SemaDeclCXX.cpp revision ae0b4e7be78cf0dc2a6a333e865c2be9265774f9
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
111  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
112  QualType ParamType = Param->getType();
113
114  // Default arguments are only permitted in C++
115  if (!getLangOptions().CPlusPlus) {
116    Diag(EqualLoc, diag::err_param_default_argument)
117      << DefaultArg->getSourceRange();
118    Param->setInvalidDecl();
119    return;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  Expr *DefaultArgPtr = DefaultArg.get();
129  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
130                                                 EqualLoc,
131                                                 Param->getDeclName(),
132                                                 /*DirectInit=*/false);
133  if (DefaultArgPtr != DefaultArg.get()) {
134    DefaultArg.take();
135    DefaultArg.reset(DefaultArgPtr);
136  }
137  if (DefaultInitFailed) {
138    return;
139  }
140
141  // Check that the default argument is well-formed
142  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
143  if (DefaultArgChecker.Visit(DefaultArg.get())) {
144    Param->setInvalidDecl();
145    return;
146  }
147
148  // Okay: add the default argument to the parameter
149  Param->setDefaultArg(DefaultArg.take());
150}
151
152/// ActOnParamUnparsedDefaultArgument - We've seen a default
153/// argument for a function parameter, but we can't parse it yet
154/// because we're inside a class definition. Note that this default
155/// argument will be parsed later.
156void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
157                                             SourceLocation EqualLoc) {
158  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
159  if (Param)
160    Param->setUnparsedDefaultArg();
161}
162
163/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
164/// the default argument for the parameter param failed.
165void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
166  cast<ParmVarDecl>(param.getAs<Decl>())->setInvalidDecl();
167}
168
169/// CheckExtraCXXDefaultArguments - Check for any extra default
170/// arguments in the declarator, which is not a function declaration
171/// or definition and therefore is not permitted to have default
172/// arguments. This routine should be invoked for every declarator
173/// that is not a function declaration or definition.
174void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
175  // C++ [dcl.fct.default]p3
176  //   A default argument expression shall be specified only in the
177  //   parameter-declaration-clause of a function declaration or in a
178  //   template-parameter (14.1). It shall not be specified for a
179  //   parameter pack. If it is specified in a
180  //   parameter-declaration-clause, it shall not occur within a
181  //   declarator or abstract-declarator of a parameter-declaration.
182  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
183    DeclaratorChunk &chunk = D.getTypeObject(i);
184    if (chunk.Kind == DeclaratorChunk::Function) {
185      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
186        ParmVarDecl *Param =
187          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
188        if (Param->hasUnparsedDefaultArg()) {
189          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
190          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
191            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
192          delete Toks;
193          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
194        } else if (Param->getDefaultArg()) {
195          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
196            << Param->getDefaultArg()->getSourceRange();
197          Param->setDefaultArg(0);
198        }
199      }
200    }
201  }
202}
203
204// MergeCXXFunctionDecl - Merge two declarations of the same C++
205// function, once we already know that they have the same
206// type. Subroutine of MergeFunctionDecl. Returns true if there was an
207// error, false otherwise.
208bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
209  bool Invalid = false;
210
211  // C++ [dcl.fct.default]p4:
212  //
213  //   For non-template functions, default arguments can be added in
214  //   later declarations of a function in the same
215  //   scope. Declarations in different scopes have completely
216  //   distinct sets of default arguments. That is, declarations in
217  //   inner scopes do not acquire default arguments from
218  //   declarations in outer scopes, and vice versa. In a given
219  //   function declaration, all parameters subsequent to a
220  //   parameter with a default argument shall have default
221  //   arguments supplied in this or previous declarations. A
222  //   default argument shall not be redefined by a later
223  //   declaration (not even to the same value).
224  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
225    ParmVarDecl *OldParam = Old->getParamDecl(p);
226    ParmVarDecl *NewParam = New->getParamDecl(p);
227
228    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
229      Diag(NewParam->getLocation(),
230           diag::err_param_default_argument_redefinition)
231        << NewParam->getDefaultArg()->getSourceRange();
232      Diag(OldParam->getLocation(), diag::note_previous_definition);
233      Invalid = true;
234    } else if (OldParam->getDefaultArg()) {
235      // Merge the old default argument into the new parameter
236      NewParam->setDefaultArg(OldParam->getDefaultArg());
237    }
238  }
239
240  return Invalid;
241}
242
243/// CheckCXXDefaultArguments - Verify that the default arguments for a
244/// function declaration are well-formed according to C++
245/// [dcl.fct.default].
246void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
247  unsigned NumParams = FD->getNumParams();
248  unsigned p;
249
250  // Find first parameter with a default argument
251  for (p = 0; p < NumParams; ++p) {
252    ParmVarDecl *Param = FD->getParamDecl(p);
253    if (Param->getDefaultArg())
254      break;
255  }
256
257  // C++ [dcl.fct.default]p4:
258  //   In a given function declaration, all parameters
259  //   subsequent to a parameter with a default argument shall
260  //   have default arguments supplied in this or previous
261  //   declarations. A default argument shall not be redefined
262  //   by a later declaration (not even to the same value).
263  unsigned LastMissingDefaultArg = 0;
264  for(; p < NumParams; ++p) {
265    ParmVarDecl *Param = FD->getParamDecl(p);
266    if (!Param->getDefaultArg()) {
267      if (Param->isInvalidDecl())
268        /* We already complained about this parameter. */;
269      else if (Param->getIdentifier())
270        Diag(Param->getLocation(),
271             diag::err_param_default_argument_missing_name)
272          << Param->getIdentifier();
273      else
274        Diag(Param->getLocation(),
275             diag::err_param_default_argument_missing);
276
277      LastMissingDefaultArg = p;
278    }
279  }
280
281  if (LastMissingDefaultArg > 0) {
282    // Some default arguments were missing. Clear out all of the
283    // default arguments up to (and including) the last missing
284    // default argument, so that we leave the function parameters
285    // in a semantically valid state.
286    for (p = 0; p <= LastMissingDefaultArg; ++p) {
287      ParmVarDecl *Param = FD->getParamDecl(p);
288      if (Param->getDefaultArg()) {
289        if (!Param->hasUnparsedDefaultArg())
290          Param->getDefaultArg()->Destroy(Context);
291        Param->setDefaultArg(0);
292      }
293    }
294  }
295}
296
297/// isCurrentClassName - Determine whether the identifier II is the
298/// name of the class type currently being defined. In the case of
299/// nested classes, this will only return true if II is the name of
300/// the innermost class.
301bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
302                              const CXXScopeSpec *SS) {
303  CXXRecordDecl *CurDecl;
304  if (SS && SS->isSet() && !SS->isInvalid()) {
305    DeclContext *DC = computeDeclContext(*SS);
306    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
307  } else
308    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
309
310  if (CurDecl)
311    return &II == CurDecl->getIdentifier();
312  else
313    return false;
314}
315
316/// \brief Check the validity of a C++ base class specifier.
317///
318/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
319/// and returns NULL otherwise.
320CXXBaseSpecifier *
321Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
322                         SourceRange SpecifierRange,
323                         bool Virtual, AccessSpecifier Access,
324                         QualType BaseType,
325                         SourceLocation BaseLoc) {
326  // C++ [class.union]p1:
327  //   A union shall not have base classes.
328  if (Class->isUnion()) {
329    Diag(Class->getLocation(), diag::err_base_clause_on_union)
330      << SpecifierRange;
331    return 0;
332  }
333
334  if (BaseType->isDependentType())
335    return new CXXBaseSpecifier(SpecifierRange, Virtual,
336                                Class->getTagKind() == RecordDecl::TK_class,
337                                Access, BaseType);
338
339  // Base specifiers must be record types.
340  if (!BaseType->isRecordType()) {
341    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
342    return 0;
343  }
344
345  // C++ [class.union]p1:
346  //   A union shall not be used as a base class.
347  if (BaseType->isUnionType()) {
348    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
349    return 0;
350  }
351
352  // C++ [class.derived]p2:
353  //   The class-name in a base-specifier shall not be an incompletely
354  //   defined class.
355  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
356                          SpecifierRange))
357    return 0;
358
359  // If the base class is polymorphic, the new one is, too.
360  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
361  assert(BaseDecl && "Record type has no declaration");
362  BaseDecl = BaseDecl->getDefinition(Context);
363  assert(BaseDecl && "Base type is not incomplete, but has no definition");
364  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
365    Class->setPolymorphic(true);
366
367  // C++ [dcl.init.aggr]p1:
368  //   An aggregate is [...] a class with [...] no base classes [...].
369  Class->setAggregate(false);
370  Class->setPOD(false);
371
372  if (Virtual) {
373    // C++ [class.ctor]p5:
374    //   A constructor is trivial if its class has no virtual base classes.
375    Class->setHasTrivialConstructor(false);
376  } else {
377    // C++ [class.ctor]p5:
378    //   A constructor is trivial if all the direct base classes of its
379    //   class have trivial constructors.
380    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
381                                    hasTrivialConstructor());
382  }
383
384  // C++ [class.ctor]p3:
385  //   A destructor is trivial if all the direct base classes of its class
386  //   have trivial destructors.
387  Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
388                                 hasTrivialDestructor());
389
390  // Create the base specifier.
391  // FIXME: Allocate via ASTContext?
392  return new CXXBaseSpecifier(SpecifierRange, Virtual,
393                              Class->getTagKind() == RecordDecl::TK_class,
394                              Access, BaseType);
395}
396
397/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
398/// one entry in the base class list of a class specifier, for
399/// example:
400///    class foo : public bar, virtual private baz {
401/// 'public bar' and 'virtual private baz' are each base-specifiers.
402Sema::BaseResult
403Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
404                         bool Virtual, AccessSpecifier Access,
405                         TypeTy *basetype, SourceLocation BaseLoc) {
406  AdjustDeclIfTemplate(classdecl);
407  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
408  QualType BaseType = QualType::getFromOpaquePtr(basetype);
409  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
410                                                      Virtual, Access,
411                                                      BaseType, BaseLoc))
412    return BaseSpec;
413
414  return true;
415}
416
417/// \brief Performs the actual work of attaching the given base class
418/// specifiers to a C++ class.
419bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
420                                unsigned NumBases) {
421 if (NumBases == 0)
422    return false;
423
424  // Used to keep track of which base types we have already seen, so
425  // that we can properly diagnose redundant direct base types. Note
426  // that the key is always the unqualified canonical type of the base
427  // class.
428  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
429
430  // Copy non-redundant base specifiers into permanent storage.
431  unsigned NumGoodBases = 0;
432  bool Invalid = false;
433  for (unsigned idx = 0; idx < NumBases; ++idx) {
434    QualType NewBaseType
435      = Context.getCanonicalType(Bases[idx]->getType());
436    NewBaseType = NewBaseType.getUnqualifiedType();
437
438    if (KnownBaseTypes[NewBaseType]) {
439      // C++ [class.mi]p3:
440      //   A class shall not be specified as a direct base class of a
441      //   derived class more than once.
442      Diag(Bases[idx]->getSourceRange().getBegin(),
443           diag::err_duplicate_base_class)
444        << KnownBaseTypes[NewBaseType]->getType()
445        << Bases[idx]->getSourceRange();
446
447      // Delete the duplicate base class specifier; we're going to
448      // overwrite its pointer later.
