SemaDeclCXX.cpp revision afcc96a20029ac9009feefbc555a4f9d923e3e06
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDecl();
424           Older; Older = Older->getPreviousDecl()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++11 [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
663  if (MD && MD->isInstance()) {
664    // C++11 [dcl.constexpr]p4: In the definition of a constexpr constructor...
665    //  In addition, either its function-body shall be = delete or = default or
666    //  it shall satisfy the following constraints:
667    //  - the class shall not have any virtual base classes;
668    //
669    // We apply this to constexpr member functions too: the class cannot be a
670    // literal type, so the members are not permitted to be constexpr.
671    const CXXRecordDecl *RD = MD->getParent();
672    if (RD->getNumVBases()) {
673      // Note, this is still illegal if the body is = default, since the
674      // implicit body does not satisfy the requirements of a constexpr
675      // constructor. We also reject cases where the body is = delete, as
676      // required by N3308.
677      if (CCK != CCK_Instantiation) {
678        Diag(NewFD->getLocation(),
679             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
680                                    : diag::note_constexpr_tmpl_virtual_base)
681          << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
682          << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  }
691
692  if (!isa<CXXConstructorDecl>(NewFD)) {
693    // C++11 [dcl.constexpr]p3:
694    //  The definition of a constexpr function shall satisfy the following
695    //  constraints:
696    // - it shall not be virtual;
697    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
698    if (Method && Method->isVirtual()) {
699      if (CCK != CCK_Instantiation) {
700        Diag(NewFD->getLocation(),
701             CCK == CCK_Declaration ? diag::err_constexpr_virtual
702                                    : diag::note_constexpr_tmpl_virtual);
703
704        // If it's not obvious why this function is virtual, find an overridden
705        // function which uses the 'virtual' keyword.
706        const CXXMethodDecl *WrittenVirtual = Method;
707        while (!WrittenVirtual->isVirtualAsWritten())
708          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
709        if (WrittenVirtual != Method)
710          Diag(WrittenVirtual->getLocation(),
711               diag::note_overridden_virtual_function);
712      }
713      return false;
714    }
715
716    // - its return type shall be a literal type;
717    QualType RT = NewFD->getResultType();
718    if (!RT->isDependentType() &&
719        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
720                           PDiag(diag::err_constexpr_non_literal_return) :
721                           PDiag(),
722                           /*AllowIncompleteType*/ true)) {
723      if (CCK == CCK_NoteNonConstexprInstantiation)
724        Diag(NewFD->getLocation(),
725             diag::note_constexpr_tmpl_non_literal_return) << RT;
726      return false;
727    }
728  }
729
730  // - each of its parameter types shall be a literal type;
731  if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
732    return false;
733
734  return true;
735}
736
737/// Check the given declaration statement is legal within a constexpr function
738/// body. C++0x [dcl.constexpr]p3,p4.
739///
740/// \return true if the body is OK, false if we have diagnosed a problem.
741static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
742                                   DeclStmt *DS) {
743  // C++0x [dcl.constexpr]p3 and p4:
744  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
745  //  contain only
746  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
747         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
748    switch ((*DclIt)->getKind()) {
749    case Decl::StaticAssert:
750    case Decl::Using:
751    case Decl::UsingShadow:
752    case Decl::UsingDirective:
753    case Decl::UnresolvedUsingTypename:
754      //   - static_assert-declarations
755      //   - using-declarations,
756      //   - using-directives,
757      continue;
758
759    case Decl::Typedef:
760    case Decl::TypeAlias: {
761      //   - typedef declarations and alias-declarations that do not define
762      //     classes or enumerations,
763      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
764      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
765        // Don't allow variably-modified types in constexpr functions.
766        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
767        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
768          << TL.getSourceRange() << TL.getType()
769          << isa<CXXConstructorDecl>(Dcl);
770        return false;
771      }
772      continue;
773    }
774
775    case Decl::Enum:
776    case Decl::CXXRecord:
777      // As an extension, we allow the declaration (but not the definition) of
778      // classes and enumerations in all declarations, not just in typedef and
779      // alias declarations.
780      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
781        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
782          << isa<CXXConstructorDecl>(Dcl);
783        return false;
784      }
785      continue;
786
787    case Decl::Var:
788      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
789        << isa<CXXConstructorDecl>(Dcl);
790      return false;
791
792    default:
793      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
794        << isa<CXXConstructorDecl>(Dcl);
795      return false;
796    }
797  }
798
799  return true;
800}
801
802/// Check that the given field is initialized within a constexpr constructor.
803///
804/// \param Dcl The constexpr constructor being checked.
805/// \param Field The field being checked. This may be a member of an anonymous
806///        struct or union nested within the class being checked.
807/// \param Inits All declarations, including anonymous struct/union members and
808///        indirect members, for which any initialization was provided.
809/// \param Diagnosed Set to true if an error is produced.
810static void CheckConstexprCtorInitializer(Sema &SemaRef,
811                                          const FunctionDecl *Dcl,
812                                          FieldDecl *Field,
813                                          llvm::SmallSet<Decl*, 16> &Inits,
814                                          bool &Diagnosed) {
815  if (Field->isUnnamedBitfield())
816    return;
817
818  if (!Inits.count(Field)) {
819    if (!Diagnosed) {
820      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
821      Diagnosed = true;
822    }
823    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
824  } else if (Field->isAnonymousStructOrUnion()) {
825    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
826    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
827         I != E; ++I)
828      // If an anonymous union contains an anonymous struct of which any member
829      // is initialized, all members must be initialized.
830      if (!RD->isUnion() || Inits.count(*I))
831        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
832  }
833}
834
835/// Check the body for the given constexpr function declaration only contains
836/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
837///
838/// \return true if the body is OK, false if we have diagnosed a problem.
839bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
840  if (isa<CXXTryStmt>(Body)) {
841    // C++0x [dcl.constexpr]p3:
842    //  The definition of a constexpr function shall satisfy the following
843    //  constraints: [...]
844    // - its function-body shall be = delete, = default, or a
845    //   compound-statement
846    //
847    // C++0x [dcl.constexpr]p4:
848    //  In the definition of a constexpr constructor, [...]
849    // - its function-body shall not be a function-try-block;
850    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
851      << isa<CXXConstructorDecl>(Dcl);
852    return false;
853  }
854
855  // - its function-body shall be [...] a compound-statement that contains only
856  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
857
858  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
859  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
860         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
861    switch ((*BodyIt)->getStmtClass()) {
862    case Stmt::NullStmtClass:
863      //   - null statements,
864      continue;
865
866    case Stmt::DeclStmtClass:
867      //   - static_assert-declarations
868      //   - using-declarations,
869      //   - using-directives,
870      //   - typedef declarations and alias-declarations that do not define
871      //     classes or enumerations,
872      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
873        return false;
874      continue;
875
876    case Stmt::ReturnStmtClass:
877      //   - and exactly one return statement;
878      if (isa<CXXConstructorDecl>(Dcl))
879        break;
880
881      ReturnStmts.push_back((*BodyIt)->getLocStart());
882      // FIXME
883      // - every constructor call and implicit conversion used in initializing
884      //   the return value shall be one of those allowed in a constant
885      //   expression.
886      // Deal with this as part of a general check that the function can produce
887      // a constant expression (for [dcl.constexpr]p5).
888      continue;
889
890    default:
891      break;
892    }
893
894    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
895      << isa<CXXConstructorDecl>(Dcl);
896    return false;
897  }
898
899  if (const CXXConstructorDecl *Constructor
900        = dyn_cast<CXXConstructorDecl>(Dcl)) {
901    const CXXRecordDecl *RD = Constructor->getParent();
902    // - every non-static data member and base class sub-object shall be
903    //   initialized;
904    if (RD->isUnion()) {
905      // DR1359: Exactly one member of a union shall be initialized.
906      if (Constructor->getNumCtorInitializers() == 0) {
907        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
908        return false;
909      }
910    } else if (!Constructor->isDependentContext() &&
911               !Constructor->isDelegatingConstructor()) {
912      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
913
914      // Skip detailed checking if we have enough initializers, and we would
915      // allow at most one initializer per member.
916      bool AnyAnonStructUnionMembers = false;
917      unsigned Fields = 0;
918      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
919           E = RD->field_end(); I != E; ++I, ++Fields) {
920        if ((*I)->isAnonymousStructOrUnion()) {
921          AnyAnonStructUnionMembers = true;
922          break;
923        }
924      }
925      if (AnyAnonStructUnionMembers ||
926          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
927        // Check initialization of non-static data members. Base classes are
928        // always initialized so do not need to be checked. Dependent bases
929        // might not have initializers in the member initializer list.
930        llvm::SmallSet<Decl*, 16> Inits;
931        for (CXXConstructorDecl::init_const_iterator
932               I = Constructor->init_begin(), E = Constructor->init_end();
933             I != E; ++I) {
934          if (FieldDecl *FD = (*I)->getMember())
935            Inits.insert(FD);
936          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
937            Inits.insert(ID->chain_begin(), ID->chain_end());
938        }
939
940        bool Diagnosed = false;
941        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
942             E = RD->field_end(); I != E; ++I)
943          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
944        if (Diagnosed)
945          return false;
946      }
947    }
948
949    // FIXME
950    // - every constructor involved in initializing non-static data members
951    //   and base class sub-objects shall be a constexpr constructor;
952    // - every assignment-expression that is an initializer-clause appearing
953    //   directly or indirectly within a brace-or-equal-initializer for
954    //   a non-static data member that is not named by a mem-initializer-id
955    //   shall be a constant expression; and
956    // - every implicit conversion used in converting a constructor argument
957    //   to the corresponding parameter type and converting
958    //   a full-expression to the corresponding member type shall be one of
959    //   those allowed in a constant expression.
960    // Deal with these as part of a general check that the function can produce
961    // a constant expression (for [dcl.constexpr]p5).
962  } else {
963    if (ReturnStmts.empty()) {
964      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
965      return false;
966    }
967    if (ReturnStmts.size() > 1) {
968      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
969      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
970        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
971      return false;
972    }
973  }
974
975  return true;
976}
977
978/// isCurrentClassName - Determine whether the identifier II is the
979/// name of the class type currently being defined. In the case of
980/// nested classes, this will only return true if II is the name of
981/// the innermost class.
982bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
983                              const CXXScopeSpec *SS) {
984  assert(getLangOptions().CPlusPlus && "No class names in C!");
985
986  CXXRecordDecl *CurDecl;
987  if (SS && SS->isSet() && !SS->isInvalid()) {
988    DeclContext *DC = computeDeclContext(*SS, true);
989    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
990  } else
991    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
992
993  if (CurDecl && CurDecl->getIdentifier())
994    return &II == CurDecl->getIdentifier();
995  else
996    return false;
997}
998
999/// \brief Check the validity of a C++ base class specifier.
1000///
1001/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1002/// and returns NULL otherwise.
1003CXXBaseSpecifier *
1004Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1005                         SourceRange SpecifierRange,
1006                         bool Virtual, AccessSpecifier Access,
1007                         TypeSourceInfo *TInfo,
1008                         SourceLocation EllipsisLoc) {
1009  QualType BaseType = TInfo->getType();
1010
1011  // C++ [class.union]p1:
1012  //   A union shall not have base classes.
1013  if (Class->isUnion()) {
1014    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1015      << SpecifierRange;
1016    return 0;
1017  }
1018
1019  if (EllipsisLoc.isValid() &&
1020      !TInfo->getType()->containsUnexpandedParameterPack()) {
1021    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1022      << TInfo->getTypeLoc().getSourceRange();
1023    EllipsisLoc = SourceLocation();
1024  }
1025
1026  if (BaseType->isDependentType())
1027    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1028                                          Class->getTagKind() == TTK_Class,
1029                                          Access, TInfo, EllipsisLoc);
1030
1031  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1032
1033  // Base specifiers must be record types.
1034  if (!BaseType->isRecordType()) {
1035    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1036    return 0;
1037  }
1038
1039  // C++ [class.union]p1:
1040  //   A union shall not be used as a base class.
1041  if (BaseType->isUnionType()) {
1042    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1043    return 0;
1044  }
1045
1046  // C++ [class.derived]p2:
1047  //   The class-name in a base-specifier shall not be an incompletely
1048  //   defined class.
1049  if (RequireCompleteType(BaseLoc, BaseType,
1050                          PDiag(diag::err_incomplete_base_class)
1051                            << SpecifierRange)) {
1052    Class->setInvalidDecl();
1053    return 0;
1054  }
1055
1056  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1057  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1058  assert(BaseDecl && "Record type has no declaration");
1059  BaseDecl = BaseDecl->getDefinition();
1060  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1061  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1062  assert(CXXBaseDecl && "Base type is not a C++ type");
1063
1064  // C++ [class]p3:
1065  //   If a class is marked final and it appears as a base-type-specifier in
1066  //   base-clause, the program is ill-formed.
1067  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1068    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1069      << CXXBaseDecl->getDeclName();
1070    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1071      << CXXBaseDecl->getDeclName();
1072    return 0;
1073  }
1074
1075  if (BaseDecl->isInvalidDecl())
1076    Class->setInvalidDecl();
1077
1078  // Create the base specifier.
1079  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1080                                        Class->getTagKind() == TTK_Class,
1081                                        Access, TInfo, EllipsisLoc);
1082}
1083
1084/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1085/// one entry in the base class list of a class specifier, for
1086/// example:
1087///    class foo : public bar, virtual private baz {
1088/// 'public bar' and 'virtual private baz' are each base-specifiers.
1089BaseResult
1090Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1091                         bool Virtual, AccessSpecifier Access,
1092                         ParsedType basetype, SourceLocation BaseLoc,
1093                         SourceLocation EllipsisLoc) {
1094  if (!classdecl)
1095    return true;
1096
1097  AdjustDeclIfTemplate(classdecl);
1098  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1099  if (!Class)
1100    return true;
1101
1102  TypeSourceInfo *TInfo = 0;
1103  GetTypeFromParser(basetype, &TInfo);
1104
1105  if (EllipsisLoc.isInvalid() &&
1106      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1107                                      UPPC_BaseType))
1108    return true;
1109
1110  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1111                                                      Virtual, Access, TInfo,
1112                                                      EllipsisLoc))
1113    return BaseSpec;
1114
1115  return true;
1116}
1117
1118/// \brief Performs the actual work of attaching the given base class
1119/// specifiers to a C++ class.
1120bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1121                                unsigned NumBases) {
1122 if (NumBases == 0)
1123    return false;
1124
1125  // Used to keep track of which base types we have already seen, so
1126  // that we can properly diagnose redundant direct base types. Note
1127  // that the key is always the unqualified canonical type of the base
1128  // class.
1129  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1130
1131  // Copy non-redundant base specifiers into permanent storage.
1132  unsigned NumGoodBases = 0;
1133  bool Invalid = false;
1134  for (unsigned idx = 0; idx < NumBases; ++idx) {
1135    QualType NewBaseType
1136      = Context.getCanonicalType(Bases[idx]->getType());
1137    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1138    if (KnownBaseTypes[NewBaseType]) {
1139      // C++ [class.mi]p3:
1140      //   A class shall not be specified as a direct base class of a
1141      //   derived class more than once.
1142      Diag(Bases[idx]->getSourceRange().getBegin(),
1143           diag::err_duplicate_base_class)
1144        << KnownBaseTypes[NewBaseType]->getType()
1145        << Bases[idx]->getSourceRange();
1146
1147      // Delete the duplicate base class specifier; we're going to
1148      // overwrite its pointer later.
1149      Context.Deallocate(Bases[idx]);
1150
1151      Invalid = true;
1152    } else {
1153      // Okay, add this new base class.
1154      KnownBaseTypes[NewBaseType] = Bases[idx];
1155      Bases[NumGoodBases++] = Bases[idx];
1156      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1157        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1158          if (RD->hasAttr<WeakAttr>())
1159            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1160    }
1161  }
1162
1163  // Attach the remaining base class specifiers to the derived class.
1164  Class->setBases(Bases, NumGoodBases);
1165
1166  // Delete the remaining (good) base class specifiers, since their
1167  // data has been copied into the CXXRecordDecl.
1168  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1169    Context.Deallocate(Bases[idx]);
1170
1171  return Invalid;
1172}
1173
1174/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1175/// class, after checking whether there are any duplicate base
1176/// classes.
1177void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1178                               unsigned NumBases) {
1179  if (!ClassDecl || !Bases || !NumBases)
1180    return;
1181
1182  AdjustDeclIfTemplate(ClassDecl);
1183  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1184                       (CXXBaseSpecifier**)(Bases), NumBases);
1185}
1186
1187static CXXRecordDecl *GetClassForType(QualType T) {
1188  if (const RecordType *RT = T->getAs<RecordType>())
1189    return cast<CXXRecordDecl>(RT->getDecl());
1190  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1191    return ICT->getDecl();
1192  else
1193    return 0;
1194}
1195
1196/// \brief Determine whether the type \p Derived is a C++ class that is
1197/// derived from the type \p Base.
1198bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1199  if (!getLangOptions().CPlusPlus)
1200    return false;
1201
1202  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1203  if (!DerivedRD)
1204    return false;
1205
1206  CXXRecordDecl *BaseRD = GetClassForType(Base);
1207  if (!BaseRD)
1208    return false;
1209
1210  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1211  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1212}
1213
1214/// \brief Determine whether the type \p Derived is a C++ class that is
1215/// derived from the type \p Base.
1216bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1217  if (!getLangOptions().CPlusPlus)
1218    return false;
1219
1220  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1221  if (!DerivedRD)
1222    return false;
1223
1224  CXXRecordDecl *BaseRD = GetClassForType(Base);
1225  if (!BaseRD)
1226    return false;
1227
1228  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1229}
1230
1231void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1232                              CXXCastPath &BasePathArray) {
1233  assert(BasePathArray.empty() && "Base path array must be empty!");
1234  assert(Paths.isRecordingPaths() && "Must record paths!");
1235
1236  const CXXBasePath &Path = Paths.front();
1237
1238  // We first go backward and check if we have a virtual base.
1239  // FIXME: It would be better if CXXBasePath had the base specifier for
1240  // the nearest virtual base.
1241  unsigned Start = 0;
1242  for (unsigned I = Path.size(); I != 0; --I) {
1243    if (Path[I - 1].Base->isVirtual()) {
1244      Start = I - 1;
1245      break;
1246    }
1247  }
1248
1249  // Now add all bases.
1250  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1251    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1252}
1253
1254/// \brief Determine whether the given base path includes a virtual
1255/// base class.
1256bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1257  for (CXXCastPath::const_iterator B = BasePath.begin(),
1258                                BEnd = BasePath.end();
1259       B != BEnd; ++B)
1260    if ((*B)->isVirtual())
1261      return true;
1262
1263  return false;
1264}
1265
1266/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1267/// conversion (where Derived and Base are class types) is
1268/// well-formed, meaning that the conversion is unambiguous (and
1269/// that all of the base classes are accessible). Returns true
1270/// and emits a diagnostic if the code is ill-formed, returns false
1271/// otherwise. Loc is the location where this routine should point to
1272/// if there is an error, and Range is the source range to highlight
1273/// if there is an error.
1274bool
1275Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1276                                   unsigned InaccessibleBaseID,
1277                                   unsigned AmbigiousBaseConvID,
1278                                   SourceLocation Loc, SourceRange Range,
1279                                   DeclarationName Name,
1280                                   CXXCastPath *BasePath) {
1281  // First, determine whether the path from Derived to Base is
1282  // ambiguous. This is slightly more expensive than checking whether
1283  // the Derived to Base conversion exists, because here we need to
1284  // explore multiple paths to determine if there is an ambiguity.
1285  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1286                     /*DetectVirtual=*/false);
1287  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1288  assert(DerivationOkay &&
1289         "Can only be used with a derived-to-base conversion");
1290  (void)DerivationOkay;
1291
1292  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1293    if (InaccessibleBaseID) {
1294      // Check that the base class can be accessed.
1295      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1296                                   InaccessibleBaseID)) {
1297        case AR_inaccessible:
1298          return true;
1299        case AR_accessible:
1300        case AR_dependent:
1301        case AR_delayed:
1302          break;
1303      }
1304    }
1305
1306    // Build a base path if necessary.
1307    if (BasePath)
1308      BuildBasePathArray(Paths, *BasePath);
1309    return false;
1310  }
1311
1312  // We know that the derived-to-base conversion is ambiguous, and
1313  // we're going to produce a diagnostic. Perform the derived-to-base
1314  // search just one more time to compute all of the possible paths so
1315  // that we can print them out. This is more expensive than any of
1316  // the previous derived-to-base checks we've done, but at this point
1317  // performance isn't as much of an issue.
1318  Paths.clear();
1319  Paths.setRecordingPaths(true);
1320  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1321  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1322  (void)StillOkay;
1323
1324  // Build up a textual representation of the ambiguous paths, e.g.,
1325  // D -> B -> A, that will be used to illustrate the ambiguous
1326  // conversions in the diagnostic. We only print one of the paths
1327  // to each base class subobject.
1328  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1329
1330  Diag(Loc, AmbigiousBaseConvID)
1331  << Derived << Base << PathDisplayStr << Range << Name;
1332  return true;
1333}
1334
1335bool
1336Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1337                                   SourceLocation Loc, SourceRange Range,
1338                                   CXXCastPath *BasePath,
1339                                   bool IgnoreAccess) {
1340  return CheckDerivedToBaseConversion(Derived, Base,
1341                                      IgnoreAccess ? 0
1342                                       : diag::err_upcast_to_inaccessible_base,
1343                                      diag::err_ambiguous_derived_to_base_conv,
1344                                      Loc, Range, DeclarationName(),
1345                                      BasePath);
1346}
1347
1348
1349/// @brief Builds a string representing ambiguous paths from a
1350/// specific derived class to different subobjects of the same base
1351/// class.
1352///
1353/// This function builds a string that can be used in error messages
1354/// to show the different paths that one can take through the
1355/// inheritance hierarchy to go from the derived class to different
1356/// subobjects of a base class. The result looks something like this:
1357/// @code
1358/// struct D -> struct B -> struct A
1359/// struct D -> struct C -> struct A
1360/// @endcode
1361std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1362  std::string PathDisplayStr;
1363  std::set<unsigned> DisplayedPaths;
1364  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1365       Path != Paths.end(); ++Path) {
1366    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1367      // We haven't displayed a path to this particular base
1368      // class subobject yet.
1369      PathDisplayStr += "\n    ";
1370      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1371      for (CXXBasePath::const_iterator Element = Path->begin();
1372           Element != Path->end(); ++Element)
1373        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1374    }
1375  }
1376
1377  return PathDisplayStr;
1378}
1379
1380//===----------------------------------------------------------------------===//
1381// C++ class member Handling
1382//===----------------------------------------------------------------------===//
1383
1384/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1385bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1386                                SourceLocation ASLoc,
1387                                SourceLocation ColonLoc,
1388                                AttributeList *Attrs) {
1389  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1390  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1391                                                  ASLoc, ColonLoc);
1392  CurContext->addHiddenDecl(ASDecl);
1393  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1394}
1395
1396/// CheckOverrideControl - Check C++0x override control semantics.
1397void Sema::CheckOverrideControl(const Decl *D) {
1398  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1399  if (!MD || !MD->isVirtual())
1400    return;
1401
1402  if (MD->isDependentContext())
1403    return;
1404
1405  // C++0x [class.virtual]p3:
1406  //   If a virtual function is marked with the virt-specifier override and does
1407  //   not override a member function of a base class,
1408  //   the program is ill-formed.
1409  bool HasOverriddenMethods =
1410    MD->begin_overridden_methods() != MD->end_overridden_methods();
1411  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1412    Diag(MD->getLocation(),
1413                 diag::err_function_marked_override_not_overriding)
1414      << MD->getDeclName();
1415    return;
1416  }
1417}
1418
1419/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1420/// function overrides a virtual member function marked 'final', according to
1421/// C++0x [class.virtual]p3.
1422bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1423                                                  const CXXMethodDecl *Old) {
1424  if (!Old->hasAttr<FinalAttr>())
1425    return false;
1426
1427  Diag(New->getLocation(), diag::err_final_function_overridden)
1428    << New->getDeclName();
1429  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1430  return true;
1431}
1432
1433/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1434/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1435/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1436/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1437/// present but parsing it has been deferred.
1438Decl *
1439Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1440                               MultiTemplateParamsArg TemplateParameterLists,
1441                               Expr *BW, const VirtSpecifiers &VS,
1442                               bool HasDeferredInit) {
1443  const DeclSpec &DS = D.getDeclSpec();
1444  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1445  DeclarationName Name = NameInfo.getName();
1446  SourceLocation Loc = NameInfo.getLoc();
1447
1448  // For anonymous bitfields, the location should point to the type.
1449  if (Loc.isInvalid())
1450    Loc = D.getSourceRange().getBegin();
1451
1452  Expr *BitWidth = static_cast<Expr*>(BW);
1453
1454  assert(isa<CXXRecordDecl>(CurContext));
1455  assert(!DS.isFriendSpecified());
1456
1457  bool isFunc = D.isDeclarationOfFunction();
1458
1459  // C++ 9.2p6: A member shall not be declared to have automatic storage
1460  // duration (auto, register) or with the extern storage-class-specifier.
1461  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1462  // data members and cannot be applied to names declared const or static,
1463  // and cannot be applied to reference members.
1464  switch (DS.getStorageClassSpec()) {
1465    case DeclSpec::SCS_unspecified:
1466    case DeclSpec::SCS_typedef:
1467    case DeclSpec::SCS_static:
1468      // FALL THROUGH.
1469      break;
1470    case DeclSpec::SCS_mutable:
1471      if (isFunc) {
1472        if (DS.getStorageClassSpecLoc().isValid())
1473          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1474        else
1475          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1476
1477        // FIXME: It would be nicer if the keyword was ignored only for this
1478        // declarator. Otherwise we could get follow-up errors.
1479        D.getMutableDeclSpec().ClearStorageClassSpecs();
1480      }
1481      break;
1482    default:
1483      if (DS.getStorageClassSpecLoc().isValid())
1484        Diag(DS.getStorageClassSpecLoc(),
1485             diag::err_storageclass_invalid_for_member);
1486      else
1487        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1488      D.getMutableDeclSpec().ClearStorageClassSpecs();
1489  }
1490
1491  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1492                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1493                      !isFunc);
1494
1495  Decl *Member;
1496  if (isInstField) {
1497    CXXScopeSpec &SS = D.getCXXScopeSpec();
1498
1499    // Data members must have identifiers for names.
1500    if (Name.getNameKind() != DeclarationName::Identifier) {
1501      Diag(Loc, diag::err_bad_variable_name)
1502        << Name;
1503      return 0;
1504    }
1505
1506    IdentifierInfo *II = Name.getAsIdentifierInfo();
1507
1508    // Member field could not be with "template" keyword.
1509    // So TemplateParameterLists should be empty in this case.
1510    if (TemplateParameterLists.size()) {
1511      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1512      if (TemplateParams->size()) {
1513        // There is no such thing as a member field template.
1514        Diag(D.getIdentifierLoc(), diag::err_template_member)
1515            << II
1516            << SourceRange(TemplateParams->getTemplateLoc(),
1517                TemplateParams->getRAngleLoc());
1518      } else {
1519        // There is an extraneous 'template<>' for this member.
1520        Diag(TemplateParams->getTemplateLoc(),
1521            diag::err_template_member_noparams)
1522            << II
1523            << SourceRange(TemplateParams->getTemplateLoc(),
1524                TemplateParams->getRAngleLoc());
1525      }
1526      return 0;
1527    }
1528
1529    if (SS.isSet() && !SS.isInvalid()) {
1530      // The user provided a superfluous scope specifier inside a class
1531      // definition:
1532      //
1533      // class X {
1534      //   int X::member;
1535      // };
1536      DeclContext *DC = 0;
1537      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1538        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1539          << Name << FixItHint::CreateRemoval(SS.getRange());
1540      else
1541        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1542          << Name << SS.getRange();
1543
1544      SS.clear();
1545    }
1546
1547    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1548                         HasDeferredInit, AS);
1549    assert(Member && "HandleField never returns null");
1550  } else {
1551    assert(!HasDeferredInit);
1552
1553    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1554    if (!Member) {
1555      return 0;
1556    }
1557
1558    // Non-instance-fields can't have a bitfield.
1559    if (BitWidth) {
1560      if (Member->isInvalidDecl()) {
1561        // don't emit another diagnostic.
1562      } else if (isa<VarDecl>(Member)) {
1563        // C++ 9.6p3: A bit-field shall not be a static member.
1564        // "static member 'A' cannot be a bit-field"
1565        Diag(Loc, diag::err_static_not_bitfield)
1566          << Name << BitWidth->getSourceRange();
1567      } else if (isa<TypedefDecl>(Member)) {
1568        // "typedef member 'x' cannot be a bit-field"
1569        Diag(Loc, diag::err_typedef_not_bitfield)
1570          << Name << BitWidth->getSourceRange();
1571      } else {
1572        // A function typedef ("typedef int f(); f a;").
1573        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1574        Diag(Loc, diag::err_not_integral_type_bitfield)
1575          << Name << cast<ValueDecl>(Member)->getType()
1576          << BitWidth->getSourceRange();
1577      }
1578
1579      BitWidth = 0;
1580      Member->setInvalidDecl();
1581    }
1582
1583    Member->setAccess(AS);
1584
1585    // If we have declared a member function template, set the access of the
1586    // templated declaration as well.
1587    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1588      FunTmpl->getTemplatedDecl()->setAccess(AS);
1589  }
1590
1591  if (VS.isOverrideSpecified()) {
1592    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1593    if (!MD || !MD->isVirtual()) {
1594      Diag(Member->getLocStart(),
1595           diag::override_keyword_only_allowed_on_virtual_member_functions)
1596        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1597    } else
1598      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1599  }
1600  if (VS.isFinalSpecified()) {
1601    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1602    if (!MD || !MD->isVirtual()) {
1603      Diag(Member->getLocStart(),
1604           diag::override_keyword_only_allowed_on_virtual_member_functions)
1605      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1606    } else
1607      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1608  }
1609
1610  if (VS.getLastLocation().isValid()) {
1611    // Update the end location of a method that has a virt-specifiers.
1612    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1613      MD->setRangeEnd(VS.getLastLocation());
1614  }
1615
1616  CheckOverrideControl(Member);
1617
1618  assert((Name || isInstField) && "No identifier for non-field ?");
1619
1620  if (isInstField)
1621    FieldCollector->Add(cast<FieldDecl>(Member));
1622  return Member;
1623}
1624
1625/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1626/// in-class initializer for a non-static C++ class member, and after
1627/// instantiating an in-class initializer in a class template. Such actions
1628/// are deferred until the class is complete.
1629void
1630Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1631                                       Expr *InitExpr) {
1632  FieldDecl *FD = cast<FieldDecl>(D);
1633
1634  if (!InitExpr) {
1635    FD->setInvalidDecl();
1636    FD->removeInClassInitializer();
1637    return;
1638  }
1639
1640  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1641    FD->setInvalidDecl();
1642    FD->removeInClassInitializer();
1643    return;
1644  }
1645
1646  ExprResult Init = InitExpr;
1647  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1648    // FIXME: if there is no EqualLoc, this is list-initialization.
1649    Init = PerformCopyInitialization(
1650      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1651    if (Init.isInvalid()) {
1652      FD->setInvalidDecl();
1653      return;
1654    }
1655
1656    CheckImplicitConversions(Init.get(), EqualLoc);
1657  }
1658
1659  // C++0x [class.base.init]p7:
1660  //   The initialization of each base and member constitutes a
1661  //   full-expression.
1662  Init = MaybeCreateExprWithCleanups(Init);
1663  if (Init.isInvalid()) {
1664    FD->setInvalidDecl();
1665    return;
1666  }
1667
1668  InitExpr = Init.release();
1669
1670  FD->setInClassInitializer(InitExpr);
1671}
1672
1673/// \brief Find the direct and/or virtual base specifiers that
1674/// correspond to the given base type, for use in base initialization
1675/// within a constructor.
1676static bool FindBaseInitializer(Sema &SemaRef,
1677                                CXXRecordDecl *ClassDecl,
1678                                QualType BaseType,
1679                                const CXXBaseSpecifier *&DirectBaseSpec,
1680                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1681  // First, check for a direct base class.
1682  DirectBaseSpec = 0;
1683  for (CXXRecordDecl::base_class_const_iterator Base
1684         = ClassDecl->bases_begin();
1685       Base != ClassDecl->bases_end(); ++Base) {
1686    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1687      // We found a direct base of this type. That's what we're
1688      // initializing.
1689      DirectBaseSpec = &*Base;
1690      break;
1691    }
1692  }
1693
1694  // Check for a virtual base class.
1695  // FIXME: We might be able to short-circuit this if we know in advance that
1696  // there are no virtual bases.
1697  VirtualBaseSpec = 0;
1698  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1699    // We haven't found a base yet; search the class hierarchy for a
1700    // virtual base class.
1701    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1702                       /*DetectVirtual=*/false);
1703    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1704                              BaseType, Paths)) {
1705      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1706           Path != Paths.end(); ++Path) {
1707        if (Path->back().Base->isVirtual()) {
1708          VirtualBaseSpec = Path->back().Base;
1709          break;
1710        }
1711      }
1712    }
1713  }
1714
1715  return DirectBaseSpec || VirtualBaseSpec;
1716}
1717
1718/// \brief Handle a C++ member initializer using braced-init-list syntax.
1719MemInitResult
1720Sema::ActOnMemInitializer(Decl *ConstructorD,
1721                          Scope *S,
1722                          CXXScopeSpec &SS,
1723                          IdentifierInfo *MemberOrBase,
1724                          ParsedType TemplateTypeTy,
1725                          SourceLocation IdLoc,
1726                          Expr *InitList,
1727                          SourceLocation EllipsisLoc) {
1728  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1729                             IdLoc, MultiInitializer(InitList), EllipsisLoc);
1730}
1731
1732/// \brief Handle a C++ member initializer using parentheses syntax.
1733MemInitResult
1734Sema::ActOnMemInitializer(Decl *ConstructorD,
1735                          Scope *S,
1736                          CXXScopeSpec &SS,
1737                          IdentifierInfo *MemberOrBase,
1738                          ParsedType TemplateTypeTy,
1739                          SourceLocation IdLoc,
1740                          SourceLocation LParenLoc,
1741                          Expr **Args, unsigned NumArgs,
1742                          SourceLocation RParenLoc,
1743                          SourceLocation EllipsisLoc) {
1744  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1745                             IdLoc, MultiInitializer(LParenLoc, Args, NumArgs,
1746                                                     RParenLoc),
1747                             EllipsisLoc);
1748}
1749
1750namespace {
1751
1752// Callback to only accept typo corrections that can be a valid C++ member
1753// intializer: either a non-static field member or a base class.
1754class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1755 public:
1756  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1757      : ClassDecl(ClassDecl) {}
1758
1759  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1760    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1761      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1762        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1763      else
1764        return isa<TypeDecl>(ND);
1765    }
1766    return false;
1767  }
1768
1769 private:
1770  CXXRecordDecl *ClassDecl;
1771};
1772
1773}
1774
1775/// \brief Handle a C++ member initializer.
1776MemInitResult
1777Sema::BuildMemInitializer(Decl *ConstructorD,
1778                          Scope *S,
1779                          CXXScopeSpec &SS,
1780                          IdentifierInfo *MemberOrBase,
1781                          ParsedType TemplateTypeTy,
1782                          SourceLocation IdLoc,
1783                          const MultiInitializer &Args,
1784                          SourceLocation EllipsisLoc) {
1785  if (!ConstructorD)
1786    return true;
1787
1788  AdjustDeclIfTemplate(ConstructorD);
1789
1790  CXXConstructorDecl *Constructor
1791    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1792  if (!Constructor) {
1793    // The user wrote a constructor initializer on a function that is
1794    // not a C++ constructor. Ignore the error for now, because we may
1795    // have more member initializers coming; we'll diagnose it just
1796    // once in ActOnMemInitializers.
1797    return true;
1798  }
1799
1800  CXXRecordDecl *ClassDecl = Constructor->getParent();
1801
1802  // C++ [class.base.init]p2:
1803  //   Names in a mem-initializer-id are looked up in the scope of the
1804  //   constructor's class and, if not found in that scope, are looked
1805  //   up in the scope containing the constructor's definition.
1806  //   [Note: if the constructor's class contains a member with the
1807  //   same name as a direct or virtual base class of the class, a
1808  //   mem-initializer-id naming the member or base class and composed
1809  //   of a single identifier refers to the class member. A
1810  //   mem-initializer-id for the hidden base class may be specified
1811  //   using a qualified name. ]
1812  if (!SS.getScopeRep() && !TemplateTypeTy) {
1813    // Look for a member, first.
1814    DeclContext::lookup_result Result
1815      = ClassDecl->lookup(MemberOrBase);
1816    if (Result.first != Result.second) {
1817      ValueDecl *Member;
1818      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1819          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1820        if (EllipsisLoc.isValid())
1821          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1822            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1823
1824        return BuildMemberInitializer(Member, Args, IdLoc);
1825      }
1826    }
1827  }
1828  // It didn't name a member, so see if it names a class.
1829  QualType BaseType;
1830  TypeSourceInfo *TInfo = 0;
1831
1832  if (TemplateTypeTy) {
1833    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1834  } else {
1835    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1836    LookupParsedName(R, S, &SS);
1837
1838    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1839    if (!TyD) {
1840      if (R.isAmbiguous()) return true;
1841
1842      // We don't want access-control diagnostics here.
1843      R.suppressDiagnostics();
1844
1845      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1846        bool NotUnknownSpecialization = false;
1847        DeclContext *DC = computeDeclContext(SS, false);
1848        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1849          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1850
1851        if (!NotUnknownSpecialization) {
1852          // When the scope specifier can refer to a member of an unknown
1853          // specialization, we take it as a type name.
1854          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1855                                       SS.getWithLocInContext(Context),
1856                                       *MemberOrBase, IdLoc);
1857          if (BaseType.isNull())
1858            return true;
1859
1860          R.clear();
1861          R.setLookupName(MemberOrBase);
1862        }
1863      }
1864
1865      // If no results were found, try to correct typos.
1866      TypoCorrection Corr;
1867      MemInitializerValidatorCCC Validator(ClassDecl);
1868      if (R.empty() && BaseType.isNull() &&
1869          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1870                              &Validator, ClassDecl))) {
1871        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1872        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1873        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1874          // We have found a non-static data member with a similar
1875          // name to what was typed; complain and initialize that
1876          // member.
1877          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1878            << MemberOrBase << true << CorrectedQuotedStr
1879            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1880          Diag(Member->getLocation(), diag::note_previous_decl)
1881            << CorrectedQuotedStr;
1882
1883          return BuildMemberInitializer(Member, Args, IdLoc);
1884        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1885          const CXXBaseSpecifier *DirectBaseSpec;
1886          const CXXBaseSpecifier *VirtualBaseSpec;
1887          if (FindBaseInitializer(*this, ClassDecl,
1888                                  Context.getTypeDeclType(Type),
1889                                  DirectBaseSpec, VirtualBaseSpec)) {
1890            // We have found a direct or virtual base class with a
1891            // similar name to what was typed; complain and initialize
1892            // that base class.
1893            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1894              << MemberOrBase << false << CorrectedQuotedStr
1895              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1896
1897            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1898                                                             : VirtualBaseSpec;
1899            Diag(BaseSpec->getSourceRange().getBegin(),
1900                 diag::note_base_class_specified_here)
1901              << BaseSpec->getType()
1902              << BaseSpec->getSourceRange();
1903
1904            TyD = Type;
1905          }
1906        }
1907      }
1908
1909      if (!TyD && BaseType.isNull()) {
1910        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1911          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1912        return true;
1913      }
1914    }
1915
1916    if (BaseType.isNull()) {
1917      BaseType = Context.getTypeDeclType(TyD);
1918      if (SS.isSet()) {
1919        NestedNameSpecifier *Qualifier =
1920          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1921
1922        // FIXME: preserve source range information
1923        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1924      }
1925    }
1926  }
1927
1928  if (!TInfo)
1929    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1930
1931  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1932}
1933
1934/// Checks a member initializer expression for cases where reference (or
1935/// pointer) members are bound to by-value parameters (or their addresses).
1936static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1937                                               Expr *Init,
1938                                               SourceLocation IdLoc) {
1939  QualType MemberTy = Member->getType();
1940
1941  // We only handle pointers and references currently.
1942  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1943  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1944    return;
1945
1946  const bool IsPointer = MemberTy->isPointerType();
1947  if (IsPointer) {
1948    if (const UnaryOperator *Op
1949          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1950      // The only case we're worried about with pointers requires taking the
1951      // address.
1952      if (Op->getOpcode() != UO_AddrOf)
1953        return;
1954
1955      Init = Op->getSubExpr();
1956    } else {
1957      // We only handle address-of expression initializers for pointers.
