SemaDeclCXX.cpp revision afee0ff915b87f92e8c07c72d31c3165aacf6fa8
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclVisitor.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Sema/CXXFieldCollector.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/Initialization.h"
33#include "clang/Sema/Lookup.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "llvm/ADT/STLExtras.h"
38#include "llvm/ADT/SmallString.h"
39#include <map>
40#include <set>
41
42using namespace clang;
43
44//===----------------------------------------------------------------------===//
45// CheckDefaultArgumentVisitor
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
50  /// the default argument of a parameter to determine whether it
51  /// contains any ill-formed subexpressions. For example, this will
52  /// diagnose the use of local variables or parameters within the
53  /// default argument expression.
54  class CheckDefaultArgumentVisitor
55    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
56    Expr *DefaultArg;
57    Sema *S;
58
59  public:
60    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
61      : DefaultArg(defarg), S(s) {}
62
63    bool VisitExpr(Expr *Node);
64    bool VisitDeclRefExpr(DeclRefExpr *DRE);
65    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
66    bool VisitLambdaExpr(LambdaExpr *Lambda);
67  };
68
69  /// VisitExpr - Visit all of the children of this expression.
70  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
71    bool IsInvalid = false;
72    for (Stmt::child_range I = Node->children(); I; ++I)
73      IsInvalid |= Visit(*I);
74    return IsInvalid;
75  }
76
77  /// VisitDeclRefExpr - Visit a reference to a declaration, to
78  /// determine whether this declaration can be used in the default
79  /// argument expression.
80  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
81    NamedDecl *Decl = DRE->getDecl();
82    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
83      // C++ [dcl.fct.default]p9
84      //   Default arguments are evaluated each time the function is
85      //   called. The order of evaluation of function arguments is
86      //   unspecified. Consequently, parameters of a function shall not
87      //   be used in default argument expressions, even if they are not
88      //   evaluated. Parameters of a function declared before a default
89      //   argument expression are in scope and can hide namespace and
90      //   class member names.
91      return S->Diag(DRE->getLocStart(),
92                     diag::err_param_default_argument_references_param)
93         << Param->getDeclName() << DefaultArg->getSourceRange();
94    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
95      // C++ [dcl.fct.default]p7
96      //   Local variables shall not be used in default argument
97      //   expressions.
98      if (VDecl->isLocalVarDecl())
99        return S->Diag(DRE->getLocStart(),
100                       diag::err_param_default_argument_references_local)
101          << VDecl->getDeclName() << DefaultArg->getSourceRange();
102    }
103
104    return false;
105  }
106
107  /// VisitCXXThisExpr - Visit a C++ "this" expression.
108  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
109    // C++ [dcl.fct.default]p8:
110    //   The keyword this shall not be used in a default argument of a
111    //   member function.
112    return S->Diag(ThisE->getLocStart(),
113                   diag::err_param_default_argument_references_this)
114               << ThisE->getSourceRange();
115  }
116
117  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
118    // C++11 [expr.lambda.prim]p13:
119    //   A lambda-expression appearing in a default argument shall not
120    //   implicitly or explicitly capture any entity.
121    if (Lambda->capture_begin() == Lambda->capture_end())
122      return false;
123
124    return S->Diag(Lambda->getLocStart(),
125                   diag::err_lambda_capture_default_arg);
126  }
127}
128
129void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
130                                                      CXXMethodDecl *Method) {
131  // If we have an MSAny spec already, don't bother.
132  if (!Method || ComputedEST == EST_MSAny)
133    return;
134
135  const FunctionProtoType *Proto
136    = Method->getType()->getAs<FunctionProtoType>();
137  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
138  if (!Proto)
139    return;
140
141  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
142
143  // If this function can throw any exceptions, make a note of that.
144  if (EST == EST_MSAny || EST == EST_None) {
145    ClearExceptions();
146    ComputedEST = EST;
147    return;
148  }
149
150  // FIXME: If the call to this decl is using any of its default arguments, we
151  // need to search them for potentially-throwing calls.
152
153  // If this function has a basic noexcept, it doesn't affect the outcome.
154  if (EST == EST_BasicNoexcept)
155    return;
156
157  // If we have a throw-all spec at this point, ignore the function.
158  if (ComputedEST == EST_None)
159    return;
160
161  // If we're still at noexcept(true) and there's a nothrow() callee,
162  // change to that specification.
163  if (EST == EST_DynamicNone) {
164    if (ComputedEST == EST_BasicNoexcept)
165      ComputedEST = EST_DynamicNone;
166    return;
167  }
168
169  // Check out noexcept specs.
170  if (EST == EST_ComputedNoexcept) {
171    FunctionProtoType::NoexceptResult NR =
172        Proto->getNoexceptSpec(Self->Context);
173    assert(NR != FunctionProtoType::NR_NoNoexcept &&
174           "Must have noexcept result for EST_ComputedNoexcept.");
175    assert(NR != FunctionProtoType::NR_Dependent &&
176           "Should not generate implicit declarations for dependent cases, "
177           "and don't know how to handle them anyway.");
178
179    // noexcept(false) -> no spec on the new function
180    if (NR == FunctionProtoType::NR_Throw) {
181      ClearExceptions();
182      ComputedEST = EST_None;
183    }
184    // noexcept(true) won't change anything either.
185    return;
186  }
187
188  assert(EST == EST_Dynamic && "EST case not considered earlier.");
189  assert(ComputedEST != EST_None &&
190         "Shouldn't collect exceptions when throw-all is guaranteed.");
191  ComputedEST = EST_Dynamic;
192  // Record the exceptions in this function's exception specification.
193  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
194                                          EEnd = Proto->exception_end();
195       E != EEnd; ++E)
196    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
197      Exceptions.push_back(*E);
198}
199
200void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
201  if (!E || ComputedEST == EST_MSAny)
202    return;
203
204  // FIXME:
205  //
206  // C++0x [except.spec]p14:
207  //   [An] implicit exception-specification specifies the type-id T if and
208  // only if T is allowed by the exception-specification of a function directly
209  // invoked by f's implicit definition; f shall allow all exceptions if any
210  // function it directly invokes allows all exceptions, and f shall allow no
211  // exceptions if every function it directly invokes allows no exceptions.
212  //
213  // Note in particular that if an implicit exception-specification is generated
214  // for a function containing a throw-expression, that specification can still
215  // be noexcept(true).
216  //
217  // Note also that 'directly invoked' is not defined in the standard, and there
218  // is no indication that we should only consider potentially-evaluated calls.
219  //
220  // Ultimately we should implement the intent of the standard: the exception
221  // specification should be the set of exceptions which can be thrown by the
222  // implicit definition. For now, we assume that any non-nothrow expression can
223  // throw any exception.
224
225  if (Self->canThrow(E))
226    ComputedEST = EST_None;
227}
228
229bool
230Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
231                              SourceLocation EqualLoc) {
232  if (RequireCompleteType(Param->getLocation(), Param->getType(),
233                          diag::err_typecheck_decl_incomplete_type)) {
234    Param->setInvalidDecl();
235    return true;
236  }
237
238  // C++ [dcl.fct.default]p5
239  //   A default argument expression is implicitly converted (clause
240  //   4) to the parameter type. The default argument expression has
241  //   the same semantic constraints as the initializer expression in
242  //   a declaration of a variable of the parameter type, using the
243  //   copy-initialization semantics (8.5).
244  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
245                                                                    Param);
246  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
247                                                           EqualLoc);
248  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
249  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
250  if (Result.isInvalid())
251    return true;
252  Arg = Result.takeAs<Expr>();
253
254  CheckImplicitConversions(Arg, EqualLoc);
255  Arg = MaybeCreateExprWithCleanups(Arg);
256
257  // Okay: add the default argument to the parameter
258  Param->setDefaultArg(Arg);
259
260  // We have already instantiated this parameter; provide each of the
261  // instantiations with the uninstantiated default argument.
262  UnparsedDefaultArgInstantiationsMap::iterator InstPos
263    = UnparsedDefaultArgInstantiations.find(Param);
264  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
265    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
266      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
267
268    // We're done tracking this parameter's instantiations.
269    UnparsedDefaultArgInstantiations.erase(InstPos);
270  }
271
272  return false;
273}
274
275/// ActOnParamDefaultArgument - Check whether the default argument
276/// provided for a function parameter is well-formed. If so, attach it
277/// to the parameter declaration.
278void
279Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
280                                Expr *DefaultArg) {
281  if (!param || !DefaultArg)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285  UnparsedDefaultArgLocs.erase(Param);
286
287  // Default arguments are only permitted in C++
288  if (!getLangOpts().CPlusPlus) {
289    Diag(EqualLoc, diag::err_param_default_argument)
290      << DefaultArg->getSourceRange();
291    Param->setInvalidDecl();
292    return;
293  }
294
295  // Check for unexpanded parameter packs.
296  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
297    Param->setInvalidDecl();
298    return;
299  }
300
301  // Check that the default argument is well-formed
302  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
303  if (DefaultArgChecker.Visit(DefaultArg)) {
304    Param->setInvalidDecl();
305    return;
306  }
307
308  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
309}
310
311/// ActOnParamUnparsedDefaultArgument - We've seen a default
312/// argument for a function parameter, but we can't parse it yet
313/// because we're inside a class definition. Note that this default
314/// argument will be parsed later.
315void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
316                                             SourceLocation EqualLoc,
317                                             SourceLocation ArgLoc) {
318  if (!param)
319    return;
320
321  ParmVarDecl *Param = cast<ParmVarDecl>(param);
322  if (Param)
323    Param->setUnparsedDefaultArg();
324
325  UnparsedDefaultArgLocs[Param] = ArgLoc;
326}
327
328/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
329/// the default argument for the parameter param failed.
330void Sema::ActOnParamDefaultArgumentError(Decl *param) {
331  if (!param)
332    return;
333
334  ParmVarDecl *Param = cast<ParmVarDecl>(param);
335
336  Param->setInvalidDecl();
337
338  UnparsedDefaultArgLocs.erase(Param);
339}
340
341/// CheckExtraCXXDefaultArguments - Check for any extra default
342/// arguments in the declarator, which is not a function declaration
343/// or definition and therefore is not permitted to have default
344/// arguments. This routine should be invoked for every declarator
345/// that is not a function declaration or definition.
346void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
347  // C++ [dcl.fct.default]p3
348  //   A default argument expression shall be specified only in the
349  //   parameter-declaration-clause of a function declaration or in a
350  //   template-parameter (14.1). It shall not be specified for a
351  //   parameter pack. If it is specified in a
352  //   parameter-declaration-clause, it shall not occur within a
353  //   declarator or abstract-declarator of a parameter-declaration.
354  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
355    DeclaratorChunk &chunk = D.getTypeObject(i);
356    if (chunk.Kind == DeclaratorChunk::Function) {
357      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
358        ParmVarDecl *Param =
359          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
360        if (Param->hasUnparsedDefaultArg()) {
361          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
362          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
363            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
364          delete Toks;
365          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
366        } else if (Param->getDefaultArg()) {
367          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
368            << Param->getDefaultArg()->getSourceRange();
369          Param->setDefaultArg(0);
370        }
371      }
372    }
373  }
374}
375
376/// MergeCXXFunctionDecl - Merge two declarations of the same C++
377/// function, once we already know that they have the same
378/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
379/// error, false otherwise.
380bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
381                                Scope *S) {
382  bool Invalid = false;
383
384  // C++ [dcl.fct.default]p4:
385  //   For non-template functions, default arguments can be added in
386  //   later declarations of a function in the same
387  //   scope. Declarations in different scopes have completely
388  //   distinct sets of default arguments. That is, declarations in
389  //   inner scopes do not acquire default arguments from
390  //   declarations in outer scopes, and vice versa. In a given
391  //   function declaration, all parameters subsequent to a
392  //   parameter with a default argument shall have default
393  //   arguments supplied in this or previous declarations. A
394  //   default argument shall not be redefined by a later
395  //   declaration (not even to the same value).
396  //
397  // C++ [dcl.fct.default]p6:
398  //   Except for member functions of class templates, the default arguments
399  //   in a member function definition that appears outside of the class
400  //   definition are added to the set of default arguments provided by the
401  //   member function declaration in the class definition.
402  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
403    ParmVarDecl *OldParam = Old->getParamDecl(p);
404    ParmVarDecl *NewParam = New->getParamDecl(p);
405
406    bool OldParamHasDfl = OldParam->hasDefaultArg();
407    bool NewParamHasDfl = NewParam->hasDefaultArg();
408
409    NamedDecl *ND = Old;
410    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
411      // Ignore default parameters of old decl if they are not in
412      // the same scope.
413      OldParamHasDfl = false;
414
415    if (OldParamHasDfl && NewParamHasDfl) {
416
417      unsigned DiagDefaultParamID =
418        diag::err_param_default_argument_redefinition;
419
420      // MSVC accepts that default parameters be redefined for member functions
421      // of template class. The new default parameter's value is ignored.
422      Invalid = true;
423      if (getLangOpts().MicrosoftExt) {
424        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
425        if (MD && MD->getParent()->getDescribedClassTemplate()) {
426          // Merge the old default argument into the new parameter.
427          NewParam->setHasInheritedDefaultArg();
428          if (OldParam->hasUninstantiatedDefaultArg())
429            NewParam->setUninstantiatedDefaultArg(
430                                      OldParam->getUninstantiatedDefaultArg());
431          else
432            NewParam->setDefaultArg(OldParam->getInit());
433          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
434          Invalid = false;
435        }
436      }
437
438      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
439      // hint here. Alternatively, we could walk the type-source information
440      // for NewParam to find the last source location in the type... but it
441      // isn't worth the effort right now. This is the kind of test case that
442      // is hard to get right:
443      //   int f(int);
444      //   void g(int (*fp)(int) = f);
445      //   void g(int (*fp)(int) = &f);
446      Diag(NewParam->getLocation(), DiagDefaultParamID)
447        << NewParam->getDefaultArgRange();
448
449      // Look for the function declaration where the default argument was
450      // actually written, which may be a declaration prior to Old.
451      for (FunctionDecl *Older = Old->getPreviousDecl();
452           Older; Older = Older->getPreviousDecl()) {
453        if (!Older->getParamDecl(p)->hasDefaultArg())
454          break;
455
456        OldParam = Older->getParamDecl(p);
457      }
458
459      Diag(OldParam->getLocation(), diag::note_previous_definition)
460        << OldParam->getDefaultArgRange();
461    } else if (OldParamHasDfl) {
462      // Merge the old default argument into the new parameter.
463      // It's important to use getInit() here;  getDefaultArg()
464      // strips off any top-level ExprWithCleanups.
465      NewParam->setHasInheritedDefaultArg();
466      if (OldParam->hasUninstantiatedDefaultArg())
467        NewParam->setUninstantiatedDefaultArg(
468                                      OldParam->getUninstantiatedDefaultArg());
469      else
470        NewParam->setDefaultArg(OldParam->getInit());
471    } else if (NewParamHasDfl) {
472      if (New->getDescribedFunctionTemplate()) {
473        // Paragraph 4, quoted above, only applies to non-template functions.
474        Diag(NewParam->getLocation(),
475             diag::err_param_default_argument_template_redecl)
476          << NewParam->getDefaultArgRange();
477        Diag(Old->getLocation(), diag::note_template_prev_declaration)
478          << false;
479      } else if (New->getTemplateSpecializationKind()
480                   != TSK_ImplicitInstantiation &&
481                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
482        // C++ [temp.expr.spec]p21:
483        //   Default function arguments shall not be specified in a declaration
484        //   or a definition for one of the following explicit specializations:
485        //     - the explicit specialization of a function template;
486        //     - the explicit specialization of a member function template;
487        //     - the explicit specialization of a member function of a class
488        //       template where the class template specialization to which the
489        //       member function specialization belongs is implicitly
490        //       instantiated.
491        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
492          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
493          << New->getDeclName()
494          << NewParam->getDefaultArgRange();
495      } else if (New->getDeclContext()->isDependentContext()) {
496        // C++ [dcl.fct.default]p6 (DR217):
497        //   Default arguments for a member function of a class template shall
498        //   be specified on the initial declaration of the member function
499        //   within the class template.
500        //
501        // Reading the tea leaves a bit in DR217 and its reference to DR205
502        // leads me to the conclusion that one cannot add default function
503        // arguments for an out-of-line definition of a member function of a
504        // dependent type.
505        int WhichKind = 2;
506        if (CXXRecordDecl *Record
507              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
508          if (Record->getDescribedClassTemplate())
509            WhichKind = 0;
510          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
511            WhichKind = 1;
512          else
513            WhichKind = 2;
514        }
515
516        Diag(NewParam->getLocation(),
517             diag::err_param_default_argument_member_template_redecl)
518          << WhichKind
519          << NewParam->getDefaultArgRange();
520      }
521    }
522  }
523
524  // DR1344: If a default argument is added outside a class definition and that
525  // default argument makes the function a special member function, the program
526  // is ill-formed. This can only happen for constructors.
527  if (isa<CXXConstructorDecl>(New) &&
528      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
529    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
530                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
531    if (NewSM != OldSM) {
532      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
533      assert(NewParam->hasDefaultArg());
534      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
535        << NewParam->getDefaultArgRange() << NewSM;
536      Diag(Old->getLocation(), diag::note_previous_declaration);
537    }
538  }
539
540  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
541  // template has a constexpr specifier then all its declarations shall
542  // contain the constexpr specifier.
543  if (New->isConstexpr() != Old->isConstexpr()) {
544    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
545      << New << New->isConstexpr();
546    Diag(Old->getLocation(), diag::note_previous_declaration);
547    Invalid = true;
548  }
549
550  if (CheckEquivalentExceptionSpec(Old, New))
551    Invalid = true;
552
553  return Invalid;
554}
555
556/// \brief Merge the exception specifications of two variable declarations.
557///
558/// This is called when there's a redeclaration of a VarDecl. The function
559/// checks if the redeclaration might have an exception specification and
560/// validates compatibility and merges the specs if necessary.
561void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
562  // Shortcut if exceptions are disabled.
563  if (!getLangOpts().CXXExceptions)
564    return;
565
566  assert(Context.hasSameType(New->getType(), Old->getType()) &&
567         "Should only be called if types are otherwise the same.");
568
569  QualType NewType = New->getType();
570  QualType OldType = Old->getType();
571
572  // We're only interested in pointers and references to functions, as well
573  // as pointers to member functions.
574  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
575    NewType = R->getPointeeType();
576    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
577  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
578    NewType = P->getPointeeType();
579    OldType = OldType->getAs<PointerType>()->getPointeeType();
580  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
581    NewType = M->getPointeeType();
582    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
583  }
584
585  if (!NewType->isFunctionProtoType())
586    return;
587
588  // There's lots of special cases for functions. For function pointers, system
589  // libraries are hopefully not as broken so that we don't need these
590  // workarounds.
591  if (CheckEquivalentExceptionSpec(
592        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
593        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
594    New->setInvalidDecl();
595  }
596}
597
598/// CheckCXXDefaultArguments - Verify that the default arguments for a
599/// function declaration are well-formed according to C++
600/// [dcl.fct.default].
601void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
602  unsigned NumParams = FD->getNumParams();
603  unsigned p;
604
605  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
606                  isa<CXXMethodDecl>(FD) &&
607                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
608
609  // Find first parameter with a default argument
610  for (p = 0; p < NumParams; ++p) {
611    ParmVarDecl *Param = FD->getParamDecl(p);
612    if (Param->hasDefaultArg()) {
613      // C++11 [expr.prim.lambda]p5:
614      //   [...] Default arguments (8.3.6) shall not be specified in the
615      //   parameter-declaration-clause of a lambda-declarator.
616      //
617      // FIXME: Core issue 974 strikes this sentence, we only provide an
618      // extension warning.
619      if (IsLambda)
620        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
621          << Param->getDefaultArgRange();
622      break;
623    }
624  }
625
626  // C++ [dcl.fct.default]p4:
627  //   In a given function declaration, all parameters
628  //   subsequent to a parameter with a default argument shall
629  //   have default arguments supplied in this or previous
630  //   declarations. A default argument shall not be redefined
631  //   by a later declaration (not even to the same value).
632  unsigned LastMissingDefaultArg = 0;
633  for (; p < NumParams; ++p) {
634    ParmVarDecl *Param = FD->getParamDecl(p);
635    if (!Param->hasDefaultArg()) {
636      if (Param->isInvalidDecl())
637        /* We already complained about this parameter. */;
638      else if (Param->getIdentifier())
639        Diag(Param->getLocation(),
640             diag::err_param_default_argument_missing_name)
641          << Param->getIdentifier();
642      else
643        Diag(Param->getLocation(),
644             diag::err_param_default_argument_missing);
645
646      LastMissingDefaultArg = p;
647    }
648  }
649
650  if (LastMissingDefaultArg > 0) {
651    // Some default arguments were missing. Clear out all of the
652    // default arguments up to (and including) the last missing
653    // default argument, so that we leave the function parameters
654    // in a semantically valid state.
655    for (p = 0; p <= LastMissingDefaultArg; ++p) {
656      ParmVarDecl *Param = FD->getParamDecl(p);
657      if (Param->hasDefaultArg()) {
658        Param->setDefaultArg(0);
659      }
660    }
661  }
662}
663
664// CheckConstexprParameterTypes - Check whether a function's parameter types
665// are all literal types. If so, return true. If not, produce a suitable
666// diagnostic and return false.
