5479    // namespace internal linkage.
5480
5481    if (!PrevNS) {
5482      UsingDirectiveDecl* UD
5483        = UsingDirectiveDecl::Create(Context, CurContext,
5484                                     /* 'using' */ LBrace,
5485                                     /* 'namespace' */ SourceLocation(),
5486                                     /* qualifier */ NestedNameSpecifierLoc(),
5487                                     /* identifier */ SourceLocation(),
5488                                     Namespc,
5489                                     /* Ancestor */ CurContext);
5490      UD->setImplicit();
5491      CurContext->addDecl(UD);
5492    }
5493  }
5494
5495  // Although we could have an invalid decl (i.e. the namespace name is a
5496  // redefinition), push it as current DeclContext and try to continue parsing.
5497  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5498  // for the namespace has the declarations that showed up in that particular
5499  // namespace definition.
5500  PushDeclContext(NamespcScope, Namespc);
5501  return Namespc;
5502}
5503
5504/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5505/// is a namespace alias, returns the namespace it points to.
5506static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5507  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5508    return AD->getNamespace();
5509  return dyn_cast_or_null<NamespaceDecl>(D);
5510}
5511
5512/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5513/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5514void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5515  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5516  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5517  Namespc->setRBraceLoc(RBrace);
5518  PopDeclContext();
5519  if (Namespc->hasAttr<VisibilityAttr>())
5520    PopPragmaVisibility(true, RBrace);
5521}
5522
5523CXXRecordDecl *Sema::getStdBadAlloc() const {
5524  return cast_or_null<CXXRecordDecl>(
5525                                  StdBadAlloc.get(Context.getExternalSource()));
5526}
5527
5528NamespaceDecl *Sema::getStdNamespace() const {
5529  return cast_or_null<NamespaceDecl>(
5530                                 StdNamespace.get(Context.getExternalSource()));
5531}
5532
5533/// \brief Retrieve the special "std" namespace, which may require us to
5534/// implicitly define the namespace.
5535NamespaceDecl *Sema::getOrCreateStdNamespace() {
5536  if (!StdNamespace) {
5537    // The "std" namespace has not yet been defined, so build one implicitly.
5538    StdNamespace = NamespaceDecl::Create(Context,
5539                                         Context.getTranslationUnitDecl(),
5540                                         /*Inline=*/false,
5541                                         SourceLocation(), SourceLocation(),
5542                                         &PP.getIdentifierTable().get("std"),
5543                                         /*PrevDecl=*/0);
5544    getStdNamespace()->setImplicit(true);
5545  }
5546
5547  return getStdNamespace();
5548}
5549
5550bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5551  assert(getLangOptions().CPlusPlus &&
5552         "Looking for std::initializer_list outside of C++.");
5553
5554  // We're looking for implicit instantiations of
5555  // template <typename E> class std::initializer_list.
5556
5557  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5558    return false;
5559
5560  ClassTemplateDecl *Template = 0;
5561  const TemplateArgument *Arguments = 0;
5562
5563  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5564
5565    ClassTemplateSpecializationDecl *Specialization =
5566        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5567    if (!Specialization)
5568      return false;
5569
5570    Template = Specialization->getSpecializedTemplate();
5571    Arguments = Specialization->getTemplateArgs().data();
5572  } else if (const TemplateSpecializationType *TST =
5573                 Ty->getAs<TemplateSpecializationType>()) {
5574    Template = dyn_cast_or_null<ClassTemplateDecl>(
5575        TST->getTemplateName().getAsTemplateDecl());
5576    Arguments = TST->getArgs();
5577  }
5578  if (!Template)
5579    return false;
5580
5581  if (!StdInitializerList) {
5582    // Haven't recognized std::initializer_list yet, maybe this is it.
5583    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5584    if (TemplateClass->getIdentifier() !=
5585            &PP.getIdentifierTable().get("initializer_list") ||
5586        !getStdNamespace()->InEnclosingNamespaceSetOf(
5587            TemplateClass->getDeclContext()))
5588      return false;
5589    // This is a template called std::initializer_list, but is it the right
5590    // template?
5591    TemplateParameterList *Params = Template->getTemplateParameters();
5592    if (Params->getMinRequiredArguments() != 1)
5593      return false;
5594    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5595      return false;
5596
5597    // It's the right template.
5598    StdInitializerList = Template;
5599  }
5600
5601  if (Template != StdInitializerList)
5602    return false;
5603
5604  // This is an instance of std::initializer_list. Find the argument type.
5605  if (Element)
5606    *Element = Arguments[0].getAsType();
5607  return true;
5608}
5609
5610static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5611  NamespaceDecl *Std = S.getStdNamespace();
5612  if (!Std) {
5613    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5614    return 0;
5615  }
5616
5617  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5618                      Loc, Sema::LookupOrdinaryName);
5619  if (!S.LookupQualifiedName(Result, Std)) {
5620    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5621    return 0;
5622  }
5623  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5624  if (!Template) {
5625    Result.suppressDiagnostics();
5626    // We found something weird. Complain about the first thing we found.
5627    NamedDecl *Found = *Result.begin();
5628    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5629    return 0;
5630  }
5631
5632  // We found some template called std::initializer_list. Now verify that it's
5633  // correct.
5634  TemplateParameterList *Params = Template->getTemplateParameters();
5635  if (Params->getMinRequiredArguments() != 1 ||
5636      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5637    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5638    return 0;
5639  }
5640
5641  return Template;
5642}
5643
5644QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5645  if (!StdInitializerList) {
5646    StdInitializerList = LookupStdInitializerList(*this, Loc);
5647    if (!StdInitializerList)
5648      return QualType();
5649  }
5650
5651  TemplateArgumentListInfo Args(Loc, Loc);
5652  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5653                                       Context.getTrivialTypeSourceInfo(Element,
5654                                                                        Loc)));
5655  return Context.getCanonicalType(
5656      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5657}
5658
5659bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5660  // C++ [dcl.init.list]p2:
5661  //   A constructor is an initializer-list constructor if its first parameter
5662  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5663  //   std::initializer_list<E> for some type E, and either there are no other
5664  //   parameters or else all other parameters have default arguments.
5665  if (Ctor->getNumParams() < 1 ||
5666      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5667    return false;
5668
5669  QualType ArgType = Ctor->getParamDecl(0)->getType();
5670  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5671    ArgType = RT->getPointeeType().getUnqualifiedType();
5672
5673  return isStdInitializerList(ArgType, 0);
5674}
5675
5676/// \brief Determine whether a using statement is in a context where it will be
5677/// apply in all contexts.
5678static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5679  switch (CurContext->getDeclKind()) {
5680    case Decl::TranslationUnit:
5681      return true;
5682    case Decl::LinkageSpec:
5683      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5684    default:
5685      return false;
5686  }
5687}
5688
5689namespace {
5690
5691// Callback to only accept typo corrections that are namespaces.
5692class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5693 public:
5694  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5695    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5696      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5697    }
5698    return false;
5699  }
5700};
5701
5702}
5703
5704static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5705                                       CXXScopeSpec &SS,
5706                                       SourceLocation IdentLoc,
5707                                       IdentifierInfo *Ident) {
5708  NamespaceValidatorCCC Validator;
5709  R.clear();
5710  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5711                                               R.getLookupKind(), Sc, &SS,
5712                                               Validator)) {
5713    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5714    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5715    if (DeclContext *DC = S.computeDeclContext(SS, false))
5716      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5717        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5718        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5719    else
5720      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5721        << Ident << CorrectedQuotedStr
5722        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5723
5724    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5725         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5726
5727    Ident = Corrected.getCorrectionAsIdentifierInfo();
5728    R.addDecl(Corrected.getCorrectionDecl());
5729    return true;
5730  }
5731  return false;
5732}
5733
5734Decl *Sema::ActOnUsingDirective(Scope *S,
5735                                          SourceLocation UsingLoc,
5736                                          SourceLocation NamespcLoc,
5737                                          CXXScopeSpec &SS,
5738                                          SourceLocation IdentLoc,
5739                                          IdentifierInfo *NamespcName,
5740                                          AttributeList *AttrList) {
5741  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5742  assert(NamespcName && "Invalid NamespcName.");
5743  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5744
5745  // This can only happen along a recovery path.
5746  while (S->getFlags() & Scope::TemplateParamScope)
5747    S = S->getParent();
5748  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5749
5750  UsingDirectiveDecl *UDir = 0;
5751  NestedNameSpecifier *Qualifier = 0;
5752  if (SS.isSet())
5753    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5754
5755  // Lookup namespace name.
5756  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5757  LookupParsedName(R, S, &SS);
5758  if (R.isAmbiguous())
5759    return 0;
5760
5761  if (R.empty()) {
5762    R.clear();
5763    // Allow "using namespace std;" or "using namespace ::std;" even if
5764    // "std" hasn't been defined yet, for GCC compatibility.
5765    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5766        NamespcName->isStr("std")) {
5767      Diag(IdentLoc, diag::ext_using_undefined_std);
5768      R.addDecl(getOrCreateStdNamespace());
5769      R.resolveKind();
5770    }
5771    // Otherwise, attempt typo correction.
5772    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5773  }
5774
5775  if (!R.empty()) {
5776    NamedDecl *Named = R.getFoundDecl();
5777    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5778        && "expected namespace decl");
5779    // C++ [namespace.udir]p1:
5780    //   A using-directive specifies that the names in the nominated
5781    //   namespace can be used in the scope in which the
5782    //   using-directive appears after the using-directive. During
5783    //   unqualified name lookup (3.4.1), the names appear as if they
5784    //   were declared in the nearest enclosing namespace which
5785    //   contains both the using-directive and the nominated
5786    //   namespace. [Note: in this context, "contains" means "contains
5787    //   directly or indirectly". ]
5788
5789    // Find enclosing context containing both using-directive and
5790    // nominated namespace.
5791    NamespaceDecl *NS = getNamespaceDecl(Named);
5792    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5793    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5794      CommonAncestor = CommonAncestor->getParent();
5795
5796    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5797                                      SS.getWithLocInContext(Context),
5798                                      IdentLoc, Named, CommonAncestor);
5799
5800    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5801        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5802      Diag(IdentLoc, diag::warn_using_directive_in_header);
5803    }
5804
5805    PushUsingDirective(S, UDir);
5806  } else {
5807    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5808  }
5809
5810  // FIXME: We ignore attributes for now.
5811  return UDir;
5812}
5813
5814void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5815  // If scope has associated entity, then using directive is at namespace
5816  // or translation unit scope. We add UsingDirectiveDecls, into
5817  // it's lookup structure.
5818  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5819    Ctx->addDecl(UDir);
5820  else
5821    // Otherwise it is block-sope. using-directives will affect lookup
5822    // only to the end of scope.
5823    S->PushUsingDirective(UDir);
5824}
5825
5826
5827Decl *Sema::ActOnUsingDeclaration(Scope *S,
5828                                  AccessSpecifier AS,
5829                                  bool HasUsingKeyword,
5830                                  SourceLocation UsingLoc,
5831                                  CXXScopeSpec &SS,
5832                                  UnqualifiedId &Name,
5833                                  AttributeList *AttrList,
5834                                  bool IsTypeName,
5835                                  SourceLocation TypenameLoc) {
5836  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5837
5838  switch (Name.getKind()) {
5839  case UnqualifiedId::IK_ImplicitSelfParam:
5840  case UnqualifiedId::IK_Identifier:
5841  case UnqualifiedId::IK_OperatorFunctionId:
5842  case UnqualifiedId::IK_LiteralOperatorId:
5843  case UnqualifiedId::IK_ConversionFunctionId:
5844    break;
5845
5846  case UnqualifiedId::IK_ConstructorName:
5847  case UnqualifiedId::IK_ConstructorTemplateId:
5848    // C++0x inherited constructors.
5849    Diag(Name.getSourceRange().getBegin(),
5850         getLangOptions().CPlusPlus0x ?
5851           diag::warn_cxx98_compat_using_decl_constructor :
5852           diag::err_using_decl_constructor)
5853      << SS.getRange();
5854
5855    if (getLangOptions().CPlusPlus0x) break;
5856
5857    return 0;
5858
5859  case UnqualifiedId::IK_DestructorName:
5860    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5861      << SS.getRange();
5862    return 0;
5863
5864  case UnqualifiedId::IK_TemplateId:
5865    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5866      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5867    return 0;
5868  }
5869
5870  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5871  DeclarationName TargetName = TargetNameInfo.getName();
5872  if (!TargetName)
5873    return 0;
5874
5875  // Warn about using declarations.
5876  // TODO: store that the declaration was written without 'using' and
5877  // talk about access decls instead of using decls in the
5878  // diagnostics.
5879  if (!HasUsingKeyword) {
5880    UsingLoc = Name.getSourceRange().getBegin();
5881
5882    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5883      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5884  }
5885
5886  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5887      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5888    return 0;
5889
5890  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5891                                        TargetNameInfo, AttrList,
5892                                        /* IsInstantiation */ false,
5893                                        IsTypeName, TypenameLoc);
5894  if (UD)
5895    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5896
5897  return UD;
5898}
5899
5900/// \brief Determine whether a using declaration considers the given
5901/// declarations as "equivalent", e.g., if they are redeclarations of
5902/// the same entity or are both typedefs of the same type.
5903static bool
5904IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5905                         bool &SuppressRedeclaration) {
5906  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5907    SuppressRedeclaration = false;
5908    return true;
5909  }
5910
5911  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5912    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5913      SuppressRedeclaration = true;
5914      return Context.hasSameType(TD1->getUnderlyingType(),
5915                                 TD2->getUnderlyingType());
5916    }
5917
5918  return false;
5919}
5920
5921
5922/// Determines whether to create a using shadow decl for a particular
5923/// decl, given the set of decls existing prior to this using lookup.
5924bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5925                                const LookupResult &Previous) {
5926  // Diagnose finding a decl which is not from a base class of the
5927  // current class.  We do this now because there are cases where this
5928  // function will silently decide not to build a shadow decl, which
5929  // will pre-empt further diagnostics.
5930  //
5931  // We don't need to do this in C++0x because we do the check once on
5932  // the qualifier.
5933  //
5934  // FIXME: diagnose the following if we care enough:
5935  //   struct A { int foo; };
5936  //   struct B : A { using A::foo; };
5937  //   template <class T> struct C : A {};
5938  //   template <class T> struct D : C<T> { using B::foo; } // <---
5939  // This is invalid (during instantiation) in C++03 because B::foo
5940  // resolves to the using decl in B, which is not a base class of D<T>.
5941  // We can't diagnose it immediately because C<T> is an unknown
5942  // specialization.  The UsingShadowDecl in D<T> then points directly
5943  // to A::foo, which will look well-formed when we instantiate.
5944  // The right solution is to not collapse the shadow-decl chain.
5945  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5946    DeclContext *OrigDC = Orig->getDeclContext();
5947
5948    // Handle enums and anonymous structs.
5949    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5950    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5951    while (OrigRec->isAnonymousStructOrUnion())
5952      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5953
5954    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5955      if (OrigDC == CurContext) {
5956        Diag(Using->getLocation(),
5957             diag::err_using_decl_nested_name_specifier_is_current_class)
5958          << Using->getQualifierLoc().getSourceRange();
5959        Diag(Orig->getLocation(), diag::note_using_decl_target);
5960        return true;
5961      }
5962
5963      Diag(Using->getQualifierLoc().getBeginLoc(),
5964           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5965        << Using->getQualifier()
5966        << cast<CXXRecordDecl>(CurContext)
5967        << Using->getQualifierLoc().getSourceRange();
5968      Diag(Orig->getLocation(), diag::note_using_decl_target);
5969      return true;
5970    }
5971  }
5972
5973  if (Previous.empty()) return false;
5974
5975  NamedDecl *Target = Orig;
5976  if (isa<UsingShadowDecl>(Target))
5977    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5978
5979  // If the target happens to be one of the previous declarations, we
5980  // don't have a conflict.
5981  //
5982  // FIXME: but we might be increasing its access, in which case we
5983  // should redeclare it.
5984  NamedDecl *NonTag = 0, *Tag = 0;
5985  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5986         I != E; ++I) {
5987    NamedDecl *D = (*I)->getUnderlyingDecl();
5988    bool Result;
5989    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5990      return Result;
5991
5992    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5993  }
5994
5995  if (Target->isFunctionOrFunctionTemplate()) {
5996    FunctionDecl *FD;
5997    if (isa<FunctionTemplateDecl>(Target))
5998      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5999    else
6000      FD = cast<FunctionDecl>(Target);
6001
6002    NamedDecl *OldDecl = 0;
6003    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6004    case Ovl_Overload:
6005      return false;
6006
6007    case Ovl_NonFunction:
6008      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6009      break;
6010
6011    // We found a decl with the exact signature.
6012    case Ovl_Match:
6013      // If we're in a record, we want to hide the target, so we
6014      // return true (without a diagnostic) to tell the caller not to
6015      // build a shadow decl.
6016      if (CurContext->isRecord())
6017        return true;
6018
6019      // If we're not in a record, this is an error.
6020      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6021      break;
6022    }
6023
6024    Diag(Target->getLocation(), diag::note_using_decl_target);
6025    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6026    return true;
6027  }
6028
6029  // Target is not a function.
6030
6031  if (isa<TagDecl>(Target)) {
6032    // No conflict between a tag and a non-tag.
6033    if (!Tag) return false;
6034
6035    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6036    Diag(Target->getLocation(), diag::note_using_decl_target);
6037    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6038    return true;
6039  }
6040
6041  // No conflict between a tag and a non-tag.
6042  if (!NonTag) return false;
6043
6044  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6045  Diag(Target->getLocation(), diag::note_using_decl_target);
6046  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6047  return true;
6048}
6049
6050/// Builds a shadow declaration corresponding to a 'using' declaration.
6051UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6052                                            UsingDecl *UD,
6053                                            NamedDecl *Orig) {
6054
6055  // If we resolved to another shadow declaration, just coalesce them.
6056  NamedDecl *Target = Orig;
6057  if (isa<UsingShadowDecl>(Target)) {
6058    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6059    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6060  }
6061
6062  UsingShadowDecl *Shadow
6063    = UsingShadowDecl::Create(Context, CurContext,
6064                              UD->getLocation(), UD, Target);
6065  UD->addShadowDecl(Shadow);
6066
6067  Shadow->setAccess(UD->getAccess());
6068  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6069    Shadow->setInvalidDecl();
6070
6071  if (S)
6072    PushOnScopeChains(Shadow, S);
6073  else
6074    CurContext->addDecl(Shadow);
6075
6076
6077  return Shadow;
6078}
6079
6080/// Hides a using shadow declaration.  This is required by the current
6081/// using-decl implementation when a resolvable using declaration in a
6082/// class is followed by a declaration which would hide or override
6083/// one or more of the using decl's targets; for example:
6084///
6085///   struct Base { void foo(int); };
6086///   struct Derived : Base {
6087///     using Base::foo;
6088///     void foo(int);
6089///   };
6090///
6091/// The governing language is C++03 [namespace.udecl]p12:
6092///
6093///   When a using-declaration brings names from a base class into a
6094///   derived class scope, member functions in the derived class
6095///   override and/or hide member functions with the same name and
6096///   parameter types in a base class (rather than conflicting).
6097///
6098/// There are two ways to implement this:
6099///   (1) optimistically create shadow decls when they're not hidden
6100///       by existing declarations, or
6101///   (2) don't create any shadow decls (or at least don't make them
6102///       visible) until we've fully parsed/instantiated the class.
6103/// The problem with (1) is that we might have to retroactively remove
6104/// a shadow decl, which requires several O(n) operations because the
6105/// decl structures are (very reasonably) not designed for removal.
6106/// (2) avoids this but is very fiddly and phase-dependent.
6107void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6108  if (Shadow->getDeclName().getNameKind() ==
6109        DeclarationName::CXXConversionFunctionName)
6110    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6111
6112  // Remove it from the DeclContext...
6113  Shadow->getDeclContext()->removeDecl(Shadow);
6114
6115  // ...and the scope, if applicable...
6116  if (S) {
6117    S->RemoveDecl(Shadow);
6118    IdResolver.RemoveDecl(Shadow);
6119  }
6120
6121  // ...and the using decl.
6122  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6123
6124  // TODO: complain somehow if Shadow was used.  It shouldn't
6125  // be possible for this to happen, because...?
6126}
6127
6128/// Builds a using declaration.
6129///
6130/// \param IsInstantiation - Whether this call arises from an
6131///   instantiation of an unresolved using declaration.  We treat
6132///   the lookup differently for these declarations.
6133NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6134                                       SourceLocation UsingLoc,
6135                                       CXXScopeSpec &SS,
6136                                       const DeclarationNameInfo &NameInfo,
6137                                       AttributeList *AttrList,
6138                                       bool IsInstantiation,
6139                                       bool IsTypeName,
6140                                       SourceLocation TypenameLoc) {
6141  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6142  SourceLocation IdentLoc = NameInfo.getLoc();
6143  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6144
6145  // FIXME: We ignore attributes for now.
6146
6147  if (SS.isEmpty()) {
6148    Diag(IdentLoc, diag::err_using_requires_qualname);
6149    return 0;
6150  }
6151
6152  // Do the redeclaration lookup in the current scope.
6153  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6154                        ForRedeclaration);
6155  Previous.setHideTags(false);
6156  if (S) {
6157    LookupName(Previous, S);
6158
6159    // It is really dumb that we have to do this.
6160    LookupResult::Filter F = Previous.makeFilter();
6161    while (F.hasNext()) {
6162      NamedDecl *D = F.next();
6163      if (!isDeclInScope(D, CurContext, S))
6164        F.erase();
6165    }
6166    F.done();
6167  } else {
6168    assert(IsInstantiation && "no scope in non-instantiation");
6169    assert(CurContext->isRecord() && "scope not record in instantiation");
6170    LookupQualifiedName(Previous, CurContext);
6171  }
6172
6173  // Check for invalid redeclarations.
6174  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6175    return 0;
6176
6177  // Check for bad qualifiers.