449      delete Bases[idx];
450
451      Invalid = true;
452    } else {
453      // Okay, add this new base class.
454      KnownBaseTypes[NewBaseType] = Bases[idx];
455      Bases[NumGoodBases++] = Bases[idx];
456    }
457  }
458
459  // Attach the remaining base class specifiers to the derived class.
460  Class->setBases(Bases, NumGoodBases);
461
462  // Delete the remaining (good) base class specifiers, since their
463  // data has been copied into the CXXRecordDecl.
464  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
465    delete Bases[idx];
466
467  return Invalid;
468}
469
470/// ActOnBaseSpecifiers - Attach the given base specifiers to the
471/// class, after checking whether there are any duplicate base
472/// classes.
473void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
474                               unsigned NumBases) {
475  if (!ClassDecl || !Bases || !NumBases)
476    return;
477
478  AdjustDeclIfTemplate(ClassDecl);
479  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
480                       (CXXBaseSpecifier**)(Bases), NumBases);
481}
482
483//===----------------------------------------------------------------------===//
484// C++ class member Handling
485//===----------------------------------------------------------------------===//
486
487/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
488/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
489/// bitfield width if there is one and 'InitExpr' specifies the initializer if
490/// any.
491Sema::DeclPtrTy
492Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
493                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
494  const DeclSpec &DS = D.getDeclSpec();
495  DeclarationName Name = GetNameForDeclarator(D);
496  Expr *BitWidth = static_cast<Expr*>(BW);
497  Expr *Init = static_cast<Expr*>(InitExpr);
498  SourceLocation Loc = D.getIdentifierLoc();
499
500  bool isFunc = D.isFunctionDeclarator();
501
502  // C++ 9.2p6: A member shall not be declared to have automatic storage
503  // duration (auto, register) or with the extern storage-class-specifier.
504  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
505  // data members and cannot be applied to names declared const or static,
506  // and cannot be applied to reference members.
507  switch (DS.getStorageClassSpec()) {
508    case DeclSpec::SCS_unspecified:
509    case DeclSpec::SCS_typedef:
510    case DeclSpec::SCS_static:
511      // FALL THROUGH.
512      break;
513    case DeclSpec::SCS_mutable:
514      if (isFunc) {
515        if (DS.getStorageClassSpecLoc().isValid())
516          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
517        else
518          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
519
520        // FIXME: It would be nicer if the keyword was ignored only for this
521        // declarator. Otherwise we could get follow-up errors.
522        D.getMutableDeclSpec().ClearStorageClassSpecs();
523      } else {
524        QualType T = GetTypeForDeclarator(D, S);
525        diag::kind err = static_cast<diag::kind>(0);
526        if (T->isReferenceType())
527          err = diag::err_mutable_reference;
528        else if (T.isConstQualified())
529          err = diag::err_mutable_const;
530        if (err != 0) {
531          if (DS.getStorageClassSpecLoc().isValid())
532            Diag(DS.getStorageClassSpecLoc(), err);
533          else
534            Diag(DS.getThreadSpecLoc(), err);
535          // FIXME: It would be nicer if the keyword was ignored only for this
536          // declarator. Otherwise we could get follow-up errors.
537          D.getMutableDeclSpec().ClearStorageClassSpecs();
538        }
539      }
540      break;
541    default:
542      if (DS.getStorageClassSpecLoc().isValid())
543        Diag(DS.getStorageClassSpecLoc(),
544             diag::err_storageclass_invalid_for_member);
545      else
546        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
547      D.getMutableDeclSpec().ClearStorageClassSpecs();
548  }
549
550  if (!isFunc &&
551      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
552      D.getNumTypeObjects() == 0) {
553    // Check also for this case:
554    //
555    // typedef int f();
556    // f a;
557    //
558    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
559    isFunc = TDType->isFunctionType();
560  }
561
562  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
563                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
564                      !isFunc);
565
566  Decl *Member;
567  if (isInstField) {
568    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
569                         AS);
570    assert(Member && "HandleField never returns null");
571  } else {
572    Member = ActOnDeclarator(S, D).getAs<Decl>();
573    if (!Member) {
574      if (BitWidth) DeleteExpr(BitWidth);
575      return DeclPtrTy();
576    }
577
578    // Non-instance-fields can't have a bitfield.
579    if (BitWidth) {
580      if (Member->isInvalidDecl()) {
581        // don't emit another diagnostic.
582      } else if (isa<VarDecl>(Member)) {
583        // C++ 9.6p3: A bit-field shall not be a static member.
584        // "static member 'A' cannot be a bit-field"
585        Diag(Loc, diag::err_static_not_bitfield)
586          << Name << BitWidth->getSourceRange();
587      } else if (isa<TypedefDecl>(Member)) {
588        // "typedef member 'x' cannot be a bit-field"
589        Diag(Loc, diag::err_typedef_not_bitfield)
590          << Name << BitWidth->getSourceRange();
591      } else {
592        // A function typedef ("typedef int f(); f a;").
593        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
594        Diag(Loc, diag::err_not_integral_type_bitfield)
595          << Name << cast<ValueDecl>(Member)->getType()
596          << BitWidth->getSourceRange();
597      }
598
599      DeleteExpr(BitWidth);
600      BitWidth = 0;
601      Member->setInvalidDecl();
602    }
603
604    Member->setAccess(AS);
605  }
606
607  assert((Name || isInstField) && "No identifier for non-field ?");
608
609  if (Init)
610    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
611  if (Deleted) // FIXME: Source location is not very good.
612    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
613
614  if (isInstField) {
615    FieldCollector->Add(cast<FieldDecl>(Member));
616    return DeclPtrTy();
617  }
618  return DeclPtrTy::make(Member);
619}
620
621/// ActOnMemInitializer - Handle a C++ member initializer.
622Sema::MemInitResult
623Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
624                          Scope *S,
625                          IdentifierInfo *MemberOrBase,
626                          SourceLocation IdLoc,
627                          SourceLocation LParenLoc,
628                          ExprTy **Args, unsigned NumArgs,
629                          SourceLocation *CommaLocs,
630                          SourceLocation RParenLoc) {
631  CXXConstructorDecl *Constructor
632    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
633  if (!Constructor) {
634    // The user wrote a constructor initializer on a function that is
635    // not a C++ constructor. Ignore the error for now, because we may
636    // have more member initializers coming; we'll diagnose it just
637    // once in ActOnMemInitializers.
638    return true;
639  }
640
641  CXXRecordDecl *ClassDecl = Constructor->getParent();
642
643  // C++ [class.base.init]p2:
644  //   Names in a mem-initializer-id are looked up in the scope of the
645  //   constructor’s class and, if not found in that scope, are looked
646  //   up in the scope containing the constructor’s
647  //   definition. [Note: if the constructor’s class contains a member
648  //   with the same name as a direct or virtual base class of the
649  //   class, a mem-initializer-id naming the member or base class and
650  //   composed of a single identifier refers to the class member. A
651  //   mem-initializer-id for the hidden base class may be specified
652  //   using a qualified name. ]
653  // Look for a member, first.
654  FieldDecl *Member = 0;
655  DeclContext::lookup_result Result
656    = ClassDecl->lookup(Context, MemberOrBase);
657  if (Result.first != Result.second)
658    Member = dyn_cast<FieldDecl>(*Result.first);
659
660  // FIXME: Handle members of an anonymous union.
661
662  if (Member) {
663    // FIXME: Perform direct initialization of the member.
664    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
665  }
666
667  // It didn't name a member, so see if it names a class.
668  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
669  if (!BaseTy)
670    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
671      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
672
673  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
674  if (!BaseType->isRecordType())
675    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
676      << BaseType << SourceRange(IdLoc, RParenLoc);
677
678  // C++ [class.base.init]p2:
679  //   [...] Unless the mem-initializer-id names a nonstatic data
680  //   member of the constructor’s class or a direct or virtual base
681  //   of that class, the mem-initializer is ill-formed. A
682  //   mem-initializer-list can initialize a base class using any
683  //   name that denotes that base class type.
684
685  // First, check for a direct base class.
686  const CXXBaseSpecifier *DirectBaseSpec = 0;
687  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
688       Base != ClassDecl->bases_end(); ++Base) {
689    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
690        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
691      // We found a direct base of this type. That's what we're
692      // initializing.
693      DirectBaseSpec = &*Base;
694      break;
695    }
696  }
697
698  // Check for a virtual base class.
699  // FIXME: We might be able to short-circuit this if we know in advance that
700  // there are no virtual bases.
701  const CXXBaseSpecifier *VirtualBaseSpec = 0;
702  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
703    // We haven't found a base yet; search the class hierarchy for a
704    // virtual base class.
705    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
706                    /*DetectVirtual=*/false);
707    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
708      for (BasePaths::paths_iterator Path = Paths.begin();
709           Path != Paths.end(); ++Path) {
710        if (Path->back().Base->isVirtual()) {
711          VirtualBaseSpec = Path->back().Base;
712          break;
713        }
714      }
715    }
716  }
717
718  // C++ [base.class.init]p2:
719  //   If a mem-initializer-id is ambiguous because it designates both
720  //   a direct non-virtual base class and an inherited virtual base
721  //   class, the mem-initializer is ill-formed.
722  if (DirectBaseSpec && VirtualBaseSpec)
723    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
724      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
725
726  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
727}
728
729void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
730                                SourceLocation ColonLoc,
731                                MemInitTy **MemInits, unsigned NumMemInits) {
732  CXXConstructorDecl *Constructor =
733  dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
734
735  if (!Constructor) {
736    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
737    return;
738  }
739}
740
741namespace {
742  /// PureVirtualMethodCollector - traverses a class and its superclasses
743  /// and determines if it has any pure virtual methods.
744  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
745    ASTContext &Context;
746
747  public:
748    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
749
750  private:
751    MethodList Methods;
752
753    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
754
755  public:
756    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
757      : Context(Ctx) {
758
759      MethodList List;
760      Collect(RD, List);
761
762      // Copy the temporary list to methods, and make sure to ignore any
763      // null entries.
764      for (size_t i = 0, e = List.size(); i != e; ++i) {
765        if (List[i])
766          Methods.push_back(List[i]);
767      }
768    }
769
770    bool empty() const { return Methods.empty(); }
771
772    MethodList::const_iterator methods_begin() { return Methods.begin(); }
773    MethodList::const_iterator methods_end() { return Methods.end(); }
774  };
775
776  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
777                                           MethodList& Methods) {
778    // First, collect the pure virtual methods for the base classes.
779    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
780         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
781      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
782        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
783        if (BaseDecl && BaseDecl->isAbstract())
784          Collect(BaseDecl, Methods);
785      }
786    }
787
788    // Next, zero out any pure virtual methods that this class overrides.
789    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
790
791    MethodSetTy OverriddenMethods;
792    size_t MethodsSize = Methods.size();
793
794    for (RecordDecl::decl_iterator i = RD->decls_begin(Context),
795         e = RD->decls_end(Context);
796         i != e; ++i) {
797      // Traverse the record, looking for methods.
798      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
799        // If the method is pre virtual, add it to the methods vector.
800        if (MD->isPure()) {
801          Methods.push_back(MD);
802          continue;
803        }
804
805        // Otherwise, record all the overridden methods in our set.
806        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
807             E = MD->end_overridden_methods(); I != E; ++I) {
808          // Keep track of the overridden methods.
809          OverriddenMethods.insert(*I);
810        }
811      }
812    }
813
814    // Now go through the methods and zero out all the ones we know are
815    // overridden.