667static bool CheckConstexprParameterTypes(Sema &SemaRef,
668                                         const FunctionDecl *FD) {
669  unsigned ArgIndex = 0;
670  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
671  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
672       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
673    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
674    SourceLocation ParamLoc = PD->getLocation();
675    if (!(*i)->isDependentType() &&
676        SemaRef.RequireLiteralType(ParamLoc, *i,
677                                   diag::err_constexpr_non_literal_param,
678                                   ArgIndex+1, PD->getSourceRange(),
679                                   isa<CXXConstructorDecl>(FD)))
680      return false;
681  }
682  return true;
683}
684
685/// \brief Get diagnostic %select index for tag kind for
686/// record diagnostic message.
687/// WARNING: Indexes apply to particular diagnostics only!
688///
689/// \returns diagnostic %select index.
690static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
691  switch (Tag) {
692  case TTK_Struct: return 0;
693  case TTK_Interface: return 1;
694  case TTK_Class:  return 2;
695  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
696  }
697}
698
699// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
700// the requirements of a constexpr function definition or a constexpr
701// constructor definition. If so, return true. If not, produce appropriate
702// diagnostics and return false.
703//
704// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
705bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
706  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
707  if (MD && MD->isInstance()) {
708    // C++11 [dcl.constexpr]p4:
709    //  The definition of a constexpr constructor shall satisfy the following
710    //  constraints:
711    //  - the class shall not have any virtual base classes;
712    const CXXRecordDecl *RD = MD->getParent();
713    if (RD->getNumVBases()) {
714      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
715        << isa<CXXConstructorDecl>(NewFD)
716        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
717      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
718             E = RD->vbases_end(); I != E; ++I)
719        Diag(I->getLocStart(),
720             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
721      return false;
722    }
723  }
724
725  if (!isa<CXXConstructorDecl>(NewFD)) {
726    // C++11 [dcl.constexpr]p3:
727    //  The definition of a constexpr function shall satisfy the following
728    //  constraints:
729    // - it shall not be virtual;
730    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
731    if (Method && Method->isVirtual()) {
732      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
733
734      // If it's not obvious why this function is virtual, find an overridden
735      // function which uses the 'virtual' keyword.
736      const CXXMethodDecl *WrittenVirtual = Method;
737      while (!WrittenVirtual->isVirtualAsWritten())
738        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
739      if (WrittenVirtual != Method)
740        Diag(WrittenVirtual->getLocation(),
741             diag::note_overridden_virtual_function);
742      return false;
743    }
744
745    // - its return type shall be a literal type;
746    QualType RT = NewFD->getResultType();
747    if (!RT->isDependentType() &&
748        RequireLiteralType(NewFD->getLocation(), RT,
749                           diag::err_constexpr_non_literal_return))
750      return false;
751  }
752
753  // - each of its parameter types shall be a literal type;
754  if (!CheckConstexprParameterTypes(*this, NewFD))
755    return false;
756
757  return true;
758}
759
760/// Check the given declaration statement is legal within a constexpr function
761/// body. C++0x [dcl.constexpr]p3,p4.
762///
763/// \return true if the body is OK, false if we have diagnosed a problem.
764static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
765                                   DeclStmt *DS) {
766  // C++0x [dcl.constexpr]p3 and p4:
767  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
768  //  contain only
769  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
770         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
771    switch ((*DclIt)->getKind()) {
772    case Decl::StaticAssert:
773    case Decl::Using:
774    case Decl::UsingShadow:
775    case Decl::UsingDirective:
776    case Decl::UnresolvedUsingTypename:
777      //   - static_assert-declarations
778      //   - using-declarations,
779      //   - using-directives,
780      continue;
781
782    case Decl::Typedef:
783    case Decl::TypeAlias: {
784      //   - typedef declarations and alias-declarations that do not define
785      //     classes or enumerations,
786      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
787      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
788        // Don't allow variably-modified types in constexpr functions.
789        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
790        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
791          << TL.getSourceRange() << TL.getType()
792          << isa<CXXConstructorDecl>(Dcl);
793        return false;
794      }
795      continue;
796    }
797
798    case Decl::Enum:
799    case Decl::CXXRecord:
800      // As an extension, we allow the declaration (but not the definition) of
801      // classes and enumerations in all declarations, not just in typedef and
802      // alias declarations.
803      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
804        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
805          << isa<CXXConstructorDecl>(Dcl);
806        return false;
807      }
808      continue;
809
810    case Decl::Var:
811      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
812        << isa<CXXConstructorDecl>(Dcl);
813      return false;
814
815    default:
816      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
817        << isa<CXXConstructorDecl>(Dcl);
818      return false;
819    }
820  }
821
822  return true;
823}
824
825/// Check that the given field is initialized within a constexpr constructor.
826///
827/// \param Dcl The constexpr constructor being checked.
828/// \param Field The field being checked. This may be a member of an anonymous
829///        struct or union nested within the class being checked.
830/// \param Inits All declarations, including anonymous struct/union members and
831///        indirect members, for which any initialization was provided.
832/// \param Diagnosed Set to true if an error is produced.
833static void CheckConstexprCtorInitializer(Sema &SemaRef,
834                                          const FunctionDecl *Dcl,
835                                          FieldDecl *Field,
836                                          llvm::SmallSet<Decl*, 16> &Inits,
837                                          bool &Diagnosed) {
838  if (Field->isUnnamedBitfield())
839    return;
840
841  if (Field->isAnonymousStructOrUnion() &&
842      Field->getType()->getAsCXXRecordDecl()->isEmpty())
843    return;
844
845  if (!Inits.count(Field)) {
846    if (!Diagnosed) {
847      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
848      Diagnosed = true;
849    }
850    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
851  } else if (Field->isAnonymousStructOrUnion()) {
852    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
853    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
854         I != E; ++I)
855      // If an anonymous union contains an anonymous struct of which any member
856      // is initialized, all members must be initialized.
857      if (!RD->isUnion() || Inits.count(*I))
858        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
859  }
860}
861
862/// Check the body for the given constexpr function declaration only contains
863/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
864///
865/// \return true if the body is OK, false if we have diagnosed a problem.
866bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
867  if (isa<CXXTryStmt>(Body)) {
868    // C++11 [dcl.constexpr]p3:
869    //  The definition of a constexpr function shall satisfy the following
870    //  constraints: [...]
871    // - its function-body shall be = delete, = default, or a
872    //   compound-statement
873    //
874    // C++11 [dcl.constexpr]p4:
875    //  In the definition of a constexpr constructor, [...]
876    // - its function-body shall not be a function-try-block;
877    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
878      << isa<CXXConstructorDecl>(Dcl);
879    return false;
880  }
881
882  // - its function-body shall be [...] a compound-statement that contains only
883  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
884
885  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
886  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
887         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
888    switch ((*BodyIt)->getStmtClass()) {
889    case Stmt::NullStmtClass:
890      //   - null statements,
891      continue;
892
893    case Stmt::DeclStmtClass:
894      //   - static_assert-declarations
895      //   - using-declarations,
896      //   - using-directives,
897      //   - typedef declarations and alias-declarations that do not define
898      //     classes or enumerations,
899      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
900        return false;
901      continue;
902
903    case Stmt::ReturnStmtClass:
904      //   - and exactly one return statement;
905      if (isa<CXXConstructorDecl>(Dcl))
906        break;
907
908      ReturnStmts.push_back((*BodyIt)->getLocStart());
909      continue;
910
911    default:
912      break;
913    }
914
915    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
916      << isa<CXXConstructorDecl>(Dcl);
917    return false;
918  }
919
920  if (const CXXConstructorDecl *Constructor
921        = dyn_cast<CXXConstructorDecl>(Dcl)) {
922    const CXXRecordDecl *RD = Constructor->getParent();
923    // DR1359:
924    // - every non-variant non-static data member and base class sub-object
925    //   shall be initialized;
926    // - if the class is a non-empty union, or for each non-empty anonymous
927    //   union member of a non-union class, exactly one non-static data member
928    //   shall be initialized;
929    if (RD->isUnion()) {
930      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
931        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
932        return false;
933      }
934    } else if (!Constructor->isDependentContext() &&
935               !Constructor->isDelegatingConstructor()) {
936      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
937
938      // Skip detailed checking if we have enough initializers, and we would
939      // allow at most one initializer per member.
940      bool AnyAnonStructUnionMembers = false;
941      unsigned Fields = 0;
942      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
943           E = RD->field_end(); I != E; ++I, ++Fields) {
944        if (I->isAnonymousStructOrUnion()) {
945          AnyAnonStructUnionMembers = true;
946          break;
947        }
948      }
949      if (AnyAnonStructUnionMembers ||
950          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
951        // Check initialization of non-static data members. Base classes are
952        // always initialized so do not need to be checked. Dependent bases
953        // might not have initializers in the member initializer list.
954        llvm::SmallSet<Decl*, 16> Inits;
955        for (CXXConstructorDecl::init_const_iterator
956               I = Constructor->init_begin(), E = Constructor->init_end();
957             I != E; ++I) {
958          if (FieldDecl *FD = (*I)->getMember())
959            Inits.insert(FD);
960          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
961            Inits.insert(ID->chain_begin(), ID->chain_end());
962        }
963
964        bool Diagnosed = false;
965        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
966             E = RD->field_end(); I != E; ++I)
967          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
968        if (Diagnosed)
969          return false;
970      }
971    }
972  } else {
973    if (ReturnStmts.empty()) {
974      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
975      return false;
976    }
977    if (ReturnStmts.size() > 1) {
978      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
979      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
980        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
981      return false;
982    }
983  }
984
985  // C++11 [dcl.constexpr]p5:
986  //   if no function argument values exist such that the function invocation
987  //   substitution would produce a constant expression, the program is
988  //   ill-formed; no diagnostic required.
989  // C++11 [dcl.constexpr]p3:
990  //   - every constructor call and implicit conversion used in initializing the
991  //     return value shall be one of those allowed in a constant expression.
992  // C++11 [dcl.constexpr]p4:
993  //   - every constructor involved in initializing non-static data members and
994  //     base class sub-objects shall be a constexpr constructor.
995  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
996  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
997    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
998      << isa<CXXConstructorDecl>(Dcl);
999    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1000      Diag(Diags[I].first, Diags[I].second);
1001    // Don't return false here: we allow this for compatibility in
1002    // system headers.
1003  }
1004
1005  return true;
1006}
1007
1008/// isCurrentClassName - Determine whether the identifier II is the
1009/// name of the class type currently being defined. In the case of
1010/// nested classes, this will only return true if II is the name of
1011/// the innermost class.
1012bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1013                              const CXXScopeSpec *SS) {
1014  assert(getLangOpts().CPlusPlus && "No class names in C!");
1015
1016  CXXRecordDecl *CurDecl;
1017  if (SS && SS->isSet() && !SS->isInvalid()) {
1018    DeclContext *DC = computeDeclContext(*SS, true);
1019    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1020  } else
1021    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1022
1023  if (CurDecl && CurDecl->getIdentifier())
1024    return &II == CurDecl->getIdentifier();
1025  else
1026    return false;
1027}
1028
1029/// \brief Determine whether the given class is a base class of the given
1030/// class, including looking at dependent bases.
1031static bool findCircularInheritance(const CXXRecordDecl *Class,
1032                                    const CXXRecordDecl *Current) {
1033  SmallVector<const CXXRecordDecl*, 8> Queue;
1034
1035  Class = Class->getCanonicalDecl();
1036  while (true) {
1037    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1038                                                  E = Current->bases_end();
1039         I != E; ++I) {
1040      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1041      if (!Base)
1042        continue;
1043
1044      Base = Base->getDefinition();
1045      if (!Base)
1046        continue;
1047
1048      if (Base->getCanonicalDecl() == Class)
1049        return true;
1050
1051      Queue.push_back(Base);
1052    }
1053
1054    if (Queue.empty())
1055      return false;
1056
1057    Current = Queue.back();
1058    Queue.pop_back();
1059  }
1060
1061  return false;
1062}
1063
1064/// \brief Check the validity of a C++ base class specifier.
1065///
1066/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1067/// and returns NULL otherwise.
1068CXXBaseSpecifier *
1069Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1070                         SourceRange SpecifierRange,
1071                         bool Virtual, AccessSpecifier Access,
1072                         TypeSourceInfo *TInfo,
1073                         SourceLocation EllipsisLoc) {
1074  QualType BaseType = TInfo->getType();
1075
1076  // C++ [class.union]p1:
1077  //   A union shall not have base classes.
1078  if (Class->isUnion()) {
1079    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1080      << SpecifierRange;
1081    return 0;
1082  }
1083
1084  if (EllipsisLoc.isValid() &&
1085      !TInfo->getType()->containsUnexpandedParameterPack()) {
1086    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1087      << TInfo->getTypeLoc().getSourceRange();
1088    EllipsisLoc = SourceLocation();
1089  }
1090
1091  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1092
1093  if (BaseType->isDependentType()) {
1094    // Make sure that we don't have circular inheritance among our dependent
1095    // bases. For non-dependent bases, the check for completeness below handles
1096    // this.
1097    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1098      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1099          ((BaseDecl = BaseDecl->getDefinition()) &&
1100           findCircularInheritance(Class, BaseDecl))) {
1101        Diag(BaseLoc, diag::err_circular_inheritance)
1102          << BaseType << Context.getTypeDeclType(Class);
1103
1104        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1105          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1106            << BaseType;
1107
1108        return 0;
1109      }
1110    }
1111
1112    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1113                                          Class->getTagKind() == TTK_Class,
1114                                          Access, TInfo, EllipsisLoc);
1115  }
1116
1117  // Base specifiers must be record types.
1118  if (!BaseType->isRecordType()) {
1119    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1120    return 0;
1121  }
1122
1123  // C++ [class.union]p1:
1124  //   A union shall not be used as a base class.
1125  if (BaseType->isUnionType()) {
1126    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1127    return 0;
1128  }
1129
1130  // C++ [class.derived]p2:
1131  //   The class-name in a base-specifier shall not be an incompletely
1132  //   defined class.
1133  if (RequireCompleteType(BaseLoc, BaseType,
1134                          diag::err_incomplete_base_class, SpecifierRange)) {
1135    Class->setInvalidDecl();
1136    return 0;
1137  }
1138
1139  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1140  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1141  assert(BaseDecl && "Record type has no declaration");
1142  BaseDecl = BaseDecl->getDefinition();
1143  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1144  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1145  assert(CXXBaseDecl && "Base type is not a C++ type");
1146
1147  // C++ [class]p3:
1148  //   If a class is marked final and it appears as a base-type-specifier in
1149  //   base-clause, the program is ill-formed.
1150  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1151    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1152      << CXXBaseDecl->getDeclName();
1153    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1154      << CXXBaseDecl->getDeclName();
1155    return 0;
1156  }
1157
1158  if (BaseDecl->isInvalidDecl())
1159    Class->setInvalidDecl();
1160
1161  // Create the base specifier.
1162  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1163                                        Class->getTagKind() == TTK_Class,
1164                                        Access, TInfo, EllipsisLoc);
1165}
1166
1167/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1168/// one entry in the base class list of a class specifier, for
1169/// example:
1170///    class foo : public bar, virtual private baz {
1171/// 'public bar' and 'virtual private baz' are each base-specifiers.
1172BaseResult
1173Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1174                         bool Virtual, AccessSpecifier Access,
1175                         ParsedType basetype, SourceLocation BaseLoc,
1176                         SourceLocation EllipsisLoc) {
1177  if (!classdecl)
1178    return true;
1179
1180  AdjustDeclIfTemplate(classdecl);
1181  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1182  if (!Class)
1183    return true;
1184
1185  TypeSourceInfo *TInfo = 0;
1186  GetTypeFromParser(basetype, &TInfo);
1187
1188  if (EllipsisLoc.isInvalid() &&
1189      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1190                                      UPPC_BaseType))
1191    return true;
1192
1193  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1194                                                      Virtual, Access, TInfo,
1195                                                      EllipsisLoc))
1196    return BaseSpec;
1197  else
1198    Class->setInvalidDecl();
1199
1200  return true;
1201}
1202
1203/// \brief Performs the actual work of attaching the given base class
1204/// specifiers to a C++ class.
1205bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1206                                unsigned NumBases) {
1207 if (NumBases == 0)
1208    return false;
1209
1210  // Used to keep track of which base types we have already seen, so
1211  // that we can properly diagnose redundant direct base types. Note
1212  // that the key is always the unqualified canonical type of the base
1213  // class.
1214  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1215
1216  // Copy non-redundant base specifiers into permanent storage.
1217  unsigned NumGoodBases = 0;
1218  bool Invalid = false;
1219  for (unsigned idx = 0; idx < NumBases; ++idx) {
1220    QualType NewBaseType
1221      = Context.getCanonicalType(Bases[idx]->getType());
1222    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1223
1224    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1225    if (KnownBase) {
1226      // C++ [class.mi]p3:
1227      //   A class shall not be specified as a direct base class of a
1228      //   derived class more than once.
1229      Diag(Bases[idx]->getLocStart(),
1230           diag::err_duplicate_base_class)
1231        << KnownBase->getType()
1232        << Bases[idx]->getSourceRange();
1233
1234      // Delete the duplicate base class specifier; we're going to
1235      // overwrite its pointer later.
1236      Context.Deallocate(Bases[idx]);
1237
1238      Invalid = true;
1239    } else {
1240      // Okay, add this new base class.
1241      KnownBase = Bases[idx];
1242      Bases[NumGoodBases++] = Bases[idx];
1243      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1244        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1245        if (Class->isInterface() &&
1246              (!RD->isInterface() ||
1247               KnownBase->getAccessSpecifier() != AS_public)) {
1248          // The Microsoft extension __interface does not permit bases that
1249          // are not themselves public interfaces.
1250          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1251            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1252            << RD->getSourceRange();
1253          Invalid = true;
1254        }
1255        if (RD->hasAttr<WeakAttr>())
1256          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1257      }
1258    }
1259  }
1260
1261  // Attach the remaining base class specifiers to the derived class.
1262  Class->setBases(Bases, NumGoodBases);
1263
1264  // Delete the remaining (good) base class specifiers, since their
1265  // data has been copied into the CXXRecordDecl.
1266  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1267    Context.Deallocate(Bases[idx]);
1268
1269  return Invalid;
1270}
1271
1272/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1273/// class, after checking whether there are any duplicate base
1274/// classes.
1275void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1276                               unsigned NumBases) {
1277  if (!ClassDecl || !Bases || !NumBases)
1278    return;
1279
1280  AdjustDeclIfTemplate(ClassDecl);
1281  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1282                       (CXXBaseSpecifier**)(Bases), NumBases);
1283}
1284
1285static CXXRecordDecl *GetClassForType(QualType T) {
1286  if (const RecordType *RT = T->getAs<RecordType>())
1287    return cast<CXXRecordDecl>(RT->getDecl());
1288  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1289    return ICT->getDecl();
1290  else
1291    return 0;
1292}
1293
1294/// \brief Determine whether the type \p Derived is a C++ class that is
1295/// derived from the type \p Base.
1296bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1297  if (!getLangOpts().CPlusPlus)
1298    return false;
1299
1300  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1301  if (!DerivedRD)
1302    return false;
1303
1304  CXXRecordDecl *BaseRD = GetClassForType(Base);
1305  if (!BaseRD)
1306    return false;
1307
1308  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1309  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1310}
1311
1312/// \brief Determine whether the type \p Derived is a C++ class that is
1313/// derived from the type \p Base.
1314bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1315  if (!getLangOpts().CPlusPlus)
1316    return false;
1317
1318  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1319  if (!DerivedRD)
1320    return false;
1321
1322  CXXRecordDecl *BaseRD = GetClassForType(Base);
1323  if (!BaseRD)
1324    return false;
1325
1326  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1327}
1328
1329void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1330                              CXXCastPath &BasePathArray) {
1331  assert(BasePathArray.empty() && "Base path array must be empty!");
1332  assert(Paths.isRecordingPaths() && "Must record paths!");
1333
1334  const CXXBasePath &Path = Paths.front();
1335
1336  // We first go backward and check if we have a virtual base.
1337  // FIXME: It would be better if CXXBasePath had the base specifier for
1338  // the nearest virtual base.
1339  unsigned Start = 0;
1340  for (unsigned I = Path.size(); I != 0; --I) {
1341    if (Path[I - 1].Base->isVirtual()) {
1342      Start = I - 1;
1343      break;
1344    }
1345  }
1346
1347  // Now add all bases.
1348  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1349    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1350}
1351
1352/// \brief Determine whether the given base path includes a virtual
1353/// base class.
1354bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1355  for (CXXCastPath::const_iterator B = BasePath.begin(),
1356                                BEnd = BasePath.end();
1357       B != BEnd; ++B)
1358    if ((*B)->isVirtual())
1359      return true;
1360
1361  return false;
1362}
1363
1364/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1365/// conversion (where Derived and Base are class types) is
1366/// well-formed, meaning that the conversion is unambiguous (and
1367/// that all of the base classes are accessible). Returns true
1368/// and emits a diagnostic if the code is ill-formed, returns false
1369/// otherwise. Loc is the location where this routine should point to
1370/// if there is an error, and Range is the source range to highlight
1371/// if there is an error.
1372bool
1373Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1374                                   unsigned InaccessibleBaseID,
1375                                   unsigned AmbigiousBaseConvID,
1376                                   SourceLocation Loc, SourceRange Range,
1377                                   DeclarationName Name,
1378                                   CXXCastPath *BasePath) {
1379  // First, determine whether the path from Derived to Base is
1380  // ambiguous. This is slightly more expensive than checking whether
1381  // the Derived to Base conversion exists, because here we need to
1382  // explore multiple paths to determine if there is an ambiguity.