6178  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6179    return 0;
6180
6181  DeclContext *LookupContext = computeDeclContext(SS);
6182  NamedDecl *D;
6183  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6184  if (!LookupContext) {
6185    if (IsTypeName) {
6186      // FIXME: not all declaration name kinds are legal here
6187      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6188                                              UsingLoc, TypenameLoc,
6189                                              QualifierLoc,
6190                                              IdentLoc, NameInfo.getName());
6191    } else {
6192      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6193                                           QualifierLoc, NameInfo);
6194    }
6195  } else {
6196    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6197                          NameInfo, IsTypeName);
6198  }
6199  D->setAccess(AS);
6200  CurContext->addDecl(D);
6201
6202  if (!LookupContext) return D;
6203  UsingDecl *UD = cast<UsingDecl>(D);
6204
6205  if (RequireCompleteDeclContext(SS, LookupContext)) {
6206    UD->setInvalidDecl();
6207    return UD;
6208  }
6209
6210  // Constructor inheriting using decls get special treatment.
6211  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6212    if (CheckInheritedConstructorUsingDecl(UD))
6213      UD->setInvalidDecl();
6214    return UD;
6215  }
6216
6217  // Otherwise, look up the target name.
6218
6219  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6220
6221  // Unlike most lookups, we don't always want to hide tag
6222  // declarations: tag names are visible through the using declaration
6223  // even if hidden by ordinary names, *except* in a dependent context
6224  // where it's important for the sanity of two-phase lookup.
6225  if (!IsInstantiation)
6226    R.setHideTags(false);
6227
6228  LookupQualifiedName(R, LookupContext);
6229
6230  if (R.empty()) {
6231    Diag(IdentLoc, diag::err_no_member)
6232      << NameInfo.getName() << LookupContext << SS.getRange();
6233    UD->setInvalidDecl();
6234    return UD;
6235  }
6236
6237  if (R.isAmbiguous()) {
6238    UD->setInvalidDecl();
6239    return UD;
6240  }
6241
6242  if (IsTypeName) {
6243    // If we asked for a typename and got a non-type decl, error out.
6244    if (!R.getAsSingle<TypeDecl>()) {
6245      Diag(IdentLoc, diag::err_using_typename_non_type);
6246      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6247        Diag((*I)->getUnderlyingDecl()->getLocation(),
6248             diag::note_using_decl_target);
6249      UD->setInvalidDecl();
6250      return UD;
6251    }
6252  } else {
6253    // If we asked for a non-typename and we got a type, error out,
6254    // but only if this is an instantiation of an unresolved using
6255    // decl.  Otherwise just silently find the type name.
6256    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6257      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6258      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6259      UD->setInvalidDecl();
6260      return UD;
6261    }
6262  }
6263
6264  // C++0x N2914 [namespace.udecl]p6:
6265  // A using-declaration shall not name a namespace.
6266  if (R.getAsSingle<NamespaceDecl>()) {
6267    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6268      << SS.getRange();
6269    UD->setInvalidDecl();
6270    return UD;
6271  }
6272
6273  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6274    if (!CheckUsingShadowDecl(UD, *I, Previous))
6275      BuildUsingShadowDecl(S, UD, *I);
6276  }
6277
6278  return UD;
6279}
6280
6281/// Additional checks for a using declaration referring to a constructor name.
6282bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6283  if (UD->isTypeName()) {
6284    // FIXME: Cannot specify typename when specifying constructor
6285    return true;
6286  }
6287
6288  const Type *SourceType = UD->getQualifier()->getAsType();
6289  assert(SourceType &&
6290         "Using decl naming constructor doesn't have type in scope spec.");
6291  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6292
6293  // Check whether the named type is a direct base class.
6294  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6295  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6296  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6297       BaseIt != BaseE; ++BaseIt) {
6298    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6299    if (CanonicalSourceType == BaseType)
6300      break;
6301  }
6302
6303  if (BaseIt == BaseE) {
6304    // Did not find SourceType in the bases.
6305    Diag(UD->getUsingLocation(),
6306         diag::err_using_decl_constructor_not_in_direct_base)
6307      << UD->getNameInfo().getSourceRange()
6308      << QualType(SourceType, 0) << TargetClass;
6309    return true;
6310  }
6311
6312  BaseIt->setInheritConstructors();
6313
6314  return false;
6315}
6316
6317/// Checks that the given using declaration is not an invalid
6318/// redeclaration.  Note that this is checking only for the using decl
6319/// itself, not for any ill-formedness among the UsingShadowDecls.
6320bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6321                                       bool isTypeName,
6322                                       const CXXScopeSpec &SS,
6323                                       SourceLocation NameLoc,
6324                                       const LookupResult &Prev) {
6325  // C++03 [namespace.udecl]p8:
6326  // C++0x [namespace.udecl]p10:
6327  //   A using-declaration is a declaration and can therefore be used
6328  //   repeatedly where (and only where) multiple declarations are
6329  //   allowed.
6330  //
6331  // That's in non-member contexts.
6332  if (!CurContext->getRedeclContext()->isRecord())
6333    return false;
6334
6335  NestedNameSpecifier *Qual
6336    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6337
6338  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6339    NamedDecl *D = *I;
6340
6341    bool DTypename;
6342    NestedNameSpecifier *DQual;
6343    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6344      DTypename = UD->isTypeName();
6345      DQual = UD->getQualifier();
6346    } else if (UnresolvedUsingValueDecl *UD
6347                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6348      DTypename = false;
6349      DQual = UD->getQualifier();
6350    } else if (UnresolvedUsingTypenameDecl *UD
6351                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6352      DTypename = true;
6353      DQual = UD->getQualifier();
6354    } else continue;
6355
6356    // using decls differ if one says 'typename' and the other doesn't.
6357    // FIXME: non-dependent using decls?
6358    if (isTypeName != DTypename) continue;
6359
6360    // using decls differ if they name different scopes (but note that
6361    // template instantiation can cause this check to trigger when it
6362    // didn't before instantiation).
6363    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6364        Context.getCanonicalNestedNameSpecifier(DQual))
6365      continue;
6366
6367    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6368    Diag(D->getLocation(), diag::note_using_decl) << 1;
6369    return true;
6370  }
6371
6372  return false;
6373}
6374
6375
6376/// Checks that the given nested-name qualifier used in a using decl
6377/// in the current context is appropriately related to the current
6378/// scope.  If an error is found, diagnoses it and returns true.
6379bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6380                                   const CXXScopeSpec &SS,
6381                                   SourceLocation NameLoc) {
6382  DeclContext *NamedContext = computeDeclContext(SS);
6383
6384  if (!CurContext->isRecord()) {
6385    // C++03 [namespace.udecl]p3:
6386    // C++0x [namespace.udecl]p8:
6387    //   A using-declaration for a class member shall be a member-declaration.
6388
6389    // If we weren't able to compute a valid scope, it must be a
6390    // dependent class scope.
6391    if (!NamedContext || NamedContext->isRecord()) {
6392      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6393        << SS.getRange();
6394      return true;
6395    }
6396
6397    // Otherwise, everything is known to be fine.
6398    return false;
6399  }
6400
6401  // The current scope is a record.
6402
6403  // If the named context is dependent, we can't decide much.
6404  if (!NamedContext) {
6405    // FIXME: in C++0x, we can diagnose if we can prove that the
6406    // nested-name-specifier does not refer to a base class, which is
6407    // still possible in some cases.
6408
6409    // Otherwise we have to conservatively report that things might be
6410    // okay.
6411    return false;
6412  }
6413
6414  if (!NamedContext->isRecord()) {
6415    // Ideally this would point at the last name in the specifier,
6416    // but we don't have that level of source info.
6417    Diag(SS.getRange().getBegin(),
6418         diag::err_using_decl_nested_name_specifier_is_not_class)
6419      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6420    return true;
6421  }
6422
6423  if (!NamedContext->isDependentContext() &&
6424      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6425    return true;
6426
6427  if (getLangOptions().CPlusPlus0x) {
6428    // C++0x [namespace.udecl]p3:
6429    //   In a using-declaration used as a member-declaration, the
6430    //   nested-name-specifier shall name a base class of the class
6431    //   being defined.
6432
6433    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6434                                 cast<CXXRecordDecl>(NamedContext))) {
6435      if (CurContext == NamedContext) {
6436        Diag(NameLoc,
6437             diag::err_using_decl_nested_name_specifier_is_current_class)
6438          << SS.getRange();
6439        return true;
6440      }
6441
6442      Diag(SS.getRange().getBegin(),
6443           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6444        << (NestedNameSpecifier*) SS.getScopeRep()
6445        << cast<CXXRecordDecl>(CurContext)
6446        << SS.getRange();
6447      return true;
6448    }
6449
6450    return false;
6451  }
6452
6453  // C++03 [namespace.udecl]p4:
6454  //   A using-declaration used as a member-declaration shall refer
6455  //   to a member of a base class of the class being defined [etc.].
6456
6457  // Salient point: SS doesn't have to name a base class as long as
6458  // lookup only finds members from base classes.  Therefore we can
6459  // diagnose here only if we can prove that that can't happen,
6460  // i.e. if the class hierarchies provably don't intersect.
6461
6462  // TODO: it would be nice if "definitely valid" results were cached
6463  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6464  // need to be repeated.
6465
6466  struct UserData {
6467    llvm::DenseSet<const CXXRecordDecl*> Bases;
6468
6469    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6470      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6471      Data->Bases.insert(Base);
6472      return true;
6473    }
6474
6475    bool hasDependentBases(const CXXRecordDecl *Class) {
6476      return !Class->forallBases(collect, this);
6477    }
6478
6479    /// Returns true if the base is dependent or is one of the
6480    /// accumulated base classes.
6481    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6482      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6483      return !Data->Bases.count(Base);
6484    }
6485
6486    bool mightShareBases(const CXXRecordDecl *Class) {
6487      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6488    }
6489  };
6490
6491  UserData Data;
6492
6493  // Returns false if we find a dependent base.
6494  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6495    return false;
6496
6497  // Returns false if the class has a dependent base or if it or one
6498  // of its bases is present in the base set of the current context.
6499  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6500    return false;
6501
6502  Diag(SS.getRange().getBegin(),
6503       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6504    << (NestedNameSpecifier*) SS.getScopeRep()
6505    << cast<CXXRecordDecl>(CurContext)
6506    << SS.getRange();
6507
6508  return true;
6509}
6510
6511Decl *Sema::ActOnAliasDeclaration(Scope *S,
6512                                  AccessSpecifier AS,
6513                                  MultiTemplateParamsArg TemplateParamLists,
6514                                  SourceLocation UsingLoc,
6515                                  UnqualifiedId &Name,
6516                                  TypeResult Type) {
6517  // Skip up to the relevant declaration scope.
6518  while (S->getFlags() & Scope::TemplateParamScope)
6519    S = S->getParent();
6520  assert((S->getFlags() & Scope::DeclScope) &&
6521         "got alias-declaration outside of declaration scope");
6522
6523  if (Type.isInvalid())
6524    return 0;
6525
6526  bool Invalid = false;
6527  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6528  TypeSourceInfo *TInfo = 0;
6529  GetTypeFromParser(Type.get(), &TInfo);
6530
6531  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6532    return 0;
6533
6534  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6535                                      UPPC_DeclarationType)) {
6536    Invalid = true;
6537    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6538                                             TInfo->getTypeLoc().getBeginLoc());
6539  }
6540
6541  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6542  LookupName(Previous, S);
6543
6544  // Warn about shadowing the name of a template parameter.
6545  if (Previous.isSingleResult() &&
6546      Previous.getFoundDecl()->isTemplateParameter()) {
6547    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6548    Previous.clear();
6549  }
6550
6551  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6552         "name in alias declaration must be an identifier");
6553  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6554                                               Name.StartLocation,
6555                                               Name.Identifier, TInfo);
6556
6557  NewTD->setAccess(AS);
6558
6559  if (Invalid)
6560    NewTD->setInvalidDecl();
6561
6562  CheckTypedefForVariablyModifiedType(S, NewTD);
6563  Invalid |= NewTD->isInvalidDecl();
6564
6565  bool Redeclaration = false;
6566
6567  NamedDecl *NewND;
6568  if (TemplateParamLists.size()) {
6569    TypeAliasTemplateDecl *OldDecl = 0;
6570    TemplateParameterList *OldTemplateParams = 0;
6571
6572    if (TemplateParamLists.size() != 1) {
6573      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6574        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6575         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6576    }
6577    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6578
6579    // Only consider previous declarations in the same scope.
6580    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6581                         /*ExplicitInstantiationOrSpecialization*/false);
6582    if (!Previous.empty()) {
6583      Redeclaration = true;
6584
6585      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6586      if (!OldDecl && !Invalid) {
6587        Diag(UsingLoc, diag::err_redefinition_different_kind)
6588          << Name.Identifier;
6589
6590        NamedDecl *OldD = Previous.getRepresentativeDecl();
6591        if (OldD->getLocation().isValid())
6592          Diag(OldD->getLocation(), diag::note_previous_definition);
6593
6594        Invalid = true;
6595      }
6596
6597      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6598        if (TemplateParameterListsAreEqual(TemplateParams,
6599                                           OldDecl->getTemplateParameters(),
6600                                           /*Complain=*/true,
6601                                           TPL_TemplateMatch))
6602          OldTemplateParams = OldDecl->getTemplateParameters();
6603        else
6604          Invalid = true;
6605
6606        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6607        if (!Invalid &&
6608            !Context.hasSameType(OldTD->getUnderlyingType(),
6609                                 NewTD->getUnderlyingType())) {
6610          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6611          // but we can't reasonably accept it.
6612          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6613            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6614          if (OldTD->getLocation().isValid())
6615            Diag(OldTD->getLocation(), diag::note_previous_definition);
6616          Invalid = true;
6617        }
6618      }
6619    }
6620
6621    // Merge any previous default template arguments into our parameters,
6622    // and check the parameter list.
6623    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6624                                   TPC_TypeAliasTemplate))
6625      return 0;
6626
6627    TypeAliasTemplateDecl *NewDecl =
6628      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6629                                    Name.Identifier, TemplateParams,
6630                                    NewTD);
6631
6632    NewDecl->setAccess(AS);
6633
6634    if (Invalid)
6635      NewDecl->setInvalidDecl();
6636    else if (OldDecl)
6637      NewDecl->setPreviousDeclaration(OldDecl);
6638
6639    NewND = NewDecl;
6640  } else {
6641    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6642    NewND = NewTD;
6643  }
6644
6645  if (!Redeclaration)
6646    PushOnScopeChains(NewND, S);
6647
6648  return NewND;
6649}
6650
6651Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6652                                             SourceLocation NamespaceLoc,
6653                                             SourceLocation AliasLoc,
6654                                             IdentifierInfo *Alias,
6655                                             CXXScopeSpec &SS,
6656                                             SourceLocation IdentLoc,
6657                                             IdentifierInfo *Ident) {
6658
6659  // Lookup the namespace name.
6660  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6661  LookupParsedName(R, S, &SS);
6662
6663  // Check if we have a previous declaration with the same name.
6664  NamedDecl *PrevDecl
6665    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6666                       ForRedeclaration);
6667  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6668    PrevDecl = 0;
6669
6670  if (PrevDecl) {
6671    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6672      // We already have an alias with the same name that points to the same
6673      // namespace, so don't create a new one.
6674      // FIXME: At some point, we'll want to create the (redundant)
6675      // declaration to maintain better source information.
6676      if (!R.isAmbiguous() && !R.empty() &&
6677          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6678        return 0;
6679    }
6680
6681    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6682      diag::err_redefinition_different_kind;
6683    Diag(AliasLoc, DiagID) << Alias;
6684    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6685    return 0;
6686  }
6687
6688  if (R.isAmbiguous())
6689    return 0;
6690
6691  if (R.empty()) {
6692    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6693      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6694      return 0;
6695    }
6696  }
6697
6698  NamespaceAliasDecl *AliasDecl =
6699    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6700                               Alias, SS.getWithLocInContext(Context),
6701                               IdentLoc, R.getFoundDecl());
6702
6703  PushOnScopeChains(AliasDecl, S);
6704  return AliasDecl;
6705}
6706
6707namespace {
6708  /// \brief Scoped object used to handle the state changes required in Sema
6709  /// to implicitly define the body of a C++ member function;
6710  class ImplicitlyDefinedFunctionScope {
6711    Sema &S;
6712    Sema::ContextRAII SavedContext;
6713
6714  public:
6715    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6716      : S(S), SavedContext(S, Method)
6717    {
6718      S.PushFunctionScope();
6719      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6720    }
6721
6722    ~ImplicitlyDefinedFunctionScope() {
6723      S.PopExpressionEvaluationContext();
6724      S.PopFunctionScopeInfo();
6725    }
6726  };
6727}
6728
6729Sema::ImplicitExceptionSpecification
6730Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6731  // C++ [except.spec]p14:
6732  //   An implicitly declared special member function (Clause 12) shall have an
6733  //   exception-specification. [...]
6734  ImplicitExceptionSpecification ExceptSpec(Context);
6735  if (ClassDecl->isInvalidDecl())
6736    return ExceptSpec;
6737
6738  // Direct base-class constructors.
6739  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6740                                       BEnd = ClassDecl->bases_end();
6741       B != BEnd; ++B) {
6742    if (B->isVirtual()) // Handled below.
6743      continue;
6744
6745    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6746      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6747      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6748      // If this is a deleted function, add it anyway. This might be conformant
6749      // with the standard. This might not. I'm not sure. It might not matter.
6750      if (Constructor)
6751        ExceptSpec.CalledDecl(Constructor);
6752    }
6753  }
6754
6755  // Virtual base-class constructors.
6756  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6757                                       BEnd = ClassDecl->vbases_end();
6758       B != BEnd; ++B) {
6759    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6760      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6761      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6762      // If this is a deleted function, add it anyway. This might be conformant
6763      // with the standard. This might not. I'm not sure. It might not matter.
6764      if (Constructor)
6765        ExceptSpec.CalledDecl(Constructor);
6766    }
6767  }
6768
6769  // Field constructors.
6770  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6771                               FEnd = ClassDecl->field_end();
6772       F != FEnd; ++F) {
6773    if (F->hasInClassInitializer()) {
6774      if (Expr *E = F->getInClassInitializer())
6775        ExceptSpec.CalledExpr(E);
6776      else if (!F->isInvalidDecl())
6777        ExceptSpec.SetDelayed();
6778    } else if (const RecordType *RecordTy
6779              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6780      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6781      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6782      // If this is a deleted function, add it anyway. This might be conformant
6783      // with the standard. This might not. I'm not sure. It might not matter.
6784      // In particular, the problem is that this function never gets called. It
6785      // might just be ill-formed because this function attempts to refer to
6786      // a deleted function here.
6787      if (Constructor)
6788        ExceptSpec.CalledDecl(Constructor);
6789    }
6790  }
6791
6792  return ExceptSpec;
6793}
6794
6795CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6796                                                     CXXRecordDecl *ClassDecl) {
6797  // C++ [class.ctor]p5:
6798  //   A default constructor for a class X is a constructor of class X
6799  //   that can be called without an argument. If there is no
6800  //   user-declared constructor for class X, a default constructor is
6801  //   implicitly declared. An implicitly-declared default constructor
6802  //   is an inline public member of its class.
6803  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6804         "Should not build implicit default constructor!");
6805
6806  ImplicitExceptionSpecification Spec =
6807    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6808  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6809
6810  // Create the actual constructor declaration.
6811  CanQualType ClassType
6812    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6813  SourceLocation ClassLoc = ClassDecl->getLocation();
6814  DeclarationName Name
6815    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6816  DeclarationNameInfo NameInfo(Name, ClassLoc);
6817  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6818      Context, ClassDecl, ClassLoc, NameInfo,
6819      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6820      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6821      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
6822        getLangOptions().CPlusPlus0x);
6823  DefaultCon->setAccess(AS_public);
6824  DefaultCon->setDefaulted();
6825  DefaultCon->setImplicit();
6826  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6827
6828  // Note that we have declared this constructor.
6829  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6830
6831  if (Scope *S = getScopeForContext(ClassDecl))
6832    PushOnScopeChains(DefaultCon, S, false);
6833  ClassDecl->addDecl(DefaultCon);
6834
6835  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6836    DefaultCon->setDeletedAsWritten();
6837
6838  return DefaultCon;
6839}
6840
6841void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6842                                            CXXConstructorDecl *Constructor) {
6843  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6844          !Constructor->doesThisDeclarationHaveABody() &&
6845          !Constructor->isDeleted()) &&
6846    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6847
6848  CXXRecordDecl *ClassDecl = Constructor->getParent();
6849  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6850
6851  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6852  DiagnosticErrorTrap Trap(Diags);
6853  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6854      Trap.hasErrorOccurred()) {
6855    Diag(CurrentLocation, diag::note_member_synthesized_at)
6856      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6857    Constructor->setInvalidDecl();
6858    return;
6859  }
6860
6861  SourceLocation Loc = Constructor->getLocation();
6862  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6863
6864  Constructor->setUsed();
6865  MarkVTableUsed(CurrentLocation, ClassDecl);
6866
6867  if (ASTMutationListener *L = getASTMutationListener()) {
6868    L->CompletedImplicitDefinition(Constructor);
6869  }
6870}
6871
6872/// Get any existing defaulted default constructor for the given class. Do not
6873/// implicitly define one if it does not exist.
6874static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6875                                                             CXXRecordDecl *D) {
6876  ASTContext &Context = Self.Context;
6877  QualType ClassType = Context.getTypeDeclType(D);
6878  DeclarationName ConstructorName
6879    = Context.DeclarationNames.getCXXConstructorName(
6880                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6881
6882  DeclContext::lookup_const_iterator Con, ConEnd;
6883  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6884       Con != ConEnd; ++Con) {
6885    // A function template cannot be defaulted.