816    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
817      if (OverriddenMethods.count(Methods[i]))
818        Methods[i] = 0;
819    }
820
821  }
822}
823
824bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
825                                  unsigned DiagID, AbstractDiagSelID SelID,
826                                  const CXXRecordDecl *CurrentRD) {
827
828  if (!getLangOptions().CPlusPlus)
829    return false;
830
831  if (const ArrayType *AT = Context.getAsArrayType(T))
832    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
833                                  CurrentRD);
834
835  if (const PointerType *PT = T->getAsPointerType()) {
836    // Find the innermost pointer type.
837    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
838      PT = T;
839
840    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
841      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
842                                    CurrentRD);
843  }
844
845  const RecordType *RT = T->getAsRecordType();
846  if (!RT)
847    return false;
848
849  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
850  if (!RD)
851    return false;
852
853  if (CurrentRD && CurrentRD != RD)
854    return false;
855
856  if (!RD->isAbstract())
857    return false;
858
859  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
860
861  // Check if we've already emitted the list of pure virtual functions for this
862  // class.
863  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
864    return true;
865
866  PureVirtualMethodCollector Collector(Context, RD);
867
868  for (PureVirtualMethodCollector::MethodList::const_iterator I =
869       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
870    const CXXMethodDecl *MD = *I;
871
872    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
873      MD->getDeclName();
874  }
875
876  if (!PureVirtualClassDiagSet)
877    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
878  PureVirtualClassDiagSet->insert(RD);
879
880  return true;
881}
882
883namespace {
884  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
885    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
886    Sema &SemaRef;
887    CXXRecordDecl *AbstractClass;
888
889    bool VisitDeclContext(const DeclContext *DC) {
890      bool Invalid = false;
891
892      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(SemaRef.Context),
893           E = DC->decls_end(SemaRef.Context); I != E; ++I)
894        Invalid |= Visit(*I);
895
896      return Invalid;
897    }
898
899  public:
900    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
901      : SemaRef(SemaRef), AbstractClass(ac) {
902        Visit(SemaRef.Context.getTranslationUnitDecl());
903    }
904
905    bool VisitFunctionDecl(const FunctionDecl *FD) {
906      if (FD->isThisDeclarationADefinition()) {
907        // No need to do the check if we're in a definition, because it requires
908        // that the return/param types are complete.
909        // because that requires
910        return VisitDeclContext(FD);
911      }
912
913      // Check the return type.
914      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
915      bool Invalid =
916        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
917                                       diag::err_abstract_type_in_decl,
918                                       Sema::AbstractReturnType,
919                                       AbstractClass);
920
921      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
922           E = FD->param_end(); I != E; ++I) {
923        const ParmVarDecl *VD = *I;
924        Invalid |=
925          SemaRef.RequireNonAbstractType(VD->getLocation(),
926                                         VD->getOriginalType(),
927                                         diag::err_abstract_type_in_decl,
928                                         Sema::AbstractParamType,
929                                         AbstractClass);
930      }
931
932      return Invalid;
933    }
934
935    bool VisitDecl(const Decl* D) {
936      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
937        return VisitDeclContext(DC);
938
939      return false;
940    }
941  };
942}
943
944void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
945                                             DeclPtrTy TagDecl,
946                                             SourceLocation LBrac,
947                                             SourceLocation RBrac) {
948  AdjustDeclIfTemplate(TagDecl);
949  ActOnFields(S, RLoc, TagDecl,
950              (DeclPtrTy*)FieldCollector->getCurFields(),
951              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
952
953  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
954  if (!RD->isAbstract()) {
955    // Collect all the pure virtual methods and see if this is an abstract
956    // class after all.
957    PureVirtualMethodCollector Collector(Context, RD);
958    if (!Collector.empty())
959      RD->setAbstract(true);
960  }
961
962  if (RD->isAbstract())
963    AbstractClassUsageDiagnoser(*this, RD);
964
965  if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
966    for (RecordDecl::field_iterator i = RD->field_begin(Context),
967         e = RD->field_end(Context); i != e; ++i) {
968      // All the nonstatic data members must have trivial constructors.
969      QualType FTy = i->getType();
970      while (const ArrayType *AT = Context.getAsArrayType(FTy))
971        FTy = AT->getElementType();
972
973      if (const RecordType *RT = FTy->getAsRecordType()) {
974        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
975
976        if (!FieldRD->hasTrivialConstructor())
977          RD->setHasTrivialConstructor(false);
978        if (!FieldRD->hasTrivialDestructor())
979          RD->setHasTrivialDestructor(false);
980
981        // If RD has neither a trivial constructor nor a trivial destructor
982        // we don't need to continue checking.
983        if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
984          break;
985      }
986    }
987  }
988
989  if (!RD->isDependentType())
990    AddImplicitlyDeclaredMembersToClass(RD);
991}
992
993/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
994/// special functions, such as the default constructor, copy
995/// constructor, or destructor, to the given C++ class (C++
996/// [special]p1).  This routine can only be executed just before the
997/// definition of the class is complete.
998void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
999  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1000  ClassType = Context.getCanonicalType(ClassType);
1001
1002  // FIXME: Implicit declarations have exception specifications, which are
1003  // the union of the specifications of the implicitly called functions.
1004
1005  if (!ClassDecl->hasUserDeclaredConstructor()) {
1006    // C++ [class.ctor]p5:
1007    //   A default constructor for a class X is a constructor of class X
1008    //   that can be called without an argument. If there is no
1009    //   user-declared constructor for class X, a default constructor is
1010    //   implicitly declared. An implicitly-declared default constructor
1011    //   is an inline public member of its class.
1012    DeclarationName Name
1013      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1014    CXXConstructorDecl *DefaultCon =
1015      CXXConstructorDecl::Create(Context, ClassDecl,
1016                                 ClassDecl->getLocation(), Name,
1017                                 Context.getFunctionType(Context.VoidTy,
1018                                                         0, 0, false, 0),
1019                                 /*isExplicit=*/false,
1020                                 /*isInline=*/true,
1021                                 /*isImplicitlyDeclared=*/true);
1022    DefaultCon->setAccess(AS_public);
1023    DefaultCon->setImplicit();
1024    ClassDecl->addDecl(Context, DefaultCon);
1025
1026    // Notify the class that we've added a constructor.
1027    ClassDecl->addedConstructor(Context, DefaultCon);
1028  }
1029
1030  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1031    // C++ [class.copy]p4:
1032    //   If the class definition does not explicitly declare a copy
1033    //   constructor, one is declared implicitly.
1034
1035    // C++ [class.copy]p5:
1036    //   The implicitly-declared copy constructor for a class X will
1037    //   have the form
1038    //
1039    //       X::X(const X&)
1040    //
1041    //   if
1042    bool HasConstCopyConstructor = true;
1043
1044    //     -- each direct or virtual base class B of X has a copy
1045    //        constructor whose first parameter is of type const B& or
1046    //        const volatile B&, and
1047    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1048         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1049      const CXXRecordDecl *BaseClassDecl
1050        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1051      HasConstCopyConstructor
1052        = BaseClassDecl->hasConstCopyConstructor(Context);
1053    }
1054
1055    //     -- for all the nonstatic data members of X that are of a
1056    //        class type M (or array thereof), each such class type
1057    //        has a copy constructor whose first parameter is of type
1058    //        const M& or const volatile M&.
1059    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1060         HasConstCopyConstructor && Field != ClassDecl->field_end(Context);
1061         ++Field) {
1062      QualType FieldType = (*Field)->getType();
1063      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1064        FieldType = Array->getElementType();
1065      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1066        const CXXRecordDecl *FieldClassDecl
1067          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1068        HasConstCopyConstructor
1069          = FieldClassDecl->hasConstCopyConstructor(Context);
1070      }
1071    }
1072
1073    //   Otherwise, the implicitly declared copy constructor will have
1074    //   the form
1075    //
1076    //       X::X(X&)
1077    QualType ArgType = ClassType;
1078    if (HasConstCopyConstructor)
1079      ArgType = ArgType.withConst();
1080    ArgType = Context.getLValueReferenceType(ArgType);
1081
1082    //   An implicitly-declared copy constructor is an inline public
1083    //   member of its class.
1084    DeclarationName Name
1085      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1086    CXXConstructorDecl *CopyConstructor
1087      = CXXConstructorDecl::Create(Context, ClassDecl,
1088                                   ClassDecl->getLocation(), Name,
1089                                   Context.getFunctionType(Context.VoidTy,
1090                                                           &ArgType, 1,
1091                                                           false, 0),
1092                                   /*isExplicit=*/false,
1093                                   /*isInline=*/true,
1094                                   /*isImplicitlyDeclared=*/true);
1095    CopyConstructor->setAccess(AS_public);
1096    CopyConstructor->setImplicit();
1097
1098    // Add the parameter to the constructor.
1099    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1100                                                 ClassDecl->getLocation(),
1101                                                 /*IdentifierInfo=*/0,
1102                                                 ArgType, VarDecl::None, 0);
1103    CopyConstructor->setParams(Context, &FromParam, 1);
1104
1105    ClassDecl->addedConstructor(Context, CopyConstructor);
1106    ClassDecl->addDecl(Context, CopyConstructor);
1107  }
1108
1109  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1110    // Note: The following rules are largely analoguous to the copy
1111    // constructor rules. Note that virtual bases are not taken into account
1112    // for determining the argument type of the operator. Note also that
1113    // operators taking an object instead of a reference are allowed.
1114    //
1115    // C++ [class.copy]p10:
1116    //   If the class definition does not explicitly declare a copy
1117    //   assignment operator, one is declared implicitly.
1118    //   The implicitly-defined copy assignment operator for a class X
1119    //   will have the form
1120    //
1121    //       X& X::operator=(const X&)
1122    //
1123    //   if
1124    bool HasConstCopyAssignment = true;
1125
1126    //       -- each direct base class B of X has a copy assignment operator
1127    //          whose parameter is of type const B&, const volatile B& or B,
1128    //          and
1129    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1130         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1131      const CXXRecordDecl *BaseClassDecl
1132        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1133      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1134    }
1135
1136    //       -- for all the nonstatic data members of X that are of a class
1137    //          type M (or array thereof), each such class type has a copy
1138    //          assignment operator whose parameter is of type const M&,
1139    //          const volatile M& or M.
1140    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(Context);
1141         HasConstCopyAssignment && Field != ClassDecl->field_end(Context);
1142         ++Field) {
1143      QualType FieldType = (*Field)->getType();
1144      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1145        FieldType = Array->getElementType();
1146      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1147        const CXXRecordDecl *FieldClassDecl
1148          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1149        HasConstCopyAssignment
1150          = FieldClassDecl->hasConstCopyAssignment(Context);
1151      }
1152    }
1153
1154    //   Otherwise, the implicitly declared copy assignment operator will
1155    //   have the form
1156    //
1157    //       X& X::operator=(X&)
1158    QualType ArgType = ClassType;
1159    QualType RetType = Context.getLValueReferenceType(ArgType);
1160    if (HasConstCopyAssignment)
1161      ArgType = ArgType.withConst();
1162    ArgType = Context.getLValueReferenceType(ArgType);
1163
1164    //   An implicitly-declared copy assignment operator is an inline public
1165    //   member of its class.