1383  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1384                     /*DetectVirtual=*/false);
1385  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1386  assert(DerivationOkay &&
1387         "Can only be used with a derived-to-base conversion");
1388  (void)DerivationOkay;
1389
1390  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1391    if (InaccessibleBaseID) {
1392      // Check that the base class can be accessed.
1393      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1394                                   InaccessibleBaseID)) {
1395        case AR_inaccessible:
1396          return true;
1397        case AR_accessible:
1398        case AR_dependent:
1399        case AR_delayed:
1400          break;
1401      }
1402    }
1403
1404    // Build a base path if necessary.
1405    if (BasePath)
1406      BuildBasePathArray(Paths, *BasePath);
1407    return false;
1408  }
1409
1410  // We know that the derived-to-base conversion is ambiguous, and
1411  // we're going to produce a diagnostic. Perform the derived-to-base
1412  // search just one more time to compute all of the possible paths so
1413  // that we can print them out. This is more expensive than any of
1414  // the previous derived-to-base checks we've done, but at this point
1415  // performance isn't as much of an issue.
1416  Paths.clear();
1417  Paths.setRecordingPaths(true);
1418  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1419  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1420  (void)StillOkay;
1421
1422  // Build up a textual representation of the ambiguous paths, e.g.,
1423  // D -> B -> A, that will be used to illustrate the ambiguous
1424  // conversions in the diagnostic. We only print one of the paths
1425  // to each base class subobject.
1426  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1427
1428  Diag(Loc, AmbigiousBaseConvID)
1429  << Derived << Base << PathDisplayStr << Range << Name;
1430  return true;
1431}
1432
1433bool
1434Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1435                                   SourceLocation Loc, SourceRange Range,
1436                                   CXXCastPath *BasePath,
1437                                   bool IgnoreAccess) {
1438  return CheckDerivedToBaseConversion(Derived, Base,
1439                                      IgnoreAccess ? 0
1440                                       : diag::err_upcast_to_inaccessible_base,
1441                                      diag::err_ambiguous_derived_to_base_conv,
1442                                      Loc, Range, DeclarationName(),
1443                                      BasePath);
1444}
1445
1446
1447/// @brief Builds a string representing ambiguous paths from a
1448/// specific derived class to different subobjects of the same base
1449/// class.
1450///
1451/// This function builds a string that can be used in error messages
1452/// to show the different paths that one can take through the
1453/// inheritance hierarchy to go from the derived class to different
1454/// subobjects of a base class. The result looks something like this:
1455/// @code
1456/// struct D -> struct B -> struct A
1457/// struct D -> struct C -> struct A
1458/// @endcode
1459std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1460  std::string PathDisplayStr;
1461  std::set<unsigned> DisplayedPaths;
1462  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1463       Path != Paths.end(); ++Path) {
1464    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1465      // We haven't displayed a path to this particular base
1466      // class subobject yet.
1467      PathDisplayStr += "\n    ";
1468      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1469      for (CXXBasePath::const_iterator Element = Path->begin();
1470           Element != Path->end(); ++Element)
1471        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1472    }
1473  }
1474
1475  return PathDisplayStr;
1476}
1477
1478//===----------------------------------------------------------------------===//
1479// C++ class member Handling
1480//===----------------------------------------------------------------------===//
1481
1482/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1483bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1484                                SourceLocation ASLoc,
1485                                SourceLocation ColonLoc,
1486                                AttributeList *Attrs) {
1487  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1488  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1489                                                  ASLoc, ColonLoc);
1490  CurContext->addHiddenDecl(ASDecl);
1491  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1492}
1493
1494/// CheckOverrideControl - Check C++11 override control semantics.
1495void Sema::CheckOverrideControl(Decl *D) {
1496  if (D->isInvalidDecl())
1497    return;
1498
1499  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1500
1501  // Do we know which functions this declaration might be overriding?
1502  bool OverridesAreKnown = !MD ||
1503      (!MD->getParent()->hasAnyDependentBases() &&
1504       !MD->getType()->isDependentType());
1505
1506  if (!MD || !MD->isVirtual()) {
1507    if (OverridesAreKnown) {
1508      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1509        Diag(OA->getLocation(),
1510             diag::override_keyword_only_allowed_on_virtual_member_functions)
1511          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1512        D->dropAttr<OverrideAttr>();
1513      }
1514      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1515        Diag(FA->getLocation(),
1516             diag::override_keyword_only_allowed_on_virtual_member_functions)
1517          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1518        D->dropAttr<FinalAttr>();
1519      }
1520    }
1521    return;
1522  }
1523
1524  if (!OverridesAreKnown)
1525    return;
1526
1527  // C++11 [class.virtual]p5:
1528  //   If a virtual function is marked with the virt-specifier override and
1529  //   does not override a member function of a base class, the program is
1530  //   ill-formed.
1531  bool HasOverriddenMethods =
1532    MD->begin_overridden_methods() != MD->end_overridden_methods();
1533  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1534    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1535      << MD->getDeclName();
1536}
1537
1538/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1539/// function overrides a virtual member function marked 'final', according to
1540/// C++11 [class.virtual]p4.
1541bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1542                                                  const CXXMethodDecl *Old) {
1543  if (!Old->hasAttr<FinalAttr>())
1544    return false;
1545
1546  Diag(New->getLocation(), diag::err_final_function_overridden)
1547    << New->getDeclName();
1548  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1549  return true;
1550}
1551
1552static bool InitializationHasSideEffects(const FieldDecl &FD) {
1553  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1554  // FIXME: Destruction of ObjC lifetime types has side-effects.
1555  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1556    return !RD->isCompleteDefinition() ||
1557           !RD->hasTrivialDefaultConstructor() ||
1558           !RD->hasTrivialDestructor();
1559  return false;
1560}
1561
1562/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1563/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1564/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1565/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1566/// present (but parsing it has been deferred).
1567Decl *
1568Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1569                               MultiTemplateParamsArg TemplateParameterLists,
1570                               Expr *BW, const VirtSpecifiers &VS,
1571                               InClassInitStyle InitStyle) {
1572  const DeclSpec &DS = D.getDeclSpec();
1573  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1574  DeclarationName Name = NameInfo.getName();
1575  SourceLocation Loc = NameInfo.getLoc();
1576
1577  // For anonymous bitfields, the location should point to the type.
1578  if (Loc.isInvalid())
1579    Loc = D.getLocStart();
1580
1581  Expr *BitWidth = static_cast<Expr*>(BW);
1582
1583  assert(isa<CXXRecordDecl>(CurContext));
1584  assert(!DS.isFriendSpecified());
1585
1586  bool isFunc = D.isDeclarationOfFunction();
1587
1588  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1589    // The Microsoft extension __interface only permits public member functions
1590    // and prohibits constructors, destructors, operators, non-public member
1591    // functions, static methods and data members.
1592    unsigned InvalidDecl;
1593    bool ShowDeclName = true;
1594    if (!isFunc)
1595      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1596    else if (AS != AS_public)
1597      InvalidDecl = 2;
1598    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1599      InvalidDecl = 3;
1600    else switch (Name.getNameKind()) {
1601      case DeclarationName::CXXConstructorName:
1602        InvalidDecl = 4;
1603        ShowDeclName = false;
1604        break;
1605
1606      case DeclarationName::CXXDestructorName:
1607        InvalidDecl = 5;
1608        ShowDeclName = false;
1609        break;
1610
1611      case DeclarationName::CXXOperatorName:
1612      case DeclarationName::CXXConversionFunctionName:
1613        InvalidDecl = 6;
1614        break;
1615
1616      default:
1617        InvalidDecl = 0;
1618        break;
1619    }
1620
1621    if (InvalidDecl) {
1622      if (ShowDeclName)
1623        Diag(Loc, diag::err_invalid_member_in_interface)
1624          << (InvalidDecl-1) << Name;
1625      else
1626        Diag(Loc, diag::err_invalid_member_in_interface)
1627          << (InvalidDecl-1) << "";
1628      return 0;
1629    }
1630  }
1631
1632  // C++ 9.2p6: A member shall not be declared to have automatic storage
1633  // duration (auto, register) or with the extern storage-class-specifier.
1634  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1635  // data members and cannot be applied to names declared const or static,
1636  // and cannot be applied to reference members.
1637  switch (DS.getStorageClassSpec()) {
1638    case DeclSpec::SCS_unspecified:
1639    case DeclSpec::SCS_typedef:
1640    case DeclSpec::SCS_static:
1641      // FALL THROUGH.
1642      break;
1643    case DeclSpec::SCS_mutable:
1644      if (isFunc) {
1645        if (DS.getStorageClassSpecLoc().isValid())
1646          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1647        else
1648          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1649
1650        // FIXME: It would be nicer if the keyword was ignored only for this
1651        // declarator. Otherwise we could get follow-up errors.
1652        D.getMutableDeclSpec().ClearStorageClassSpecs();
1653      }
1654      break;
1655    default:
1656      if (DS.getStorageClassSpecLoc().isValid())
1657        Diag(DS.getStorageClassSpecLoc(),
1658             diag::err_storageclass_invalid_for_member);
1659      else
1660        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1661      D.getMutableDeclSpec().ClearStorageClassSpecs();
1662  }
1663
1664  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1665                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1666                      !isFunc);
1667
1668  Decl *Member;
1669  if (isInstField) {
1670    CXXScopeSpec &SS = D.getCXXScopeSpec();
1671
1672    // Data members must have identifiers for names.
1673    if (!Name.isIdentifier()) {
1674      Diag(Loc, diag::err_bad_variable_name)
1675        << Name;
1676      return 0;
1677    }
1678
1679    IdentifierInfo *II = Name.getAsIdentifierInfo();
1680
1681    // Member field could not be with "template" keyword.
1682    // So TemplateParameterLists should be empty in this case.
1683    if (TemplateParameterLists.size()) {
1684      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1685      if (TemplateParams->size()) {
1686        // There is no such thing as a member field template.
1687        Diag(D.getIdentifierLoc(), diag::err_template_member)
1688            << II
1689            << SourceRange(TemplateParams->getTemplateLoc(),
1690                TemplateParams->getRAngleLoc());
1691      } else {
1692        // There is an extraneous 'template<>' for this member.
1693        Diag(TemplateParams->getTemplateLoc(),
1694            diag::err_template_member_noparams)
1695            << II
1696            << SourceRange(TemplateParams->getTemplateLoc(),
1697                TemplateParams->getRAngleLoc());
1698      }
1699      return 0;
1700    }
1701
1702    if (SS.isSet() && !SS.isInvalid()) {
1703      // The user provided a superfluous scope specifier inside a class
1704      // definition:
1705      //
1706      // class X {
1707      //   int X::member;
1708      // };
1709      if (DeclContext *DC = computeDeclContext(SS, false))
1710        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1711      else
1712        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1713          << Name << SS.getRange();
1714
1715      SS.clear();
1716    }
1717
1718    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1719                         InitStyle, AS);
1720    assert(Member && "HandleField never returns null");
1721  } else {
1722    assert(InitStyle == ICIS_NoInit);
1723
1724    Member = HandleDeclarator(S, D, TemplateParameterLists);
1725    if (!Member) {
1726      return 0;
1727    }
1728
1729    // Non-instance-fields can't have a bitfield.
1730    if (BitWidth) {
1731      if (Member->isInvalidDecl()) {
1732        // don't emit another diagnostic.
1733      } else if (isa<VarDecl>(Member)) {
1734        // C++ 9.6p3: A bit-field shall not be a static member.
1735        // "static member 'A' cannot be a bit-field"
1736        Diag(Loc, diag::err_static_not_bitfield)
1737          << Name << BitWidth->getSourceRange();
1738      } else if (isa<TypedefDecl>(Member)) {
1739        // "typedef member 'x' cannot be a bit-field"
1740        Diag(Loc, diag::err_typedef_not_bitfield)
1741          << Name << BitWidth->getSourceRange();
1742      } else {
1743        // A function typedef ("typedef int f(); f a;").
1744        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1745        Diag(Loc, diag::err_not_integral_type_bitfield)
1746          << Name << cast<ValueDecl>(Member)->getType()
1747          << BitWidth->getSourceRange();
1748      }
1749
1750      BitWidth = 0;
1751      Member->setInvalidDecl();
1752    }
1753
1754    Member->setAccess(AS);
1755
1756    // If we have declared a member function template, set the access of the
1757    // templated declaration as well.
1758    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1759      FunTmpl->getTemplatedDecl()->setAccess(AS);
1760  }
1761
1762  if (VS.isOverrideSpecified())
1763    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1764  if (VS.isFinalSpecified())
1765    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1766
1767  if (VS.getLastLocation().isValid()) {
1768    // Update the end location of a method that has a virt-specifiers.
1769    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1770      MD->setRangeEnd(VS.getLastLocation());
1771  }
1772
1773  CheckOverrideControl(Member);
1774
1775  assert((Name || isInstField) && "No identifier for non-field ?");
1776
1777  if (isInstField) {
1778    FieldDecl *FD = cast<FieldDecl>(Member);
1779    FieldCollector->Add(FD);
1780
1781    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1782                                 FD->getLocation())
1783          != DiagnosticsEngine::Ignored) {
1784      // Remember all explicit private FieldDecls that have a name, no side
1785      // effects and are not part of a dependent type declaration.
1786      if (!FD->isImplicit() && FD->getDeclName() &&
1787          FD->getAccess() == AS_private &&
1788          !FD->hasAttr<UnusedAttr>() &&
1789          !FD->getParent()->isDependentContext() &&
1790          !InitializationHasSideEffects(*FD))
1791        UnusedPrivateFields.insert(FD);
1792    }
1793  }
1794
1795  return Member;
1796}
1797
1798namespace {
1799  class UninitializedFieldVisitor
1800      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
1801    Sema &S;
1802    ValueDecl *VD;
1803  public:
1804    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
1805    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
1806                                                        S(S) {
1807      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
1808        this->VD = IFD->getAnonField();
1809      else
1810        this->VD = VD;
1811    }
1812
1813    void HandleExpr(Expr *E) {
1814      if (!E) return;
1815
1816      // Expressions like x(x) sometimes lack the surrounding expressions
1817      // but need to be checked anyways.
1818      HandleValue(E);
1819      Visit(E);
1820    }
1821
1822    void HandleValue(Expr *E) {
1823      E = E->IgnoreParens();
1824
1825      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1826        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
1827          return;
1828
1829        // FieldME is the inner-most MemberExpr that is not an anonymous struct
1830        // or union.
1831        MemberExpr *FieldME = ME;
1832
1833        Expr *Base = E;
1834        while (isa<MemberExpr>(Base)) {
1835          ME = cast<MemberExpr>(Base);
1836
1837          if (isa<VarDecl>(ME->getMemberDecl()))
1838            return;
1839
1840          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1841            if (!FD->isAnonymousStructOrUnion())
1842              FieldME = ME;
1843
1844          Base = ME->getBase();
1845        }
1846
1847        if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
1848          unsigned diag = VD->getType()->isReferenceType()
1849              ? diag::warn_reference_field_is_uninit
1850              : diag::warn_field_is_uninit;
1851          S.Diag(FieldME->getExprLoc(), diag) << VD;
1852        }
1853        return;
1854      }
1855
1856      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1857        HandleValue(CO->getTrueExpr());
1858        HandleValue(CO->getFalseExpr());
1859        return;
1860      }
1861
1862      if (BinaryConditionalOperator *BCO =
1863              dyn_cast<BinaryConditionalOperator>(E)) {
1864        HandleValue(BCO->getCommon());
1865        HandleValue(BCO->getFalseExpr());
1866        return;
1867      }
1868
1869      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1870        switch (BO->getOpcode()) {
1871        default:
1872          return;
1873        case(BO_PtrMemD):
1874        case(BO_PtrMemI):
1875          HandleValue(BO->getLHS());
1876          return;
1877        case(BO_Comma):
1878          HandleValue(BO->getRHS());
1879          return;
1880        }
1881      }
1882    }
1883
1884    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
1885      if (E->getCastKind() == CK_LValueToRValue)
1886        HandleValue(E->getSubExpr());
1887
1888      Inherited::VisitImplicitCastExpr(E);
1889    }
1890
1891    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1892      Expr *Callee = E->getCallee();
1893      if (isa<MemberExpr>(Callee))
1894        HandleValue(Callee);
1895
1896      Inherited::VisitCXXMemberCallExpr(E);
1897    }
1898  };
1899  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
1900                                                       ValueDecl *VD) {
1901    UninitializedFieldVisitor(S, VD).HandleExpr(E);
1902  }
1903} // namespace
1904
1905/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1906/// in-class initializer for a non-static C++ class member, and after
1907/// instantiating an in-class initializer in a class template. Such actions
1908/// are deferred until the class is complete.
1909void
1910Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1911                                       Expr *InitExpr) {
1912  FieldDecl *FD = cast<FieldDecl>(D);
1913  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1914         "must set init style when field is created");
1915
1916  if (!InitExpr) {
1917    FD->setInvalidDecl();
1918    FD->removeInClassInitializer();
1919    return;
1920  }
1921
1922  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1923    FD->setInvalidDecl();
1924    FD->removeInClassInitializer();
1925    return;
1926  }
1927
1928  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
1929      != DiagnosticsEngine::Ignored) {
1930    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
1931  }
1932
1933  ExprResult Init = InitExpr;
1934  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent() &&
1935      !FD->getDeclContext()->isDependentContext()) {
1936    // Note: We don't type-check when we're in a dependent context, because
1937    // the initialization-substitution code does not properly handle direct
1938    // list initialization. We have the same hackaround for ctor-initializers.
1939    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1940      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1941        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1942    }
1943    Expr **Inits = &InitExpr;
1944    unsigned NumInits = 1;
1945    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1946    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
1947        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1948        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
1949    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1950    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1951    if (Init.isInvalid()) {
1952      FD->setInvalidDecl();
1953      return;
1954    }
1955
1956    CheckImplicitConversions(Init.get(), InitLoc);
1957  }
1958
1959  // C++0x [class.base.init]p7:
1960  //   The initialization of each base and member constitutes a
1961  //   full-expression.
1962  Init = MaybeCreateExprWithCleanups(Init);
1963  if (Init.isInvalid()) {
1964    FD->setInvalidDecl();
1965    return;
1966  }
1967
1968  InitExpr = Init.release();
1969
1970  FD->setInClassInitializer(InitExpr);
1971}
1972
1973/// \brief Find the direct and/or virtual base specifiers that
1974/// correspond to the given base type, for use in base initialization
1975/// within a constructor.
1976static bool FindBaseInitializer(Sema &SemaRef,
1977                                CXXRecordDecl *ClassDecl,
1978                                QualType BaseType,
1979                                const CXXBaseSpecifier *&DirectBaseSpec,
1980                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1981  // First, check for a direct base class.
1982  DirectBaseSpec = 0;
1983  for (CXXRecordDecl::base_class_const_iterator Base
1984         = ClassDecl->bases_begin();
1985       Base != ClassDecl->bases_end(); ++Base) {
1986    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1987      // We found a direct base of this type. That's what we're
1988      // initializing.
1989      DirectBaseSpec = &*Base;
1990      break;
1991    }
1992  }
1993
1994  // Check for a virtual base class.
1995  // FIXME: We might be able to short-circuit this if we know in advance that
1996  // there are no virtual bases.
1997  VirtualBaseSpec = 0;
1998  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1999    // We haven't found a base yet; search the class hierarchy for a
2000    // virtual base class.
2001    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2002                       /*DetectVirtual=*/false);
2003    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2004                              BaseType, Paths)) {
2005      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2006           Path != Paths.end(); ++Path) {
2007        if (Path->back().Base->isVirtual()) {
2008          VirtualBaseSpec = Path->back().Base;
2009          break;
2010        }
2011      }
2012    }
2013  }
2014
2015  return DirectBaseSpec || VirtualBaseSpec;
2016}
2017
2018/// \brief Handle a C++ member initializer using braced-init-list syntax.
2019MemInitResult
2020Sema::ActOnMemInitializer(Decl *ConstructorD,
2021                          Scope *S,
2022                          CXXScopeSpec &SS,
2023                          IdentifierInfo *MemberOrBase,
2024                          ParsedType TemplateTypeTy,
2025                          const DeclSpec &DS,
2026                          SourceLocation IdLoc,
2027                          Expr *InitList,
2028                          SourceLocation EllipsisLoc) {
2029  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2030                             DS, IdLoc, InitList,
2031                             EllipsisLoc);
2032}
2033
2034/// \brief Handle a C++ member initializer using parentheses syntax.
2035MemInitResult
2036Sema::ActOnMemInitializer(Decl *ConstructorD,
2037                          Scope *S,
2038                          CXXScopeSpec &SS,
2039                          IdentifierInfo *MemberOrBase,
2040                          ParsedType TemplateTypeTy,
2041                          const DeclSpec &DS,
2042                          SourceLocation IdLoc,
2043                          SourceLocation LParenLoc,
2044                          Expr **Args, unsigned NumArgs,
2045                          SourceLocation RParenLoc,
2046                          SourceLocation EllipsisLoc) {
2047  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2048                                           llvm::makeArrayRef(Args, NumArgs),
2049                                           RParenLoc);
2050  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2051                             DS, IdLoc, List, EllipsisLoc);
2052}
2053
2054namespace {
2055
2056// Callback to only accept typo corrections that can be a valid C++ member
2057// intializer: either a non-static field member or a base class.