6886    if (isa<FunctionTemplateDecl>(*Con))
6887      continue;
6888
6889    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6890    if (Constructor->isDefaultConstructor())
6891      return Constructor->isDefaulted() ? Constructor : 0;
6892  }
6893  return 0;
6894}
6895
6896void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6897  if (!D) return;
6898  AdjustDeclIfTemplate(D);
6899
6900  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6901  CXXConstructorDecl *CtorDecl
6902    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6903
6904  if (!CtorDecl) return;
6905
6906  // Compute the exception specification for the default constructor.
6907  const FunctionProtoType *CtorTy =
6908    CtorDecl->getType()->castAs<FunctionProtoType>();
6909  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6910    ImplicitExceptionSpecification Spec =
6911      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6912    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6913    assert(EPI.ExceptionSpecType != EST_Delayed);
6914
6915    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6916  }
6917
6918  // If the default constructor is explicitly defaulted, checking the exception
6919  // specification is deferred until now.
6920  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6921      !ClassDecl->isDependentType())
6922    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6923}
6924
6925void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6926  // We start with an initial pass over the base classes to collect those that
6927  // inherit constructors from. If there are none, we can forgo all further
6928  // processing.
6929  typedef SmallVector<const RecordType *, 4> BasesVector;
6930  BasesVector BasesToInheritFrom;
6931  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6932                                          BaseE = ClassDecl->bases_end();
6933         BaseIt != BaseE; ++BaseIt) {
6934    if (BaseIt->getInheritConstructors()) {
6935      QualType Base = BaseIt->getType();
6936      if (Base->isDependentType()) {
6937        // If we inherit constructors from anything that is dependent, just
6938        // abort processing altogether. We'll get another chance for the
6939        // instantiations.
6940        return;
6941      }
6942      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6943    }
6944  }
6945  if (BasesToInheritFrom.empty())
6946    return;
6947
6948  // Now collect the constructors that we already have in the current class.
6949  // Those take precedence over inherited constructors.
6950  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6951  //   unless there is a user-declared constructor with the same signature in
6952  //   the class where the using-declaration appears.
6953  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6954  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6955                                    CtorE = ClassDecl->ctor_end();
6956       CtorIt != CtorE; ++CtorIt) {
6957    ExistingConstructors.insert(
6958        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6959  }
6960
6961  Scope *S = getScopeForContext(ClassDecl);
6962  DeclarationName CreatedCtorName =
6963      Context.DeclarationNames.getCXXConstructorName(
6964          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6965
6966  // Now comes the true work.
6967  // First, we keep a map from constructor types to the base that introduced
6968  // them. Needed for finding conflicting constructors. We also keep the
6969  // actually inserted declarations in there, for pretty diagnostics.
6970  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6971  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6972  ConstructorToSourceMap InheritedConstructors;
6973  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6974                             BaseE = BasesToInheritFrom.end();
6975       BaseIt != BaseE; ++BaseIt) {
6976    const RecordType *Base = *BaseIt;
6977    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6978    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6979    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6980                                      CtorE = BaseDecl->ctor_end();
6981         CtorIt != CtorE; ++CtorIt) {
6982      // Find the using declaration for inheriting this base's constructors.
6983      DeclarationName Name =
6984          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6985      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6986          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6987      SourceLocation UsingLoc = UD ? UD->getLocation() :
6988                                     ClassDecl->getLocation();
6989
6990      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6991      //   from the class X named in the using-declaration consists of actual
6992      //   constructors and notional constructors that result from the
6993      //   transformation of defaulted parameters as follows:
6994      //   - all non-template default constructors of X, and
6995      //   - for each non-template constructor of X that has at least one
6996      //     parameter with a default argument, the set of constructors that
6997      //     results from omitting any ellipsis parameter specification and
6998      //     successively omitting parameters with a default argument from the
6999      //     end of the parameter-type-list.
7000      CXXConstructorDecl *BaseCtor = *CtorIt;
7001      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7002      const FunctionProtoType *BaseCtorType =
7003          BaseCtor->getType()->getAs<FunctionProtoType>();
7004
7005      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7006                    maxParams = BaseCtor->getNumParams();
7007           params <= maxParams; ++params) {
7008        // Skip default constructors. They're never inherited.
7009        if (params == 0)
7010          continue;
7011        // Skip copy and move constructors for the same reason.
7012        if (CanBeCopyOrMove && params == 1)
7013          continue;
7014
7015        // Build up a function type for this particular constructor.
7016        // FIXME: The working paper does not consider that the exception spec
7017        // for the inheriting constructor might be larger than that of the
7018        // source. This code doesn't yet, either. When it does, this code will
7019        // need to be delayed until after exception specifications and in-class
7020        // member initializers are attached.
7021        const Type *NewCtorType;
7022        if (params == maxParams)
7023          NewCtorType = BaseCtorType;
7024        else {
7025          SmallVector<QualType, 16> Args;
7026          for (unsigned i = 0; i < params; ++i) {
7027            Args.push_back(BaseCtorType->getArgType(i));
7028          }
7029          FunctionProtoType::ExtProtoInfo ExtInfo =
7030              BaseCtorType->getExtProtoInfo();
7031          ExtInfo.Variadic = false;
7032          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7033                                                Args.data(), params, ExtInfo)
7034                       .getTypePtr();
7035        }
7036        const Type *CanonicalNewCtorType =
7037            Context.getCanonicalType(NewCtorType);
7038
7039        // Now that we have the type, first check if the class already has a
7040        // constructor with this signature.
7041        if (ExistingConstructors.count(CanonicalNewCtorType))
7042          continue;
7043
7044        // Then we check if we have already declared an inherited constructor
7045        // with this signature.
7046        std::pair<ConstructorToSourceMap::iterator, bool> result =
7047            InheritedConstructors.insert(std::make_pair(
7048                CanonicalNewCtorType,
7049                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7050        if (!result.second) {
7051          // Already in the map. If it came from a different class, that's an
7052          // error. Not if it's from the same.
7053          CanQualType PreviousBase = result.first->second.first;
7054          if (CanonicalBase != PreviousBase) {
7055            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7056            const CXXConstructorDecl *PrevBaseCtor =
7057                PrevCtor->getInheritedConstructor();
7058            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7059
7060            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7061            Diag(BaseCtor->getLocation(),
7062                 diag::note_using_decl_constructor_conflict_current_ctor);
7063            Diag(PrevBaseCtor->getLocation(),
7064                 diag::note_using_decl_constructor_conflict_previous_ctor);
7065            Diag(PrevCtor->getLocation(),
7066                 diag::note_using_decl_constructor_conflict_previous_using);
7067          }
7068          continue;
7069        }
7070
7071        // OK, we're there, now add the constructor.
7072        // C++0x [class.inhctor]p8: [...] that would be performed by a
7073        //   user-written inline constructor [...]
7074        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7075        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7076            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7077            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7078            /*ImplicitlyDeclared=*/true,
7079            // FIXME: Due to a defect in the standard, we treat inherited
7080            // constructors as constexpr even if that makes them ill-formed.
7081            /*Constexpr=*/BaseCtor->isConstexpr());
7082        NewCtor->setAccess(BaseCtor->getAccess());
7083
7084        // Build up the parameter decls and add them.
7085        SmallVector<ParmVarDecl *, 16> ParamDecls;
7086        for (unsigned i = 0; i < params; ++i) {
7087          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7088                                                   UsingLoc, UsingLoc,
7089                                                   /*IdentifierInfo=*/0,
7090                                                   BaseCtorType->getArgType(i),
7091                                                   /*TInfo=*/0, SC_None,
7092                                                   SC_None, /*DefaultArg=*/0));
7093        }
7094        NewCtor->setParams(ParamDecls);
7095        NewCtor->setInheritedConstructor(BaseCtor);
7096
7097        PushOnScopeChains(NewCtor, S, false);
7098        ClassDecl->addDecl(NewCtor);
7099        result.first->second.second = NewCtor;
7100      }
7101    }
7102  }
7103}
7104
7105Sema::ImplicitExceptionSpecification
7106Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7107  // C++ [except.spec]p14:
7108  //   An implicitly declared special member function (Clause 12) shall have
7109  //   an exception-specification.
7110  ImplicitExceptionSpecification ExceptSpec(Context);
7111  if (ClassDecl->isInvalidDecl())
7112    return ExceptSpec;
7113
7114  // Direct base-class destructors.
7115  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7116                                       BEnd = ClassDecl->bases_end();
7117       B != BEnd; ++B) {
7118    if (B->isVirtual()) // Handled below.
7119      continue;
7120
7121    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7122      ExceptSpec.CalledDecl(
7123                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7124  }
7125
7126  // Virtual base-class destructors.
7127  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7128                                       BEnd = ClassDecl->vbases_end();
7129       B != BEnd; ++B) {
7130    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7131      ExceptSpec.CalledDecl(
7132                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7133  }
7134
7135  // Field destructors.
7136  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7137                               FEnd = ClassDecl->field_end();
7138       F != FEnd; ++F) {
7139    if (const RecordType *RecordTy
7140        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7141      ExceptSpec.CalledDecl(
7142                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7143  }
7144
7145  return ExceptSpec;
7146}
7147
7148CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7149  // C++ [class.dtor]p2:
7150  //   If a class has no user-declared destructor, a destructor is
7151  //   declared implicitly. An implicitly-declared destructor is an
7152  //   inline public member of its class.
7153
7154  ImplicitExceptionSpecification Spec =
7155      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7156  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7157
7158  // Create the actual destructor declaration.
7159  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7160
7161  CanQualType ClassType
7162    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7163  SourceLocation ClassLoc = ClassDecl->getLocation();
7164  DeclarationName Name
7165    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7166  DeclarationNameInfo NameInfo(Name, ClassLoc);
7167  CXXDestructorDecl *Destructor
7168      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7169                                  /*isInline=*/true,
7170                                  /*isImplicitlyDeclared=*/true);
7171  Destructor->setAccess(AS_public);
7172  Destructor->setDefaulted();
7173  Destructor->setImplicit();
7174  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7175
7176  // Note that we have declared this destructor.
7177  ++ASTContext::NumImplicitDestructorsDeclared;
7178
7179  // Introduce this destructor into its scope.
7180  if (Scope *S = getScopeForContext(ClassDecl))
7181    PushOnScopeChains(Destructor, S, false);
7182  ClassDecl->addDecl(Destructor);
7183
7184  // This could be uniqued if it ever proves significant.
7185  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7186
7187  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7188    Destructor->setDeletedAsWritten();
7189
7190  AddOverriddenMethods(ClassDecl, Destructor);
7191
7192  return Destructor;
7193}
7194
7195void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7196                                    CXXDestructorDecl *Destructor) {
7197  assert((Destructor->isDefaulted() &&
7198          !Destructor->doesThisDeclarationHaveABody()) &&
7199         "DefineImplicitDestructor - call it for implicit default dtor");
7200  CXXRecordDecl *ClassDecl = Destructor->getParent();
7201  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7202
7203  if (Destructor->isInvalidDecl())
7204    return;
7205
7206  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7207
7208  DiagnosticErrorTrap Trap(Diags);
7209  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7210                                         Destructor->getParent());
7211
7212  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7213    Diag(CurrentLocation, diag::note_member_synthesized_at)
7214      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7215
7216    Destructor->setInvalidDecl();
7217    return;
7218  }
7219
7220  SourceLocation Loc = Destructor->getLocation();
7221  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7222  Destructor->setImplicitlyDefined(true);
7223  Destructor->setUsed();
7224  MarkVTableUsed(CurrentLocation, ClassDecl);
7225
7226  if (ASTMutationListener *L = getASTMutationListener()) {
7227    L->CompletedImplicitDefinition(Destructor);
7228  }
7229}
7230
7231void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7232                                         CXXDestructorDecl *destructor) {
7233  // C++11 [class.dtor]p3:
7234  //   A declaration of a destructor that does not have an exception-
7235  //   specification is implicitly considered to have the same exception-
7236  //   specification as an implicit declaration.
7237  const FunctionProtoType *dtorType = destructor->getType()->
7238                                        getAs<FunctionProtoType>();
7239  if (dtorType->hasExceptionSpec())
7240    return;
7241
7242  ImplicitExceptionSpecification exceptSpec =
7243      ComputeDefaultedDtorExceptionSpec(classDecl);
7244
7245  // Replace the destructor's type, building off the existing one. Fortunately,
7246  // the only thing of interest in the destructor type is its extended info.
7247  // The return and arguments are fixed.
7248  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7249  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7250  epi.NumExceptions = exceptSpec.size();
7251  epi.Exceptions = exceptSpec.data();
7252  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7253
7254  destructor->setType(ty);
7255
7256  // FIXME: If the destructor has a body that could throw, and the newly created
7257  // spec doesn't allow exceptions, we should emit a warning, because this
7258  // change in behavior can break conforming C++03 programs at runtime.
7259  // However, we don't have a body yet, so it needs to be done somewhere else.
7260}
7261
7262/// \brief Builds a statement that copies/moves the given entity from \p From to
7263/// \c To.
7264///
7265/// This routine is used to copy/move the members of a class with an
7266/// implicitly-declared copy/move assignment operator. When the entities being
7267/// copied are arrays, this routine builds for loops to copy them.
7268///
7269/// \param S The Sema object used for type-checking.
7270///
7271/// \param Loc The location where the implicit copy/move is being generated.
7272///
7273/// \param T The type of the expressions being copied/moved. Both expressions
7274/// must have this type.
7275///
7276/// \param To The expression we are copying/moving to.
7277///
7278/// \param From The expression we are copying/moving from.
7279///
7280/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7281/// Otherwise, it's a non-static member subobject.
7282///
7283/// \param Copying Whether we're copying or moving.
7284///
7285/// \param Depth Internal parameter recording the depth of the recursion.
7286///
7287/// \returns A statement or a loop that copies the expressions.
7288static StmtResult
7289BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7290                      Expr *To, Expr *From,
7291                      bool CopyingBaseSubobject, bool Copying,
7292                      unsigned Depth = 0) {
7293  // C++0x [class.copy]p28:
7294  //   Each subobject is assigned in the manner appropriate to its type:
7295  //
7296  //     - if the subobject is of class type, as if by a call to operator= with
7297  //       the subobject as the object expression and the corresponding
7298  //       subobject of x as a single function argument (as if by explicit
7299  //       qualification; that is, ignoring any possible virtual overriding
7300  //       functions in more derived classes);
7301  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7302    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7303
7304    // Look for operator=.
7305    DeclarationName Name
7306      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7307    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7308    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7309
7310    // Filter out any result that isn't a copy/move-assignment operator.
7311    LookupResult::Filter F = OpLookup.makeFilter();
7312    while (F.hasNext()) {
7313      NamedDecl *D = F.next();
7314      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7315        if (Copying ? Method->isCopyAssignmentOperator() :
7316                      Method->isMoveAssignmentOperator())
7317          continue;
7318
7319      F.erase();
7320    }
7321    F.done();
7322
7323    // Suppress the protected check (C++ [class.protected]) for each of the
7324    // assignment operators we found. This strange dance is required when
7325    // we're assigning via a base classes's copy-assignment operator. To
7326    // ensure that we're getting the right base class subobject (without
7327    // ambiguities), we need to cast "this" to that subobject type; to
7328    // ensure that we don't go through the virtual call mechanism, we need
7329    // to qualify the operator= name with the base class (see below). However,
7330    // this means that if the base class has a protected copy assignment
7331    // operator, the protected member access check will fail. So, we
7332    // rewrite "protected" access to "public" access in this case, since we
7333    // know by construction that we're calling from a derived class.
7334    if (CopyingBaseSubobject) {
7335      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7336           L != LEnd; ++L) {
7337        if (L.getAccess() == AS_protected)
7338          L.setAccess(AS_public);
7339      }
7340    }
7341
7342    // Create the nested-name-specifier that will be used to qualify the
7343    // reference to operator=; this is required to suppress the virtual
7344    // call mechanism.
7345    CXXScopeSpec SS;
7346    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7347    SS.MakeTrivial(S.Context,
7348                   NestedNameSpecifier::Create(S.Context, 0, false,
7349                                               CanonicalT),
7350                   Loc);
7351
7352    // Create the reference to operator=.
7353    ExprResult OpEqualRef
7354      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7355                                   /*TemplateKWLoc=*/SourceLocation(),
7356                                   /*FirstQualifierInScope=*/0,
7357                                   OpLookup,
7358                                   /*TemplateArgs=*/0,
7359                                   /*SuppressQualifierCheck=*/true);
7360    if (OpEqualRef.isInvalid())
7361      return StmtError();
7362
7363    // Build the call to the assignment operator.
7364
7365    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7366                                                  OpEqualRef.takeAs<Expr>(),
7367                                                  Loc, &From, 1, Loc);
7368    if (Call.isInvalid())
7369      return StmtError();
7370
7371    return S.Owned(Call.takeAs<Stmt>());
7372  }
7373
7374  //     - if the subobject is of scalar type, the built-in assignment
7375  //       operator is used.
7376  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7377  if (!ArrayTy) {
7378    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7379    if (Assignment.isInvalid())
7380      return StmtError();
7381
7382    return S.Owned(Assignment.takeAs<Stmt>());
7383  }
7384
7385  //     - if the subobject is an array, each element is assigned, in the
7386  //       manner appropriate to the element type;
7387
7388  // Construct a loop over the array bounds, e.g.,
7389  //
7390  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7391  //
7392  // that will copy each of the array elements.
7393  QualType SizeType = S.Context.getSizeType();
7394
7395  // Create the iteration variable.
7396  IdentifierInfo *IterationVarName = 0;
7397  {
7398    SmallString<8> Str;
7399    llvm::raw_svector_ostream OS(Str);
7400    OS << "__i" << Depth;
7401    IterationVarName = &S.Context.Idents.get(OS.str());
7402  }
7403  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7404                                          IterationVarName, SizeType,
7405                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7406                                          SC_None, SC_None);
7407
7408  // Initialize the iteration variable to zero.
7409  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7410  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7411
7412  // Create a reference to the iteration variable; we'll use this several
7413  // times throughout.
7414  Expr *IterationVarRef
7415    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7416  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7417  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7418  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7419
7420  // Create the DeclStmt that holds the iteration variable.
7421  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7422
7423  // Create the comparison against the array bound.
7424  llvm::APInt Upper
7425    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7426  Expr *Comparison
7427    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7428                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7429                                     BO_NE, S.Context.BoolTy,
7430                                     VK_RValue, OK_Ordinary, Loc);
7431
7432  // Create the pre-increment of the iteration variable.
7433  Expr *Increment
7434    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7435                                    VK_LValue, OK_Ordinary, Loc);
7436
7437  // Subscript the "from" and "to" expressions with the iteration variable.
7438  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7439                                                         IterationVarRefRVal,
7440                                                         Loc));
7441  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7442                                                       IterationVarRefRVal,
7443                                                       Loc));
7444  if (!Copying) // Cast to rvalue
7445    From = CastForMoving(S, From);
7446
7447  // Build the copy/move for an individual element of the array.
7448  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7449                                          To, From, CopyingBaseSubobject,
7450                                          Copying, Depth + 1);
7451  if (Copy.isInvalid())
7452    return StmtError();
7453
7454  // Construct the loop that copies all elements of this array.
7455  return S.ActOnForStmt(Loc, Loc, InitStmt,
7456                        S.MakeFullExpr(Comparison),
7457                        0, S.MakeFullExpr(Increment),
7458                        Loc, Copy.take());
7459}
7460
7461std::pair<Sema::ImplicitExceptionSpecification, bool>
7462Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7463                                                   CXXRecordDecl *ClassDecl) {
7464  if (ClassDecl->isInvalidDecl())
7465    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7466
7467  // C++ [class.copy]p10:
7468  //   If the class definition does not explicitly declare a copy
7469  //   assignment operator, one is declared implicitly.
7470  //   The implicitly-defined copy assignment operator for a class X
7471  //   will have the form
7472  //
7473  //       X& X::operator=(const X&)
7474  //
7475  //   if
7476  bool HasConstCopyAssignment = true;
7477
7478  //       -- each direct base class B of X has a copy assignment operator
7479  //          whose parameter is of type const B&, const volatile B& or B,
7480  //          and
7481  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7482                                       BaseEnd = ClassDecl->bases_end();
7483       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7484    // We'll handle this below
7485    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7486      continue;
7487
7488    assert(!Base->getType()->isDependentType() &&
7489           "Cannot generate implicit members for class with dependent bases.");
7490    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7491    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7492                            &HasConstCopyAssignment);
7493  }
7494
7495  // In C++11, the above citation has "or virtual" added
7496  if (LangOpts.CPlusPlus0x) {
7497    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7498                                         BaseEnd = ClassDecl->vbases_end();
7499         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7500      assert(!Base->getType()->isDependentType() &&
7501             "Cannot generate implicit members for class with dependent bases.");
7502      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7503      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7504                              &HasConstCopyAssignment);
7505    }
7506  }
7507
7508  //       -- for all the nonstatic data members of X that are of a class
7509  //          type M (or array thereof), each such class type has a copy
7510  //          assignment operator whose parameter is of type const M&,
7511  //          const volatile M& or M.
7512  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7513                                  FieldEnd = ClassDecl->field_end();
7514       HasConstCopyAssignment && Field != FieldEnd;
7515       ++Field) {
7516    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7517    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7518      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7519                              &HasConstCopyAssignment);
7520    }
7521  }
7522
7523  //   Otherwise, the implicitly declared copy assignment operator will
7524  //   have the form
7525  //
7526  //       X& X::operator=(X&)
7527
7528  // C++ [except.spec]p14:
7529  //   An implicitly declared special member function (Clause 12) shall have an
7530  //   exception-specification. [...]
7531
7532  // It is unspecified whether or not an implicit copy assignment operator
7533  // attempts to deduplicate calls to assignment operators of virtual bases are
7534  // made. As such, this exception specification is effectively unspecified.
7535  // Based on a similar decision made for constness in C++0x, we're erring on
7536  // the side of assuming such calls to be made regardless of whether they
7537  // actually happen.