1166    DeclarationName Name =
1167      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1168    CXXMethodDecl *CopyAssignment =
1169      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1170                            Context.getFunctionType(RetType, &ArgType, 1,
1171                                                    false, 0),
1172                            /*isStatic=*/false, /*isInline=*/true);
1173    CopyAssignment->setAccess(AS_public);
1174    CopyAssignment->setImplicit();
1175
1176    // Add the parameter to the operator.
1177    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1178                                                 ClassDecl->getLocation(),
1179                                                 /*IdentifierInfo=*/0,
1180                                                 ArgType, VarDecl::None, 0);
1181    CopyAssignment->setParams(Context, &FromParam, 1);
1182
1183    // Don't call addedAssignmentOperator. There is no way to distinguish an
1184    // implicit from an explicit assignment operator.
1185    ClassDecl->addDecl(Context, CopyAssignment);
1186  }
1187
1188  if (!ClassDecl->hasUserDeclaredDestructor()) {
1189    // C++ [class.dtor]p2:
1190    //   If a class has no user-declared destructor, a destructor is
1191    //   declared implicitly. An implicitly-declared destructor is an
1192    //   inline public member of its class.
1193    DeclarationName Name
1194      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1195    CXXDestructorDecl *Destructor
1196      = CXXDestructorDecl::Create(Context, ClassDecl,
1197                                  ClassDecl->getLocation(), Name,
1198                                  Context.getFunctionType(Context.VoidTy,
1199                                                          0, 0, false, 0),
1200                                  /*isInline=*/true,
1201                                  /*isImplicitlyDeclared=*/true);
1202    Destructor->setAccess(AS_public);
1203    Destructor->setImplicit();
1204    ClassDecl->addDecl(Context, Destructor);
1205  }
1206}
1207
1208void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1209  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1210  if (!Template)
1211    return;
1212
1213  TemplateParameterList *Params = Template->getTemplateParameters();
1214  for (TemplateParameterList::iterator Param = Params->begin(),
1215                                    ParamEnd = Params->end();
1216       Param != ParamEnd; ++Param) {
1217    NamedDecl *Named = cast<NamedDecl>(*Param);
1218    if (Named->getDeclName()) {
1219      S->AddDecl(DeclPtrTy::make(Named));
1220      IdResolver.AddDecl(Named);
1221    }
1222  }
1223}
1224
1225/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1226/// parsing a top-level (non-nested) C++ class, and we are now
1227/// parsing those parts of the given Method declaration that could
1228/// not be parsed earlier (C++ [class.mem]p2), such as default
1229/// arguments. This action should enter the scope of the given
1230/// Method declaration as if we had just parsed the qualified method
1231/// name. However, it should not bring the parameters into scope;
1232/// that will be performed by ActOnDelayedCXXMethodParameter.
1233void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1234  CXXScopeSpec SS;
1235  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1236  QualType ClassTy
1237    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1238  SS.setScopeRep(
1239    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1240  ActOnCXXEnterDeclaratorScope(S, SS);
1241}
1242
1243/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1244/// C++ method declaration. We're (re-)introducing the given
1245/// function parameter into scope for use in parsing later parts of
1246/// the method declaration. For example, we could see an
1247/// ActOnParamDefaultArgument event for this parameter.
1248void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1249  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1250
1251  // If this parameter has an unparsed default argument, clear it out
1252  // to make way for the parsed default argument.
1253  if (Param->hasUnparsedDefaultArg())
1254    Param->setDefaultArg(0);
1255
1256  S->AddDecl(DeclPtrTy::make(Param));
1257  if (Param->getDeclName())
1258    IdResolver.AddDecl(Param);
1259}
1260
1261/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1262/// processing the delayed method declaration for Method. The method
1263/// declaration is now considered finished. There may be a separate
1264/// ActOnStartOfFunctionDef action later (not necessarily
1265/// immediately!) for this method, if it was also defined inside the
1266/// class body.
1267void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1268  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1269  CXXScopeSpec SS;
1270  QualType ClassTy
1271    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1272  SS.setScopeRep(
1273    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1274  ActOnCXXExitDeclaratorScope(S, SS);
1275
1276  // Now that we have our default arguments, check the constructor
1277  // again. It could produce additional diagnostics or affect whether
1278  // the class has implicitly-declared destructors, among other
1279  // things.
1280  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1281    CheckConstructor(Constructor);
1282
1283  // Check the default arguments, which we may have added.
1284  if (!Method->isInvalidDecl())
1285    CheckCXXDefaultArguments(Method);
1286}
1287
1288/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1289/// the well-formedness of the constructor declarator @p D with type @p
1290/// R. If there are any errors in the declarator, this routine will
1291/// emit diagnostics and set the invalid bit to true.  In any case, the type
1292/// will be updated to reflect a well-formed type for the constructor and
1293/// returned.
1294QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1295                                          FunctionDecl::StorageClass &SC) {
1296  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1297
1298  // C++ [class.ctor]p3:
1299  //   A constructor shall not be virtual (10.3) or static (9.4). A
1300  //   constructor can be invoked for a const, volatile or const
1301  //   volatile object. A constructor shall not be declared const,
1302  //   volatile, or const volatile (9.3.2).
1303  if (isVirtual) {
1304    if (!D.isInvalidType())
1305      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1306        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1307        << SourceRange(D.getIdentifierLoc());
1308    D.setInvalidType();
1309  }
1310  if (SC == FunctionDecl::Static) {
1311    if (!D.isInvalidType())
1312      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1313        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1314        << SourceRange(D.getIdentifierLoc());
1315    D.setInvalidType();
1316    SC = FunctionDecl::None;
1317  }
1318
1319  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1320  if (FTI.TypeQuals != 0) {
1321    if (FTI.TypeQuals & QualType::Const)
1322      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1323        << "const" << SourceRange(D.getIdentifierLoc());
1324    if (FTI.TypeQuals & QualType::Volatile)
1325      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1326        << "volatile" << SourceRange(D.getIdentifierLoc());
1327    if (FTI.TypeQuals & QualType::Restrict)
1328      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1329        << "restrict" << SourceRange(D.getIdentifierLoc());
1330  }
1331
1332  // Rebuild the function type "R" without any type qualifiers (in
1333  // case any of the errors above fired) and with "void" as the
1334  // return type, since constructors don't have return types. We
1335  // *always* have to do this, because GetTypeForDeclarator will
1336  // put in a result type of "int" when none was specified.
1337  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1338  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1339                                 Proto->getNumArgs(),
1340                                 Proto->isVariadic(), 0);
1341}
1342
1343/// CheckConstructor - Checks a fully-formed constructor for
1344/// well-formedness, issuing any diagnostics required. Returns true if
1345/// the constructor declarator is invalid.
1346void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1347  CXXRecordDecl *ClassDecl
1348    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1349  if (!ClassDecl)
1350    return Constructor->setInvalidDecl();
1351
1352  // C++ [class.copy]p3:
1353  //   A declaration of a constructor for a class X is ill-formed if
1354  //   its first parameter is of type (optionally cv-qualified) X and
1355  //   either there are no other parameters or else all other
1356  //   parameters have default arguments.
1357  if (!Constructor->isInvalidDecl() &&
1358      ((Constructor->getNumParams() == 1) ||
1359       (Constructor->getNumParams() > 1 &&
1360        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1361    QualType ParamType = Constructor->getParamDecl(0)->getType();
1362    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1363    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1364      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1365      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1366        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1367      Constructor->setInvalidDecl();
1368    }
1369  }
1370
1371  // Notify the class that we've added a constructor.
1372  ClassDecl->addedConstructor(Context, Constructor);
1373}
1374
1375static inline bool
1376FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1377  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1378          FTI.ArgInfo[0].Param &&
1379          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1380}
1381
1382/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1383/// the well-formednes of the destructor declarator @p D with type @p
1384/// R. If there are any errors in the declarator, this routine will
1385/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1386/// will be updated to reflect a well-formed type for the destructor and
1387/// returned.
1388QualType Sema::CheckDestructorDeclarator(Declarator &D,
1389                                         FunctionDecl::StorageClass& SC) {
1390  // C++ [class.dtor]p1:
1391  //   [...] A typedef-name that names a class is a class-name
1392  //   (7.1.3); however, a typedef-name that names a class shall not
1393  //   be used as the identifier in the declarator for a destructor
1394  //   declaration.
1395  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1396  if (isa<TypedefType>(DeclaratorType)) {
1397    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1398      << DeclaratorType;
1399    D.setInvalidType();
1400  }
1401
1402  // C++ [class.dtor]p2:
1403  //   A destructor is used to destroy objects of its class type. A
1404  //   destructor takes no parameters, and no return type can be
1405  //   specified for it (not even void). The address of a destructor
1406  //   shall not be taken. A destructor shall not be static. A
1407  //   destructor can be invoked for a const, volatile or const
1408  //   volatile object. A destructor shall not be declared const,
1409  //   volatile or const volatile (9.3.2).
1410  if (SC == FunctionDecl::Static) {
1411    if (!D.isInvalidType())
1412      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1413        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1414        << SourceRange(D.getIdentifierLoc());
1415    SC = FunctionDecl::None;
1416    D.setInvalidType();
1417  }
1418  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1419    // Destructors don't have return types, but the parser will
1420    // happily parse something like:
1421    //
1422    //   class X {
1423    //     float ~X();
1424    //   };
1425    //
1426    // The return type will be eliminated later.
1427    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1428      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1429      << SourceRange(D.getIdentifierLoc());
1430  }
1431
1432  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1433  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1434    if (FTI.TypeQuals & QualType::Const)
1435      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1436        << "const" << SourceRange(D.getIdentifierLoc());
1437    if (FTI.TypeQuals & QualType::Volatile)
1438      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1439        << "volatile" << SourceRange(D.getIdentifierLoc());
1440    if (FTI.TypeQuals & QualType::Restrict)
1441      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1442        << "restrict" << SourceRange(D.getIdentifierLoc());
1443    D.setInvalidType();
1444  }
1445
1446  // Make sure we don't have any parameters.
1447  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1448    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1449
1450    // Delete the parameters.
1451    FTI.freeArgs();
1452    D.setInvalidType();
1453  }
1454
1455  // Make sure the destructor isn't variadic.
1456  if (FTI.isVariadic) {
1457    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1458    D.setInvalidType();
1459  }
1460
1461  // Rebuild the function type "R" without any type qualifiers or
1462  // parameters (in case any of the errors above fired) and with
1463  // "void" as the return type, since destructors don't have return
1464  // types. We *always* have to do this, because GetTypeForDeclarator
1465  // will put in a result type of "int" when none was specified.
1466  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1467}
1468
1469/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1470/// well-formednes of the conversion function declarator @p D with
1471/// type @p R. If there are any errors in the declarator, this routine
1472/// will emit diagnostics and return true. Otherwise, it will return
1473/// false. Either way, the type @p R will be updated to reflect a
1474/// well-formed type for the conversion operator.
1475void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1476                                     FunctionDecl::StorageClass& SC) {
1477  // C++ [class.conv.fct]p1:
1478  //   Neither parameter types nor return type can be specified. The
1479  //   type of a conversion function (8.3.5) is “function taking no
1480  //   parameter returning conversion-type-id.”