2058class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2059 public:
2060  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2061      : ClassDecl(ClassDecl) {}
2062
2063  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
2064    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2065      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2066        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2067      else
2068        return isa<TypeDecl>(ND);
2069    }
2070    return false;
2071  }
2072
2073 private:
2074  CXXRecordDecl *ClassDecl;
2075};
2076
2077}
2078
2079/// \brief Handle a C++ member initializer.
2080MemInitResult
2081Sema::BuildMemInitializer(Decl *ConstructorD,
2082                          Scope *S,
2083                          CXXScopeSpec &SS,
2084                          IdentifierInfo *MemberOrBase,
2085                          ParsedType TemplateTypeTy,
2086                          const DeclSpec &DS,
2087                          SourceLocation IdLoc,
2088                          Expr *Init,
2089                          SourceLocation EllipsisLoc) {
2090  if (!ConstructorD)
2091    return true;
2092
2093  AdjustDeclIfTemplate(ConstructorD);
2094
2095  CXXConstructorDecl *Constructor
2096    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2097  if (!Constructor) {
2098    // The user wrote a constructor initializer on a function that is
2099    // not a C++ constructor. Ignore the error for now, because we may
2100    // have more member initializers coming; we'll diagnose it just
2101    // once in ActOnMemInitializers.
2102    return true;
2103  }
2104
2105  CXXRecordDecl *ClassDecl = Constructor->getParent();
2106
2107  // C++ [class.base.init]p2:
2108  //   Names in a mem-initializer-id are looked up in the scope of the
2109  //   constructor's class and, if not found in that scope, are looked
2110  //   up in the scope containing the constructor's definition.
2111  //   [Note: if the constructor's class contains a member with the
2112  //   same name as a direct or virtual base class of the class, a
2113  //   mem-initializer-id naming the member or base class and composed
2114  //   of a single identifier refers to the class member. A
2115  //   mem-initializer-id for the hidden base class may be specified
2116  //   using a qualified name. ]
2117  if (!SS.getScopeRep() && !TemplateTypeTy) {
2118    // Look for a member, first.
2119    DeclContext::lookup_result Result
2120      = ClassDecl->lookup(MemberOrBase);
2121    if (Result.first != Result.second) {
2122      ValueDecl *Member;
2123      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
2124          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
2125        if (EllipsisLoc.isValid())
2126          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2127            << MemberOrBase
2128            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2129
2130        return BuildMemberInitializer(Member, Init, IdLoc);
2131      }
2132    }
2133  }
2134  // It didn't name a member, so see if it names a class.
2135  QualType BaseType;
2136  TypeSourceInfo *TInfo = 0;
2137
2138  if (TemplateTypeTy) {
2139    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2140  } else if (DS.getTypeSpecType() == TST_decltype) {
2141    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2142  } else {
2143    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2144    LookupParsedName(R, S, &SS);
2145
2146    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2147    if (!TyD) {
2148      if (R.isAmbiguous()) return true;
2149
2150      // We don't want access-control diagnostics here.
2151      R.suppressDiagnostics();
2152
2153      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2154        bool NotUnknownSpecialization = false;
2155        DeclContext *DC = computeDeclContext(SS, false);
2156        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2157          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2158
2159        if (!NotUnknownSpecialization) {
2160          // When the scope specifier can refer to a member of an unknown
2161          // specialization, we take it as a type name.
2162          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2163                                       SS.getWithLocInContext(Context),
2164                                       *MemberOrBase, IdLoc);
2165          if (BaseType.isNull())
2166            return true;
2167
2168          R.clear();
2169          R.setLookupName(MemberOrBase);
2170        }
2171      }
2172
2173      // If no results were found, try to correct typos.
2174      TypoCorrection Corr;
2175      MemInitializerValidatorCCC Validator(ClassDecl);
2176      if (R.empty() && BaseType.isNull() &&
2177          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2178                              Validator, ClassDecl))) {
2179        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2180        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2181        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2182          // We have found a non-static data member with a similar
2183          // name to what was typed; complain and initialize that
2184          // member.
2185          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2186            << MemberOrBase << true << CorrectedQuotedStr
2187            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2188          Diag(Member->getLocation(), diag::note_previous_decl)
2189            << CorrectedQuotedStr;
2190
2191          return BuildMemberInitializer(Member, Init, IdLoc);
2192        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2193          const CXXBaseSpecifier *DirectBaseSpec;
2194          const CXXBaseSpecifier *VirtualBaseSpec;
2195          if (FindBaseInitializer(*this, ClassDecl,
2196                                  Context.getTypeDeclType(Type),
2197                                  DirectBaseSpec, VirtualBaseSpec)) {
2198            // We have found a direct or virtual base class with a
2199            // similar name to what was typed; complain and initialize
2200            // that base class.
2201            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2202              << MemberOrBase << false << CorrectedQuotedStr
2203              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2204
2205            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2206                                                             : VirtualBaseSpec;
2207            Diag(BaseSpec->getLocStart(),
2208                 diag::note_base_class_specified_here)
2209              << BaseSpec->getType()
2210              << BaseSpec->getSourceRange();
2211
2212            TyD = Type;
2213          }
2214        }
2215      }
2216
2217      if (!TyD && BaseType.isNull()) {
2218        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2219          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2220        return true;
2221      }
2222    }
2223
2224    if (BaseType.isNull()) {
2225      BaseType = Context.getTypeDeclType(TyD);
2226      if (SS.isSet()) {
2227        NestedNameSpecifier *Qualifier =
2228          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2229
2230        // FIXME: preserve source range information
2231        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2232      }
2233    }
2234  }
2235
2236  if (!TInfo)
2237    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2238
2239  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2240}
2241
2242/// Checks a member initializer expression for cases where reference (or
2243/// pointer) members are bound to by-value parameters (or their addresses).
2244static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2245                                               Expr *Init,
2246                                               SourceLocation IdLoc) {
2247  QualType MemberTy = Member->getType();
2248
2249  // We only handle pointers and references currently.
2250  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2251  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2252    return;
2253
2254  const bool IsPointer = MemberTy->isPointerType();
2255  if (IsPointer) {
2256    if (const UnaryOperator *Op
2257          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2258      // The only case we're worried about with pointers requires taking the
2259      // address.
2260      if (Op->getOpcode() != UO_AddrOf)
2261        return;
2262
2263      Init = Op->getSubExpr();
2264    } else {
2265      // We only handle address-of expression initializers for pointers.
2266      return;
2267    }
2268  }
2269
2270  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2271    // Taking the address of a temporary will be diagnosed as a hard error.
2272    if (IsPointer)
2273      return;
2274
2275    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2276      << Member << Init->getSourceRange();
2277  } else if (const DeclRefExpr *DRE
2278               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2279    // We only warn when referring to a non-reference parameter declaration.
2280    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2281    if (!Parameter || Parameter->getType()->isReferenceType())
2282      return;
2283
2284    S.Diag(Init->getExprLoc(),
2285           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2286                     : diag::warn_bind_ref_member_to_parameter)
2287      << Member << Parameter << Init->getSourceRange();
2288  } else {
2289    // Other initializers are fine.
2290    return;
2291  }
2292
2293  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2294    << (unsigned)IsPointer;
2295}
2296
2297MemInitResult
2298Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2299                             SourceLocation IdLoc) {
2300  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2301  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2302  assert((DirectMember || IndirectMember) &&
2303         "Member must be a FieldDecl or IndirectFieldDecl");
2304
2305  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2306    return true;
2307
2308  if (Member->isInvalidDecl())
2309    return true;
2310
2311  // Diagnose value-uses of fields to initialize themselves, e.g.
2312  //   foo(foo)
2313  // where foo is not also a parameter to the constructor.
2314  // TODO: implement -Wuninitialized and fold this into that framework.
2315  Expr **Args;
2316  unsigned NumArgs;
2317  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2318    Args = ParenList->getExprs();
2319    NumArgs = ParenList->getNumExprs();
2320  } else {
2321    InitListExpr *InitList = cast<InitListExpr>(Init);
2322    Args = InitList->getInits();
2323    NumArgs = InitList->getNumInits();
2324  }
2325
2326  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2327        != DiagnosticsEngine::Ignored)
2328    for (unsigned i = 0; i < NumArgs; ++i)
2329      // FIXME: Warn about the case when other fields are used before being
2330      // initialized. For example, let this field be the i'th field. When
2331      // initializing the i'th field, throw a warning if any of the >= i'th
2332      // fields are used, as they are not yet initialized.
2333      // Right now we are only handling the case where the i'th field uses
2334      // itself in its initializer.
2335      // Also need to take into account that some fields may be initialized by
2336      // in-class initializers, see C++11 [class.base.init]p9.
2337      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2338
2339  SourceRange InitRange = Init->getSourceRange();
2340
2341  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2342    // Can't check initialization for a member of dependent type or when
2343    // any of the arguments are type-dependent expressions.
2344    DiscardCleanupsInEvaluationContext();
2345  } else {
2346    bool InitList = false;
2347    if (isa<InitListExpr>(Init)) {
2348      InitList = true;
2349      Args = &Init;
2350      NumArgs = 1;
2351
2352      if (isStdInitializerList(Member->getType(), 0)) {
2353        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2354            << /*at end of ctor*/1 << InitRange;
2355      }
2356    }
2357
2358    // Initialize the member.
2359    InitializedEntity MemberEntity =
2360      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2361                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2362    InitializationKind Kind =
2363      InitList ? InitializationKind::CreateDirectList(IdLoc)
2364               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2365                                                  InitRange.getEnd());
2366
2367    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2368    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2369                                            MultiExprArg(Args, NumArgs),
2370                                            0);
2371    if (MemberInit.isInvalid())
2372      return true;
2373
2374    CheckImplicitConversions(MemberInit.get(),
2375                             InitRange.getBegin());
2376
2377    // C++0x [class.base.init]p7:
2378    //   The initialization of each base and member constitutes a
2379    //   full-expression.
2380    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2381    if (MemberInit.isInvalid())
2382      return true;
2383
2384    // If we are in a dependent context, template instantiation will
2385    // perform this type-checking again. Just save the arguments that we
2386    // received.
2387    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2388    // of the information that we have about the member
2389    // initializer. However, deconstructing the ASTs is a dicey process,
2390    // and this approach is far more likely to get the corner cases right.
2391    if (CurContext->isDependentContext()) {
2392      // The existing Init will do fine.
2393    } else {
2394      Init = MemberInit.get();
2395      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2396    }
2397  }
2398
2399  if (DirectMember) {
2400    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2401                                            InitRange.getBegin(), Init,
2402                                            InitRange.getEnd());
2403  } else {
2404    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2405                                            InitRange.getBegin(), Init,
2406                                            InitRange.getEnd());
2407  }
2408}
2409
2410MemInitResult
2411Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2412                                 CXXRecordDecl *ClassDecl) {
2413  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2414  if (!LangOpts.CPlusPlus0x)
2415    return Diag(NameLoc, diag::err_delegating_ctor)
2416      << TInfo->getTypeLoc().getLocalSourceRange();
2417  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2418
2419  bool InitList = true;
2420  Expr **Args = &Init;
2421  unsigned NumArgs = 1;
2422  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2423    InitList = false;
2424    Args = ParenList->getExprs();
2425    NumArgs = ParenList->getNumExprs();
2426  }
2427
2428  SourceRange InitRange = Init->getSourceRange();
2429  // Initialize the object.
2430  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2431                                     QualType(ClassDecl->getTypeForDecl(), 0));
2432  InitializationKind Kind =
2433    InitList ? InitializationKind::CreateDirectList(NameLoc)
2434             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2435                                                InitRange.getEnd());
2436  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2437  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2438                                              MultiExprArg(Args, NumArgs),
2439                                              0);
2440  if (DelegationInit.isInvalid())
2441    return true;
2442
2443  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2444         "Delegating constructor with no target?");
2445
2446  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2447
2448  // C++0x [class.base.init]p7:
2449  //   The initialization of each base and member constitutes a
2450  //   full-expression.
2451  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2452  if (DelegationInit.isInvalid())
2453    return true;
2454
2455  // If we are in a dependent context, template instantiation will
2456  // perform this type-checking again. Just save the arguments that we
2457  // received in a ParenListExpr.
2458  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2459  // of the information that we have about the base
2460  // initializer. However, deconstructing the ASTs is a dicey process,
2461  // and this approach is far more likely to get the corner cases right.
2462  if (CurContext->isDependentContext())
2463    DelegationInit = Owned(Init);
2464
2465  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2466                                          DelegationInit.takeAs<Expr>(),
2467                                          InitRange.getEnd());
2468}
2469
2470MemInitResult
2471Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2472                           Expr *Init, CXXRecordDecl *ClassDecl,
2473                           SourceLocation EllipsisLoc) {
2474  SourceLocation BaseLoc
2475    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2476
2477  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2478    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2479             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2480
2481  // C++ [class.base.init]p2:
2482  //   [...] Unless the mem-initializer-id names a nonstatic data
2483  //   member of the constructor's class or a direct or virtual base
2484  //   of that class, the mem-initializer is ill-formed. A
2485  //   mem-initializer-list can initialize a base class using any
2486  //   name that denotes that base class type.
2487  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2488
2489  SourceRange InitRange = Init->getSourceRange();
2490  if (EllipsisLoc.isValid()) {
2491    // This is a pack expansion.
2492    if (!BaseType->containsUnexpandedParameterPack())  {
2493      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2494        << SourceRange(BaseLoc, InitRange.getEnd());
2495
2496      EllipsisLoc = SourceLocation();
2497    }
2498  } else {
2499    // Check for any unexpanded parameter packs.
2500    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2501      return true;
2502
2503    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2504      return true;
2505  }
2506
2507  // Check for direct and virtual base classes.
2508  const CXXBaseSpecifier *DirectBaseSpec = 0;
2509  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2510  if (!Dependent) {
2511    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2512                                       BaseType))
2513      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2514
2515    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2516                        VirtualBaseSpec);
2517
2518    // C++ [base.class.init]p2:
2519    // Unless the mem-initializer-id names a nonstatic data member of the
2520    // constructor's class or a direct or virtual base of that class, the
2521    // mem-initializer is ill-formed.
2522    if (!DirectBaseSpec && !VirtualBaseSpec) {
2523      // If the class has any dependent bases, then it's possible that
2524      // one of those types will resolve to the same type as
2525      // BaseType. Therefore, just treat this as a dependent base
2526      // class initialization.  FIXME: Should we try to check the
2527      // initialization anyway? It seems odd.
2528      if (ClassDecl->hasAnyDependentBases())
2529        Dependent = true;
2530      else
2531        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2532          << BaseType << Context.getTypeDeclType(ClassDecl)
2533          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2534    }
2535  }
2536
2537  if (Dependent) {
2538    DiscardCleanupsInEvaluationContext();
2539
2540    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2541                                            /*IsVirtual=*/false,
2542                                            InitRange.getBegin(), Init,
2543                                            InitRange.getEnd(), EllipsisLoc);
2544  }
2545
2546  // C++ [base.class.init]p2:
2547  //   If a mem-initializer-id is ambiguous because it designates both
2548  //   a direct non-virtual base class and an inherited virtual base
2549  //   class, the mem-initializer is ill-formed.
2550  if (DirectBaseSpec && VirtualBaseSpec)
2551    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2552      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2553
2554  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2555  if (!BaseSpec)
2556    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2557
2558  // Initialize the base.
2559  bool InitList = true;
2560  Expr **Args = &Init;
2561  unsigned NumArgs = 1;
2562  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2563    InitList = false;
2564    Args = ParenList->getExprs();
2565    NumArgs = ParenList->getNumExprs();
2566  }
2567
2568  InitializedEntity BaseEntity =
2569    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2570  InitializationKind Kind =
2571    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2572             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2573                                                InitRange.getEnd());
2574  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2575  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2576                                        MultiExprArg(Args, NumArgs), 0);
2577  if (BaseInit.isInvalid())
2578    return true;
2579
2580  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2581
2582  // C++0x [class.base.init]p7:
2583  //   The initialization of each base and member constitutes a
2584  //   full-expression.
2585  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2586  if (BaseInit.isInvalid())
2587    return true;
2588
2589  // If we are in a dependent context, template instantiation will
2590  // perform this type-checking again. Just save the arguments that we
2591  // received in a ParenListExpr.
2592  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2593  // of the information that we have about the base
2594  // initializer. However, deconstructing the ASTs is a dicey process,
2595  // and this approach is far more likely to get the corner cases right.
2596  if (CurContext->isDependentContext())
2597    BaseInit = Owned(Init);
2598
2599  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2600                                          BaseSpec->isVirtual(),
2601                                          InitRange.getBegin(),
2602                                          BaseInit.takeAs<Expr>(),
2603                                          InitRange.getEnd(), EllipsisLoc);
2604}
2605
2606// Create a static_cast\<T&&>(expr).
2607static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2608  QualType ExprType = E->getType();
2609  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2610  SourceLocation ExprLoc = E->getLocStart();
2611  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2612      TargetType, ExprLoc);
2613
2614  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2615                                   SourceRange(ExprLoc, ExprLoc),
2616                                   E->getSourceRange()).take();
2617}
2618
2619/// ImplicitInitializerKind - How an implicit base or member initializer should
2620/// initialize its base or member.
2621enum ImplicitInitializerKind {
2622  IIK_Default,
2623  IIK_Copy,
2624  IIK_Move
2625};
2626
2627static bool
2628BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2629                             ImplicitInitializerKind ImplicitInitKind,
2630                             CXXBaseSpecifier *BaseSpec,
2631                             bool IsInheritedVirtualBase,
2632                             CXXCtorInitializer *&CXXBaseInit) {
2633  InitializedEntity InitEntity
2634    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2635                                        IsInheritedVirtualBase);
2636
2637  ExprResult BaseInit;
2638
2639  switch (ImplicitInitKind) {
2640  case IIK_Default: {
2641    InitializationKind InitKind
2642      = InitializationKind::CreateDefault(Constructor->getLocation());
2643    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2644    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2645    break;
2646  }
2647
2648  case IIK_Move:
2649  case IIK_Copy: {
2650    bool Moving = ImplicitInitKind == IIK_Move;
2651    ParmVarDecl *Param = Constructor->getParamDecl(0);
2652    QualType ParamType = Param->getType().getNonReferenceType();
2653
2654    Expr *CopyCtorArg =
2655      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2656                          SourceLocation(), Param, false,
2657                          Constructor->getLocation(), ParamType,
2658                          VK_LValue, 0);
2659
2660    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2661
2662    // Cast to the base class to avoid ambiguities.
2663    QualType ArgTy =
2664      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2665                                       ParamType.getQualifiers());
2666
2667    if (Moving) {
2668      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2669    }
2670
2671    CXXCastPath BasePath;
2672    BasePath.push_back(BaseSpec);
2673    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2674                                            CK_UncheckedDerivedToBase,
2675                                            Moving ? VK_XValue : VK_LValue,
2676                                            &BasePath).take();
2677
2678    InitializationKind InitKind
2679      = InitializationKind::CreateDirect(Constructor->getLocation(),
2680                                         SourceLocation(), SourceLocation());
2681    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2682                                   &CopyCtorArg, 1);
2683    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2684                               MultiExprArg(&CopyCtorArg, 1));
2685    break;
2686  }
2687  }
2688
2689  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2690  if (BaseInit.isInvalid())
2691    return true;
2692
2693  CXXBaseInit =
2694    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2695               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2696                                                        SourceLocation()),
2697                                             BaseSpec->isVirtual(),
2698                                             SourceLocation(),
2699                                             BaseInit.takeAs<Expr>(),
2700                                             SourceLocation(),
2701                                             SourceLocation());
2702
2703  return false;
2704}
2705
2706static bool RefersToRValueRef(Expr *MemRef) {
2707  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2708  return Referenced->getType()->isRValueReferenceType();
2709}
2710
2711static bool
2712BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2713                               ImplicitInitializerKind ImplicitInitKind,
2714                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2715                               CXXCtorInitializer *&CXXMemberInit) {
2716  if (Field->isInvalidDecl())
2717    return true;
2718
2719  SourceLocation Loc = Constructor->getLocation();
2720
2721  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2722    bool Moving = ImplicitInitKind == IIK_Move;
2723    ParmVarDecl *Param = Constructor->getParamDecl(0);
2724    QualType ParamType = Param->getType().getNonReferenceType();
2725
2726    // Suppress copying zero-width bitfields.
2727    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2728      return false;
2729
2730    Expr *MemberExprBase =
2731      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2732                          SourceLocation(), Param, false,
2733                          Loc, ParamType, VK_LValue, 0);
2734
2735    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2736
2737    if (Moving) {
2738      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2739    }
2740
2741    // Build a reference to this field within the parameter.
2742    CXXScopeSpec SS;
2743    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2744                              Sema::LookupMemberName);
2745    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2746                                  : cast<ValueDecl>(Field), AS_public);
2747    MemberLookup.resolveKind();
2748    ExprResult CtorArg
2749      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2750                                         ParamType, Loc,
2751                                         /*IsArrow=*/false,
2752                                         SS,
2753                                         /*TemplateKWLoc=*/SourceLocation(),
2754                                         /*FirstQualifierInScope=*/0,
2755                                         MemberLookup,
2756                                         /*TemplateArgs=*/0);
2757    if (CtorArg.isInvalid())
2758      return true;
2759
2760    // C++11 [class.copy]p15:
2761    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2762    //     with static_cast<T&&>(x.m);
2763    if (RefersToRValueRef(CtorArg.get())) {
2764      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2765    }
2766
2767    // When the field we are copying is an array, create index variables for
2768    // each dimension of the array. We use these index variables to subscript
2769    // the source array, and other clients (e.g., CodeGen) will perform the
2770    // necessary iteration with these index variables.