7538  ImplicitExceptionSpecification ExceptSpec(Context);
7539  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7540  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7541                                       BaseEnd = ClassDecl->bases_end();
7542       Base != BaseEnd; ++Base) {
7543    if (Base->isVirtual())
7544      continue;
7545
7546    CXXRecordDecl *BaseClassDecl
7547      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7548    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7549                                                            ArgQuals, false, 0))
7550      ExceptSpec.CalledDecl(CopyAssign);
7551  }
7552
7553  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7554                                       BaseEnd = ClassDecl->vbases_end();
7555       Base != BaseEnd; ++Base) {
7556    CXXRecordDecl *BaseClassDecl
7557      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7558    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7559                                                            ArgQuals, false, 0))
7560      ExceptSpec.CalledDecl(CopyAssign);
7561  }
7562
7563  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7564                                  FieldEnd = ClassDecl->field_end();
7565       Field != FieldEnd;
7566       ++Field) {
7567    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7568    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7569      if (CXXMethodDecl *CopyAssign =
7570          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7571        ExceptSpec.CalledDecl(CopyAssign);
7572    }
7573  }
7574
7575  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7576}
7577
7578CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7579  // Note: The following rules are largely analoguous to the copy
7580  // constructor rules. Note that virtual bases are not taken into account
7581  // for determining the argument type of the operator. Note also that
7582  // operators taking an object instead of a reference are allowed.
7583
7584  ImplicitExceptionSpecification Spec(Context);
7585  bool Const;
7586  llvm::tie(Spec, Const) =
7587    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7588
7589  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7590  QualType RetType = Context.getLValueReferenceType(ArgType);
7591  if (Const)
7592    ArgType = ArgType.withConst();
7593  ArgType = Context.getLValueReferenceType(ArgType);
7594
7595  //   An implicitly-declared copy assignment operator is an inline public
7596  //   member of its class.
7597  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7598  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7599  SourceLocation ClassLoc = ClassDecl->getLocation();
7600  DeclarationNameInfo NameInfo(Name, ClassLoc);
7601  CXXMethodDecl *CopyAssignment
7602    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7603                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7604                            /*TInfo=*/0, /*isStatic=*/false,
7605                            /*StorageClassAsWritten=*/SC_None,
7606                            /*isInline=*/true, /*isConstexpr=*/false,
7607                            SourceLocation());
7608  CopyAssignment->setAccess(AS_public);
7609  CopyAssignment->setDefaulted();
7610  CopyAssignment->setImplicit();
7611  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7612
7613  // Add the parameter to the operator.
7614  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7615                                               ClassLoc, ClassLoc, /*Id=*/0,
7616                                               ArgType, /*TInfo=*/0,
7617                                               SC_None,
7618                                               SC_None, 0);
7619  CopyAssignment->setParams(FromParam);
7620
7621  // Note that we have added this copy-assignment operator.
7622  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7623
7624  if (Scope *S = getScopeForContext(ClassDecl))
7625    PushOnScopeChains(CopyAssignment, S, false);
7626  ClassDecl->addDecl(CopyAssignment);
7627
7628  // C++0x [class.copy]p19:
7629  //   ....  If the class definition does not explicitly declare a copy
7630  //   assignment operator, there is no user-declared move constructor, and
7631  //   there is no user-declared move assignment operator, a copy assignment
7632  //   operator is implicitly declared as defaulted.
7633  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7634          !getLangOptions().MicrosoftMode) ||
7635      ClassDecl->hasUserDeclaredMoveAssignment() ||
7636      ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7637    CopyAssignment->setDeletedAsWritten();
7638
7639  AddOverriddenMethods(ClassDecl, CopyAssignment);
7640  return CopyAssignment;
7641}
7642
7643void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7644                                        CXXMethodDecl *CopyAssignOperator) {
7645  assert((CopyAssignOperator->isDefaulted() &&
7646          CopyAssignOperator->isOverloadedOperator() &&
7647          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7648          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7649         "DefineImplicitCopyAssignment called for wrong function");
7650
7651  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7652
7653  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7654    CopyAssignOperator->setInvalidDecl();
7655    return;
7656  }
7657
7658  CopyAssignOperator->setUsed();
7659
7660  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7661  DiagnosticErrorTrap Trap(Diags);
7662
7663  // C++0x [class.copy]p30:
7664  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7665  //   for a non-union class X performs memberwise copy assignment of its
7666  //   subobjects. The direct base classes of X are assigned first, in the
7667  //   order of their declaration in the base-specifier-list, and then the
7668  //   immediate non-static data members of X are assigned, in the order in
7669  //   which they were declared in the class definition.
7670
7671  // The statements that form the synthesized function body.
7672  ASTOwningVector<Stmt*> Statements(*this);
7673
7674  // The parameter for the "other" object, which we are copying from.
7675  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7676  Qualifiers OtherQuals = Other->getType().getQualifiers();
7677  QualType OtherRefType = Other->getType();
7678  if (const LValueReferenceType *OtherRef
7679                                = OtherRefType->getAs<LValueReferenceType>()) {
7680    OtherRefType = OtherRef->getPointeeType();
7681    OtherQuals = OtherRefType.getQualifiers();
7682  }
7683
7684  // Our location for everything implicitly-generated.
7685  SourceLocation Loc = CopyAssignOperator->getLocation();
7686
7687  // Construct a reference to the "other" object. We'll be using this
7688  // throughout the generated ASTs.
7689  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7690  assert(OtherRef && "Reference to parameter cannot fail!");
7691
7692  // Construct the "this" pointer. We'll be using this throughout the generated
7693  // ASTs.
7694  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7695  assert(This && "Reference to this cannot fail!");
7696
7697  // Assign base classes.
7698  bool Invalid = false;
7699  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7700       E = ClassDecl->bases_end(); Base != E; ++Base) {
7701    // Form the assignment:
7702    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7703    QualType BaseType = Base->getType().getUnqualifiedType();
7704    if (!BaseType->isRecordType()) {
7705      Invalid = true;
7706      continue;
7707    }
7708
7709    CXXCastPath BasePath;
7710    BasePath.push_back(Base);
7711
7712    // Construct the "from" expression, which is an implicit cast to the
7713    // appropriately-qualified base type.
7714    Expr *From = OtherRef;
7715    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7716                             CK_UncheckedDerivedToBase,
7717                             VK_LValue, &BasePath).take();
7718
7719    // Dereference "this".
7720    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7721
7722    // Implicitly cast "this" to the appropriately-qualified base type.
7723    To = ImpCastExprToType(To.take(),
7724                           Context.getCVRQualifiedType(BaseType,
7725                                     CopyAssignOperator->getTypeQualifiers()),
7726                           CK_UncheckedDerivedToBase,
7727                           VK_LValue, &BasePath);
7728
7729    // Build the copy.
7730    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7731                                            To.get(), From,
7732                                            /*CopyingBaseSubobject=*/true,
7733                                            /*Copying=*/true);
7734    if (Copy.isInvalid()) {
7735      Diag(CurrentLocation, diag::note_member_synthesized_at)
7736        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7737      CopyAssignOperator->setInvalidDecl();
7738      return;
7739    }
7740
7741    // Success! Record the copy.
7742    Statements.push_back(Copy.takeAs<Expr>());
7743  }
7744
7745  // \brief Reference to the __builtin_memcpy function.
7746  Expr *BuiltinMemCpyRef = 0;
7747  // \brief Reference to the __builtin_objc_memmove_collectable function.
7748  Expr *CollectableMemCpyRef = 0;
7749
7750  // Assign non-static members.
7751  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7752                                  FieldEnd = ClassDecl->field_end();
7753       Field != FieldEnd; ++Field) {
7754    if (Field->isUnnamedBitfield())
7755      continue;
7756
7757    // Check for members of reference type; we can't copy those.
7758    if (Field->getType()->isReferenceType()) {
7759      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7760        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7761      Diag(Field->getLocation(), diag::note_declared_at);
7762      Diag(CurrentLocation, diag::note_member_synthesized_at)
7763        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7764      Invalid = true;
7765      continue;
7766    }
7767
7768    // Check for members of const-qualified, non-class type.
7769    QualType BaseType = Context.getBaseElementType(Field->getType());
7770    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7771      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7772        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7773      Diag(Field->getLocation(), diag::note_declared_at);
7774      Diag(CurrentLocation, diag::note_member_synthesized_at)
7775        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7776      Invalid = true;
7777      continue;
7778    }
7779
7780    // Suppress assigning zero-width bitfields.
7781    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7782      continue;
7783
7784    QualType FieldType = Field->getType().getNonReferenceType();
7785    if (FieldType->isIncompleteArrayType()) {
7786      assert(ClassDecl->hasFlexibleArrayMember() &&
7787             "Incomplete array type is not valid");
7788      continue;
7789    }
7790
7791    // Build references to the field in the object we're copying from and to.
7792    CXXScopeSpec SS; // Intentionally empty
7793    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7794                              LookupMemberName);
7795    MemberLookup.addDecl(*Field);
7796    MemberLookup.resolveKind();
7797    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7798                                               Loc, /*IsArrow=*/false,
7799                                               SS, SourceLocation(), 0,
7800                                               MemberLookup, 0);
7801    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7802                                             Loc, /*IsArrow=*/true,
7803                                             SS, SourceLocation(), 0,
7804                                             MemberLookup, 0);
7805    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7806    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7807
7808    // If the field should be copied with __builtin_memcpy rather than via
7809    // explicit assignments, do so. This optimization only applies for arrays
7810    // of scalars and arrays of class type with trivial copy-assignment
7811    // operators.
7812    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7813        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7814      // Compute the size of the memory buffer to be copied.
7815      QualType SizeType = Context.getSizeType();
7816      llvm::APInt Size(Context.getTypeSize(SizeType),
7817                       Context.getTypeSizeInChars(BaseType).getQuantity());
7818      for (const ConstantArrayType *Array
7819              = Context.getAsConstantArrayType(FieldType);
7820           Array;
7821           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7822        llvm::APInt ArraySize
7823          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7824        Size *= ArraySize;
7825      }
7826
7827      // Take the address of the field references for "from" and "to".
7828      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7829      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7830
7831      bool NeedsCollectableMemCpy =
7832          (BaseType->isRecordType() &&
7833           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7834
7835      if (NeedsCollectableMemCpy) {
7836        if (!CollectableMemCpyRef) {
7837          // Create a reference to the __builtin_objc_memmove_collectable function.
7838          LookupResult R(*this,
7839                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7840                         Loc, LookupOrdinaryName);
7841          LookupName(R, TUScope, true);
7842
7843          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7844          if (!CollectableMemCpy) {
7845            // Something went horribly wrong earlier, and we will have
7846            // complained about it.
7847            Invalid = true;
7848            continue;
7849          }
7850
7851          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7852                                                  CollectableMemCpy->getType(),
7853                                                  VK_LValue, Loc, 0).take();
7854          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7855        }
7856      }
7857      // Create a reference to the __builtin_memcpy builtin function.
7858      else if (!BuiltinMemCpyRef) {
7859        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7860                       LookupOrdinaryName);
7861        LookupName(R, TUScope, true);
7862
7863        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7864        if (!BuiltinMemCpy) {
7865          // Something went horribly wrong earlier, and we will have complained
7866          // about it.
7867          Invalid = true;
7868          continue;
7869        }
7870
7871        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7872                                            BuiltinMemCpy->getType(),
7873                                            VK_LValue, Loc, 0).take();
7874        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7875      }
7876
7877      ASTOwningVector<Expr*> CallArgs(*this);
7878      CallArgs.push_back(To.takeAs<Expr>());
7879      CallArgs.push_back(From.takeAs<Expr>());
7880      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7881      ExprResult Call = ExprError();
7882      if (NeedsCollectableMemCpy)
7883        Call = ActOnCallExpr(/*Scope=*/0,
7884                             CollectableMemCpyRef,
7885                             Loc, move_arg(CallArgs),
7886                             Loc);
7887      else
7888        Call = ActOnCallExpr(/*Scope=*/0,
7889                             BuiltinMemCpyRef,
7890                             Loc, move_arg(CallArgs),
7891                             Loc);
7892
7893      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7894      Statements.push_back(Call.takeAs<Expr>());
7895      continue;
7896    }
7897
7898    // Build the copy of this field.
7899    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7900                                            To.get(), From.get(),
7901                                            /*CopyingBaseSubobject=*/false,
7902                                            /*Copying=*/true);
7903    if (Copy.isInvalid()) {
7904      Diag(CurrentLocation, diag::note_member_synthesized_at)
7905        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7906      CopyAssignOperator->setInvalidDecl();
7907      return;
7908    }
7909
7910    // Success! Record the copy.
7911    Statements.push_back(Copy.takeAs<Stmt>());
7912  }
7913
7914  if (!Invalid) {
7915    // Add a "return *this;"
7916    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7917
7918    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7919    if (Return.isInvalid())
7920      Invalid = true;
7921    else {
7922      Statements.push_back(Return.takeAs<Stmt>());
7923
7924      if (Trap.hasErrorOccurred()) {
7925        Diag(CurrentLocation, diag::note_member_synthesized_at)
7926          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7927        Invalid = true;
7928      }
7929    }
7930  }
7931
7932  if (Invalid) {
7933    CopyAssignOperator->setInvalidDecl();
7934    return;
7935  }
7936
7937  StmtResult Body;
7938  {
7939    CompoundScopeRAII CompoundScope(*this);
7940    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7941                             /*isStmtExpr=*/false);
7942    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7943  }
7944  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7945
7946  if (ASTMutationListener *L = getASTMutationListener()) {
7947    L->CompletedImplicitDefinition(CopyAssignOperator);
7948  }
7949}
7950
7951Sema::ImplicitExceptionSpecification
7952Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7953  ImplicitExceptionSpecification ExceptSpec(Context);
7954
7955  if (ClassDecl->isInvalidDecl())
7956    return ExceptSpec;
7957
7958  // C++0x [except.spec]p14:
7959  //   An implicitly declared special member function (Clause 12) shall have an
7960  //   exception-specification. [...]
7961
7962  // It is unspecified whether or not an implicit move assignment operator
7963  // attempts to deduplicate calls to assignment operators of virtual bases are
7964  // made. As such, this exception specification is effectively unspecified.
7965  // Based on a similar decision made for constness in C++0x, we're erring on
7966  // the side of assuming such calls to be made regardless of whether they
7967  // actually happen.
7968  // Note that a move constructor is not implicitly declared when there are
7969  // virtual bases, but it can still be user-declared and explicitly defaulted.
7970  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7971                                       BaseEnd = ClassDecl->bases_end();
7972       Base != BaseEnd; ++Base) {
7973    if (Base->isVirtual())
7974      continue;
7975
7976    CXXRecordDecl *BaseClassDecl
7977      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7978    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7979                                                           false, 0))
7980      ExceptSpec.CalledDecl(MoveAssign);
7981  }
7982
7983  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7984                                       BaseEnd = ClassDecl->vbases_end();
7985       Base != BaseEnd; ++Base) {
7986    CXXRecordDecl *BaseClassDecl
7987      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7988    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7989                                                           false, 0))
7990      ExceptSpec.CalledDecl(MoveAssign);
7991  }
7992
7993  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7994                                  FieldEnd = ClassDecl->field_end();
7995       Field != FieldEnd;
7996       ++Field) {
7997    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7998    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7999      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8000                                                             false, 0))
8001        ExceptSpec.CalledDecl(MoveAssign);
8002    }
8003  }
8004
8005  return ExceptSpec;
8006}
8007
8008CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8009  // Note: The following rules are largely analoguous to the move
8010  // constructor rules.
8011
8012  ImplicitExceptionSpecification Spec(
8013      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8014
8015  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8016  QualType RetType = Context.getLValueReferenceType(ArgType);
8017  ArgType = Context.getRValueReferenceType(ArgType);
8018
8019  //   An implicitly-declared move assignment operator is an inline public
8020  //   member of its class.
8021  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8022  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8023  SourceLocation ClassLoc = ClassDecl->getLocation();
8024  DeclarationNameInfo NameInfo(Name, ClassLoc);
8025  CXXMethodDecl *MoveAssignment
8026    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8027                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8028                            /*TInfo=*/0, /*isStatic=*/false,
8029                            /*StorageClassAsWritten=*/SC_None,
8030                            /*isInline=*/true,
8031                            /*isConstexpr=*/false,
8032                            SourceLocation());
8033  MoveAssignment->setAccess(AS_public);
8034  MoveAssignment->setDefaulted();
8035  MoveAssignment->setImplicit();
8036  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8037
8038  // Add the parameter to the operator.
8039  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8040                                               ClassLoc, ClassLoc, /*Id=*/0,
8041                                               ArgType, /*TInfo=*/0,
8042                                               SC_None,
8043                                               SC_None, 0);
8044  MoveAssignment->setParams(FromParam);
8045
8046  // Note that we have added this copy-assignment operator.
8047  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8048
8049  // C++0x [class.copy]p9:
8050  //   If the definition of a class X does not explicitly declare a move
8051  //   assignment operator, one will be implicitly declared as defaulted if and
8052  //   only if:
8053  //   [...]
8054  //   - the move assignment operator would not be implicitly defined as
8055  //     deleted.
8056  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8057    // Cache this result so that we don't try to generate this over and over
8058    // on every lookup, leaking memory and wasting time.
8059    ClassDecl->setFailedImplicitMoveAssignment();
8060    return 0;
8061  }
8062
8063  if (Scope *S = getScopeForContext(ClassDecl))
8064    PushOnScopeChains(MoveAssignment, S, false);
8065  ClassDecl->addDecl(MoveAssignment);
8066
8067  AddOverriddenMethods(ClassDecl, MoveAssignment);
8068  return MoveAssignment;
8069}
8070
8071void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8072                                        CXXMethodDecl *MoveAssignOperator) {
8073  assert((MoveAssignOperator->isDefaulted() &&
8074          MoveAssignOperator->isOverloadedOperator() &&
8075          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8076          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8077         "DefineImplicitMoveAssignment called for wrong function");
8078
8079  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8080
8081  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8082    MoveAssignOperator->setInvalidDecl();
8083    return;
8084  }
8085
8086  MoveAssignOperator->setUsed();
8087
8088  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8089  DiagnosticErrorTrap Trap(Diags);
8090
8091  // C++0x [class.copy]p28:
8092  //   The implicitly-defined or move assignment operator for a non-union class
8093  //   X performs memberwise move assignment of its subobjects. The direct base
8094  //   classes of X are assigned first, in the order of their declaration in the
8095  //   base-specifier-list, and then the immediate non-static data members of X
8096  //   are assigned, in the order in which they were declared in the class
8097  //   definition.
8098
8099  // The statements that form the synthesized function body.
8100  ASTOwningVector<Stmt*> Statements(*this);
8101
8102  // The parameter for the "other" object, which we are move from.
8103  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8104  QualType OtherRefType = Other->getType()->
8105      getAs<RValueReferenceType>()->getPointeeType();
8106  assert(OtherRefType.getQualifiers() == 0 &&
8107         "Bad argument type of defaulted move assignment");
8108
8109  // Our location for everything implicitly-generated.
8110  SourceLocation Loc = MoveAssignOperator->getLocation();
8111
8112  // Construct a reference to the "other" object. We'll be using this
8113  // throughout the generated ASTs.
8114  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8115  assert(OtherRef && "Reference to parameter cannot fail!");
8116  // Cast to rvalue.
8117  OtherRef = CastForMoving(*this, OtherRef);
8118
8119  // Construct the "this" pointer. We'll be using this throughout the generated
8120  // ASTs.
8121  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8122  assert(This && "Reference to this cannot fail!");
8123
8124  // Assign base classes.
8125  bool Invalid = false;
8126  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8127       E = ClassDecl->bases_end(); Base != E; ++Base) {
8128    // Form the assignment:
8129    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8130    QualType BaseType = Base->getType().getUnqualifiedType();
8131    if (!BaseType->isRecordType()) {
8132      Invalid = true;
8133      continue;
8134    }
8135
8136    CXXCastPath BasePath;
8137    BasePath.push_back(Base);
8138
8139    // Construct the "from" expression, which is an implicit cast to the
8140    // appropriately-qualified base type.
8141    Expr *From = OtherRef;
8142    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8143                             VK_XValue, &BasePath).take();
8144
8145    // Dereference "this".
8146    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8147
8148    // Implicitly cast "this" to the appropriately-qualified base type.
8149    To = ImpCastExprToType(To.take(),
8150                           Context.getCVRQualifiedType(BaseType,
8151                                     MoveAssignOperator->getTypeQualifiers()),
8152                           CK_UncheckedDerivedToBase,
8153                           VK_LValue, &BasePath);
8154
8155    // Build the move.
8156    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8157                                            To.get(), From,
8158                                            /*CopyingBaseSubobject=*/true,
8159                                            /*Copying=*/false);
8160    if (Move.isInvalid()) {
8161      Diag(CurrentLocation, diag::note_member_synthesized_at)
8162        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8163      MoveAssignOperator->setInvalidDecl();
8164      return;
8165    }
8166
8167    // Success! Record the move.
8168    Statements.push_back(Move.takeAs<Expr>());
8169  }
8170
8171  // \brief Reference to the __builtin_memcpy function.
8172  Expr *BuiltinMemCpyRef = 0;
8173  // \brief Reference to the __builtin_objc_memmove_collectable function.
8174  Expr *CollectableMemCpyRef = 0;
8175
8176  // Assign non-static members.
8177  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8178                                  FieldEnd = ClassDecl->field_end();
8179       Field != FieldEnd; ++Field) {
8180    if (Field->isUnnamedBitfield())
8181      continue;
8182
8183    // Check for members of reference type; we can't move those.
8184    if (Field->getType()->isReferenceType()) {
8185      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8186        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8187      Diag(Field->getLocation(), diag::note_declared_at);
8188      Diag(CurrentLocation, diag::note_member_synthesized_at)
8189        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8190      Invalid = true;
8191      continue;
8192    }
8193
8194    // Check for members of const-qualified, non-class type.