1481  if (SC == FunctionDecl::Static) {
1482    if (!D.isInvalidType())
1483      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1484        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1485        << SourceRange(D.getIdentifierLoc());
1486    D.setInvalidType();
1487    SC = FunctionDecl::None;
1488  }
1489  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1490    // Conversion functions don't have return types, but the parser will
1491    // happily parse something like:
1492    //
1493    //   class X {
1494    //     float operator bool();
1495    //   };
1496    //
1497    // The return type will be changed later anyway.
1498    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1499      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1500      << SourceRange(D.getIdentifierLoc());
1501  }
1502
1503  // Make sure we don't have any parameters.
1504  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1505    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1506
1507    // Delete the parameters.
1508    D.getTypeObject(0).Fun.freeArgs();
1509    D.setInvalidType();
1510  }
1511
1512  // Make sure the conversion function isn't variadic.
1513  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1514    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1515    D.setInvalidType();
1516  }
1517
1518  // C++ [class.conv.fct]p4:
1519  //   The conversion-type-id shall not represent a function type nor
1520  //   an array type.
1521  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1522  if (ConvType->isArrayType()) {
1523    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1524    ConvType = Context.getPointerType(ConvType);
1525    D.setInvalidType();
1526  } else if (ConvType->isFunctionType()) {
1527    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1528    ConvType = Context.getPointerType(ConvType);
1529    D.setInvalidType();
1530  }
1531
1532  // Rebuild the function type "R" without any parameters (in case any
1533  // of the errors above fired) and with the conversion type as the
1534  // return type.
1535  R = Context.getFunctionType(ConvType, 0, 0, false,
1536                              R->getAsFunctionProtoType()->getTypeQuals());
1537
1538  // C++0x explicit conversion operators.
1539  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1540    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1541         diag::warn_explicit_conversion_functions)
1542      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1543}
1544
1545/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1546/// the declaration of the given C++ conversion function. This routine
1547/// is responsible for recording the conversion function in the C++
1548/// class, if possible.
1549Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1550  assert(Conversion && "Expected to receive a conversion function declaration");
1551
1552  // Set the lexical context of this conversion function
1553  Conversion->setLexicalDeclContext(CurContext);
1554
1555  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1556
1557  // Make sure we aren't redeclaring the conversion function.
1558  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1559
1560  // C++ [class.conv.fct]p1:
1561  //   [...] A conversion function is never used to convert a
1562  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1563  //   same object type (or a reference to it), to a (possibly
1564  //   cv-qualified) base class of that type (or a reference to it),
1565  //   or to (possibly cv-qualified) void.
1566  // FIXME: Suppress this warning if the conversion function ends up being a
1567  // virtual function that overrides a virtual function in a base class.
1568  QualType ClassType
1569    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1570  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1571    ConvType = ConvTypeRef->getPointeeType();
1572  if (ConvType->isRecordType()) {
1573    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1574    if (ConvType == ClassType)
1575      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1576        << ClassType;
1577    else if (IsDerivedFrom(ClassType, ConvType))
1578      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1579        <<  ClassType << ConvType;
1580  } else if (ConvType->isVoidType()) {
1581    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1582      << ClassType << ConvType;
1583  }
1584
1585  if (Conversion->getPreviousDeclaration()) {
1586    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1587    for (OverloadedFunctionDecl::function_iterator
1588           Conv = Conversions->function_begin(),
1589           ConvEnd = Conversions->function_end();
1590         Conv != ConvEnd; ++Conv) {
1591      if (*Conv == Conversion->getPreviousDeclaration()) {
1592        *Conv = Conversion;
1593        return DeclPtrTy::make(Conversion);
1594      }
1595    }
1596    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1597  } else
1598    ClassDecl->addConversionFunction(Context, Conversion);
1599
1600  return DeclPtrTy::make(Conversion);
1601}
1602
1603//===----------------------------------------------------------------------===//
1604// Namespace Handling
1605//===----------------------------------------------------------------------===//
1606
1607/// ActOnStartNamespaceDef - This is called at the start of a namespace
1608/// definition.
1609Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1610                                             SourceLocation IdentLoc,
1611                                             IdentifierInfo *II,
1612                                             SourceLocation LBrace) {
1613  NamespaceDecl *Namespc =
1614      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1615  Namespc->setLBracLoc(LBrace);
1616
1617  Scope *DeclRegionScope = NamespcScope->getParent();
1618
1619  if (II) {
1620    // C++ [namespace.def]p2:
1621    // The identifier in an original-namespace-definition shall not have been
1622    // previously defined in the declarative region in which the
1623    // original-namespace-definition appears. The identifier in an
1624    // original-namespace-definition is the name of the namespace. Subsequently
1625    // in that declarative region, it is treated as an original-namespace-name.
1626
1627    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1628                                     true);
1629
1630    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1631      // This is an extended namespace definition.
1632      // Attach this namespace decl to the chain of extended namespace
1633      // definitions.
1634      OrigNS->setNextNamespace(Namespc);
1635      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1636
1637      // Remove the previous declaration from the scope.
1638      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1639        IdResolver.RemoveDecl(OrigNS);
1640        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1641      }
1642    } else if (PrevDecl) {
1643      // This is an invalid name redefinition.
1644      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1645       << Namespc->getDeclName();
1646      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1647      Namespc->setInvalidDecl();
1648      // Continue on to push Namespc as current DeclContext and return it.
1649    }
1650
1651    PushOnScopeChains(Namespc, DeclRegionScope);
1652  } else {
1653    // FIXME: Handle anonymous namespaces
1654  }
1655
1656  // Although we could have an invalid decl (i.e. the namespace name is a
1657  // redefinition), push it as current DeclContext and try to continue parsing.
1658  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1659  // for the namespace has the declarations that showed up in that particular
1660  // namespace definition.
1661  PushDeclContext(NamespcScope, Namespc);
1662  return DeclPtrTy::make(Namespc);
1663}
1664
1665/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1666/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1667void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1668  Decl *Dcl = D.getAs<Decl>();
1669  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1670  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1671  Namespc->setRBracLoc(RBrace);
1672  PopDeclContext();
1673}
1674
1675Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1676                                          SourceLocation UsingLoc,
1677                                          SourceLocation NamespcLoc,
1678                                          const CXXScopeSpec &SS,
1679                                          SourceLocation IdentLoc,
1680                                          IdentifierInfo *NamespcName,
1681                                          AttributeList *AttrList) {
1682  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1683  assert(NamespcName && "Invalid NamespcName.");
1684  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1685  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1686
1687  UsingDirectiveDecl *UDir = 0;
1688
1689  // Lookup namespace name.
1690  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1691                                    LookupNamespaceName, false);
1692  if (R.isAmbiguous()) {
1693    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1694    return DeclPtrTy();
1695  }
1696  if (NamedDecl *NS = R) {
1697    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1698    // C++ [namespace.udir]p1:
1699    //   A using-directive specifies that the names in the nominated
1700    //   namespace can be used in the scope in which the
1701    //   using-directive appears after the using-directive. During
1702    //   unqualified name lookup (3.4.1), the names appear as if they
1703    //   were declared in the nearest enclosing namespace which
1704    //   contains both the using-directive and the nominated
1705    //   namespace. [Note: in this context, “contains” means “contains
1706    //   directly or indirectly”. ]
1707
1708    // Find enclosing context containing both using-directive and
1709    // nominated namespace.
1710    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1711    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1712      CommonAncestor = CommonAncestor->getParent();
1713
1714    UDir = UsingDirectiveDecl::Create(Context,
1715                                      CurContext, UsingLoc,
1716                                      NamespcLoc,
1717                                      SS.getRange(),
1718                                      (NestedNameSpecifier *)SS.getScopeRep(),
1719                                      IdentLoc,
1720                                      cast<NamespaceDecl>(NS),
1721                                      CommonAncestor);
1722    PushUsingDirective(S, UDir);
1723  } else {
1724    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1725  }
1726
1727  // FIXME: We ignore attributes for now.
1728  delete AttrList;
1729  return DeclPtrTy::make(UDir);
1730}
1731
1732void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1733  // If scope has associated entity, then using directive is at namespace
1734  // or translation unit scope. We add UsingDirectiveDecls, into
1735  // it's lookup structure.
1736  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1737    Ctx->addDecl(Context, UDir);
1738  else
1739    // Otherwise it is block-sope. using-directives will affect lookup
1740    // only to the end of scope.
1741    S->PushUsingDirective(DeclPtrTy::make(UDir));
1742}
1743
1744/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1745/// is a namespace alias, returns the namespace it points to.
1746static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1747  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1748    return AD->getNamespace();
1749  return dyn_cast_or_null<NamespaceDecl>(D);
1750}
1751
1752Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1753                                             SourceLocation NamespaceLoc,
1754                                             SourceLocation AliasLoc,
1755                                             IdentifierInfo *Alias,
1756                                             const CXXScopeSpec &SS,
1757                                             SourceLocation IdentLoc,
1758                                             IdentifierInfo *Ident) {
1759
1760  // Lookup the namespace name.
1761  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1762
1763  // Check if we have a previous declaration with the same name.
1764  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1765    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1766      // We already have an alias with the same name that points to the same
1767      // namespace, so don't create a new one.
1768      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1769        return DeclPtrTy();
1770    }
1771
1772    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1773      diag::err_redefinition_different_kind;
1774    Diag(AliasLoc, DiagID) << Alias;
1775    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1776    return DeclPtrTy();
1777  }
1778
1779  if (R.isAmbiguous()) {
1780    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1781    return DeclPtrTy();
1782  }
1783
1784  if (!R) {
1785    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
1786    return DeclPtrTy();
1787  }
1788
1789  NamespaceAliasDecl *AliasDecl =
1790    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
1791                               Alias, SS.getRange(),
1792                               (NestedNameSpecifier *)SS.getScopeRep(),
1793                               IdentLoc, R);
1794
1795  CurContext->addDecl(Context, AliasDecl);
1796  return DeclPtrTy::make(AliasDecl);
1797}
1798
1799void Sema::InitializeVarWithConstructor(VarDecl *VD,
1800                                        CXXConstructorDecl *Constructor,
1801                                        QualType DeclInitType,
1802                                        Expr **Exprs, unsigned NumExprs) {
1803  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
1804                                        false, Exprs, NumExprs);
1805  VD->setInit(Context, Temp);
1806}
1807
1808/// AddCXXDirectInitializerToDecl - This action is called immediately after
1809/// ActOnDeclarator, when a C++ direct initializer is present.
1810/// e.g: "int x(1);"
1811void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
1812                                         SourceLocation LParenLoc,
1813                                         MultiExprArg Exprs,
1814                                         SourceLocation *CommaLocs,
1815                                         SourceLocation RParenLoc) {
1816  unsigned NumExprs = Exprs.size();
1817  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
1818  Decl *RealDecl = Dcl.getAs<Decl>();
1819
1820  // If there is no declaration, there was an error parsing it.  Just ignore
1821  // the initializer.
1822  if (RealDecl == 0)
1823    return;
1824
1825  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1826  if (!VDecl) {
1827    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1828    RealDecl->setInvalidDecl();
1829    return;
1830  }
1831
1832  // FIXME: Need to handle dependent types and expressions here.
1833
1834  // We will treat direct-initialization as a copy-initialization:
1835  //    int x(1);  -as-> int x = 1;
1836  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1837  //
1838  // Clients that want to distinguish between the two forms, can check for
1839  // direct initializer using VarDecl::hasCXXDirectInitializer().
1840  // A major benefit is that clients that don't particularly care about which
1841  // exactly form was it (like the CodeGen) can handle both cases without
1842  // special case code.