1958      return;
1959    }
1960  }
1961
1962  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1963    // Taking the address of a temporary will be diagnosed as a hard error.
1964    if (IsPointer)
1965      return;
1966
1967    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1968      << Member << Init->getSourceRange();
1969  } else if (const DeclRefExpr *DRE
1970               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1971    // We only warn when referring to a non-reference parameter declaration.
1972    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1973    if (!Parameter || Parameter->getType()->isReferenceType())
1974      return;
1975
1976    S.Diag(Init->getExprLoc(),
1977           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1978                     : diag::warn_bind_ref_member_to_parameter)
1979      << Member << Parameter << Init->getSourceRange();
1980  } else {
1981    // Other initializers are fine.
1982    return;
1983  }
1984
1985  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1986    << (unsigned)IsPointer;
1987}
1988
1989/// Checks an initializer expression for use of uninitialized fields, such as
1990/// containing the field that is being initialized. Returns true if there is an
1991/// uninitialized field was used an updates the SourceLocation parameter; false
1992/// otherwise.
1993static bool InitExprContainsUninitializedFields(const Stmt *S,
1994                                                const ValueDecl *LhsField,
1995                                                SourceLocation *L) {
1996  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1997
1998  if (isa<CallExpr>(S)) {
1999    // Do not descend into function calls or constructors, as the use
2000    // of an uninitialized field may be valid. One would have to inspect
2001    // the contents of the function/ctor to determine if it is safe or not.
2002    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2003    // may be safe, depending on what the function/ctor does.
2004    return false;
2005  }
2006  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2007    const NamedDecl *RhsField = ME->getMemberDecl();
2008
2009    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2010      // The member expression points to a static data member.
2011      assert(VD->isStaticDataMember() &&
2012             "Member points to non-static data member!");
2013      (void)VD;
2014      return false;
2015    }
2016
2017    if (isa<EnumConstantDecl>(RhsField)) {
2018      // The member expression points to an enum.
2019      return false;
2020    }
2021
2022    if (RhsField == LhsField) {
2023      // Initializing a field with itself. Throw a warning.
2024      // But wait; there are exceptions!
2025      // Exception #1:  The field may not belong to this record.
2026      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2027      const Expr *base = ME->getBase();
2028      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2029        // Even though the field matches, it does not belong to this record.
2030        return false;
2031      }
2032      // None of the exceptions triggered; return true to indicate an
2033      // uninitialized field was used.
2034      *L = ME->getMemberLoc();
2035      return true;
2036    }
2037  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2038    // sizeof/alignof doesn't reference contents, do not warn.
2039    return false;
2040  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2041    // address-of doesn't reference contents (the pointer may be dereferenced
2042    // in the same expression but it would be rare; and weird).
2043    if (UOE->getOpcode() == UO_AddrOf)
2044      return false;
2045  }
2046  for (Stmt::const_child_range it = S->children(); it; ++it) {
2047    if (!*it) {
2048      // An expression such as 'member(arg ?: "")' may trigger this.
2049      continue;
2050    }
2051    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2052      return true;
2053  }
2054  return false;
2055}
2056
2057MemInitResult
2058Sema::BuildMemberInitializer(ValueDecl *Member,
2059                             const MultiInitializer &Args,
2060                             SourceLocation IdLoc) {
2061  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2062  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2063  assert((DirectMember || IndirectMember) &&
2064         "Member must be a FieldDecl or IndirectFieldDecl");
2065
2066  if (Args.DiagnoseUnexpandedParameterPack(*this))
2067    return true;
2068
2069  if (Member->isInvalidDecl())
2070    return true;
2071
2072  // Diagnose value-uses of fields to initialize themselves, e.g.
2073  //   foo(foo)
2074  // where foo is not also a parameter to the constructor.
2075  // TODO: implement -Wuninitialized and fold this into that framework.
2076  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2077       I != E; ++I) {
2078    SourceLocation L;
2079    Expr *Arg = *I;
2080    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2081      Arg = DIE->getInit();
2082    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2083      // FIXME: Return true in the case when other fields are used before being
2084      // uninitialized. For example, let this field be the i'th field. When
2085      // initializing the i'th field, throw a warning if any of the >= i'th
2086      // fields are used, as they are not yet initialized.
2087      // Right now we are only handling the case where the i'th field uses
2088      // itself in its initializer.
2089      Diag(L, diag::warn_field_is_uninit);
2090    }
2091  }
2092
2093  bool HasDependentArg = Args.isTypeDependent();
2094
2095  Expr *Init;
2096  if (Member->getType()->isDependentType() || HasDependentArg) {
2097    // Can't check initialization for a member of dependent type or when
2098    // any of the arguments are type-dependent expressions.
2099    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2100
2101    DiscardCleanupsInEvaluationContext();
2102  } else {
2103    // Initialize the member.
2104    InitializedEntity MemberEntity =
2105      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2106                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2107    InitializationKind Kind =
2108      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2109                                       Args.getEndLoc());
2110
2111    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2112    if (MemberInit.isInvalid())
2113      return true;
2114
2115    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2116
2117    // C++0x [class.base.init]p7:
2118    //   The initialization of each base and member constitutes a
2119    //   full-expression.
2120    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2121    if (MemberInit.isInvalid())
2122      return true;
2123
2124    // If we are in a dependent context, template instantiation will
2125    // perform this type-checking again. Just save the arguments that we
2126    // received in a ParenListExpr.
2127    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2128    // of the information that we have about the member
2129    // initializer. However, deconstructing the ASTs is a dicey process,
2130    // and this approach is far more likely to get the corner cases right.
2131    if (CurContext->isDependentContext()) {
2132      Init = Args.CreateInitExpr(Context,
2133                                 Member->getType().getNonReferenceType());
2134    } else {
2135      Init = MemberInit.get();
2136      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2137    }
2138  }
2139
2140  if (DirectMember) {
2141    return new (Context) CXXCtorInitializer(Context, DirectMember,
2142                                                    IdLoc, Args.getStartLoc(),
2143                                                    Init, Args.getEndLoc());
2144  } else {
2145    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2146                                                    IdLoc, Args.getStartLoc(),
2147                                                    Init, Args.getEndLoc());
2148  }
2149}
2150
2151MemInitResult
2152Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2153                                 const MultiInitializer &Args,
2154                                 CXXRecordDecl *ClassDecl) {
2155  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2156  if (!LangOpts.CPlusPlus0x)
2157    return Diag(NameLoc, diag::err_delegating_ctor)
2158      << TInfo->getTypeLoc().getLocalSourceRange();
2159  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2160
2161  // Initialize the object.
2162  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2163                                     QualType(ClassDecl->getTypeForDecl(), 0));
2164  InitializationKind Kind =
2165    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2166                                     Args.getEndLoc());
2167
2168  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2169  if (DelegationInit.isInvalid())
2170    return true;
2171
2172  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2173         "Delegating constructor with no target?");
2174
2175  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2176
2177  // C++0x [class.base.init]p7:
2178  //   The initialization of each base and member constitutes a
2179  //   full-expression.
2180  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2181  if (DelegationInit.isInvalid())
2182    return true;
2183
2184  return new (Context) CXXCtorInitializer(Context, TInfo, Args.getStartLoc(),
2185                                          DelegationInit.takeAs<Expr>(),
2186                                          Args.getEndLoc());
2187}
2188
2189MemInitResult
2190Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2191                           const MultiInitializer &Args,
2192                           CXXRecordDecl *ClassDecl,
2193                           SourceLocation EllipsisLoc) {
2194  bool HasDependentArg = Args.isTypeDependent();
2195
2196  SourceLocation BaseLoc
2197    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2198
2199  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2200    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2201             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2202
2203  // C++ [class.base.init]p2:
2204  //   [...] Unless the mem-initializer-id names a nonstatic data
2205  //   member of the constructor's class or a direct or virtual base
2206  //   of that class, the mem-initializer is ill-formed. A
2207  //   mem-initializer-list can initialize a base class using any
2208  //   name that denotes that base class type.
2209  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2210
2211  if (EllipsisLoc.isValid()) {
2212    // This is a pack expansion.
2213    if (!BaseType->containsUnexpandedParameterPack())  {
2214      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2215        << SourceRange(BaseLoc, Args.getEndLoc());
2216
2217      EllipsisLoc = SourceLocation();
2218    }
2219  } else {
2220    // Check for any unexpanded parameter packs.
2221    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2222      return true;
2223
2224    if (Args.DiagnoseUnexpandedParameterPack(*this))
2225      return true;
2226  }
2227
2228  // Check for direct and virtual base classes.
2229  const CXXBaseSpecifier *DirectBaseSpec = 0;
2230  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2231  if (!Dependent) {
2232    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2233                                       BaseType))
2234      return BuildDelegatingInitializer(BaseTInfo, Args, ClassDecl);
2235
2236    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2237                        VirtualBaseSpec);
2238
2239    // C++ [base.class.init]p2:
2240    // Unless the mem-initializer-id names a nonstatic data member of the
2241    // constructor's class or a direct or virtual base of that class, the
2242    // mem-initializer is ill-formed.
2243    if (!DirectBaseSpec && !VirtualBaseSpec) {
2244      // If the class has any dependent bases, then it's possible that
2245      // one of those types will resolve to the same type as
2246      // BaseType. Therefore, just treat this as a dependent base
2247      // class initialization.  FIXME: Should we try to check the
2248      // initialization anyway? It seems odd.
2249      if (ClassDecl->hasAnyDependentBases())
2250        Dependent = true;
2251      else
2252        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2253          << BaseType << Context.getTypeDeclType(ClassDecl)
2254          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2255    }
2256  }
2257
2258  if (Dependent) {
2259    // Can't check initialization for a base of dependent type or when
2260    // any of the arguments are type-dependent expressions.
2261    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2262
2263    DiscardCleanupsInEvaluationContext();
2264
2265    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2266                                            /*IsVirtual=*/false,
2267                                            Args.getStartLoc(), BaseInit,
2268                                            Args.getEndLoc(), EllipsisLoc);
2269  }
2270
2271  // C++ [base.class.init]p2:
2272  //   If a mem-initializer-id is ambiguous because it designates both
2273  //   a direct non-virtual base class and an inherited virtual base
2274  //   class, the mem-initializer is ill-formed.
2275  if (DirectBaseSpec && VirtualBaseSpec)
2276    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2277      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2278
2279  CXXBaseSpecifier *BaseSpec
2280    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2281  if (!BaseSpec)
2282    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2283
2284  // Initialize the base.
2285  InitializedEntity BaseEntity =
2286    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2287  InitializationKind Kind =
2288    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2289                                     Args.getEndLoc());
2290
2291  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2292  if (BaseInit.isInvalid())
2293    return true;
2294
2295  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2296
2297  // C++0x [class.base.init]p7:
2298  //   The initialization of each base and member constitutes a
2299  //   full-expression.
2300  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2301  if (BaseInit.isInvalid())
2302    return true;
2303
2304  // If we are in a dependent context, template instantiation will
2305  // perform this type-checking again. Just save the arguments that we
2306  // received in a ParenListExpr.
2307  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2308  // of the information that we have about the base
2309  // initializer. However, deconstructing the ASTs is a dicey process,
2310  // and this approach is far more likely to get the corner cases right.
2311  if (CurContext->isDependentContext())
2312    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2313
2314  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2315                                          BaseSpec->isVirtual(),
2316                                          Args.getStartLoc(),
2317                                          BaseInit.takeAs<Expr>(),
2318                                          Args.getEndLoc(), EllipsisLoc);
2319}
2320
2321// Create a static_cast\<T&&>(expr).
2322static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2323  QualType ExprType = E->getType();
2324  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2325  SourceLocation ExprLoc = E->getLocStart();
2326  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2327      TargetType, ExprLoc);
2328
2329  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2330                                   SourceRange(ExprLoc, ExprLoc),
2331                                   E->getSourceRange()).take();
2332}
2333
2334/// ImplicitInitializerKind - How an implicit base or member initializer should
2335/// initialize its base or member.
2336enum ImplicitInitializerKind {
2337  IIK_Default,
2338  IIK_Copy,
2339  IIK_Move
2340};
2341
2342static bool
2343BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2344                             ImplicitInitializerKind ImplicitInitKind,
2345                             CXXBaseSpecifier *BaseSpec,
2346                             bool IsInheritedVirtualBase,
2347                             CXXCtorInitializer *&CXXBaseInit) {
2348  InitializedEntity InitEntity
2349    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2350                                        IsInheritedVirtualBase);
2351
2352  ExprResult BaseInit;
2353
2354  switch (ImplicitInitKind) {
2355  case IIK_Default: {
2356    InitializationKind InitKind
2357      = InitializationKind::CreateDefault(Constructor->getLocation());
2358    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2359    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2360                               MultiExprArg(SemaRef, 0, 0));
2361    break;
2362  }
2363
2364  case IIK_Move:
2365  case IIK_Copy: {
2366    bool Moving = ImplicitInitKind == IIK_Move;
2367    ParmVarDecl *Param = Constructor->getParamDecl(0);
2368    QualType ParamType = Param->getType().getNonReferenceType();
2369
2370    SemaRef.MarkDeclarationReferenced(Constructor->getLocation(), Param);
2371
2372    Expr *CopyCtorArg =
2373      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2374                          Constructor->getLocation(), ParamType,
2375                          VK_LValue, 0);
2376
2377    // Cast to the base class to avoid ambiguities.
2378    QualType ArgTy =
2379      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2380                                       ParamType.getQualifiers());
2381
2382    if (Moving) {
2383      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2384    }
2385
2386    CXXCastPath BasePath;
2387    BasePath.push_back(BaseSpec);
2388    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2389                                            CK_UncheckedDerivedToBase,
2390                                            Moving ? VK_XValue : VK_LValue,
2391                                            &BasePath).take();
2392
2393    InitializationKind InitKind
2394      = InitializationKind::CreateDirect(Constructor->getLocation(),
2395                                         SourceLocation(), SourceLocation());
2396    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2397                                   &CopyCtorArg, 1);
2398    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2399                               MultiExprArg(&CopyCtorArg, 1));
2400    break;
2401  }
2402  }
2403
2404  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2405  if (BaseInit.isInvalid())
2406    return true;
2407
2408  CXXBaseInit =
2409    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2410               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2411                                                        SourceLocation()),
2412                                             BaseSpec->isVirtual(),
2413                                             SourceLocation(),
2414                                             BaseInit.takeAs<Expr>(),
2415                                             SourceLocation(),
2416                                             SourceLocation());
2417
2418  return false;
2419}
2420
2421static bool RefersToRValueRef(Expr *MemRef) {
2422  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2423  return Referenced->getType()->isRValueReferenceType();
2424}
2425
2426static bool
2427BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2428                               ImplicitInitializerKind ImplicitInitKind,
2429                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2430                               CXXCtorInitializer *&CXXMemberInit) {
2431  if (Field->isInvalidDecl())
2432    return true;
2433
2434  SourceLocation Loc = Constructor->getLocation();
2435
2436  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2437    bool Moving = ImplicitInitKind == IIK_Move;
2438    ParmVarDecl *Param = Constructor->getParamDecl(0);
2439    QualType ParamType = Param->getType().getNonReferenceType();
2440
2441    SemaRef.MarkDeclarationReferenced(Constructor->getLocation(), Param);
2442
2443    // Suppress copying zero-width bitfields.
2444    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2445      return false;
2446
2447    Expr *MemberExprBase =
2448      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2449                          Loc, ParamType, VK_LValue, 0);
2450
2451    if (Moving) {
2452      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2453    }
2454
2455    // Build a reference to this field within the parameter.
2456    CXXScopeSpec SS;
2457    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2458                              Sema::LookupMemberName);
2459    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2460                                  : cast<ValueDecl>(Field), AS_public);
2461    MemberLookup.resolveKind();
2462    ExprResult CtorArg
2463      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2464                                         ParamType, Loc,
2465                                         /*IsArrow=*/false,
2466                                         SS,
2467                                         /*FirstQualifierInScope=*/0,
2468                                         MemberLookup,
2469                                         /*TemplateArgs=*/0);
2470    if (CtorArg.isInvalid())
2471      return true;
2472
2473    // C++11 [class.copy]p15:
2474    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2475    //     with static_cast<T&&>(x.m);
2476    if (RefersToRValueRef(CtorArg.get())) {
2477      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2478    }
2479
2480    // When the field we are copying is an array, create index variables for
2481    // each dimension of the array. We use these index variables to subscript
2482    // the source array, and other clients (e.g., CodeGen) will perform the
2483    // necessary iteration with these index variables.
2484    SmallVector<VarDecl *, 4> IndexVariables;
2485    QualType BaseType = Field->getType();
2486    QualType SizeType = SemaRef.Context.getSizeType();
2487    bool InitializingArray = false;
2488    while (const ConstantArrayType *Array
2489                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2490      InitializingArray = true;
2491      // Create the iteration variable for this array index.
2492      IdentifierInfo *IterationVarName = 0;
2493      {
2494        llvm::SmallString<8> Str;
2495        llvm::raw_svector_ostream OS(Str);
2496        OS << "__i" << IndexVariables.size();
2497        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2498      }
2499      VarDecl *IterationVar
2500        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2501                          IterationVarName, SizeType,
2502                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2503                          SC_None, SC_None);
2504      IndexVariables.push_back(IterationVar);
2505
2506      // Create a reference to the iteration variable.
2507      ExprResult IterationVarRef
2508        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2509      assert(!IterationVarRef.isInvalid() &&
2510             "Reference to invented variable cannot fail!");
2511      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2512      assert(!IterationVarRef.isInvalid() &&
2513             "Conversion of invented variable cannot fail!");
2514
2515      // Subscript the array with this iteration variable.
2516      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2517                                                        IterationVarRef.take(),
2518                                                        Loc);
2519      if (CtorArg.isInvalid())
2520        return true;
2521
2522      BaseType = Array->getElementType();
2523    }
2524
2525    // The array subscript expression is an lvalue, which is wrong for moving.
2526    if (Moving && InitializingArray)
2527      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2528
2529    // Construct the entity that we will be initializing. For an array, this
2530    // will be first element in the array, which may require several levels
2531    // of array-subscript entities.
2532    SmallVector<InitializedEntity, 4> Entities;
2533    Entities.reserve(1 + IndexVariables.size());
2534    if (Indirect)
2535      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2536    else
2537      Entities.push_back(InitializedEntity::InitializeMember(Field));
2538    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2539      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2540                                                              0,
2541                                                              Entities.back()));
2542
2543    // Direct-initialize to use the copy constructor.
2544    InitializationKind InitKind =
2545      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2546
2547    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2548    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2549                                   &CtorArgE, 1);
2550
2551    ExprResult MemberInit
2552      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2553                        MultiExprArg(&CtorArgE, 1));
2554    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2555    if (MemberInit.isInvalid())
2556      return true;
2557
2558    if (Indirect) {
2559      assert(IndexVariables.size() == 0 &&
2560             "Indirect field improperly initialized");
2561      CXXMemberInit
2562        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2563                                                   Loc, Loc,
2564                                                   MemberInit.takeAs<Expr>(),
2565                                                   Loc);
2566    } else
2567      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2568                                                 Loc, MemberInit.takeAs<Expr>(),
2569                                                 Loc,
2570                                                 IndexVariables.data(),
2571                                                 IndexVariables.size());
2572    return false;
2573  }
2574
2575  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2576
2577  QualType FieldBaseElementType =
2578    SemaRef.Context.getBaseElementType(Field->getType());
2579
2580  if (FieldBaseElementType->isRecordType()) {
2581    InitializedEntity InitEntity
2582      = Indirect? InitializedEntity::InitializeMember(Indirect)
2583                : InitializedEntity::InitializeMember(Field);
2584    InitializationKind InitKind =
2585      InitializationKind::CreateDefault(Loc);
2586
2587    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2588    ExprResult MemberInit =
2589      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2590
2591    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2592    if (MemberInit.isInvalid())
2593      return true;
2594
2595    if (Indirect)
2596      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2597                                                               Indirect, Loc,
2598                                                               Loc,
2599                                                               MemberInit.get(),
2600                                                               Loc);
2601    else
2602      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2603                                                               Field, Loc, Loc,
2604                                                               MemberInit.get(),
2605                                                               Loc);
2606    return false;
2607  }
2608
2609  if (!Field->getParent()->isUnion()) {
2610    if (FieldBaseElementType->isReferenceType()) {
2611      SemaRef.Diag(Constructor->getLocation(),
2612                   diag::err_uninitialized_member_in_ctor)
2613      << (int)Constructor->isImplicit()
2614      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2615      << 0 << Field->getDeclName();
2616      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2617      return true;
2618    }
2619
2620    if (FieldBaseElementType.isConstQualified()) {
2621      SemaRef.Diag(Constructor->getLocation(),
2622                   diag::err_uninitialized_member_in_ctor)
2623      << (int)Constructor->isImplicit()
2624      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2625      << 1 << Field->getDeclName();
2626      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2627      return true;
2628    }
2629  }
2630
2631  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2632      FieldBaseElementType->isObjCRetainableType() &&
2633      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2634      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2635    // Instant objects:
2636    //   Default-initialize Objective-C pointers to NULL.
2637    CXXMemberInit
2638      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2639                                                 Loc, Loc,
2640                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2641                                                 Loc);
2642    return false;
2643  }
2644
2645  // Nothing to initialize.
2646  CXXMemberInit = 0;
2647  return false;
2648}
2649
2650namespace {
2651struct BaseAndFieldInfo {
2652  Sema &S;
2653  CXXConstructorDecl *Ctor;
2654  bool AnyErrorsInInits;
2655  ImplicitInitializerKind IIK;
2656  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2657  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2658
2659  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2660    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2661    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2662    if (Generated && Ctor->isCopyConstructor())
2663      IIK = IIK_Copy;
2664    else if (Generated && Ctor->isMoveConstructor())
2665      IIK = IIK_Move;
2666    else
2667      IIK = IIK_Default;
2668  }
2669
2670  bool isImplicitCopyOrMove() const {
2671    switch (IIK) {
2672    case IIK_Copy:
2673    case IIK_Move:
2674      return true;
2675
2676    case IIK_Default:
2677      return false;
2678    }
2679
2680    llvm_unreachable("Invalid ImplicitInitializerKind!");
2681  }
2682};
2683}
2684
2685/// \brief Determine whether the given indirect field declaration is somewhere
2686/// within an anonymous union.
2687static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2688  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2689                                      CEnd = F->chain_end();
2690       C != CEnd; ++C)
2691    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2692      if (Record->isUnion())
2693        return true;
2694
2695  return false;
2696}
2697
2698/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2699/// array type.
2700static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2701  if (T->isIncompleteArrayType())
2702    return true;
2703
2704  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2705    if (!ArrayT->getSize())
2706      return true;
2707
2708    T = ArrayT->getElementType();
2709  }
2710
2711  return false;
2712}
2713
2714static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2715                                    FieldDecl *Field,
2716                                    IndirectFieldDecl *Indirect = 0) {
2717
2718  // Overwhelmingly common case: we have a direct initializer for this field.
2719  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2720    Info.AllToInit.push_back(Init);
2721    return false;
2722  }
2723
2724  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2725  // has a brace-or-equal-initializer, the entity is initialized as specified
2726  // in [dcl.init].
2727  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2728    CXXCtorInitializer *Init;
2729    if (Indirect)
2730      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2731                                                      SourceLocation(),
2732                                                      SourceLocation(), 0,
2733                                                      SourceLocation());
2734    else
2735      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2736                                                      SourceLocation(),
2737                                                      SourceLocation(), 0,
2738                                                      SourceLocation());
2739    Info.AllToInit.push_back(Init);
2740    return false;
2741  }
2742
2743  // Don't build an implicit initializer for union members if none was
2744  // explicitly specified.
2745  if (Field->getParent()->isUnion() ||
2746      (Indirect && isWithinAnonymousUnion(Indirect)))
2747    return false;
2748
2749  // Don't initialize incomplete or zero-length arrays.
2750  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2751    return false;
2752
2753  // Don't try to build an implicit initializer if there were semantic
2754  // errors in any of the initializers (and therefore we might be
2755  // missing some that the user actually wrote).
2756  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2757    return false;
2758
2759  CXXCtorInitializer *Init = 0;
2760  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2761                                     Indirect, Init))
2762    return true;
2763
2764  if (Init)
2765    Info.AllToInit.push_back(Init);
2766
2767  return false;
2768}
2769
2770bool
2771Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2772                               CXXCtorInitializer *Initializer) {
2773  assert(Initializer->isDelegatingInitializer());
2774  Constructor->setNumCtorInitializers(1);
2775  CXXCtorInitializer **initializer =
2776    new (Context) CXXCtorInitializer*[1];
2777  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2778  Constructor->setCtorInitializers(initializer);
2779
2780  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2781    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2782    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2783  }
2784
2785  DelegatingCtorDecls.push_back(Constructor);
2786
2787  return false;
2788}
2789
2790bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2791                               CXXCtorInitializer **Initializers,
2792                               unsigned NumInitializers,
2793                               bool AnyErrors) {
2794  if (Constructor->isDependentContext()) {
2795    // Just store the initializers as written, they will be checked during
2796    // instantiation.
2797    if (NumInitializers > 0) {
2798      Constructor->setNumCtorInitializers(NumInitializers);
2799      CXXCtorInitializer **baseOrMemberInitializers =
2800        new (Context) CXXCtorInitializer*[NumInitializers];
2801      memcpy(baseOrMemberInitializers, Initializers,
2802             NumInitializers * sizeof(CXXCtorInitializer*));
2803      Constructor->setCtorInitializers(baseOrMemberInitializers);
2804    }
2805
2806    return false;
2807  }
2808
2809  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2810
2811  // We need to build the initializer AST according to order of construction
2812  // and not what user specified in the Initializers list.
2813  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2814  if (!ClassDecl)
2815    return true;
2816
2817  bool HadError = false;
2818
2819  for (unsigned i = 0; i < NumInitializers; i++) {
2820    CXXCtorInitializer *Member = Initializers[i];
2821
2822    if (Member->isBaseInitializer())
2823      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2824    else
2825      Info.AllBaseFields[Member->getAnyMember()] = Member;
2826  }
2827
2828  // Keep track of the direct virtual bases.
2829  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2830  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2831       E = ClassDecl->bases_end(); I != E; ++I) {
2832    if (I->isVirtual())
2833      DirectVBases.insert(I);
2834  }
2835
2836  // Push virtual bases before others.
2837  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2838       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2839
2840    if (CXXCtorInitializer *Value
2841        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2842      Info.AllToInit.push_back(Value);
2843    } else if (!AnyErrors) {
2844      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2845      CXXCtorInitializer *CXXBaseInit;
2846      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2847                                       VBase, IsInheritedVirtualBase,
2848                                       CXXBaseInit)) {
2849        HadError = true;
2850        continue;
2851      }
2852
2853      Info.AllToInit.push_back(CXXBaseInit);
2854    }
2855  }
2856
2857  // Non-virtual bases.
2858  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2859       E = ClassDecl->bases_end(); Base != E; ++Base) {
2860    // Virtuals are in the virtual base list and already constructed.
2861    if (Base->isVirtual())
2862      continue;
2863
2864    if (CXXCtorInitializer *Value
2865          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2866      Info.AllToInit.push_back(Value);
2867    } else if (!AnyErrors) {
2868      CXXCtorInitializer *CXXBaseInit;
2869      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2870                                       Base, /*IsInheritedVirtualBase=*/false,
2871                                       CXXBaseInit)) {
2872        HadError = true;
2873        continue;
2874      }
2875
2876      Info.AllToInit.push_back(CXXBaseInit);
2877    }
2878  }
2879
2880  // Fields.
2881  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2882                               MemEnd = ClassDecl->decls_end();
2883       Mem != MemEnd; ++Mem) {
2884    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2885      // C++ [class.bit]p2:
2886      //   A declaration for a bit-field that omits the identifier declares an
2887      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2888      //   initialized.
2889      if (F->isUnnamedBitfield())
2890        continue;
2891
2892      // If we're not generating the implicit copy/move constructor, then we'll
2893      // handle anonymous struct/union fields based on their individual
2894      // indirect fields.
2895      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2896        continue;
2897
2898      if (CollectFieldInitializer(*this, Info, F))
2899        HadError = true;
2900      continue;
2901    }
2902
2903    // Beyond this point, we only consider default initialization.
2904    if (Info.IIK != IIK_Default)
2905      continue;
2906
2907    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2908      if (F->getType()->isIncompleteArrayType()) {
2909        assert(ClassDecl->hasFlexibleArrayMember() &&
2910               "Incomplete array type is not valid");
2911        continue;
2912      }
2913
2914      // Initialize each field of an anonymous struct individually.
2915      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2916        HadError = true;
2917
2918      continue;
2919    }
2920  }
2921
2922  NumInitializers = Info.AllToInit.size();
2923  if (NumInitializers > 0) {
2924    Constructor->setNumCtorInitializers(NumInitializers);
2925    CXXCtorInitializer **baseOrMemberInitializers =
2926      new (Context) CXXCtorInitializer*[NumInitializers];
2927    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2928           NumInitializers * sizeof(CXXCtorInitializer*));
2929    Constructor->setCtorInitializers(baseOrMemberInitializers);
2930
2931    // Constructors implicitly reference the base and member
2932    // destructors.
2933    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2934                                           Constructor->getParent());
2935  }
2936
2937  return HadError;
2938}
2939
2940static void *GetKeyForTopLevelField(FieldDecl *Field) {
2941  // For anonymous unions, use the class declaration as the key.
2942  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2943    if (RT->getDecl()->isAnonymousStructOrUnion())
2944      return static_cast<void *>(RT->getDecl());
2945  }
2946  return static_cast<void *>(Field);
2947}
2948
2949static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2950  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2951}
2952
2953static void *GetKeyForMember(ASTContext &Context,
2954                             CXXCtorInitializer *Member) {
2955  if (!Member->isAnyMemberInitializer())
2956    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2957
2958  // For fields injected into the class via declaration of an anonymous union,
2959  // use its anonymous union class declaration as the unique key.
2960  FieldDecl *Field = Member->getAnyMember();
2961
2962  // If the field is a member of an anonymous struct or union, our key
2963  // is the anonymous record decl that's a direct child of the class.
2964  RecordDecl *RD = Field->getParent();
2965  if (RD->isAnonymousStructOrUnion()) {
2966    while (true) {
2967      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2968      if (Parent->isAnonymousStructOrUnion())
2969        RD = Parent;
2970      else
2971        break;
2972    }
2973
2974    return static_cast<void *>(RD);
2975  }
2976
2977  return static_cast<void *>(Field);
2978}
2979
2980static void
2981DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2982                                  const CXXConstructorDecl *Constructor,
2983                                  CXXCtorInitializer **Inits,
2984                                  unsigned NumInits) {
2985  if (Constructor->getDeclContext()->isDependentContext())
2986    return;
2987
2988  // Don't check initializers order unless the warning is enabled at the
2989  // location of at least one initializer.
2990  bool ShouldCheckOrder = false;
2991  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2992    CXXCtorInitializer *Init = Inits[InitIndex];
2993    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2994                                         Init->getSourceLocation())
2995          != DiagnosticsEngine::Ignored) {
2996      ShouldCheckOrder = true;
2997      break;
2998    }
2999  }
3000  if (!ShouldCheckOrder)
3001    return;
3002
3003  // Build the list of bases and members in the order that they'll
3004  // actually be initialized.  The explicit initializers should be in
3005  // this same order but may be missing things.
3006  SmallVector<const void*, 32> IdealInitKeys;
3007
3008  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3009
3010  // 1. Virtual bases.
3011  for (CXXRecordDecl::base_class_const_iterator VBase =
3012       ClassDecl->vbases_begin(),
3013       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3014    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3015
3016  // 2. Non-virtual bases.
3017  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3018       E = ClassDecl->bases_end(); Base != E; ++Base) {
3019    if (Base->isVirtual())
3020      continue;
3021    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3022  }
3023
3024  // 3. Direct fields.
3025  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3026       E = ClassDecl->field_end(); Field != E; ++Field) {
3027    if (Field->isUnnamedBitfield())
3028      continue;
3029
3030    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3031  }
3032
3033  unsigned NumIdealInits = IdealInitKeys.size();
3034  unsigned IdealIndex = 0;
3035
3036  CXXCtorInitializer *PrevInit = 0;
3037  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3038    CXXCtorInitializer *Init = Inits[InitIndex];
3039    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3040
3041    // Scan forward to try to find this initializer in the idealized
3042    // initializers list.
3043    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3044      if (InitKey == IdealInitKeys[IdealIndex])
3045        break;
3046
3047    // If we didn't find this initializer, it must be because we
3048    // scanned past it on a previous iteration.  That can only
3049    // happen if we're out of order;  emit a warning.
3050    if (IdealIndex == NumIdealInits && PrevInit) {
3051      Sema::SemaDiagnosticBuilder D =
3052        SemaRef.Diag(PrevInit->getSourceLocation(),
3053                     diag::warn_initializer_out_of_order);
3054
3055      if (PrevInit->isAnyMemberInitializer())
3056        D << 0 << PrevInit->getAnyMember()->getDeclName();
3057      else
3058        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3059
3060      if (Init->isAnyMemberInitializer())
3061        D << 0 << Init->getAnyMember()->getDeclName();
3062      else
3063        D << 1 << Init->getTypeSourceInfo()->getType();
3064
3065      // Move back to the initializer's location in the ideal list.
3066      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3067        if (InitKey == IdealInitKeys[IdealIndex])
3068          break;
3069
3070      assert(IdealIndex != NumIdealInits &&
3071             "initializer not found in initializer list");
3072    }
3073
3074    PrevInit = Init;
3075  }
3076}
3077
3078namespace {
3079bool CheckRedundantInit(Sema &S,
3080                        CXXCtorInitializer *Init,
3081                        CXXCtorInitializer *&PrevInit) {
3082  if (!PrevInit) {
3083    PrevInit = Init;
3084    return false;
3085  }
3086
3087  if (FieldDecl *Field = Init->getMember())
3088    S.Diag(Init->getSourceLocation(),
3089           diag::err_multiple_mem_initialization)
3090      << Field->getDeclName()
3091      << Init->getSourceRange();
3092  else {
3093    const Type *BaseClass = Init->getBaseClass();
3094    assert(BaseClass && "neither field nor base");
3095    S.Diag(Init->getSourceLocation(),
3096           diag::err_multiple_base_initialization)
3097      << QualType(BaseClass, 0)
3098      << Init->getSourceRange();
3099  }
3100  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3101    << 0 << PrevInit->getSourceRange();
3102
3103  return true;
3104}
3105
3106typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3107typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3108
3109bool CheckRedundantUnionInit(Sema &S,
3110                             CXXCtorInitializer *Init,
3111                             RedundantUnionMap &Unions) {
3112  FieldDecl *Field = Init->getAnyMember();
3113  RecordDecl *Parent = Field->getParent();
3114  NamedDecl *Child = Field;
3115
3116  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3117    if (Parent->isUnion()) {
3118      UnionEntry &En = Unions[Parent];
3119      if (En.first && En.first != Child) {
3120        S.Diag(Init->getSourceLocation(),
3121               diag::err_multiple_mem_union_initialization)
3122          << Field->getDeclName()
3123          << Init->getSourceRange();
3124        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3125          << 0 << En.second->getSourceRange();
3126        return true;
3127      }
3128      if (!En.first) {
3129        En.first = Child;
3130        En.second = Init;
3131      }
3132      if (!Parent->isAnonymousStructOrUnion())
3133        return false;
3134    }
3135
3136    Child = Parent;
3137    Parent = cast<RecordDecl>(Parent->getDeclContext());
3138  }
3139
3140  return false;
3141}
3142}
3143
3144/// ActOnMemInitializers - Handle the member initializers for a constructor.
3145void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3146                                SourceLocation ColonLoc,
3147                                CXXCtorInitializer **meminits,
3148                                unsigned NumMemInits,
3149                                bool AnyErrors) {
3150  if (!ConstructorDecl)
3151    return;
3152
3153  AdjustDeclIfTemplate(ConstructorDecl);
3154
3155  CXXConstructorDecl *Constructor
3156    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3157
3158  if (!Constructor) {
3159    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3160    return;
3161  }
3162
3163  CXXCtorInitializer **MemInits =
3164    reinterpret_cast<CXXCtorInitializer **>(meminits);
3165
3166  // Mapping for the duplicate initializers check.
3167  // For member initializers, this is keyed with a FieldDecl*.
3168  // For base initializers, this is keyed with a Type*.
3169  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3170
3171  // Mapping for the inconsistent anonymous-union initializers check.
3172  RedundantUnionMap MemberUnions;
3173
3174  bool HadError = false;
3175  for (unsigned i = 0; i < NumMemInits; i++) {
3176    CXXCtorInitializer *Init = MemInits[i];
3177
3178    // Set the source order index.
3179    Init->setSourceOrder(i);
3180
3181    if (Init->isAnyMemberInitializer()) {
3182      FieldDecl *Field = Init->getAnyMember();
3183      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3184          CheckRedundantUnionInit(*this, Init, MemberUnions))
3185        HadError = true;
3186    } else if (Init->isBaseInitializer()) {
3187      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3188      if (CheckRedundantInit(*this, Init, Members[Key]))
3189        HadError = true;
3190    } else {
3191      assert(Init->isDelegatingInitializer());
3192      // This must be the only initializer
3193      if (i != 0 || NumMemInits > 1) {
3194        Diag(MemInits[0]->getSourceLocation(),
3195             diag::err_delegating_initializer_alone)
3196          << MemInits[0]->getSourceRange();
3197        HadError = true;
3198        // We will treat this as being the only initializer.
3199      }
3200      SetDelegatingInitializer(Constructor, MemInits[i]);
3201      // Return immediately as the initializer is set.
3202      return;
3203    }
3204  }
3205
3206  if (HadError)
3207    return;
3208
3209  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3210
3211  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3212}
3213
3214void
3215Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3216                                             CXXRecordDecl *ClassDecl) {
3217  // Ignore dependent contexts. Also ignore unions, since their members never
3218  // have destructors implicitly called.
3219  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3220    return;
3221
3222  // FIXME: all the access-control diagnostics are positioned on the
3223  // field/base declaration.  That's probably good; that said, the
3224  // user might reasonably want to know why the destructor is being
3225  // emitted, and we currently don't say.
3226
3227  // Non-static data members.
3228  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3229       E = ClassDecl->field_end(); I != E; ++I) {
3230    FieldDecl *Field = *I;
3231    if (Field->isInvalidDecl())
3232      continue;
3233
3234    // Don't destroy incomplete or zero-length arrays.
3235    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3236      continue;
3237
3238    QualType FieldType = Context.getBaseElementType(Field->getType());
3239
3240    const RecordType* RT = FieldType->getAs<RecordType>();
3241    if (!RT)
3242      continue;
3243
3244    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3245    if (FieldClassDecl->isInvalidDecl())
3246      continue;
3247    if (FieldClassDecl->hasTrivialDestructor())
3248      continue;
3249
3250    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3251    assert(Dtor && "No dtor found for FieldClassDecl!");
3252    CheckDestructorAccess(Field->getLocation(), Dtor,
3253                          PDiag(diag::err_access_dtor_field)
3254                            << Field->getDeclName()
3255                            << FieldType);
3256
3257    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3258  }
3259
3260  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3261
3262  // Bases.
3263  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3264       E = ClassDecl->bases_end(); Base != E; ++Base) {
3265    // Bases are always records in a well-formed non-dependent class.
3266    const RecordType *RT = Base->getType()->getAs<RecordType>();
3267
3268    // Remember direct virtual bases.
3269    if (Base->isVirtual())
3270      DirectVirtualBases.insert(RT);
3271
3272    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3273    // If our base class is invalid, we probably can't get its dtor anyway.
3274    if (BaseClassDecl->isInvalidDecl())
3275      continue;
3276    // Ignore trivial destructors.
3277    if (BaseClassDecl->hasTrivialDestructor())
3278      continue;
3279
3280    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3281    assert(Dtor && "No dtor found for BaseClassDecl!");
3282
3283    // FIXME: caret should be on the start of the class name
3284    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3285                          PDiag(diag::err_access_dtor_base)
3286                            << Base->getType()
3287                            << Base->getSourceRange());
3288
3289    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3290  }
3291
3292  // Virtual bases.
3293  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3294       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3295
3296    // Bases are always records in a well-formed non-dependent class.
3297    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3298
3299    // Ignore direct virtual bases.
3300    if (DirectVirtualBases.count(RT))
3301      continue;
3302
3303    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3304    // If our base class is invalid, we probably can't get its dtor anyway.
3305    if (BaseClassDecl->isInvalidDecl())
3306      continue;
3307    // Ignore trivial destructors.