8195    QualType BaseType = Context.getBaseElementType(Field->getType());
8196    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8197      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8198        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8199      Diag(Field->getLocation(), diag::note_declared_at);
8200      Diag(CurrentLocation, diag::note_member_synthesized_at)
8201        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8202      Invalid = true;
8203      continue;
8204    }
8205
8206    // Suppress assigning zero-width bitfields.
8207    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8208      continue;
8209
8210    QualType FieldType = Field->getType().getNonReferenceType();
8211    if (FieldType->isIncompleteArrayType()) {
8212      assert(ClassDecl->hasFlexibleArrayMember() &&
8213             "Incomplete array type is not valid");
8214      continue;
8215    }
8216
8217    // Build references to the field in the object we're copying from and to.
8218    CXXScopeSpec SS; // Intentionally empty
8219    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8220                              LookupMemberName);
8221    MemberLookup.addDecl(*Field);
8222    MemberLookup.resolveKind();
8223    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8224                                               Loc, /*IsArrow=*/false,
8225                                               SS, SourceLocation(), 0,
8226                                               MemberLookup, 0);
8227    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8228                                             Loc, /*IsArrow=*/true,
8229                                             SS, SourceLocation(), 0,
8230                                             MemberLookup, 0);
8231    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8232    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8233
8234    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8235        "Member reference with rvalue base must be rvalue except for reference "
8236        "members, which aren't allowed for move assignment.");
8237
8238    // If the field should be copied with __builtin_memcpy rather than via
8239    // explicit assignments, do so. This optimization only applies for arrays
8240    // of scalars and arrays of class type with trivial move-assignment
8241    // operators.
8242    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8243        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8244      // Compute the size of the memory buffer to be copied.
8245      QualType SizeType = Context.getSizeType();
8246      llvm::APInt Size(Context.getTypeSize(SizeType),
8247                       Context.getTypeSizeInChars(BaseType).getQuantity());
8248      for (const ConstantArrayType *Array
8249              = Context.getAsConstantArrayType(FieldType);
8250           Array;
8251           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8252        llvm::APInt ArraySize
8253          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8254        Size *= ArraySize;
8255      }
8256
8257      // Take the address of the field references for "from" and "to". We
8258      // directly construct UnaryOperators here because semantic analysis
8259      // does not permit us to take the address of an xvalue.
8260      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8261                             Context.getPointerType(From.get()->getType()),
8262                             VK_RValue, OK_Ordinary, Loc);
8263      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8264                           Context.getPointerType(To.get()->getType()),
8265                           VK_RValue, OK_Ordinary, Loc);
8266
8267      bool NeedsCollectableMemCpy =
8268          (BaseType->isRecordType() &&
8269           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8270
8271      if (NeedsCollectableMemCpy) {
8272        if (!CollectableMemCpyRef) {
8273          // Create a reference to the __builtin_objc_memmove_collectable function.
8274          LookupResult R(*this,
8275                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8276                         Loc, LookupOrdinaryName);
8277          LookupName(R, TUScope, true);
8278
8279          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8280          if (!CollectableMemCpy) {
8281            // Something went horribly wrong earlier, and we will have
8282            // complained about it.
8283            Invalid = true;
8284            continue;
8285          }
8286
8287          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8288                                                  CollectableMemCpy->getType(),
8289                                                  VK_LValue, Loc, 0).take();
8290          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8291        }
8292      }
8293      // Create a reference to the __builtin_memcpy builtin function.
8294      else if (!BuiltinMemCpyRef) {
8295        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8296                       LookupOrdinaryName);
8297        LookupName(R, TUScope, true);
8298
8299        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8300        if (!BuiltinMemCpy) {
8301          // Something went horribly wrong earlier, and we will have complained
8302          // about it.
8303          Invalid = true;
8304          continue;
8305        }
8306
8307        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8308                                            BuiltinMemCpy->getType(),
8309                                            VK_LValue, Loc, 0).take();
8310        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8311      }
8312
8313      ASTOwningVector<Expr*> CallArgs(*this);
8314      CallArgs.push_back(To.takeAs<Expr>());
8315      CallArgs.push_back(From.takeAs<Expr>());
8316      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8317      ExprResult Call = ExprError();
8318      if (NeedsCollectableMemCpy)
8319        Call = ActOnCallExpr(/*Scope=*/0,
8320                             CollectableMemCpyRef,
8321                             Loc, move_arg(CallArgs),
8322                             Loc);
8323      else
8324        Call = ActOnCallExpr(/*Scope=*/0,
8325                             BuiltinMemCpyRef,
8326                             Loc, move_arg(CallArgs),
8327                             Loc);
8328
8329      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8330      Statements.push_back(Call.takeAs<Expr>());
8331      continue;
8332    }
8333
8334    // Build the move of this field.
8335    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8336                                            To.get(), From.get(),
8337                                            /*CopyingBaseSubobject=*/false,
8338                                            /*Copying=*/false);
8339    if (Move.isInvalid()) {
8340      Diag(CurrentLocation, diag::note_member_synthesized_at)
8341        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8342      MoveAssignOperator->setInvalidDecl();
8343      return;
8344    }
8345
8346    // Success! Record the copy.
8347    Statements.push_back(Move.takeAs<Stmt>());
8348  }
8349
8350  if (!Invalid) {
8351    // Add a "return *this;"
8352    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8353
8354    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8355    if (Return.isInvalid())
8356      Invalid = true;
8357    else {
8358      Statements.push_back(Return.takeAs<Stmt>());
8359
8360      if (Trap.hasErrorOccurred()) {
8361        Diag(CurrentLocation, diag::note_member_synthesized_at)
8362          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8363        Invalid = true;
8364      }
8365    }
8366  }
8367
8368  if (Invalid) {
8369    MoveAssignOperator->setInvalidDecl();
8370    return;
8371  }
8372
8373  StmtResult Body;
8374  {
8375    CompoundScopeRAII CompoundScope(*this);
8376    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8377                             /*isStmtExpr=*/false);
8378    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8379  }
8380  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8381
8382  if (ASTMutationListener *L = getASTMutationListener()) {
8383    L->CompletedImplicitDefinition(MoveAssignOperator);
8384  }
8385}
8386
8387std::pair<Sema::ImplicitExceptionSpecification, bool>
8388Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8389  if (ClassDecl->isInvalidDecl())
8390    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8391
8392  // C++ [class.copy]p5:
8393  //   The implicitly-declared copy constructor for a class X will
8394  //   have the form
8395  //
8396  //       X::X(const X&)
8397  //
8398  //   if
8399  // FIXME: It ought to be possible to store this on the record.
8400  bool HasConstCopyConstructor = true;
8401
8402  //     -- each direct or virtual base class B of X has a copy
8403  //        constructor whose first parameter is of type const B& or
8404  //        const volatile B&, and
8405  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8406                                       BaseEnd = ClassDecl->bases_end();
8407       HasConstCopyConstructor && Base != BaseEnd;
8408       ++Base) {
8409    // Virtual bases are handled below.
8410    if (Base->isVirtual())
8411      continue;
8412
8413    CXXRecordDecl *BaseClassDecl
8414      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8415    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8416                             &HasConstCopyConstructor);
8417  }
8418
8419  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8420                                       BaseEnd = ClassDecl->vbases_end();
8421       HasConstCopyConstructor && Base != BaseEnd;
8422       ++Base) {
8423    CXXRecordDecl *BaseClassDecl
8424      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8425    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8426                             &HasConstCopyConstructor);
8427  }
8428
8429  //     -- for all the nonstatic data members of X that are of a
8430  //        class type M (or array thereof), each such class type
8431  //        has a copy constructor whose first parameter is of type
8432  //        const M& or const volatile M&.
8433  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8434                                  FieldEnd = ClassDecl->field_end();
8435       HasConstCopyConstructor && Field != FieldEnd;
8436       ++Field) {
8437    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8438    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8439      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8440                               &HasConstCopyConstructor);
8441    }
8442  }
8443  //   Otherwise, the implicitly declared copy constructor will have
8444  //   the form
8445  //
8446  //       X::X(X&)
8447
8448  // C++ [except.spec]p14:
8449  //   An implicitly declared special member function (Clause 12) shall have an
8450  //   exception-specification. [...]
8451  ImplicitExceptionSpecification ExceptSpec(Context);
8452  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8453  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8454                                       BaseEnd = ClassDecl->bases_end();
8455       Base != BaseEnd;
8456       ++Base) {
8457    // Virtual bases are handled below.
8458    if (Base->isVirtual())
8459      continue;
8460
8461    CXXRecordDecl *BaseClassDecl
8462      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8463    if (CXXConstructorDecl *CopyConstructor =
8464          LookupCopyingConstructor(BaseClassDecl, Quals))
8465      ExceptSpec.CalledDecl(CopyConstructor);
8466  }
8467  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8468                                       BaseEnd = ClassDecl->vbases_end();
8469       Base != BaseEnd;
8470       ++Base) {
8471    CXXRecordDecl *BaseClassDecl
8472      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8473    if (CXXConstructorDecl *CopyConstructor =
8474          LookupCopyingConstructor(BaseClassDecl, Quals))
8475      ExceptSpec.CalledDecl(CopyConstructor);
8476  }
8477  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8478                                  FieldEnd = ClassDecl->field_end();
8479       Field != FieldEnd;
8480       ++Field) {
8481    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8482    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8483      if (CXXConstructorDecl *CopyConstructor =
8484        LookupCopyingConstructor(FieldClassDecl, Quals))
8485      ExceptSpec.CalledDecl(CopyConstructor);
8486    }
8487  }
8488
8489  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8490}
8491
8492CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8493                                                    CXXRecordDecl *ClassDecl) {
8494  // C++ [class.copy]p4:
8495  //   If the class definition does not explicitly declare a copy
8496  //   constructor, one is declared implicitly.
8497
8498  ImplicitExceptionSpecification Spec(Context);
8499  bool Const;
8500  llvm::tie(Spec, Const) =
8501    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8502
8503  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8504  QualType ArgType = ClassType;
8505  if (Const)
8506    ArgType = ArgType.withConst();
8507  ArgType = Context.getLValueReferenceType(ArgType);
8508
8509  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8510
8511  DeclarationName Name
8512    = Context.DeclarationNames.getCXXConstructorName(
8513                                           Context.getCanonicalType(ClassType));
8514  SourceLocation ClassLoc = ClassDecl->getLocation();
8515  DeclarationNameInfo NameInfo(Name, ClassLoc);
8516
8517  //   An implicitly-declared copy constructor is an inline public
8518  //   member of its class.
8519  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8520      Context, ClassDecl, ClassLoc, NameInfo,
8521      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8522      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8523      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8524        getLangOptions().CPlusPlus0x);
8525  CopyConstructor->setAccess(AS_public);
8526  CopyConstructor->setDefaulted();
8527  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8528
8529  // Note that we have declared this constructor.
8530  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8531
8532  // Add the parameter to the constructor.
8533  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8534                                               ClassLoc, ClassLoc,
8535                                               /*IdentifierInfo=*/0,
8536                                               ArgType, /*TInfo=*/0,
8537                                               SC_None,
8538                                               SC_None, 0);
8539  CopyConstructor->setParams(FromParam);
8540
8541  if (Scope *S = getScopeForContext(ClassDecl))
8542    PushOnScopeChains(CopyConstructor, S, false);
8543  ClassDecl->addDecl(CopyConstructor);
8544
8545  // C++11 [class.copy]p8:
8546  //   ... If the class definition does not explicitly declare a copy
8547  //   constructor, there is no user-declared move constructor, and there is no
8548  //   user-declared move assignment operator, a copy constructor is implicitly
8549  //   declared as defaulted.
8550  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8551      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8552          !getLangOptions().MicrosoftMode) ||
8553      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8554    CopyConstructor->setDeletedAsWritten();
8555
8556  return CopyConstructor;
8557}
8558
8559void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8560                                   CXXConstructorDecl *CopyConstructor) {
8561  assert((CopyConstructor->isDefaulted() &&
8562          CopyConstructor->isCopyConstructor() &&
8563          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8564         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8565
8566  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8567  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8568
8569  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8570  DiagnosticErrorTrap Trap(Diags);
8571
8572  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8573      Trap.hasErrorOccurred()) {
8574    Diag(CurrentLocation, diag::note_member_synthesized_at)
8575      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8576    CopyConstructor->setInvalidDecl();
8577  }  else {
8578    Sema::CompoundScopeRAII CompoundScope(*this);
8579    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8580                                               CopyConstructor->getLocation(),
8581                                               MultiStmtArg(*this, 0, 0),
8582                                               /*isStmtExpr=*/false)
8583                                                              .takeAs<Stmt>());
8584    CopyConstructor->setImplicitlyDefined(true);
8585  }
8586
8587  CopyConstructor->setUsed();
8588  if (ASTMutationListener *L = getASTMutationListener()) {
8589    L->CompletedImplicitDefinition(CopyConstructor);
8590  }
8591}
8592
8593Sema::ImplicitExceptionSpecification
8594Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8595  // C++ [except.spec]p14:
8596  //   An implicitly declared special member function (Clause 12) shall have an
8597  //   exception-specification. [...]
8598  ImplicitExceptionSpecification ExceptSpec(Context);
8599  if (ClassDecl->isInvalidDecl())
8600    return ExceptSpec;
8601
8602  // Direct base-class constructors.
8603  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8604                                       BEnd = ClassDecl->bases_end();
8605       B != BEnd; ++B) {
8606    if (B->isVirtual()) // Handled below.
8607      continue;
8608
8609    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8610      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8611      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8612      // If this is a deleted function, add it anyway. This might be conformant
8613      // with the standard. This might not. I'm not sure. It might not matter.
8614      if (Constructor)
8615        ExceptSpec.CalledDecl(Constructor);
8616    }
8617  }
8618
8619  // Virtual base-class constructors.
8620  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8621                                       BEnd = ClassDecl->vbases_end();
8622       B != BEnd; ++B) {
8623    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8624      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8625      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8626      // If this is a deleted function, add it anyway. This might be conformant
8627      // with the standard. This might not. I'm not sure. It might not matter.
8628      if (Constructor)
8629        ExceptSpec.CalledDecl(Constructor);
8630    }
8631  }
8632
8633  // Field constructors.
8634  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8635                               FEnd = ClassDecl->field_end();
8636       F != FEnd; ++F) {
8637    if (const RecordType *RecordTy
8638              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8639      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8640      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8641      // If this is a deleted function, add it anyway. This might be conformant
8642      // with the standard. This might not. I'm not sure. It might not matter.
8643      // In particular, the problem is that this function never gets called. It
8644      // might just be ill-formed because this function attempts to refer to
8645      // a deleted function here.
8646      if (Constructor)
8647        ExceptSpec.CalledDecl(Constructor);
8648    }
8649  }
8650
8651  return ExceptSpec;
8652}
8653
8654CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8655                                                    CXXRecordDecl *ClassDecl) {
8656  ImplicitExceptionSpecification Spec(
8657      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8658
8659  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8660  QualType ArgType = Context.getRValueReferenceType(ClassType);
8661
8662  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8663
8664  DeclarationName Name
8665    = Context.DeclarationNames.getCXXConstructorName(
8666                                           Context.getCanonicalType(ClassType));
8667  SourceLocation ClassLoc = ClassDecl->getLocation();
8668  DeclarationNameInfo NameInfo(Name, ClassLoc);
8669
8670  // C++0x [class.copy]p11:
8671  //   An implicitly-declared copy/move constructor is an inline public
8672  //   member of its class.
8673  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8674      Context, ClassDecl, ClassLoc, NameInfo,
8675      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8676      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8677      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8678        getLangOptions().CPlusPlus0x);
8679  MoveConstructor->setAccess(AS_public);
8680  MoveConstructor->setDefaulted();
8681  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8682
8683  // Add the parameter to the constructor.
8684  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8685                                               ClassLoc, ClassLoc,
8686                                               /*IdentifierInfo=*/0,
8687                                               ArgType, /*TInfo=*/0,
8688                                               SC_None,
8689                                               SC_None, 0);
8690  MoveConstructor->setParams(FromParam);
8691
8692  // C++0x [class.copy]p9:
8693  //   If the definition of a class X does not explicitly declare a move
8694  //   constructor, one will be implicitly declared as defaulted if and only if:
8695  //   [...]
8696  //   - the move constructor would not be implicitly defined as deleted.
8697  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8698    // Cache this result so that we don't try to generate this over and over
8699    // on every lookup, leaking memory and wasting time.
8700    ClassDecl->setFailedImplicitMoveConstructor();
8701    return 0;
8702  }
8703
8704  // Note that we have declared this constructor.
8705  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8706
8707  if (Scope *S = getScopeForContext(ClassDecl))
8708    PushOnScopeChains(MoveConstructor, S, false);
8709  ClassDecl->addDecl(MoveConstructor);
8710
8711  return MoveConstructor;
8712}
8713
8714void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8715                                   CXXConstructorDecl *MoveConstructor) {
8716  assert((MoveConstructor->isDefaulted() &&
8717          MoveConstructor->isMoveConstructor() &&
8718          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8719         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8720
8721  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8722  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8723
8724  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8725  DiagnosticErrorTrap Trap(Diags);
8726
8727  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8728      Trap.hasErrorOccurred()) {
8729    Diag(CurrentLocation, diag::note_member_synthesized_at)
8730      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8731    MoveConstructor->setInvalidDecl();
8732  }  else {
8733    Sema::CompoundScopeRAII CompoundScope(*this);
8734    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8735                                               MoveConstructor->getLocation(),
8736                                               MultiStmtArg(*this, 0, 0),
8737                                               /*isStmtExpr=*/false)
8738                                                              .takeAs<Stmt>());
8739    MoveConstructor->setImplicitlyDefined(true);
8740  }
8741
8742  MoveConstructor->setUsed();
8743
8744  if (ASTMutationListener *L = getASTMutationListener()) {
8745    L->CompletedImplicitDefinition(MoveConstructor);
8746  }
8747}
8748
8749bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8750  return FD->isDeleted() &&
8751         (FD->isDefaulted() || FD->isImplicit()) &&
8752         isa<CXXMethodDecl>(FD);
8753}
8754
8755/// \brief Mark the call operator of the given lambda closure type as "used".
8756static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8757  CXXMethodDecl *CallOperator
8758    = cast<CXXMethodDecl>(
8759        *Lambda->lookup(
8760          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8761  CallOperator->setReferenced();
8762  CallOperator->setUsed();
8763}
8764
8765void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8766       SourceLocation CurrentLocation,
8767       CXXConversionDecl *Conv)
8768{
8769  CXXRecordDecl *Lambda = Conv->getParent();
8770
8771  // Make sure that the lambda call operator is marked used.
8772  markLambdaCallOperatorUsed(*this, Lambda);
8773
8774  Conv->setUsed();
8775
8776  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8777  DiagnosticErrorTrap Trap(Diags);
8778
8779  // Return the address of the __invoke function.
8780  DeclarationName InvokeName = &Context.Idents.get("__invoke");
8781  CXXMethodDecl *Invoke
8782    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
8783  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
8784                                       VK_LValue, Conv->getLocation()).take();
8785  assert(FunctionRef && "Can't refer to __invoke function?");
8786  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
8787  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
8788                                           Conv->getLocation(),
8789                                           Conv->getLocation()));
8790
8791  // Fill in the __invoke function with a dummy implementation. IR generation
8792  // will fill in the actual details.
8793  Invoke->setUsed();
8794  Invoke->setReferenced();
8795  Invoke->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(),
8796                                             Conv->getLocation()));
8797
8798  if (ASTMutationListener *L = getASTMutationListener()) {
8799    L->CompletedImplicitDefinition(Conv);
8800    L->CompletedImplicitDefinition(Invoke);
8801  }
8802}
8803
8804void Sema::DefineImplicitLambdaToBlockPointerConversion(
8805       SourceLocation CurrentLocation,
8806       CXXConversionDecl *Conv)
8807{
8808  CXXRecordDecl *Lambda = Conv->getParent();
8809
8810  // Make sure that the lambda call operator is marked used.
8811  CXXMethodDecl *CallOperator
8812    = cast<CXXMethodDecl>(
8813        *Lambda->lookup(
8814          Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8815  CallOperator->setReferenced();
8816  CallOperator->setUsed();
8817  Conv->setUsed();
8818
8819  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8820  DiagnosticErrorTrap Trap(Diags);
8821
8822  // Copy-initialize the lambda object as needed to capture it.
8823  Expr *This = ActOnCXXThis(CurrentLocation).take();
8824  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
8825  ExprResult Init = PerformCopyInitialization(
8826                      InitializedEntity::InitializeBlock(CurrentLocation,
8827                                                         DerefThis->getType(),
8828                                                         /*NRVO=*/false),
8829                      CurrentLocation, DerefThis);
8830  if (!Init.isInvalid())
8831    Init = ActOnFinishFullExpr(Init.take());
8832
8833  if (Init.isInvalid()) {
8834    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8835    Conv->setInvalidDecl();
8836    return;
8837  }
8838
8839  // Create the new block to be returned.
8840  BlockDecl *Block = BlockDecl::Create(Context, Conv, Conv->getLocation());
8841
8842  // Set the type information.
8843  Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
8844  Block->setIsVariadic(CallOperator->isVariadic());
8845  Block->setBlockMissingReturnType(false);
8846
8847  // Add parameters.
8848  SmallVector<ParmVarDecl *, 4> BlockParams;
8849  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
8850    ParmVarDecl *From = CallOperator->getParamDecl(I);
8851    BlockParams.push_back(ParmVarDecl::Create(Context, Block,
8852                                              From->getLocStart(),
8853                                              From->getLocation(),
8854                                              From->getIdentifier(),
8855                                              From->getType(),
8856                                              From->getTypeSourceInfo(),
8857                                              From->getStorageClass(),
8858                                            From->getStorageClassAsWritten(),
8859                                              /*DefaultArg=*/0));
8860  }
8861  Block->setParams(BlockParams);
8862
8863  // Add capture. The capture is uses a fake (NULL) variable, since we don't
8864  // actually want to have to name a capture variable. However, the
8865  // initializer copy-initializes the lambda object.