2771    SmallVector<VarDecl *, 4> IndexVariables;
2772    QualType BaseType = Field->getType();
2773    QualType SizeType = SemaRef.Context.getSizeType();
2774    bool InitializingArray = false;
2775    while (const ConstantArrayType *Array
2776                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2777      InitializingArray = true;
2778      // Create the iteration variable for this array index.
2779      IdentifierInfo *IterationVarName = 0;
2780      {
2781        SmallString<8> Str;
2782        llvm::raw_svector_ostream OS(Str);
2783        OS << "__i" << IndexVariables.size();
2784        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2785      }
2786      VarDecl *IterationVar
2787        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2788                          IterationVarName, SizeType,
2789                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2790                          SC_None, SC_None);
2791      IndexVariables.push_back(IterationVar);
2792
2793      // Create a reference to the iteration variable.
2794      ExprResult IterationVarRef
2795        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2796      assert(!IterationVarRef.isInvalid() &&
2797             "Reference to invented variable cannot fail!");
2798      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2799      assert(!IterationVarRef.isInvalid() &&
2800             "Conversion of invented variable cannot fail!");
2801
2802      // Subscript the array with this iteration variable.
2803      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2804                                                        IterationVarRef.take(),
2805                                                        Loc);
2806      if (CtorArg.isInvalid())
2807        return true;
2808
2809      BaseType = Array->getElementType();
2810    }
2811
2812    // The array subscript expression is an lvalue, which is wrong for moving.
2813    if (Moving && InitializingArray)
2814      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2815
2816    // Construct the entity that we will be initializing. For an array, this
2817    // will be first element in the array, which may require several levels
2818    // of array-subscript entities.
2819    SmallVector<InitializedEntity, 4> Entities;
2820    Entities.reserve(1 + IndexVariables.size());
2821    if (Indirect)
2822      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2823    else
2824      Entities.push_back(InitializedEntity::InitializeMember(Field));
2825    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2826      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2827                                                              0,
2828                                                              Entities.back()));
2829
2830    // Direct-initialize to use the copy constructor.
2831    InitializationKind InitKind =
2832      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2833
2834    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2835    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2836                                   &CtorArgE, 1);
2837
2838    ExprResult MemberInit
2839      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2840                        MultiExprArg(&CtorArgE, 1));
2841    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2842    if (MemberInit.isInvalid())
2843      return true;
2844
2845    if (Indirect) {
2846      assert(IndexVariables.size() == 0 &&
2847             "Indirect field improperly initialized");
2848      CXXMemberInit
2849        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2850                                                   Loc, Loc,
2851                                                   MemberInit.takeAs<Expr>(),
2852                                                   Loc);
2853    } else
2854      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2855                                                 Loc, MemberInit.takeAs<Expr>(),
2856                                                 Loc,
2857                                                 IndexVariables.data(),
2858                                                 IndexVariables.size());
2859    return false;
2860  }
2861
2862  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2863
2864  QualType FieldBaseElementType =
2865    SemaRef.Context.getBaseElementType(Field->getType());
2866
2867  if (FieldBaseElementType->isRecordType()) {
2868    InitializedEntity InitEntity
2869      = Indirect? InitializedEntity::InitializeMember(Indirect)
2870                : InitializedEntity::InitializeMember(Field);
2871    InitializationKind InitKind =
2872      InitializationKind::CreateDefault(Loc);
2873
2874    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2875    ExprResult MemberInit =
2876      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2877
2878    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2879    if (MemberInit.isInvalid())
2880      return true;
2881
2882    if (Indirect)
2883      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2884                                                               Indirect, Loc,
2885                                                               Loc,
2886                                                               MemberInit.get(),
2887                                                               Loc);
2888    else
2889      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2890                                                               Field, Loc, Loc,
2891                                                               MemberInit.get(),
2892                                                               Loc);
2893    return false;
2894  }
2895
2896  if (!Field->getParent()->isUnion()) {
2897    if (FieldBaseElementType->isReferenceType()) {
2898      SemaRef.Diag(Constructor->getLocation(),
2899                   diag::err_uninitialized_member_in_ctor)
2900      << (int)Constructor->isImplicit()
2901      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2902      << 0 << Field->getDeclName();
2903      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2904      return true;
2905    }
2906
2907    if (FieldBaseElementType.isConstQualified()) {
2908      SemaRef.Diag(Constructor->getLocation(),
2909                   diag::err_uninitialized_member_in_ctor)
2910      << (int)Constructor->isImplicit()
2911      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2912      << 1 << Field->getDeclName();
2913      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2914      return true;
2915    }
2916  }
2917
2918  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2919      FieldBaseElementType->isObjCRetainableType() &&
2920      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2921      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2922    // ARC:
2923    //   Default-initialize Objective-C pointers to NULL.
2924    CXXMemberInit
2925      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2926                                                 Loc, Loc,
2927                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2928                                                 Loc);
2929    return false;
2930  }
2931
2932  // Nothing to initialize.
2933  CXXMemberInit = 0;
2934  return false;
2935}
2936
2937namespace {
2938struct BaseAndFieldInfo {
2939  Sema &S;
2940  CXXConstructorDecl *Ctor;
2941  bool AnyErrorsInInits;
2942  ImplicitInitializerKind IIK;
2943  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2944  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2945
2946  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2947    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2948    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2949    if (Generated && Ctor->isCopyConstructor())
2950      IIK = IIK_Copy;
2951    else if (Generated && Ctor->isMoveConstructor())
2952      IIK = IIK_Move;
2953    else
2954      IIK = IIK_Default;
2955  }
2956
2957  bool isImplicitCopyOrMove() const {
2958    switch (IIK) {
2959    case IIK_Copy:
2960    case IIK_Move:
2961      return true;
2962
2963    case IIK_Default:
2964      return false;
2965    }
2966
2967    llvm_unreachable("Invalid ImplicitInitializerKind!");
2968  }
2969
2970  bool addFieldInitializer(CXXCtorInitializer *Init) {
2971    AllToInit.push_back(Init);
2972
2973    // Check whether this initializer makes the field "used".
2974    if (Init->getInit() && Init->getInit()->HasSideEffects(S.Context))
2975      S.UnusedPrivateFields.remove(Init->getAnyMember());
2976
2977    return false;
2978  }
2979};
2980}
2981
2982/// \brief Determine whether the given indirect field declaration is somewhere
2983/// within an anonymous union.
2984static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2985  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2986                                      CEnd = F->chain_end();
2987       C != CEnd; ++C)
2988    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2989      if (Record->isUnion())
2990        return true;
2991
2992  return false;
2993}
2994
2995/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2996/// array type.
2997static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2998  if (T->isIncompleteArrayType())
2999    return true;
3000
3001  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3002    if (!ArrayT->getSize())
3003      return true;
3004
3005    T = ArrayT->getElementType();
3006  }
3007
3008  return false;
3009}
3010
3011static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3012                                    FieldDecl *Field,
3013                                    IndirectFieldDecl *Indirect = 0) {
3014
3015  // Overwhelmingly common case: we have a direct initializer for this field.
3016  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3017    return Info.addFieldInitializer(Init);
3018
3019  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3020  // has a brace-or-equal-initializer, the entity is initialized as specified
3021  // in [dcl.init].
3022  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3023    CXXCtorInitializer *Init;
3024    if (Indirect)
3025      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3026                                                      SourceLocation(),
3027                                                      SourceLocation(), 0,
3028                                                      SourceLocation());
3029    else
3030      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3031                                                      SourceLocation(),
3032                                                      SourceLocation(), 0,
3033                                                      SourceLocation());
3034    return Info.addFieldInitializer(Init);
3035  }
3036
3037  // Don't build an implicit initializer for union members if none was
3038  // explicitly specified.
3039  if (Field->getParent()->isUnion() ||
3040      (Indirect && isWithinAnonymousUnion(Indirect)))
3041    return false;
3042
3043  // Don't initialize incomplete or zero-length arrays.
3044  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3045    return false;
3046
3047  // Don't try to build an implicit initializer if there were semantic
3048  // errors in any of the initializers (and therefore we might be
3049  // missing some that the user actually wrote).
3050  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
3051    return false;
3052
3053  CXXCtorInitializer *Init = 0;
3054  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3055                                     Indirect, Init))
3056    return true;
3057
3058  if (!Init)
3059    return false;
3060
3061  return Info.addFieldInitializer(Init);
3062}
3063
3064bool
3065Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3066                               CXXCtorInitializer *Initializer) {
3067  assert(Initializer->isDelegatingInitializer());
3068  Constructor->setNumCtorInitializers(1);
3069  CXXCtorInitializer **initializer =
3070    new (Context) CXXCtorInitializer*[1];
3071  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3072  Constructor->setCtorInitializers(initializer);
3073
3074  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3075    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3076    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3077  }
3078
3079  DelegatingCtorDecls.push_back(Constructor);
3080
3081  return false;
3082}
3083
3084bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
3085                               CXXCtorInitializer **Initializers,
3086                               unsigned NumInitializers,
3087                               bool AnyErrors) {
3088  if (Constructor->isDependentContext()) {
3089    // Just store the initializers as written, they will be checked during
3090    // instantiation.
3091    if (NumInitializers > 0) {
3092      Constructor->setNumCtorInitializers(NumInitializers);
3093      CXXCtorInitializer **baseOrMemberInitializers =
3094        new (Context) CXXCtorInitializer*[NumInitializers];
3095      memcpy(baseOrMemberInitializers, Initializers,
3096             NumInitializers * sizeof(CXXCtorInitializer*));
3097      Constructor->setCtorInitializers(baseOrMemberInitializers);
3098    }
3099
3100    // Let template instantiation know whether we had errors.
3101    if (AnyErrors)
3102      Constructor->setInvalidDecl();
3103
3104    return false;
3105  }
3106
3107  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3108
3109  // We need to build the initializer AST according to order of construction
3110  // and not what user specified in the Initializers list.
3111  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3112  if (!ClassDecl)
3113    return true;
3114
3115  bool HadError = false;
3116
3117  for (unsigned i = 0; i < NumInitializers; i++) {
3118    CXXCtorInitializer *Member = Initializers[i];
3119
3120    if (Member->isBaseInitializer())
3121      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3122    else
3123      Info.AllBaseFields[Member->getAnyMember()] = Member;
3124  }
3125
3126  // Keep track of the direct virtual bases.
3127  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3128  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3129       E = ClassDecl->bases_end(); I != E; ++I) {
3130    if (I->isVirtual())
3131      DirectVBases.insert(I);
3132  }
3133
3134  // Push virtual bases before others.
3135  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3136       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3137
3138    if (CXXCtorInitializer *Value
3139        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3140      Info.AllToInit.push_back(Value);
3141    } else if (!AnyErrors) {
3142      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3143      CXXCtorInitializer *CXXBaseInit;
3144      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3145                                       VBase, IsInheritedVirtualBase,
3146                                       CXXBaseInit)) {
3147        HadError = true;
3148        continue;
3149      }
3150
3151      Info.AllToInit.push_back(CXXBaseInit);
3152    }
3153  }
3154
3155  // Non-virtual bases.
3156  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3157       E = ClassDecl->bases_end(); Base != E; ++Base) {
3158    // Virtuals are in the virtual base list and already constructed.
3159    if (Base->isVirtual())
3160      continue;
3161
3162    if (CXXCtorInitializer *Value
3163          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3164      Info.AllToInit.push_back(Value);
3165    } else if (!AnyErrors) {
3166      CXXCtorInitializer *CXXBaseInit;
3167      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3168                                       Base, /*IsInheritedVirtualBase=*/false,
3169                                       CXXBaseInit)) {
3170        HadError = true;
3171        continue;
3172      }
3173
3174      Info.AllToInit.push_back(CXXBaseInit);
3175    }
3176  }
3177
3178  // Fields.
3179  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3180                               MemEnd = ClassDecl->decls_end();
3181       Mem != MemEnd; ++Mem) {
3182    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3183      // C++ [class.bit]p2:
3184      //   A declaration for a bit-field that omits the identifier declares an
3185      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3186      //   initialized.
3187      if (F->isUnnamedBitfield())
3188        continue;
3189
3190      // If we're not generating the implicit copy/move constructor, then we'll
3191      // handle anonymous struct/union fields based on their individual
3192      // indirect fields.
3193      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
3194        continue;
3195
3196      if (CollectFieldInitializer(*this, Info, F))
3197        HadError = true;
3198      continue;
3199    }
3200
3201    // Beyond this point, we only consider default initialization.
3202    if (Info.IIK != IIK_Default)
3203      continue;
3204
3205    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3206      if (F->getType()->isIncompleteArrayType()) {
3207        assert(ClassDecl->hasFlexibleArrayMember() &&
3208               "Incomplete array type is not valid");
3209        continue;
3210      }
3211
3212      // Initialize each field of an anonymous struct individually.
3213      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3214        HadError = true;
3215
3216      continue;
3217    }
3218  }
3219
3220  NumInitializers = Info.AllToInit.size();
3221  if (NumInitializers > 0) {
3222    Constructor->setNumCtorInitializers(NumInitializers);
3223    CXXCtorInitializer **baseOrMemberInitializers =
3224      new (Context) CXXCtorInitializer*[NumInitializers];
3225    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3226           NumInitializers * sizeof(CXXCtorInitializer*));
3227    Constructor->setCtorInitializers(baseOrMemberInitializers);
3228
3229    // Constructors implicitly reference the base and member
3230    // destructors.
3231    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3232                                           Constructor->getParent());
3233  }
3234
3235  return HadError;
3236}
3237
3238static void *GetKeyForTopLevelField(FieldDecl *Field) {
3239  // For anonymous unions, use the class declaration as the key.
3240  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3241    if (RT->getDecl()->isAnonymousStructOrUnion())
3242      return static_cast<void *>(RT->getDecl());
3243  }
3244  return static_cast<void *>(Field);
3245}
3246
3247static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3248  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3249}
3250
3251static void *GetKeyForMember(ASTContext &Context,
3252                             CXXCtorInitializer *Member) {
3253  if (!Member->isAnyMemberInitializer())
3254    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3255
3256  // For fields injected into the class via declaration of an anonymous union,
3257  // use its anonymous union class declaration as the unique key.
3258  FieldDecl *Field = Member->getAnyMember();
3259
3260  // If the field is a member of an anonymous struct or union, our key
3261  // is the anonymous record decl that's a direct child of the class.
3262  RecordDecl *RD = Field->getParent();
3263  if (RD->isAnonymousStructOrUnion()) {
3264    while (true) {
3265      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3266      if (Parent->isAnonymousStructOrUnion())
3267        RD = Parent;
3268      else
3269        break;
3270    }
3271
3272    return static_cast<void *>(RD);
3273  }
3274
3275  return static_cast<void *>(Field);
3276}
3277
3278static void
3279DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3280                                  const CXXConstructorDecl *Constructor,
3281                                  CXXCtorInitializer **Inits,
3282                                  unsigned NumInits) {
3283  if (Constructor->getDeclContext()->isDependentContext())
3284    return;
3285
3286  // Don't check initializers order unless the warning is enabled at the
3287  // location of at least one initializer.
3288  bool ShouldCheckOrder = false;
3289  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3290    CXXCtorInitializer *Init = Inits[InitIndex];
3291    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3292                                         Init->getSourceLocation())
3293          != DiagnosticsEngine::Ignored) {
3294      ShouldCheckOrder = true;
3295      break;
3296    }
3297  }
3298  if (!ShouldCheckOrder)
3299    return;
3300
3301  // Build the list of bases and members in the order that they'll
3302  // actually be initialized.  The explicit initializers should be in
3303  // this same order but may be missing things.
3304  SmallVector<const void*, 32> IdealInitKeys;
3305
3306  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3307
3308  // 1. Virtual bases.
3309  for (CXXRecordDecl::base_class_const_iterator VBase =
3310       ClassDecl->vbases_begin(),
3311       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3312    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3313
3314  // 2. Non-virtual bases.
3315  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3316       E = ClassDecl->bases_end(); Base != E; ++Base) {
3317    if (Base->isVirtual())
3318      continue;
3319    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3320  }
3321
3322  // 3. Direct fields.
3323  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3324       E = ClassDecl->field_end(); Field != E; ++Field) {
3325    if (Field->isUnnamedBitfield())
3326      continue;
3327
3328    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3329  }
3330
3331  unsigned NumIdealInits = IdealInitKeys.size();
3332  unsigned IdealIndex = 0;
3333
3334  CXXCtorInitializer *PrevInit = 0;
3335  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3336    CXXCtorInitializer *Init = Inits[InitIndex];
3337    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3338
3339    // Scan forward to try to find this initializer in the idealized
3340    // initializers list.
3341    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3342      if (InitKey == IdealInitKeys[IdealIndex])
3343        break;
3344
3345    // If we didn't find this initializer, it must be because we
3346    // scanned past it on a previous iteration.  That can only
3347    // happen if we're out of order;  emit a warning.
3348    if (IdealIndex == NumIdealInits && PrevInit) {
3349      Sema::SemaDiagnosticBuilder D =
3350        SemaRef.Diag(PrevInit->getSourceLocation(),
3351                     diag::warn_initializer_out_of_order);
3352
3353      if (PrevInit->isAnyMemberInitializer())
3354        D << 0 << PrevInit->getAnyMember()->getDeclName();
3355      else
3356        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3357
3358      if (Init->isAnyMemberInitializer())
3359        D << 0 << Init->getAnyMember()->getDeclName();
3360      else
3361        D << 1 << Init->getTypeSourceInfo()->getType();
3362
3363      // Move back to the initializer's location in the ideal list.
3364      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3365        if (InitKey == IdealInitKeys[IdealIndex])
3366          break;
3367
3368      assert(IdealIndex != NumIdealInits &&
3369             "initializer not found in initializer list");
3370    }
3371
3372    PrevInit = Init;
3373  }
3374}
3375
3376namespace {
3377bool CheckRedundantInit(Sema &S,
3378                        CXXCtorInitializer *Init,
3379                        CXXCtorInitializer *&PrevInit) {
3380  if (!PrevInit) {
3381    PrevInit = Init;
3382    return false;
3383  }
3384
3385  if (FieldDecl *Field = Init->getMember())
3386    S.Diag(Init->getSourceLocation(),
3387           diag::err_multiple_mem_initialization)
3388      << Field->getDeclName()
3389      << Init->getSourceRange();
3390  else {
3391    const Type *BaseClass = Init->getBaseClass();
3392    assert(BaseClass && "neither field nor base");
3393    S.Diag(Init->getSourceLocation(),
3394           diag::err_multiple_base_initialization)
3395      << QualType(BaseClass, 0)
3396      << Init->getSourceRange();
3397  }
3398  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3399    << 0 << PrevInit->getSourceRange();
3400
3401  return true;
3402}
3403
3404typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3405typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3406
3407bool CheckRedundantUnionInit(Sema &S,
3408                             CXXCtorInitializer *Init,
3409                             RedundantUnionMap &Unions) {
3410  FieldDecl *Field = Init->getAnyMember();
3411  RecordDecl *Parent = Field->getParent();
3412  NamedDecl *Child = Field;
3413
3414  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3415    if (Parent->isUnion()) {
3416      UnionEntry &En = Unions[Parent];
3417      if (En.first && En.first != Child) {
3418        S.Diag(Init->getSourceLocation(),
3419               diag::err_multiple_mem_union_initialization)
3420          << Field->getDeclName()
3421          << Init->getSourceRange();
3422        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3423          << 0 << En.second->getSourceRange();
3424        return true;
3425      }
3426      if (!En.first) {
3427        En.first = Child;
3428        En.second = Init;
3429      }
3430      if (!Parent->isAnonymousStructOrUnion())
3431        return false;
3432    }
3433
3434    Child = Parent;
3435    Parent = cast<RecordDecl>(Parent->getDeclContext());
3436  }
3437
3438  return false;
3439}
3440}
3441
3442/// ActOnMemInitializers - Handle the member initializers for a constructor.
3443void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3444                                SourceLocation ColonLoc,
3445                                CXXCtorInitializer **meminits,
3446                                unsigned NumMemInits,
3447                                bool AnyErrors) {
3448  if (!ConstructorDecl)
3449    return;
3450
3451  AdjustDeclIfTemplate(ConstructorDecl);
3452
3453  CXXConstructorDecl *Constructor
3454    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3455
3456  if (!Constructor) {
3457    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3458    return;
3459  }
3460
3461  CXXCtorInitializer **MemInits =
3462    reinterpret_cast<CXXCtorInitializer **>(meminits);
3463
3464  // Mapping for the duplicate initializers check.
3465  // For member initializers, this is keyed with a FieldDecl*.
3466  // For base initializers, this is keyed with a Type*.
3467  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3468
3469  // Mapping for the inconsistent anonymous-union initializers check.
3470  RedundantUnionMap MemberUnions;
3471
3472  bool HadError = false;
3473  for (unsigned i = 0; i < NumMemInits; i++) {
3474    CXXCtorInitializer *Init = MemInits[i];
3475
3476    // Set the source order index.