3308    if (BaseClassDecl->hasTrivialDestructor())
3309      continue;
3310
3311    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3312    assert(Dtor && "No dtor found for BaseClassDecl!");
3313    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3314                          PDiag(diag::err_access_dtor_vbase)
3315                            << VBase->getType());
3316
3317    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3318  }
3319}
3320
3321void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3322  if (!CDtorDecl)
3323    return;
3324
3325  if (CXXConstructorDecl *Constructor
3326      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3327    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3328}
3329
3330bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3331                                  unsigned DiagID, AbstractDiagSelID SelID) {
3332  if (SelID == -1)
3333    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3334  else
3335    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3336}
3337
3338bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3339                                  const PartialDiagnostic &PD) {
3340  if (!getLangOptions().CPlusPlus)
3341    return false;
3342
3343  if (const ArrayType *AT = Context.getAsArrayType(T))
3344    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3345
3346  if (const PointerType *PT = T->getAs<PointerType>()) {
3347    // Find the innermost pointer type.
3348    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3349      PT = T;
3350
3351    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3352      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3353  }
3354
3355  const RecordType *RT = T->getAs<RecordType>();
3356  if (!RT)
3357    return false;
3358
3359  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3360
3361  // We can't answer whether something is abstract until it has a
3362  // definition.  If it's currently being defined, we'll walk back
3363  // over all the declarations when we have a full definition.
3364  const CXXRecordDecl *Def = RD->getDefinition();
3365  if (!Def || Def->isBeingDefined())
3366    return false;
3367
3368  if (!RD->isAbstract())
3369    return false;
3370
3371  Diag(Loc, PD) << RD->getDeclName();
3372  DiagnoseAbstractType(RD);
3373
3374  return true;
3375}
3376
3377void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3378  // Check if we've already emitted the list of pure virtual functions
3379  // for this class.
3380  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3381    return;
3382
3383  CXXFinalOverriderMap FinalOverriders;
3384  RD->getFinalOverriders(FinalOverriders);
3385
3386  // Keep a set of seen pure methods so we won't diagnose the same method
3387  // more than once.
3388  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3389
3390  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3391                                   MEnd = FinalOverriders.end();
3392       M != MEnd;
3393       ++M) {
3394    for (OverridingMethods::iterator SO = M->second.begin(),
3395                                  SOEnd = M->second.end();
3396         SO != SOEnd; ++SO) {
3397      // C++ [class.abstract]p4:
3398      //   A class is abstract if it contains or inherits at least one
3399      //   pure virtual function for which the final overrider is pure
3400      //   virtual.
3401
3402      //
3403      if (SO->second.size() != 1)
3404        continue;
3405
3406      if (!SO->second.front().Method->isPure())
3407        continue;
3408
3409      if (!SeenPureMethods.insert(SO->second.front().Method))
3410        continue;
3411
3412      Diag(SO->second.front().Method->getLocation(),
3413           diag::note_pure_virtual_function)
3414        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3415    }
3416  }
3417
3418  if (!PureVirtualClassDiagSet)
3419    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3420  PureVirtualClassDiagSet->insert(RD);
3421}
3422
3423namespace {
3424struct AbstractUsageInfo {
3425  Sema &S;
3426  CXXRecordDecl *Record;
3427  CanQualType AbstractType;
3428  bool Invalid;
3429
3430  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3431    : S(S), Record(Record),
3432      AbstractType(S.Context.getCanonicalType(
3433                   S.Context.getTypeDeclType(Record))),
3434      Invalid(false) {}
3435
3436  void DiagnoseAbstractType() {
3437    if (Invalid) return;
3438    S.DiagnoseAbstractType(Record);
3439    Invalid = true;
3440  }
3441
3442  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3443};
3444
3445struct CheckAbstractUsage {
3446  AbstractUsageInfo &Info;
3447  const NamedDecl *Ctx;
3448
3449  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3450    : Info(Info), Ctx(Ctx) {}
3451
3452  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3453    switch (TL.getTypeLocClass()) {
3454#define ABSTRACT_TYPELOC(CLASS, PARENT)
3455#define TYPELOC(CLASS, PARENT) \
3456    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3457#include "clang/AST/TypeLocNodes.def"
3458    }
3459  }
3460
3461  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3462    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3463    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3464      if (!TL.getArg(I))
3465        continue;
3466
3467      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3468      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3469    }
3470  }
3471
3472  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3473    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3474  }
3475
3476  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3477    // Visit the type parameters from a permissive context.
3478    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3479      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3480      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3481        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3482          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3483      // TODO: other template argument types?
3484    }
3485  }
3486
3487  // Visit pointee types from a permissive context.
3488#define CheckPolymorphic(Type) \
3489  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3490    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3491  }
3492  CheckPolymorphic(PointerTypeLoc)
3493  CheckPolymorphic(ReferenceTypeLoc)
3494  CheckPolymorphic(MemberPointerTypeLoc)
3495  CheckPolymorphic(BlockPointerTypeLoc)
3496  CheckPolymorphic(AtomicTypeLoc)
3497
3498  /// Handle all the types we haven't given a more specific
3499  /// implementation for above.
3500  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3501    // Every other kind of type that we haven't called out already
3502    // that has an inner type is either (1) sugar or (2) contains that
3503    // inner type in some way as a subobject.
3504    if (TypeLoc Next = TL.getNextTypeLoc())
3505      return Visit(Next, Sel);
3506
3507    // If there's no inner type and we're in a permissive context,
3508    // don't diagnose.
3509    if (Sel == Sema::AbstractNone) return;
3510
3511    // Check whether the type matches the abstract type.
3512    QualType T = TL.getType();
3513    if (T->isArrayType()) {
3514      Sel = Sema::AbstractArrayType;
3515      T = Info.S.Context.getBaseElementType(T);
3516    }
3517    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3518    if (CT != Info.AbstractType) return;
3519
3520    // It matched; do some magic.
3521    if (Sel == Sema::AbstractArrayType) {
3522      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3523        << T << TL.getSourceRange();
3524    } else {
3525      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3526        << Sel << T << TL.getSourceRange();
3527    }
3528    Info.DiagnoseAbstractType();
3529  }
3530};
3531
3532void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3533                                  Sema::AbstractDiagSelID Sel) {
3534  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3535}
3536
3537}
3538
3539/// Check for invalid uses of an abstract type in a method declaration.
3540static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3541                                    CXXMethodDecl *MD) {
3542  // No need to do the check on definitions, which require that
3543  // the return/param types be complete.
3544  if (MD->doesThisDeclarationHaveABody())
3545    return;
3546
3547  // For safety's sake, just ignore it if we don't have type source
3548  // information.  This should never happen for non-implicit methods,
3549  // but...
3550  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3551    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3552}
3553
3554/// Check for invalid uses of an abstract type within a class definition.
3555static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3556                                    CXXRecordDecl *RD) {
3557  for (CXXRecordDecl::decl_iterator
3558         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3559    Decl *D = *I;
3560    if (D->isImplicit()) continue;
3561
3562    // Methods and method templates.
3563    if (isa<CXXMethodDecl>(D)) {
3564      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3565    } else if (isa<FunctionTemplateDecl>(D)) {
3566      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3567      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3568
3569    // Fields and static variables.
3570    } else if (isa<FieldDecl>(D)) {
3571      FieldDecl *FD = cast<FieldDecl>(D);
3572      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3573        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3574    } else if (isa<VarDecl>(D)) {
3575      VarDecl *VD = cast<VarDecl>(D);
3576      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3577        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3578
3579    // Nested classes and class templates.
3580    } else if (isa<CXXRecordDecl>(D)) {
3581      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3582    } else if (isa<ClassTemplateDecl>(D)) {
3583      CheckAbstractClassUsage(Info,
3584                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3585    }
3586  }
3587}
3588
3589/// \brief Perform semantic checks on a class definition that has been
3590/// completing, introducing implicitly-declared members, checking for
3591/// abstract types, etc.
3592void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3593  if (!Record)
3594    return;
3595
3596  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3597    AbstractUsageInfo Info(*this, Record);
3598    CheckAbstractClassUsage(Info, Record);
3599  }
3600
3601  // If this is not an aggregate type and has no user-declared constructor,
3602  // complain about any non-static data members of reference or const scalar
3603  // type, since they will never get initializers.
3604  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3605      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3606    bool Complained = false;
3607    for (RecordDecl::field_iterator F = Record->field_begin(),
3608                                 FEnd = Record->field_end();
3609         F != FEnd; ++F) {
3610      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3611        continue;
3612
3613      if (F->getType()->isReferenceType() ||
3614          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3615        if (!Complained) {
3616          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3617            << Record->getTagKind() << Record;
3618          Complained = true;
3619        }
3620
3621        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3622          << F->getType()->isReferenceType()
3623          << F->getDeclName();
3624      }
3625    }
3626  }
3627
3628  if (Record->isDynamicClass() && !Record->isDependentType())
3629    DynamicClasses.push_back(Record);
3630
3631  if (Record->getIdentifier()) {
3632    // C++ [class.mem]p13:
3633    //   If T is the name of a class, then each of the following shall have a
3634    //   name different from T:
3635    //     - every member of every anonymous union that is a member of class T.
3636    //
3637    // C++ [class.mem]p14:
3638    //   In addition, if class T has a user-declared constructor (12.1), every
3639    //   non-static data member of class T shall have a name different from T.
3640    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3641         R.first != R.second; ++R.first) {
3642      NamedDecl *D = *R.first;
3643      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3644          isa<IndirectFieldDecl>(D)) {
3645        Diag(D->getLocation(), diag::err_member_name_of_class)
3646          << D->getDeclName();
3647        break;
3648      }
3649    }
3650  }
3651
3652  // Warn if the class has virtual methods but non-virtual public destructor.
3653  if (Record->isPolymorphic() && !Record->isDependentType()) {
3654    CXXDestructorDecl *dtor = Record->getDestructor();
3655    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3656      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3657           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3658  }
3659
3660  // See if a method overloads virtual methods in a base
3661  /// class without overriding any.
3662  if (!Record->isDependentType()) {
3663    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3664                                     MEnd = Record->method_end();
3665         M != MEnd; ++M) {
3666      if (!(*M)->isStatic())
3667        DiagnoseHiddenVirtualMethods(Record, *M);
3668    }
3669  }
3670
3671  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3672  // function that is not a constructor declares that member function to be
3673  // const. [...] The class of which that function is a member shall be
3674  // a literal type.
3675  //
3676  // It's fine to diagnose constructors here too: such constructors cannot
3677  // produce a constant expression, so are ill-formed (no diagnostic required).
3678  //
3679  // If the class has virtual bases, any constexpr members will already have
3680  // been diagnosed by the checks performed on the member declaration, so
3681  // suppress this (less useful) diagnostic.
3682  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3683      !Record->isLiteral() && !Record->getNumVBases()) {
3684    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3685                                     MEnd = Record->method_end();
3686         M != MEnd; ++M) {
3687      if (M->isConstexpr() && M->isInstance()) {
3688        switch (Record->getTemplateSpecializationKind()) {
3689        case TSK_ImplicitInstantiation:
3690        case TSK_ExplicitInstantiationDeclaration:
3691        case TSK_ExplicitInstantiationDefinition:
3692          // If a template instantiates to a non-literal type, but its members
3693          // instantiate to constexpr functions, the template is technically
3694          // ill-formed, but we allow it for sanity. Such members are treated as
3695          // non-constexpr.
3696          (*M)->setConstexpr(false);
3697          continue;
3698
3699        case TSK_Undeclared:
3700        case TSK_ExplicitSpecialization:
3701          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3702                             PDiag(diag::err_constexpr_method_non_literal));
3703          break;
3704        }
3705
3706        // Only produce one error per class.
3707        break;
3708      }
3709    }
3710  }
3711
3712  // Declare inherited constructors. We do this eagerly here because:
3713  // - The standard requires an eager diagnostic for conflicting inherited
3714  //   constructors from different classes.
3715  // - The lazy declaration of the other implicit constructors is so as to not
3716  //   waste space and performance on classes that are not meant to be
3717  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3718  //   have inherited constructors.
3719  DeclareInheritedConstructors(Record);
3720
3721  if (!Record->isDependentType())
3722    CheckExplicitlyDefaultedMethods(Record);
3723}
3724
3725void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3726  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3727                                      ME = Record->method_end();
3728       MI != ME; ++MI) {
3729    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3730      switch (getSpecialMember(*MI)) {
3731      case CXXDefaultConstructor:
3732        CheckExplicitlyDefaultedDefaultConstructor(
3733                                                  cast<CXXConstructorDecl>(*MI));
3734        break;
3735
3736      case CXXDestructor:
3737        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3738        break;
3739
3740      case CXXCopyConstructor:
3741        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3742        break;
3743
3744      case CXXCopyAssignment:
3745        CheckExplicitlyDefaultedCopyAssignment(*MI);
3746        break;
3747
3748      case CXXMoveConstructor:
3749        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3750        break;
3751
3752      case CXXMoveAssignment:
3753        CheckExplicitlyDefaultedMoveAssignment(*MI);
3754        break;
3755
3756      case CXXInvalid:
3757        llvm_unreachable("non-special member explicitly defaulted!");
3758      }
3759    }
3760  }
3761
3762}
3763
3764void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3765  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3766
3767  // Whether this was the first-declared instance of the constructor.
3768  // This affects whether we implicitly add an exception spec (and, eventually,
3769  // constexpr). It is also ill-formed to explicitly default a constructor such
3770  // that it would be deleted. (C++0x [decl.fct.def.default])
3771  bool First = CD == CD->getCanonicalDecl();
3772
3773  bool HadError = false;
3774  if (CD->getNumParams() != 0) {
3775    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3776      << CD->getSourceRange();
3777    HadError = true;
3778  }
3779
3780  ImplicitExceptionSpecification Spec
3781    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3782  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3783  if (EPI.ExceptionSpecType == EST_Delayed) {
3784    // Exception specification depends on some deferred part of the class. We'll
3785    // try again when the class's definition has been fully processed.
3786    return;
3787  }
3788  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3789                          *ExceptionType = Context.getFunctionType(
3790                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3791
3792  // C++11 [dcl.fct.def.default]p2:
3793  //   An explicitly-defaulted function may be declared constexpr only if it
3794  //   would have been implicitly declared as constexpr,
3795  if (CD->isConstexpr()) {
3796    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3797      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3798        << CXXDefaultConstructor;
3799      HadError = true;
3800    }
3801  }
3802  //   and may have an explicit exception-specification only if it is compatible
3803  //   with the exception-specification on the implicit declaration.
3804  if (CtorType->hasExceptionSpec()) {
3805    if (CheckEquivalentExceptionSpec(
3806          PDiag(diag::err_incorrect_defaulted_exception_spec)
3807            << CXXDefaultConstructor,
3808          PDiag(),
3809          ExceptionType, SourceLocation(),
3810          CtorType, CD->getLocation())) {
3811      HadError = true;
3812    }
3813  }
3814
3815  //   If a function is explicitly defaulted on its first declaration,
3816  if (First) {
3817    //  -- it is implicitly considered to be constexpr if the implicit
3818    //     definition would be,
3819    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3820
3821    //  -- it is implicitly considered to have the same
3822    //     exception-specification as if it had been implicitly declared
3823    //
3824    // FIXME: a compatible, but different, explicit exception specification
3825    // will be silently overridden. We should issue a warning if this happens.
3826    EPI.ExtInfo = CtorType->getExtInfo();
3827  }
3828
3829  if (HadError) {
3830    CD->setInvalidDecl();
3831    return;
3832  }
3833
3834  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3835    if (First) {
3836      CD->setDeletedAsWritten();
3837    } else {
3838      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3839        << CXXDefaultConstructor;
3840      CD->setInvalidDecl();
3841    }
3842  }
3843}
3844
3845void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3846  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3847
3848  // Whether this was the first-declared instance of the constructor.
3849  bool First = CD == CD->getCanonicalDecl();
3850
3851  bool HadError = false;
3852  if (CD->getNumParams() != 1) {
3853    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3854      << CD->getSourceRange();
3855    HadError = true;
3856  }
3857
3858  ImplicitExceptionSpecification Spec(Context);
3859  bool Const;
3860  llvm::tie(Spec, Const) =
3861    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3862
3863  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3864  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3865                          *ExceptionType = Context.getFunctionType(
3866                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3867
3868  // Check for parameter type matching.
3869  // This is a copy ctor so we know it's a cv-qualified reference to T.
3870  QualType ArgType = CtorType->getArgType(0);
3871  if (ArgType->getPointeeType().isVolatileQualified()) {
3872    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3873    HadError = true;
3874  }
3875  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3876    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3877    HadError = true;
3878  }
3879
3880  // C++11 [dcl.fct.def.default]p2:
3881  //   An explicitly-defaulted function may be declared constexpr only if it
3882  //   would have been implicitly declared as constexpr,
3883  if (CD->isConstexpr()) {
3884    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3885      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3886        << CXXCopyConstructor;
3887      HadError = true;
3888    }
3889  }
3890  //   and may have an explicit exception-specification only if it is compatible
3891  //   with the exception-specification on the implicit declaration.
3892  if (CtorType->hasExceptionSpec()) {
3893    if (CheckEquivalentExceptionSpec(
3894          PDiag(diag::err_incorrect_defaulted_exception_spec)
3895            << CXXCopyConstructor,
3896          PDiag(),
3897          ExceptionType, SourceLocation(),
3898          CtorType, CD->getLocation())) {
3899      HadError = true;
3900    }
3901  }
3902
3903  //   If a function is explicitly defaulted on its first declaration,
3904  if (First) {
3905    //  -- it is implicitly considered to be constexpr if the implicit
3906    //     definition would be,
3907    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3908
3909    //  -- it is implicitly considered to have the same
3910    //     exception-specification as if it had been implicitly declared, and
3911    //
3912    // FIXME: a compatible, but different, explicit exception specification
3913    // will be silently overridden. We should issue a warning if this happens.
3914    EPI.ExtInfo = CtorType->getExtInfo();
3915
3916    //  -- [...] it shall have the same parameter type as if it had been
3917    //     implicitly declared.
3918    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3919  }
3920
3921  if (HadError) {
3922    CD->setInvalidDecl();
3923    return;
3924  }
3925
3926  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3927    if (First) {
3928      CD->setDeletedAsWritten();
3929    } else {
3930      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3931        << CXXCopyConstructor;
3932      CD->setInvalidDecl();
3933    }
3934  }
3935}
3936
3937void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3938  assert(MD->isExplicitlyDefaulted());
3939
3940  // Whether this was the first-declared instance of the operator
3941  bool First = MD == MD->getCanonicalDecl();
3942
3943  bool HadError = false;
3944  if (MD->getNumParams() != 1) {
3945    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3946      << MD->getSourceRange();
3947    HadError = true;
3948  }
3949
3950  QualType ReturnType =
3951    MD->getType()->getAs<FunctionType>()->getResultType();
3952  if (!ReturnType->isLValueReferenceType() ||
3953      !Context.hasSameType(
3954        Context.getCanonicalType(ReturnType->getPointeeType()),
3955        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3956    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3957    HadError = true;
3958  }
3959
3960  ImplicitExceptionSpecification Spec(Context);
3961  bool Const;
3962  llvm::tie(Spec, Const) =
3963    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3964
3965  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3966  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3967                          *ExceptionType = Context.getFunctionType(
3968                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3969
3970  QualType ArgType = OperType->getArgType(0);
3971  if (!ArgType->isLValueReferenceType()) {
3972    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3973    HadError = true;
3974  } else {
3975    if (ArgType->getPointeeType().isVolatileQualified()) {
3976      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3977      HadError = true;
3978    }
3979    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3980      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3981      HadError = true;
3982    }
3983  }
3984
3985  if (OperType->getTypeQuals()) {
3986    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3987    HadError = true;
3988  }
3989
3990  if (OperType->hasExceptionSpec()) {
3991    if (CheckEquivalentExceptionSpec(
3992          PDiag(diag::err_incorrect_defaulted_exception_spec)
3993            << CXXCopyAssignment,
3994          PDiag(),
3995          ExceptionType, SourceLocation(),
3996          OperType, MD->getLocation())) {
3997      HadError = true;
3998    }
3999  }
4000  if (First) {
4001    // We set the declaration to have the computed exception spec here.
4002    // We duplicate the one parameter type.
4003    EPI.RefQualifier = OperType->getRefQualifier();
4004    EPI.ExtInfo = OperType->getExtInfo();
4005    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4006  }
4007
4008  if (HadError) {
4009    MD->setInvalidDecl();
4010    return;
4011  }
4012
4013  if (ShouldDeleteCopyAssignmentOperator(MD)) {
4014    if (First) {
4015      MD->setDeletedAsWritten();
4016    } else {
4017      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4018        << CXXCopyAssignment;
4019      MD->setInvalidDecl();
4020    }
4021  }
4022}
4023
4024void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4025  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4026
4027  // Whether this was the first-declared instance of the constructor.
4028  bool First = CD == CD->getCanonicalDecl();
4029
4030  bool HadError = false;
4031  if (CD->getNumParams() != 1) {
4032    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4033      << CD->getSourceRange();
4034    HadError = true;
4035  }
4036
4037  ImplicitExceptionSpecification Spec(
4038      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4039
4040  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4041  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4042                          *ExceptionType = Context.getFunctionType(
4043                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4044
4045  // Check for parameter type matching.
4046  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4047  QualType ArgType = CtorType->getArgType(0);
4048  if (ArgType->getPointeeType().isVolatileQualified()) {
4049    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4050    HadError = true;
4051  }
4052  if (ArgType->getPointeeType().isConstQualified()) {
4053    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4054    HadError = true;
4055  }
4056
4057  // C++11 [dcl.fct.def.default]p2:
4058  //   An explicitly-defaulted function may be declared constexpr only if it
4059  //   would have been implicitly declared as constexpr,
4060  if (CD->isConstexpr()) {
4061    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4062      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4063        << CXXMoveConstructor;
4064      HadError = true;
4065    }
4066  }
4067  //   and may have an explicit exception-specification only if it is compatible
4068  //   with the exception-specification on the implicit declaration.
4069  if (CtorType->hasExceptionSpec()) {
4070    if (CheckEquivalentExceptionSpec(
4071          PDiag(diag::err_incorrect_defaulted_exception_spec)
4072            << CXXMoveConstructor,
4073          PDiag(),
4074          ExceptionType, SourceLocation(),
4075          CtorType, CD->getLocation())) {
4076      HadError = true;
4077    }
4078  }
4079
4080  //   If a function is explicitly defaulted on its first declaration,
4081  if (First) {
4082    //  -- it is implicitly considered to be constexpr if the implicit
4083    //     definition would be,
4084    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4085
4086    //  -- it is implicitly considered to have the same
4087    //     exception-specification as if it had been implicitly declared, and
4088    //
4089    // FIXME: a compatible, but different, explicit exception specification
4090    // will be silently overridden. We should issue a warning if this happens.
4091    EPI.ExtInfo = CtorType->getExtInfo();
4092
4093    //  -- [...] it shall have the same parameter type as if it had been
4094    //     implicitly declared.
4095    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4096  }
4097
4098  if (HadError) {
4099    CD->setInvalidDecl();
4100    return;
4101  }
4102
4103  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4104    if (First) {
4105      CD->setDeletedAsWritten();
4106    } else {
4107      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4108        << CXXMoveConstructor;
4109      CD->setInvalidDecl();
4110    }
4111  }
4112}
4113
4114void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4115  assert(MD->isExplicitlyDefaulted());
4116
4117  // Whether this was the first-declared instance of the operator
4118  bool First = MD == MD->getCanonicalDecl();
4119
4120  bool HadError = false;
4121  if (MD->getNumParams() != 1) {
4122    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4123      << MD->getSourceRange();
4124    HadError = true;
4125  }
4126
4127  QualType ReturnType =
4128    MD->getType()->getAs<FunctionType>()->getResultType();
4129  if (!ReturnType->isLValueReferenceType() ||
4130      !Context.hasSameType(
4131        Context.getCanonicalType(ReturnType->getPointeeType()),
4132        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4133    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4134    HadError = true;
4135  }
4136
4137  ImplicitExceptionSpecification Spec(
4138      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4139
4140  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4141  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4142                          *ExceptionType = Context.getFunctionType(
4143                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4144
4145  QualType ArgType = OperType->getArgType(0);
4146  if (!ArgType->isRValueReferenceType()) {
4147    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4148    HadError = true;
4149  } else {
4150    if (ArgType->getPointeeType().isVolatileQualified()) {
4151      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4152      HadError = true;
4153    }
4154    if (ArgType->getPointeeType().isConstQualified()) {
4155      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4156      HadError = true;
4157    }
4158  }
4159
4160  if (OperType->getTypeQuals()) {
4161    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4162    HadError = true;
4163  }
4164
4165  if (OperType->hasExceptionSpec()) {
4166    if (CheckEquivalentExceptionSpec(
4167          PDiag(diag::err_incorrect_defaulted_exception_spec)
4168            << CXXMoveAssignment,
4169          PDiag(),
4170          ExceptionType, SourceLocation(),
4171          OperType, MD->getLocation())) {
4172      HadError = true;
4173    }
4174  }
4175  if (First) {
4176    // We set the declaration to have the computed exception spec here.
4177    // We duplicate the one parameter type.
4178    EPI.RefQualifier = OperType->getRefQualifier();
4179    EPI.ExtInfo = OperType->getExtInfo();
4180    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4181  }
4182
4183  if (HadError) {
4184    MD->setInvalidDecl();
4185    return;
4186  }
4187
4188  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4189    if (First) {
4190      MD->setDeletedAsWritten();
4191    } else {
4192      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4193        << CXXMoveAssignment;
4194      MD->setInvalidDecl();
4195    }
4196  }
4197}
4198
4199void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4200  assert(DD->isExplicitlyDefaulted());
4201
4202  // Whether this was the first-declared instance of the destructor.
4203  bool First = DD == DD->getCanonicalDecl();
4204
4205  ImplicitExceptionSpecification Spec
4206    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4207  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4208  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4209                          *ExceptionType = Context.getFunctionType(
4210                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4211
4212  if (DtorType->hasExceptionSpec()) {
4213    if (CheckEquivalentExceptionSpec(
4214          PDiag(diag::err_incorrect_defaulted_exception_spec)
4215            << CXXDestructor,
4216          PDiag(),
4217          ExceptionType, SourceLocation(),
4218          DtorType, DD->getLocation())) {
4219      DD->setInvalidDecl();
4220      return;
4221    }
4222  }
4223  if (First) {
4224    // We set the declaration to have the computed exception spec here.
4225    // There are no parameters.
4226    EPI.ExtInfo = DtorType->getExtInfo();
4227    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4228  }
4229
4230  if (ShouldDeleteDestructor(DD)) {
4231    if (First) {
4232      DD->setDeletedAsWritten();
4233    } else {
4234      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4235        << CXXDestructor;
4236      DD->setInvalidDecl();
4237    }
4238  }
4239}
4240
4241/// This function implements the following C++0x paragraphs:
4242///  - [class.ctor]/5
4243///  - [class.copy]/11
4244bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4245  assert(!MD->isInvalidDecl());
4246  CXXRecordDecl *RD = MD->getParent();
4247  assert(!RD->isDependentType() && "do deletion after instantiation");
4248  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4249    return false;
4250
4251  bool IsUnion = RD->isUnion();
4252  bool IsConstructor = false;
4253  bool IsAssignment = false;
4254  bool IsMove = false;
4255
4256  bool ConstArg = false;
4257
4258  switch (CSM) {
4259  case CXXDefaultConstructor:
4260    IsConstructor = true;
4261    break;
4262  case CXXCopyConstructor:
4263    IsConstructor = true;
4264    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4265    break;
4266  case CXXMoveConstructor:
4267    IsConstructor = true;
4268    IsMove = true;
4269    break;
4270  default:
4271    llvm_unreachable("function only currently implemented for default ctors");
4272  }
4273
4274  SourceLocation Loc = MD->getLocation();
4275
4276  // Do access control from the special member function
4277  ContextRAII MethodContext(*this, MD);
4278
4279  bool AllConst = true;
4280
4281  // We do this because we should never actually use an anonymous
4282  // union's constructor.
4283  if (IsUnion && RD->isAnonymousStructOrUnion())
4284    return false;
4285
4286  // FIXME: We should put some diagnostic logic right into this function.
4287
4288  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4289                                          BE = RD->bases_end();
4290       BI != BE; ++BI) {
4291    // We'll handle this one later
4292    if (BI->isVirtual())
4293      continue;
4294
4295    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4296    assert(BaseDecl && "base isn't a CXXRecordDecl");
4297
4298    // Unless we have an assignment operator, the base's destructor must
4299    // be accessible and not deleted.
4300    if (!IsAssignment) {
4301      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4302      if (BaseDtor->isDeleted())
4303        return true;
4304      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4305          AR_accessible)
4306        return true;
4307    }
4308
4309    // Finding the corresponding member in the base should lead to a
4310    // unique, accessible, non-deleted function. If we are doing
4311    // a destructor, we have already checked this case.
4312    if (CSM != CXXDestructor) {
4313      SpecialMemberOverloadResult *SMOR =
4314        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4315                            false);
4316      if (!SMOR->hasSuccess())
4317        return true;
4318      CXXMethodDecl *BaseMember = SMOR->getMethod();
4319      if (IsConstructor) {
4320        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4321        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4322                                   PDiag()) != AR_accessible)
4323          return true;
4324
4325        // For a move operation, the corresponding operation must actually
4326        // be a move operation (and not a copy selected by overload
4327        // resolution) unless we are working on a trivially copyable class.
4328        if (IsMove && !BaseCtor->isMoveConstructor() &&
4329            !BaseDecl->isTriviallyCopyable())
4330          return true;
4331      }
4332    }
4333  }
4334
4335  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4336                                          BE = RD->vbases_end();
4337       BI != BE; ++BI) {
4338    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4339    assert(BaseDecl && "base isn't a CXXRecordDecl");
4340
4341    // Unless we have an assignment operator, the base's destructor must
4342    // be accessible and not deleted.
4343    if (!IsAssignment) {
4344      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4345      if (BaseDtor->isDeleted())
4346        return true;
4347      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4348          AR_accessible)
4349        return true;
4350    }
4351
4352    // Finding the corresponding member in the base should lead to a
4353    // unique, accessible, non-deleted function.
4354    if (CSM != CXXDestructor) {
4355      SpecialMemberOverloadResult *SMOR =
4356        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4357                            false);
4358      if (!SMOR->hasSuccess())
4359        return true;
4360      CXXMethodDecl *BaseMember = SMOR->getMethod();
4361      if (IsConstructor) {
4362        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4363        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4364                                   PDiag()) != AR_accessible)
4365          return true;
4366
4367        // For a move operation, the corresponding operation must actually
4368        // be a move operation (and not a copy selected by overload
4369        // resolution) unless we are working on a trivially copyable class.
4370        if (IsMove && !BaseCtor->isMoveConstructor() &&
4371            !BaseDecl->isTriviallyCopyable())
4372          return true;
4373      }
4374    }
4375  }
4376
4377  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4378                                     FE = RD->field_end();
4379       FI != FE; ++FI) {
4380    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4381      continue;
4382
4383    QualType FieldType = Context.getBaseElementType(FI->getType());
4384    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4385
4386    // For a default constructor, all references must be initialized in-class
4387    // and, if a union, it must have a non-const member.
4388    if (CSM == CXXDefaultConstructor) {
4389      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4390        return true;
4391
4392      if (IsUnion && !FieldType.isConstQualified())
4393        AllConst = false;
4394    // For a copy constructor, data members must not be of rvalue reference
4395    // type.
4396    } else if (CSM == CXXCopyConstructor) {
4397      if (FieldType->isRValueReferenceType())
4398        return true;
4399    }
4400
4401    if (FieldRecord) {
4402      // For a default constructor, a const member must have a user-provided
4403      // default constructor or else be explicitly initialized.
4404      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4405          !FI->hasInClassInitializer() &&
4406          !FieldRecord->hasUserProvidedDefaultConstructor())
4407        return true;
4408
4409      // Some additional restrictions exist on the variant members.
4410      if (!IsUnion && FieldRecord->isUnion() &&
4411          FieldRecord->isAnonymousStructOrUnion()) {
4412        // We're okay to reuse AllConst here since we only care about the
4413        // value otherwise if we're in a union.
4414        AllConst = true;
4415
4416        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4417                                           UE = FieldRecord->field_end();
4418             UI != UE; ++UI) {
4419          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4420          CXXRecordDecl *UnionFieldRecord =
4421            UnionFieldType->getAsCXXRecordDecl();
4422
4423          if (!UnionFieldType.isConstQualified())
4424            AllConst = false;
4425
4426          if (UnionFieldRecord) {
4427            // FIXME: Checking for accessibility and validity of this
4428            //        destructor is technically going beyond the
4429            //        standard, but this is believed to be a defect.
4430            if (!IsAssignment) {
4431              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4432              if (FieldDtor->isDeleted())
4433                return true;
4434              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4435                  AR_accessible)
4436                return true;
4437              if (!FieldDtor->isTrivial())
4438                return true;
4439            }
4440
4441            if (CSM != CXXDestructor) {
4442              SpecialMemberOverloadResult *SMOR =
4443                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4444                                    false, false, false);
4445              // FIXME: Checking for accessibility and validity of this
4446              //        corresponding member is technically going beyond the
4447              //        standard, but this is believed to be a defect.
4448              if (!SMOR->hasSuccess())
4449                return true;
4450
4451              CXXMethodDecl *FieldMember = SMOR->getMethod();
4452              // A member of a union must have a trivial corresponding
4453              // constructor.
4454              if (!FieldMember->isTrivial())
4455                return true;
4456
4457              if (IsConstructor) {
4458                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4459                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4460                                           PDiag()) != AR_accessible)
4461                return true;
4462              }
4463            }
4464          }
4465        }
4466
4467        // At least one member in each anonymous union must be non-const
4468        if (CSM == CXXDefaultConstructor && AllConst)
4469          return true;
4470
4471        // Don't try to initialize the anonymous union
4472        // This is technically non-conformant, but sanity demands it.
4473        continue;
4474      }
4475
4476      // Unless we're doing assignment, the field's destructor must be
4477      // accessible and not deleted.
4478      if (!IsAssignment) {
4479        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4480        if (FieldDtor->isDeleted())
4481          return true;
4482        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4483            AR_accessible)
4484          return true;
4485      }
4486
4487      // Check that the corresponding member of the field is accessible,
4488      // unique, and non-deleted. We don't do this if it has an explicit
4489      // initialization when default-constructing.
4490      if (CSM != CXXDestructor &&
4491          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4492        SpecialMemberOverloadResult *SMOR =
4493          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4494                              false);
4495        if (!SMOR->hasSuccess())
4496          return true;
4497
4498        CXXMethodDecl *FieldMember = SMOR->getMethod();
4499        if (IsConstructor) {
4500          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4501          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4502                                     PDiag()) != AR_accessible)
4503          return true;
4504
4505          // For a move operation, the corresponding operation must actually
4506          // be a move operation (and not a copy selected by overload
4507          // resolution) unless we are working on a trivially copyable class.
4508          if (IsMove && !FieldCtor->isMoveConstructor() &&
4509              !FieldRecord->isTriviallyCopyable())
4510            return true;
4511        }
4512
4513        // We need the corresponding member of a union to be trivial so that
4514        // we can safely copy them all simultaneously.
4515        // FIXME: Note that performing the check here (where we rely on the lack
4516        // of an in-class initializer) is technically ill-formed. However, this
4517        // seems most obviously to be a bug in the standard.
4518        if (IsUnion && !FieldMember->isTrivial())
4519          return true;
4520      }
4521    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4522               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4523      // We can't initialize a const member of non-class type to any value.
4524      return true;
4525    }
4526  }
4527
4528  // We can't have all const members in a union when default-constructing,
4529  // or else they're all nonsensical garbage values that can't be changed.
4530  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4531    return true;
4532
4533  return false;
4534}
4535
4536bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4537  CXXRecordDecl *RD = MD->getParent();
4538  assert(!RD->isDependentType() && "do deletion after instantiation");
4539  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4540    return false;
4541
4542  SourceLocation Loc = MD->getLocation();
4543
4544  // Do access control from the constructor
4545  ContextRAII MethodContext(*this, MD);
4546
4547  bool Union = RD->isUnion();
4548
4549  unsigned ArgQuals =
4550    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4551      Qualifiers::Const : 0;
4552
4553  // We do this because we should never actually use an anonymous
4554  // union's constructor.
4555  if (Union && RD->isAnonymousStructOrUnion())
4556    return false;
4557
4558  // FIXME: We should put some diagnostic logic right into this function.
4559
4560  // C++0x [class.copy]/20
4561  //    A defaulted [copy] assignment operator for class X is defined as deleted
4562  //    if X has:
4563
4564  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4565                                          BE = RD->bases_end();
4566       BI != BE; ++BI) {
4567    // We'll handle this one later
4568    if (BI->isVirtual())
4569      continue;
4570
4571    QualType BaseType = BI->getType();
4572    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4573    assert(BaseDecl && "base isn't a CXXRecordDecl");
4574
4575    // -- a [direct base class] B that cannot be [copied] because overload
4576    //    resolution, as applied to B's [copy] assignment operator, results in
4577    //    an ambiguity or a function that is deleted or inaccessible from the
4578    //    assignment operator
4579    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4580                                                      0);
4581    if (!CopyOper || CopyOper->isDeleted())
4582      return true;
4583    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4584      return true;
4585  }
4586
4587  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4588                                          BE = RD->vbases_end();
4589       BI != BE; ++BI) {
4590    QualType BaseType = BI->getType();
4591    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4592    assert(BaseDecl && "base isn't a CXXRecordDecl");
4593
4594    // -- a [virtual base class] B that cannot be [copied] because overload
4595    //    resolution, as applied to B's [copy] assignment operator, results in
4596    //    an ambiguity or a function that is deleted or inaccessible from the
4597    //    assignment operator
4598    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4599                                                      0);
4600    if (!CopyOper || CopyOper->isDeleted())
4601      return true;
4602    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4603      return true;
4604  }
4605
4606  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4607                                     FE = RD->field_end();
4608       FI != FE; ++FI) {
4609    if (FI->isUnnamedBitfield())
4610      continue;
4611
4612    QualType FieldType = Context.getBaseElementType(FI->getType());
4613
4614    // -- a non-static data member of reference type
4615    if (FieldType->isReferenceType())
4616      return true;
4617
4618    // -- a non-static data member of const non-class type (or array thereof)
4619    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4620      return true;
4621
4622    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4623
4624    if (FieldRecord) {
4625      // This is an anonymous union
4626      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4627        // Anonymous unions inside unions do not variant members create
4628        if (!Union) {
4629          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4630                                             UE = FieldRecord->field_end();
4631               UI != UE; ++UI) {
4632            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4633            CXXRecordDecl *UnionFieldRecord =
4634              UnionFieldType->getAsCXXRecordDecl();
4635
4636            // -- a variant member with a non-trivial [copy] assignment operator
4637            //    and X is a union-like class
4638            if (UnionFieldRecord &&
4639                !UnionFieldRecord->hasTrivialCopyAssignment())
4640              return true;
4641          }
4642        }
4643
4644        // Don't try to initalize an anonymous union
4645        continue;
4646      // -- a variant member with a non-trivial [copy] assignment operator
4647      //    and X is a union-like class
4648      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4649          return true;
4650      }
4651
4652      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4653                                                        false, 0);
4654      if (!CopyOper || CopyOper->isDeleted())
4655        return true;
4656      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4657        return true;
4658    }
4659  }
4660
4661  return false;
4662}
4663
4664bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4665  CXXRecordDecl *RD = MD->getParent();
4666  assert(!RD->isDependentType() && "do deletion after instantiation");
4667  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4668    return false;
4669
4670  SourceLocation Loc = MD->getLocation();
4671
4672  // Do access control from the constructor
4673  ContextRAII MethodContext(*this, MD);
4674
4675  bool Union = RD->isUnion();
4676
4677  // We do this because we should never actually use an anonymous
4678  // union's constructor.
4679  if (Union && RD->isAnonymousStructOrUnion())
4680    return false;
4681
4682  // C++0x [class.copy]/20
4683  //    A defaulted [move] assignment operator for class X is defined as deleted
4684  //    if X has:
4685
4686  //    -- for the move constructor, [...] any direct or indirect virtual base
4687  //       class.
4688  if (RD->getNumVBases() != 0)
4689    return true;
4690
4691  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4692                                          BE = RD->bases_end();
4693       BI != BE; ++BI) {
4694
4695    QualType BaseType = BI->getType();
4696    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4697    assert(BaseDecl && "base isn't a CXXRecordDecl");
4698
4699    // -- a [direct base class] B that cannot be [moved] because overload
4700    //    resolution, as applied to B's [move] assignment operator, results in
4701    //    an ambiguity or a function that is deleted or inaccessible from the
4702    //    assignment operator
4703    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4704    if (!MoveOper || MoveOper->isDeleted())
4705      return true;
4706    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4707      return true;
4708
4709    // -- for the move assignment operator, a [direct base class] with a type
4710    //    that does not have a move assignment operator and is not trivially
4711    //    copyable.