8866  BlockDecl::Capture Capture(/*Variable=*/0, /*ByRef=*/false, /*Nested=*/false,
8867                             /*Copy=*/Init.take());
8868  Block->setCaptures(Context, &Capture, &Capture + 1,
8869                     /*CapturesCXXThis=*/false);
8870
8871  // Add a fake function body to the block. IR generation is responsible
8872  // for filling in the actual body, which cannot be expressed as an AST.
8873  Block->setBody(new (Context) CompoundStmt(Context, 0, 0,
8874                                            Conv->getLocation(),
8875                                            Conv->getLocation()));
8876
8877  // Create the block literal expression.
8878  Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
8879  ExprCleanupObjects.push_back(Block);
8880  ExprNeedsCleanups = true;
8881
8882  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
8883  // behavior.
8884  if (!getLangOptions().ObjCAutoRefCount)
8885    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock->getType(),
8886                                          CK_CopyAndAutoreleaseBlockObject,
8887                                          BuildBlock, 0, VK_RValue);
8888
8889  // Create the return statement that returns the block from the conversion
8890  // function.
8891  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock);
8892  if (Return.isInvalid()) {
8893    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8894    Conv->setInvalidDecl();
8895    return;
8896  }
8897
8898  // Set the body of the conversion function.
8899  Stmt *ReturnS = Return.take();
8900  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
8901                                           Conv->getLocation(),
8902                                           Conv->getLocation()));
8903
8904  // We're done; notify the mutation listener, if any.
8905  if (ASTMutationListener *L = getASTMutationListener()) {
8906    L->CompletedImplicitDefinition(Conv);
8907  }
8908}
8909
8910ExprResult
8911Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8912                            CXXConstructorDecl *Constructor,
8913                            MultiExprArg ExprArgs,
8914                            bool HadMultipleCandidates,
8915                            bool RequiresZeroInit,
8916                            unsigned ConstructKind,
8917                            SourceRange ParenRange) {
8918  bool Elidable = false;
8919
8920  // C++0x [class.copy]p34:
8921  //   When certain criteria are met, an implementation is allowed to
8922  //   omit the copy/move construction of a class object, even if the
8923  //   copy/move constructor and/or destructor for the object have
8924  //   side effects. [...]
8925  //     - when a temporary class object that has not been bound to a
8926  //       reference (12.2) would be copied/moved to a class object
8927  //       with the same cv-unqualified type, the copy/move operation
8928  //       can be omitted by constructing the temporary object
8929  //       directly into the target of the omitted copy/move
8930  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8931      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8932    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8933    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8934  }
8935
8936  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8937                               Elidable, move(ExprArgs), HadMultipleCandidates,
8938                               RequiresZeroInit, ConstructKind, ParenRange);
8939}
8940
8941/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8942/// including handling of its default argument expressions.
8943ExprResult
8944Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8945                            CXXConstructorDecl *Constructor, bool Elidable,
8946                            MultiExprArg ExprArgs,
8947                            bool HadMultipleCandidates,
8948                            bool RequiresZeroInit,
8949                            unsigned ConstructKind,
8950                            SourceRange ParenRange) {
8951  unsigned NumExprs = ExprArgs.size();
8952  Expr **Exprs = (Expr **)ExprArgs.release();
8953
8954  for (specific_attr_iterator<NonNullAttr>
8955           i = Constructor->specific_attr_begin<NonNullAttr>(),
8956           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8957    const NonNullAttr *NonNull = *i;
8958    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8959  }
8960
8961  MarkFunctionReferenced(ConstructLoc, Constructor);
8962  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8963                                        Constructor, Elidable, Exprs, NumExprs,
8964                                        HadMultipleCandidates, /*FIXME*/false,
8965                                        RequiresZeroInit,
8966              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8967                                        ParenRange));
8968}
8969
8970bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8971                                        CXXConstructorDecl *Constructor,
8972                                        MultiExprArg Exprs,
8973                                        bool HadMultipleCandidates) {
8974  // FIXME: Provide the correct paren SourceRange when available.
8975  ExprResult TempResult =
8976    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8977                          move(Exprs), HadMultipleCandidates, false,
8978                          CXXConstructExpr::CK_Complete, SourceRange());
8979  if (TempResult.isInvalid())
8980    return true;
8981
8982  Expr *Temp = TempResult.takeAs<Expr>();
8983  CheckImplicitConversions(Temp, VD->getLocation());
8984  MarkFunctionReferenced(VD->getLocation(), Constructor);
8985  Temp = MaybeCreateExprWithCleanups(Temp);
8986  VD->setInit(Temp);
8987
8988  return false;
8989}
8990
8991void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
8992  if (VD->isInvalidDecl()) return;
8993
8994  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
8995  if (ClassDecl->isInvalidDecl()) return;
8996  if (ClassDecl->hasIrrelevantDestructor()) return;
8997  if (ClassDecl->isDependentContext()) return;
8998
8999  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9000  MarkFunctionReferenced(VD->getLocation(), Destructor);
9001  CheckDestructorAccess(VD->getLocation(), Destructor,
9002                        PDiag(diag::err_access_dtor_var)
9003                        << VD->getDeclName()
9004                        << VD->getType());
9005  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9006
9007  if (!VD->hasGlobalStorage()) return;
9008
9009  // Emit warning for non-trivial dtor in global scope (a real global,
9010  // class-static, function-static).
9011  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9012
9013  // TODO: this should be re-enabled for static locals by !CXAAtExit
9014  if (!VD->isStaticLocal())
9015    Diag(VD->getLocation(), diag::warn_global_destructor);
9016}
9017
9018/// \brief Given a constructor and the set of arguments provided for the
9019/// constructor, convert the arguments and add any required default arguments
9020/// to form a proper call to this constructor.
9021///
9022/// \returns true if an error occurred, false otherwise.
9023bool
9024Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9025                              MultiExprArg ArgsPtr,
9026                              SourceLocation Loc,
9027                              ASTOwningVector<Expr*> &ConvertedArgs) {
9028  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9029  unsigned NumArgs = ArgsPtr.size();
9030  Expr **Args = (Expr **)ArgsPtr.get();
9031
9032  const FunctionProtoType *Proto
9033    = Constructor->getType()->getAs<FunctionProtoType>();
9034  assert(Proto && "Constructor without a prototype?");
9035  unsigned NumArgsInProto = Proto->getNumArgs();
9036
9037  // If too few arguments are available, we'll fill in the rest with defaults.
9038  if (NumArgs < NumArgsInProto)
9039    ConvertedArgs.reserve(NumArgsInProto);
9040  else
9041    ConvertedArgs.reserve(NumArgs);
9042
9043  VariadicCallType CallType =
9044    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9045  SmallVector<Expr *, 8> AllArgs;
9046  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9047                                        Proto, 0, Args, NumArgs, AllArgs,
9048                                        CallType);
9049  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9050
9051  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9052
9053  // FIXME: Missing call to CheckFunctionCall or equivalent
9054
9055  return Invalid;
9056}
9057
9058static inline bool
9059CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9060                                       const FunctionDecl *FnDecl) {
9061  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9062  if (isa<NamespaceDecl>(DC)) {
9063    return SemaRef.Diag(FnDecl->getLocation(),
9064                        diag::err_operator_new_delete_declared_in_namespace)
9065      << FnDecl->getDeclName();
9066  }
9067
9068  if (isa<TranslationUnitDecl>(DC) &&
9069      FnDecl->getStorageClass() == SC_Static) {
9070    return SemaRef.Diag(FnDecl->getLocation(),
9071                        diag::err_operator_new_delete_declared_static)
9072      << FnDecl->getDeclName();
9073  }
9074
9075  return false;
9076}
9077
9078static inline bool
9079CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9080                            CanQualType ExpectedResultType,
9081                            CanQualType ExpectedFirstParamType,
9082                            unsigned DependentParamTypeDiag,
9083                            unsigned InvalidParamTypeDiag) {
9084  QualType ResultType =
9085    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9086
9087  // Check that the result type is not dependent.
9088  if (ResultType->isDependentType())
9089    return SemaRef.Diag(FnDecl->getLocation(),
9090                        diag::err_operator_new_delete_dependent_result_type)
9091    << FnDecl->getDeclName() << ExpectedResultType;
9092
9093  // Check that the result type is what we expect.
9094  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9095    return SemaRef.Diag(FnDecl->getLocation(),
9096                        diag::err_operator_new_delete_invalid_result_type)
9097    << FnDecl->getDeclName() << ExpectedResultType;
9098
9099  // A function template must have at least 2 parameters.
9100  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9101    return SemaRef.Diag(FnDecl->getLocation(),
9102                      diag::err_operator_new_delete_template_too_few_parameters)
9103        << FnDecl->getDeclName();
9104
9105  // The function decl must have at least 1 parameter.
9106  if (FnDecl->getNumParams() == 0)
9107    return SemaRef.Diag(FnDecl->getLocation(),
9108                        diag::err_operator_new_delete_too_few_parameters)
9109      << FnDecl->getDeclName();
9110
9111  // Check the the first parameter type is not dependent.
9112  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9113  if (FirstParamType->isDependentType())
9114    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9115      << FnDecl->getDeclName() << ExpectedFirstParamType;
9116
9117  // Check that the first parameter type is what we expect.
9118  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9119      ExpectedFirstParamType)
9120    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9121    << FnDecl->getDeclName() << ExpectedFirstParamType;
9122
9123  return false;
9124}
9125
9126static bool
9127CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9128  // C++ [basic.stc.dynamic.allocation]p1:
9129  //   A program is ill-formed if an allocation function is declared in a
9130  //   namespace scope other than global scope or declared static in global
9131  //   scope.
9132  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9133    return true;
9134
9135  CanQualType SizeTy =
9136    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9137
9138  // C++ [basic.stc.dynamic.allocation]p1:
9139  //  The return type shall be void*. The first parameter shall have type
9140  //  std::size_t.
9141  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9142                                  SizeTy,
9143                                  diag::err_operator_new_dependent_param_type,
9144                                  diag::err_operator_new_param_type))
9145    return true;
9146
9147  // C++ [basic.stc.dynamic.allocation]p1:
9148  //  The first parameter shall not have an associated default argument.
9149  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9150    return SemaRef.Diag(FnDecl->getLocation(),
9151                        diag::err_operator_new_default_arg)
9152      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9153
9154  return false;
9155}
9156
9157static bool
9158CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9159  // C++ [basic.stc.dynamic.deallocation]p1:
9160  //   A program is ill-formed if deallocation functions are declared in a
9161  //   namespace scope other than global scope or declared static in global
9162  //   scope.
9163  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9164    return true;
9165
9166  // C++ [basic.stc.dynamic.deallocation]p2:
9167  //   Each deallocation function shall return void and its first parameter
9168  //   shall be void*.
9169  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9170                                  SemaRef.Context.VoidPtrTy,
9171                                 diag::err_operator_delete_dependent_param_type,
9172                                 diag::err_operator_delete_param_type))
9173    return true;
9174
9175  return false;
9176}
9177
9178/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9179/// of this overloaded operator is well-formed. If so, returns false;
9180/// otherwise, emits appropriate diagnostics and returns true.
9181bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9182  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9183         "Expected an overloaded operator declaration");
9184
9185  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9186
9187  // C++ [over.oper]p5:
9188  //   The allocation and deallocation functions, operator new,
9189  //   operator new[], operator delete and operator delete[], are
9190  //   described completely in 3.7.3. The attributes and restrictions
9191  //   found in the rest of this subclause do not apply to them unless
9192  //   explicitly stated in 3.7.3.
9193  if (Op == OO_Delete || Op == OO_Array_Delete)
9194    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9195
9196  if (Op == OO_New || Op == OO_Array_New)
9197    return CheckOperatorNewDeclaration(*this, FnDecl);
9198
9199  // C++ [over.oper]p6:
9200  //   An operator function shall either be a non-static member
9201  //   function or be a non-member function and have at least one
9202  //   parameter whose type is a class, a reference to a class, an
9203  //   enumeration, or a reference to an enumeration.
9204  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9205    if (MethodDecl->isStatic())
9206      return Diag(FnDecl->getLocation(),
9207                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9208  } else {
9209    bool ClassOrEnumParam = false;
9210    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9211                                   ParamEnd = FnDecl->param_end();
9212         Param != ParamEnd; ++Param) {
9213      QualType ParamType = (*Param)->getType().getNonReferenceType();
9214      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9215          ParamType->isEnumeralType()) {
9216        ClassOrEnumParam = true;
9217        break;
9218      }
9219    }
9220
9221    if (!ClassOrEnumParam)
9222      return Diag(FnDecl->getLocation(),
9223                  diag::err_operator_overload_needs_class_or_enum)
9224        << FnDecl->getDeclName();
9225  }
9226
9227  // C++ [over.oper]p8:
9228  //   An operator function cannot have default arguments (8.3.6),
9229  //   except where explicitly stated below.
9230  //
9231  // Only the function-call operator allows default arguments
9232  // (C++ [over.call]p1).
9233  if (Op != OO_Call) {
9234    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9235         Param != FnDecl->param_end(); ++Param) {
9236      if ((*Param)->hasDefaultArg())
9237        return Diag((*Param)->getLocation(),
9238                    diag::err_operator_overload_default_arg)
9239          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9240    }
9241  }
9242
9243  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9244    { false, false, false }
9245#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9246    , { Unary, Binary, MemberOnly }
9247#include "clang/Basic/OperatorKinds.def"
9248  };
9249
9250  bool CanBeUnaryOperator = OperatorUses[Op][0];
9251  bool CanBeBinaryOperator = OperatorUses[Op][1];
9252  bool MustBeMemberOperator = OperatorUses[Op][2];
9253
9254  // C++ [over.oper]p8:
9255  //   [...] Operator functions cannot have more or fewer parameters
9256  //   than the number required for the corresponding operator, as
9257  //   described in the rest of this subclause.
9258  unsigned NumParams = FnDecl->getNumParams()
9259                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9260  if (Op != OO_Call &&
9261      ((NumParams == 1 && !CanBeUnaryOperator) ||
9262       (NumParams == 2 && !CanBeBinaryOperator) ||
9263       (NumParams < 1) || (NumParams > 2))) {
9264    // We have the wrong number of parameters.
9265    unsigned ErrorKind;
9266    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9267      ErrorKind = 2;  // 2 -> unary or binary.
9268    } else if (CanBeUnaryOperator) {
9269      ErrorKind = 0;  // 0 -> unary
9270    } else {
9271      assert(CanBeBinaryOperator &&
9272             "All non-call overloaded operators are unary or binary!");
9273      ErrorKind = 1;  // 1 -> binary
9274    }
9275
9276    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9277      << FnDecl->getDeclName() << NumParams << ErrorKind;
9278  }
9279
9280  // Overloaded operators other than operator() cannot be variadic.
9281  if (Op != OO_Call &&
9282      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9283    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9284      << FnDecl->getDeclName();
9285  }
9286
9287  // Some operators must be non-static member functions.
9288  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9289    return Diag(FnDecl->getLocation(),
9290                diag::err_operator_overload_must_be_member)
9291      << FnDecl->getDeclName();
9292  }
9293
9294  // C++ [over.inc]p1:
9295  //   The user-defined function called operator++ implements the
9296  //   prefix and postfix ++ operator. If this function is a member
9297  //   function with no parameters, or a non-member function with one
9298  //   parameter of class or enumeration type, it defines the prefix
9299  //   increment operator ++ for objects of that type. If the function
9300  //   is a member function with one parameter (which shall be of type
9301  //   int) or a non-member function with two parameters (the second
9302  //   of which shall be of type int), it defines the postfix
9303  //   increment operator ++ for objects of that type.
9304  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9305    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9306    bool ParamIsInt = false;
9307    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9308      ParamIsInt = BT->getKind() == BuiltinType::Int;
9309
9310    if (!ParamIsInt)
9311      return Diag(LastParam->getLocation(),
9312                  diag::err_operator_overload_post_incdec_must_be_int)
9313        << LastParam->getType() << (Op == OO_MinusMinus);
9314  }
9315
9316  return false;
9317}
9318
9319/// CheckLiteralOperatorDeclaration - Check whether the declaration
9320/// of this literal operator function is well-formed. If so, returns
9321/// false; otherwise, emits appropriate diagnostics and returns true.
9322bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9323  DeclContext *DC = FnDecl->getDeclContext();
9324  Decl::Kind Kind = DC->getDeclKind();
9325  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9326      Kind != Decl::LinkageSpec) {
9327    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9328      << FnDecl->getDeclName();
9329    return true;
9330  }
9331
9332  bool Valid = false;
9333
9334  // template <char...> type operator "" name() is the only valid template
9335  // signature, and the only valid signature with no parameters.
9336  if (FnDecl->param_size() == 0) {
9337    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9338      // Must have only one template parameter
9339      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9340      if (Params->size() == 1) {
9341        NonTypeTemplateParmDecl *PmDecl =
9342          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9343
9344        // The template parameter must be a char parameter pack.
9345        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9346            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9347          Valid = true;
9348      }
9349    }
9350  } else {
9351    // Check the first parameter
9352    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9353
9354    QualType T = (*Param)->getType();
9355
9356    // unsigned long long int, long double, and any character type are allowed
9357    // as the only parameters.
9358    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9359        Context.hasSameType(T, Context.LongDoubleTy) ||
9360        Context.hasSameType(T, Context.CharTy) ||
9361        Context.hasSameType(T, Context.WCharTy) ||
9362        Context.hasSameType(T, Context.Char16Ty) ||
9363        Context.hasSameType(T, Context.Char32Ty)) {
9364      if (++Param == FnDecl->param_end())
9365        Valid = true;
9366      goto FinishedParams;
9367    }
9368
9369    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9370    const PointerType *PT = T->getAs<PointerType>();
9371    if (!PT)
9372      goto FinishedParams;
9373    T = PT->getPointeeType();
9374    if (!T.isConstQualified())
9375      goto FinishedParams;
9376    T = T.getUnqualifiedType();
9377
9378    // Move on to the second parameter;
9379    ++Param;
9380
9381    // If there is no second parameter, the first must be a const char *
9382    if (Param == FnDecl->param_end()) {
9383      if (Context.hasSameType(T, Context.CharTy))
9384        Valid = true;
9385      goto FinishedParams;
9386    }
9387
9388    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9389    // are allowed as the first parameter to a two-parameter function
9390    if (!(Context.hasSameType(T, Context.CharTy) ||
9391          Context.hasSameType(T, Context.WCharTy) ||
9392          Context.hasSameType(T, Context.Char16Ty) ||
9393          Context.hasSameType(T, Context.Char32Ty)))
9394      goto FinishedParams;
9395
9396    // The second and final parameter must be an std::size_t
9397    T = (*Param)->getType().getUnqualifiedType();
9398    if (Context.hasSameType(T, Context.getSizeType()) &&
9399        ++Param == FnDecl->param_end())
9400      Valid = true;
9401  }
9402
9403  // FIXME: This diagnostic is absolutely terrible.
9404FinishedParams:
9405  if (!Valid) {
9406    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9407      << FnDecl->getDeclName();
9408    return true;
9409  }
9410
9411  StringRef LiteralName
9412    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9413  if (LiteralName[0] != '_') {
9414    // C++0x [usrlit.suffix]p1:
9415    //   Literal suffix identifiers that do not start with an underscore are
9416    //   reserved for future standardization.
9417    bool IsHexFloat = true;
9418    if (LiteralName.size() > 1 &&
9419        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9420      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9421        if (!isdigit(LiteralName[I])) {
9422          IsHexFloat = false;
9423          break;
9424        }
9425      }
9426    }
9427
9428    if (IsHexFloat)
9429      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9430        << LiteralName;
9431    else
9432      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9433  }
9434
9435  return false;
9436}
9437
9438/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9439/// linkage specification, including the language and (if present)
9440/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9441/// the location of the language string literal, which is provided
9442/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9443/// the '{' brace. Otherwise, this linkage specification does not
9444/// have any braces.
9445Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9446                                           SourceLocation LangLoc,
9447                                           StringRef Lang,
9448                                           SourceLocation LBraceLoc) {
9449  LinkageSpecDecl::LanguageIDs Language;
9450  if (Lang == "\"C\"")
9451    Language = LinkageSpecDecl::lang_c;
9452  else if (Lang == "\"C++\"")
9453    Language = LinkageSpecDecl::lang_cxx;
9454  else {
9455    Diag(LangLoc, diag::err_bad_language);
9456    return 0;
9457  }
9458
9459  // FIXME: Add all the various semantics of linkage specifications
9460
9461  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9462                                               ExternLoc, LangLoc, Language);
9463  CurContext->addDecl(D);
9464  PushDeclContext(S, D);
9465  return D;
9466}
9467
9468/// ActOnFinishLinkageSpecification - Complete the definition of
9469/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9470/// valid, it's the position of the closing '}' brace in a linkage
9471/// specification that uses braces.
9472Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9473                                            Decl *LinkageSpec,
9474                                            SourceLocation RBraceLoc) {
9475  if (LinkageSpec) {
9476    if (RBraceLoc.isValid()) {
9477      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9478      LSDecl->setRBraceLoc(RBraceLoc);
9479    }
9480    PopDeclContext();
9481  }
9482  return LinkageSpec;
9483}
9484
9485/// \brief Perform semantic analysis for the variable declaration that
9486/// occurs within a C++ catch clause, returning the newly-created
9487/// variable.
9488VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9489                                         TypeSourceInfo *TInfo,
9490                                         SourceLocation StartLoc,
9491                                         SourceLocation Loc,
9492                                         IdentifierInfo *Name) {
9493  bool Invalid = false;
9494  QualType ExDeclType = TInfo->getType();
9495
9496  // Arrays and functions decay.
9497  if (ExDeclType->isArrayType())
9498    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9499  else if (ExDeclType->isFunctionType())
9500    ExDeclType = Context.getPointerType(ExDeclType);
9501
9502  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9503  // The exception-declaration shall not denote a pointer or reference to an
9504  // incomplete type, other than [cv] void*.