3477    Init->setSourceOrder(i);
3478
3479    if (Init->isAnyMemberInitializer()) {
3480      FieldDecl *Field = Init->getAnyMember();
3481      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3482          CheckRedundantUnionInit(*this, Init, MemberUnions))
3483        HadError = true;
3484    } else if (Init->isBaseInitializer()) {
3485      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3486      if (CheckRedundantInit(*this, Init, Members[Key]))
3487        HadError = true;
3488    } else {
3489      assert(Init->isDelegatingInitializer());
3490      // This must be the only initializer
3491      if (NumMemInits != 1) {
3492        Diag(Init->getSourceLocation(),
3493             diag::err_delegating_initializer_alone)
3494          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3495        // We will treat this as being the only initializer.
3496      }
3497      SetDelegatingInitializer(Constructor, MemInits[i]);
3498      // Return immediately as the initializer is set.
3499      return;
3500    }
3501  }
3502
3503  if (HadError)
3504    return;
3505
3506  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3507
3508  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3509}
3510
3511void
3512Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3513                                             CXXRecordDecl *ClassDecl) {
3514  // Ignore dependent contexts. Also ignore unions, since their members never
3515  // have destructors implicitly called.
3516  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3517    return;
3518
3519  // FIXME: all the access-control diagnostics are positioned on the
3520  // field/base declaration.  That's probably good; that said, the
3521  // user might reasonably want to know why the destructor is being
3522  // emitted, and we currently don't say.
3523
3524  // Non-static data members.
3525  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3526       E = ClassDecl->field_end(); I != E; ++I) {
3527    FieldDecl *Field = *I;
3528    if (Field->isInvalidDecl())
3529      continue;
3530
3531    // Don't destroy incomplete or zero-length arrays.
3532    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3533      continue;
3534
3535    QualType FieldType = Context.getBaseElementType(Field->getType());
3536
3537    const RecordType* RT = FieldType->getAs<RecordType>();
3538    if (!RT)
3539      continue;
3540
3541    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3542    if (FieldClassDecl->isInvalidDecl())
3543      continue;
3544    if (FieldClassDecl->hasIrrelevantDestructor())
3545      continue;
3546    // The destructor for an implicit anonymous union member is never invoked.
3547    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3548      continue;
3549
3550    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3551    assert(Dtor && "No dtor found for FieldClassDecl!");
3552    CheckDestructorAccess(Field->getLocation(), Dtor,
3553                          PDiag(diag::err_access_dtor_field)
3554                            << Field->getDeclName()
3555                            << FieldType);
3556
3557    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3558    DiagnoseUseOfDecl(Dtor, Location);
3559  }
3560
3561  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3562
3563  // Bases.
3564  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3565       E = ClassDecl->bases_end(); Base != E; ++Base) {
3566    // Bases are always records in a well-formed non-dependent class.
3567    const RecordType *RT = Base->getType()->getAs<RecordType>();
3568
3569    // Remember direct virtual bases.
3570    if (Base->isVirtual())
3571      DirectVirtualBases.insert(RT);
3572
3573    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3574    // If our base class is invalid, we probably can't get its dtor anyway.
3575    if (BaseClassDecl->isInvalidDecl())
3576      continue;
3577    if (BaseClassDecl->hasIrrelevantDestructor())
3578      continue;
3579
3580    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3581    assert(Dtor && "No dtor found for BaseClassDecl!");
3582
3583    // FIXME: caret should be on the start of the class name
3584    CheckDestructorAccess(Base->getLocStart(), Dtor,
3585                          PDiag(diag::err_access_dtor_base)
3586                            << Base->getType()
3587                            << Base->getSourceRange(),
3588                          Context.getTypeDeclType(ClassDecl));
3589
3590    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3591    DiagnoseUseOfDecl(Dtor, Location);
3592  }
3593
3594  // Virtual bases.
3595  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3596       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3597
3598    // Bases are always records in a well-formed non-dependent class.
3599    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3600
3601    // Ignore direct virtual bases.
3602    if (DirectVirtualBases.count(RT))
3603      continue;
3604
3605    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3606    // If our base class is invalid, we probably can't get its dtor anyway.
3607    if (BaseClassDecl->isInvalidDecl())
3608      continue;
3609    if (BaseClassDecl->hasIrrelevantDestructor())
3610      continue;
3611
3612    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3613    assert(Dtor && "No dtor found for BaseClassDecl!");
3614    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3615                          PDiag(diag::err_access_dtor_vbase)
3616                            << VBase->getType(),
3617                          Context.getTypeDeclType(ClassDecl));
3618
3619    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3620    DiagnoseUseOfDecl(Dtor, Location);
3621  }
3622}
3623
3624void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3625  if (!CDtorDecl)
3626    return;
3627
3628  if (CXXConstructorDecl *Constructor
3629      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3630    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3631}
3632
3633bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3634                                  unsigned DiagID, AbstractDiagSelID SelID) {
3635  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3636    unsigned DiagID;
3637    AbstractDiagSelID SelID;
3638
3639  public:
3640    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3641      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3642
3643    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3644      if (Suppressed) return;
3645      if (SelID == -1)
3646        S.Diag(Loc, DiagID) << T;
3647      else
3648        S.Diag(Loc, DiagID) << SelID << T;
3649    }
3650  } Diagnoser(DiagID, SelID);
3651
3652  return RequireNonAbstractType(Loc, T, Diagnoser);
3653}
3654
3655bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3656                                  TypeDiagnoser &Diagnoser) {
3657  if (!getLangOpts().CPlusPlus)
3658    return false;
3659
3660  if (const ArrayType *AT = Context.getAsArrayType(T))
3661    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3662
3663  if (const PointerType *PT = T->getAs<PointerType>()) {
3664    // Find the innermost pointer type.
3665    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3666      PT = T;
3667
3668    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3669      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3670  }
3671
3672  const RecordType *RT = T->getAs<RecordType>();
3673  if (!RT)
3674    return false;
3675
3676  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3677
3678  // We can't answer whether something is abstract until it has a
3679  // definition.  If it's currently being defined, we'll walk back
3680  // over all the declarations when we have a full definition.
3681  const CXXRecordDecl *Def = RD->getDefinition();
3682  if (!Def || Def->isBeingDefined())
3683    return false;
3684
3685  if (!RD->isAbstract())
3686    return false;
3687
3688  Diagnoser.diagnose(*this, Loc, T);
3689  DiagnoseAbstractType(RD);
3690
3691  return true;
3692}
3693
3694void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3695  // Check if we've already emitted the list of pure virtual functions
3696  // for this class.
3697  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3698    return;
3699
3700  CXXFinalOverriderMap FinalOverriders;
3701  RD->getFinalOverriders(FinalOverriders);
3702
3703  // Keep a set of seen pure methods so we won't diagnose the same method
3704  // more than once.
3705  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3706
3707  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3708                                   MEnd = FinalOverriders.end();
3709       M != MEnd;
3710       ++M) {
3711    for (OverridingMethods::iterator SO = M->second.begin(),
3712                                  SOEnd = M->second.end();
3713         SO != SOEnd; ++SO) {
3714      // C++ [class.abstract]p4:
3715      //   A class is abstract if it contains or inherits at least one
3716      //   pure virtual function for which the final overrider is pure
3717      //   virtual.
3718
3719      //
3720      if (SO->second.size() != 1)
3721        continue;
3722
3723      if (!SO->second.front().Method->isPure())
3724        continue;
3725
3726      if (!SeenPureMethods.insert(SO->second.front().Method))
3727        continue;
3728
3729      Diag(SO->second.front().Method->getLocation(),
3730           diag::note_pure_virtual_function)
3731        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3732    }
3733  }
3734
3735  if (!PureVirtualClassDiagSet)
3736    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3737  PureVirtualClassDiagSet->insert(RD);
3738}
3739
3740namespace {
3741struct AbstractUsageInfo {
3742  Sema &S;
3743  CXXRecordDecl *Record;
3744  CanQualType AbstractType;
3745  bool Invalid;
3746
3747  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3748    : S(S), Record(Record),
3749      AbstractType(S.Context.getCanonicalType(
3750                   S.Context.getTypeDeclType(Record))),
3751      Invalid(false) {}
3752
3753  void DiagnoseAbstractType() {
3754    if (Invalid) return;
3755    S.DiagnoseAbstractType(Record);
3756    Invalid = true;
3757  }
3758
3759  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3760};
3761
3762struct CheckAbstractUsage {
3763  AbstractUsageInfo &Info;
3764  const NamedDecl *Ctx;
3765
3766  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3767    : Info(Info), Ctx(Ctx) {}
3768
3769  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3770    switch (TL.getTypeLocClass()) {
3771#define ABSTRACT_TYPELOC(CLASS, PARENT)
3772#define TYPELOC(CLASS, PARENT) \
3773    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3774#include "clang/AST/TypeLocNodes.def"
3775    }
3776  }
3777
3778  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3779    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3780    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3781      if (!TL.getArg(I))
3782        continue;
3783
3784      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3785      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3786    }
3787  }
3788
3789  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3790    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3791  }
3792
3793  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3794    // Visit the type parameters from a permissive context.
3795    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3796      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3797      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3798        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3799          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3800      // TODO: other template argument types?
3801    }
3802  }
3803
3804  // Visit pointee types from a permissive context.
3805#define CheckPolymorphic(Type) \
3806  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3807    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3808  }
3809  CheckPolymorphic(PointerTypeLoc)
3810  CheckPolymorphic(ReferenceTypeLoc)
3811  CheckPolymorphic(MemberPointerTypeLoc)
3812  CheckPolymorphic(BlockPointerTypeLoc)
3813  CheckPolymorphic(AtomicTypeLoc)
3814
3815  /// Handle all the types we haven't given a more specific
3816  /// implementation for above.
3817  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3818    // Every other kind of type that we haven't called out already
3819    // that has an inner type is either (1) sugar or (2) contains that
3820    // inner type in some way as a subobject.
3821    if (TypeLoc Next = TL.getNextTypeLoc())
3822      return Visit(Next, Sel);
3823
3824    // If there's no inner type and we're in a permissive context,
3825    // don't diagnose.
3826    if (Sel == Sema::AbstractNone) return;
3827
3828    // Check whether the type matches the abstract type.
3829    QualType T = TL.getType();
3830    if (T->isArrayType()) {
3831      Sel = Sema::AbstractArrayType;
3832      T = Info.S.Context.getBaseElementType(T);
3833    }
3834    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3835    if (CT != Info.AbstractType) return;
3836
3837    // It matched; do some magic.
3838    if (Sel == Sema::AbstractArrayType) {
3839      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3840        << T << TL.getSourceRange();
3841    } else {
3842      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3843        << Sel << T << TL.getSourceRange();
3844    }
3845    Info.DiagnoseAbstractType();
3846  }
3847};
3848
3849void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3850                                  Sema::AbstractDiagSelID Sel) {
3851  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3852}
3853
3854}
3855
3856/// Check for invalid uses of an abstract type in a method declaration.
3857static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3858                                    CXXMethodDecl *MD) {
3859  // No need to do the check on definitions, which require that
3860  // the return/param types be complete.
3861  if (MD->doesThisDeclarationHaveABody())
3862    return;
3863
3864  // For safety's sake, just ignore it if we don't have type source
3865  // information.  This should never happen for non-implicit methods,
3866  // but...
3867  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3868    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3869}
3870
3871/// Check for invalid uses of an abstract type within a class definition.
3872static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3873                                    CXXRecordDecl *RD) {
3874  for (CXXRecordDecl::decl_iterator
3875         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3876    Decl *D = *I;
3877    if (D->isImplicit()) continue;
3878
3879    // Methods and method templates.
3880    if (isa<CXXMethodDecl>(D)) {
3881      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3882    } else if (isa<FunctionTemplateDecl>(D)) {
3883      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3884      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3885
3886    // Fields and static variables.
3887    } else if (isa<FieldDecl>(D)) {
3888      FieldDecl *FD = cast<FieldDecl>(D);
3889      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3890        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3891    } else if (isa<VarDecl>(D)) {
3892      VarDecl *VD = cast<VarDecl>(D);
3893      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3894        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3895
3896    // Nested classes and class templates.
3897    } else if (isa<CXXRecordDecl>(D)) {
3898      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3899    } else if (isa<ClassTemplateDecl>(D)) {
3900      CheckAbstractClassUsage(Info,
3901                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3902    }
3903  }
3904}
3905
3906/// \brief Perform semantic checks on a class definition that has been
3907/// completing, introducing implicitly-declared members, checking for
3908/// abstract types, etc.
3909void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3910  if (!Record)
3911    return;
3912
3913  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3914    AbstractUsageInfo Info(*this, Record);
3915    CheckAbstractClassUsage(Info, Record);
3916  }
3917
3918  // If this is not an aggregate type and has no user-declared constructor,
3919  // complain about any non-static data members of reference or const scalar
3920  // type, since they will never get initializers.
3921  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3922      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3923      !Record->isLambda()) {
3924    bool Complained = false;
3925    for (RecordDecl::field_iterator F = Record->field_begin(),
3926                                 FEnd = Record->field_end();
3927         F != FEnd; ++F) {
3928      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3929        continue;
3930
3931      if (F->getType()->isReferenceType() ||
3932          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3933        if (!Complained) {
3934          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3935            << Record->getTagKind() << Record;
3936          Complained = true;
3937        }
3938
3939        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3940          << F->getType()->isReferenceType()
3941          << F->getDeclName();
3942      }
3943    }
3944  }
3945
3946  if (Record->isDynamicClass() && !Record->isDependentType())
3947    DynamicClasses.push_back(Record);
3948
3949  if (Record->getIdentifier()) {
3950    // C++ [class.mem]p13:
3951    //   If T is the name of a class, then each of the following shall have a
3952    //   name different from T:
3953    //     - every member of every anonymous union that is a member of class T.
3954    //
3955    // C++ [class.mem]p14:
3956    //   In addition, if class T has a user-declared constructor (12.1), every
3957    //   non-static data member of class T shall have a name different from T.
3958    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3959         R.first != R.second; ++R.first) {
3960      NamedDecl *D = *R.first;
3961      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3962          isa<IndirectFieldDecl>(D)) {
3963        Diag(D->getLocation(), diag::err_member_name_of_class)
3964          << D->getDeclName();
3965        break;
3966      }
3967    }
3968  }
3969
3970  // Warn if the class has virtual methods but non-virtual public destructor.
3971  if (Record->isPolymorphic() && !Record->isDependentType()) {
3972    CXXDestructorDecl *dtor = Record->getDestructor();
3973    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3974      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3975           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3976  }
3977
3978  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
3979    Diag(Record->getLocation(), diag::warn_abstract_final_class);
3980    DiagnoseAbstractType(Record);
3981  }
3982
3983  // See if a method overloads virtual methods in a base
3984  /// class without overriding any.
3985  if (!Record->isDependentType()) {
3986    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3987                                     MEnd = Record->method_end();
3988         M != MEnd; ++M) {
3989      if (!M->isStatic())
3990        DiagnoseHiddenVirtualMethods(Record, *M);
3991    }
3992  }
3993
3994  // Declare inherited constructors. We do this eagerly here because:
3995  // - The standard requires an eager diagnostic for conflicting inherited
3996  //   constructors from different classes.
3997  // - The lazy declaration of the other implicit constructors is so as to not
3998  //   waste space and performance on classes that are not meant to be
3999  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4000  //   have inherited constructors.
4001  DeclareInheritedConstructors(Record);
4002}
4003
4004void Sema::CheckExplicitlyDefaultedAndDeletedMethods(CXXRecordDecl *Record) {
4005  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
4006                                      ME = Record->method_end();
4007       MI != ME; ++MI) {
4008    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted())
4009      CheckExplicitlyDefaultedSpecialMember(*MI);
4010
4011    if (!MI->isImplicit() && !MI->isUserProvided()) {
4012      // For an explicitly defaulted or deleted special member, we defer
4013      // determining triviality until the class is complete. That time is now!
4014      CXXSpecialMember CSM = getSpecialMember(*MI);
4015      if (CSM != CXXInvalid) {
4016        MI->setTrivial(SpecialMemberIsTrivial(*MI, CSM));
4017
4018        // Inform the class that we've finished declaring this member.
4019        Record->finishedDefaultedOrDeletedMember(*MI);
4020      }
4021    }
4022  }
4023}
4024
4025/// Is the special member function which would be selected to perform the
4026/// specified operation on the specified class type a constexpr constructor?
4027static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4028                                     Sema::CXXSpecialMember CSM,
4029                                     bool ConstArg) {
4030  Sema::SpecialMemberOverloadResult *SMOR =
4031      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4032                            false, false, false, false);
4033  if (!SMOR || !SMOR->getMethod())
4034    // A constructor we wouldn't select can't be "involved in initializing"
4035    // anything.
4036    return true;
4037  return SMOR->getMethod()->isConstexpr();
4038}
4039
4040/// Determine whether the specified special member function would be constexpr
4041/// if it were implicitly defined.
4042static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4043                                              Sema::CXXSpecialMember CSM,
4044                                              bool ConstArg) {
4045  if (!S.getLangOpts().CPlusPlus0x)
4046    return false;
4047
4048  // C++11 [dcl.constexpr]p4:
4049  // In the definition of a constexpr constructor [...]
4050  switch (CSM) {
4051  case Sema::CXXDefaultConstructor:
4052    // Since default constructor lookup is essentially trivial (and cannot
4053    // involve, for instance, template instantiation), we compute whether a
4054    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4055    //
4056    // This is important for performance; we need to know whether the default
4057    // constructor is constexpr to determine whether the type is a literal type.
4058    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4059
4060  case Sema::CXXCopyConstructor:
4061  case Sema::CXXMoveConstructor:
4062    // For copy or move constructors, we need to perform overload resolution.
4063    break;
4064
4065  case Sema::CXXCopyAssignment:
4066  case Sema::CXXMoveAssignment:
4067  case Sema::CXXDestructor:
4068  case Sema::CXXInvalid:
4069    return false;
4070  }
4071
4072  //   -- if the class is a non-empty union, or for each non-empty anonymous
4073  //      union member of a non-union class, exactly one non-static data member
4074  //      shall be initialized; [DR1359]
4075  //
4076  // If we squint, this is guaranteed, since exactly one non-static data member
4077  // will be initialized (if the constructor isn't deleted), we just don't know
4078  // which one.
4079  if (ClassDecl->isUnion())
4080    return true;
4081
4082  //   -- the class shall not have any virtual base classes;
4083  if (ClassDecl->getNumVBases())
4084    return false;
4085
4086  //   -- every constructor involved in initializing [...] base class
4087  //      sub-objects shall be a constexpr constructor;
4088  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4089                                       BEnd = ClassDecl->bases_end();
4090       B != BEnd; ++B) {
4091    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4092    if (!BaseType) continue;
4093
4094    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4095    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4096      return false;
4097  }
4098
4099  //   -- every constructor involved in initializing non-static data members
4100  //      [...] shall be a constexpr constructor;
4101  //   -- every non-static data member and base class sub-object shall be
4102  //      initialized
4103  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4104                               FEnd = ClassDecl->field_end();
4105       F != FEnd; ++F) {
4106    if (F->isInvalidDecl())
4107      continue;
4108    if (const RecordType *RecordTy =
4109            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4110      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4111      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4112        return false;
4113    }
4114  }
4115
4116  // All OK, it's constexpr!
4117  return true;
4118}
4119
4120static Sema::ImplicitExceptionSpecification
4121computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4122  switch (S.getSpecialMember(MD)) {
4123  case Sema::CXXDefaultConstructor:
4124    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4125  case Sema::CXXCopyConstructor:
4126    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4127  case Sema::CXXCopyAssignment:
4128    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4129  case Sema::CXXMoveConstructor:
4130    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4131  case Sema::CXXMoveAssignment:
4132    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4133  case Sema::CXXDestructor:
4134    return S.ComputeDefaultedDtorExceptionSpec(MD);
4135  case Sema::CXXInvalid:
4136    break;
4137  }
4138  llvm_unreachable("only special members have implicit exception specs");
4139}
4140
4141static void
4142updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4143                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4144  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4145  ExceptSpec.getEPI(EPI);
4146  const FunctionProtoType *NewFPT = cast<FunctionProtoType>(
4147    S.Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
4148                              FPT->getNumArgs(), EPI));
4149  FD->setType(QualType(NewFPT, 0));
4150}
4151
4152void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4153  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4154  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4155    return;
4156
4157  // Evaluate the exception specification.
4158  ImplicitExceptionSpecification ExceptSpec =
4159      computeImplicitExceptionSpec(*this, Loc, MD);
4160
4161  // Update the type of the special member to use it.
4162  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4163
4164  // A user-provided destructor can be defined outside the class. When that
4165  // happens, be sure to update the exception specification on both
4166  // declarations.
4167  const FunctionProtoType *CanonicalFPT =
4168    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4169  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4170    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4171                        CanonicalFPT, ExceptSpec);
4172}
4173
4174void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4175  CXXRecordDecl *RD = MD->getParent();
4176  CXXSpecialMember CSM = getSpecialMember(MD);
4177
4178  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4179         "not an explicitly-defaulted special member");
4180
4181  // Whether this was the first-declared instance of the constructor.
4182  // This affects whether we implicitly add an exception spec and constexpr.
4183  bool First = MD == MD->getCanonicalDecl();
4184
4185  bool HadError = false;
4186
4187  // C++11 [dcl.fct.def.default]p1:
4188  //   A function that is explicitly defaulted shall
4189  //     -- be a special member function (checked elsewhere),
4190  //     -- have the same type (except for ref-qualifiers, and except that a
4191  //        copy operation can take a non-const reference) as an implicit
4192  //        declaration, and
4193  //     -- not have default arguments.