4712    if (!MoveOper->isMoveAssignmentOperator() &&
4713        !BaseDecl->isTriviallyCopyable())
4714      return true;
4715  }
4716
4717  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4718                                     FE = RD->field_end();
4719       FI != FE; ++FI) {
4720    if (FI->isUnnamedBitfield())
4721      continue;
4722
4723    QualType FieldType = Context.getBaseElementType(FI->getType());
4724
4725    // -- a non-static data member of reference type
4726    if (FieldType->isReferenceType())
4727      return true;
4728
4729    // -- a non-static data member of const non-class type (or array thereof)
4730    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4731      return true;
4732
4733    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4734
4735    if (FieldRecord) {
4736      // This is an anonymous union
4737      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4738        // Anonymous unions inside unions do not variant members create
4739        if (!Union) {
4740          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4741                                             UE = FieldRecord->field_end();
4742               UI != UE; ++UI) {
4743            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4744            CXXRecordDecl *UnionFieldRecord =
4745              UnionFieldType->getAsCXXRecordDecl();
4746
4747            // -- a variant member with a non-trivial [move] assignment operator
4748            //    and X is a union-like class
4749            if (UnionFieldRecord &&
4750                !UnionFieldRecord->hasTrivialMoveAssignment())
4751              return true;
4752          }
4753        }
4754
4755        // Don't try to initalize an anonymous union
4756        continue;
4757      // -- a variant member with a non-trivial [move] assignment operator
4758      //    and X is a union-like class
4759      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4760          return true;
4761      }
4762
4763      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4764      if (!MoveOper || MoveOper->isDeleted())
4765        return true;
4766      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4767        return true;
4768
4769      // -- for the move assignment operator, a [non-static data member] with a
4770      //    type that does not have a move assignment operator and is not
4771      //    trivially copyable.
4772      if (!MoveOper->isMoveAssignmentOperator() &&
4773          !FieldRecord->isTriviallyCopyable())
4774        return true;
4775    }
4776  }
4777
4778  return false;
4779}
4780
4781bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4782  CXXRecordDecl *RD = DD->getParent();
4783  assert(!RD->isDependentType() && "do deletion after instantiation");
4784  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4785    return false;
4786
4787  SourceLocation Loc = DD->getLocation();
4788
4789  // Do access control from the destructor
4790  ContextRAII CtorContext(*this, DD);
4791
4792  bool Union = RD->isUnion();
4793
4794  // We do this because we should never actually use an anonymous
4795  // union's destructor.
4796  if (Union && RD->isAnonymousStructOrUnion())
4797    return false;
4798
4799  // C++0x [class.dtor]p5
4800  //    A defaulted destructor for a class X is defined as deleted if:
4801  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4802                                          BE = RD->bases_end();
4803       BI != BE; ++BI) {
4804    // We'll handle this one later
4805    if (BI->isVirtual())
4806      continue;
4807
4808    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4809    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4810    assert(BaseDtor && "base has no destructor");
4811
4812    // -- any direct or virtual base class has a deleted destructor or
4813    //    a destructor that is inaccessible from the defaulted destructor
4814    if (BaseDtor->isDeleted())
4815      return true;
4816    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4817        AR_accessible)
4818      return true;
4819  }
4820
4821  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4822                                          BE = RD->vbases_end();
4823       BI != BE; ++BI) {
4824    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4825    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4826    assert(BaseDtor && "base has no destructor");
4827
4828    // -- any direct or virtual base class has a deleted destructor or
4829    //    a destructor that is inaccessible from the defaulted destructor
4830    if (BaseDtor->isDeleted())
4831      return true;
4832    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4833        AR_accessible)
4834      return true;
4835  }
4836
4837  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4838                                     FE = RD->field_end();
4839       FI != FE; ++FI) {
4840    QualType FieldType = Context.getBaseElementType(FI->getType());
4841    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4842    if (FieldRecord) {
4843      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4844         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4845                                            UE = FieldRecord->field_end();
4846              UI != UE; ++UI) {
4847           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4848           CXXRecordDecl *UnionFieldRecord =
4849             UnionFieldType->getAsCXXRecordDecl();
4850
4851           // -- X is a union-like class that has a variant member with a non-
4852           //    trivial destructor.
4853           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4854             return true;
4855         }
4856      // Technically we are supposed to do this next check unconditionally.
4857      // But that makes absolutely no sense.
4858      } else {
4859        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4860
4861        // -- any of the non-static data members has class type M (or array
4862        //    thereof) and M has a deleted destructor or a destructor that is
4863        //    inaccessible from the defaulted destructor
4864        if (FieldDtor->isDeleted())
4865          return true;
4866        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4867          AR_accessible)
4868        return true;
4869
4870        // -- X is a union-like class that has a variant member with a non-
4871        //    trivial destructor.
4872        if (Union && !FieldDtor->isTrivial())
4873          return true;
4874      }
4875    }
4876  }
4877
4878  if (DD->isVirtual()) {
4879    FunctionDecl *OperatorDelete = 0;
4880    DeclarationName Name =
4881      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4882    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4883          false))
4884      return true;
4885  }
4886
4887
4888  return false;
4889}
4890
4891/// \brief Data used with FindHiddenVirtualMethod
4892namespace {
4893  struct FindHiddenVirtualMethodData {
4894    Sema *S;
4895    CXXMethodDecl *Method;
4896    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4897    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4898  };
4899}
4900
4901/// \brief Member lookup function that determines whether a given C++
4902/// method overloads virtual methods in a base class without overriding any,
4903/// to be used with CXXRecordDecl::lookupInBases().
4904static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4905                                    CXXBasePath &Path,
4906                                    void *UserData) {
4907  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4908
4909  FindHiddenVirtualMethodData &Data
4910    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4911
4912  DeclarationName Name = Data.Method->getDeclName();
4913  assert(Name.getNameKind() == DeclarationName::Identifier);
4914
4915  bool foundSameNameMethod = false;
4916  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4917  for (Path.Decls = BaseRecord->lookup(Name);
4918       Path.Decls.first != Path.Decls.second;
4919       ++Path.Decls.first) {
4920    NamedDecl *D = *Path.Decls.first;
4921    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4922      MD = MD->getCanonicalDecl();
4923      foundSameNameMethod = true;
4924      // Interested only in hidden virtual methods.
4925      if (!MD->isVirtual())
4926        continue;
4927      // If the method we are checking overrides a method from its base
4928      // don't warn about the other overloaded methods.
4929      if (!Data.S->IsOverload(Data.Method, MD, false))
4930        return true;
4931      // Collect the overload only if its hidden.
4932      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4933        overloadedMethods.push_back(MD);
4934    }
4935  }
4936
4937  if (foundSameNameMethod)
4938    Data.OverloadedMethods.append(overloadedMethods.begin(),
4939                                   overloadedMethods.end());
4940  return foundSameNameMethod;
4941}
4942
4943/// \brief See if a method overloads virtual methods in a base class without
4944/// overriding any.
4945void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4946  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4947                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4948    return;
4949  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4950    return;
4951
4952  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4953                     /*bool RecordPaths=*/false,
4954                     /*bool DetectVirtual=*/false);
4955  FindHiddenVirtualMethodData Data;
4956  Data.Method = MD;
4957  Data.S = this;
4958
4959  // Keep the base methods that were overriden or introduced in the subclass
4960  // by 'using' in a set. A base method not in this set is hidden.
4961  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4962       res.first != res.second; ++res.first) {
4963    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4964      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4965                                          E = MD->end_overridden_methods();
4966           I != E; ++I)
4967        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4968    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4969      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4970        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4971  }
4972
4973  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4974      !Data.OverloadedMethods.empty()) {
4975    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4976      << MD << (Data.OverloadedMethods.size() > 1);
4977
4978    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4979      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4980      Diag(overloadedMD->getLocation(),
4981           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4982    }
4983  }
4984}
4985
4986void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4987                                             Decl *TagDecl,
4988                                             SourceLocation LBrac,
4989                                             SourceLocation RBrac,
4990                                             AttributeList *AttrList) {
4991  if (!TagDecl)
4992    return;
4993
4994  AdjustDeclIfTemplate(TagDecl);
4995
4996  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4997              // strict aliasing violation!
4998              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4999              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5000
5001  CheckCompletedCXXClass(
5002                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5003}
5004
5005/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5006/// special functions, such as the default constructor, copy
5007/// constructor, or destructor, to the given C++ class (C++
5008/// [special]p1).  This routine can only be executed just before the
5009/// definition of the class is complete.
5010void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5011  if (!ClassDecl->hasUserDeclaredConstructor())
5012    ++ASTContext::NumImplicitDefaultConstructors;
5013
5014  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5015    ++ASTContext::NumImplicitCopyConstructors;
5016
5017  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
5018    ++ASTContext::NumImplicitMoveConstructors;
5019
5020  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5021    ++ASTContext::NumImplicitCopyAssignmentOperators;
5022
5023    // If we have a dynamic class, then the copy assignment operator may be
5024    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5025    // it shows up in the right place in the vtable and that we diagnose
5026    // problems with the implicit exception specification.
5027    if (ClassDecl->isDynamicClass())
5028      DeclareImplicitCopyAssignment(ClassDecl);
5029  }
5030
5031  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
5032    ++ASTContext::NumImplicitMoveAssignmentOperators;
5033
5034    // Likewise for the move assignment operator.
5035    if (ClassDecl->isDynamicClass())
5036      DeclareImplicitMoveAssignment(ClassDecl);
5037  }
5038
5039  if (!ClassDecl->hasUserDeclaredDestructor()) {
5040    ++ASTContext::NumImplicitDestructors;
5041
5042    // If we have a dynamic class, then the destructor may be virtual, so we
5043    // have to declare the destructor immediately. This ensures that, e.g., it
5044    // shows up in the right place in the vtable and that we diagnose problems
5045    // with the implicit exception specification.
5046    if (ClassDecl->isDynamicClass())
5047      DeclareImplicitDestructor(ClassDecl);
5048  }
5049}
5050
5051void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5052  if (!D)
5053    return;
5054
5055  int NumParamList = D->getNumTemplateParameterLists();
5056  for (int i = 0; i < NumParamList; i++) {
5057    TemplateParameterList* Params = D->getTemplateParameterList(i);
5058    for (TemplateParameterList::iterator Param = Params->begin(),
5059                                      ParamEnd = Params->end();
5060          Param != ParamEnd; ++Param) {
5061      NamedDecl *Named = cast<NamedDecl>(*Param);
5062      if (Named->getDeclName()) {
5063        S->AddDecl(Named);
5064        IdResolver.AddDecl(Named);
5065      }
5066    }
5067  }
5068}
5069
5070void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5071  if (!D)
5072    return;
5073
5074  TemplateParameterList *Params = 0;
5075  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5076    Params = Template->getTemplateParameters();
5077  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5078           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5079    Params = PartialSpec->getTemplateParameters();
5080  else
5081    return;
5082
5083  for (TemplateParameterList::iterator Param = Params->begin(),
5084                                    ParamEnd = Params->end();
5085       Param != ParamEnd; ++Param) {
5086    NamedDecl *Named = cast<NamedDecl>(*Param);
5087    if (Named->getDeclName()) {
5088      S->AddDecl(Named);
5089      IdResolver.AddDecl(Named);
5090    }
5091  }
5092}
5093
5094void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5095  if (!RecordD) return;
5096  AdjustDeclIfTemplate(RecordD);
5097  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5098  PushDeclContext(S, Record);
5099}
5100
5101void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5102  if (!RecordD) return;
5103  PopDeclContext();
5104}
5105
5106/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5107/// parsing a top-level (non-nested) C++ class, and we are now
5108/// parsing those parts of the given Method declaration that could
5109/// not be parsed earlier (C++ [class.mem]p2), such as default
5110/// arguments. This action should enter the scope of the given
5111/// Method declaration as if we had just parsed the qualified method
5112/// name. However, it should not bring the parameters into scope;
5113/// that will be performed by ActOnDelayedCXXMethodParameter.
5114void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5115}
5116
5117/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5118/// C++ method declaration. We're (re-)introducing the given
5119/// function parameter into scope for use in parsing later parts of
5120/// the method declaration. For example, we could see an
5121/// ActOnParamDefaultArgument event for this parameter.
5122void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5123  if (!ParamD)
5124    return;
5125
5126  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5127
5128  // If this parameter has an unparsed default argument, clear it out
5129  // to make way for the parsed default argument.
5130  if (Param->hasUnparsedDefaultArg())
5131    Param->setDefaultArg(0);
5132
5133  S->AddDecl(Param);
5134  if (Param->getDeclName())
5135    IdResolver.AddDecl(Param);
5136}
5137
5138/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5139/// processing the delayed method declaration for Method. The method
5140/// declaration is now considered finished. There may be a separate
5141/// ActOnStartOfFunctionDef action later (not necessarily
5142/// immediately!) for this method, if it was also defined inside the
5143/// class body.
5144void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5145  if (!MethodD)
5146    return;
5147
5148  AdjustDeclIfTemplate(MethodD);
5149
5150  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5151
5152  // Now that we have our default arguments, check the constructor
5153  // again. It could produce additional diagnostics or affect whether
5154  // the class has implicitly-declared destructors, among other
5155  // things.
5156  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5157    CheckConstructor(Constructor);
5158
5159  // Check the default arguments, which we may have added.
5160  if (!Method->isInvalidDecl())
5161    CheckCXXDefaultArguments(Method);
5162}
5163
5164/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5165/// the well-formedness of the constructor declarator @p D with type @p
5166/// R. If there are any errors in the declarator, this routine will
5167/// emit diagnostics and set the invalid bit to true.  In any case, the type
5168/// will be updated to reflect a well-formed type for the constructor and
5169/// returned.
5170QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5171                                          StorageClass &SC) {
5172  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5173
5174  // C++ [class.ctor]p3:
5175  //   A constructor shall not be virtual (10.3) or static (9.4). A
5176  //   constructor can be invoked for a const, volatile or const
5177  //   volatile object. A constructor shall not be declared const,
5178  //   volatile, or const volatile (9.3.2).
5179  if (isVirtual) {
5180    if (!D.isInvalidType())
5181      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5182        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5183        << SourceRange(D.getIdentifierLoc());
5184    D.setInvalidType();
5185  }
5186  if (SC == SC_Static) {
5187    if (!D.isInvalidType())
5188      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5189        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5190        << SourceRange(D.getIdentifierLoc());
5191    D.setInvalidType();
5192    SC = SC_None;
5193  }
5194
5195  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5196  if (FTI.TypeQuals != 0) {
5197    if (FTI.TypeQuals & Qualifiers::Const)
5198      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5199        << "const" << SourceRange(D.getIdentifierLoc());
5200    if (FTI.TypeQuals & Qualifiers::Volatile)
5201      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5202        << "volatile" << SourceRange(D.getIdentifierLoc());
5203    if (FTI.TypeQuals & Qualifiers::Restrict)
5204      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5205        << "restrict" << SourceRange(D.getIdentifierLoc());
5206    D.setInvalidType();
5207  }
5208
5209  // C++0x [class.ctor]p4:
5210  //   A constructor shall not be declared with a ref-qualifier.
5211  if (FTI.hasRefQualifier()) {
5212    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5213      << FTI.RefQualifierIsLValueRef
5214      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5215    D.setInvalidType();
5216  }
5217
5218  // Rebuild the function type "R" without any type qualifiers (in
5219  // case any of the errors above fired) and with "void" as the
5220  // return type, since constructors don't have return types.
5221  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5222  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5223    return R;
5224
5225  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5226  EPI.TypeQuals = 0;
5227  EPI.RefQualifier = RQ_None;
5228
5229  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5230                                 Proto->getNumArgs(), EPI);
5231}
5232
5233/// CheckConstructor - Checks a fully-formed constructor for
5234/// well-formedness, issuing any diagnostics required. Returns true if
5235/// the constructor declarator is invalid.
5236void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5237  CXXRecordDecl *ClassDecl
5238    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5239  if (!ClassDecl)
5240    return Constructor->setInvalidDecl();
5241
5242  // C++ [class.copy]p3:
5243  //   A declaration of a constructor for a class X is ill-formed if
5244  //   its first parameter is of type (optionally cv-qualified) X and
5245  //   either there are no other parameters or else all other
5246  //   parameters have default arguments.
5247  if (!Constructor->isInvalidDecl() &&
5248      ((Constructor->getNumParams() == 1) ||
5249       (Constructor->getNumParams() > 1 &&
5250        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5251      Constructor->getTemplateSpecializationKind()
5252                                              != TSK_ImplicitInstantiation) {
5253    QualType ParamType = Constructor->getParamDecl(0)->getType();
5254    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5255    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5256      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5257      const char *ConstRef
5258        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5259                                                        : " const &";
5260      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5261        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5262
5263      // FIXME: Rather that making the constructor invalid, we should endeavor
5264      // to fix the type.
5265      Constructor->setInvalidDecl();
5266    }
5267  }
5268}
5269
5270/// CheckDestructor - Checks a fully-formed destructor definition for
5271/// well-formedness, issuing any diagnostics required.  Returns true
5272/// on error.
5273bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5274  CXXRecordDecl *RD = Destructor->getParent();
5275
5276  if (Destructor->isVirtual()) {
5277    SourceLocation Loc;
5278
5279    if (!Destructor->isImplicit())
5280      Loc = Destructor->getLocation();
5281    else
5282      Loc = RD->getLocation();
5283
5284    // If we have a virtual destructor, look up the deallocation function
5285    FunctionDecl *OperatorDelete = 0;
5286    DeclarationName Name =
5287    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5288    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5289      return true;
5290
5291    MarkDeclarationReferenced(Loc, OperatorDelete);
5292
5293    Destructor->setOperatorDelete(OperatorDelete);
5294  }
5295
5296  return false;
5297}
5298
5299static inline bool
5300FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5301  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5302          FTI.ArgInfo[0].Param &&
5303          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5304}
5305
5306/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5307/// the well-formednes of the destructor declarator @p D with type @p
5308/// R. If there are any errors in the declarator, this routine will
5309/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5310/// will be updated to reflect a well-formed type for the destructor and
5311/// returned.
5312QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5313                                         StorageClass& SC) {
5314  // C++ [class.dtor]p1:
5315  //   [...] A typedef-name that names a class is a class-name
5316  //   (7.1.3); however, a typedef-name that names a class shall not
5317  //   be used as the identifier in the declarator for a destructor
5318  //   declaration.
5319  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5320  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5321    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5322      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5323  else if (const TemplateSpecializationType *TST =
5324             DeclaratorType->getAs<TemplateSpecializationType>())
5325    if (TST->isTypeAlias())
5326      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5327        << DeclaratorType << 1;
5328
5329  // C++ [class.dtor]p2:
5330  //   A destructor is used to destroy objects of its class type. A
5331  //   destructor takes no parameters, and no return type can be
5332  //   specified for it (not even void). The address of a destructor
5333  //   shall not be taken. A destructor shall not be static. A
5334  //   destructor can be invoked for a const, volatile or const
5335  //   volatile object. A destructor shall not be declared const,
5336  //   volatile or const volatile (9.3.2).
5337  if (SC == SC_Static) {
5338    if (!D.isInvalidType())
5339      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5340        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5341        << SourceRange(D.getIdentifierLoc())
5342        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5343
5344    SC = SC_None;
5345  }
5346  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5347    // Destructors don't have return types, but the parser will
5348    // happily parse something like:
5349    //
5350    //   class X {
5351    //     float ~X();
5352    //   };
5353    //
5354    // The return type will be eliminated later.
5355    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5356      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5357      << SourceRange(D.getIdentifierLoc());
5358  }
5359
5360  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5361  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5362    if (FTI.TypeQuals & Qualifiers::Const)
5363      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5364        << "const" << SourceRange(D.getIdentifierLoc());
5365    if (FTI.TypeQuals & Qualifiers::Volatile)
5366      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5367        << "volatile" << SourceRange(D.getIdentifierLoc());
5368    if (FTI.TypeQuals & Qualifiers::Restrict)
5369      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5370        << "restrict" << SourceRange(D.getIdentifierLoc());
5371    D.setInvalidType();
5372  }
5373
5374  // C++0x [class.dtor]p2:
5375  //   A destructor shall not be declared with a ref-qualifier.
5376  if (FTI.hasRefQualifier()) {
5377    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5378      << FTI.RefQualifierIsLValueRef
5379      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5380    D.setInvalidType();
5381  }
5382
5383  // Make sure we don't have any parameters.
5384  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5385    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5386
5387    // Delete the parameters.
5388    FTI.freeArgs();
5389    D.setInvalidType();
5390  }
5391
5392  // Make sure the destructor isn't variadic.
5393  if (FTI.isVariadic) {
5394    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5395    D.setInvalidType();
5396  }
5397
5398  // Rebuild the function type "R" without any type qualifiers or
5399  // parameters (in case any of the errors above fired) and with
5400  // "void" as the return type, since destructors don't have return
5401  // types.
5402  if (!D.isInvalidType())
5403    return R;
5404
5405  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5406  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5407  EPI.Variadic = false;
5408  EPI.TypeQuals = 0;
5409  EPI.RefQualifier = RQ_None;
5410  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5411}
5412
5413/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5414/// well-formednes of the conversion function declarator @p D with
5415/// type @p R. If there are any errors in the declarator, this routine
5416/// will emit diagnostics and return true. Otherwise, it will return
5417/// false. Either way, the type @p R will be updated to reflect a
5418/// well-formed type for the conversion operator.
5419void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5420                                     StorageClass& SC) {
5421  // C++ [class.conv.fct]p1:
5422  //   Neither parameter types nor return type can be specified. The
5423  //   type of a conversion function (8.3.5) is "function taking no
5424  //   parameter returning conversion-type-id."
5425  if (SC == SC_Static) {
5426    if (!D.isInvalidType())
5427      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5428        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5429        << SourceRange(D.getIdentifierLoc());
5430    D.setInvalidType();
5431    SC = SC_None;
5432  }
5433
5434  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5435
5436  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5437    // Conversion functions don't have return types, but the parser will
5438    // happily parse something like:
5439    //
5440    //   class X {
5441    //     float operator bool();
5442    //   };
5443    //
5444    // The return type will be changed later anyway.
5445    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5446      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5447      << SourceRange(D.getIdentifierLoc());
5448    D.setInvalidType();
5449  }
5450
5451  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5452
5453  // Make sure we don't have any parameters.
5454  if (Proto->getNumArgs() > 0) {
5455    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5456
5457    // Delete the parameters.
5458    D.getFunctionTypeInfo().freeArgs();
5459    D.setInvalidType();
5460  } else if (Proto->isVariadic()) {
5461    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5462    D.setInvalidType();
5463  }
5464
5465  // Diagnose "&operator bool()" and other such nonsense.  This
5466  // is actually a gcc extension which we don't support.
5467  if (Proto->getResultType() != ConvType) {
5468    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5469      << Proto->getResultType();
5470    D.setInvalidType();
5471    ConvType = Proto->getResultType();
5472  }
5473
5474  // C++ [class.conv.fct]p4:
5475  //   The conversion-type-id shall not represent a function type nor
5476  //   an array type.
5477  if (ConvType->isArrayType()) {
5478    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5479    ConvType = Context.getPointerType(ConvType);
5480    D.setInvalidType();
5481  } else if (ConvType->isFunctionType()) {
5482    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5483    ConvType = Context.getPointerType(ConvType);
5484    D.setInvalidType();
5485  }
5486
5487  // Rebuild the function type "R" without any parameters (in case any
5488  // of the errors above fired) and with the conversion type as the
5489  // return type.
5490  if (D.isInvalidType())
5491    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5492
5493  // C++0x explicit conversion operators.
5494  if (D.getDeclSpec().isExplicitSpecified())
5495    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5496         getLangOptions().CPlusPlus0x ?
5497           diag::warn_cxx98_compat_explicit_conversion_functions :
5498           diag::ext_explicit_conversion_functions)
5499      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5500}
5501
5502/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5503/// the declaration of the given C++ conversion function. This routine
5504/// is responsible for recording the conversion function in the C++
5505/// class, if possible.
5506Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5507  assert(Conversion && "Expected to receive a conversion function declaration");
5508
5509  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5510
5511  // Make sure we aren't redeclaring the conversion function.
5512  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5513
5514  // C++ [class.conv.fct]p1:
5515  //   [...] A conversion function is never used to convert a
5516  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5517  //   same object type (or a reference to it), to a (possibly
5518  //   cv-qualified) base class of that type (or a reference to it),
5519  //   or to (possibly cv-qualified) void.
5520  // FIXME: Suppress this warning if the conversion function ends up being a
5521  // virtual function that overrides a virtual function in a base class.
5522  QualType ClassType
5523    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5524  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5525    ConvType = ConvTypeRef->getPointeeType();
5526  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5527      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5528    /* Suppress diagnostics for instantiations. */;
5529  else if (ConvType->isRecordType()) {
5530    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5531    if (ConvType == ClassType)
5532      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5533        << ClassType;
5534    else if (IsDerivedFrom(ClassType, ConvType))
5535      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5536        <<  ClassType << ConvType;
5537  } else if (ConvType->isVoidType()) {
5538    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5539      << ClassType << ConvType;
5540  }
5541
5542  if (FunctionTemplateDecl *ConversionTemplate
5543                                = Conversion->getDescribedFunctionTemplate())
5544    return ConversionTemplate;
5545
5546  return Conversion;
5547}
5548
5549//===----------------------------------------------------------------------===//
5550// Namespace Handling
5551//===----------------------------------------------------------------------===//
5552
5553
5554
5555/// ActOnStartNamespaceDef - This is called at the start of a namespace
5556/// definition.
5557Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5558                                   SourceLocation InlineLoc,
5559                                   SourceLocation NamespaceLoc,
5560                                   SourceLocation IdentLoc,
5561                                   IdentifierInfo *II,
5562                                   SourceLocation LBrace,
5563                                   AttributeList *AttrList) {
5564  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5565  // For anonymous namespace, take the location of the left brace.
5566  SourceLocation Loc = II ? IdentLoc : LBrace;
5567  bool IsInline = InlineLoc.isValid();
5568  bool IsInvalid = false;
5569  bool IsStd = false;
5570  bool AddToKnown = false;
5571  Scope *DeclRegionScope = NamespcScope->getParent();
5572
5573  NamespaceDecl *PrevNS = 0;
5574  if (II) {
5575    // C++ [namespace.def]p2:
5576    //   The identifier in an original-namespace-definition shall not
5577    //   have been previously defined in the declarative region in
5578    //   which the original-namespace-definition appears. The
5579    //   identifier in an original-namespace-definition is the name of
5580    //   the namespace. Subsequently in that declarative region, it is
5581    //   treated as an original-namespace-name.
5582    //
5583    // Since namespace names are unique in their scope, and we don't
5584    // look through using directives, just look for any ordinary names.
5585
5586    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5587    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5588    Decl::IDNS_Namespace;
5589    NamedDecl *PrevDecl = 0;
5590    for (DeclContext::lookup_result R
5591         = CurContext->getRedeclContext()->lookup(II);
5592         R.first != R.second; ++R.first) {
5593      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5594        PrevDecl = *R.first;
5595        break;
5596      }
5597    }
5598
5599    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5600
5601    if (PrevNS) {
5602      // This is an extended namespace definition.
5603      if (IsInline != PrevNS->isInline()) {
5604        // inline-ness must match
5605        if (PrevNS->isInline()) {
5606          // The user probably just forgot the 'inline', so suggest that it
5607          // be added back.
5608          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5609            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5610        } else {
5611          Diag(Loc, diag::err_inline_namespace_mismatch)
5612            << IsInline;
5613        }
5614        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5615
5616        IsInline = PrevNS->isInline();
5617      }
5618    } else if (PrevDecl) {
5619      // This is an invalid name redefinition.
5620      Diag(Loc, diag::err_redefinition_different_kind)
5621        << II;
5622      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5623      IsInvalid = true;
5624      // Continue on to push Namespc as current DeclContext and return it.
5625    } else if (II->isStr("std") &&
5626               CurContext->getRedeclContext()->isTranslationUnit()) {
5627      // This is the first "real" definition of the namespace "std", so update
5628      // our cache of the "std" namespace to point at this definition.
5629      PrevNS = getStdNamespace();
5630      IsStd = true;
5631      AddToKnown = !IsInline;
5632    } else {
5633      // We've seen this namespace for the first time.
5634      AddToKnown = !IsInline;
5635    }
5636  } else {
5637    // Anonymous namespaces.
5638
5639    // Determine whether the parent already has an anonymous namespace.
5640    DeclContext *Parent = CurContext->getRedeclContext();
5641    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5642      PrevNS = TU->getAnonymousNamespace();
5643    } else {
5644      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5645      PrevNS = ND->getAnonymousNamespace();
5646    }
5647
5648    if (PrevNS && IsInline != PrevNS->isInline()) {
5649      // inline-ness must match
5650      Diag(Loc, diag::err_inline_namespace_mismatch)
5651        << IsInline;
5652      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5653
5654      // Recover by ignoring the new namespace's inline status.
5655      IsInline = PrevNS->isInline();
5656    }
5657  }
5658
5659  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5660                                                 StartLoc, Loc, II, PrevNS);
5661  if (IsInvalid)
5662    Namespc->setInvalidDecl();
5663
5664  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5665
5666  // FIXME: Should we be merging attributes?
5667  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5668    PushNamespaceVisibilityAttr(Attr);
5669
5670  if (IsStd)
5671    StdNamespace = Namespc;
5672  if (AddToKnown)
5673    KnownNamespaces[Namespc] = false;
5674
5675  if (II) {
5676    PushOnScopeChains(Namespc, DeclRegionScope);
5677  } else {
5678    // Link the anonymous namespace into its parent.
5679    DeclContext *Parent = CurContext->getRedeclContext();
5680    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5681      TU->setAnonymousNamespace(Namespc);
5682    } else {
5683      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5684    }
5685
5686    CurContext->addDecl(Namespc);
5687
5688    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5689    //   behaves as if it were replaced by
5690    //     namespace unique { /* empty body */ }
5691    //     using namespace unique;
5692    //     namespace unique { namespace-body }
5693    //   where all occurrences of 'unique' in a translation unit are
5694    //   replaced by the same identifier and this identifier differs
5695    //   from all other identifiers in the entire program.
5696
5697    // We just create the namespace with an empty name and then add an
5698    // implicit using declaration, just like the standard suggests.
5699    //
5700    // CodeGen enforces the "universally unique" aspect by giving all
5701    // declarations semantically contained within an anonymous
5702    // namespace internal linkage.
5703
5704    if (!PrevNS) {
5705      UsingDirectiveDecl* UD
5706        = UsingDirectiveDecl::Create(Context, CurContext,
5707                                     /* 'using' */ LBrace,
5708                                     /* 'namespace' */ SourceLocation(),
5709                                     /* qualifier */ NestedNameSpecifierLoc(),
5710                                     /* identifier */ SourceLocation(),
5711                                     Namespc,
5712                                     /* Ancestor */ CurContext);
5713      UD->setImplicit();
5714      CurContext->addDecl(UD);
5715    }
5716  }
5717
5718  // Although we could have an invalid decl (i.e. the namespace name is a
5719  // redefinition), push it as current DeclContext and try to continue parsing.
5720  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5721  // for the namespace has the declarations that showed up in that particular
5722  // namespace definition.
5723  PushDeclContext(NamespcScope, Namespc);
5724  return Namespc;
5725}
5726
5727/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5728/// is a namespace alias, returns the namespace it points to.
5729static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5730  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5731    return AD->getNamespace();
5732  return dyn_cast_or_null<NamespaceDecl>(D);
5733}
5734
5735/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5736/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5737void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5738  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5739  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5740  Namespc->setRBraceLoc(RBrace);
5741  PopDeclContext();
5742  if (Namespc->hasAttr<VisibilityAttr>())
5743    PopPragmaVisibility();
5744}
5745
5746CXXRecordDecl *Sema::getStdBadAlloc() const {
5747  return cast_or_null<CXXRecordDecl>(
5748                                  StdBadAlloc.get(Context.getExternalSource()));
5749}
5750
5751NamespaceDecl *Sema::getStdNamespace() const {
5752  return cast_or_null<NamespaceDecl>(
5753                                 StdNamespace.get(Context.getExternalSource()));
5754}
5755
5756/// \brief Retrieve the special "std" namespace, which may require us to
5757/// implicitly define the namespace.
5758NamespaceDecl *Sema::getOrCreateStdNamespace() {
5759  if (!StdNamespace) {
5760    // The "std" namespace has not yet been defined, so build one implicitly.
5761    StdNamespace = NamespaceDecl::Create(Context,
5762                                         Context.getTranslationUnitDecl(),
5763                                         /*Inline=*/false,
5764                                         SourceLocation(), SourceLocation(),
5765                                         &PP.getIdentifierTable().get("std"),
5766                                         /*PrevDecl=*/0);
5767    getStdNamespace()->setImplicit(true);
5768  }
5769
5770  return getStdNamespace();
5771}
5772
5773bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5774  assert(getLangOptions().CPlusPlus &&
5775         "Looking for std::initializer_list outside of C++.");
5776
5777  // We're looking for implicit instantiations of
5778  // template <typename E> class std::initializer_list.
5779
5780  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5781    return false;
5782
5783  ClassTemplateDecl *Template = 0;
5784  const TemplateArgument *Arguments = 0;
5785
5786  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5787
5788    ClassTemplateSpecializationDecl *Specialization =
5789        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5790    if (!Specialization)
5791      return false;
5792
5793    if (Specialization->getSpecializationKind() != TSK_ImplicitInstantiation)
5794      return false;
5795
5796    Template = Specialization->getSpecializedTemplate();
5797    Arguments = Specialization->getTemplateArgs().data();
5798  } else if (const TemplateSpecializationType *TST =
5799                 Ty->getAs<TemplateSpecializationType>()) {
5800    Template = dyn_cast_or_null<ClassTemplateDecl>(
5801        TST->getTemplateName().getAsTemplateDecl());
5802    Arguments = TST->getArgs();
5803  }
5804  if (!Template)
5805    return false;
5806
5807  if (!StdInitializerList) {
5808    // Haven't recognized std::initializer_list yet, maybe this is it.
5809    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5810    if (TemplateClass->getIdentifier() !=
5811            &PP.getIdentifierTable().get("initializer_list") ||
5812        !TemplateClass->getDeclContext()->Equals(getStdNamespace()))
5813      return false;
5814    // This is a template called std::initializer_list, but is it the right
5815    // template?
5816    TemplateParameterList *Params = Template->getTemplateParameters();
5817    if (Params->size() != 1)
5818      return false;
5819    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5820      return false;
5821
5822    // It's the right template.
5823    StdInitializerList = Template;
5824  }
5825
5826  if (Template != StdInitializerList)
5827    return false;
5828
5829  // This is an instance of std::initializer_list. Find the argument type.
5830  if (Element)
5831    *Element = Arguments[0].getAsType();
5832  return true;
5833}
5834
5835static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5836  NamespaceDecl *Std = S.getStdNamespace();
5837  if (!Std) {
5838    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5839    return 0;
5840  }
5841
5842  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5843                      Loc, Sema::LookupOrdinaryName);
5844  if (!S.LookupQualifiedName(Result, Std)) {
5845    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5846    return 0;
5847  }
5848  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5849  if (!Template) {
5850    Result.suppressDiagnostics();
5851    // We found something weird. Complain about the first thing we found.
5852    NamedDecl *Found = *Result.begin();
5853    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5854    return 0;
5855  }
5856
5857  // We found some template called std::initializer_list. Now verify that it's
5858  // correct.
5859  TemplateParameterList *Params = Template->getTemplateParameters();
5860  if (Params->size() != 1 || !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5861    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5862    return 0;
5863  }
5864
5865  return Template;
5866}
5867
5868QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5869  if (!StdInitializerList) {
5870    StdInitializerList = LookupStdInitializerList(*this, Loc);
5871    if (!StdInitializerList)
5872      return QualType();
5873  }
5874
5875  TemplateArgumentListInfo Args(Loc, Loc);
5876  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5877                                       Context.getTrivialTypeSourceInfo(Element,
5878                                                                        Loc)));
5879  return Context.getCanonicalType(
5880      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5881}
5882
5883bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5884  // C++ [dcl.init.list]p2:
5885  //   A constructor is an initializer-list constructor if its first parameter
5886  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5887  //   std::initializer_list<E> for some type E, and either there are no other
5888  //   parameters or else all other parameters have default arguments.
5889  if (Ctor->getNumParams() < 1 ||
5890      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5891    return false;
5892
5893  QualType ArgType = Ctor->getParamDecl(0)->getType();
5894  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5895    ArgType = RT->getPointeeType().getUnqualifiedType();
5896
5897  return isStdInitializerList(ArgType, 0);
5898}
5899
5900/// \brief Determine whether a using statement is in a context where it will be
5901/// apply in all contexts.
5902static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5903  switch (CurContext->getDeclKind()) {
5904    case Decl::TranslationUnit:
5905      return true;
5906    case Decl::LinkageSpec:
5907      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5908    default:
5909      return false;
5910  }
5911}
5912
5913namespace {
5914
5915// Callback to only accept typo corrections that are namespaces.
5916class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5917 public:
5918  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5919    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5920      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5921    }
5922    return false;
5923  }
5924};
5925
5926}
5927
5928static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5929                                       CXXScopeSpec &SS,
5930                                       SourceLocation IdentLoc,
5931                                       IdentifierInfo *Ident) {
5932  NamespaceValidatorCCC Validator;
5933  R.clear();
5934  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5935                                               R.getLookupKind(), Sc, &SS,
5936                                               &Validator)) {
5937    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5938    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5939    if (DeclContext *DC = S.computeDeclContext(SS, false))
5940      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5941        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5942        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5943    else
5944      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5945        << Ident << CorrectedQuotedStr
5946        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5947
5948    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5949         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5950
5951    Ident = Corrected.getCorrectionAsIdentifierInfo();
5952    R.addDecl(Corrected.getCorrectionDecl());
5953    return true;
5954  }
5955  return false;
5956}
5957
5958Decl *Sema::ActOnUsingDirective(Scope *S,
5959                                          SourceLocation UsingLoc,
5960                                          SourceLocation NamespcLoc,
5961                                          CXXScopeSpec &SS,
5962                                          SourceLocation IdentLoc,
5963                                          IdentifierInfo *NamespcName,
5964                                          AttributeList *AttrList) {
5965  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5966  assert(NamespcName && "Invalid NamespcName.");
5967  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5968
5969  // This can only happen along a recovery path.
5970  while (S->getFlags() & Scope::TemplateParamScope)
5971    S = S->getParent();
5972  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5973
5974  UsingDirectiveDecl *UDir = 0;
5975  NestedNameSpecifier *Qualifier = 0;
5976  if (SS.isSet())
5977    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5978
5979  // Lookup namespace name.
5980  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5981  LookupParsedName(R, S, &SS);
5982  if (R.isAmbiguous())
5983    return 0;
5984
5985  if (R.empty()) {
5986    R.clear();
5987    // Allow "using namespace std;" or "using namespace ::std;" even if
5988    // "std" hasn't been defined yet, for GCC compatibility.
5989    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5990        NamespcName->isStr("std")) {
5991      Diag(IdentLoc, diag::ext_using_undefined_std);
5992      R.addDecl(getOrCreateStdNamespace());
5993      R.resolveKind();
5994    }
5995    // Otherwise, attempt typo correction.
5996    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5997  }
5998
5999  if (!R.empty()) {
6000    NamedDecl *Named = R.getFoundDecl();
6001    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6002        && "expected namespace decl");
6003    // C++ [namespace.udir]p1:
6004    //   A using-directive specifies that the names in the nominated
6005    //   namespace can be used in the scope in which the
6006    //   using-directive appears after the using-directive. During
6007    //   unqualified name lookup (3.4.1), the names appear as if they
6008    //   were declared in the nearest enclosing namespace which
6009    //   contains both the using-directive and the nominated
6010    //   namespace. [Note: in this context, "contains" means "contains
6011    //   directly or indirectly". ]
6012
6013    // Find enclosing context containing both using-directive and
6014    // nominated namespace.
6015    NamespaceDecl *NS = getNamespaceDecl(Named);
6016    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6017    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6018      CommonAncestor = CommonAncestor->getParent();
6019
6020    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6021                                      SS.getWithLocInContext(Context),
6022                                      IdentLoc, Named, CommonAncestor);
6023
6024    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6025        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6026      Diag(IdentLoc, diag::warn_using_directive_in_header);
6027    }
6028
6029    PushUsingDirective(S, UDir);
6030  } else {
6031    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6032  }
6033
6034  // FIXME: We ignore attributes for now.
6035  return UDir;
6036}
6037
6038void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6039  // If scope has associated entity, then using directive is at namespace
6040  // or translation unit scope. We add UsingDirectiveDecls, into
6041  // it's lookup structure.
6042  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
6043    Ctx->addDecl(UDir);
6044  else
6045    // Otherwise it is block-sope. using-directives will affect lookup
6046    // only to the end of scope.