9505  // N2844 forbids rvalue references.
9506  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9507    Diag(Loc, diag::err_catch_rvalue_ref);
9508    Invalid = true;
9509  }
9510
9511  QualType BaseType = ExDeclType;
9512  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9513  unsigned DK = diag::err_catch_incomplete;
9514  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9515    BaseType = Ptr->getPointeeType();
9516    Mode = 1;
9517    DK = diag::err_catch_incomplete_ptr;
9518  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9519    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9520    BaseType = Ref->getPointeeType();
9521    Mode = 2;
9522    DK = diag::err_catch_incomplete_ref;
9523  }
9524  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9525      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9526    Invalid = true;
9527
9528  if (!Invalid && !ExDeclType->isDependentType() &&
9529      RequireNonAbstractType(Loc, ExDeclType,
9530                             diag::err_abstract_type_in_decl,
9531                             AbstractVariableType))
9532    Invalid = true;
9533
9534  // Only the non-fragile NeXT runtime currently supports C++ catches
9535  // of ObjC types, and no runtime supports catching ObjC types by value.
9536  if (!Invalid && getLangOptions().ObjC1) {
9537    QualType T = ExDeclType;
9538    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9539      T = RT->getPointeeType();
9540
9541    if (T->isObjCObjectType()) {
9542      Diag(Loc, diag::err_objc_object_catch);
9543      Invalid = true;
9544    } else if (T->isObjCObjectPointerType()) {
9545      if (!getLangOptions().ObjCNonFragileABI)
9546        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9547    }
9548  }
9549
9550  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9551                                    ExDeclType, TInfo, SC_None, SC_None);
9552  ExDecl->setExceptionVariable(true);
9553
9554  // In ARC, infer 'retaining' for variables of retainable type.
9555  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9556    Invalid = true;
9557
9558  if (!Invalid && !ExDeclType->isDependentType()) {
9559    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9560      // C++ [except.handle]p16:
9561      //   The object declared in an exception-declaration or, if the
9562      //   exception-declaration does not specify a name, a temporary (12.2) is
9563      //   copy-initialized (8.5) from the exception object. [...]
9564      //   The object is destroyed when the handler exits, after the destruction
9565      //   of any automatic objects initialized within the handler.
9566      //
9567      // We just pretend to initialize the object with itself, then make sure
9568      // it can be destroyed later.
9569      QualType initType = ExDeclType;
9570
9571      InitializedEntity entity =
9572        InitializedEntity::InitializeVariable(ExDecl);
9573      InitializationKind initKind =
9574        InitializationKind::CreateCopy(Loc, SourceLocation());
9575
9576      Expr *opaqueValue =
9577        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9578      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9579      ExprResult result = sequence.Perform(*this, entity, initKind,
9580                                           MultiExprArg(&opaqueValue, 1));
9581      if (result.isInvalid())
9582        Invalid = true;
9583      else {
9584        // If the constructor used was non-trivial, set this as the
9585        // "initializer".
9586        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9587        if (!construct->getConstructor()->isTrivial()) {
9588          Expr *init = MaybeCreateExprWithCleanups(construct);
9589          ExDecl->setInit(init);
9590        }
9591
9592        // And make sure it's destructable.
9593        FinalizeVarWithDestructor(ExDecl, recordType);
9594      }
9595    }
9596  }
9597
9598  if (Invalid)
9599    ExDecl->setInvalidDecl();
9600
9601  return ExDecl;
9602}
9603
9604/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9605/// handler.
9606Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9607  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9608  bool Invalid = D.isInvalidType();
9609
9610  // Check for unexpanded parameter packs.
9611  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9612                                               UPPC_ExceptionType)) {
9613    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9614                                             D.getIdentifierLoc());
9615    Invalid = true;
9616  }
9617
9618  IdentifierInfo *II = D.getIdentifier();
9619  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9620                                             LookupOrdinaryName,
9621                                             ForRedeclaration)) {
9622    // The scope should be freshly made just for us. There is just no way
9623    // it contains any previous declaration.
9624    assert(!S->isDeclScope(PrevDecl));
9625    if (PrevDecl->isTemplateParameter()) {
9626      // Maybe we will complain about the shadowed template parameter.
9627      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9628      PrevDecl = 0;
9629    }
9630  }
9631
9632  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9633    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9634      << D.getCXXScopeSpec().getRange();
9635    Invalid = true;
9636  }
9637
9638  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9639                                              D.getSourceRange().getBegin(),
9640                                              D.getIdentifierLoc(),
9641                                              D.getIdentifier());
9642  if (Invalid)
9643    ExDecl->setInvalidDecl();
9644
9645  // Add the exception declaration into this scope.
9646  if (II)
9647    PushOnScopeChains(ExDecl, S);
9648  else
9649    CurContext->addDecl(ExDecl);
9650
9651  ProcessDeclAttributes(S, ExDecl, D);
9652  return ExDecl;
9653}
9654
9655Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9656                                         Expr *AssertExpr,
9657                                         Expr *AssertMessageExpr_,
9658                                         SourceLocation RParenLoc) {
9659  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9660
9661  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9662    // In a static_assert-declaration, the constant-expression shall be a
9663    // constant expression that can be contextually converted to bool.
9664    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9665    if (Converted.isInvalid())
9666      return 0;
9667
9668    llvm::APSInt Cond;
9669    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9670          PDiag(diag::err_static_assert_expression_is_not_constant),
9671          /*AllowFold=*/false).isInvalid())
9672      return 0;
9673
9674    if (!Cond)
9675      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9676        << AssertMessage->getString() << AssertExpr->getSourceRange();
9677  }
9678
9679  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9680    return 0;
9681
9682  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9683                                        AssertExpr, AssertMessage, RParenLoc);
9684
9685  CurContext->addDecl(Decl);
9686  return Decl;
9687}
9688
9689/// \brief Perform semantic analysis of the given friend type declaration.
9690///
9691/// \returns A friend declaration that.
9692FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9693                                      SourceLocation FriendLoc,
9694                                      TypeSourceInfo *TSInfo) {
9695  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9696
9697  QualType T = TSInfo->getType();
9698  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9699
9700  // C++03 [class.friend]p2:
9701  //   An elaborated-type-specifier shall be used in a friend declaration
9702  //   for a class.*
9703  //
9704  //   * The class-key of the elaborated-type-specifier is required.
9705  if (!ActiveTemplateInstantiations.empty()) {
9706    // Do not complain about the form of friend template types during
9707    // template instantiation; we will already have complained when the
9708    // template was declared.
9709  } else if (!T->isElaboratedTypeSpecifier()) {
9710    // If we evaluated the type to a record type, suggest putting
9711    // a tag in front.
9712    if (const RecordType *RT = T->getAs<RecordType>()) {
9713      RecordDecl *RD = RT->getDecl();
9714
9715      std::string InsertionText = std::string(" ") + RD->getKindName();
9716
9717      Diag(TypeRange.getBegin(),
9718           getLangOptions().CPlusPlus0x ?
9719             diag::warn_cxx98_compat_unelaborated_friend_type :
9720             diag::ext_unelaborated_friend_type)
9721        << (unsigned) RD->getTagKind()
9722        << T
9723        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9724                                      InsertionText);
9725    } else {
9726      Diag(FriendLoc,
9727           getLangOptions().CPlusPlus0x ?
9728             diag::warn_cxx98_compat_nonclass_type_friend :
9729             diag::ext_nonclass_type_friend)
9730        << T
9731        << SourceRange(FriendLoc, TypeRange.getEnd());
9732    }
9733  } else if (T->getAs<EnumType>()) {
9734    Diag(FriendLoc,
9735         getLangOptions().CPlusPlus0x ?
9736           diag::warn_cxx98_compat_enum_friend :
9737           diag::ext_enum_friend)
9738      << T
9739      << SourceRange(FriendLoc, TypeRange.getEnd());
9740  }
9741
9742  // C++0x [class.friend]p3:
9743  //   If the type specifier in a friend declaration designates a (possibly
9744  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9745  //   the friend declaration is ignored.
9746
9747  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9748  // in [class.friend]p3 that we do not implement.
9749
9750  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9751}
9752
9753/// Handle a friend tag declaration where the scope specifier was
9754/// templated.
9755Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9756                                    unsigned TagSpec, SourceLocation TagLoc,
9757                                    CXXScopeSpec &SS,
9758                                    IdentifierInfo *Name, SourceLocation NameLoc,
9759                                    AttributeList *Attr,
9760                                    MultiTemplateParamsArg TempParamLists) {
9761  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9762
9763  bool isExplicitSpecialization = false;
9764  bool Invalid = false;
9765
9766  if (TemplateParameterList *TemplateParams
9767        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9768                                                  TempParamLists.get(),
9769                                                  TempParamLists.size(),
9770                                                  /*friend*/ true,
9771                                                  isExplicitSpecialization,
9772                                                  Invalid)) {
9773    if (TemplateParams->size() > 0) {
9774      // This is a declaration of a class template.
9775      if (Invalid)
9776        return 0;
9777
9778      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9779                                SS, Name, NameLoc, Attr,
9780                                TemplateParams, AS_public,
9781                                /*ModulePrivateLoc=*/SourceLocation(),
9782                                TempParamLists.size() - 1,
9783                   (TemplateParameterList**) TempParamLists.release()).take();
9784    } else {
9785      // The "template<>" header is extraneous.
9786      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9787        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9788      isExplicitSpecialization = true;
9789    }
9790  }
9791
9792  if (Invalid) return 0;
9793
9794  bool isAllExplicitSpecializations = true;
9795  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9796    if (TempParamLists.get()[I]->size()) {
9797      isAllExplicitSpecializations = false;
9798      break;
9799    }
9800  }
9801
9802  // FIXME: don't ignore attributes.
9803
9804  // If it's explicit specializations all the way down, just forget
9805  // about the template header and build an appropriate non-templated
9806  // friend.  TODO: for source fidelity, remember the headers.
9807  if (isAllExplicitSpecializations) {
9808    if (SS.isEmpty()) {
9809      bool Owned = false;
9810      bool IsDependent = false;
9811      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9812                      Attr, AS_public,
9813                      /*ModulePrivateLoc=*/SourceLocation(),
9814                      MultiTemplateParamsArg(), Owned, IsDependent,
9815                      /*ScopedEnumKWLoc=*/SourceLocation(),
9816                      /*ScopedEnumUsesClassTag=*/false,
9817                      /*UnderlyingType=*/TypeResult());
9818    }
9819
9820    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9821    ElaboratedTypeKeyword Keyword
9822      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9823    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9824                                   *Name, NameLoc);
9825    if (T.isNull())
9826      return 0;
9827
9828    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9829    if (isa<DependentNameType>(T)) {
9830      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9831      TL.setElaboratedKeywordLoc(TagLoc);
9832      TL.setQualifierLoc(QualifierLoc);
9833      TL.setNameLoc(NameLoc);
9834    } else {
9835      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9836      TL.setElaboratedKeywordLoc(TagLoc);
9837      TL.setQualifierLoc(QualifierLoc);
9838      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9839    }
9840
9841    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9842                                            TSI, FriendLoc);
9843    Friend->setAccess(AS_public);
9844    CurContext->addDecl(Friend);
9845    return Friend;
9846  }
9847
9848  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9849
9850
9851
9852  // Handle the case of a templated-scope friend class.  e.g.
9853  //   template <class T> class A<T>::B;
9854  // FIXME: we don't support these right now.
9855  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9856  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9857  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9858  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9859  TL.setElaboratedKeywordLoc(TagLoc);
9860  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9861  TL.setNameLoc(NameLoc);
9862
9863  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9864                                          TSI, FriendLoc);
9865  Friend->setAccess(AS_public);
9866  Friend->setUnsupportedFriend(true);
9867  CurContext->addDecl(Friend);
9868  return Friend;
9869}
9870
9871
9872/// Handle a friend type declaration.  This works in tandem with
9873/// ActOnTag.
9874///
9875/// Notes on friend class templates:
9876///
9877/// We generally treat friend class declarations as if they were
9878/// declaring a class.  So, for example, the elaborated type specifier
9879/// in a friend declaration is required to obey the restrictions of a
9880/// class-head (i.e. no typedefs in the scope chain), template
9881/// parameters are required to match up with simple template-ids, &c.
9882/// However, unlike when declaring a template specialization, it's
9883/// okay to refer to a template specialization without an empty
9884/// template parameter declaration, e.g.
9885///   friend class A<T>::B<unsigned>;
9886/// We permit this as a special case; if there are any template
9887/// parameters present at all, require proper matching, i.e.
9888///   template <> template <class T> friend class A<int>::B;
9889Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9890                                MultiTemplateParamsArg TempParams) {
9891  SourceLocation Loc = DS.getSourceRange().getBegin();
9892
9893  assert(DS.isFriendSpecified());
9894  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9895
9896  // Try to convert the decl specifier to a type.  This works for
9897  // friend templates because ActOnTag never produces a ClassTemplateDecl
9898  // for a TUK_Friend.
9899  Declarator TheDeclarator(DS, Declarator::MemberContext);
9900  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9901  QualType T = TSI->getType();
9902  if (TheDeclarator.isInvalidType())
9903    return 0;
9904
9905  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9906    return 0;
9907
9908  // This is definitely an error in C++98.  It's probably meant to
9909  // be forbidden in C++0x, too, but the specification is just
9910  // poorly written.
9911  //
9912  // The problem is with declarations like the following:
9913  //   template <T> friend A<T>::foo;
9914  // where deciding whether a class C is a friend or not now hinges
9915  // on whether there exists an instantiation of A that causes
9916  // 'foo' to equal C.  There are restrictions on class-heads
9917  // (which we declare (by fiat) elaborated friend declarations to
9918  // be) that makes this tractable.
9919  //
9920  // FIXME: handle "template <> friend class A<T>;", which
9921  // is possibly well-formed?  Who even knows?
9922  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9923    Diag(Loc, diag::err_tagless_friend_type_template)
9924      << DS.getSourceRange();
9925    return 0;
9926  }
9927
9928  // C++98 [class.friend]p1: A friend of a class is a function
9929  //   or class that is not a member of the class . . .
9930  // This is fixed in DR77, which just barely didn't make the C++03
9931  // deadline.  It's also a very silly restriction that seriously
9932  // affects inner classes and which nobody else seems to implement;
9933  // thus we never diagnose it, not even in -pedantic.
9934  //
9935  // But note that we could warn about it: it's always useless to
9936  // friend one of your own members (it's not, however, worthless to
9937  // friend a member of an arbitrary specialization of your template).
9938
9939  Decl *D;
9940  if (unsigned NumTempParamLists = TempParams.size())
9941    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
9942                                   NumTempParamLists,
9943                                   TempParams.release(),
9944                                   TSI,
9945                                   DS.getFriendSpecLoc());
9946  else
9947    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
9948
9949  if (!D)
9950    return 0;
9951
9952  D->setAccess(AS_public);
9953  CurContext->addDecl(D);
9954
9955  return D;
9956}
9957
9958Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
9959                                    MultiTemplateParamsArg TemplateParams) {
9960  const DeclSpec &DS = D.getDeclSpec();
9961
9962  assert(DS.isFriendSpecified());
9963  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9964
9965  SourceLocation Loc = D.getIdentifierLoc();
9966  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9967
9968  // C++ [class.friend]p1
9969  //   A friend of a class is a function or class....
9970  // Note that this sees through typedefs, which is intended.
9971  // It *doesn't* see through dependent types, which is correct
9972  // according to [temp.arg.type]p3:
9973  //   If a declaration acquires a function type through a
9974  //   type dependent on a template-parameter and this causes
9975  //   a declaration that does not use the syntactic form of a
9976  //   function declarator to have a function type, the program
9977  //   is ill-formed.
9978  if (!TInfo->getType()->isFunctionType()) {
9979    Diag(Loc, diag::err_unexpected_friend);
9980
9981    // It might be worthwhile to try to recover by creating an
9982    // appropriate declaration.
9983    return 0;
9984  }
9985
9986  // C++ [namespace.memdef]p3
9987  //  - If a friend declaration in a non-local class first declares a
9988  //    class or function, the friend class or function is a member
9989  //    of the innermost enclosing namespace.
9990  //  - The name of the friend is not found by simple name lookup
9991  //    until a matching declaration is provided in that namespace
9992  //    scope (either before or after the class declaration granting
9993  //    friendship).
9994  //  - If a friend function is called, its name may be found by the
9995  //    name lookup that considers functions from namespaces and
9996  //    classes associated with the types of the function arguments.
9997  //  - When looking for a prior declaration of a class or a function
9998  //    declared as a friend, scopes outside the innermost enclosing
9999  //    namespace scope are not considered.
10000
10001  CXXScopeSpec &SS = D.getCXXScopeSpec();
10002  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10003  DeclarationName Name = NameInfo.getName();
10004  assert(Name);
10005
10006  // Check for unexpanded parameter packs.
10007  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10008      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10009      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10010    return 0;
10011
10012  // The context we found the declaration in, or in which we should
10013  // create the declaration.
10014  DeclContext *DC;
10015  Scope *DCScope = S;
10016  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10017                        ForRedeclaration);
10018
10019  // FIXME: there are different rules in local classes
10020
10021  // There are four cases here.
10022  //   - There's no scope specifier, in which case we just go to the
10023  //     appropriate scope and look for a function or function template
10024  //     there as appropriate.
10025  // Recover from invalid scope qualifiers as if they just weren't there.
10026  if (SS.isInvalid() || !SS.isSet()) {
10027    // C++0x [namespace.memdef]p3:
10028    //   If the name in a friend declaration is neither qualified nor
10029    //   a template-id and the declaration is a function or an
10030    //   elaborated-type-specifier, the lookup to determine whether
10031    //   the entity has been previously declared shall not consider
10032    //   any scopes outside the innermost enclosing namespace.
10033    // C++0x [class.friend]p11:
10034    //   If a friend declaration appears in a local class and the name
10035    //   specified is an unqualified name, a prior declaration is
10036    //   looked up without considering scopes that are outside the
10037    //   innermost enclosing non-class scope. For a friend function
10038    //   declaration, if there is no prior declaration, the program is
10039    //   ill-formed.
10040    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10041    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10042
10043    // Find the appropriate context according to the above.
10044    DC = CurContext;
10045    while (true) {
10046      // Skip class contexts.  If someone can cite chapter and verse
10047      // for this behavior, that would be nice --- it's what GCC and
10048      // EDG do, and it seems like a reasonable intent, but the spec
10049      // really only says that checks for unqualified existing
10050      // declarations should stop at the nearest enclosing namespace,
10051      // not that they should only consider the nearest enclosing
10052      // namespace.
10053      while (DC->isRecord())
10054        DC = DC->getParent();
10055
10056      LookupQualifiedName(Previous, DC);
10057
10058      // TODO: decide what we think about using declarations.
10059      if (isLocal || !Previous.empty())
10060        break;
10061
10062      if (isTemplateId) {
10063        if (isa<TranslationUnitDecl>(DC)) break;
10064      } else {
10065        if (DC->isFileContext()) break;
10066      }
10067      DC = DC->getParent();
10068    }
10069
10070    // C++ [class.friend]p1: A friend of a class is a function or
10071    //   class that is not a member of the class . . .
10072    // C++11 changes this for both friend types and functions.
10073    // Most C++ 98 compilers do seem to give an error here, so
10074    // we do, too.
10075    if (!Previous.empty() && DC->Equals(CurContext))
10076      Diag(DS.getFriendSpecLoc(),
10077           getLangOptions().CPlusPlus0x ?
10078             diag::warn_cxx98_compat_friend_is_member :
10079             diag::err_friend_is_member);
10080
10081    DCScope = getScopeForDeclContext(S, DC);
10082
10083    // C++ [class.friend]p6:
10084    //   A function can be defined in a friend declaration of a class if and
10085    //   only if the class is a non-local class (9.8), the function name is
10086    //   unqualified, and the function has namespace scope.
10087    if (isLocal && D.isFunctionDefinition()) {
10088      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10089    }
10090
10091  //   - There's a non-dependent scope specifier, in which case we
10092  //     compute it and do a previous lookup there for a function
10093  //     or function template.
10094  } else if (!SS.getScopeRep()->isDependent()) {
10095    DC = computeDeclContext(SS);
10096    if (!DC) return 0;
10097
10098    if (RequireCompleteDeclContext(SS, DC)) return 0;
10099
10100    LookupQualifiedName(Previous, DC);
10101
10102    // Ignore things found implicitly in the wrong scope.
10103    // TODO: better diagnostics for this case.  Suggesting the right
10104    // qualified scope would be nice...
10105    LookupResult::Filter F = Previous.makeFilter();
10106    while (F.hasNext()) {
10107      NamedDecl *D = F.next();
10108      if (!DC->InEnclosingNamespaceSetOf(
10109              D->getDeclContext()->getRedeclContext()))
10110        F.erase();
10111    }
10112    F.done();
10113
10114    if (Previous.empty()) {
10115      D.setInvalidType();
10116      Diag(Loc, diag::err_qualified_friend_not_found)
10117          << Name << TInfo->getType();
10118      return 0;
10119    }
10120
10121    // C++ [class.friend]p1: A friend of a class is a function or
10122    //   class that is not a member of the class . . .
10123    if (DC->Equals(CurContext))
10124      Diag(DS.getFriendSpecLoc(),
10125           getLangOptions().CPlusPlus0x ?
10126             diag::warn_cxx98_compat_friend_is_member :
10127             diag::err_friend_is_member);
10128
10129    if (D.isFunctionDefinition()) {
10130      // C++ [class.friend]p6:
10131      //   A function can be defined in a friend declaration of a class if and
10132      //   only if the class is a non-local class (9.8), the function name is
10133      //   unqualified, and the function has namespace scope.
10134      SemaDiagnosticBuilder DB
10135        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10136
10137      DB << SS.getScopeRep();
10138      if (DC->isFileContext())
10139        DB << FixItHint::CreateRemoval(SS.getRange());
10140      SS.clear();
10141    }
10142
10143  //   - There's a scope specifier that does not match any template
10144  //     parameter lists, in which case we use some arbitrary context,
10145  //     create a method or method template, and wait for instantiation.