1843
1844  // C++ 8.5p11:
1845  // The form of initialization (using parentheses or '=') is generally
1846  // insignificant, but does matter when the entity being initialized has a
1847  // class type.
1848  QualType DeclInitType = VDecl->getType();
1849  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1850    DeclInitType = Array->getElementType();
1851
1852  // FIXME: This isn't the right place to complete the type.
1853  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
1854                          diag::err_typecheck_decl_incomplete_type)) {
1855    VDecl->setInvalidDecl();
1856    return;
1857  }
1858
1859  if (VDecl->getType()->isRecordType()) {
1860    CXXConstructorDecl *Constructor
1861      = PerformInitializationByConstructor(DeclInitType,
1862                                           (Expr **)Exprs.get(), NumExprs,
1863                                           VDecl->getLocation(),
1864                                           SourceRange(VDecl->getLocation(),
1865                                                       RParenLoc),
1866                                           VDecl->getDeclName(),
1867                                           IK_Direct);
1868    if (!Constructor)
1869      RealDecl->setInvalidDecl();
1870    else {
1871      VDecl->setCXXDirectInitializer(true);
1872      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
1873                                   (Expr**)Exprs.release(), NumExprs);
1874    }
1875    return;
1876  }
1877
1878  if (NumExprs > 1) {
1879    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1880      << SourceRange(VDecl->getLocation(), RParenLoc);
1881    RealDecl->setInvalidDecl();
1882    return;
1883  }
1884
1885  // Let clients know that initialization was done with a direct initializer.
1886  VDecl->setCXXDirectInitializer(true);
1887
1888  assert(NumExprs == 1 && "Expected 1 expression");
1889  // Set the init expression, handles conversions.
1890  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
1891                       /*DirectInit=*/true);
1892}
1893
1894/// PerformInitializationByConstructor - Perform initialization by
1895/// constructor (C++ [dcl.init]p14), which may occur as part of
1896/// direct-initialization or copy-initialization. We are initializing
1897/// an object of type @p ClassType with the given arguments @p
1898/// Args. @p Loc is the location in the source code where the
1899/// initializer occurs (e.g., a declaration, member initializer,
1900/// functional cast, etc.) while @p Range covers the whole
1901/// initialization. @p InitEntity is the entity being initialized,
1902/// which may by the name of a declaration or a type. @p Kind is the
1903/// kind of initialization we're performing, which affects whether
1904/// explicit constructors will be considered. When successful, returns
1905/// the constructor that will be used to perform the initialization;
1906/// when the initialization fails, emits a diagnostic and returns
1907/// null.
1908CXXConstructorDecl *
1909Sema::PerformInitializationByConstructor(QualType ClassType,
1910                                         Expr **Args, unsigned NumArgs,
1911                                         SourceLocation Loc, SourceRange Range,
1912                                         DeclarationName InitEntity,
1913                                         InitializationKind Kind) {
1914  const RecordType *ClassRec = ClassType->getAsRecordType();
1915  assert(ClassRec && "Can only initialize a class type here");
1916
1917  // C++ [dcl.init]p14:
1918  //
1919  //   If the initialization is direct-initialization, or if it is
1920  //   copy-initialization where the cv-unqualified version of the
1921  //   source type is the same class as, or a derived class of, the
1922  //   class of the destination, constructors are considered. The
1923  //   applicable constructors are enumerated (13.3.1.3), and the
1924  //   best one is chosen through overload resolution (13.3). The
1925  //   constructor so selected is called to initialize the object,
1926  //   with the initializer expression(s) as its argument(s). If no
1927  //   constructor applies, or the overload resolution is ambiguous,
1928  //   the initialization is ill-formed.
1929  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1930  OverloadCandidateSet CandidateSet;
1931
1932  // Add constructors to the overload set.
1933  DeclarationName ConstructorName
1934    = Context.DeclarationNames.getCXXConstructorName(
1935                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1936  DeclContext::lookup_const_iterator Con, ConEnd;
1937  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(Context, ConstructorName);
1938       Con != ConEnd; ++Con) {
1939    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1940    if ((Kind == IK_Direct) ||
1941        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1942        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1943      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1944  }
1945
1946  // FIXME: When we decide not to synthesize the implicitly-declared
1947  // constructors, we'll need to make them appear here.
1948
1949  OverloadCandidateSet::iterator Best;
1950  switch (BestViableFunction(CandidateSet, Best)) {
1951  case OR_Success:
1952    // We found a constructor. Return it.
1953    return cast<CXXConstructorDecl>(Best->Function);
1954
1955  case OR_No_Viable_Function:
1956    if (InitEntity)
1957      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1958        << InitEntity << Range;
1959    else
1960      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1961        << ClassType << Range;
1962    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1963    return 0;
1964
1965  case OR_Ambiguous:
1966    if (InitEntity)
1967      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1968    else
1969      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1970    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1971    return 0;
1972
1973  case OR_Deleted:
1974    if (InitEntity)
1975      Diag(Loc, diag::err_ovl_deleted_init)
1976        << Best->Function->isDeleted()
1977        << InitEntity << Range;
1978    else
1979      Diag(Loc, diag::err_ovl_deleted_init)
1980        << Best->Function->isDeleted()
1981        << InitEntity << Range;
1982    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1983    return 0;
1984  }
1985
1986  return 0;
1987}
1988
1989/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1990/// determine whether they are reference-related,
1991/// reference-compatible, reference-compatible with added
1992/// qualification, or incompatible, for use in C++ initialization by
1993/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1994/// type, and the first type (T1) is the pointee type of the reference
1995/// type being initialized.
1996Sema::ReferenceCompareResult
1997Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1998                                   bool& DerivedToBase) {
1999  assert(!T1->isReferenceType() &&
2000    "T1 must be the pointee type of the reference type");
2001  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2002
2003  T1 = Context.getCanonicalType(T1);
2004  T2 = Context.getCanonicalType(T2);
2005  QualType UnqualT1 = T1.getUnqualifiedType();
2006  QualType UnqualT2 = T2.getUnqualifiedType();
2007
2008  // C++ [dcl.init.ref]p4:
2009  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2010  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2011  //   T1 is a base class of T2.
2012  if (UnqualT1 == UnqualT2)
2013    DerivedToBase = false;
2014  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2015    DerivedToBase = true;
2016  else
2017    return Ref_Incompatible;
2018
2019  // At this point, we know that T1 and T2 are reference-related (at
2020  // least).
2021
2022  // C++ [dcl.init.ref]p4:
2023  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2024  //   reference-related to T2 and cv1 is the same cv-qualification
2025  //   as, or greater cv-qualification than, cv2. For purposes of
2026  //   overload resolution, cases for which cv1 is greater
2027  //   cv-qualification than cv2 are identified as
2028  //   reference-compatible with added qualification (see 13.3.3.2).
2029  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2030    return Ref_Compatible;
2031  else if (T1.isMoreQualifiedThan(T2))
2032    return Ref_Compatible_With_Added_Qualification;
2033  else
2034    return Ref_Related;
2035}
2036
2037/// CheckReferenceInit - Check the initialization of a reference
2038/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2039/// the initializer (either a simple initializer or an initializer
2040/// list), and DeclType is the type of the declaration. When ICS is
2041/// non-null, this routine will compute the implicit conversion
2042/// sequence according to C++ [over.ics.ref] and will not produce any
2043/// diagnostics; when ICS is null, it will emit diagnostics when any
2044/// errors are found. Either way, a return value of true indicates
2045/// that there was a failure, a return value of false indicates that
2046/// the reference initialization succeeded.
2047///
2048/// When @p SuppressUserConversions, user-defined conversions are
2049/// suppressed.
2050/// When @p AllowExplicit, we also permit explicit user-defined
2051/// conversion functions.
2052/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2053bool
2054Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2055                         ImplicitConversionSequence *ICS,
2056                         bool SuppressUserConversions,
2057                         bool AllowExplicit, bool ForceRValue) {
2058  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2059
2060  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2061  QualType T2 = Init->getType();
2062
2063  // If the initializer is the address of an overloaded function, try
2064  // to resolve the overloaded function. If all goes well, T2 is the
2065  // type of the resulting function.
2066  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2067    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2068                                                          ICS != 0);
2069    if (Fn) {
2070      // Since we're performing this reference-initialization for
2071      // real, update the initializer with the resulting function.
2072      if (!ICS) {
2073        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2074          return true;
2075
2076        FixOverloadedFunctionReference(Init, Fn);
2077      }
2078
2079      T2 = Fn->getType();
2080    }
2081  }
2082
2083  // Compute some basic properties of the types and the initializer.
2084  bool isRValRef = DeclType->isRValueReferenceType();
2085  bool DerivedToBase = false;
2086  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2087                                                  Init->isLvalue(Context);
2088  ReferenceCompareResult RefRelationship
2089    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2090
2091  // Most paths end in a failed conversion.
2092  if (ICS)
2093    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2094
2095  // C++ [dcl.init.ref]p5:
2096  //   A reference to type “cv1 T1” is initialized by an expression
2097  //   of type “cv2 T2” as follows:
2098
2099  //     -- If the initializer expression
2100
2101  // Rvalue references cannot bind to lvalues (N2812).
2102  // There is absolutely no situation where they can. In particular, note that
2103  // this is ill-formed, even if B has a user-defined conversion to A&&:
2104  //   B b;
2105  //   A&& r = b;
2106  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2107    if (!ICS)
2108      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2109        << Init->getSourceRange();
2110    return true;
2111  }
2112
2113  bool BindsDirectly = false;
2114  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2115  //          reference-compatible with “cv2 T2,” or
2116  //
2117  // Note that the bit-field check is skipped if we are just computing
2118  // the implicit conversion sequence (C++ [over.best.ics]p2).
2119  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2120      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2121    BindsDirectly = true;
2122
2123    if (ICS) {
2124      // C++ [over.ics.ref]p1:
2125      //   When a parameter of reference type binds directly (8.5.3)
2126      //   to an argument expression, the implicit conversion sequence
2127      //   is the identity conversion, unless the argument expression
2128      //   has a type that is a derived class of the parameter type,
2129      //   in which case the implicit conversion sequence is a
2130      //   derived-to-base Conversion (13.3.3.1).
2131      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2132      ICS->Standard.First = ICK_Identity;
2133      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2134      ICS->Standard.Third = ICK_Identity;
2135      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2136      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2137      ICS->Standard.ReferenceBinding = true;
2138      ICS->Standard.DirectBinding = true;
2139      ICS->Standard.RRefBinding = false;
2140      ICS->Standard.CopyConstructor = 0;
2141
2142      // Nothing more to do: the inaccessibility/ambiguity check for
2143      // derived-to-base conversions is suppressed when we're
2144      // computing the implicit conversion sequence (C++
2145      // [over.best.ics]p2).
2146      return false;
2147    } else {
2148      // Perform the conversion.
2149      // FIXME: Binding to a subobject of the lvalue is going to require more
2150      // AST annotation than this.
2151      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2152    }
2153  }
2154
2155  //       -- has a class type (i.e., T2 is a class type) and can be
2156  //          implicitly converted to an lvalue of type “cv3 T3,”
2157  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2158  //          92) (this conversion is selected by enumerating the
2159  //          applicable conversion functions (13.3.1.6) and choosing
2160  //          the best one through overload resolution (13.3)),
2161  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2162    // FIXME: Look for conversions in base classes!