6047    S->PushUsingDirective(UDir);
6048}
6049
6050
6051Decl *Sema::ActOnUsingDeclaration(Scope *S,
6052                                  AccessSpecifier AS,
6053                                  bool HasUsingKeyword,
6054                                  SourceLocation UsingLoc,
6055                                  CXXScopeSpec &SS,
6056                                  UnqualifiedId &Name,
6057                                  AttributeList *AttrList,
6058                                  bool IsTypeName,
6059                                  SourceLocation TypenameLoc) {
6060  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6061
6062  switch (Name.getKind()) {
6063  case UnqualifiedId::IK_ImplicitSelfParam:
6064  case UnqualifiedId::IK_Identifier:
6065  case UnqualifiedId::IK_OperatorFunctionId:
6066  case UnqualifiedId::IK_LiteralOperatorId:
6067  case UnqualifiedId::IK_ConversionFunctionId:
6068    break;
6069
6070  case UnqualifiedId::IK_ConstructorName:
6071  case UnqualifiedId::IK_ConstructorTemplateId:
6072    // C++0x inherited constructors.
6073    Diag(Name.getSourceRange().getBegin(),
6074         getLangOptions().CPlusPlus0x ?
6075           diag::warn_cxx98_compat_using_decl_constructor :
6076           diag::err_using_decl_constructor)
6077      << SS.getRange();
6078
6079    if (getLangOptions().CPlusPlus0x) break;
6080
6081    return 0;
6082
6083  case UnqualifiedId::IK_DestructorName:
6084    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
6085      << SS.getRange();
6086    return 0;
6087
6088  case UnqualifiedId::IK_TemplateId:
6089    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6090      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6091    return 0;
6092  }
6093
6094  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6095  DeclarationName TargetName = TargetNameInfo.getName();
6096  if (!TargetName)
6097    return 0;
6098
6099  // Warn about using declarations.
6100  // TODO: store that the declaration was written without 'using' and
6101  // talk about access decls instead of using decls in the
6102  // diagnostics.
6103  if (!HasUsingKeyword) {
6104    UsingLoc = Name.getSourceRange().getBegin();
6105
6106    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6107      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6108  }
6109
6110  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6111      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6112    return 0;
6113
6114  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6115                                        TargetNameInfo, AttrList,
6116                                        /* IsInstantiation */ false,
6117                                        IsTypeName, TypenameLoc);
6118  if (UD)
6119    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6120
6121  return UD;
6122}
6123
6124/// \brief Determine whether a using declaration considers the given
6125/// declarations as "equivalent", e.g., if they are redeclarations of
6126/// the same entity or are both typedefs of the same type.
6127static bool
6128IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6129                         bool &SuppressRedeclaration) {
6130  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6131    SuppressRedeclaration = false;
6132    return true;
6133  }
6134
6135  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6136    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6137      SuppressRedeclaration = true;
6138      return Context.hasSameType(TD1->getUnderlyingType(),
6139                                 TD2->getUnderlyingType());
6140    }
6141
6142  return false;
6143}
6144
6145
6146/// Determines whether to create a using shadow decl for a particular
6147/// decl, given the set of decls existing prior to this using lookup.
6148bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6149                                const LookupResult &Previous) {
6150  // Diagnose finding a decl which is not from a base class of the
6151  // current class.  We do this now because there are cases where this
6152  // function will silently decide not to build a shadow decl, which
6153  // will pre-empt further diagnostics.
6154  //
6155  // We don't need to do this in C++0x because we do the check once on
6156  // the qualifier.
6157  //
6158  // FIXME: diagnose the following if we care enough:
6159  //   struct A { int foo; };
6160  //   struct B : A { using A::foo; };
6161  //   template <class T> struct C : A {};
6162  //   template <class T> struct D : C<T> { using B::foo; } // <---
6163  // This is invalid (during instantiation) in C++03 because B::foo
6164  // resolves to the using decl in B, which is not a base class of D<T>.
6165  // We can't diagnose it immediately because C<T> is an unknown
6166  // specialization.  The UsingShadowDecl in D<T> then points directly
6167  // to A::foo, which will look well-formed when we instantiate.
6168  // The right solution is to not collapse the shadow-decl chain.
6169  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6170    DeclContext *OrigDC = Orig->getDeclContext();
6171
6172    // Handle enums and anonymous structs.
6173    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6174    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6175    while (OrigRec->isAnonymousStructOrUnion())
6176      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6177
6178    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6179      if (OrigDC == CurContext) {
6180        Diag(Using->getLocation(),
6181             diag::err_using_decl_nested_name_specifier_is_current_class)
6182          << Using->getQualifierLoc().getSourceRange();
6183        Diag(Orig->getLocation(), diag::note_using_decl_target);
6184        return true;
6185      }
6186
6187      Diag(Using->getQualifierLoc().getBeginLoc(),
6188           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6189        << Using->getQualifier()
6190        << cast<CXXRecordDecl>(CurContext)
6191        << Using->getQualifierLoc().getSourceRange();
6192      Diag(Orig->getLocation(), diag::note_using_decl_target);
6193      return true;
6194    }
6195  }
6196
6197  if (Previous.empty()) return false;
6198
6199  NamedDecl *Target = Orig;
6200  if (isa<UsingShadowDecl>(Target))
6201    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6202
6203  // If the target happens to be one of the previous declarations, we
6204  // don't have a conflict.
6205  //
6206  // FIXME: but we might be increasing its access, in which case we
6207  // should redeclare it.
6208  NamedDecl *NonTag = 0, *Tag = 0;
6209  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6210         I != E; ++I) {
6211    NamedDecl *D = (*I)->getUnderlyingDecl();
6212    bool Result;
6213    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6214      return Result;
6215
6216    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6217  }
6218
6219  if (Target->isFunctionOrFunctionTemplate()) {
6220    FunctionDecl *FD;
6221    if (isa<FunctionTemplateDecl>(Target))
6222      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6223    else
6224      FD = cast<FunctionDecl>(Target);
6225
6226    NamedDecl *OldDecl = 0;
6227    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6228    case Ovl_Overload:
6229      return false;
6230
6231    case Ovl_NonFunction:
6232      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6233      break;
6234
6235    // We found a decl with the exact signature.
6236    case Ovl_Match:
6237      // If we're in a record, we want to hide the target, so we
6238      // return true (without a diagnostic) to tell the caller not to
6239      // build a shadow decl.
6240      if (CurContext->isRecord())
6241        return true;
6242
6243      // If we're not in a record, this is an error.
6244      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6245      break;
6246    }
6247
6248    Diag(Target->getLocation(), diag::note_using_decl_target);
6249    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6250    return true;
6251  }
6252
6253  // Target is not a function.
6254
6255  if (isa<TagDecl>(Target)) {
6256    // No conflict between a tag and a non-tag.
6257    if (!Tag) return false;
6258
6259    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6260    Diag(Target->getLocation(), diag::note_using_decl_target);
6261    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6262    return true;
6263  }
6264
6265  // No conflict between a tag and a non-tag.
6266  if (!NonTag) return false;
6267
6268  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6269  Diag(Target->getLocation(), diag::note_using_decl_target);
6270  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6271  return true;
6272}
6273
6274/// Builds a shadow declaration corresponding to a 'using' declaration.
6275UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6276                                            UsingDecl *UD,
6277                                            NamedDecl *Orig) {
6278
6279  // If we resolved to another shadow declaration, just coalesce them.
6280  NamedDecl *Target = Orig;
6281  if (isa<UsingShadowDecl>(Target)) {
6282    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6283    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6284  }
6285
6286  UsingShadowDecl *Shadow
6287    = UsingShadowDecl::Create(Context, CurContext,
6288                              UD->getLocation(), UD, Target);
6289  UD->addShadowDecl(Shadow);
6290
6291  Shadow->setAccess(UD->getAccess());
6292  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6293    Shadow->setInvalidDecl();
6294
6295  if (S)
6296    PushOnScopeChains(Shadow, S);
6297  else
6298    CurContext->addDecl(Shadow);
6299
6300
6301  return Shadow;
6302}
6303
6304/// Hides a using shadow declaration.  This is required by the current
6305/// using-decl implementation when a resolvable using declaration in a
6306/// class is followed by a declaration which would hide or override
6307/// one or more of the using decl's targets; for example:
6308///
6309///   struct Base { void foo(int); };
6310///   struct Derived : Base {
6311///     using Base::foo;
6312///     void foo(int);
6313///   };
6314///
6315/// The governing language is C++03 [namespace.udecl]p12:
6316///
6317///   When a using-declaration brings names from a base class into a
6318///   derived class scope, member functions in the derived class
6319///   override and/or hide member functions with the same name and
6320///   parameter types in a base class (rather than conflicting).
6321///
6322/// There are two ways to implement this:
6323///   (1) optimistically create shadow decls when they're not hidden
6324///       by existing declarations, or
6325///   (2) don't create any shadow decls (or at least don't make them
6326///       visible) until we've fully parsed/instantiated the class.
6327/// The problem with (1) is that we might have to retroactively remove
6328/// a shadow decl, which requires several O(n) operations because the
6329/// decl structures are (very reasonably) not designed for removal.
6330/// (2) avoids this but is very fiddly and phase-dependent.
6331void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6332  if (Shadow->getDeclName().getNameKind() ==
6333        DeclarationName::CXXConversionFunctionName)
6334    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6335
6336  // Remove it from the DeclContext...
6337  Shadow->getDeclContext()->removeDecl(Shadow);
6338
6339  // ...and the scope, if applicable...
6340  if (S) {
6341    S->RemoveDecl(Shadow);
6342    IdResolver.RemoveDecl(Shadow);
6343  }
6344
6345  // ...and the using decl.
6346  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6347
6348  // TODO: complain somehow if Shadow was used.  It shouldn't
6349  // be possible for this to happen, because...?
6350}
6351
6352/// Builds a using declaration.
6353///
6354/// \param IsInstantiation - Whether this call arises from an
6355///   instantiation of an unresolved using declaration.  We treat
6356///   the lookup differently for these declarations.
6357NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6358                                       SourceLocation UsingLoc,
6359                                       CXXScopeSpec &SS,
6360                                       const DeclarationNameInfo &NameInfo,
6361                                       AttributeList *AttrList,
6362                                       bool IsInstantiation,
6363                                       bool IsTypeName,
6364                                       SourceLocation TypenameLoc) {
6365  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6366  SourceLocation IdentLoc = NameInfo.getLoc();
6367  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6368
6369  // FIXME: We ignore attributes for now.
6370
6371  if (SS.isEmpty()) {
6372    Diag(IdentLoc, diag::err_using_requires_qualname);
6373    return 0;
6374  }
6375
6376  // Do the redeclaration lookup in the current scope.
6377  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6378                        ForRedeclaration);
6379  Previous.setHideTags(false);
6380  if (S) {
6381    LookupName(Previous, S);
6382
6383    // It is really dumb that we have to do this.
6384    LookupResult::Filter F = Previous.makeFilter();
6385    while (F.hasNext()) {
6386      NamedDecl *D = F.next();
6387      if (!isDeclInScope(D, CurContext, S))
6388        F.erase();
6389    }
6390    F.done();
6391  } else {
6392    assert(IsInstantiation && "no scope in non-instantiation");
6393    assert(CurContext->isRecord() && "scope not record in instantiation");
6394    LookupQualifiedName(Previous, CurContext);
6395  }
6396
6397  // Check for invalid redeclarations.
6398  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6399    return 0;
6400
6401  // Check for bad qualifiers.
6402  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6403    return 0;
6404
6405  DeclContext *LookupContext = computeDeclContext(SS);
6406  NamedDecl *D;
6407  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6408  if (!LookupContext) {
6409    if (IsTypeName) {
6410      // FIXME: not all declaration name kinds are legal here
6411      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6412                                              UsingLoc, TypenameLoc,
6413                                              QualifierLoc,
6414                                              IdentLoc, NameInfo.getName());
6415    } else {
6416      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6417                                           QualifierLoc, NameInfo);
6418    }
6419  } else {
6420    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6421                          NameInfo, IsTypeName);
6422  }
6423  D->setAccess(AS);
6424  CurContext->addDecl(D);
6425
6426  if (!LookupContext) return D;
6427  UsingDecl *UD = cast<UsingDecl>(D);
6428
6429  if (RequireCompleteDeclContext(SS, LookupContext)) {
6430    UD->setInvalidDecl();
6431    return UD;
6432  }
6433
6434  // Constructor inheriting using decls get special treatment.
6435  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6436    if (CheckInheritedConstructorUsingDecl(UD))
6437      UD->setInvalidDecl();
6438    return UD;
6439  }
6440
6441  // Otherwise, look up the target name.
6442
6443  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6444
6445  // Unlike most lookups, we don't always want to hide tag
6446  // declarations: tag names are visible through the using declaration
6447  // even if hidden by ordinary names, *except* in a dependent context
6448  // where it's important for the sanity of two-phase lookup.
6449  if (!IsInstantiation)
6450    R.setHideTags(false);
6451
6452  LookupQualifiedName(R, LookupContext);
6453
6454  if (R.empty()) {
6455    Diag(IdentLoc, diag::err_no_member)
6456      << NameInfo.getName() << LookupContext << SS.getRange();
6457    UD->setInvalidDecl();
6458    return UD;
6459  }
6460
6461  if (R.isAmbiguous()) {
6462    UD->setInvalidDecl();
6463    return UD;
6464  }
6465
6466  if (IsTypeName) {
6467    // If we asked for a typename and got a non-type decl, error out.
6468    if (!R.getAsSingle<TypeDecl>()) {
6469      Diag(IdentLoc, diag::err_using_typename_non_type);
6470      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6471        Diag((*I)->getUnderlyingDecl()->getLocation(),
6472             diag::note_using_decl_target);
6473      UD->setInvalidDecl();
6474      return UD;
6475    }
6476  } else {
6477    // If we asked for a non-typename and we got a type, error out,
6478    // but only if this is an instantiation of an unresolved using
6479    // decl.  Otherwise just silently find the type name.
6480    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6481      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6482      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6483      UD->setInvalidDecl();
6484      return UD;
6485    }
6486  }
6487
6488  // C++0x N2914 [namespace.udecl]p6:
6489  // A using-declaration shall not name a namespace.
6490  if (R.getAsSingle<NamespaceDecl>()) {
6491    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6492      << SS.getRange();
6493    UD->setInvalidDecl();
6494    return UD;
6495  }
6496
6497  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6498    if (!CheckUsingShadowDecl(UD, *I, Previous))
6499      BuildUsingShadowDecl(S, UD, *I);
6500  }
6501
6502  return UD;
6503}
6504
6505/// Additional checks for a using declaration referring to a constructor name.
6506bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6507  if (UD->isTypeName()) {
6508    // FIXME: Cannot specify typename when specifying constructor
6509    return true;
6510  }
6511
6512  const Type *SourceType = UD->getQualifier()->getAsType();
6513  assert(SourceType &&
6514         "Using decl naming constructor doesn't have type in scope spec.");
6515  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6516
6517  // Check whether the named type is a direct base class.
6518  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6519  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6520  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6521       BaseIt != BaseE; ++BaseIt) {
6522    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6523    if (CanonicalSourceType == BaseType)
6524      break;
6525  }
6526
6527  if (BaseIt == BaseE) {
6528    // Did not find SourceType in the bases.
6529    Diag(UD->getUsingLocation(),
6530         diag::err_using_decl_constructor_not_in_direct_base)
6531      << UD->getNameInfo().getSourceRange()
6532      << QualType(SourceType, 0) << TargetClass;
6533    return true;
6534  }
6535
6536  BaseIt->setInheritConstructors();
6537
6538  return false;
6539}
6540
6541/// Checks that the given using declaration is not an invalid
6542/// redeclaration.  Note that this is checking only for the using decl
6543/// itself, not for any ill-formedness among the UsingShadowDecls.
6544bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6545                                       bool isTypeName,
6546                                       const CXXScopeSpec &SS,
6547                                       SourceLocation NameLoc,
6548                                       const LookupResult &Prev) {
6549  // C++03 [namespace.udecl]p8:
6550  // C++0x [namespace.udecl]p10:
6551  //   A using-declaration is a declaration and can therefore be used
6552  //   repeatedly where (and only where) multiple declarations are
6553  //   allowed.
6554  //
6555  // That's in non-member contexts.
6556  if (!CurContext->getRedeclContext()->isRecord())
6557    return false;
6558
6559  NestedNameSpecifier *Qual
6560    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6561
6562  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6563    NamedDecl *D = *I;
6564
6565    bool DTypename;
6566    NestedNameSpecifier *DQual;
6567    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6568      DTypename = UD->isTypeName();
6569      DQual = UD->getQualifier();
6570    } else if (UnresolvedUsingValueDecl *UD
6571                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6572      DTypename = false;
6573      DQual = UD->getQualifier();
6574    } else if (UnresolvedUsingTypenameDecl *UD
6575                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6576      DTypename = true;
6577      DQual = UD->getQualifier();
6578    } else continue;
6579
6580    // using decls differ if one says 'typename' and the other doesn't.
6581    // FIXME: non-dependent using decls?
6582    if (isTypeName != DTypename) continue;
6583
6584    // using decls differ if they name different scopes (but note that
6585    // template instantiation can cause this check to trigger when it
6586    // didn't before instantiation).
6587    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6588        Context.getCanonicalNestedNameSpecifier(DQual))
6589      continue;
6590
6591    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6592    Diag(D->getLocation(), diag::note_using_decl) << 1;
6593    return true;
6594  }
6595
6596  return false;
6597}
6598
6599
6600/// Checks that the given nested-name qualifier used in a using decl
6601/// in the current context is appropriately related to the current
6602/// scope.  If an error is found, diagnoses it and returns true.
6603bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6604                                   const CXXScopeSpec &SS,
6605                                   SourceLocation NameLoc) {
6606  DeclContext *NamedContext = computeDeclContext(SS);
6607
6608  if (!CurContext->isRecord()) {
6609    // C++03 [namespace.udecl]p3:
6610    // C++0x [namespace.udecl]p8:
6611    //   A using-declaration for a class member shall be a member-declaration.
6612
6613    // If we weren't able to compute a valid scope, it must be a
6614    // dependent class scope.
6615    if (!NamedContext || NamedContext->isRecord()) {
6616      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6617        << SS.getRange();
6618      return true;
6619    }
6620
6621    // Otherwise, everything is known to be fine.
6622    return false;
6623  }
6624
6625  // The current scope is a record.
6626
6627  // If the named context is dependent, we can't decide much.
6628  if (!NamedContext) {
6629    // FIXME: in C++0x, we can diagnose if we can prove that the
6630    // nested-name-specifier does not refer to a base class, which is
6631    // still possible in some cases.
6632
6633    // Otherwise we have to conservatively report that things might be
6634    // okay.
6635    return false;
6636  }
6637
6638  if (!NamedContext->isRecord()) {
6639    // Ideally this would point at the last name in the specifier,
6640    // but we don't have that level of source info.
6641    Diag(SS.getRange().getBegin(),
6642         diag::err_using_decl_nested_name_specifier_is_not_class)
6643      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6644    return true;
6645  }
6646
6647  if (!NamedContext->isDependentContext() &&
6648      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6649    return true;
6650
6651  if (getLangOptions().CPlusPlus0x) {
6652    // C++0x [namespace.udecl]p3:
6653    //   In a using-declaration used as a member-declaration, the
6654    //   nested-name-specifier shall name a base class of the class
6655    //   being defined.
6656
6657    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6658                                 cast<CXXRecordDecl>(NamedContext))) {
6659      if (CurContext == NamedContext) {
6660        Diag(NameLoc,
6661             diag::err_using_decl_nested_name_specifier_is_current_class)
6662          << SS.getRange();
6663        return true;
6664      }
6665
6666      Diag(SS.getRange().getBegin(),
6667           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6668        << (NestedNameSpecifier*) SS.getScopeRep()
6669        << cast<CXXRecordDecl>(CurContext)
6670        << SS.getRange();
6671      return true;
6672    }
6673
6674    return false;
6675  }
6676
6677  // C++03 [namespace.udecl]p4:
6678  //   A using-declaration used as a member-declaration shall refer
6679  //   to a member of a base class of the class being defined [etc.].
6680
6681  // Salient point: SS doesn't have to name a base class as long as
6682  // lookup only finds members from base classes.  Therefore we can
6683  // diagnose here only if we can prove that that can't happen,
6684  // i.e. if the class hierarchies provably don't intersect.
6685
6686  // TODO: it would be nice if "definitely valid" results were cached
6687  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6688  // need to be repeated.
6689
6690  struct UserData {
6691    llvm::DenseSet<const CXXRecordDecl*> Bases;
6692
6693    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6694      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6695      Data->Bases.insert(Base);
6696      return true;
6697    }
6698
6699    bool hasDependentBases(const CXXRecordDecl *Class) {
6700      return !Class->forallBases(collect, this);
6701    }
6702
6703    /// Returns true if the base is dependent or is one of the
6704    /// accumulated base classes.
6705    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6706      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6707      return !Data->Bases.count(Base);
6708    }
6709
6710    bool mightShareBases(const CXXRecordDecl *Class) {
6711      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6712    }
6713  };
6714
6715  UserData Data;
6716
6717  // Returns false if we find a dependent base.
6718  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6719    return false;
6720
6721  // Returns false if the class has a dependent base or if it or one
6722  // of its bases is present in the base set of the current context.
6723  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6724    return false;
6725
6726  Diag(SS.getRange().getBegin(),
6727       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6728    << (NestedNameSpecifier*) SS.getScopeRep()
6729    << cast<CXXRecordDecl>(CurContext)
6730    << SS.getRange();
6731
6732  return true;
6733}
6734
6735Decl *Sema::ActOnAliasDeclaration(Scope *S,
6736                                  AccessSpecifier AS,
6737                                  MultiTemplateParamsArg TemplateParamLists,
6738                                  SourceLocation UsingLoc,
6739                                  UnqualifiedId &Name,
6740                                  TypeResult Type) {
6741  // Skip up to the relevant declaration scope.
6742  while (S->getFlags() & Scope::TemplateParamScope)
6743    S = S->getParent();
6744  assert((S->getFlags() & Scope::DeclScope) &&
6745         "got alias-declaration outside of declaration scope");
6746
6747  if (Type.isInvalid())
6748    return 0;
6749
6750  bool Invalid = false;
6751  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6752  TypeSourceInfo *TInfo = 0;
6753  GetTypeFromParser(Type.get(), &TInfo);
6754
6755  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6756    return 0;
6757
6758  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6759                                      UPPC_DeclarationType)) {
6760    Invalid = true;
6761    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6762                                             TInfo->getTypeLoc().getBeginLoc());
6763  }
6764
6765  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6766  LookupName(Previous, S);
6767
6768  // Warn about shadowing the name of a template parameter.
6769  if (Previous.isSingleResult() &&
6770      Previous.getFoundDecl()->isTemplateParameter()) {
6771    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6772    Previous.clear();
6773  }
6774
6775  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6776         "name in alias declaration must be an identifier");
6777  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6778                                               Name.StartLocation,
6779                                               Name.Identifier, TInfo);
6780
6781  NewTD->setAccess(AS);
6782
6783  if (Invalid)
6784    NewTD->setInvalidDecl();
6785
6786  CheckTypedefForVariablyModifiedType(S, NewTD);
6787  Invalid |= NewTD->isInvalidDecl();
6788
6789  bool Redeclaration = false;
6790
6791  NamedDecl *NewND;
6792  if (TemplateParamLists.size()) {
6793    TypeAliasTemplateDecl *OldDecl = 0;
6794    TemplateParameterList *OldTemplateParams = 0;
6795
6796    if (TemplateParamLists.size() != 1) {
6797      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6798        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6799         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6800    }
6801    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6802
6803    // Only consider previous declarations in the same scope.
6804    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6805                         /*ExplicitInstantiationOrSpecialization*/false);
6806    if (!Previous.empty()) {
6807      Redeclaration = true;
6808
6809      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6810      if (!OldDecl && !Invalid) {
6811        Diag(UsingLoc, diag::err_redefinition_different_kind)
6812          << Name.Identifier;
6813
6814        NamedDecl *OldD = Previous.getRepresentativeDecl();
6815        if (OldD->getLocation().isValid())
6816          Diag(OldD->getLocation(), diag::note_previous_definition);
6817
6818        Invalid = true;
6819      }
6820
6821      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6822        if (TemplateParameterListsAreEqual(TemplateParams,
6823                                           OldDecl->getTemplateParameters(),
6824                                           /*Complain=*/true,
6825                                           TPL_TemplateMatch))
6826          OldTemplateParams = OldDecl->getTemplateParameters();
6827        else
6828          Invalid = true;
6829
6830        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6831        if (!Invalid &&
6832            !Context.hasSameType(OldTD->getUnderlyingType(),
6833                                 NewTD->getUnderlyingType())) {
6834          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6835          // but we can't reasonably accept it.
6836          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6837            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6838          if (OldTD->getLocation().isValid())
6839            Diag(OldTD->getLocation(), diag::note_previous_definition);
6840          Invalid = true;
6841        }
6842      }
6843    }
6844
6845    // Merge any previous default template arguments into our parameters,
6846    // and check the parameter list.
6847    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6848                                   TPC_TypeAliasTemplate))
6849      return 0;
6850
6851    TypeAliasTemplateDecl *NewDecl =
6852      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6853                                    Name.Identifier, TemplateParams,
6854                                    NewTD);
6855
6856    NewDecl->setAccess(AS);
6857
6858    if (Invalid)
6859      NewDecl->setInvalidDecl();
6860    else if (OldDecl)
6861      NewDecl->setPreviousDeclaration(OldDecl);
6862
6863    NewND = NewDecl;
6864  } else {
6865    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6866    NewND = NewTD;
6867  }
6868
6869  if (!Redeclaration)
6870    PushOnScopeChains(NewND, S);
6871
6872  return NewND;
6873}
6874
6875Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6876                                             SourceLocation NamespaceLoc,
6877                                             SourceLocation AliasLoc,
6878                                             IdentifierInfo *Alias,
6879                                             CXXScopeSpec &SS,
6880                                             SourceLocation IdentLoc,
6881                                             IdentifierInfo *Ident) {
6882
6883  // Lookup the namespace name.
6884  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6885  LookupParsedName(R, S, &SS);
6886
6887  // Check if we have a previous declaration with the same name.
6888  NamedDecl *PrevDecl
6889    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6890                       ForRedeclaration);
6891  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6892    PrevDecl = 0;
6893
6894  if (PrevDecl) {
6895    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6896      // We already have an alias with the same name that points to the same
6897      // namespace, so don't create a new one.
6898      // FIXME: At some point, we'll want to create the (redundant)
6899      // declaration to maintain better source information.
6900      if (!R.isAmbiguous() && !R.empty() &&
6901          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6902        return 0;
6903    }
6904
6905    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6906      diag::err_redefinition_different_kind;
6907    Diag(AliasLoc, DiagID) << Alias;
6908    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6909    return 0;
6910  }
6911
6912  if (R.isAmbiguous())
6913    return 0;
6914
6915  if (R.empty()) {
6916    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6917      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6918      return 0;
6919    }
6920  }
6921
6922  NamespaceAliasDecl *AliasDecl =
6923    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6924                               Alias, SS.getWithLocInContext(Context),
6925                               IdentLoc, R.getFoundDecl());
6926
6927  PushOnScopeChains(AliasDecl, S);
6928  return AliasDecl;
6929}
6930
6931namespace {
6932  /// \brief Scoped object used to handle the state changes required in Sema
6933  /// to implicitly define the body of a C++ member function;
6934  class ImplicitlyDefinedFunctionScope {
6935    Sema &S;
6936    Sema::ContextRAII SavedContext;
6937
6938  public:
6939    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6940      : S(S), SavedContext(S, Method)
6941    {
6942      S.PushFunctionScope();
6943      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6944    }
6945
6946    ~ImplicitlyDefinedFunctionScope() {
6947      S.PopExpressionEvaluationContext();
6948      S.PopFunctionScopeInfo();
6949    }
6950  };
6951}
6952
6953Sema::ImplicitExceptionSpecification
6954Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6955  // C++ [except.spec]p14:
6956  //   An implicitly declared special member function (Clause 12) shall have an
6957  //   exception-specification. [...]
6958  ImplicitExceptionSpecification ExceptSpec(Context);
6959  if (ClassDecl->isInvalidDecl())
6960    return ExceptSpec;
6961
6962  // Direct base-class constructors.
6963  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6964                                       BEnd = ClassDecl->bases_end();
6965       B != BEnd; ++B) {
6966    if (B->isVirtual()) // Handled below.
6967      continue;
6968
6969    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6970      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6971      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6972      // If this is a deleted function, add it anyway. This might be conformant
6973      // with the standard. This might not. I'm not sure. It might not matter.
6974      if (Constructor)
6975        ExceptSpec.CalledDecl(Constructor);
6976    }
6977  }
6978
6979  // Virtual base-class constructors.
6980  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6981                                       BEnd = ClassDecl->vbases_end();
6982       B != BEnd; ++B) {
6983    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6984      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6985      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6986      // If this is a deleted function, add it anyway. This might be conformant
6987      // with the standard. This might not. I'm not sure. It might not matter.
6988      if (Constructor)
6989        ExceptSpec.CalledDecl(Constructor);
6990    }
6991  }
6992
6993  // Field constructors.
6994  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6995                               FEnd = ClassDecl->field_end();
6996       F != FEnd; ++F) {
6997    if (F->hasInClassInitializer()) {
6998      if (Expr *E = F->getInClassInitializer())
6999        ExceptSpec.CalledExpr(E);
7000      else if (!F->isInvalidDecl())
7001        ExceptSpec.SetDelayed();
7002    } else if (const RecordType *RecordTy
7003              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7004      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7005      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7006      // If this is a deleted function, add it anyway. This might be conformant
7007      // with the standard. This might not. I'm not sure. It might not matter.
7008      // In particular, the problem is that this function never gets called. It
7009      // might just be ill-formed because this function attempts to refer to
7010      // a deleted function here.
7011      if (Constructor)
7012        ExceptSpec.CalledDecl(Constructor);
7013    }
7014  }
7015
7016  return ExceptSpec;
7017}
7018
7019CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7020                                                     CXXRecordDecl *ClassDecl) {
7021  // C++ [class.ctor]p5:
7022  //   A default constructor for a class X is a constructor of class X
7023  //   that can be called without an argument. If there is no
7024  //   user-declared constructor for class X, a default constructor is
7025  //   implicitly declared. An implicitly-declared default constructor
7026  //   is an inline public member of its class.
7027  assert(!ClassDecl->hasUserDeclaredConstructor() &&
7028         "Should not build implicit default constructor!");
7029
7030  ImplicitExceptionSpecification Spec =
7031    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7032  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7033
7034  // Create the actual constructor declaration.
7035  CanQualType ClassType
7036    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7037  SourceLocation ClassLoc = ClassDecl->getLocation();
7038  DeclarationName Name
7039    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7040  DeclarationNameInfo NameInfo(Name, ClassLoc);
7041  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7042      Context, ClassDecl, ClassLoc, NameInfo,
7043      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
7044      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7045      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
7046        getLangOptions().CPlusPlus0x);
7047  DefaultCon->setAccess(AS_public);
7048  DefaultCon->setDefaulted();
7049  DefaultCon->setImplicit();
7050  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7051
7052  // Note that we have declared this constructor.
7053  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7054
7055  if (Scope *S = getScopeForContext(ClassDecl))
7056    PushOnScopeChains(DefaultCon, S, false);
7057  ClassDecl->addDecl(DefaultCon);
7058
7059  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7060    DefaultCon->setDeletedAsWritten();
7061
7062  return DefaultCon;
7063}
7064
7065void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7066                                            CXXConstructorDecl *Constructor) {
7067  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7068          !Constructor->doesThisDeclarationHaveABody() &&
7069          !Constructor->isDeleted()) &&
7070    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7071
7072  CXXRecordDecl *ClassDecl = Constructor->getParent();
7073  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7074
7075  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
7076  DiagnosticErrorTrap Trap(Diags);
7077  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7078      Trap.hasErrorOccurred()) {
7079    Diag(CurrentLocation, diag::note_member_synthesized_at)
7080      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7081    Constructor->setInvalidDecl();
7082    return;
7083  }
7084
7085  SourceLocation Loc = Constructor->getLocation();
7086  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7087
7088  Constructor->setUsed();
7089  MarkVTableUsed(CurrentLocation, ClassDecl);
7090
7091  if (ASTMutationListener *L = getASTMutationListener()) {
7092    L->CompletedImplicitDefinition(Constructor);
7093  }
7094}
7095
7096/// Get any existing defaulted default constructor for the given class. Do not
7097/// implicitly define one if it does not exist.
7098static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7099                                                             CXXRecordDecl *D) {
7100  ASTContext &Context = Self.Context;
7101  QualType ClassType = Context.getTypeDeclType(D);
7102  DeclarationName ConstructorName
7103    = Context.DeclarationNames.getCXXConstructorName(
7104                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7105
7106  DeclContext::lookup_const_iterator Con, ConEnd;
7107  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7108       Con != ConEnd; ++Con) {
7109    // A function template cannot be defaulted.
7110    if (isa<FunctionTemplateDecl>(*Con))
7111      continue;
7112
7113    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7114    if (Constructor->isDefaultConstructor())
7115      return Constructor->isDefaulted() ? Constructor : 0;
7116  }
7117  return 0;
7118}
7119
7120void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7121  if (!D) return;
7122  AdjustDeclIfTemplate(D);
7123
7124  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7125  CXXConstructorDecl *CtorDecl
7126    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7127
7128  if (!CtorDecl) return;
7129
7130  // Compute the exception specification for the default constructor.
7131  const FunctionProtoType *CtorTy =
7132    CtorDecl->getType()->castAs<FunctionProtoType>();
7133  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7134    ImplicitExceptionSpecification Spec =
7135      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7136    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7137    assert(EPI.ExceptionSpecType != EST_Delayed);
7138
7139    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7140  }
7141
7142  // If the default constructor is explicitly defaulted, checking the exception
7143  // specification is deferred until now.
7144  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7145      !ClassDecl->isDependentType())
7146    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7147}
7148
7149void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7150  // We start with an initial pass over the base classes to collect those that
7151  // inherit constructors from. If there are none, we can forgo all further
7152  // processing.
7153  typedef SmallVector<const RecordType *, 4> BasesVector;
7154  BasesVector BasesToInheritFrom;
7155  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7156                                          BaseE = ClassDecl->bases_end();
7157         BaseIt != BaseE; ++BaseIt) {
7158    if (BaseIt->getInheritConstructors()) {
7159      QualType Base = BaseIt->getType();
7160      if (Base->isDependentType()) {
7161        // If we inherit constructors from anything that is dependent, just
7162        // abort processing altogether. We'll get another chance for the
7163        // instantiations.
7164        return;
7165      }
7166      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7167    }
7168  }
7169  if (BasesToInheritFrom.empty())
7170    return;
7171
7172  // Now collect the constructors that we already have in the current class.
7173  // Those take precedence over inherited constructors.
7174  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7175  //   unless there is a user-declared constructor with the same signature in
7176  //   the class where the using-declaration appears.
7177  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7178  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7179                                    CtorE = ClassDecl->ctor_end();
7180       CtorIt != CtorE; ++CtorIt) {
7181    ExistingConstructors.insert(
7182        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7183  }
7184
7185  Scope *S = getScopeForContext(ClassDecl);
7186  DeclarationName CreatedCtorName =
7187      Context.DeclarationNames.getCXXConstructorName(
7188          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7189
7190  // Now comes the true work.
7191  // First, we keep a map from constructor types to the base that introduced
7192  // them. Needed for finding conflicting constructors. We also keep the
7193  // actually inserted declarations in there, for pretty diagnostics.
7194  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7195  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7196  ConstructorToSourceMap InheritedConstructors;
7197  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7198                             BaseE = BasesToInheritFrom.end();
7199       BaseIt != BaseE; ++BaseIt) {
7200    const RecordType *Base = *BaseIt;
7201    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7202    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7203    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7204                                      CtorE = BaseDecl->ctor_end();
7205         CtorIt != CtorE; ++CtorIt) {
7206      // Find the using declaration for inheriting this base's constructors.
7207      DeclarationName Name =
7208          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7209      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7210          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7211      SourceLocation UsingLoc = UD ? UD->getLocation() :
7212                                     ClassDecl->getLocation();
7213
7214      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7215      //   from the class X named in the using-declaration consists of actual
7216      //   constructors and notional constructors that result from the
7217      //   transformation of defaulted parameters as follows:
7218      //   - all non-template default constructors of X, and
7219      //   - for each non-template constructor of X that has at least one
7220      //     parameter with a default argument, the set of constructors that
7221      //     results from omitting any ellipsis parameter specification and
7222      //     successively omitting parameters with a default argument from the
7223      //     end of the parameter-type-list.
7224      CXXConstructorDecl *BaseCtor = *CtorIt;
7225      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7226      const FunctionProtoType *BaseCtorType =
7227          BaseCtor->getType()->getAs<FunctionProtoType>();
7228
7229      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7230                    maxParams = BaseCtor->getNumParams();
7231           params <= maxParams; ++params) {
7232        // Skip default constructors. They're never inherited.
7233        if (params == 0)
7234          continue;
7235        // Skip copy and move constructors for the same reason.
7236        if (CanBeCopyOrMove && params == 1)
7237          continue;
7238
7239        // Build up a function type for this particular constructor.
7240        // FIXME: The working paper does not consider that the exception spec
7241        // for the inheriting constructor might be larger than that of the
7242        // source. This code doesn't yet, either. When it does, this code will
7243        // need to be delayed until after exception specifications and in-class
7244        // member initializers are attached.
7245        const Type *NewCtorType;
7246        if (params == maxParams)
7247          NewCtorType = BaseCtorType;
7248        else {
7249          SmallVector<QualType, 16> Args;
7250          for (unsigned i = 0; i < params; ++i) {
7251            Args.push_back(BaseCtorType->getArgType(i));
7252          }
7253          FunctionProtoType::ExtProtoInfo ExtInfo =
7254              BaseCtorType->getExtProtoInfo();
7255          ExtInfo.Variadic = false;
7256          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7257                                                Args.data(), params, ExtInfo)
7258                       .getTypePtr();
7259        }
7260        const Type *CanonicalNewCtorType =
7261            Context.getCanonicalType(NewCtorType);
7262
7263        // Now that we have the type, first check if the class already has a
7264        // constructor with this signature.
7265        if (ExistingConstructors.count(CanonicalNewCtorType))
7266          continue;
7267
7268        // Then we check if we have already declared an inherited constructor
7269        // with this signature.
7270        std::pair<ConstructorToSourceMap::iterator, bool> result =
7271            InheritedConstructors.insert(std::make_pair(
7272                CanonicalNewCtorType,
7273                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7274        if (!result.second) {
7275          // Already in the map. If it came from a different class, that's an
7276          // error. Not if it's from the same.
7277          CanQualType PreviousBase = result.first->second.first;
7278          if (CanonicalBase != PreviousBase) {
7279            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7280            const CXXConstructorDecl *PrevBaseCtor =
7281                PrevCtor->getInheritedConstructor();
7282            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7283
7284            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7285            Diag(BaseCtor->getLocation(),
7286                 diag::note_using_decl_constructor_conflict_current_ctor);
7287            Diag(PrevBaseCtor->getLocation(),
7288                 diag::note_using_decl_constructor_conflict_previous_ctor);
7289            Diag(PrevCtor->getLocation(),
7290                 diag::note_using_decl_constructor_conflict_previous_using);
7291          }
7292          continue;
7293        }
7294
7295        // OK, we're there, now add the constructor.
7296        // C++0x [class.inhctor]p8: [...] that would be performed by a
7297        //   user-written inline constructor [...]
7298        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7299        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7300            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7301            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7302            /*ImplicitlyDeclared=*/true,
7303            // FIXME: Due to a defect in the standard, we treat inherited
7304            // constructors as constexpr even if that makes them ill-formed.
7305            /*Constexpr=*/BaseCtor->isConstexpr());
7306        NewCtor->setAccess(BaseCtor->getAccess());
7307
7308        // Build up the parameter decls and add them.
7309        SmallVector<ParmVarDecl *, 16> ParamDecls;
7310        for (unsigned i = 0; i < params; ++i) {
7311          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7312                                                   UsingLoc, UsingLoc,
7313                                                   /*IdentifierInfo=*/0,
7314                                                   BaseCtorType->getArgType(i),
7315                                                   /*TInfo=*/0, SC_None,
7316                                                   SC_None, /*DefaultArg=*/0));
7317        }
7318        NewCtor->setParams(ParamDecls);
7319        NewCtor->setInheritedConstructor(BaseCtor);
7320
7321        PushOnScopeChains(NewCtor, S, false);
7322        ClassDecl->addDecl(NewCtor);
7323        result.first->second.second = NewCtor;
7324      }
7325    }
7326  }
7327}
7328
7329Sema::ImplicitExceptionSpecification
7330Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7331  // C++ [except.spec]p14:
7332  //   An implicitly declared special member function (Clause 12) shall have
7333  //   an exception-specification.