4194  unsigned ExpectedParams = 1;
4195  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4196    ExpectedParams = 0;
4197  if (MD->getNumParams() != ExpectedParams) {
4198    // This also checks for default arguments: a copy or move constructor with a
4199    // default argument is classified as a default constructor, and assignment
4200    // operations and destructors can't have default arguments.
4201    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4202      << CSM << MD->getSourceRange();
4203    HadError = true;
4204  } else if (MD->isVariadic()) {
4205    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4206      << CSM << MD->getSourceRange();
4207    HadError = true;
4208  }
4209
4210  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4211
4212  bool CanHaveConstParam = false;
4213  if (CSM == CXXCopyConstructor)
4214    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4215  else if (CSM == CXXCopyAssignment)
4216    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4217
4218  QualType ReturnType = Context.VoidTy;
4219  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4220    // Check for return type matching.
4221    ReturnType = Type->getResultType();
4222    QualType ExpectedReturnType =
4223        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4224    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4225      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4226        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4227      HadError = true;
4228    }
4229
4230    // A defaulted special member cannot have cv-qualifiers.
4231    if (Type->getTypeQuals()) {
4232      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4233        << (CSM == CXXMoveAssignment);
4234      HadError = true;
4235    }
4236  }
4237
4238  // Check for parameter type matching.
4239  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4240  bool HasConstParam = false;
4241  if (ExpectedParams && ArgType->isReferenceType()) {
4242    // Argument must be reference to possibly-const T.
4243    QualType ReferentType = ArgType->getPointeeType();
4244    HasConstParam = ReferentType.isConstQualified();
4245
4246    if (ReferentType.isVolatileQualified()) {
4247      Diag(MD->getLocation(),
4248           diag::err_defaulted_special_member_volatile_param) << CSM;
4249      HadError = true;
4250    }
4251
4252    if (HasConstParam && !CanHaveConstParam) {
4253      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4254        Diag(MD->getLocation(),
4255             diag::err_defaulted_special_member_copy_const_param)
4256          << (CSM == CXXCopyAssignment);
4257        // FIXME: Explain why this special member can't be const.
4258      } else {
4259        Diag(MD->getLocation(),
4260             diag::err_defaulted_special_member_move_const_param)
4261          << (CSM == CXXMoveAssignment);
4262      }
4263      HadError = true;
4264    }
4265  } else if (ExpectedParams) {
4266    // A copy assignment operator can take its argument by value, but a
4267    // defaulted one cannot.
4268    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4269    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4270    HadError = true;
4271  }
4272
4273  // Rebuild the type with the implicit exception specification added, if we
4274  // are going to need it.
4275  const FunctionProtoType *ImplicitType = 0;
4276  if (First || Type->hasExceptionSpec()) {
4277    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4278    computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4279    ImplicitType = cast<FunctionProtoType>(
4280      Context.getFunctionType(ReturnType, &ArgType, ExpectedParams, EPI));
4281  }
4282
4283  // C++11 [dcl.fct.def.default]p2:
4284  //   An explicitly-defaulted function may be declared constexpr only if it
4285  //   would have been implicitly declared as constexpr,
4286  // Do not apply this rule to members of class templates, since core issue 1358
4287  // makes such functions always instantiate to constexpr functions. For
4288  // non-constructors, this is checked elsewhere.
4289  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4290                                                     HasConstParam);
4291  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4292      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4293    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4294    // FIXME: Explain why the constructor can't be constexpr.
4295    HadError = true;
4296  }
4297  //   and may have an explicit exception-specification only if it is compatible
4298  //   with the exception-specification on the implicit declaration.
4299  if (Type->hasExceptionSpec() &&
4300      CheckEquivalentExceptionSpec(
4301        PDiag(diag::err_incorrect_defaulted_exception_spec) << CSM,
4302        PDiag(), ImplicitType, SourceLocation(), Type, MD->getLocation()))
4303    HadError = true;
4304
4305  //   If a function is explicitly defaulted on its first declaration,
4306  if (First) {
4307    //  -- it is implicitly considered to be constexpr if the implicit
4308    //     definition would be,
4309    MD->setConstexpr(Constexpr);
4310
4311    //  -- it is implicitly considered to have the same exception-specification
4312    //     as if it had been implicitly declared,
4313    MD->setType(QualType(ImplicitType, 0));
4314  }
4315
4316  if (ShouldDeleteSpecialMember(MD, CSM)) {
4317    if (First) {
4318      MD->setDeletedAsWritten();
4319    } else {
4320      // C++11 [dcl.fct.def.default]p4:
4321      //   [For a] user-provided explicitly-defaulted function [...] if such a
4322      //   function is implicitly defined as deleted, the program is ill-formed.
4323      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4324      HadError = true;
4325    }
4326  }
4327
4328  if (HadError)
4329    MD->setInvalidDecl();
4330}
4331
4332namespace {
4333struct SpecialMemberDeletionInfo {
4334  Sema &S;
4335  CXXMethodDecl *MD;
4336  Sema::CXXSpecialMember CSM;
4337  bool Diagnose;
4338
4339  // Properties of the special member, computed for convenience.
4340  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4341  SourceLocation Loc;
4342
4343  bool AllFieldsAreConst;
4344
4345  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4346                            Sema::CXXSpecialMember CSM, bool Diagnose)
4347    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4348      IsConstructor(false), IsAssignment(false), IsMove(false),
4349      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4350      AllFieldsAreConst(true) {
4351    switch (CSM) {
4352      case Sema::CXXDefaultConstructor:
4353      case Sema::CXXCopyConstructor:
4354        IsConstructor = true;
4355        break;
4356      case Sema::CXXMoveConstructor:
4357        IsConstructor = true;
4358        IsMove = true;
4359        break;
4360      case Sema::CXXCopyAssignment:
4361        IsAssignment = true;
4362        break;
4363      case Sema::CXXMoveAssignment:
4364        IsAssignment = true;
4365        IsMove = true;
4366        break;
4367      case Sema::CXXDestructor:
4368        break;
4369      case Sema::CXXInvalid:
4370        llvm_unreachable("invalid special member kind");
4371    }
4372
4373    if (MD->getNumParams()) {
4374      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4375      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4376    }
4377  }
4378
4379  bool inUnion() const { return MD->getParent()->isUnion(); }
4380
4381  /// Look up the corresponding special member in the given class.
4382  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4383                                              unsigned Quals) {
4384    unsigned TQ = MD->getTypeQualifiers();
4385    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4386    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4387      Quals = 0;
4388    return S.LookupSpecialMember(Class, CSM,
4389                                 ConstArg || (Quals & Qualifiers::Const),
4390                                 VolatileArg || (Quals & Qualifiers::Volatile),
4391                                 MD->getRefQualifier() == RQ_RValue,
4392                                 TQ & Qualifiers::Const,
4393                                 TQ & Qualifiers::Volatile);
4394  }
4395
4396  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4397
4398  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4399  bool shouldDeleteForField(FieldDecl *FD);
4400  bool shouldDeleteForAllConstMembers();
4401
4402  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4403                                     unsigned Quals);
4404  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4405                                    Sema::SpecialMemberOverloadResult *SMOR,
4406                                    bool IsDtorCallInCtor);
4407
4408  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4409};
4410}
4411
4412/// Is the given special member inaccessible when used on the given
4413/// sub-object.
4414bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4415                                             CXXMethodDecl *target) {
4416  /// If we're operating on a base class, the object type is the
4417  /// type of this special member.
4418  QualType objectTy;
4419  AccessSpecifier access = target->getAccess();
4420  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4421    objectTy = S.Context.getTypeDeclType(MD->getParent());
4422    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4423
4424  // If we're operating on a field, the object type is the type of the field.
4425  } else {
4426    objectTy = S.Context.getTypeDeclType(target->getParent());
4427  }
4428
4429  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4430}
4431
4432/// Check whether we should delete a special member due to the implicit
4433/// definition containing a call to a special member of a subobject.
4434bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4435    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4436    bool IsDtorCallInCtor) {
4437  CXXMethodDecl *Decl = SMOR->getMethod();
4438  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4439
4440  int DiagKind = -1;
4441
4442  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4443    DiagKind = !Decl ? 0 : 1;
4444  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4445    DiagKind = 2;
4446  else if (!isAccessible(Subobj, Decl))
4447    DiagKind = 3;
4448  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4449           !Decl->isTrivial()) {
4450    // A member of a union must have a trivial corresponding special member.
4451    // As a weird special case, a destructor call from a union's constructor
4452    // must be accessible and non-deleted, but need not be trivial. Such a
4453    // destructor is never actually called, but is semantically checked as
4454    // if it were.
4455    DiagKind = 4;
4456  }
4457
4458  if (DiagKind == -1)
4459    return false;
4460
4461  if (Diagnose) {
4462    if (Field) {
4463      S.Diag(Field->getLocation(),
4464             diag::note_deleted_special_member_class_subobject)
4465        << CSM << MD->getParent() << /*IsField*/true
4466        << Field << DiagKind << IsDtorCallInCtor;
4467    } else {
4468      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4469      S.Diag(Base->getLocStart(),
4470             diag::note_deleted_special_member_class_subobject)
4471        << CSM << MD->getParent() << /*IsField*/false
4472        << Base->getType() << DiagKind << IsDtorCallInCtor;
4473    }
4474
4475    if (DiagKind == 1)
4476      S.NoteDeletedFunction(Decl);
4477    // FIXME: Explain inaccessibility if DiagKind == 3.
4478  }
4479
4480  return true;
4481}
4482
4483/// Check whether we should delete a special member function due to having a
4484/// direct or virtual base class or non-static data member of class type M.
4485bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4486    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4487  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4488
4489  // C++11 [class.ctor]p5:
4490  // -- any direct or virtual base class, or non-static data member with no
4491  //    brace-or-equal-initializer, has class type M (or array thereof) and
4492  //    either M has no default constructor or overload resolution as applied
4493  //    to M's default constructor results in an ambiguity or in a function
4494  //    that is deleted or inaccessible
4495  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4496  // -- a direct or virtual base class B that cannot be copied/moved because
4497  //    overload resolution, as applied to B's corresponding special member,
4498  //    results in an ambiguity or a function that is deleted or inaccessible
4499  //    from the defaulted special member
4500  // C++11 [class.dtor]p5:
4501  // -- any direct or virtual base class [...] has a type with a destructor
4502  //    that is deleted or inaccessible
4503  if (!(CSM == Sema::CXXDefaultConstructor &&
4504        Field && Field->hasInClassInitializer()) &&
4505      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4506    return true;
4507
4508  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4509  // -- any direct or virtual base class or non-static data member has a
4510  //    type with a destructor that is deleted or inaccessible
4511  if (IsConstructor) {
4512    Sema::SpecialMemberOverloadResult *SMOR =
4513        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4514                              false, false, false, false, false);
4515    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4516      return true;
4517  }
4518
4519  return false;
4520}
4521
4522/// Check whether we should delete a special member function due to the class
4523/// having a particular direct or virtual base class.
4524bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4525  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4526  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4527}
4528
4529/// Check whether we should delete a special member function due to the class
4530/// having a particular non-static data member.
4531bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4532  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4533  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4534
4535  if (CSM == Sema::CXXDefaultConstructor) {
4536    // For a default constructor, all references must be initialized in-class
4537    // and, if a union, it must have a non-const member.
4538    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4539      if (Diagnose)
4540        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4541          << MD->getParent() << FD << FieldType << /*Reference*/0;
4542      return true;
4543    }
4544    // C++11 [class.ctor]p5: any non-variant non-static data member of
4545    // const-qualified type (or array thereof) with no
4546    // brace-or-equal-initializer does not have a user-provided default
4547    // constructor.
4548    if (!inUnion() && FieldType.isConstQualified() &&
4549        !FD->hasInClassInitializer() &&
4550        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4551      if (Diagnose)
4552        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4553          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4554      return true;
4555    }
4556
4557    if (inUnion() && !FieldType.isConstQualified())
4558      AllFieldsAreConst = false;
4559  } else if (CSM == Sema::CXXCopyConstructor) {
4560    // For a copy constructor, data members must not be of rvalue reference
4561    // type.
4562    if (FieldType->isRValueReferenceType()) {
4563      if (Diagnose)
4564        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4565          << MD->getParent() << FD << FieldType;
4566      return true;
4567    }
4568  } else if (IsAssignment) {
4569    // For an assignment operator, data members must not be of reference type.
4570    if (FieldType->isReferenceType()) {
4571      if (Diagnose)
4572        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4573          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4574      return true;
4575    }
4576    if (!FieldRecord && FieldType.isConstQualified()) {
4577      // C++11 [class.copy]p23:
4578      // -- a non-static data member of const non-class type (or array thereof)
4579      if (Diagnose)
4580        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4581          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4582      return true;
4583    }
4584  }
4585
4586  if (FieldRecord) {
4587    // Some additional restrictions exist on the variant members.
4588    if (!inUnion() && FieldRecord->isUnion() &&
4589        FieldRecord->isAnonymousStructOrUnion()) {
4590      bool AllVariantFieldsAreConst = true;
4591
4592      // FIXME: Handle anonymous unions declared within anonymous unions.
4593      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4594                                         UE = FieldRecord->field_end();
4595           UI != UE; ++UI) {
4596        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4597
4598        if (!UnionFieldType.isConstQualified())
4599          AllVariantFieldsAreConst = false;
4600
4601        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4602        if (UnionFieldRecord &&
4603            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4604                                          UnionFieldType.getCVRQualifiers()))
4605          return true;
4606      }
4607
4608      // At least one member in each anonymous union must be non-const
4609      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4610          FieldRecord->field_begin() != FieldRecord->field_end()) {
4611        if (Diagnose)
4612          S.Diag(FieldRecord->getLocation(),
4613                 diag::note_deleted_default_ctor_all_const)
4614            << MD->getParent() << /*anonymous union*/1;
4615        return true;
4616      }
4617
4618      // Don't check the implicit member of the anonymous union type.
4619      // This is technically non-conformant, but sanity demands it.
4620      return false;
4621    }
4622
4623    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4624                                      FieldType.getCVRQualifiers()))
4625      return true;
4626  }
4627
4628  return false;
4629}
4630
4631/// C++11 [class.ctor] p5:
4632///   A defaulted default constructor for a class X is defined as deleted if
4633/// X is a union and all of its variant members are of const-qualified type.
4634bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4635  // This is a silly definition, because it gives an empty union a deleted
4636  // default constructor. Don't do that.
4637  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4638      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4639    if (Diagnose)
4640      S.Diag(MD->getParent()->getLocation(),
4641             diag::note_deleted_default_ctor_all_const)
4642        << MD->getParent() << /*not anonymous union*/0;
4643    return true;
4644  }
4645  return false;
4646}
4647
4648/// Determine whether a defaulted special member function should be defined as
4649/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4650/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4651bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4652                                     bool Diagnose) {
4653  if (MD->isInvalidDecl())
4654    return false;
4655  CXXRecordDecl *RD = MD->getParent();
4656  assert(!RD->isDependentType() && "do deletion after instantiation");
4657  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4658    return false;
4659
4660  // C++11 [expr.lambda.prim]p19:
4661  //   The closure type associated with a lambda-expression has a
4662  //   deleted (8.4.3) default constructor and a deleted copy
4663  //   assignment operator.
4664  if (RD->isLambda() &&
4665      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4666    if (Diagnose)
4667      Diag(RD->getLocation(), diag::note_lambda_decl);
4668    return true;
4669  }
4670
4671  // For an anonymous struct or union, the copy and assignment special members
4672  // will never be used, so skip the check. For an anonymous union declared at
4673  // namespace scope, the constructor and destructor are used.
4674  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4675      RD->isAnonymousStructOrUnion())
4676    return false;
4677
4678  // C++11 [class.copy]p7, p18:
4679  //   If the class definition declares a move constructor or move assignment
4680  //   operator, an implicitly declared copy constructor or copy assignment
4681  //   operator is defined as deleted.
4682  if (MD->isImplicit() &&
4683      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4684    CXXMethodDecl *UserDeclaredMove = 0;
4685
4686    // In Microsoft mode, a user-declared move only causes the deletion of the
4687    // corresponding copy operation, not both copy operations.
4688    if (RD->hasUserDeclaredMoveConstructor() &&
4689        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4690      if (!Diagnose) return true;
4691
4692      // Find any user-declared move constructor.
4693      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
4694                                        E = RD->ctor_end(); I != E; ++I) {
4695        if (I->isMoveConstructor()) {
4696          UserDeclaredMove = *I;
4697          break;
4698        }
4699      }
4700      assert(UserDeclaredMove);
4701    } else if (RD->hasUserDeclaredMoveAssignment() &&
4702               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4703      if (!Diagnose) return true;
4704
4705      // Find any user-declared move assignment operator.
4706      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
4707                                          E = RD->method_end(); I != E; ++I) {
4708        if (I->isMoveAssignmentOperator()) {
4709          UserDeclaredMove = *I;
4710          break;
4711        }
4712      }
4713      assert(UserDeclaredMove);
4714    }
4715
4716    if (UserDeclaredMove) {
4717      Diag(UserDeclaredMove->getLocation(),
4718           diag::note_deleted_copy_user_declared_move)
4719        << (CSM == CXXCopyAssignment) << RD
4720        << UserDeclaredMove->isMoveAssignmentOperator();
4721      return true;
4722    }
4723  }
4724
4725  // Do access control from the special member function
4726  ContextRAII MethodContext(*this, MD);
4727
4728  // C++11 [class.dtor]p5:
4729  // -- for a virtual destructor, lookup of the non-array deallocation function
4730  //    results in an ambiguity or in a function that is deleted or inaccessible
4731  if (CSM == CXXDestructor && MD->isVirtual()) {
4732    FunctionDecl *OperatorDelete = 0;
4733    DeclarationName Name =
4734      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4735    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4736                                 OperatorDelete, false)) {
4737      if (Diagnose)
4738        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4739      return true;
4740    }
4741  }
4742
4743  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4744
4745  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4746                                          BE = RD->bases_end(); BI != BE; ++BI)
4747    if (!BI->isVirtual() &&
4748        SMI.shouldDeleteForBase(BI))
4749      return true;
4750
4751  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4752                                          BE = RD->vbases_end(); BI != BE; ++BI)
4753    if (SMI.shouldDeleteForBase(BI))
4754      return true;
4755
4756  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4757                                     FE = RD->field_end(); FI != FE; ++FI)
4758    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4759        SMI.shouldDeleteForField(*FI))
4760      return true;
4761
4762  if (SMI.shouldDeleteForAllConstMembers())
4763    return true;
4764
4765  return false;
4766}
4767
4768/// Perform lookup for a special member of the specified kind, and determine
4769/// whether it is trivial. If the triviality can be determined without the
4770/// lookup, skip it. This is intended for use when determining whether a
4771/// special member of a containing object is trivial, and thus does not ever
4772/// perform overload resolution for default constructors.
4773///
4774/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
4775/// member that was most likely to be intended to be trivial, if any.
4776static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
4777                                     Sema::CXXSpecialMember CSM, unsigned Quals,
4778                                     CXXMethodDecl **Selected) {
4779  if (Selected)
4780    *Selected = 0;
4781
4782  switch (CSM) {
4783  case Sema::CXXInvalid:
4784    llvm_unreachable("not a special member");
4785
4786  case Sema::CXXDefaultConstructor:
4787    // C++11 [class.ctor]p5:
4788    //   A default constructor is trivial if:
4789    //    - all the [direct subobjects] have trivial default constructors
4790    //
4791    // Note, no overload resolution is performed in this case.
4792    if (RD->hasTrivialDefaultConstructor())
4793      return true;
4794
4795    if (Selected) {
4796      // If there's a default constructor which could have been trivial, dig it
4797      // out. Otherwise, if there's any user-provided default constructor, point
4798      // to that as an example of why there's not a trivial one.
4799      CXXConstructorDecl *DefCtor = 0;
4800      if (RD->needsImplicitDefaultConstructor())
4801        S.DeclareImplicitDefaultConstructor(RD);
4802      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
4803                                        CE = RD->ctor_end(); CI != CE; ++CI) {
4804        if (!CI->isDefaultConstructor())
4805          continue;
4806        DefCtor = *CI;
4807        if (!DefCtor->isUserProvided())
4808          break;
4809      }
4810
4811      *Selected = DefCtor;
4812    }
4813
4814    return false;
4815
4816  case Sema::CXXDestructor:
4817    // C++11 [class.dtor]p5:
4818    //   A destructor is trivial if:
4819    //    - all the direct [subobjects] have trivial destructors
4820    if (RD->hasTrivialDestructor())
4821      return true;
4822
4823    if (Selected) {
4824      if (RD->needsImplicitDestructor())
4825        S.DeclareImplicitDestructor(RD);
4826      *Selected = RD->getDestructor();
4827    }
4828
4829    return false;
4830
4831  case Sema::CXXCopyConstructor:
4832    // C++11 [class.copy]p12:
4833    //   A copy constructor is trivial if:
4834    //    - the constructor selected to copy each direct [subobject] is trivial
4835    if (RD->hasTrivialCopyConstructor()) {
4836      if (Quals == Qualifiers::Const)
4837        // We must either select the trivial copy constructor or reach an
4838        // ambiguity; no need to actually perform overload resolution.