2163    CXXRecordDecl *T2RecordDecl
2164      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2165
2166    OverloadCandidateSet CandidateSet;
2167    OverloadedFunctionDecl *Conversions
2168      = T2RecordDecl->getConversionFunctions();
2169    for (OverloadedFunctionDecl::function_iterator Func
2170           = Conversions->function_begin();
2171         Func != Conversions->function_end(); ++Func) {
2172      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2173
2174      // If the conversion function doesn't return a reference type,
2175      // it can't be considered for this conversion.
2176      if (Conv->getConversionType()->isLValueReferenceType() &&
2177          (AllowExplicit || !Conv->isExplicit()))
2178        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2179    }
2180
2181    OverloadCandidateSet::iterator Best;
2182    switch (BestViableFunction(CandidateSet, Best)) {
2183    case OR_Success:
2184      // This is a direct binding.
2185      BindsDirectly = true;
2186
2187      if (ICS) {
2188        // C++ [over.ics.ref]p1:
2189        //
2190        //   [...] If the parameter binds directly to the result of
2191        //   applying a conversion function to the argument
2192        //   expression, the implicit conversion sequence is a
2193        //   user-defined conversion sequence (13.3.3.1.2), with the
2194        //   second standard conversion sequence either an identity
2195        //   conversion or, if the conversion function returns an
2196        //   entity of a type that is a derived class of the parameter
2197        //   type, a derived-to-base Conversion.
2198        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2199        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2200        ICS->UserDefined.After = Best->FinalConversion;
2201        ICS->UserDefined.ConversionFunction = Best->Function;
2202        assert(ICS->UserDefined.After.ReferenceBinding &&
2203               ICS->UserDefined.After.DirectBinding &&
2204               "Expected a direct reference binding!");
2205        return false;
2206      } else {
2207        // Perform the conversion.
2208        // FIXME: Binding to a subobject of the lvalue is going to require more
2209        // AST annotation than this.
2210        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2211      }
2212      break;
2213
2214    case OR_Ambiguous:
2215      assert(false && "Ambiguous reference binding conversions not implemented.");
2216      return true;
2217
2218    case OR_No_Viable_Function:
2219    case OR_Deleted:
2220      // There was no suitable conversion, or we found a deleted
2221      // conversion; continue with other checks.
2222      break;
2223    }
2224  }
2225
2226  if (BindsDirectly) {
2227    // C++ [dcl.init.ref]p4:
2228    //   [...] In all cases where the reference-related or
2229    //   reference-compatible relationship of two types is used to
2230    //   establish the validity of a reference binding, and T1 is a
2231    //   base class of T2, a program that necessitates such a binding
2232    //   is ill-formed if T1 is an inaccessible (clause 11) or
2233    //   ambiguous (10.2) base class of T2.
2234    //
2235    // Note that we only check this condition when we're allowed to
2236    // complain about errors, because we should not be checking for
2237    // ambiguity (or inaccessibility) unless the reference binding
2238    // actually happens.
2239    if (DerivedToBase)
2240      return CheckDerivedToBaseConversion(T2, T1,
2241                                          Init->getSourceRange().getBegin(),
2242                                          Init->getSourceRange());
2243    else
2244      return false;
2245  }
2246
2247  //     -- Otherwise, the reference shall be to a non-volatile const
2248  //        type (i.e., cv1 shall be const), or the reference shall be an
2249  //        rvalue reference and the initializer expression shall be an rvalue.
2250  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2251    if (!ICS)
2252      Diag(Init->getSourceRange().getBegin(),
2253           diag::err_not_reference_to_const_init)
2254        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2255        << T2 << Init->getSourceRange();
2256    return true;
2257  }
2258
2259  //       -- If the initializer expression is an rvalue, with T2 a
2260  //          class type, and “cv1 T1” is reference-compatible with
2261  //          “cv2 T2,” the reference is bound in one of the
2262  //          following ways (the choice is implementation-defined):
2263  //
2264  //          -- The reference is bound to the object represented by
2265  //             the rvalue (see 3.10) or to a sub-object within that
2266  //             object.
2267  //
2268  //          -- A temporary of type “cv1 T2” [sic] is created, and
2269  //             a constructor is called to copy the entire rvalue
2270  //             object into the temporary. The reference is bound to
2271  //             the temporary or to a sub-object within the
2272  //             temporary.
2273  //
2274  //          The constructor that would be used to make the copy
2275  //          shall be callable whether or not the copy is actually
2276  //          done.
2277  //
2278  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2279  // freedom, so we will always take the first option and never build
2280  // a temporary in this case. FIXME: We will, however, have to check
2281  // for the presence of a copy constructor in C++98/03 mode.
2282  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2283      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2284    if (ICS) {
2285      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2286      ICS->Standard.First = ICK_Identity;
2287      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2288      ICS->Standard.Third = ICK_Identity;
2289      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2290      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2291      ICS->Standard.ReferenceBinding = true;
2292      ICS->Standard.DirectBinding = false;
2293      ICS->Standard.RRefBinding = isRValRef;
2294      ICS->Standard.CopyConstructor = 0;
2295    } else {
2296      // FIXME: Binding to a subobject of the rvalue is going to require more
2297      // AST annotation than this.
2298      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2299    }
2300    return false;
2301  }
2302
2303  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2304  //          initialized from the initializer expression using the
2305  //          rules for a non-reference copy initialization (8.5). The
2306  //          reference is then bound to the temporary. If T1 is
2307  //          reference-related to T2, cv1 must be the same
2308  //          cv-qualification as, or greater cv-qualification than,
2309  //          cv2; otherwise, the program is ill-formed.
2310  if (RefRelationship == Ref_Related) {
2311    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2312    // we would be reference-compatible or reference-compatible with
2313    // added qualification. But that wasn't the case, so the reference
2314    // initialization fails.
2315    if (!ICS)
2316      Diag(Init->getSourceRange().getBegin(),
2317           diag::err_reference_init_drops_quals)
2318        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2319        << T2 << Init->getSourceRange();
2320    return true;
2321  }
2322
2323  // If at least one of the types is a class type, the types are not
2324  // related, and we aren't allowed any user conversions, the
2325  // reference binding fails. This case is important for breaking
2326  // recursion, since TryImplicitConversion below will attempt to
2327  // create a temporary through the use of a copy constructor.
2328  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2329      (T1->isRecordType() || T2->isRecordType())) {
2330    if (!ICS)
2331      Diag(Init->getSourceRange().getBegin(),
2332           diag::err_typecheck_convert_incompatible)
2333        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2334    return true;
2335  }
2336
2337  // Actually try to convert the initializer to T1.
2338  if (ICS) {
2339    // C++ [over.ics.ref]p2:
2340    //
2341    //   When a parameter of reference type is not bound directly to
2342    //   an argument expression, the conversion sequence is the one
2343    //   required to convert the argument expression to the
2344    //   underlying type of the reference according to
2345    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2346    //   to copy-initializing a temporary of the underlying type with
2347    //   the argument expression. Any difference in top-level
2348    //   cv-qualification is subsumed by the initialization itself
2349    //   and does not constitute a conversion.
2350    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2351    // Of course, that's still a reference binding.
2352    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2353      ICS->Standard.ReferenceBinding = true;
2354      ICS->Standard.RRefBinding = isRValRef;
2355    } else if(ICS->ConversionKind ==
2356              ImplicitConversionSequence::UserDefinedConversion) {
2357      ICS->UserDefined.After.ReferenceBinding = true;
2358      ICS->UserDefined.After.RRefBinding = isRValRef;
2359    }
2360    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2361  } else {
2362    return PerformImplicitConversion(Init, T1, "initializing");
2363  }
2364}
2365
2366/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2367/// of this overloaded operator is well-formed. If so, returns false;
2368/// otherwise, emits appropriate diagnostics and returns true.
2369bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2370  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2371         "Expected an overloaded operator declaration");
2372
2373  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2374
2375  // C++ [over.oper]p5:
2376  //   The allocation and deallocation functions, operator new,
2377  //   operator new[], operator delete and operator delete[], are
2378  //   described completely in 3.7.3. The attributes and restrictions
2379  //   found in the rest of this subclause do not apply to them unless
2380  //   explicitly stated in 3.7.3.
2381  // FIXME: Write a separate routine for checking this. For now, just allow it.
2382  if (Op == OO_New || Op == OO_Array_New ||
2383      Op == OO_Delete || Op == OO_Array_Delete)
2384    return false;
2385
2386  // C++ [over.oper]p6:
2387  //   An operator function shall either be a non-static member
2388  //   function or be a non-member function and have at least one
2389  //   parameter whose type is a class, a reference to a class, an
2390  //   enumeration, or a reference to an enumeration.
2391  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2392    if (MethodDecl->isStatic())
2393      return Diag(FnDecl->getLocation(),
2394                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2395  } else {
2396    bool ClassOrEnumParam = false;
2397    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2398                                   ParamEnd = FnDecl->param_end();
2399         Param != ParamEnd; ++Param) {
2400      QualType ParamType = (*Param)->getType().getNonReferenceType();
2401      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2402        ClassOrEnumParam = true;
2403        break;
2404      }
2405    }
2406
2407    if (!ClassOrEnumParam)
2408      return Diag(FnDecl->getLocation(),
2409                  diag::err_operator_overload_needs_class_or_enum)
2410        << FnDecl->getDeclName();
2411  }
2412
2413  // C++ [over.oper]p8:
2414  //   An operator function cannot have default arguments (8.3.6),
2415  //   except where explicitly stated below.
2416  //
2417  // Only the function-call operator allows default arguments
2418  // (C++ [over.call]p1).
2419  if (Op != OO_Call) {
2420    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2421         Param != FnDecl->param_end(); ++Param) {
2422      if ((*Param)->hasUnparsedDefaultArg())
2423        return Diag((*Param)->getLocation(),
2424                    diag::err_operator_overload_default_arg)
2425          << FnDecl->getDeclName();
2426      else if (Expr *DefArg = (*Param)->getDefaultArg())
2427        return Diag((*Param)->getLocation(),
2428                    diag::err_operator_overload_default_arg)
2429          << FnDecl->getDeclName() << DefArg->getSourceRange();
2430    }
2431  }
2432
2433  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2434    { false, false, false }
2435#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2436    , { Unary, Binary, MemberOnly }
2437#include "clang/Basic/OperatorKinds.def"
2438  };
2439
2440  bool CanBeUnaryOperator = OperatorUses[Op][0];
2441  bool CanBeBinaryOperator = OperatorUses[Op][1];
2442  bool MustBeMemberOperator = OperatorUses[Op][2];
2443
2444  // C++ [over.oper]p8:
2445  //   [...] Operator functions cannot have more or fewer parameters
2446  //   than the number required for the corresponding operator, as
2447  //   described in the rest of this subclause.
2448  unsigned NumParams = FnDecl->getNumParams()
2449                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2450  if (Op != OO_Call &&
2451      ((NumParams == 1 && !CanBeUnaryOperator) ||
2452       (NumParams == 2 && !CanBeBinaryOperator) ||
2453       (NumParams < 1) || (NumParams > 2))) {
2454    // We have the wrong number of parameters.
2455    unsigned ErrorKind;
2456    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2457      ErrorKind = 2;  // 2 -> unary or binary.