7334  ImplicitExceptionSpecification ExceptSpec(Context);
7335  if (ClassDecl->isInvalidDecl())
7336    return ExceptSpec;
7337
7338  // Direct base-class destructors.
7339  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7340                                       BEnd = ClassDecl->bases_end();
7341       B != BEnd; ++B) {
7342    if (B->isVirtual()) // Handled below.
7343      continue;
7344
7345    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7346      ExceptSpec.CalledDecl(
7347                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7348  }
7349
7350  // Virtual base-class destructors.
7351  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7352                                       BEnd = ClassDecl->vbases_end();
7353       B != BEnd; ++B) {
7354    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7355      ExceptSpec.CalledDecl(
7356                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7357  }
7358
7359  // Field destructors.
7360  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7361                               FEnd = ClassDecl->field_end();
7362       F != FEnd; ++F) {
7363    if (const RecordType *RecordTy
7364        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7365      ExceptSpec.CalledDecl(
7366                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7367  }
7368
7369  return ExceptSpec;
7370}
7371
7372CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7373  // C++ [class.dtor]p2:
7374  //   If a class has no user-declared destructor, a destructor is
7375  //   declared implicitly. An implicitly-declared destructor is an
7376  //   inline public member of its class.
7377
7378  ImplicitExceptionSpecification Spec =
7379      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7380  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7381
7382  // Create the actual destructor declaration.
7383  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7384
7385  CanQualType ClassType
7386    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7387  SourceLocation ClassLoc = ClassDecl->getLocation();
7388  DeclarationName Name
7389    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7390  DeclarationNameInfo NameInfo(Name, ClassLoc);
7391  CXXDestructorDecl *Destructor
7392      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7393                                  /*isInline=*/true,
7394                                  /*isImplicitlyDeclared=*/true);
7395  Destructor->setAccess(AS_public);
7396  Destructor->setDefaulted();
7397  Destructor->setImplicit();
7398  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7399
7400  // Note that we have declared this destructor.
7401  ++ASTContext::NumImplicitDestructorsDeclared;
7402
7403  // Introduce this destructor into its scope.
7404  if (Scope *S = getScopeForContext(ClassDecl))
7405    PushOnScopeChains(Destructor, S, false);
7406  ClassDecl->addDecl(Destructor);
7407
7408  // This could be uniqued if it ever proves significant.
7409  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7410
7411  if (ShouldDeleteDestructor(Destructor))
7412    Destructor->setDeletedAsWritten();
7413
7414  AddOverriddenMethods(ClassDecl, Destructor);
7415
7416  return Destructor;
7417}
7418
7419void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7420                                    CXXDestructorDecl *Destructor) {
7421  assert((Destructor->isDefaulted() &&
7422          !Destructor->doesThisDeclarationHaveABody()) &&
7423         "DefineImplicitDestructor - call it for implicit default dtor");
7424  CXXRecordDecl *ClassDecl = Destructor->getParent();
7425  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7426
7427  if (Destructor->isInvalidDecl())
7428    return;
7429
7430  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7431
7432  DiagnosticErrorTrap Trap(Diags);
7433  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7434                                         Destructor->getParent());
7435
7436  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7437    Diag(CurrentLocation, diag::note_member_synthesized_at)
7438      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7439
7440    Destructor->setInvalidDecl();
7441    return;
7442  }
7443
7444  SourceLocation Loc = Destructor->getLocation();
7445  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7446  Destructor->setImplicitlyDefined(true);
7447  Destructor->setUsed();
7448  MarkVTableUsed(CurrentLocation, ClassDecl);
7449
7450  if (ASTMutationListener *L = getASTMutationListener()) {
7451    L->CompletedImplicitDefinition(Destructor);
7452  }
7453}
7454
7455void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7456                                         CXXDestructorDecl *destructor) {
7457  // C++11 [class.dtor]p3:
7458  //   A declaration of a destructor that does not have an exception-
7459  //   specification is implicitly considered to have the same exception-
7460  //   specification as an implicit declaration.
7461  const FunctionProtoType *dtorType = destructor->getType()->
7462                                        getAs<FunctionProtoType>();
7463  if (dtorType->hasExceptionSpec())
7464    return;
7465
7466  ImplicitExceptionSpecification exceptSpec =
7467      ComputeDefaultedDtorExceptionSpec(classDecl);
7468
7469  // Replace the destructor's type, building off the existing one. Fortunately,
7470  // the only thing of interest in the destructor type is its extended info.
7471  // The return and arguments are fixed.
7472  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7473  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7474  epi.NumExceptions = exceptSpec.size();
7475  epi.Exceptions = exceptSpec.data();
7476  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7477
7478  destructor->setType(ty);
7479
7480  // FIXME: If the destructor has a body that could throw, and the newly created
7481  // spec doesn't allow exceptions, we should emit a warning, because this
7482  // change in behavior can break conforming C++03 programs at runtime.
7483  // However, we don't have a body yet, so it needs to be done somewhere else.
7484}
7485
7486/// \brief Builds a statement that copies/moves the given entity from \p From to
7487/// \c To.
7488///
7489/// This routine is used to copy/move the members of a class with an
7490/// implicitly-declared copy/move assignment operator. When the entities being
7491/// copied are arrays, this routine builds for loops to copy them.
7492///
7493/// \param S The Sema object used for type-checking.
7494///
7495/// \param Loc The location where the implicit copy/move is being generated.
7496///
7497/// \param T The type of the expressions being copied/moved. Both expressions
7498/// must have this type.
7499///
7500/// \param To The expression we are copying/moving to.
7501///
7502/// \param From The expression we are copying/moving from.
7503///
7504/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7505/// Otherwise, it's a non-static member subobject.
7506///
7507/// \param Copying Whether we're copying or moving.
7508///
7509/// \param Depth Internal parameter recording the depth of the recursion.
7510///
7511/// \returns A statement or a loop that copies the expressions.
7512static StmtResult
7513BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7514                      Expr *To, Expr *From,
7515                      bool CopyingBaseSubobject, bool Copying,
7516                      unsigned Depth = 0) {
7517  // C++0x [class.copy]p28:
7518  //   Each subobject is assigned in the manner appropriate to its type:
7519  //
7520  //     - if the subobject is of class type, as if by a call to operator= with
7521  //       the subobject as the object expression and the corresponding
7522  //       subobject of x as a single function argument (as if by explicit
7523  //       qualification; that is, ignoring any possible virtual overriding
7524  //       functions in more derived classes);
7525  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7526    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7527
7528    // Look for operator=.
7529    DeclarationName Name
7530      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7531    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7532    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7533
7534    // Filter out any result that isn't a copy/move-assignment operator.
7535    LookupResult::Filter F = OpLookup.makeFilter();
7536    while (F.hasNext()) {
7537      NamedDecl *D = F.next();
7538      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7539        if (Copying ? Method->isCopyAssignmentOperator() :
7540                      Method->isMoveAssignmentOperator())
7541          continue;
7542
7543      F.erase();
7544    }
7545    F.done();
7546
7547    // Suppress the protected check (C++ [class.protected]) for each of the
7548    // assignment operators we found. This strange dance is required when
7549    // we're assigning via a base classes's copy-assignment operator. To
7550    // ensure that we're getting the right base class subobject (without
7551    // ambiguities), we need to cast "this" to that subobject type; to
7552    // ensure that we don't go through the virtual call mechanism, we need
7553    // to qualify the operator= name with the base class (see below). However,
7554    // this means that if the base class has a protected copy assignment
7555    // operator, the protected member access check will fail. So, we
7556    // rewrite "protected" access to "public" access in this case, since we
7557    // know by construction that we're calling from a derived class.
7558    if (CopyingBaseSubobject) {
7559      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7560           L != LEnd; ++L) {
7561        if (L.getAccess() == AS_protected)
7562          L.setAccess(AS_public);
7563      }
7564    }
7565
7566    // Create the nested-name-specifier that will be used to qualify the
7567    // reference to operator=; this is required to suppress the virtual
7568    // call mechanism.
7569    CXXScopeSpec SS;
7570    SS.MakeTrivial(S.Context,
7571                   NestedNameSpecifier::Create(S.Context, 0, false,
7572                                               T.getTypePtr()),
7573                   Loc);
7574
7575    // Create the reference to operator=.
7576    ExprResult OpEqualRef
7577      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7578                                   /*FirstQualifierInScope=*/0, OpLookup,
7579                                   /*TemplateArgs=*/0,
7580                                   /*SuppressQualifierCheck=*/true);
7581    if (OpEqualRef.isInvalid())
7582      return StmtError();
7583
7584    // Build the call to the assignment operator.
7585
7586    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7587                                                  OpEqualRef.takeAs<Expr>(),
7588                                                  Loc, &From, 1, Loc);
7589    if (Call.isInvalid())
7590      return StmtError();
7591
7592    return S.Owned(Call.takeAs<Stmt>());
7593  }
7594
7595  //     - if the subobject is of scalar type, the built-in assignment
7596  //       operator is used.
7597  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7598  if (!ArrayTy) {
7599    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7600    if (Assignment.isInvalid())
7601      return StmtError();
7602
7603    return S.Owned(Assignment.takeAs<Stmt>());
7604  }
7605
7606  //     - if the subobject is an array, each element is assigned, in the
7607  //       manner appropriate to the element type;
7608
7609  // Construct a loop over the array bounds, e.g.,
7610  //
7611  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7612  //
7613  // that will copy each of the array elements.
7614  QualType SizeType = S.Context.getSizeType();
7615
7616  // Create the iteration variable.
7617  IdentifierInfo *IterationVarName = 0;
7618  {
7619    llvm::SmallString<8> Str;
7620    llvm::raw_svector_ostream OS(Str);
7621    OS << "__i" << Depth;
7622    IterationVarName = &S.Context.Idents.get(OS.str());
7623  }
7624  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7625                                          IterationVarName, SizeType,
7626                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7627                                          SC_None, SC_None);
7628
7629  // Initialize the iteration variable to zero.
7630  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7631  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7632
7633  // Create a reference to the iteration variable; we'll use this several
7634  // times throughout.
7635  Expr *IterationVarRef
7636    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7637  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7638  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7639  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7640
7641  // Create the DeclStmt that holds the iteration variable.
7642  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7643
7644  // Create the comparison against the array bound.
7645  llvm::APInt Upper
7646    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7647  Expr *Comparison
7648    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7649                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7650                                     BO_NE, S.Context.BoolTy,
7651                                     VK_RValue, OK_Ordinary, Loc);
7652
7653  // Create the pre-increment of the iteration variable.
7654  Expr *Increment
7655    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7656                                    VK_LValue, OK_Ordinary, Loc);
7657
7658  // Subscript the "from" and "to" expressions with the iteration variable.
7659  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7660                                                         IterationVarRefRVal,
7661                                                         Loc));
7662  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7663                                                       IterationVarRefRVal,
7664                                                       Loc));
7665  if (!Copying) // Cast to rvalue
7666    From = CastForMoving(S, From);
7667
7668  // Build the copy/move for an individual element of the array.
7669  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7670                                          To, From, CopyingBaseSubobject,
7671                                          Copying, Depth + 1);
7672  if (Copy.isInvalid())
7673    return StmtError();
7674
7675  // Construct the loop that copies all elements of this array.
7676  return S.ActOnForStmt(Loc, Loc, InitStmt,
7677                        S.MakeFullExpr(Comparison),
7678                        0, S.MakeFullExpr(Increment),
7679                        Loc, Copy.take());
7680}
7681
7682std::pair<Sema::ImplicitExceptionSpecification, bool>
7683Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7684                                                   CXXRecordDecl *ClassDecl) {
7685  if (ClassDecl->isInvalidDecl())
7686    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7687
7688  // C++ [class.copy]p10:
7689  //   If the class definition does not explicitly declare a copy
7690  //   assignment operator, one is declared implicitly.
7691  //   The implicitly-defined copy assignment operator for a class X
7692  //   will have the form
7693  //
7694  //       X& X::operator=(const X&)
7695  //
7696  //   if
7697  bool HasConstCopyAssignment = true;
7698
7699  //       -- each direct base class B of X has a copy assignment operator
7700  //          whose parameter is of type const B&, const volatile B& or B,
7701  //          and
7702  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7703                                       BaseEnd = ClassDecl->bases_end();
7704       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7705    // We'll handle this below
7706    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7707      continue;
7708
7709    assert(!Base->getType()->isDependentType() &&
7710           "Cannot generate implicit members for class with dependent bases.");
7711    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7712    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7713                            &HasConstCopyAssignment);
7714  }
7715
7716  // In C++11, the above citation has "or virtual" added
7717  if (LangOpts.CPlusPlus0x) {
7718    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7719                                         BaseEnd = ClassDecl->vbases_end();
7720         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7721      assert(!Base->getType()->isDependentType() &&
7722             "Cannot generate implicit members for class with dependent bases.");
7723      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7724      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7725                              &HasConstCopyAssignment);
7726    }
7727  }
7728
7729  //       -- for all the nonstatic data members of X that are of a class
7730  //          type M (or array thereof), each such class type has a copy
7731  //          assignment operator whose parameter is of type const M&,
7732  //          const volatile M& or M.
7733  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7734                                  FieldEnd = ClassDecl->field_end();
7735       HasConstCopyAssignment && Field != FieldEnd;
7736       ++Field) {
7737    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7738    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7739      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7740                              &HasConstCopyAssignment);
7741    }
7742  }
7743
7744  //   Otherwise, the implicitly declared copy assignment operator will
7745  //   have the form
7746  //
7747  //       X& X::operator=(X&)
7748
7749  // C++ [except.spec]p14:
7750  //   An implicitly declared special member function (Clause 12) shall have an
7751  //   exception-specification. [...]
7752
7753  // It is unspecified whether or not an implicit copy assignment operator
7754  // attempts to deduplicate calls to assignment operators of virtual bases are
7755  // made. As such, this exception specification is effectively unspecified.
7756  // Based on a similar decision made for constness in C++0x, we're erring on
7757  // the side of assuming such calls to be made regardless of whether they
7758  // actually happen.
7759  ImplicitExceptionSpecification ExceptSpec(Context);
7760  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7761  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7762                                       BaseEnd = ClassDecl->bases_end();
7763       Base != BaseEnd; ++Base) {
7764    if (Base->isVirtual())
7765      continue;
7766
7767    CXXRecordDecl *BaseClassDecl
7768      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7769    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7770                                                            ArgQuals, false, 0))
7771      ExceptSpec.CalledDecl(CopyAssign);
7772  }
7773
7774  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7775                                       BaseEnd = ClassDecl->vbases_end();
7776       Base != BaseEnd; ++Base) {
7777    CXXRecordDecl *BaseClassDecl
7778      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7779    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7780                                                            ArgQuals, false, 0))
7781      ExceptSpec.CalledDecl(CopyAssign);
7782  }
7783
7784  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7785                                  FieldEnd = ClassDecl->field_end();
7786       Field != FieldEnd;
7787       ++Field) {
7788    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7789    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7790      if (CXXMethodDecl *CopyAssign =
7791          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7792        ExceptSpec.CalledDecl(CopyAssign);
7793    }
7794  }
7795
7796  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7797}
7798
7799CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7800  // Note: The following rules are largely analoguous to the copy
7801  // constructor rules. Note that virtual bases are not taken into account
7802  // for determining the argument type of the operator. Note also that
7803  // operators taking an object instead of a reference are allowed.
7804
7805  ImplicitExceptionSpecification Spec(Context);
7806  bool Const;
7807  llvm::tie(Spec, Const) =
7808    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7809
7810  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7811  QualType RetType = Context.getLValueReferenceType(ArgType);
7812  if (Const)
7813    ArgType = ArgType.withConst();
7814  ArgType = Context.getLValueReferenceType(ArgType);
7815
7816  //   An implicitly-declared copy assignment operator is an inline public
7817  //   member of its class.
7818  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7819  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7820  SourceLocation ClassLoc = ClassDecl->getLocation();
7821  DeclarationNameInfo NameInfo(Name, ClassLoc);
7822  CXXMethodDecl *CopyAssignment
7823    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7824                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7825                            /*TInfo=*/0, /*isStatic=*/false,
7826                            /*StorageClassAsWritten=*/SC_None,
7827                            /*isInline=*/true, /*isConstexpr=*/false,
7828                            SourceLocation());
7829  CopyAssignment->setAccess(AS_public);
7830  CopyAssignment->setDefaulted();
7831  CopyAssignment->setImplicit();
7832  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7833
7834  // Add the parameter to the operator.
7835  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7836                                               ClassLoc, ClassLoc, /*Id=*/0,
7837                                               ArgType, /*TInfo=*/0,
7838                                               SC_None,
7839                                               SC_None, 0);
7840  CopyAssignment->setParams(FromParam);
7841
7842  // Note that we have added this copy-assignment operator.
7843  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7844
7845  if (Scope *S = getScopeForContext(ClassDecl))
7846    PushOnScopeChains(CopyAssignment, S, false);
7847  ClassDecl->addDecl(CopyAssignment);
7848
7849  // C++0x [class.copy]p19:
7850  //   ....  If the class definition does not explicitly declare a copy
7851  //   assignment operator, there is no user-declared move constructor, and
7852  //   there is no user-declared move assignment operator, a copy assignment
7853  //   operator is implicitly declared as defaulted.
7854  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7855          !getLangOptions().MicrosoftExt) ||
7856      ClassDecl->hasUserDeclaredMoveAssignment() &&
7857      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7858    CopyAssignment->setDeletedAsWritten();
7859
7860  AddOverriddenMethods(ClassDecl, CopyAssignment);
7861  return CopyAssignment;
7862}
7863
7864void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7865                                        CXXMethodDecl *CopyAssignOperator) {
7866  assert((CopyAssignOperator->isDefaulted() &&
7867          CopyAssignOperator->isOverloadedOperator() &&
7868          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7869          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7870         "DefineImplicitCopyAssignment called for wrong function");
7871
7872  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7873
7874  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7875    CopyAssignOperator->setInvalidDecl();
7876    return;
7877  }
7878
7879  CopyAssignOperator->setUsed();
7880
7881  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7882  DiagnosticErrorTrap Trap(Diags);
7883
7884  // C++0x [class.copy]p30:
7885  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7886  //   for a non-union class X performs memberwise copy assignment of its
7887  //   subobjects. The direct base classes of X are assigned first, in the
7888  //   order of their declaration in the base-specifier-list, and then the
7889  //   immediate non-static data members of X are assigned, in the order in
7890  //   which they were declared in the class definition.
7891
7892  // The statements that form the synthesized function body.
7893  ASTOwningVector<Stmt*> Statements(*this);
7894
7895  // The parameter for the "other" object, which we are copying from.
7896  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7897  Qualifiers OtherQuals = Other->getType().getQualifiers();
7898  QualType OtherRefType = Other->getType();
7899  if (const LValueReferenceType *OtherRef
7900                                = OtherRefType->getAs<LValueReferenceType>()) {
7901    OtherRefType = OtherRef->getPointeeType();
7902    OtherQuals = OtherRefType.getQualifiers();
7903  }
7904
7905  // Our location for everything implicitly-generated.
7906  SourceLocation Loc = CopyAssignOperator->getLocation();
7907
7908  // Construct a reference to the "other" object. We'll be using this
7909  // throughout the generated ASTs.
7910  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7911  assert(OtherRef && "Reference to parameter cannot fail!");
7912
7913  // Construct the "this" pointer. We'll be using this throughout the generated
7914  // ASTs.
7915  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7916  assert(This && "Reference to this cannot fail!");
7917
7918  // Assign base classes.
7919  bool Invalid = false;
7920  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7921       E = ClassDecl->bases_end(); Base != E; ++Base) {
7922    // Form the assignment:
7923    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7924    QualType BaseType = Base->getType().getUnqualifiedType();
7925    if (!BaseType->isRecordType()) {
7926      Invalid = true;
7927      continue;
7928    }
7929
7930    CXXCastPath BasePath;
7931    BasePath.push_back(Base);
7932
7933    // Construct the "from" expression, which is an implicit cast to the
7934    // appropriately-qualified base type.
7935    Expr *From = OtherRef;
7936    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7937                             CK_UncheckedDerivedToBase,
7938                             VK_LValue, &BasePath).take();
7939
7940    // Dereference "this".
7941    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7942
7943    // Implicitly cast "this" to the appropriately-qualified base type.
7944    To = ImpCastExprToType(To.take(),
7945                           Context.getCVRQualifiedType(BaseType,
7946                                     CopyAssignOperator->getTypeQualifiers()),
7947                           CK_UncheckedDerivedToBase,
7948                           VK_LValue, &BasePath);
7949
7950    // Build the copy.
7951    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7952                                            To.get(), From,
7953                                            /*CopyingBaseSubobject=*/true,
7954                                            /*Copying=*/true);
7955    if (Copy.isInvalid()) {
7956      Diag(CurrentLocation, diag::note_member_synthesized_at)
7957        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7958      CopyAssignOperator->setInvalidDecl();
7959      return;
7960    }
7961
7962    // Success! Record the copy.
7963    Statements.push_back(Copy.takeAs<Expr>());
7964  }
7965
7966  // \brief Reference to the __builtin_memcpy function.
7967  Expr *BuiltinMemCpyRef = 0;
7968  // \brief Reference to the __builtin_objc_memmove_collectable function.
7969  Expr *CollectableMemCpyRef = 0;
7970
7971  // Assign non-static members.
7972  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7973                                  FieldEnd = ClassDecl->field_end();
7974       Field != FieldEnd; ++Field) {
7975    if (Field->isUnnamedBitfield())
7976      continue;
7977
7978    // Check for members of reference type; we can't copy those.
7979    if (Field->getType()->isReferenceType()) {
7980      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7981        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7982      Diag(Field->getLocation(), diag::note_declared_at);
7983      Diag(CurrentLocation, diag::note_member_synthesized_at)
7984        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7985      Invalid = true;
7986      continue;
7987    }
7988
7989    // Check for members of const-qualified, non-class type.
7990    QualType BaseType = Context.getBaseElementType(Field->getType());
7991    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7992      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7993        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7994      Diag(Field->getLocation(), diag::note_declared_at);
7995      Diag(CurrentLocation, diag::note_member_synthesized_at)
7996        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7997      Invalid = true;
7998      continue;
7999    }
8000
8001    // Suppress assigning zero-width bitfields.
8002    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8003      continue;
8004
8005    QualType FieldType = Field->getType().getNonReferenceType();
8006    if (FieldType->isIncompleteArrayType()) {
8007      assert(ClassDecl->hasFlexibleArrayMember() &&
8008             "Incomplete array type is not valid");
8009      continue;
8010    }
8011
8012    // Build references to the field in the object we're copying from and to.
8013    CXXScopeSpec SS; // Intentionally empty
8014    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8015                              LookupMemberName);
8016    MemberLookup.addDecl(*Field);
8017    MemberLookup.resolveKind();
8018    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8019                                               Loc, /*IsArrow=*/false,
8020                                               SS, 0, MemberLookup, 0);
8021    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8022                                             Loc, /*IsArrow=*/true,
8023                                             SS, 0, MemberLookup, 0);
8024    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8025    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8026
8027    // If the field should be copied with __builtin_memcpy rather than via
8028    // explicit assignments, do so. This optimization only applies for arrays
8029    // of scalars and arrays of class type with trivial copy-assignment
8030    // operators.
8031    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8032        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
8033      // Compute the size of the memory buffer to be copied.
8034      QualType SizeType = Context.getSizeType();
8035      llvm::APInt Size(Context.getTypeSize(SizeType),
8036                       Context.getTypeSizeInChars(BaseType).getQuantity());
8037      for (const ConstantArrayType *Array
8038              = Context.getAsConstantArrayType(FieldType);
8039           Array;
8040           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8041        llvm::APInt ArraySize
8042          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8043        Size *= ArraySize;
8044      }
8045
8046      // Take the address of the field references for "from" and "to".
8047      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
8048      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
8049
8050      bool NeedsCollectableMemCpy =
8051          (BaseType->isRecordType() &&
8052           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8053
8054      if (NeedsCollectableMemCpy) {
8055        if (!CollectableMemCpyRef) {
8056          // Create a reference to the __builtin_objc_memmove_collectable function.
8057          LookupResult R(*this,
8058                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8059                         Loc, LookupOrdinaryName);
8060          LookupName(R, TUScope, true);
8061
8062          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8063          if (!CollectableMemCpy) {
8064            // Something went horribly wrong earlier, and we will have
8065            // complained about it.
8066            Invalid = true;
8067            continue;
8068          }
8069
8070          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8071                                                  CollectableMemCpy->getType(),
8072                                                  VK_LValue, Loc, 0).take();
8073          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8074        }
8075      }
8076      // Create a reference to the __builtin_memcpy builtin function.
8077      else if (!BuiltinMemCpyRef) {
8078        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8079                       LookupOrdinaryName);
8080        LookupName(R, TUScope, true);
8081
8082        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8083        if (!BuiltinMemCpy) {
8084          // Something went horribly wrong earlier, and we will have complained
8085          // about it.
8086          Invalid = true;
8087          continue;
8088        }
8089
8090        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8091                                            BuiltinMemCpy->getType(),
8092                                            VK_LValue, Loc, 0).take();
8093        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8094      }
8095
8096      ASTOwningVector<Expr*> CallArgs(*this);
8097      CallArgs.push_back(To.takeAs<Expr>());
8098      CallArgs.push_back(From.takeAs<Expr>());
8099      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8100      ExprResult Call = ExprError();
8101      if (NeedsCollectableMemCpy)
8102        Call = ActOnCallExpr(/*Scope=*/0,
8103                             CollectableMemCpyRef,
8104                             Loc, move_arg(CallArgs),
8105                             Loc);
8106      else
8107        Call = ActOnCallExpr(/*Scope=*/0,
8108                             BuiltinMemCpyRef,
8109                             Loc, move_arg(CallArgs),
8110                             Loc);
8111
8112      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8113      Statements.push_back(Call.takeAs<Expr>());
8114      continue;
8115    }
8116
8117    // Build the copy of this field.
8118    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8119                                            To.get(), From.get(),
8120                                            /*CopyingBaseSubobject=*/false,
8121                                            /*Copying=*/true);
8122    if (Copy.isInvalid()) {
8123      Diag(CurrentLocation, diag::note_member_synthesized_at)
8124        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8125      CopyAssignOperator->setInvalidDecl();
8126      return;
8127    }
8128
8129    // Success! Record the copy.
8130    Statements.push_back(Copy.takeAs<Stmt>());
8131  }
8132
8133  if (!Invalid) {
8134    // Add a "return *this;"
8135    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8136
8137    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8138    if (Return.isInvalid())
8139      Invalid = true;
8140    else {
8141      Statements.push_back(Return.takeAs<Stmt>());
8142
8143      if (Trap.hasErrorOccurred()) {
8144        Diag(CurrentLocation, diag::note_member_synthesized_at)
8145          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8146        Invalid = true;
8147      }
8148    }
8149  }
8150
8151  if (Invalid) {
8152    CopyAssignOperator->setInvalidDecl();
8153    return;
8154  }
8155
8156  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8157                                            /*isStmtExpr=*/false);
8158  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8159  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8160
8161  if (ASTMutationListener *L = getASTMutationListener()) {
8162    L->CompletedImplicitDefinition(CopyAssignOperator);
8163  }
8164}
8165
8166Sema::ImplicitExceptionSpecification
8167Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8168  ImplicitExceptionSpecification ExceptSpec(Context);
8169
8170  if (ClassDecl->isInvalidDecl())
8171    return ExceptSpec;
8172
8173  // C++0x [except.spec]p14:
8174  //   An implicitly declared special member function (Clause 12) shall have an
8175  //   exception-specification. [...]
8176
8177  // It is unspecified whether or not an implicit move assignment operator
8178  // attempts to deduplicate calls to assignment operators of virtual bases are
8179  // made. As such, this exception specification is effectively unspecified.
8180  // Based on a similar decision made for constness in C++0x, we're erring on
8181  // the side of assuming such calls to be made regardless of whether they
8182  // actually happen.
8183  // Note that a move constructor is not implicitly declared when there are
8184  // virtual bases, but it can still be user-declared and explicitly defaulted.
8185  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8186                                       BaseEnd = ClassDecl->bases_end();
8187       Base != BaseEnd; ++Base) {
8188    if (Base->isVirtual())
8189      continue;
8190
8191    CXXRecordDecl *BaseClassDecl
8192      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8193    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8194                                                           false, 0))
8195      ExceptSpec.CalledDecl(MoveAssign);
8196  }
8197
8198  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8199                                       BaseEnd = ClassDecl->vbases_end();
8200       Base != BaseEnd; ++Base) {
8201    CXXRecordDecl *BaseClassDecl
8202      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8203    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8204                                                           false, 0))
8205      ExceptSpec.CalledDecl(MoveAssign);
8206  }
8207
8208  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8209                                  FieldEnd = ClassDecl->field_end();
8210       Field != FieldEnd;
8211       ++Field) {
8212    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8213    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8214      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8215                                                             false, 0))
8216        ExceptSpec.CalledDecl(MoveAssign);
8217    }
8218  }
8219
8220  return ExceptSpec;
8221}
8222
8223CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8224  // Note: The following rules are largely analoguous to the move
8225  // constructor rules.
8226
8227  ImplicitExceptionSpecification Spec(
8228      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8229
8230  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8231  QualType RetType = Context.getLValueReferenceType(ArgType);
8232  ArgType = Context.getRValueReferenceType(ArgType);
8233
8234  //   An implicitly-declared move assignment operator is an inline public
8235  //   member of its class.
8236  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8237  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8238  SourceLocation ClassLoc = ClassDecl->getLocation();
8239  DeclarationNameInfo NameInfo(Name, ClassLoc);
8240  CXXMethodDecl *MoveAssignment
8241    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8242                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8243                            /*TInfo=*/0, /*isStatic=*/false,
8244                            /*StorageClassAsWritten=*/SC_None,
8245                            /*isInline=*/true,
8246                            /*isConstexpr=*/false,
8247                            SourceLocation());
8248  MoveAssignment->setAccess(AS_public);
8249  MoveAssignment->setDefaulted();
8250  MoveAssignment->setImplicit();
8251  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8252
8253  // Add the parameter to the operator.
8254  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8255                                               ClassLoc, ClassLoc, /*Id=*/0,
8256                                               ArgType, /*TInfo=*/0,
8257                                               SC_None,
8258                                               SC_None, 0);
8259  MoveAssignment->setParams(FromParam);
8260
8261  // Note that we have added this copy-assignment operator.
8262  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8263
8264  // C++0x [class.copy]p9:
8265  //   If the definition of a class X does not explicitly declare a move
8266  //   assignment operator, one will be implicitly declared as defaulted if and
8267  //   only if:
8268  //   [...]
8269  //   - the move assignment operator would not be implicitly defined as
8270  //     deleted.
8271  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8272    // Cache this result so that we don't try to generate this over and over
8273    // on every lookup, leaking memory and wasting time.
8274    ClassDecl->setFailedImplicitMoveAssignment();
8275    return 0;
8276  }
8277
8278  if (Scope *S = getScopeForContext(ClassDecl))
8279    PushOnScopeChains(MoveAssignment, S, false);
8280  ClassDecl->addDecl(MoveAssignment);
8281
8282  AddOverriddenMethods(ClassDecl, MoveAssignment);
8283  return MoveAssignment;
8284}
8285
8286void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8287                                        CXXMethodDecl *MoveAssignOperator) {
8288  assert((MoveAssignOperator->isDefaulted() &&
8289          MoveAssignOperator->isOverloadedOperator() &&
8290          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8291          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8292         "DefineImplicitMoveAssignment called for wrong function");
8293
8294  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8295
8296  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8297    MoveAssignOperator->setInvalidDecl();
8298    return;
8299  }
8300
8301  MoveAssignOperator->setUsed();
8302
8303  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8304  DiagnosticErrorTrap Trap(Diags);
8305
8306  // C++0x [class.copy]p28:
8307  //   The implicitly-defined or move assignment operator for a non-union class
8308  //   X performs memberwise move assignment of its subobjects. The direct base
8309  //   classes of X are assigned first, in the order of their declaration in the
8310  //   base-specifier-list, and then the immediate non-static data members of X
8311  //   are assigned, in the order in which they were declared in the class
8312  //   definition.
8313
8314  // The statements that form the synthesized function body.
8315  ASTOwningVector<Stmt*> Statements(*this);
8316
8317  // The parameter for the "other" object, which we are move from.
8318  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8319  QualType OtherRefType = Other->getType()->
8320      getAs<RValueReferenceType>()->getPointeeType();
8321  assert(OtherRefType.getQualifiers() == 0 &&
8322         "Bad argument type of defaulted move assignment");
8323
8324  // Our location for everything implicitly-generated.
8325  SourceLocation Loc = MoveAssignOperator->getLocation();
8326
8327  // Construct a reference to the "other" object. We'll be using this
8328  // throughout the generated ASTs.
8329  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8330  assert(OtherRef && "Reference to parameter cannot fail!");
8331  // Cast to rvalue.
8332  OtherRef = CastForMoving(*this, OtherRef);
8333
8334  // Construct the "this" pointer. We'll be using this throughout the generated
8335  // ASTs.
8336  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8337  assert(This && "Reference to this cannot fail!");
8338
8339  // Assign base classes.
8340  bool Invalid = false;
8341  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8342       E = ClassDecl->bases_end(); Base != E; ++Base) {
8343    // Form the assignment:
8344    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8345    QualType BaseType = Base->getType().getUnqualifiedType();
8346    if (!BaseType->isRecordType()) {
8347      Invalid = true;
8348      continue;
8349    }
8350
8351    CXXCastPath BasePath;
8352    BasePath.push_back(Base);
8353
8354    // Construct the "from" expression, which is an implicit cast to the
8355    // appropriately-qualified base type.
8356    Expr *From = OtherRef;
8357    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8358                             VK_XValue, &BasePath).take();
8359
8360    // Dereference "this".
8361    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8362
8363    // Implicitly cast "this" to the appropriately-qualified base type.
8364    To = ImpCastExprToType(To.take(),
8365                           Context.getCVRQualifiedType(BaseType,
8366                                     MoveAssignOperator->getTypeQualifiers()),
8367                           CK_UncheckedDerivedToBase,
8368                           VK_LValue, &BasePath);
8369
8370    // Build the move.
8371    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8372                                            To.get(), From,
8373                                            /*CopyingBaseSubobject=*/true,
8374                                            /*Copying=*/false);
8375    if (Move.isInvalid()) {
8376      Diag(CurrentLocation, diag::note_member_synthesized_at)
8377        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8378      MoveAssignOperator->setInvalidDecl();
8379      return;
8380    }
8381
8382    // Success! Record the move.
8383    Statements.push_back(Move.takeAs<Expr>());
8384  }
8385
8386  // \brief Reference to the __builtin_memcpy function.
8387  Expr *BuiltinMemCpyRef = 0;
8388  // \brief Reference to the __builtin_objc_memmove_collectable function.
8389  Expr *CollectableMemCpyRef = 0;
8390
8391  // Assign non-static members.
8392  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8393                                  FieldEnd = ClassDecl->field_end();
8394       Field != FieldEnd; ++Field) {
8395    if (Field->isUnnamedBitfield())
8396      continue;
8397
8398    // Check for members of reference type; we can't move those.
8399    if (Field->getType()->isReferenceType()) {
8400      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8401        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8402      Diag(Field->getLocation(), diag::note_declared_at);
8403      Diag(CurrentLocation, diag::note_member_synthesized_at)
8404        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8405      Invalid = true;
8406      continue;
8407    }
8408
8409    // Check for members of const-qualified, non-class type.
8410    QualType BaseType = Context.getBaseElementType(Field->getType());
8411    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8412      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8413        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8414      Diag(Field->getLocation(), diag::note_declared_at);
8415      Diag(CurrentLocation, diag::note_member_synthesized_at)
8416        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8417      Invalid = true;
8418      continue;
8419    }
8420
8421    // Suppress assigning zero-width bitfields.
8422    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8423      continue;
8424
8425    QualType FieldType = Field->getType().getNonReferenceType();
8426    if (FieldType->isIncompleteArrayType()) {
8427      assert(ClassDecl->hasFlexibleArrayMember() &&
8428             "Incomplete array type is not valid");
8429      continue;
8430    }
8431
8432    // Build references to the field in the object we're copying from and to.
8433    CXXScopeSpec SS; // Intentionally empty
8434    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8435                              LookupMemberName);
8436    MemberLookup.addDecl(*Field);
8437    MemberLookup.resolveKind();
8438    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8439                                               Loc, /*IsArrow=*/false,
8440                                               SS, 0, MemberLookup, 0);
8441    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8442                                             Loc, /*IsArrow=*/true,
8443                                             SS, 0, MemberLookup, 0);
8444    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8445    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8446
8447    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8448        "Member reference with rvalue base must be rvalue except for reference "
8449        "members, which aren't allowed for move assignment.");
8450
8451    // If the field should be copied with __builtin_memcpy rather than via
8452    // explicit assignments, do so. This optimization only applies for arrays
8453    // of scalars and arrays of class type with trivial move-assignment
8454    // operators.
8455    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8456        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8457      // Compute the size of the memory buffer to be copied.
8458      QualType SizeType = Context.getSizeType();
8459      llvm::APInt Size(Context.getTypeSize(SizeType),
8460                       Context.getTypeSizeInChars(BaseType).getQuantity());
8461      for (const ConstantArrayType *Array
8462              = Context.getAsConstantArrayType(FieldType);
8463           Array;
8464           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8465        llvm::APInt ArraySize
8466          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8467        Size *= ArraySize;
8468      }
8469
8470      // Take the address of the field references for "from" and "to". We
8471      // directly construct UnaryOperators here because semantic analysis
8472      // does not permit us to take the address of an xvalue.
8473      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8474                             Context.getPointerType(From.get()->getType()),
8475                             VK_RValue, OK_Ordinary, Loc);
8476      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8477                           Context.getPointerType(To.get()->getType()),
8478                           VK_RValue, OK_Ordinary, Loc);
8479
8480      bool NeedsCollectableMemCpy =
8481          (BaseType->isRecordType() &&
8482           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8483
8484      if (NeedsCollectableMemCpy) {
8485        if (!CollectableMemCpyRef) {
8486          // Create a reference to the __builtin_objc_memmove_collectable function.
8487          LookupResult R(*this,
8488                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8489                         Loc, LookupOrdinaryName);
8490          LookupName(R, TUScope, true);
8491
8492          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8493          if (!CollectableMemCpy) {
8494            // Something went horribly wrong earlier, and we will have
8495            // complained about it.
8496            Invalid = true;
8497            continue;
8498          }
8499
8500          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8501                                                  CollectableMemCpy->getType(),
8502                                                  VK_LValue, Loc, 0).take();
8503          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8504        }
8505      }
8506      // Create a reference to the __builtin_memcpy builtin function.
8507      else if (!BuiltinMemCpyRef) {
8508        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8509                       LookupOrdinaryName);
8510        LookupName(R, TUScope, true);
8511
8512        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8513        if (!BuiltinMemCpy) {
8514          // Something went horribly wrong earlier, and we will have complained
8515          // about it.
8516          Invalid = true;
8517          continue;
8518        }
8519
8520        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8521                                            BuiltinMemCpy->getType(),
8522                                            VK_LValue, Loc, 0).take();
8523        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8524      }
8525
8526      ASTOwningVector<Expr*> CallArgs(*this);
8527      CallArgs.push_back(To.takeAs<Expr>());
8528      CallArgs.push_back(From.takeAs<Expr>());
8529      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8530      ExprResult Call = ExprError();
8531      if (NeedsCollectableMemCpy)
8532        Call = ActOnCallExpr(/*Scope=*/0,
8533                             CollectableMemCpyRef,
8534                             Loc, move_arg(CallArgs),
8535                             Loc);
8536      else
8537        Call = ActOnCallExpr(/*Scope=*/0,
8538                             BuiltinMemCpyRef,
8539                             Loc, move_arg(CallArgs),
8540                             Loc);
8541
8542      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8543      Statements.push_back(Call.takeAs<Expr>());
8544      continue;
8545    }
8546
8547    // Build the move of this field.
8548    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8549                                            To.get(), From.get(),
8550                                            /*CopyingBaseSubobject=*/false,
8551                                            /*Copying=*/false);
8552    if (Move.isInvalid()) {
8553      Diag(CurrentLocation, diag::note_member_synthesized_at)
8554        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8555      MoveAssignOperator->setInvalidDecl();
8556      return;
8557    }
8558
8559    // Success! Record the copy.