10146  //   - There's a scope specifier that does match some template
10147  //     parameter lists, which we don't handle right now.
10148  } else {
10149    if (D.isFunctionDefinition()) {
10150      // C++ [class.friend]p6:
10151      //   A function can be defined in a friend declaration of a class if and
10152      //   only if the class is a non-local class (9.8), the function name is
10153      //   unqualified, and the function has namespace scope.
10154      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10155        << SS.getScopeRep();
10156    }
10157
10158    DC = CurContext;
10159    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10160  }
10161
10162  if (!DC->isRecord()) {
10163    // This implies that it has to be an operator or function.
10164    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10165        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10166        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10167      Diag(Loc, diag::err_introducing_special_friend) <<
10168        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10169         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10170      return 0;
10171    }
10172  }
10173
10174  // FIXME: This is an egregious hack to cope with cases where the scope stack
10175  // does not contain the declaration context, i.e., in an out-of-line
10176  // definition of a class.
10177  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10178  if (!DCScope) {
10179    FakeDCScope.setEntity(DC);
10180    DCScope = &FakeDCScope;
10181  }
10182
10183  bool AddToScope = true;
10184  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10185                                          move(TemplateParams), AddToScope);
10186  if (!ND) return 0;
10187
10188  assert(ND->getDeclContext() == DC);
10189  assert(ND->getLexicalDeclContext() == CurContext);
10190
10191  // Add the function declaration to the appropriate lookup tables,
10192  // adjusting the redeclarations list as necessary.  We don't
10193  // want to do this yet if the friending class is dependent.
10194  //
10195  // Also update the scope-based lookup if the target context's
10196  // lookup context is in lexical scope.
10197  if (!CurContext->isDependentContext()) {
10198    DC = DC->getRedeclContext();
10199    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10200    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10201      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10202  }
10203
10204  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10205                                       D.getIdentifierLoc(), ND,
10206                                       DS.getFriendSpecLoc());
10207  FrD->setAccess(AS_public);
10208  CurContext->addDecl(FrD);
10209
10210  if (ND->isInvalidDecl())
10211    FrD->setInvalidDecl();
10212  else {
10213    FunctionDecl *FD;
10214    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10215      FD = FTD->getTemplatedDecl();
10216    else
10217      FD = cast<FunctionDecl>(ND);
10218
10219    // Mark templated-scope function declarations as unsupported.
10220    if (FD->getNumTemplateParameterLists())
10221      FrD->setUnsupportedFriend(true);
10222  }
10223
10224  return ND;
10225}
10226
10227void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10228  AdjustDeclIfTemplate(Dcl);
10229
10230  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10231  if (!Fn) {
10232    Diag(DelLoc, diag::err_deleted_non_function);
10233    return;
10234  }
10235  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10236    Diag(DelLoc, diag::err_deleted_decl_not_first);
10237    Diag(Prev->getLocation(), diag::note_previous_declaration);
10238    // If the declaration wasn't the first, we delete the function anyway for
10239    // recovery.
10240  }
10241  Fn->setDeletedAsWritten();
10242}
10243
10244void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10245  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10246
10247  if (MD) {
10248    if (MD->getParent()->isDependentType()) {
10249      MD->setDefaulted();
10250      MD->setExplicitlyDefaulted();
10251      return;
10252    }
10253
10254    CXXSpecialMember Member = getSpecialMember(MD);
10255    if (Member == CXXInvalid) {
10256      Diag(DefaultLoc, diag::err_default_special_members);
10257      return;
10258    }
10259
10260    MD->setDefaulted();
10261    MD->setExplicitlyDefaulted();
10262
10263    // If this definition appears within the record, do the checking when
10264    // the record is complete.
10265    const FunctionDecl *Primary = MD;
10266    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10267      // Find the uninstantiated declaration that actually had the '= default'
10268      // on it.
10269      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10270
10271    if (Primary == Primary->getCanonicalDecl())
10272      return;
10273
10274    switch (Member) {
10275    case CXXDefaultConstructor: {
10276      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10277      CheckExplicitlyDefaultedDefaultConstructor(CD);
10278      if (!CD->isInvalidDecl())
10279        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10280      break;
10281    }
10282
10283    case CXXCopyConstructor: {
10284      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10285      CheckExplicitlyDefaultedCopyConstructor(CD);
10286      if (!CD->isInvalidDecl())
10287        DefineImplicitCopyConstructor(DefaultLoc, CD);
10288      break;
10289    }
10290
10291    case CXXCopyAssignment: {
10292      CheckExplicitlyDefaultedCopyAssignment(MD);
10293      if (!MD->isInvalidDecl())
10294        DefineImplicitCopyAssignment(DefaultLoc, MD);
10295      break;
10296    }
10297
10298    case CXXDestructor: {
10299      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10300      CheckExplicitlyDefaultedDestructor(DD);
10301      if (!DD->isInvalidDecl())
10302        DefineImplicitDestructor(DefaultLoc, DD);
10303      break;
10304    }
10305
10306    case CXXMoveConstructor: {
10307      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10308      CheckExplicitlyDefaultedMoveConstructor(CD);
10309      if (!CD->isInvalidDecl())
10310        DefineImplicitMoveConstructor(DefaultLoc, CD);
10311      break;
10312    }
10313
10314    case CXXMoveAssignment: {
10315      CheckExplicitlyDefaultedMoveAssignment(MD);
10316      if (!MD->isInvalidDecl())
10317        DefineImplicitMoveAssignment(DefaultLoc, MD);
10318      break;
10319    }
10320
10321    case CXXInvalid:
10322      llvm_unreachable("Invalid special member.");
10323    }
10324  } else {
10325    Diag(DefaultLoc, diag::err_default_special_members);
10326  }
10327}
10328
10329static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10330  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10331    Stmt *SubStmt = *CI;
10332    if (!SubStmt)
10333      continue;
10334    if (isa<ReturnStmt>(SubStmt))
10335      Self.Diag(SubStmt->getSourceRange().getBegin(),
10336           diag::err_return_in_constructor_handler);
10337    if (!isa<Expr>(SubStmt))
10338      SearchForReturnInStmt(Self, SubStmt);
10339  }
10340}
10341
10342void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10343  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10344    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10345    SearchForReturnInStmt(*this, Handler);
10346  }
10347}
10348
10349bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10350                                             const CXXMethodDecl *Old) {
10351  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10352  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10353
10354  if (Context.hasSameType(NewTy, OldTy) ||
10355      NewTy->isDependentType() || OldTy->isDependentType())
10356    return false;
10357
10358  // Check if the return types are covariant
10359  QualType NewClassTy, OldClassTy;
10360
10361  /// Both types must be pointers or references to classes.
10362  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10363    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10364      NewClassTy = NewPT->getPointeeType();
10365      OldClassTy = OldPT->getPointeeType();
10366    }
10367  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10368    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10369      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10370        NewClassTy = NewRT->getPointeeType();
10371        OldClassTy = OldRT->getPointeeType();
10372      }
10373    }
10374  }
10375
10376  // The return types aren't either both pointers or references to a class type.
10377  if (NewClassTy.isNull()) {
10378    Diag(New->getLocation(),
10379         diag::err_different_return_type_for_overriding_virtual_function)
10380      << New->getDeclName() << NewTy << OldTy;
10381    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10382
10383    return true;
10384  }
10385
10386  // C++ [class.virtual]p6:
10387  //   If the return type of D::f differs from the return type of B::f, the
10388  //   class type in the return type of D::f shall be complete at the point of
10389  //   declaration of D::f or shall be the class type D.
10390  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10391    if (!RT->isBeingDefined() &&
10392        RequireCompleteType(New->getLocation(), NewClassTy,
10393                            PDiag(diag::err_covariant_return_incomplete)
10394                              << New->getDeclName()))
10395    return true;
10396  }
10397
10398  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10399    // Check if the new class derives from the old class.
10400    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10401      Diag(New->getLocation(),
10402           diag::err_covariant_return_not_derived)
10403      << New->getDeclName() << NewTy << OldTy;
10404      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10405      return true;
10406    }
10407
10408    // Check if we the conversion from derived to base is valid.
10409    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10410                    diag::err_covariant_return_inaccessible_base,
10411                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10412                    // FIXME: Should this point to the return type?
10413                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10414      // FIXME: this note won't trigger for delayed access control
10415      // diagnostics, and it's impossible to get an undelayed error
10416      // here from access control during the original parse because
10417      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10418      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10419      return true;
10420    }
10421  }
10422
10423  // The qualifiers of the return types must be the same.
10424  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10425    Diag(New->getLocation(),
10426         diag::err_covariant_return_type_different_qualifications)
10427    << New->getDeclName() << NewTy << OldTy;
10428    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10429    return true;
10430  };
10431
10432
10433  // The new class type must have the same or less qualifiers as the old type.
10434  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10435    Diag(New->getLocation(),
10436         diag::err_covariant_return_type_class_type_more_qualified)
10437    << New->getDeclName() << NewTy << OldTy;
10438    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10439    return true;
10440  };
10441
10442  return false;
10443}
10444
10445/// \brief Mark the given method pure.
10446///
10447/// \param Method the method to be marked pure.
10448///
10449/// \param InitRange the source range that covers the "0" initializer.
10450bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10451  SourceLocation EndLoc = InitRange.getEnd();
10452  if (EndLoc.isValid())
10453    Method->setRangeEnd(EndLoc);
10454
10455  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10456    Method->setPure();
10457    return false;
10458  }
10459
10460  if (!Method->isInvalidDecl())
10461    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10462      << Method->getDeclName() << InitRange;
10463  return true;
10464}
10465
10466/// \brief Determine whether the given declaration is a static data member.
10467static bool isStaticDataMember(Decl *D) {
10468  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10469  if (!Var)
10470    return false;
10471
10472  return Var->isStaticDataMember();
10473}
10474/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10475/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10476/// is a fresh scope pushed for just this purpose.
10477///
10478/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10479/// static data member of class X, names should be looked up in the scope of
10480/// class X.
10481void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10482  // If there is no declaration, there was an error parsing it.
10483  if (D == 0 || D->isInvalidDecl()) return;
10484
10485  // We should only get called for declarations with scope specifiers, like:
10486  //   int foo::bar;
10487  assert(D->isOutOfLine());
10488  EnterDeclaratorContext(S, D->getDeclContext());
10489
10490  // If we are parsing the initializer for a static data member, push a
10491  // new expression evaluation context that is associated with this static
10492  // data member.
10493  if (isStaticDataMember(D))
10494    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10495}
10496
10497/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10498/// initializer for the out-of-line declaration 'D'.
10499void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10500  // If there is no declaration, there was an error parsing it.
10501  if (D == 0 || D->isInvalidDecl()) return;
10502
10503  if (isStaticDataMember(D))
10504    PopExpressionEvaluationContext();
10505
10506  assert(D->isOutOfLine());
10507  ExitDeclaratorContext(S);
10508}
10509
10510/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10511/// C++ if/switch/while/for statement.
10512/// e.g: "if (int x = f()) {...}"
10513DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10514  // C++ 6.4p2:
10515  // The declarator shall not specify a function or an array.
10516  // The type-specifier-seq shall not contain typedef and shall not declare a
10517  // new class or enumeration.
10518  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10519         "Parser allowed 'typedef' as storage class of condition decl.");
10520
10521  Decl *Dcl = ActOnDeclarator(S, D);
10522  if (!Dcl)
10523    return true;
10524
10525  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10526    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10527      << D.getSourceRange();
10528    return true;
10529  }
10530
10531  return Dcl;
10532}
10533
10534void Sema::LoadExternalVTableUses() {
10535  if (!ExternalSource)
10536    return;
10537
10538  SmallVector<ExternalVTableUse, 4> VTables;
10539  ExternalSource->ReadUsedVTables(VTables);
10540  SmallVector<VTableUse, 4> NewUses;
10541  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10542    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10543      = VTablesUsed.find(VTables[I].Record);
10544    // Even if a definition wasn't required before, it may be required now.
10545    if (Pos != VTablesUsed.end()) {
10546      if (!Pos->second && VTables[I].DefinitionRequired)
10547        Pos->second = true;
10548      continue;
10549    }
10550
10551    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10552    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10553  }
10554
10555  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10556}
10557
10558void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10559                          bool DefinitionRequired) {
10560  // Ignore any vtable uses in unevaluated operands or for classes that do
10561  // not have a vtable.
10562  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10563      CurContext->isDependentContext() ||
10564      ExprEvalContexts.back().Context == Unevaluated)
10565    return;
10566
10567  // Try to insert this class into the map.
10568  LoadExternalVTableUses();
10569  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10570  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10571    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10572  if (!Pos.second) {
10573    // If we already had an entry, check to see if we are promoting this vtable
10574    // to required a definition. If so, we need to reappend to the VTableUses
10575    // list, since we may have already processed the first entry.
10576    if (DefinitionRequired && !Pos.first->second) {
10577      Pos.first->second = true;
10578    } else {
10579      // Otherwise, we can early exit.
10580      return;
10581    }
10582  }
10583
10584  // Local classes need to have their virtual members marked
10585  // immediately. For all other classes, we mark their virtual members
10586  // at the end of the translation unit.
10587  if (Class->isLocalClass())
10588    MarkVirtualMembersReferenced(Loc, Class);
10589  else
10590    VTableUses.push_back(std::make_pair(Class, Loc));
10591}
10592
10593bool Sema::DefineUsedVTables() {
10594  LoadExternalVTableUses();
10595  if (VTableUses.empty())
10596    return false;
10597
10598  // Note: The VTableUses vector could grow as a result of marking
10599  // the members of a class as "used", so we check the size each
10600  // time through the loop and prefer indices (with are stable) to
10601  // iterators (which are not).
10602  bool DefinedAnything = false;
10603  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10604    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10605    if (!Class)
10606      continue;
10607
10608    SourceLocation Loc = VTableUses[I].second;
10609
10610    // If this class has a key function, but that key function is
10611    // defined in another translation unit, we don't need to emit the
10612    // vtable even though we're using it.
10613    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10614    if (KeyFunction && !KeyFunction->hasBody()) {
10615      switch (KeyFunction->getTemplateSpecializationKind()) {
10616      case TSK_Undeclared:
10617      case TSK_ExplicitSpecialization:
10618      case TSK_ExplicitInstantiationDeclaration:
10619        // The key function is in another translation unit.
10620        continue;
10621
10622      case TSK_ExplicitInstantiationDefinition:
10623      case TSK_ImplicitInstantiation:
10624        // We will be instantiating the key function.
10625        break;
10626      }
10627    } else if (!KeyFunction) {
10628      // If we have a class with no key function that is the subject
10629      // of an explicit instantiation declaration, suppress the
10630      // vtable; it will live with the explicit instantiation
10631      // definition.
10632      bool IsExplicitInstantiationDeclaration
10633        = Class->getTemplateSpecializationKind()
10634                                      == TSK_ExplicitInstantiationDeclaration;
10635      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10636                                 REnd = Class->redecls_end();
10637           R != REnd; ++R) {
10638        TemplateSpecializationKind TSK
10639          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10640        if (TSK == TSK_ExplicitInstantiationDeclaration)
10641          IsExplicitInstantiationDeclaration = true;
10642        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10643          IsExplicitInstantiationDeclaration = false;
10644          break;
10645        }
10646      }
10647
10648      if (IsExplicitInstantiationDeclaration)
10649        continue;
10650    }
10651
10652    // Mark all of the virtual members of this class as referenced, so
10653    // that we can build a vtable. Then, tell the AST consumer that a
10654    // vtable for this class is required.
10655    DefinedAnything = true;
10656    MarkVirtualMembersReferenced(Loc, Class);
10657    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10658    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10659
10660    // Optionally warn if we're emitting a weak vtable.
10661    if (Class->getLinkage() == ExternalLinkage &&
10662        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10663      const FunctionDecl *KeyFunctionDef = 0;
10664      if (!KeyFunction ||
10665          (KeyFunction->hasBody(KeyFunctionDef) &&
10666           KeyFunctionDef->isInlined()))
10667        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10668             TSK_ExplicitInstantiationDefinition
10669             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10670          << Class;
10671    }
10672  }
10673  VTableUses.clear();
10674
10675  return DefinedAnything;
10676}
10677
10678void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10679                                        const CXXRecordDecl *RD) {
10680  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10681       e = RD->method_end(); i != e; ++i) {
10682    CXXMethodDecl *MD = *i;
10683
10684    // C++ [basic.def.odr]p2:
10685    //   [...] A virtual member function is used if it is not pure. [...]
10686    if (MD->isVirtual() && !MD->isPure())
10687      MarkFunctionReferenced(Loc, MD);
10688  }
10689
10690  // Only classes that have virtual bases need a VTT.
10691  if (RD->getNumVBases() == 0)
10692    return;
10693
10694  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10695           e = RD->bases_end(); i != e; ++i) {
10696    const CXXRecordDecl *Base =
10697        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10698    if (Base->getNumVBases() == 0)
10699      continue;
10700    MarkVirtualMembersReferenced(Loc, Base);
10701  }
10702}
10703
10704/// SetIvarInitializers - This routine builds initialization ASTs for the
10705/// Objective-C implementation whose ivars need be initialized.
10706void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10707  if (!getLangOptions().CPlusPlus)
10708    return;
10709  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10710    SmallVector<ObjCIvarDecl*, 8> ivars;
10711    CollectIvarsToConstructOrDestruct(OID, ivars);
10712    if (ivars.empty())
10713      return;
10714    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10715    for (unsigned i = 0; i < ivars.size(); i++) {
10716      FieldDecl *Field = ivars[i];
10717      if (Field->isInvalidDecl())
10718        continue;
10719
10720      CXXCtorInitializer *Member;
10721      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10722      InitializationKind InitKind =
10723        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10724
10725      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10726      ExprResult MemberInit =
10727        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10728      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10729      // Note, MemberInit could actually come back empty if no initialization
10730      // is required (e.g., because it would call a trivial default constructor)
10731      if (!MemberInit.get() || MemberInit.isInvalid())
10732        continue;
10733
10734      Member =
10735        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10736                                         SourceLocation(),
10737                                         MemberInit.takeAs<Expr>(),
10738                                         SourceLocation());
10739      AllToInit.push_back(Member);
10740
10741      // Be sure that the destructor is accessible and is marked as referenced.
10742      if (const RecordType *RecordTy
10743                  = Context.getBaseElementType(Field->getType())
10744                                                        ->getAs<RecordType>()) {
10745                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10746        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10747          MarkFunctionReferenced(Field->getLocation(), Destructor);
10748          CheckDestructorAccess(Field->getLocation(), Destructor,
10749                            PDiag(diag::err_access_dtor_ivar)
10750                              << Context.getBaseElementType(Field->getType()));
10751        }
10752      }
10753    }
10754    ObjCImplementation->setIvarInitializers(Context,
10755                                            AllToInit.data(), AllToInit.size());
10756  }
10757}
10758
10759static
10760void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10761                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10762                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10763                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10764                           Sema &S) {
10765  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10766                                                   CE = Current.end();
10767  if (Ctor->isInvalidDecl())
10768    return;
10769
10770  const FunctionDecl *FNTarget = 0;
10771  CXXConstructorDecl *Target;
10772
10773  // We ignore the result here since if we don't have a body, Target will be
10774  // null below.
10775  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10776  Target
10777= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10778
10779  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10780                     // Avoid dereferencing a null pointer here.
10781                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10782
10783  if (!Current.insert(Canonical))
10784    return;
10785
10786  // We know that beyond here, we aren't chaining into a cycle.
10787  if (!Target || !Target->isDelegatingConstructor() ||
10788      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10789    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10790      Valid.insert(*CI);
10791    Current.clear();
10792  // We've hit a cycle.
10793  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10794             Current.count(TCanonical)) {
10795    // If we haven't diagnosed this cycle yet, do so now.
10796    if (!Invalid.count(TCanonical)) {
10797      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10798             diag::warn_delegating_ctor_cycle)
10799        << Ctor;
10800
10801      // Don't add a note for a function delegating directo to itself.
10802      if (TCanonical != Canonical)
10803        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10804
10805      CXXConstructorDecl *C = Target;
10806      while (C->getCanonicalDecl() != Canonical) {
10807        (void)C->getTargetConstructor()->hasBody(FNTarget);
10808        assert(FNTarget && "Ctor cycle through bodiless function");
10809
10810        C
10811       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10812        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10813      }
10814    }
10815
10816    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10817      Invalid.insert(*CI);
10818    Current.clear();
10819  } else {
10820    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10821  }
10822}
10823
10824
10825void Sema::CheckDelegatingCtorCycles() {
10826  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10827
10828  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10829                                                   CE = Current.end();
10830
10831  for (DelegatingCtorDeclsType::iterator
10832         I = DelegatingCtorDecls.begin(ExternalSource),
10833         E = DelegatingCtorDecls.end();
10834       I != E; ++I) {
10835   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10836  }
10837
10838  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10839    (*CI)->setInvalidDecl();
10840}
10841
10842/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10843Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10844  // Implicitly declared functions (e.g. copy constructors) are
10845  // __host__ __device__
10846  if (D->isImplicit())
10847    return CFT_HostDevice;
10848
10849  if (D->hasAttr<CUDAGlobalAttr>())
10850    return CFT_Global;
10851
10852  if (D->hasAttr<CUDADeviceAttr>()) {
10853    if (D->hasAttr<CUDAHostAttr>())
10854      return CFT_HostDevice;
10855    else
10856      return CFT_Device;
10857  }
10858
10859  return CFT_Host;
10860}
10861
10862bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10863                           CUDAFunctionTarget CalleeTarget) {
10864  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10865  // Callable from the device only."
10866  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10867    return true;
10868
10869  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10870  // Callable from the host only."
10871  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10872  // Callable from the host only."
10873  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10874      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10875    return true;
10876
10877  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10878    return true;
10879
10880  return false;
10881}
10882