2458    } else if (CanBeUnaryOperator) {
2459      ErrorKind = 0;  // 0 -> unary
2460    } else {
2461      assert(CanBeBinaryOperator &&
2462             "All non-call overloaded operators are unary or binary!");
2463      ErrorKind = 1;  // 1 -> binary
2464    }
2465
2466    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2467      << FnDecl->getDeclName() << NumParams << ErrorKind;
2468  }
2469
2470  // Overloaded operators other than operator() cannot be variadic.
2471  if (Op != OO_Call &&
2472      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2473    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2474      << FnDecl->getDeclName();
2475  }
2476
2477  // Some operators must be non-static member functions.
2478  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2479    return Diag(FnDecl->getLocation(),
2480                diag::err_operator_overload_must_be_member)
2481      << FnDecl->getDeclName();
2482  }
2483
2484  // C++ [over.inc]p1:
2485  //   The user-defined function called operator++ implements the
2486  //   prefix and postfix ++ operator. If this function is a member
2487  //   function with no parameters, or a non-member function with one
2488  //   parameter of class or enumeration type, it defines the prefix
2489  //   increment operator ++ for objects of that type. If the function
2490  //   is a member function with one parameter (which shall be of type
2491  //   int) or a non-member function with two parameters (the second
2492  //   of which shall be of type int), it defines the postfix
2493  //   increment operator ++ for objects of that type.
2494  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2495    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2496    bool ParamIsInt = false;
2497    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2498      ParamIsInt = BT->getKind() == BuiltinType::Int;
2499
2500    if (!ParamIsInt)
2501      return Diag(LastParam->getLocation(),
2502                  diag::err_operator_overload_post_incdec_must_be_int)
2503        << LastParam->getType() << (Op == OO_MinusMinus);
2504  }
2505
2506  // Notify the class if it got an assignment operator.
2507  if (Op == OO_Equal) {
2508    // Would have returned earlier otherwise.
2509    assert(isa<CXXMethodDecl>(FnDecl) &&
2510      "Overloaded = not member, but not filtered.");
2511    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2512    Method->getParent()->addedAssignmentOperator(Context, Method);
2513  }
2514
2515  return false;
2516}
2517
2518/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2519/// linkage specification, including the language and (if present)
2520/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2521/// the location of the language string literal, which is provided
2522/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2523/// the '{' brace. Otherwise, this linkage specification does not
2524/// have any braces.
2525Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
2526                                                     SourceLocation ExternLoc,
2527                                                     SourceLocation LangLoc,
2528                                                     const char *Lang,
2529                                                     unsigned StrSize,
2530                                                     SourceLocation LBraceLoc) {
2531  LinkageSpecDecl::LanguageIDs Language;
2532  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2533    Language = LinkageSpecDecl::lang_c;
2534  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2535    Language = LinkageSpecDecl::lang_cxx;
2536  else {
2537    Diag(LangLoc, diag::err_bad_language);
2538    return DeclPtrTy();
2539  }
2540
2541  // FIXME: Add all the various semantics of linkage specifications
2542
2543  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2544                                               LangLoc, Language,
2545                                               LBraceLoc.isValid());
2546  CurContext->addDecl(Context, D);
2547  PushDeclContext(S, D);
2548  return DeclPtrTy::make(D);
2549}
2550
2551/// ActOnFinishLinkageSpecification - Completely the definition of
2552/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2553/// valid, it's the position of the closing '}' brace in a linkage
2554/// specification that uses braces.
2555Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
2556                                                      DeclPtrTy LinkageSpec,
2557                                                      SourceLocation RBraceLoc) {
2558  if (LinkageSpec)
2559    PopDeclContext();
2560  return LinkageSpec;
2561}
2562
2563/// \brief Perform semantic analysis for the variable declaration that
2564/// occurs within a C++ catch clause, returning the newly-created
2565/// variable.
2566VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
2567                                         IdentifierInfo *Name,
2568                                         SourceLocation Loc,
2569                                         SourceRange Range) {
2570  bool Invalid = false;
2571
2572  // Arrays and functions decay.
2573  if (ExDeclType->isArrayType())
2574    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2575  else if (ExDeclType->isFunctionType())
2576    ExDeclType = Context.getPointerType(ExDeclType);
2577
2578  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2579  // The exception-declaration shall not denote a pointer or reference to an
2580  // incomplete type, other than [cv] void*.
2581  // N2844 forbids rvalue references.
2582  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
2583    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
2584    Invalid = true;
2585  }
2586
2587  QualType BaseType = ExDeclType;
2588  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2589  unsigned DK = diag::err_catch_incomplete;
2590  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2591    BaseType = Ptr->getPointeeType();
2592    Mode = 1;
2593    DK = diag::err_catch_incomplete_ptr;
2594  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2595    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2596    BaseType = Ref->getPointeeType();
2597    Mode = 2;
2598    DK = diag::err_catch_incomplete_ref;
2599  }
2600  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2601      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
2602    Invalid = true;
2603
2604  if (!Invalid && !ExDeclType->isDependentType() &&
2605      RequireNonAbstractType(Loc, ExDeclType,
2606                             diag::err_abstract_type_in_decl,
2607                             AbstractVariableType))
2608    Invalid = true;
2609
2610  // FIXME: Need to test for ability to copy-construct and destroy the
2611  // exception variable.
2612
2613  // FIXME: Need to check for abstract classes.
2614
2615  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
2616                                    Name, ExDeclType, VarDecl::None,
2617                                    Range.getBegin());
2618
2619  if (Invalid)
2620    ExDecl->setInvalidDecl();
2621
2622  return ExDecl;
2623}
2624
2625/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2626/// handler.
2627Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
2628  QualType ExDeclType = GetTypeForDeclarator(D, S);
2629
2630  bool Invalid = D.isInvalidType();
2631  IdentifierInfo *II = D.getIdentifier();
2632  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2633    // The scope should be freshly made just for us. There is just no way
2634    // it contains any previous declaration.
2635    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
2636    if (PrevDecl->isTemplateParameter()) {
2637      // Maybe we will complain about the shadowed template parameter.
2638      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2639    }
2640  }
2641
2642  if (D.getCXXScopeSpec().isSet() && !Invalid) {
2643    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2644      << D.getCXXScopeSpec().getRange();
2645    Invalid = true;
2646  }
2647
2648  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
2649                                              D.getIdentifier(),
2650                                              D.getIdentifierLoc(),
2651                                            D.getDeclSpec().getSourceRange());
2652
2653  if (Invalid)
2654    ExDecl->setInvalidDecl();
2655
2656  // Add the exception declaration into this scope.
2657  if (II)
2658    PushOnScopeChains(ExDecl, S);
2659  else
2660    CurContext->addDecl(Context, ExDecl);
2661
2662  ProcessDeclAttributes(ExDecl, D);
2663  return DeclPtrTy::make(ExDecl);
2664}
2665
2666Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
2667                                                   ExprArg assertexpr,
2668                                                   ExprArg assertmessageexpr) {
2669  Expr *AssertExpr = (Expr *)assertexpr.get();
2670  StringLiteral *AssertMessage =
2671    cast<StringLiteral>((Expr *)assertmessageexpr.get());
2672
2673  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
2674    llvm::APSInt Value(32);
2675    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
2676      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
2677        AssertExpr->getSourceRange();
2678      return DeclPtrTy();
2679    }
2680
2681    if (Value == 0) {
2682      std::string str(AssertMessage->getStrData(),
2683                      AssertMessage->getByteLength());
2684      Diag(AssertLoc, diag::err_static_assert_failed)
2685        << str << AssertExpr->getSourceRange();
2686    }
2687  }
2688
2689  assertexpr.release();
2690  assertmessageexpr.release();
2691  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
2692                                        AssertExpr, AssertMessage);
2693
2694  CurContext->addDecl(Context, Decl);
2695  return DeclPtrTy::make(Decl);
2696}
2697
2698bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
2699  if (!(S->getFlags() & Scope::ClassScope)) {
2700    Diag(FriendLoc, diag::err_friend_decl_outside_class);
2701    return true;
2702  }
2703
2704  return false;
2705}
2706
2707void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
2708  Decl *Dcl = dcl.getAs<Decl>();
2709  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
2710  if (!Fn) {
2711    Diag(DelLoc, diag::err_deleted_non_function);
2712    return;
2713  }
2714  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
2715    Diag(DelLoc, diag::err_deleted_decl_not_first);
2716    Diag(Prev->getLocation(), diag::note_previous_declaration);
2717    // If the declaration wasn't the first, we delete the function anyway for
2718    // recovery.
2719  }
2720  Fn->setDeleted();
2721}
2722
2723static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
2724  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
2725       ++CI) {
2726    Stmt *SubStmt = *CI;
2727    if (!SubStmt)
2728      continue;
2729    if (isa<ReturnStmt>(SubStmt))
2730      Self.Diag(SubStmt->getSourceRange().getBegin(),
2731           diag::err_return_in_constructor_handler);
2732    if (!isa<Expr>(SubStmt))
2733      SearchForReturnInStmt(Self, SubStmt);
2734  }
2735}
2736
2737void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
2738  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
2739    CXXCatchStmt *Handler = TryBlock->getHandler(I);
2740    SearchForReturnInStmt(*this, Handler);
2741  }
2742}
2743
2744bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
2745                                             const CXXMethodDecl *Old) {
2746  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
2747  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
2748
2749  QualType CNewTy = Context.getCanonicalType(NewTy);
2750  QualType COldTy = Context.getCanonicalType(OldTy);
2751
2752  if (CNewTy == COldTy &&
2753      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
2754    return false;
2755
2756  // Check if the return types are covariant
2757  QualType NewClassTy, OldClassTy;
2758
2759  /// Both types must be pointers or references to classes.
2760  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
2761    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
2762      NewClassTy = NewPT->getPointeeType();
2763      OldClassTy = OldPT->getPointeeType();
2764    }
2765  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
2766    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
2767      NewClassTy = NewRT->getPointeeType();
2768      OldClassTy = OldRT->getPointeeType();
2769    }
2770  }
2771
2772  // The return types aren't either both pointers or references to a class type.
2773  if (NewClassTy.isNull()) {
2774    Diag(New->getLocation(),
2775         diag::err_different_return_type_for_overriding_virtual_function)
2776      << New->getDeclName() << NewTy << OldTy;
2777    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2778
2779    return true;
2780  }
2781
2782  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
2783    // Check if the new class derives from the old class.
2784    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
2785      Diag(New->getLocation(),
2786           diag::err_covariant_return_not_derived)
2787      << New->getDeclName() << NewTy << OldTy;
2788      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2789      return true;
2790    }
2791
2792    // Check if we the conversion from derived to base is valid.
2793    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
2794                      diag::err_covariant_return_inaccessible_base,
2795                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
2796                      // FIXME: Should this point to the return type?
2797                      New->getLocation(), SourceRange(), New->getDeclName())) {
2798      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2799      return true;
2800    }
2801  }
2802
2803  // The qualifiers of the return types must be the same.
2804  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
2805    Diag(New->getLocation(),
2806         diag::err_covariant_return_type_different_qualifications)
2807    << New->getDeclName() << NewTy << OldTy;
2808    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2809    return true;
2810  };
2811
2812
2813  // The new class type must have the same or less qualifiers as the old type.
2814  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
2815    Diag(New->getLocation(),
2816         diag::err_covariant_return_type_class_type_more_qualified)
2817    << New->getDeclName() << NewTy << OldTy;
2818    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2819    return true;
2820  };
2821
2822  return false;
2823}
2824