8560    Statements.push_back(Move.takeAs<Stmt>());
8561  }
8562
8563  if (!Invalid) {
8564    // Add a "return *this;"
8565    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8566
8567    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8568    if (Return.isInvalid())
8569      Invalid = true;
8570    else {
8571      Statements.push_back(Return.takeAs<Stmt>());
8572
8573      if (Trap.hasErrorOccurred()) {
8574        Diag(CurrentLocation, diag::note_member_synthesized_at)
8575          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8576        Invalid = true;
8577      }
8578    }
8579  }
8580
8581  if (Invalid) {
8582    MoveAssignOperator->setInvalidDecl();
8583    return;
8584  }
8585
8586  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8587                                            /*isStmtExpr=*/false);
8588  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8589  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8590
8591  if (ASTMutationListener *L = getASTMutationListener()) {
8592    L->CompletedImplicitDefinition(MoveAssignOperator);
8593  }
8594}
8595
8596std::pair<Sema::ImplicitExceptionSpecification, bool>
8597Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8598  if (ClassDecl->isInvalidDecl())
8599    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8600
8601  // C++ [class.copy]p5:
8602  //   The implicitly-declared copy constructor for a class X will
8603  //   have the form
8604  //
8605  //       X::X(const X&)
8606  //
8607  //   if
8608  // FIXME: It ought to be possible to store this on the record.
8609  bool HasConstCopyConstructor = true;
8610
8611  //     -- each direct or virtual base class B of X has a copy
8612  //        constructor whose first parameter is of type const B& or
8613  //        const volatile B&, and
8614  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8615                                       BaseEnd = ClassDecl->bases_end();
8616       HasConstCopyConstructor && Base != BaseEnd;
8617       ++Base) {
8618    // Virtual bases are handled below.
8619    if (Base->isVirtual())
8620      continue;
8621
8622    CXXRecordDecl *BaseClassDecl
8623      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8624    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8625                             &HasConstCopyConstructor);
8626  }
8627
8628  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8629                                       BaseEnd = ClassDecl->vbases_end();
8630       HasConstCopyConstructor && Base != BaseEnd;
8631       ++Base) {
8632    CXXRecordDecl *BaseClassDecl
8633      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8634    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8635                             &HasConstCopyConstructor);
8636  }
8637
8638  //     -- for all the nonstatic data members of X that are of a
8639  //        class type M (or array thereof), each such class type
8640  //        has a copy constructor whose first parameter is of type
8641  //        const M& or const volatile M&.
8642  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8643                                  FieldEnd = ClassDecl->field_end();
8644       HasConstCopyConstructor && Field != FieldEnd;
8645       ++Field) {
8646    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8647    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8648      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8649                               &HasConstCopyConstructor);
8650    }
8651  }
8652  //   Otherwise, the implicitly declared copy constructor will have
8653  //   the form
8654  //
8655  //       X::X(X&)
8656
8657  // C++ [except.spec]p14:
8658  //   An implicitly declared special member function (Clause 12) shall have an
8659  //   exception-specification. [...]
8660  ImplicitExceptionSpecification ExceptSpec(Context);
8661  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8662  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8663                                       BaseEnd = ClassDecl->bases_end();
8664       Base != BaseEnd;
8665       ++Base) {
8666    // Virtual bases are handled below.
8667    if (Base->isVirtual())
8668      continue;
8669
8670    CXXRecordDecl *BaseClassDecl
8671      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8672    if (CXXConstructorDecl *CopyConstructor =
8673          LookupCopyingConstructor(BaseClassDecl, Quals))
8674      ExceptSpec.CalledDecl(CopyConstructor);
8675  }
8676  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8677                                       BaseEnd = ClassDecl->vbases_end();
8678       Base != BaseEnd;
8679       ++Base) {
8680    CXXRecordDecl *BaseClassDecl
8681      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8682    if (CXXConstructorDecl *CopyConstructor =
8683          LookupCopyingConstructor(BaseClassDecl, Quals))
8684      ExceptSpec.CalledDecl(CopyConstructor);
8685  }
8686  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8687                                  FieldEnd = ClassDecl->field_end();
8688       Field != FieldEnd;
8689       ++Field) {
8690    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8691    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8692      if (CXXConstructorDecl *CopyConstructor =
8693        LookupCopyingConstructor(FieldClassDecl, Quals))
8694      ExceptSpec.CalledDecl(CopyConstructor);
8695    }
8696  }
8697
8698  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8699}
8700
8701CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8702                                                    CXXRecordDecl *ClassDecl) {
8703  // C++ [class.copy]p4:
8704  //   If the class definition does not explicitly declare a copy
8705  //   constructor, one is declared implicitly.
8706
8707  ImplicitExceptionSpecification Spec(Context);
8708  bool Const;
8709  llvm::tie(Spec, Const) =
8710    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8711
8712  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8713  QualType ArgType = ClassType;
8714  if (Const)
8715    ArgType = ArgType.withConst();
8716  ArgType = Context.getLValueReferenceType(ArgType);
8717
8718  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8719
8720  DeclarationName Name
8721    = Context.DeclarationNames.getCXXConstructorName(
8722                                           Context.getCanonicalType(ClassType));
8723  SourceLocation ClassLoc = ClassDecl->getLocation();
8724  DeclarationNameInfo NameInfo(Name, ClassLoc);
8725
8726  //   An implicitly-declared copy constructor is an inline public
8727  //   member of its class.
8728  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8729      Context, ClassDecl, ClassLoc, NameInfo,
8730      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8731      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8732      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8733        getLangOptions().CPlusPlus0x);
8734  CopyConstructor->setAccess(AS_public);
8735  CopyConstructor->setDefaulted();
8736  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8737
8738  // Note that we have declared this constructor.
8739  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8740
8741  // Add the parameter to the constructor.
8742  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8743                                               ClassLoc, ClassLoc,
8744                                               /*IdentifierInfo=*/0,
8745                                               ArgType, /*TInfo=*/0,
8746                                               SC_None,
8747                                               SC_None, 0);
8748  CopyConstructor->setParams(FromParam);
8749
8750  if (Scope *S = getScopeForContext(ClassDecl))
8751    PushOnScopeChains(CopyConstructor, S, false);
8752  ClassDecl->addDecl(CopyConstructor);
8753
8754  // C++11 [class.copy]p8:
8755  //   ... If the class definition does not explicitly declare a copy
8756  //   constructor, there is no user-declared move constructor, and there is no
8757  //   user-declared move assignment operator, a copy constructor is implicitly
8758  //   declared as defaulted.
8759  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8760      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8761          !getLangOptions().MicrosoftExt) ||
8762      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8763    CopyConstructor->setDeletedAsWritten();
8764
8765  return CopyConstructor;
8766}
8767
8768void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8769                                   CXXConstructorDecl *CopyConstructor) {
8770  assert((CopyConstructor->isDefaulted() &&
8771          CopyConstructor->isCopyConstructor() &&
8772          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8773         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8774
8775  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8776  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8777
8778  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8779  DiagnosticErrorTrap Trap(Diags);
8780
8781  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8782      Trap.hasErrorOccurred()) {
8783    Diag(CurrentLocation, diag::note_member_synthesized_at)
8784      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8785    CopyConstructor->setInvalidDecl();
8786  }  else {
8787    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8788                                               CopyConstructor->getLocation(),
8789                                               MultiStmtArg(*this, 0, 0),
8790                                               /*isStmtExpr=*/false)
8791                                                              .takeAs<Stmt>());
8792    CopyConstructor->setImplicitlyDefined(true);
8793  }
8794
8795  CopyConstructor->setUsed();
8796  if (ASTMutationListener *L = getASTMutationListener()) {
8797    L->CompletedImplicitDefinition(CopyConstructor);
8798  }
8799}
8800
8801Sema::ImplicitExceptionSpecification
8802Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8803  // C++ [except.spec]p14:
8804  //   An implicitly declared special member function (Clause 12) shall have an
8805  //   exception-specification. [...]
8806  ImplicitExceptionSpecification ExceptSpec(Context);
8807  if (ClassDecl->isInvalidDecl())
8808    return ExceptSpec;
8809
8810  // Direct base-class constructors.
8811  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8812                                       BEnd = ClassDecl->bases_end();
8813       B != BEnd; ++B) {
8814    if (B->isVirtual()) // Handled below.
8815      continue;
8816
8817    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8818      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8819      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8820      // If this is a deleted function, add it anyway. This might be conformant
8821      // with the standard. This might not. I'm not sure. It might not matter.
8822      if (Constructor)
8823        ExceptSpec.CalledDecl(Constructor);
8824    }
8825  }
8826
8827  // Virtual base-class constructors.
8828  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8829                                       BEnd = ClassDecl->vbases_end();
8830       B != BEnd; ++B) {
8831    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8832      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8833      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8834      // If this is a deleted function, add it anyway. This might be conformant
8835      // with the standard. This might not. I'm not sure. It might not matter.
8836      if (Constructor)
8837        ExceptSpec.CalledDecl(Constructor);
8838    }
8839  }
8840
8841  // Field constructors.
8842  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8843                               FEnd = ClassDecl->field_end();
8844       F != FEnd; ++F) {
8845    if (const RecordType *RecordTy
8846              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8847      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8848      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8849      // If this is a deleted function, add it anyway. This might be conformant
8850      // with the standard. This might not. I'm not sure. It might not matter.
8851      // In particular, the problem is that this function never gets called. It
8852      // might just be ill-formed because this function attempts to refer to
8853      // a deleted function here.
8854      if (Constructor)
8855        ExceptSpec.CalledDecl(Constructor);
8856    }
8857  }
8858
8859  return ExceptSpec;
8860}
8861
8862CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8863                                                    CXXRecordDecl *ClassDecl) {
8864  ImplicitExceptionSpecification Spec(
8865      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8866
8867  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8868  QualType ArgType = Context.getRValueReferenceType(ClassType);
8869
8870  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8871
8872  DeclarationName Name
8873    = Context.DeclarationNames.getCXXConstructorName(
8874                                           Context.getCanonicalType(ClassType));
8875  SourceLocation ClassLoc = ClassDecl->getLocation();
8876  DeclarationNameInfo NameInfo(Name, ClassLoc);
8877
8878  // C++0x [class.copy]p11:
8879  //   An implicitly-declared copy/move constructor is an inline public
8880  //   member of its class.
8881  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8882      Context, ClassDecl, ClassLoc, NameInfo,
8883      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8884      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8885      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8886        getLangOptions().CPlusPlus0x);
8887  MoveConstructor->setAccess(AS_public);
8888  MoveConstructor->setDefaulted();
8889  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8890
8891  // Add the parameter to the constructor.
8892  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8893                                               ClassLoc, ClassLoc,
8894                                               /*IdentifierInfo=*/0,
8895                                               ArgType, /*TInfo=*/0,
8896                                               SC_None,
8897                                               SC_None, 0);
8898  MoveConstructor->setParams(FromParam);
8899
8900  // C++0x [class.copy]p9:
8901  //   If the definition of a class X does not explicitly declare a move
8902  //   constructor, one will be implicitly declared as defaulted if and only if:
8903  //   [...]
8904  //   - the move constructor would not be implicitly defined as deleted.
8905  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8906    // Cache this result so that we don't try to generate this over and over
8907    // on every lookup, leaking memory and wasting time.
8908    ClassDecl->setFailedImplicitMoveConstructor();
8909    return 0;
8910  }
8911
8912  // Note that we have declared this constructor.
8913  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8914
8915  if (Scope *S = getScopeForContext(ClassDecl))
8916    PushOnScopeChains(MoveConstructor, S, false);
8917  ClassDecl->addDecl(MoveConstructor);
8918
8919  return MoveConstructor;
8920}
8921
8922void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8923                                   CXXConstructorDecl *MoveConstructor) {
8924  assert((MoveConstructor->isDefaulted() &&
8925          MoveConstructor->isMoveConstructor() &&
8926          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8927         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8928
8929  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8930  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8931
8932  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8933  DiagnosticErrorTrap Trap(Diags);
8934
8935  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8936      Trap.hasErrorOccurred()) {
8937    Diag(CurrentLocation, diag::note_member_synthesized_at)
8938      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8939    MoveConstructor->setInvalidDecl();
8940  }  else {
8941    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8942                                               MoveConstructor->getLocation(),
8943                                               MultiStmtArg(*this, 0, 0),
8944                                               /*isStmtExpr=*/false)
8945                                                              .takeAs<Stmt>());
8946    MoveConstructor->setImplicitlyDefined(true);
8947  }
8948
8949  MoveConstructor->setUsed();
8950
8951  if (ASTMutationListener *L = getASTMutationListener()) {
8952    L->CompletedImplicitDefinition(MoveConstructor);
8953  }
8954}
8955
8956ExprResult
8957Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8958                            CXXConstructorDecl *Constructor,
8959                            MultiExprArg ExprArgs,
8960                            bool HadMultipleCandidates,
8961                            bool RequiresZeroInit,
8962                            unsigned ConstructKind,
8963                            SourceRange ParenRange) {
8964  bool Elidable = false;
8965
8966  // C++0x [class.copy]p34:
8967  //   When certain criteria are met, an implementation is allowed to
8968  //   omit the copy/move construction of a class object, even if the
8969  //   copy/move constructor and/or destructor for the object have
8970  //   side effects. [...]
8971  //     - when a temporary class object that has not been bound to a
8972  //       reference (12.2) would be copied/moved to a class object
8973  //       with the same cv-unqualified type, the copy/move operation
8974  //       can be omitted by constructing the temporary object
8975  //       directly into the target of the omitted copy/move
8976  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8977      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8978    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8979    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8980  }
8981
8982  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8983                               Elidable, move(ExprArgs), HadMultipleCandidates,
8984                               RequiresZeroInit, ConstructKind, ParenRange);
8985}
8986
8987/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8988/// including handling of its default argument expressions.
8989ExprResult
8990Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8991                            CXXConstructorDecl *Constructor, bool Elidable,
8992                            MultiExprArg ExprArgs,
8993                            bool HadMultipleCandidates,
8994                            bool RequiresZeroInit,
8995                            unsigned ConstructKind,
8996                            SourceRange ParenRange) {
8997  unsigned NumExprs = ExprArgs.size();
8998  Expr **Exprs = (Expr **)ExprArgs.release();
8999
9000  for (specific_attr_iterator<NonNullAttr>
9001           i = Constructor->specific_attr_begin<NonNullAttr>(),
9002           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9003    const NonNullAttr *NonNull = *i;
9004    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9005  }
9006
9007  MarkDeclarationReferenced(ConstructLoc, Constructor);
9008  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9009                                        Constructor, Elidable, Exprs, NumExprs,
9010                                        HadMultipleCandidates, RequiresZeroInit,
9011              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9012                                        ParenRange));
9013}
9014
9015bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9016                                        CXXConstructorDecl *Constructor,
9017                                        MultiExprArg Exprs,
9018                                        bool HadMultipleCandidates) {
9019  // FIXME: Provide the correct paren SourceRange when available.
9020  ExprResult TempResult =
9021    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9022                          move(Exprs), HadMultipleCandidates, false,
9023                          CXXConstructExpr::CK_Complete, SourceRange());
9024  if (TempResult.isInvalid())
9025    return true;
9026
9027  Expr *Temp = TempResult.takeAs<Expr>();
9028  CheckImplicitConversions(Temp, VD->getLocation());
9029  MarkDeclarationReferenced(VD->getLocation(), Constructor);
9030  Temp = MaybeCreateExprWithCleanups(Temp);
9031  VD->setInit(Temp);
9032
9033  return false;
9034}
9035
9036void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9037  if (VD->isInvalidDecl()) return;
9038
9039  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9040  if (ClassDecl->isInvalidDecl()) return;
9041  if (ClassDecl->hasTrivialDestructor()) return;
9042  if (ClassDecl->isDependentContext()) return;
9043
9044  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9045  MarkDeclarationReferenced(VD->getLocation(), Destructor);
9046  CheckDestructorAccess(VD->getLocation(), Destructor,
9047                        PDiag(diag::err_access_dtor_var)
9048                        << VD->getDeclName()
9049                        << VD->getType());
9050
9051  if (!VD->hasGlobalStorage()) return;
9052
9053  // Emit warning for non-trivial dtor in global scope (a real global,
9054  // class-static, function-static).
9055  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9056
9057  // TODO: this should be re-enabled for static locals by !CXAAtExit
9058  if (!VD->isStaticLocal())
9059    Diag(VD->getLocation(), diag::warn_global_destructor);
9060}
9061
9062/// AddCXXDirectInitializerToDecl - This action is called immediately after
9063/// ActOnDeclarator, when a C++ direct initializer is present.
9064/// e.g: "int x(1);"
9065void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
9066                                         SourceLocation LParenLoc,
9067                                         MultiExprArg Exprs,
9068                                         SourceLocation RParenLoc,
9069                                         bool TypeMayContainAuto) {
9070  // If there is no declaration, there was an error parsing it.  Just ignore
9071  // the initializer.
9072  if (RealDecl == 0)
9073    return;
9074
9075  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
9076  if (!VDecl) {
9077    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
9078    RealDecl->setInvalidDecl();
9079    return;
9080  }
9081
9082  // C++0x [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9083  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
9084    if (Exprs.size() == 0) {
9085      // It isn't possible to write this directly, but it is possible to
9086      // end up in this situation with "auto x(some_pack...);"
9087      Diag(LParenLoc, diag::err_auto_var_init_no_expression)
9088        << VDecl->getDeclName() << VDecl->getType()
9089        << VDecl->getSourceRange();
9090      RealDecl->setInvalidDecl();
9091      return;
9092    }
9093
9094    if (Exprs.size() > 1) {
9095      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
9096           diag::err_auto_var_init_multiple_expressions)
9097        << VDecl->getDeclName() << VDecl->getType()
9098        << VDecl->getSourceRange();
9099      RealDecl->setInvalidDecl();
9100      return;
9101    }
9102
9103    Expr *Init = Exprs.get()[0];
9104    TypeSourceInfo *DeducedType = 0;
9105    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
9106      DiagnoseAutoDeductionFailure(VDecl, Init);
9107    if (!DeducedType) {
9108      RealDecl->setInvalidDecl();
9109      return;
9110    }
9111    VDecl->setTypeSourceInfo(DeducedType);
9112    VDecl->setType(DeducedType->getType());
9113
9114    // In ARC, infer lifetime.
9115    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9116      VDecl->setInvalidDecl();
9117
9118    // If this is a redeclaration, check that the type we just deduced matches
9119    // the previously declared type.
9120    if (VarDecl *Old = VDecl->getPreviousDecl())
9121      MergeVarDeclTypes(VDecl, Old);
9122  }
9123
9124  // We will represent direct-initialization similarly to copy-initialization:
9125  //    int x(1);  -as-> int x = 1;
9126  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9127  //
9128  // Clients that want to distinguish between the two forms, can check for
9129  // direct initializer using VarDecl::hasCXXDirectInitializer().
9130  // A major benefit is that clients that don't particularly care about which
9131  // exactly form was it (like the CodeGen) can handle both cases without
9132  // special case code.
9133
9134  // C++ 8.5p11:
9135  // The form of initialization (using parentheses or '=') is generally
9136  // insignificant, but does matter when the entity being initialized has a
9137  // class type.
9138
9139  if (!VDecl->getType()->isDependentType() &&
9140      !VDecl->getType()->isIncompleteArrayType() &&
9141      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
9142                          diag::err_typecheck_decl_incomplete_type)) {
9143    VDecl->setInvalidDecl();
9144    return;
9145  }
9146
9147  // The variable can not have an abstract class type.
9148  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9149                             diag::err_abstract_type_in_decl,
9150                             AbstractVariableType))
9151    VDecl->setInvalidDecl();
9152
9153  const VarDecl *Def;
9154  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9155    Diag(VDecl->getLocation(), diag::err_redefinition)
9156    << VDecl->getDeclName();
9157    Diag(Def->getLocation(), diag::note_previous_definition);
9158    VDecl->setInvalidDecl();
9159    return;
9160  }
9161
9162  // C++ [class.static.data]p4
9163  //   If a static data member is of const integral or const
9164  //   enumeration type, its declaration in the class definition can
9165  //   specify a constant-initializer which shall be an integral
9166  //   constant expression (5.19). In that case, the member can appear
9167  //   in integral constant expressions. The member shall still be
9168  //   defined in a namespace scope if it is used in the program and the
9169  //   namespace scope definition shall not contain an initializer.
9170  //
9171  // We already performed a redefinition check above, but for static
9172  // data members we also need to check whether there was an in-class
9173  // declaration with an initializer.
9174  const VarDecl* PrevInit = 0;
9175  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
9176    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
9177    Diag(PrevInit->getLocation(), diag::note_previous_definition);
9178    return;
9179  }
9180
9181  bool IsDependent = false;
9182  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
9183    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
9184      VDecl->setInvalidDecl();
9185      return;
9186    }
9187
9188    if (Exprs.get()[I]->isTypeDependent())
9189      IsDependent = true;
9190  }
9191
9192  // If either the declaration has a dependent type or if any of the
9193  // expressions is type-dependent, we represent the initialization
9194  // via a ParenListExpr for later use during template instantiation.
9195  if (VDecl->getType()->isDependentType() || IsDependent) {
9196    // Let clients know that initialization was done with a direct initializer.
9197    VDecl->setCXXDirectInitializer(true);
9198
9199    // Store the initialization expressions as a ParenListExpr.
9200    unsigned NumExprs = Exprs.size();
9201    VDecl->setInit(new (Context) ParenListExpr(
9202        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
9203        VDecl->getType().getNonReferenceType()));
9204    return;
9205  }
9206
9207  // Capture the variable that is being initialized and the style of
9208  // initialization.
9209  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9210
9211  // FIXME: Poor source location information.
9212  InitializationKind Kind
9213    = InitializationKind::CreateDirect(VDecl->getLocation(),
9214                                       LParenLoc, RParenLoc);
9215
9216  QualType T = VDecl->getType();
9217  InitializationSequence InitSeq(*this, Entity, Kind,
9218                                 Exprs.get(), Exprs.size());
9219  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
9220  if (Result.isInvalid()) {
9221    VDecl->setInvalidDecl();
9222    return;
9223  } else if (T != VDecl->getType()) {
9224    VDecl->setType(T);
9225    Result.get()->setType(T);
9226  }
9227
9228
9229  Expr *Init = Result.get();
9230  CheckImplicitConversions(Init, LParenLoc);
9231
9232  Init = MaybeCreateExprWithCleanups(Init);
9233  VDecl->setInit(Init);
9234  VDecl->setCXXDirectInitializer(true);
9235
9236  CheckCompleteVariableDeclaration(VDecl);
9237}
9238
9239/// \brief Given a constructor and the set of arguments provided for the
9240/// constructor, convert the arguments and add any required default arguments
9241/// to form a proper call to this constructor.
9242///
9243/// \returns true if an error occurred, false otherwise.
9244bool
9245Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9246                              MultiExprArg ArgsPtr,
9247                              SourceLocation Loc,
9248                              ASTOwningVector<Expr*> &ConvertedArgs) {
9249  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9250  unsigned NumArgs = ArgsPtr.size();
9251  Expr **Args = (Expr **)ArgsPtr.get();
9252
9253  const FunctionProtoType *Proto
9254    = Constructor->getType()->getAs<FunctionProtoType>();
9255  assert(Proto && "Constructor without a prototype?");
9256  unsigned NumArgsInProto = Proto->getNumArgs();
9257
9258  // If too few arguments are available, we'll fill in the rest with defaults.
9259  if (NumArgs < NumArgsInProto)
9260    ConvertedArgs.reserve(NumArgsInProto);
9261  else
9262    ConvertedArgs.reserve(NumArgs);
9263
9264  VariadicCallType CallType =
9265    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9266  SmallVector<Expr *, 8> AllArgs;
9267  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9268                                        Proto, 0, Args, NumArgs, AllArgs,
9269                                        CallType);
9270  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9271    ConvertedArgs.push_back(AllArgs[i]);
9272  return Invalid;
9273}
9274
9275static inline bool
9276CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9277                                       const FunctionDecl *FnDecl) {
9278  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9279  if (isa<NamespaceDecl>(DC)) {
9280    return SemaRef.Diag(FnDecl->getLocation(),
9281                        diag::err_operator_new_delete_declared_in_namespace)
9282      << FnDecl->getDeclName();
9283  }
9284
9285  if (isa<TranslationUnitDecl>(DC) &&
9286      FnDecl->getStorageClass() == SC_Static) {
9287    return SemaRef.Diag(FnDecl->getLocation(),
9288                        diag::err_operator_new_delete_declared_static)
9289      << FnDecl->getDeclName();
9290  }
9291
9292  return false;
9293}
9294
9295static inline bool
9296CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9297                            CanQualType ExpectedResultType,
9298                            CanQualType ExpectedFirstParamType,
9299                            unsigned DependentParamTypeDiag,
9300                            unsigned InvalidParamTypeDiag) {
9301  QualType ResultType =
9302    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9303
9304  // Check that the result type is not dependent.
9305  if (ResultType->isDependentType())
9306    return SemaRef.Diag(FnDecl->getLocation(),
9307                        diag::err_operator_new_delete_dependent_result_type)
9308    << FnDecl->getDeclName() << ExpectedResultType;
9309
9310  // Check that the result type is what we expect.
9311  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9312    return SemaRef.Diag(FnDecl->getLocation(),
9313                        diag::err_operator_new_delete_invalid_result_type)
9314    << FnDecl->getDeclName() << ExpectedResultType;
9315
9316  // A function template must have at least 2 parameters.
9317  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9318    return SemaRef.Diag(FnDecl->getLocation(),
9319                      diag::err_operator_new_delete_template_too_few_parameters)
9320        << FnDecl->getDeclName();
9321
9322  // The function decl must have at least 1 parameter.
9323  if (FnDecl->getNumParams() == 0)
9324    return SemaRef.Diag(FnDecl->getLocation(),
9325                        diag::err_operator_new_delete_too_few_parameters)
9326      << FnDecl->getDeclName();
9327
9328  // Check the the first parameter type is not dependent.
9329  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9330  if (FirstParamType->isDependentType())
9331    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9332      << FnDecl->getDeclName() << ExpectedFirstParamType;
9333
9334  // Check that the first parameter type is what we expect.
9335  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9336      ExpectedFirstParamType)
9337    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9338    << FnDecl->getDeclName() << ExpectedFirstParamType;
9339
9340  return false;
9341}
9342
9343static bool
9344CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9345  // C++ [basic.stc.dynamic.allocation]p1:
9346  //   A program is ill-formed if an allocation function is declared in a
9347  //   namespace scope other than global scope or declared static in global
9348  //   scope.
9349  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9350    return true;
9351
9352  CanQualType SizeTy =
9353    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9354
9355  // C++ [basic.stc.dynamic.allocation]p1:
9356  //  The return type shall be void*. The first parameter shall have type
9357  //  std::size_t.
9358  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9359                                  SizeTy,
9360                                  diag::err_operator_new_dependent_param_type,
9361                                  diag::err_operator_new_param_type))
9362    return true;
9363
9364  // C++ [basic.stc.dynamic.allocation]p1:
9365  //  The first parameter shall not have an associated default argument.
9366  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9367    return SemaRef.Diag(FnDecl->getLocation(),
9368                        diag::err_operator_new_default_arg)
9369      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9370
9371  return false;
9372}
9373
9374static bool
9375CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9376  // C++ [basic.stc.dynamic.deallocation]p1:
9377  //   A program is ill-formed if deallocation functions are declared in a
9378  //   namespace scope other than global scope or declared static in global
9379  //   scope.
9380  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9381    return true;
9382
9383  // C++ [basic.stc.dynamic.deallocation]p2:
9384  //   Each deallocation function shall return void and its first parameter
9385  //   shall be void*.
9386  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9387                                  SemaRef.Context.VoidPtrTy,
9388                                 diag::err_operator_delete_dependent_param_type,
9389                                 diag::err_operator_delete_param_type))
9390    return true;
9391
9392  return false;
9393}
9394
9395/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9396/// of this overloaded operator is well-formed. If so, returns false;
9397/// otherwise, emits appropriate diagnostics and returns true.
9398bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9399  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9400         "Expected an overloaded operator declaration");
9401
9402  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9403
9404  // C++ [over.oper]p5:
9405  //   The allocation and deallocation functions, operator new,
9406  //   operator new[], operator delete and operator delete[], are
9407  //   described completely in 3.7.3. The attributes and restrictions
9408  //   found in the rest of this subclause do not apply to them unless
9409  //   explicitly stated in 3.7.3.
9410  if (Op == OO_Delete || Op == OO_Array_Delete)
9411    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9412
9413  if (Op == OO_New || Op == OO_Array_New)
9414    return CheckOperatorNewDeclaration(*this, FnDecl);
9415
9416  // C++ [over.oper]p6:
9417  //   An operator function shall either be a non-static member
9418  //   function or be a non-member function and have at least one
9419  //   parameter whose type is a class, a reference to a class, an
9420  //   enumeration, or a reference to an enumeration.
9421  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9422    if (MethodDecl->isStatic())
9423      return Diag(FnDecl->getLocation(),
9424                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9425  } else {
9426    bool ClassOrEnumParam = false;
9427    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9428                                   ParamEnd = FnDecl->param_end();
9429         Param != ParamEnd; ++Param) {
9430      QualType ParamType = (*Param)->getType().getNonReferenceType();
9431      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9432          ParamType->isEnumeralType()) {
9433        ClassOrEnumParam = true;
9434        break;
9435      }
9436    }
9437
9438    if (!ClassOrEnumParam)
9439      return Diag(FnDecl->getLocation(),
9440                  diag::err_operator_overload_needs_class_or_enum)
9441        << FnDecl->getDeclName();
9442  }
9443
9444  // C++ [over.oper]p8:
9445  //   An operator function cannot have default arguments (8.3.6),
9446  //   except where explicitly stated below.
9447  //
9448  // Only the function-call operator allows default arguments
9449  // (C++ [over.call]p1).
9450  if (Op != OO_Call) {
9451    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9452         Param != FnDecl->param_end(); ++Param) {
9453      if ((*Param)->hasDefaultArg())
9454        return Diag((*Param)->getLocation(),
9455                    diag::err_operator_overload_default_arg)
9456          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9457    }
9458  }
9459
9460  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9461    { false, false, false }
9462#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9463    , { Unary, Binary, MemberOnly }
9464#include "clang/Basic/OperatorKinds.def"
9465  };
9466
9467  bool CanBeUnaryOperator = OperatorUses[Op][0];
9468  bool CanBeBinaryOperator = OperatorUses[Op][1];
9469  bool MustBeMemberOperator = OperatorUses[Op][2];
9470
9471  // C++ [over.oper]p8:
9472  //   [...] Operator functions cannot have more or fewer parameters
9473  //   than the number required for the corresponding operator, as
9474  //   described in the rest of this subclause.
9475  unsigned NumParams = FnDecl->getNumParams()
9476                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9477  if (Op != OO_Call &&
9478      ((NumParams == 1 && !CanBeUnaryOperator) ||
9479       (NumParams == 2 && !CanBeBinaryOperator) ||
9480       (NumParams < 1) || (NumParams > 2))) {
9481    // We have the wrong number of parameters.
9482    unsigned ErrorKind;
9483    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9484      ErrorKind = 2;  // 2 -> unary or binary.
9485    } else if (CanBeUnaryOperator) {
9486      ErrorKind = 0;  // 0 -> unary
9487    } else {
9488      assert(CanBeBinaryOperator &&
9489             "All non-call overloaded operators are unary or binary!");
9490      ErrorKind = 1;  // 1 -> binary
9491    }
9492
9493    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9494      << FnDecl->getDeclName() << NumParams << ErrorKind;
9495  }
9496
9497  // Overloaded operators other than operator() cannot be variadic.
9498  if (Op != OO_Call &&
9499      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9500    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9501      << FnDecl->getDeclName();
9502  }
9503
9504  // Some operators must be non-static member functions.
9505  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9506    return Diag(FnDecl->getLocation(),
9507                diag::err_operator_overload_must_be_member)
9508      << FnDecl->getDeclName();
9509  }
9510
9511  // C++ [over.inc]p1:
9512  //   The user-defined function called operator++ implements the
9513  //   prefix and postfix ++ operator. If this function is a member
9514  //   function with no parameters, or a non-member function with one
9515  //   parameter of class or enumeration type, it defines the prefix
9516  //   increment operator ++ for objects of that type. If the function
9517  //   is a member function with one parameter (which shall be of type
9518  //   int) or a non-member function with two parameters (the second
9519  //   of which shall be of type int), it defines the postfix
9520  //   increment operator ++ for objects of that type.
9521  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9522    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9523    bool ParamIsInt = false;
9524    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9525      ParamIsInt = BT->getKind() == BuiltinType::Int;
9526
9527    if (!ParamIsInt)
9528      return Diag(LastParam->getLocation(),
9529                  diag::err_operator_overload_post_incdec_must_be_int)
9530        << LastParam->getType() << (Op == OO_MinusMinus);
9531  }
9532
9533  return false;
9534}
9535
9536/// CheckLiteralOperatorDeclaration - Check whether the declaration
9537/// of this literal operator function is well-formed. If so, returns
9538/// false; otherwise, emits appropriate diagnostics and returns true.
9539bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9540  DeclContext *DC = FnDecl->getDeclContext();
9541  Decl::Kind Kind = DC->getDeclKind();
9542  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9543      Kind != Decl::LinkageSpec) {
9544    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9545      << FnDecl->getDeclName();
9546    return true;
9547  }
9548
9549  bool Valid = false;
9550
9551  // template <char...> type operator "" name() is the only valid template
9552  // signature, and the only valid signature with no parameters.
9553  if (FnDecl->param_size() == 0) {
9554    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9555      // Must have only one template parameter
9556      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9557      if (Params->size() == 1) {
9558        NonTypeTemplateParmDecl *PmDecl =
9559          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9560
9561        // The template parameter must be a char parameter pack.
9562        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9563            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9564          Valid = true;
9565      }
9566    }
9567  } else {
9568    // Check the first parameter
9569    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9570
9571    QualType T = (*Param)->getType();
9572
9573    // unsigned long long int, long double, and any character type are allowed
9574    // as the only parameters.
9575    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9576        Context.hasSameType(T, Context.LongDoubleTy) ||
9577        Context.hasSameType(T, Context.CharTy) ||
9578        Context.hasSameType(T, Context.WCharTy) ||
9579        Context.hasSameType(T, Context.Char16Ty) ||
9580        Context.hasSameType(T, Context.Char32Ty)) {
9581      if (++Param == FnDecl->param_end())
9582        Valid = true;
9583      goto FinishedParams;
9584    }
9585
9586    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9587    const PointerType *PT = T->getAs<PointerType>();
9588    if (!PT)
9589      goto FinishedParams;
9590    T = PT->getPointeeType();
9591    if (!T.isConstQualified())
9592      goto FinishedParams;
9593    T = T.getUnqualifiedType();
9594
9595    // Move on to the second parameter;
9596    ++Param;
9597
9598    // If there is no second parameter, the first must be a const char *
9599    if (Param == FnDecl->param_end()) {
9600      if (Context.hasSameType(T, Context.CharTy))
9601        Valid = true;
9602      goto FinishedParams;
9603    }
9604
9605    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9606    // are allowed as the first parameter to a two-parameter function
9607    if (!(Context.hasSameType(T, Context.CharTy) ||
9608          Context.hasSameType(T, Context.WCharTy) ||
9609          Context.hasSameType(T, Context.Char16Ty) ||
9610          Context.hasSameType(T, Context.Char32Ty)))
9611      goto FinishedParams;
9612
9613    // The second and final parameter must be an std::size_t
9614    T = (*Param)->getType().getUnqualifiedType();
9615    if (Context.hasSameType(T, Context.getSizeType()) &&
9616        ++Param == FnDecl->param_end())
9617      Valid = true;
9618  }
9619
9620  // FIXME: This diagnostic is absolutely terrible.
9621FinishedParams:
9622  if (!Valid) {
9623    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9624      << FnDecl->getDeclName();
9625    return true;
9626  }
9627
9628  StringRef LiteralName
9629    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9630  if (LiteralName[0] != '_') {
9631    // C++0x [usrlit.suffix]p1:
9632    //   Literal suffix identifiers that do not start with an underscore are
9633    //   reserved for future standardization.
9634    bool IsHexFloat = true;
9635    if (LiteralName.size() > 1 &&
9636        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9637      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9638        if (!isdigit(LiteralName[I])) {
9639          IsHexFloat = false;
9640          break;
9641        }
9642      }
9643    }
9644
9645    if (IsHexFloat)
9646      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9647        << LiteralName;
9648    else
9649      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9650  }
9651
9652  return false;
9653}
9654
9655/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9656/// linkage specification, including the language and (if present)
9657/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9658/// the location of the language string literal, which is provided
9659/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9660/// the '{' brace. Otherwise, this linkage specification does not
9661/// have any braces.
9662Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9663                                           SourceLocation LangLoc,
9664                                           StringRef Lang,
9665                                           SourceLocation LBraceLoc) {
9666  LinkageSpecDecl::LanguageIDs Language;
9667  if (Lang == "\"C\"")
9668    Language = LinkageSpecDecl::lang_c;
9669  else if (Lang == "\"C++\"")
9670    Language = LinkageSpecDecl::lang_cxx;
9671  else {
9672    Diag(LangLoc, diag::err_bad_language);
9673    return 0;
9674  }
9675
9676  // FIXME: Add all the various semantics of linkage specifications
9677
9678  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9679                                               ExternLoc, LangLoc, Language);
9680  CurContext->addDecl(D);
9681  PushDeclContext(S, D);
9682  return D;
9683}
9684
9685/// ActOnFinishLinkageSpecification - Complete the definition of
9686/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9687/// valid, it's the position of the closing '}' brace in a linkage
9688/// specification that uses braces.
9689Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9690                                            Decl *LinkageSpec,
9691                                            SourceLocation RBraceLoc) {
9692  if (LinkageSpec) {
9693    if (RBraceLoc.isValid()) {
9694      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9695      LSDecl->setRBraceLoc(RBraceLoc);
9696    }
9697    PopDeclContext();
9698  }
9699  return LinkageSpec;
9700}
9701
9702/// \brief Perform semantic analysis for the variable declaration that
9703/// occurs within a C++ catch clause, returning the newly-created
9704/// variable.
9705VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9706                                         TypeSourceInfo *TInfo,
9707                                         SourceLocation StartLoc,
9708                                         SourceLocation Loc,
9709                                         IdentifierInfo *Name) {
9710  bool Invalid = false;
9711  QualType ExDeclType = TInfo->getType();
9712
9713  // Arrays and functions decay.
9714  if (ExDeclType->isArrayType())
9715    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9716  else if (ExDeclType->isFunctionType())
9717    ExDeclType = Context.getPointerType(ExDeclType);
9718
9719  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9720  // The exception-declaration shall not denote a pointer or reference to an
9721  // incomplete type, other than [cv] void*.
9722  // N2844 forbids rvalue references.
9723  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9724    Diag(Loc, diag::err_catch_rvalue_ref);
9725    Invalid = true;
9726  }
9727
9728  // GCC allows catching pointers and references to incomplete types
9729  // as an extension; so do we, but we warn by default.
9730
9731  QualType BaseType = ExDeclType;
9732  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9733  unsigned DK = diag::err_catch_incomplete;
9734  bool IncompleteCatchIsInvalid = true;
9735  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9736    BaseType = Ptr->getPointeeType();
9737    Mode = 1;
9738    DK = diag::ext_catch_incomplete_ptr;
9739    IncompleteCatchIsInvalid = false;
9740  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9741    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9742    BaseType = Ref->getPointeeType();
9743    Mode = 2;
9744    DK = diag::ext_catch_incomplete_ref;
9745    IncompleteCatchIsInvalid = false;
9746  }
9747  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9748      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
9749      IncompleteCatchIsInvalid)
9750    Invalid = true;
9751
9752  if (!Invalid && !ExDeclType->isDependentType() &&
9753      RequireNonAbstractType(Loc, ExDeclType,
9754                             diag::err_abstract_type_in_decl,
9755                             AbstractVariableType))
9756    Invalid = true;
9757
9758  // Only the non-fragile NeXT runtime currently supports C++ catches
9759  // of ObjC types, and no runtime supports catching ObjC types by value.
9760  if (!Invalid && getLangOptions().ObjC1) {
9761    QualType T = ExDeclType;
9762    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9763      T = RT->getPointeeType();
9764
9765    if (T->isObjCObjectType()) {
9766      Diag(Loc, diag::err_objc_object_catch);
9767      Invalid = true;
9768    } else if (T->isObjCObjectPointerType()) {
9769      if (!getLangOptions().ObjCNonFragileABI)
9770        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9771    }
9772  }
9773
9774  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9775                                    ExDeclType, TInfo, SC_None, SC_None);
9776  ExDecl->setExceptionVariable(true);
9777
9778  // In ARC, infer 'retaining' for variables of retainable type.
9779  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9780    Invalid = true;
9781
9782  if (!Invalid && !ExDeclType->isDependentType()) {
9783    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9784      // C++ [except.handle]p16:
9785      //   The object declared in an exception-declaration or, if the
9786      //   exception-declaration does not specify a name, a temporary (12.2) is
9787      //   copy-initialized (8.5) from the exception object. [...]
9788      //   The object is destroyed when the handler exits, after the destruction
9789      //   of any automatic objects initialized within the handler.
9790      //
9791      // We just pretend to initialize the object with itself, then make sure
9792      // it can be destroyed later.
9793      QualType initType = ExDeclType;
9794
9795      InitializedEntity entity =
9796        InitializedEntity::InitializeVariable(ExDecl);
9797      InitializationKind initKind =
9798        InitializationKind::CreateCopy(Loc, SourceLocation());
9799
9800      Expr *opaqueValue =
9801        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9802      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9803      ExprResult result = sequence.Perform(*this, entity, initKind,
9804                                           MultiExprArg(&opaqueValue, 1));
9805      if (result.isInvalid())
9806        Invalid = true;
9807      else {
9808        // If the constructor used was non-trivial, set this as the
9809        // "initializer".
9810        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9811        if (!construct->getConstructor()->isTrivial()) {
9812          Expr *init = MaybeCreateExprWithCleanups(construct);
9813          ExDecl->setInit(init);
9814        }
9815
9816        // And make sure it's destructable.
9817        FinalizeVarWithDestructor(ExDecl, recordType);
9818      }
9819    }
9820  }
9821
9822  if (Invalid)
9823    ExDecl->setInvalidDecl();
9824
9825  return ExDecl;
9826}
9827
9828/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9829/// handler.
9830Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9831  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9832  bool Invalid = D.isInvalidType();
9833
9834  // Check for unexpanded parameter packs.
9835  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9836                                               UPPC_ExceptionType)) {
9837    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9838                                             D.getIdentifierLoc());
9839    Invalid = true;
9840  }
9841
9842  IdentifierInfo *II = D.getIdentifier();
9843  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9844                                             LookupOrdinaryName,
9845                                             ForRedeclaration)) {
9846    // The scope should be freshly made just for us. There is just no way
9847    // it contains any previous declaration.
9848    assert(!S->isDeclScope(PrevDecl));
9849    if (PrevDecl->isTemplateParameter()) {
9850      // Maybe we will complain about the shadowed template parameter.
9851      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9852      PrevDecl = 0;
9853    }
9854  }
9855
9856  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9857    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9858      << D.getCXXScopeSpec().getRange();
9859    Invalid = true;
9860  }
9861
9862  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9863                                              D.getSourceRange().getBegin(),
9864                                              D.getIdentifierLoc(),
9865                                              D.getIdentifier());
9866  if (Invalid)
9867    ExDecl->setInvalidDecl();
9868
9869  // Add the exception declaration into this scope.
9870  if (II)
9871    PushOnScopeChains(ExDecl, S);
9872  else
9873    CurContext->addDecl(ExDecl);
9874
9875  ProcessDeclAttributes(S, ExDecl, D);
9876  return ExDecl;
9877}
9878
9879Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9880                                         Expr *AssertExpr,
9881                                         Expr *AssertMessageExpr_,
9882                                         SourceLocation RParenLoc) {
9883  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9884
9885  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9886    llvm::APSInt Cond;
9887    if (VerifyIntegerConstantExpression(AssertExpr, &Cond,
9888                             diag::err_static_assert_expression_is_not_constant,
9889                                        /*AllowFold=*/false))
9890      return 0;
9891
9892    if (!Cond)
9893      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9894        << AssertMessage->getString() << AssertExpr->getSourceRange();
9895  }
9896
9897  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9898    return 0;
9899
9900  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9901                                        AssertExpr, AssertMessage, RParenLoc);
9902
9903  CurContext->addDecl(Decl);
9904  return Decl;
9905}
9906
9907/// \brief Perform semantic analysis of the given friend type declaration.
9908///
9909/// \returns A friend declaration that.
9910FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9911                                      SourceLocation FriendLoc,
9912                                      TypeSourceInfo *TSInfo) {
9913  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9914
9915  QualType T = TSInfo->getType();
9916  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9917
9918  // C++03 [class.friend]p2:
9919  //   An elaborated-type-specifier shall be used in a friend declaration
9920  //   for a class.*
9921  //
9922  //   * The class-key of the elaborated-type-specifier is required.
9923  if (!ActiveTemplateInstantiations.empty()) {
9924    // Do not complain about the form of friend template types during
9925    // template instantiation; we will already have complained when the
9926    // template was declared.
9927  } else if (!T->isElaboratedTypeSpecifier()) {
9928    // If we evaluated the type to a record type, suggest putting
9929    // a tag in front.
9930    if (const RecordType *RT = T->getAs<RecordType>()) {
9931      RecordDecl *RD = RT->getDecl();
9932
9933      std::string InsertionText = std::string(" ") + RD->getKindName();
9934
9935      Diag(TypeRange.getBegin(),
9936           getLangOptions().CPlusPlus0x ?
9937             diag::warn_cxx98_compat_unelaborated_friend_type :
9938             diag::ext_unelaborated_friend_type)
9939        << (unsigned) RD->getTagKind()
9940        << T
9941        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9942                                      InsertionText);
9943    } else {
9944      Diag(FriendLoc,
9945           getLangOptions().CPlusPlus0x ?
9946             diag::warn_cxx98_compat_nonclass_type_friend :
9947             diag::ext_nonclass_type_friend)
9948        << T
9949        << SourceRange(FriendLoc, TypeRange.getEnd());
9950    }
9951  } else if (T->getAs<EnumType>()) {
9952    Diag(FriendLoc,
9953         getLangOptions().CPlusPlus0x ?
9954           diag::warn_cxx98_compat_enum_friend :
9955           diag::ext_enum_friend)
9956      << T
9957      << SourceRange(FriendLoc, TypeRange.getEnd());
9958  }
9959
9960  // C++0x [class.friend]p3:
9961  //   If the type specifier in a friend declaration designates a (possibly
9962  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9963  //   the friend declaration is ignored.
9964
9965  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9966  // in [class.friend]p3 that we do not implement.
9967
9968  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9969}
9970
9971/// Handle a friend tag declaration where the scope specifier was
9972/// templated.
9973Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9974                                    unsigned TagSpec, SourceLocation TagLoc,
9975                                    CXXScopeSpec &SS,
9976                                    IdentifierInfo *Name, SourceLocation NameLoc,
9977                                    AttributeList *Attr,
9978                                    MultiTemplateParamsArg TempParamLists) {
9979  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9980
9981  bool isExplicitSpecialization = false;
9982  bool Invalid = false;
9983
9984  if (TemplateParameterList *TemplateParams
9985        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9986                                                  TempParamLists.get(),
9987                                                  TempParamLists.size(),
9988                                                  /*friend*/ true,
9989                                                  isExplicitSpecialization,
9990                                                  Invalid)) {
9991    if (TemplateParams->size() > 0) {
9992      // This is a declaration of a class template.
9993      if (Invalid)
9994        return 0;
9995
9996      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9997                                SS, Name, NameLoc, Attr,
9998                                TemplateParams, AS_public,
9999                                /*ModulePrivateLoc=*/SourceLocation(),
10000                                TempParamLists.size() - 1,
10001                   (TemplateParameterList**) TempParamLists.release()).take();
10002    } else {
10003      // The "template<>" header is extraneous.
10004      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10005        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10006      isExplicitSpecialization = true;
10007    }
10008  }
10009
10010  if (Invalid) return 0;
10011
10012  bool isAllExplicitSpecializations = true;
10013  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10014    if (TempParamLists.get()[I]->size()) {
10015      isAllExplicitSpecializations = false;
10016      break;
10017    }
10018  }
10019
10020  // FIXME: don't ignore attributes.
10021
10022  // If it's explicit specializations all the way down, just forget
10023  // about the template header and build an appropriate non-templated
10024  // friend.  TODO: for source fidelity, remember the headers.
10025  if (isAllExplicitSpecializations) {
10026    if (SS.isEmpty()) {
10027      bool Owned = false;
10028      bool IsDependent = false;
10029      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10030                      Attr, AS_public,
10031                      /*ModulePrivateLoc=*/SourceLocation(),
10032                      MultiTemplateParamsArg(), Owned, IsDependent,
10033                      /*ScopedEnumKWLoc=*/SourceLocation(),
10034                      /*ScopedEnumUsesClassTag=*/false,
10035                      /*UnderlyingType=*/TypeResult());
10036    }
10037
10038    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10039    ElaboratedTypeKeyword Keyword
10040      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10041    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10042                                   *Name, NameLoc);
10043    if (T.isNull())
10044      return 0;
10045
10046    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10047    if (isa<DependentNameType>(T)) {
10048      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10049      TL.setKeywordLoc(TagLoc);
10050      TL.setQualifierLoc(QualifierLoc);
10051      TL.setNameLoc(NameLoc);
10052    } else {
10053      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10054      TL.setKeywordLoc(TagLoc);
10055      TL.setQualifierLoc(QualifierLoc);
10056      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10057    }
10058
10059    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10060                                            TSI, FriendLoc);
10061    Friend->setAccess(AS_public);
10062    CurContext->addDecl(Friend);
10063    return Friend;
10064  }
10065
10066  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10067
10068
10069
10070  // Handle the case of a templated-scope friend class.  e.g.
10071  //   template <class T> class A<T>::B;
10072  // FIXME: we don't support these right now.
10073  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10074  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10075  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10076  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10077  TL.setKeywordLoc(TagLoc);
10078  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10079  TL.setNameLoc(NameLoc);
10080
10081  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10082                                          TSI, FriendLoc);
10083  Friend->setAccess(AS_public);
10084  Friend->setUnsupportedFriend(true);
10085  CurContext->addDecl(Friend);
10086  return Friend;
10087}
10088
10089
10090/// Handle a friend type declaration.  This works in tandem with
10091/// ActOnTag.
10092///
10093/// Notes on friend class templates:
10094///
10095/// We generally treat friend class declarations as if they were
10096/// declaring a class.  So, for example, the elaborated type specifier
10097/// in a friend declaration is required to obey the restrictions of a
10098/// class-head (i.e. no typedefs in the scope chain), template
10099/// parameters are required to match up with simple template-ids, &c.
10100/// However, unlike when declaring a template specialization, it's
10101/// okay to refer to a template specialization without an empty
10102/// template parameter declaration, e.g.
10103///   friend class A<T>::B<unsigned>;
10104/// We permit this as a special case; if there are any template
10105/// parameters present at all, require proper matching, i.e.
10106///   template <> template <class T> friend class A<int>::B;
10107Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10108                                MultiTemplateParamsArg TempParams) {
10109  SourceLocation Loc = DS.getSourceRange().getBegin();
10110
10111  assert(DS.isFriendSpecified());
10112  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10113
10114  // Try to convert the decl specifier to a type.  This works for
10115  // friend templates because ActOnTag never produces a ClassTemplateDecl
10116  // for a TUK_Friend.
10117  Declarator TheDeclarator(DS, Declarator::MemberContext);
10118  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10119  QualType T = TSI->getType();
10120  if (TheDeclarator.isInvalidType())
10121    return 0;
10122
10123  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10124    return 0;
10125
10126  // This is definitely an error in C++98.  It's probably meant to
10127  // be forbidden in C++0x, too, but the specification is just
10128  // poorly written.
10129  //
10130  // The problem is with declarations like the following:
10131  //   template <T> friend A<T>::foo;
10132  // where deciding whether a class C is a friend or not now hinges
10133  // on whether there exists an instantiation of A that causes
10134  // 'foo' to equal C.  There are restrictions on class-heads
10135  // (which we declare (by fiat) elaborated friend declarations to
10136  // be) that makes this tractable.
10137  //
10138  // FIXME: handle "template <> friend class A<T>;", which
10139  // is possibly well-formed?  Who even knows?
10140  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10141    Diag(Loc, diag::err_tagless_friend_type_template)
10142      << DS.getSourceRange();
10143    return 0;
10144  }
10145
10146  // C++98 [class.friend]p1: A friend of a class is a function
10147  //   or class that is not a member of the class . . .
10148  // This is fixed in DR77, which just barely didn't make the C++03
10149  // deadline.  It's also a very silly restriction that seriously
10150  // affects inner classes and which nobody else seems to implement;
10151  // thus we never diagnose it, not even in -pedantic.
10152  //
10153  // But note that we could warn about it: it's always useless to
10154  // friend one of your own members (it's not, however, worthless to
10155  // friend a member of an arbitrary specialization of your template).
10156
10157  Decl *D;
10158  if (unsigned NumTempParamLists = TempParams.size())
10159    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10160                                   NumTempParamLists,
10161                                   TempParams.release(),
10162                                   TSI,
10163                                   DS.getFriendSpecLoc());
10164  else
10165    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10166
10167  if (!D)
10168    return 0;
10169
10170  D->setAccess(AS_public);
10171  CurContext->addDecl(D);
10172
10173  return D;
10174}
10175
10176Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10177                                    MultiTemplateParamsArg TemplateParams) {
10178  const DeclSpec &DS = D.getDeclSpec();
10179
10180  assert(DS.isFriendSpecified());
10181  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10182
10183  SourceLocation Loc = D.getIdentifierLoc();
10184  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10185
10186  // C++ [class.friend]p1
10187  //   A friend of a class is a function or class....
10188  // Note that this sees through typedefs, which is intended.
10189  // It *doesn't* see through dependent types, which is correct
10190  // according to [temp.arg.type]p3:
10191  //   If a declaration acquires a function type through a
10192  //   type dependent on a template-parameter and this causes
10193  //   a declaration that does not use the syntactic form of a
10194  //   function declarator to have a function type, the program
10195  //   is ill-formed.
10196  if (!TInfo->getType()->isFunctionType()) {
10197    Diag(Loc, diag::err_unexpected_friend);
10198
10199    // It might be worthwhile to try to recover by creating an
10200    // appropriate declaration.
10201    return 0;
10202  }
10203
10204  // C++ [namespace.memdef]p3
10205  //  - If a friend declaration in a non-local class first declares a
10206  //    class or function, the friend class or function is a member
10207  //    of the innermost enclosing namespace.
10208  //  - The name of the friend is not found by simple name lookup
10209  //    until a matching declaration is provided in that namespace
10210  //    scope (either before or after the class declaration granting
10211  //    friendship).
10212  //  - If a friend function is called, its name may be found by the
10213  //    name lookup that considers functions from namespaces and
10214  //    classes associated with the types of the function arguments.
10215  //  - When looking for a prior declaration of a class or a function
10216  //    declared as a friend, scopes outside the innermost enclosing
10217  //    namespace scope are not considered.
10218
10219  CXXScopeSpec &SS = D.getCXXScopeSpec();
10220  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10221  DeclarationName Name = NameInfo.getName();
10222  assert(Name);
10223
10224  // Check for unexpanded parameter packs.
10225  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10226      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10227      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10228    return 0;
10229
10230  // The context we found the declaration in, or in which we should
10231  // create the declaration.
10232  DeclContext *DC;
10233  Scope *DCScope = S;
10234  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10235                        ForRedeclaration);
10236
10237  // FIXME: there are different rules in local classes
10238
10239  // There are four cases here.
10240  //   - There's no scope specifier, in which case we just go to the
10241  //     appropriate scope and look for a function or function template
10242  //     there as appropriate.
10243  // Recover from invalid scope qualifiers as if they just weren't there.
10244  if (SS.isInvalid() || !SS.isSet()) {
10245    // C++0x [namespace.memdef]p3:
10246    //   If the name in a friend declaration is neither qualified nor
10247    //   a template-id and the declaration is a function or an
10248    //   elaborated-type-specifier, the lookup to determine whether
10249    //   the entity has been previously declared shall not consider
10250    //   any scopes outside the innermost enclosing namespace.
10251    // C++0x [class.friend]p11:
10252    //   If a friend declaration appears in a local class and the name
10253    //   specified is an unqualified name, a prior declaration is
10254    //   looked up without considering scopes that are outside the
10255    //   innermost enclosing non-class scope. For a friend function
10256    //   declaration, if there is no prior declaration, the program is
10257    //   ill-formed.
10258    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10259    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10260
10261    // Find the appropriate context according to the above.
10262    DC = CurContext;
10263    while (true) {
10264      // Skip class contexts.  If someone can cite chapter and verse
10265      // for this behavior, that would be nice --- it's what GCC and
10266      // EDG do, and it seems like a reasonable intent, but the spec
10267      // really only says that checks for unqualified existing
10268      // declarations should stop at the nearest enclosing namespace,
10269      // not that they should only consider the nearest enclosing
10270      // namespace.
10271      while (DC->isRecord())
10272        DC = DC->getParent();
10273
10274      LookupQualifiedName(Previous, DC);
10275
10276      // TODO: decide what we think about using declarations.
10277      if (isLocal || !Previous.empty())
10278        break;
10279
10280      if (isTemplateId) {
10281        if (isa<TranslationUnitDecl>(DC)) break;
10282      } else {
10283        if (DC->isFileContext()) break;
10284      }
10285      DC = DC->getParent();
10286    }
10287
10288    // C++ [class.friend]p1: A friend of a class is a function or
10289    //   class that is not a member of the class . . .
10290    // C++11 changes this for both friend types and functions.
10291    // Most C++ 98 compilers do seem to give an error here, so
10292    // we do, too.
10293    if (!Previous.empty() && DC->Equals(CurContext))
10294      Diag(DS.getFriendSpecLoc(),
10295           getLangOptions().CPlusPlus0x ?
10296             diag::warn_cxx98_compat_friend_is_member :
10297             diag::err_friend_is_member);
10298
10299    DCScope = getScopeForDeclContext(S, DC);
10300
10301    // C++ [class.friend]p6:
10302    //   A function can be defined in a friend declaration of a class if and
10303    //   only if the class is a non-local class (9.8), the function name is
10304    //   unqualified, and the function has namespace scope.
10305    if (isLocal && D.isFunctionDefinition()) {
10306      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10307    }
10308
10309  //   - There's a non-dependent scope specifier, in which case we
10310  //     compute it and do a previous lookup there for a function
10311  //     or function template.
10312  } else if (!SS.getScopeRep()->isDependent()) {
10313    DC = computeDeclContext(SS);
10314    if (!DC) return 0;
10315
10316    if (RequireCompleteDeclContext(SS, DC)) return 0;
10317
10318    LookupQualifiedName(Previous, DC);
10319
10320    // Ignore things found implicitly in the wrong scope.
10321    // TODO: better diagnostics for this case.  Suggesting the right
10322    // qualified scope would be nice...
10323    LookupResult::Filter F = Previous.makeFilter();
10324    while (F.hasNext()) {
10325      NamedDecl *D = F.next();
10326      if (!DC->InEnclosingNamespaceSetOf(
10327              D->getDeclContext()->getRedeclContext()))
10328        F.erase();
10329    }
10330    F.done();
10331
10332    if (Previous.empty()) {
10333      D.setInvalidType();
10334      Diag(Loc, diag::err_qualified_friend_not_found)
10335          << Name << TInfo->getType();
10336      return 0;
10337    }
10338
10339    // C++ [class.friend]p1: A friend of a class is a function or
10340    //   class that is not a member of the class . . .
10341    if (DC->Equals(CurContext))
10342      Diag(DS.getFriendSpecLoc(),
10343           getLangOptions().CPlusPlus0x ?
10344             diag::warn_cxx98_compat_friend_is_member :
10345             diag::err_friend_is_member);
10346
10347    if (D.isFunctionDefinition()) {
10348      // C++ [class.friend]p6:
10349      //   A function can be defined in a friend declaration of a class if and
10350      //   only if the class is a non-local class (9.8), the function name is
10351      //   unqualified, and the function has namespace scope.
10352      SemaDiagnosticBuilder DB
10353        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10354
10355      DB << SS.getScopeRep();
10356      if (DC->isFileContext())
10357        DB << FixItHint::CreateRemoval(SS.getRange());
10358      SS.clear();
10359    }
10360
10361  //   - There's a scope specifier that does not match any template
10362  //     parameter lists, in which case we use some arbitrary context,
10363  //     create a method or method template, and wait for instantiation.
10364  //   - There's a scope specifier that does match some template
10365  //     parameter lists, which we don't handle right now.
10366  } else {
10367    if (D.isFunctionDefinition()) {
10368      // C++ [class.friend]p6:
10369      //   A function can be defined in a friend declaration of a class if and
10370      //   only if the class is a non-local class (9.8), the function name is
10371      //   unqualified, and the function has namespace scope.
10372      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10373        << SS.getScopeRep();
10374    }
10375
10376    DC = CurContext;
10377    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10378  }
10379
10380  if (!DC->isRecord()) {
10381    // This implies that it has to be an operator or function.
10382    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10383        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10384        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10385      Diag(Loc, diag::err_introducing_special_friend) <<
10386        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10387         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10388      return 0;
10389    }
10390  }
10391
10392  // FIXME: This is an egregious hack to cope with cases where the scope stack
10393  // does not contain the declaration context, i.e., in an out-of-line
10394  // definition of a class.
10395  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10396  if (!DCScope) {
10397    FakeDCScope.setEntity(DC);
10398    DCScope = &FakeDCScope;
10399  }
10400
10401  bool AddToScope = true;
10402  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10403                                          move(TemplateParams), AddToScope);
10404  if (!ND) return 0;
10405
10406  assert(ND->getDeclContext() == DC);
10407  assert(ND->getLexicalDeclContext() == CurContext);
10408
10409  // Add the function declaration to the appropriate lookup tables,
10410  // adjusting the redeclarations list as necessary.  We don't
10411  // want to do this yet if the friending class is dependent.
10412  //
10413  // Also update the scope-based lookup if the target context's
10414  // lookup context is in lexical scope.
10415  if (!CurContext->isDependentContext()) {
10416    DC = DC->getRedeclContext();
10417    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10418    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10419      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10420  }
10421
10422  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10423                                       D.getIdentifierLoc(), ND,
10424                                       DS.getFriendSpecLoc());
10425  FrD->setAccess(AS_public);
10426  CurContext->addDecl(FrD);
10427
10428  if (ND->isInvalidDecl())
10429    FrD->setInvalidDecl();
10430  else {
10431    FunctionDecl *FD;
10432    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10433      FD = FTD->getTemplatedDecl();
10434    else
10435      FD = cast<FunctionDecl>(ND);
10436
10437    // Mark templated-scope function declarations as unsupported.
10438    if (FD->getNumTemplateParameterLists())
10439      FrD->setUnsupportedFriend(true);
10440  }
10441
10442  return ND;
10443}
10444
10445void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10446  AdjustDeclIfTemplate(Dcl);
10447
10448  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10449  if (!Fn) {
10450    Diag(DelLoc, diag::err_deleted_non_function);
10451    return;
10452  }
10453  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10454    Diag(DelLoc, diag::err_deleted_decl_not_first);
10455    Diag(Prev->getLocation(), diag::note_previous_declaration);
10456    // If the declaration wasn't the first, we delete the function anyway for
10457    // recovery.
10458  }
10459  Fn->setDeletedAsWritten();
10460}
10461
10462void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10463  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10464
10465  if (MD) {
10466    if (MD->getParent()->isDependentType()) {
10467      MD->setDefaulted();
10468      MD->setExplicitlyDefaulted();
10469      return;
10470    }
10471
10472    CXXSpecialMember Member = getSpecialMember(MD);
10473    if (Member == CXXInvalid) {
10474      Diag(DefaultLoc, diag::err_default_special_members);
10475      return;
10476    }
10477
10478    MD->setDefaulted();
10479    MD->setExplicitlyDefaulted();
10480
10481    // If this definition appears within the record, do the checking when
10482    // the record is complete.
10483    const FunctionDecl *Primary = MD;
10484    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10485      // Find the uninstantiated declaration that actually had the '= default'
10486      // on it.
10487      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10488
10489    if (Primary == Primary->getCanonicalDecl())
10490      return;
10491
10492    switch (Member) {
10493    case CXXDefaultConstructor: {
10494      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10495      CheckExplicitlyDefaultedDefaultConstructor(CD);
10496      if (!CD->isInvalidDecl())
10497        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10498      break;
10499    }
10500
10501    case CXXCopyConstructor: {
10502      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10503      CheckExplicitlyDefaultedCopyConstructor(CD);
10504      if (!CD->isInvalidDecl())
10505        DefineImplicitCopyConstructor(DefaultLoc, CD);
10506      break;
10507    }
10508
10509    case CXXCopyAssignment: {
10510      CheckExplicitlyDefaultedCopyAssignment(MD);
10511      if (!MD->isInvalidDecl())
10512        DefineImplicitCopyAssignment(DefaultLoc, MD);
10513      break;
10514    }
10515
10516    case CXXDestructor: {
10517      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10518      CheckExplicitlyDefaultedDestructor(DD);
10519      if (!DD->isInvalidDecl())
10520        DefineImplicitDestructor(DefaultLoc, DD);
10521      break;
10522    }
10523
10524    case CXXMoveConstructor: {
10525      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10526      CheckExplicitlyDefaultedMoveConstructor(CD);
10527      if (!CD->isInvalidDecl())
10528        DefineImplicitMoveConstructor(DefaultLoc, CD);
10529      break;
10530    }
10531
10532    case CXXMoveAssignment: {
10533      CheckExplicitlyDefaultedMoveAssignment(MD);
10534      if (!MD->isInvalidDecl())
10535        DefineImplicitMoveAssignment(DefaultLoc, MD);
10536      break;
10537    }
10538
10539    case CXXInvalid:
10540      llvm_unreachable("Invalid special member.");
10541    }
10542  } else {
10543    Diag(DefaultLoc, diag::err_default_special_members);
10544  }
10545}
10546
10547static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10548  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10549    Stmt *SubStmt = *CI;
10550    if (!SubStmt)
10551      continue;
10552    if (isa<ReturnStmt>(SubStmt))
10553      Self.Diag(SubStmt->getSourceRange().getBegin(),
10554           diag::err_return_in_constructor_handler);
10555    if (!isa<Expr>(SubStmt))
10556      SearchForReturnInStmt(Self, SubStmt);
10557  }
10558}
10559
10560void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10561  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10562    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10563    SearchForReturnInStmt(*this, Handler);
10564  }
10565}
10566
10567bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10568                                             const CXXMethodDecl *Old) {
10569  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10570  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10571
10572  if (Context.hasSameType(NewTy, OldTy) ||
10573      NewTy->isDependentType() || OldTy->isDependentType())
10574    return false;
10575
10576  // Check if the return types are covariant
10577  QualType NewClassTy, OldClassTy;
10578
10579  /// Both types must be pointers or references to classes.
10580  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10581    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10582      NewClassTy = NewPT->getPointeeType();
10583      OldClassTy = OldPT->getPointeeType();
10584    }
10585  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10586    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10587      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10588        NewClassTy = NewRT->getPointeeType();
10589        OldClassTy = OldRT->getPointeeType();
10590      }
10591    }
10592  }
10593
10594  // The return types aren't either both pointers or references to a class type.
10595  if (NewClassTy.isNull()) {
10596    Diag(New->getLocation(),
10597         diag::err_different_return_type_for_overriding_virtual_function)
10598      << New->getDeclName() << NewTy << OldTy;
10599    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10600
10601    return true;
10602  }
10603
10604  // C++ [class.virtual]p6:
10605  //   If the return type of D::f differs from the return type of B::f, the
10606  //   class type in the return type of D::f shall be complete at the point of
10607  //   declaration of D::f or shall be the class type D.
10608  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10609    if (!RT->isBeingDefined() &&
10610        RequireCompleteType(New->getLocation(), NewClassTy,
10611                            PDiag(diag::err_covariant_return_incomplete)
10612                              << New->getDeclName()))
10613    return true;
10614  }
10615
10616  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10617    // Check if the new class derives from the old class.
10618    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10619      Diag(New->getLocation(),
10620           diag::err_covariant_return_not_derived)
10621      << New->getDeclName() << NewTy << OldTy;
10622      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10623      return true;
10624    }
10625
10626    // Check if we the conversion from derived to base is valid.
10627    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10628                    diag::err_covariant_return_inaccessible_base,
10629                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10630                    // FIXME: Should this point to the return type?
10631                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10632      // FIXME: this note won't trigger for delayed access control
10633      // diagnostics, and it's impossible to get an undelayed error
10634      // here from access control during the original parse because
10635      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10636      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10637      return true;
10638    }
10639  }
10640
10641  // The qualifiers of the return types must be the same.
10642  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10643    Diag(New->getLocation(),
10644         diag::err_covariant_return_type_different_qualifications)
10645    << New->getDeclName() << NewTy << OldTy;
10646    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10647    return true;
10648  };
10649
10650
10651  // The new class type must have the same or less qualifiers as the old type.
10652  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10653    Diag(New->getLocation(),
10654         diag::err_covariant_return_type_class_type_more_qualified)
10655    << New->getDeclName() << NewTy << OldTy;
10656    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10657    return true;
10658  };
10659
10660  return false;
10661}
10662
10663/// \brief Mark the given method pure.
10664///
10665/// \param Method the method to be marked pure.
10666///
10667/// \param InitRange the source range that covers the "0" initializer.
10668bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10669  SourceLocation EndLoc = InitRange.getEnd();
10670  if (EndLoc.isValid())
10671    Method->setRangeEnd(EndLoc);
10672
10673  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10674    Method->setPure();
10675    return false;
10676  }
10677
10678  if (!Method->isInvalidDecl())
10679    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10680      << Method->getDeclName() << InitRange;
10681  return true;
10682}
10683
10684/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10685/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10686/// is a fresh scope pushed for just this purpose.
10687///
10688/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10689/// static data member of class X, names should be looked up in the scope of
10690/// class X.
10691void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10692  // If there is no declaration, there was an error parsing it.
10693  if (D == 0 || D->isInvalidDecl()) return;
10694
10695  // We should only get called for declarations with scope specifiers, like:
10696  //   int foo::bar;
10697  assert(D->isOutOfLine());
10698  EnterDeclaratorContext(S, D->getDeclContext());
10699}
10700
10701/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10702/// initializer for the out-of-line declaration 'D'.
10703void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10704  // If there is no declaration, there was an error parsing it.
10705  if (D == 0 || D->isInvalidDecl()) return;
10706
10707  assert(D->isOutOfLine());
10708  ExitDeclaratorContext(S);
10709}
10710
10711/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10712/// C++ if/switch/while/for statement.
10713/// e.g: "if (int x = f()) {...}"
10714DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10715  // C++ 6.4p2:
10716  // The declarator shall not specify a function or an array.
10717  // The type-specifier-seq shall not contain typedef and shall not declare a
10718  // new class or enumeration.
10719  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10720         "Parser allowed 'typedef' as storage class of condition decl.");
10721
10722  Decl *Dcl = ActOnDeclarator(S, D);
10723  if (!Dcl)
10724    return true;
10725
10726  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10727    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10728      << D.getSourceRange();
10729    return true;
10730  }
10731
10732  return Dcl;
10733}
10734
10735void Sema::LoadExternalVTableUses() {
10736  if (!ExternalSource)
10737    return;
10738
10739  SmallVector<ExternalVTableUse, 4> VTables;
10740  ExternalSource->ReadUsedVTables(VTables);
10741  SmallVector<VTableUse, 4> NewUses;
10742  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10743    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10744      = VTablesUsed.find(VTables[I].Record);
10745    // Even if a definition wasn't required before, it may be required now.
10746    if (Pos != VTablesUsed.end()) {
10747      if (!Pos->second && VTables[I].DefinitionRequired)
10748        Pos->second = true;
10749      continue;
10750    }
10751
10752    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10753    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10754  }
10755
10756  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10757}
10758
10759void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10760                          bool DefinitionRequired) {
10761  // Ignore any vtable uses in unevaluated operands or for classes that do
10762  // not have a vtable.
10763  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10764      CurContext->isDependentContext() ||
10765      ExprEvalContexts.back().Context == Unevaluated)
10766    return;
10767
10768  // Try to insert this class into the map.
10769  LoadExternalVTableUses();
10770  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10771  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10772    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10773  if (!Pos.second) {
10774    // If we already had an entry, check to see if we are promoting this vtable
10775    // to required a definition. If so, we need to reappend to the VTableUses
10776    // list, since we may have already processed the first entry.
10777    if (DefinitionRequired && !Pos.first->second) {
10778      Pos.first->second = true;
10779    } else {
10780      // Otherwise, we can early exit.
10781      return;
10782    }
10783  }
10784
10785  // Local classes need to have their virtual members marked
10786  // immediately. For all other classes, we mark their virtual members
10787  // at the end of the translation unit.
10788  if (Class->isLocalClass())
10789    MarkVirtualMembersReferenced(Loc, Class);
10790  else
10791    VTableUses.push_back(std::make_pair(Class, Loc));
10792}
10793
10794bool Sema::DefineUsedVTables() {
10795  LoadExternalVTableUses();
10796  if (VTableUses.empty())
10797    return false;
10798
10799  // Note: The VTableUses vector could grow as a result of marking
10800  // the members of a class as "used", so we check the size each
10801  // time through the loop and prefer indices (with are stable) to
10802  // iterators (which are not).
10803  bool DefinedAnything = false;
10804  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10805    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10806    if (!Class)
10807      continue;
10808
10809    SourceLocation Loc = VTableUses[I].second;
10810
10811    // If this class has a key function, but that key function is
10812    // defined in another translation unit, we don't need to emit the
10813    // vtable even though we're using it.
10814    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10815    if (KeyFunction && !KeyFunction->hasBody()) {
10816      switch (KeyFunction->getTemplateSpecializationKind()) {
10817      case TSK_Undeclared:
10818      case TSK_ExplicitSpecialization:
10819      case TSK_ExplicitInstantiationDeclaration:
10820        // The key function is in another translation unit.
10821        continue;
10822
10823      case TSK_ExplicitInstantiationDefinition:
10824      case TSK_ImplicitInstantiation:
10825        // We will be instantiating the key function.
10826        break;
10827      }
10828    } else if (!KeyFunction) {
10829      // If we have a class with no key function that is the subject
10830      // of an explicit instantiation declaration, suppress the
10831      // vtable; it will live with the explicit instantiation
10832      // definition.
10833      bool IsExplicitInstantiationDeclaration
10834        = Class->getTemplateSpecializationKind()
10835                                      == TSK_ExplicitInstantiationDeclaration;
10836      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10837                                 REnd = Class->redecls_end();
10838           R != REnd; ++R) {
10839        TemplateSpecializationKind TSK
10840          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10841        if (TSK == TSK_ExplicitInstantiationDeclaration)
10842          IsExplicitInstantiationDeclaration = true;
10843        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10844          IsExplicitInstantiationDeclaration = false;
10845          break;
10846        }
10847      }
10848
10849      if (IsExplicitInstantiationDeclaration)
10850        continue;
10851    }
10852
10853    // Mark all of the virtual members of this class as referenced, so
10854    // that we can build a vtable. Then, tell the AST consumer that a
10855    // vtable for this class is required.
10856    DefinedAnything = true;
10857    MarkVirtualMembersReferenced(Loc, Class);
10858    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10859    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10860
10861    // Optionally warn if we're emitting a weak vtable.
10862    if (Class->getLinkage() == ExternalLinkage &&
10863        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10864      const FunctionDecl *KeyFunctionDef = 0;
10865      if (!KeyFunction ||
10866          (KeyFunction->hasBody(KeyFunctionDef) &&
10867           KeyFunctionDef->isInlined()))
10868        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10869             TSK_ExplicitInstantiationDefinition
10870             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10871          << Class;
10872    }
10873  }
10874  VTableUses.clear();
10875
10876  return DefinedAnything;
10877}
10878
10879void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10880                                        const CXXRecordDecl *RD) {
10881  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10882       e = RD->method_end(); i != e; ++i) {
10883    CXXMethodDecl *MD = *i;
10884
10885    // C++ [basic.def.odr]p2:
10886    //   [...] A virtual member function is used if it is not pure. [...]
10887    if (MD->isVirtual() && !MD->isPure())
10888      MarkDeclarationReferenced(Loc, MD);
10889  }
10890
10891  // Only classes that have virtual bases need a VTT.
10892  if (RD->getNumVBases() == 0)
10893    return;
10894
10895  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10896           e = RD->bases_end(); i != e; ++i) {
10897    const CXXRecordDecl *Base =
10898        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10899    if (Base->getNumVBases() == 0)
10900      continue;
10901    MarkVirtualMembersReferenced(Loc, Base);
10902  }
10903}
10904
10905/// SetIvarInitializers - This routine builds initialization ASTs for the
10906/// Objective-C implementation whose ivars need be initialized.
10907void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10908  if (!getLangOptions().CPlusPlus)
10909    return;
10910  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10911    SmallVector<ObjCIvarDecl*, 8> ivars;
10912    CollectIvarsToConstructOrDestruct(OID, ivars);
10913    if (ivars.empty())
10914      return;
10915    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10916    for (unsigned i = 0; i < ivars.size(); i++) {
10917      FieldDecl *Field = ivars[i];
10918      if (Field->isInvalidDecl())
10919        continue;
10920
10921      CXXCtorInitializer *Member;
10922      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10923      InitializationKind InitKind =
10924        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10925
10926      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10927      ExprResult MemberInit =
10928        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10929      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10930      // Note, MemberInit could actually come back empty if no initialization
10931      // is required (e.g., because it would call a trivial default constructor)
10932      if (!MemberInit.get() || MemberInit.isInvalid())
10933        continue;
10934
10935      Member =
10936        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10937                                         SourceLocation(),
10938                                         MemberInit.takeAs<Expr>(),
10939                                         SourceLocation());
10940      AllToInit.push_back(Member);
10941
10942      // Be sure that the destructor is accessible and is marked as referenced.
10943      if (const RecordType *RecordTy
10944                  = Context.getBaseElementType(Field->getType())
10945                                                        ->getAs<RecordType>()) {
10946                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10947        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10948          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10949          CheckDestructorAccess(Field->getLocation(), Destructor,
10950                            PDiag(diag::err_access_dtor_ivar)
10951                              << Context.getBaseElementType(Field->getType()));
10952        }
10953      }
10954    }
10955    ObjCImplementation->setIvarInitializers(Context,
10956                                            AllToInit.data(), AllToInit.size());
10957  }
10958}
10959
10960static
10961void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10962                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10963                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10964                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10965                           Sema &S) {
10966  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10967                                                   CE = Current.end();
10968  if (Ctor->isInvalidDecl())
10969    return;
10970
10971  const FunctionDecl *FNTarget = 0;
10972  CXXConstructorDecl *Target;
10973
10974  // We ignore the result here since if we don't have a body, Target will be
10975  // null below.
10976  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10977  Target
10978= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10979
10980  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10981                     // Avoid dereferencing a null pointer here.
10982                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10983
10984  if (!Current.insert(Canonical))
10985    return;
10986
10987  // We know that beyond here, we aren't chaining into a cycle.
10988  if (!Target || !Target->isDelegatingConstructor() ||
10989      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10990    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10991      Valid.insert(*CI);
10992    Current.clear();
10993  // We've hit a cycle.
10994  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10995             Current.count(TCanonical)) {
10996    // If we haven't diagnosed this cycle yet, do so now.
10997    if (!Invalid.count(TCanonical)) {
10998      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10999             diag::warn_delegating_ctor_cycle)
11000        << Ctor;
11001
11002      // Don't add a note for a function delegating directo to itself.
11003      if (TCanonical != Canonical)
11004        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11005
11006      CXXConstructorDecl *C = Target;
11007      while (C->getCanonicalDecl() != Canonical) {
11008        (void)C->getTargetConstructor()->hasBody(FNTarget);
11009        assert(FNTarget && "Ctor cycle through bodiless function");
11010
11011        C
11012       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
11013        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11014      }
11015    }
11016
11017    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11018      Invalid.insert(*CI);
11019    Current.clear();
11020  } else {
11021    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11022  }
11023}
11024
11025
11026void Sema::CheckDelegatingCtorCycles() {
11027  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11028
11029  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11030                                                   CE = Current.end();
11031
11032  for (DelegatingCtorDeclsType::iterator
11033         I = DelegatingCtorDecls.begin(ExternalSource),
11034         E = DelegatingCtorDecls.end();
11035       I != E; ++I) {
11036   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11037  }
11038
11039  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11040    (*CI)->setInvalidDecl();
11041}
11042
11043/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11044Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11045  // Implicitly declared functions (e.g. copy constructors) are
11046  // __host__ __device__
11047  if (D->isImplicit())
11048    return CFT_HostDevice;
11049
11050  if (D->hasAttr<CUDAGlobalAttr>())
11051    return CFT_Global;
11052
11053  if (D->hasAttr<CUDADeviceAttr>()) {
11054    if (D->hasAttr<CUDAHostAttr>())
11055      return CFT_HostDevice;
11056    else
11057      return CFT_Device;
11058  }
11059
11060  return CFT_Host;
11061}
11062
11063bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11064                           CUDAFunctionTarget CalleeTarget) {
11065  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11066  // Callable from the device only."
11067  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11068    return true;
11069
11070  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11071  // Callable from the host only."
11072  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11073  // Callable from the host only."
11074  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11075      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11076    return true;
11077
11078  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11079    return true;
11080
11081  return false;
11082}
11083