4839        return true;
4840    } else if (!Selected) {
4841      return false;
4842    }
4843    // In C++98, we are not supposed to perform overload resolution here, but we
4844    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
4845    // cases like B as having a non-trivial copy constructor:
4846    //   struct A { template<typename T> A(T&); };
4847    //   struct B { mutable A a; };
4848    goto NeedOverloadResolution;
4849
4850  case Sema::CXXCopyAssignment:
4851    // C++11 [class.copy]p25:
4852    //   A copy assignment operator is trivial if:
4853    //    - the assignment operator selected to copy each direct [subobject] is
4854    //      trivial
4855    if (RD->hasTrivialCopyAssignment()) {
4856      if (Quals == Qualifiers::Const)
4857        return true;
4858    } else if (!Selected) {
4859      return false;
4860    }
4861    // In C++98, we are not supposed to perform overload resolution here, but we
4862    // treat that as a language defect.
4863    goto NeedOverloadResolution;
4864
4865  case Sema::CXXMoveConstructor:
4866  case Sema::CXXMoveAssignment:
4867  NeedOverloadResolution:
4868    Sema::SpecialMemberOverloadResult *SMOR =
4869      S.LookupSpecialMember(RD, CSM,
4870                            Quals & Qualifiers::Const,
4871                            Quals & Qualifiers::Volatile,
4872                            /*RValueThis*/false, /*ConstThis*/false,
4873                            /*VolatileThis*/false);
4874
4875    // The standard doesn't describe how to behave if the lookup is ambiguous.
4876    // We treat it as not making the member non-trivial, just like the standard
4877    // mandates for the default constructor. This should rarely matter, because
4878    // the member will also be deleted.
4879    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4880      return true;
4881
4882    if (!SMOR->getMethod()) {
4883      assert(SMOR->getKind() ==
4884             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
4885      return false;
4886    }
4887
4888    // We deliberately don't check if we found a deleted special member. We're
4889    // not supposed to!
4890    if (Selected)
4891      *Selected = SMOR->getMethod();
4892    return SMOR->getMethod()->isTrivial();
4893  }
4894
4895  llvm_unreachable("unknown special method kind");
4896}
4897
4898CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
4899  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
4900       CI != CE; ++CI)
4901    if (!CI->isImplicit())
4902      return *CI;
4903
4904  // Look for constructor templates.
4905  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
4906  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
4907    if (CXXConstructorDecl *CD =
4908          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
4909      return CD;
4910  }
4911
4912  return 0;
4913}
4914
4915/// The kind of subobject we are checking for triviality. The values of this
4916/// enumeration are used in diagnostics.
4917enum TrivialSubobjectKind {
4918  /// The subobject is a base class.
4919  TSK_BaseClass,
4920  /// The subobject is a non-static data member.
4921  TSK_Field,
4922  /// The object is actually the complete object.
4923  TSK_CompleteObject
4924};
4925
4926/// Check whether the special member selected for a given type would be trivial.
4927static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
4928                                      QualType SubType,
4929                                      Sema::CXXSpecialMember CSM,
4930                                      TrivialSubobjectKind Kind,
4931                                      bool Diagnose) {
4932  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
4933  if (!SubRD)
4934    return true;
4935
4936  CXXMethodDecl *Selected;
4937  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
4938                               Diagnose ? &Selected : 0))
4939    return true;
4940
4941  if (Diagnose) {
4942    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
4943      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
4944        << Kind << SubType.getUnqualifiedType();
4945      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
4946        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
4947    } else if (!Selected)
4948      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
4949        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
4950    else if (Selected->isUserProvided()) {
4951      if (Kind == TSK_CompleteObject)
4952        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
4953          << Kind << SubType.getUnqualifiedType() << CSM;
4954      else {
4955        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
4956          << Kind << SubType.getUnqualifiedType() << CSM;
4957        S.Diag(Selected->getLocation(), diag::note_declared_at);
4958      }
4959    } else {
4960      if (Kind != TSK_CompleteObject)
4961        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
4962          << Kind << SubType.getUnqualifiedType() << CSM;
4963
4964      // Explain why the defaulted or deleted special member isn't trivial.
4965      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
4966    }
4967  }
4968
4969  return false;
4970}
4971
4972/// Check whether the members of a class type allow a special member to be
4973/// trivial.
4974static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
4975                                     Sema::CXXSpecialMember CSM,
4976                                     bool ConstArg, bool Diagnose) {
4977  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4978                                     FE = RD->field_end(); FI != FE; ++FI) {
4979    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4980      continue;
4981
4982    QualType FieldType = S.Context.getBaseElementType(FI->getType());
4983
4984    // Pretend anonymous struct or union members are members of this class.
4985    if (FI->isAnonymousStructOrUnion()) {
4986      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
4987                                    CSM, ConstArg, Diagnose))
4988        return false;
4989      continue;
4990    }
4991
4992    // C++11 [class.ctor]p5:
4993    //   A default constructor is trivial if [...]
4994    //    -- no non-static data member of its class has a
4995    //       brace-or-equal-initializer
4996    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
4997      if (Diagnose)
4998        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
4999      return false;
5000    }
5001
5002    // Objective C ARC 4.3.5:
5003    //   [...] nontrivally ownership-qualified types are [...] not trivially
5004    //   default constructible, copy constructible, move constructible, copy
5005    //   assignable, move assignable, or destructible [...]
5006    if (S.getLangOpts().ObjCAutoRefCount &&
5007        FieldType.hasNonTrivialObjCLifetime()) {
5008      if (Diagnose)
5009        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5010          << RD << FieldType.getObjCLifetime();
5011      return false;
5012    }
5013
5014    if (ConstArg && !FI->isMutable())
5015      FieldType.addConst();
5016    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5017                                   TSK_Field, Diagnose))
5018      return false;
5019  }
5020
5021  return true;
5022}
5023
5024/// Diagnose why the specified class does not have a trivial special member of
5025/// the given kind.
5026void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5027  QualType Ty = Context.getRecordType(RD);
5028  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5029    Ty.addConst();
5030
5031  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5032                            TSK_CompleteObject, /*Diagnose*/true);
5033}
5034
5035/// Determine whether a defaulted or deleted special member function is trivial,
5036/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5037/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5038bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5039                                  bool Diagnose) {
5040  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5041
5042  CXXRecordDecl *RD = MD->getParent();
5043
5044  bool ConstArg = false;
5045  ParmVarDecl *Param0 = MD->getNumParams() ? MD->getParamDecl(0) : 0;
5046
5047  // C++11 [class.copy]p12, p25:
5048  //   A [special member] is trivial if its declared parameter type is the same
5049  //   as if it had been implicitly declared [...]
5050  switch (CSM) {
5051  case CXXDefaultConstructor:
5052  case CXXDestructor:
5053    // Trivial default constructors and destructors cannot have parameters.
5054    break;
5055
5056  case CXXCopyConstructor:
5057  case CXXCopyAssignment: {
5058    // Trivial copy operations always have const, non-volatile parameter types.
5059    ConstArg = true;
5060    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5061    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5062      if (Diagnose)
5063        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5064          << Param0->getSourceRange() << Param0->getType()
5065          << Context.getLValueReferenceType(
5066               Context.getRecordType(RD).withConst());
5067      return false;
5068    }
5069    break;
5070  }
5071
5072  case CXXMoveConstructor:
5073  case CXXMoveAssignment: {
5074    // Trivial move operations always have non-cv-qualified parameters.
5075    const RValueReferenceType *RT =
5076      Param0->getType()->getAs<RValueReferenceType>();
5077    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5078      if (Diagnose)
5079        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5080          << Param0->getSourceRange() << Param0->getType()
5081          << Context.getRValueReferenceType(Context.getRecordType(RD));
5082      return false;
5083    }
5084    break;
5085  }
5086
5087  case CXXInvalid:
5088    llvm_unreachable("not a special member");
5089  }
5090
5091  // FIXME: We require that the parameter-declaration-clause is equivalent to
5092  // that of an implicit declaration, not just that the declared parameter type
5093  // matches, in order to prevent absuridities like a function simultaneously
5094  // being a trivial copy constructor and a non-trivial default constructor.
5095  // This issue has not yet been assigned a core issue number.
5096  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5097    if (Diagnose)
5098      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5099           diag::note_nontrivial_default_arg)
5100        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5101    return false;
5102  }
5103  if (MD->isVariadic()) {
5104    if (Diagnose)
5105      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5106    return false;
5107  }
5108
5109  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5110  //   A copy/move [constructor or assignment operator] is trivial if
5111  //    -- the [member] selected to copy/move each direct base class subobject
5112  //       is trivial
5113  //
5114  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5115  //   A [default constructor or destructor] is trivial if
5116  //    -- all the direct base classes have trivial [default constructors or
5117  //       destructors]
5118  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5119                                          BE = RD->bases_end(); BI != BE; ++BI)
5120    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5121                                   ConstArg ? BI->getType().withConst()
5122                                            : BI->getType(),
5123                                   CSM, TSK_BaseClass, Diagnose))
5124      return false;
5125
5126  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5127  //   A copy/move [constructor or assignment operator] for a class X is
5128  //   trivial if
5129  //    -- for each non-static data member of X that is of class type (or array
5130  //       thereof), the constructor selected to copy/move that member is
5131  //       trivial
5132  //
5133  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5134  //   A [default constructor or destructor] is trivial if
5135  //    -- for all of the non-static data members of its class that are of class
5136  //       type (or array thereof), each such class has a trivial [default
5137  //       constructor or destructor]
5138  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5139    return false;
5140
5141  // C++11 [class.dtor]p5:
5142  //   A destructor is trivial if [...]
5143  //    -- the destructor is not virtual
5144  if (CSM == CXXDestructor && MD->isVirtual()) {
5145    if (Diagnose)
5146      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5147    return false;
5148  }
5149
5150  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5151  //   A [special member] for class X is trivial if [...]
5152  //    -- class X has no virtual functions and no virtual base classes
5153  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5154    if (!Diagnose)
5155      return false;
5156
5157    if (RD->getNumVBases()) {
5158      // Check for virtual bases. We already know that the corresponding
5159      // member in all bases is trivial, so vbases must all be direct.
5160      CXXBaseSpecifier &BS = *RD->vbases_begin();
5161      assert(BS.isVirtual());
5162      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5163      return false;
5164    }
5165
5166    // Must have a virtual method.
5167    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5168                                        ME = RD->method_end(); MI != ME; ++MI) {
5169      if (MI->isVirtual()) {
5170        SourceLocation MLoc = MI->getLocStart();
5171        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5172        return false;
5173      }
5174    }
5175
5176    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5177  }
5178
5179  // Looks like it's trivial!
5180  return true;
5181}
5182
5183/// \brief Data used with FindHiddenVirtualMethod
5184namespace {
5185  struct FindHiddenVirtualMethodData {
5186    Sema *S;
5187    CXXMethodDecl *Method;
5188    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5189    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5190  };
5191}
5192
5193/// \brief Check whether any most overriden method from MD in Methods
5194static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5195                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5196  if (MD->size_overridden_methods() == 0)
5197    return Methods.count(MD->getCanonicalDecl());
5198  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5199                                      E = MD->end_overridden_methods();
5200       I != E; ++I)
5201    if (CheckMostOverridenMethods(*I, Methods))
5202      return true;
5203  return false;
5204}
5205
5206/// \brief Member lookup function that determines whether a given C++
5207/// method overloads virtual methods in a base class without overriding any,
5208/// to be used with CXXRecordDecl::lookupInBases().
5209static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5210                                    CXXBasePath &Path,
5211                                    void *UserData) {
5212  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5213
5214  FindHiddenVirtualMethodData &Data
5215    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5216
5217  DeclarationName Name = Data.Method->getDeclName();
5218  assert(Name.getNameKind() == DeclarationName::Identifier);
5219
5220  bool foundSameNameMethod = false;
5221  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5222  for (Path.Decls = BaseRecord->lookup(Name);
5223       Path.Decls.first != Path.Decls.second;
5224       ++Path.Decls.first) {
5225    NamedDecl *D = *Path.Decls.first;
5226    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5227      MD = MD->getCanonicalDecl();
5228      foundSameNameMethod = true;
5229      // Interested only in hidden virtual methods.
5230      if (!MD->isVirtual())
5231        continue;
5232      // If the method we are checking overrides a method from its base
5233      // don't warn about the other overloaded methods.
5234      if (!Data.S->IsOverload(Data.Method, MD, false))
5235        return true;
5236      // Collect the overload only if its hidden.
5237      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5238        overloadedMethods.push_back(MD);
5239    }
5240  }
5241
5242  if (foundSameNameMethod)
5243    Data.OverloadedMethods.append(overloadedMethods.begin(),
5244                                   overloadedMethods.end());
5245  return foundSameNameMethod;
5246}
5247
5248/// \brief Add the most overriden methods from MD to Methods
5249static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5250                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5251  if (MD->size_overridden_methods() == 0)
5252    Methods.insert(MD->getCanonicalDecl());
5253  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5254                                      E = MD->end_overridden_methods();
5255       I != E; ++I)
5256    AddMostOverridenMethods(*I, Methods);
5257}
5258
5259/// \brief See if a method overloads virtual methods in a base class without
5260/// overriding any.
5261void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5262  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5263                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5264    return;
5265  if (!MD->getDeclName().isIdentifier())
5266    return;
5267
5268  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5269                     /*bool RecordPaths=*/false,
5270                     /*bool DetectVirtual=*/false);
5271  FindHiddenVirtualMethodData Data;
5272  Data.Method = MD;
5273  Data.S = this;
5274
5275  // Keep the base methods that were overriden or introduced in the subclass
5276  // by 'using' in a set. A base method not in this set is hidden.
5277  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
5278       res.first != res.second; ++res.first) {
5279    NamedDecl *ND = *res.first;
5280    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
5281      ND = shad->getTargetDecl();
5282    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5283      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5284  }
5285
5286  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5287      !Data.OverloadedMethods.empty()) {
5288    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5289      << MD << (Data.OverloadedMethods.size() > 1);
5290
5291    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5292      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5293      Diag(overloadedMD->getLocation(),
5294           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5295    }
5296  }
5297}
5298
5299void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5300                                             Decl *TagDecl,
5301                                             SourceLocation LBrac,
5302                                             SourceLocation RBrac,
5303                                             AttributeList *AttrList) {
5304  if (!TagDecl)
5305    return;
5306
5307  AdjustDeclIfTemplate(TagDecl);
5308
5309  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5310    if (l->getKind() != AttributeList::AT_Visibility)
5311      continue;
5312    l->setInvalid();
5313    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5314      l->getName();
5315  }
5316
5317  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5318              // strict aliasing violation!
5319              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5320              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5321
5322  CheckCompletedCXXClass(
5323                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5324}
5325
5326/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5327/// special functions, such as the default constructor, copy
5328/// constructor, or destructor, to the given C++ class (C++
5329/// [special]p1).  This routine can only be executed just before the
5330/// definition of the class is complete.
5331void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5332  if (!ClassDecl->hasUserDeclaredConstructor())
5333    ++ASTContext::NumImplicitDefaultConstructors;
5334
5335  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5336    ++ASTContext::NumImplicitCopyConstructors;
5337
5338    // If the properties or semantics of the copy constructor couldn't be
5339    // determined while the class was being declared, force a declaration
5340    // of it now.
5341    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5342      DeclareImplicitCopyConstructor(ClassDecl);
5343  }
5344
5345  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor()) {
5346    ++ASTContext::NumImplicitMoveConstructors;
5347
5348    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5349      DeclareImplicitMoveConstructor(ClassDecl);
5350  }
5351
5352  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5353    ++ASTContext::NumImplicitCopyAssignmentOperators;
5354
5355    // If we have a dynamic class, then the copy assignment operator may be
5356    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5357    // it shows up in the right place in the vtable and that we diagnose
5358    // problems with the implicit exception specification.
5359    if (ClassDecl->isDynamicClass() ||
5360        ClassDecl->needsOverloadResolutionForCopyAssignment())
5361      DeclareImplicitCopyAssignment(ClassDecl);
5362  }
5363
5364  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()) {
5365    ++ASTContext::NumImplicitMoveAssignmentOperators;
5366
5367    // Likewise for the move assignment operator.
5368    if (ClassDecl->isDynamicClass() ||
5369        ClassDecl->needsOverloadResolutionForMoveAssignment())
5370      DeclareImplicitMoveAssignment(ClassDecl);
5371  }
5372
5373  if (!ClassDecl->hasUserDeclaredDestructor()) {
5374    ++ASTContext::NumImplicitDestructors;
5375
5376    // If we have a dynamic class, then the destructor may be virtual, so we
5377    // have to declare the destructor immediately. This ensures that, e.g., it
5378    // shows up in the right place in the vtable and that we diagnose problems
5379    // with the implicit exception specification.
5380    if (ClassDecl->isDynamicClass() ||
5381        ClassDecl->needsOverloadResolutionForDestructor())
5382      DeclareImplicitDestructor(ClassDecl);
5383  }
5384}
5385
5386void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5387  if (!D)
5388    return;
5389
5390  int NumParamList = D->getNumTemplateParameterLists();
5391  for (int i = 0; i < NumParamList; i++) {
5392    TemplateParameterList* Params = D->getTemplateParameterList(i);
5393    for (TemplateParameterList::iterator Param = Params->begin(),
5394                                      ParamEnd = Params->end();
5395          Param != ParamEnd; ++Param) {
5396      NamedDecl *Named = cast<NamedDecl>(*Param);
5397      if (Named->getDeclName()) {
5398        S->AddDecl(Named);
5399        IdResolver.AddDecl(Named);
5400      }
5401    }
5402  }
5403}
5404
5405void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5406  if (!D)
5407    return;
5408
5409  TemplateParameterList *Params = 0;
5410  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5411    Params = Template->getTemplateParameters();
5412  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5413           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5414    Params = PartialSpec->getTemplateParameters();
5415  else
5416    return;
5417
5418  for (TemplateParameterList::iterator Param = Params->begin(),
5419                                    ParamEnd = Params->end();
5420       Param != ParamEnd; ++Param) {
5421    NamedDecl *Named = cast<NamedDecl>(*Param);
5422    if (Named->getDeclName()) {
5423      S->AddDecl(Named);
5424      IdResolver.AddDecl(Named);
5425    }
5426  }
5427}
5428
5429void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5430  if (!RecordD) return;
5431  AdjustDeclIfTemplate(RecordD);
5432  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5433  PushDeclContext(S, Record);
5434}
5435
5436void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5437  if (!RecordD) return;
5438  PopDeclContext();
5439}
5440
5441/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5442/// parsing a top-level (non-nested) C++ class, and we are now
5443/// parsing those parts of the given Method declaration that could
5444/// not be parsed earlier (C++ [class.mem]p2), such as default
5445/// arguments. This action should enter the scope of the given
5446/// Method declaration as if we had just parsed the qualified method
5447/// name. However, it should not bring the parameters into scope;
5448/// that will be performed by ActOnDelayedCXXMethodParameter.
5449void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5450}
5451
5452/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5453/// C++ method declaration. We're (re-)introducing the given
5454/// function parameter into scope for use in parsing later parts of
5455/// the method declaration. For example, we could see an
5456/// ActOnParamDefaultArgument event for this parameter.
5457void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5458  if (!ParamD)
5459    return;
5460
5461  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5462
5463  // If this parameter has an unparsed default argument, clear it out
5464  // to make way for the parsed default argument.
5465  if (Param->hasUnparsedDefaultArg())
5466    Param->setDefaultArg(0);
5467
5468  S->AddDecl(Param);
5469  if (Param->getDeclName())
5470    IdResolver.AddDecl(Param);
5471}
5472
5473/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5474/// processing the delayed method declaration for Method. The method
5475/// declaration is now considered finished. There may be a separate
5476/// ActOnStartOfFunctionDef action later (not necessarily
5477/// immediately!) for this method, if it was also defined inside the
5478/// class body.
5479void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5480  if (!MethodD)
5481    return;
5482
5483  AdjustDeclIfTemplate(MethodD);
5484
5485  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5486
5487  // Now that we have our default arguments, check the constructor
5488  // again. It could produce additional diagnostics or affect whether
5489  // the class has implicitly-declared destructors, among other
5490  // things.
5491  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5492    CheckConstructor(Constructor);
5493
5494  // Check the default arguments, which we may have added.
5495  if (!Method->isInvalidDecl())
5496    CheckCXXDefaultArguments(Method);
5497}
5498
5499/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5500/// the well-formedness of the constructor declarator @p D with type @p
5501/// R. If there are any errors in the declarator, this routine will
5502/// emit diagnostics and set the invalid bit to true.  In any case, the type
5503/// will be updated to reflect a well-formed type for the constructor and
5504/// returned.
5505QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5506                                          StorageClass &SC) {
5507  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5508
5509  // C++ [class.ctor]p3:
5510  //   A constructor shall not be virtual (10.3) or static (9.4). A
5511  //   constructor can be invoked for a const, volatile or const
5512  //   volatile object. A constructor shall not be declared const,
5513  //   volatile, or const volatile (9.3.2).
5514  if (isVirtual) {
5515    if (!D.isInvalidType())
5516      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5517        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5518        << SourceRange(D.getIdentifierLoc());
5519    D.setInvalidType();
5520  }
5521  if (SC == SC_Static) {
5522    if (!D.isInvalidType())
5523      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5524        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5525        << SourceRange(D.getIdentifierLoc());
5526    D.setInvalidType();
5527    SC = SC_None;
5528  }
5529
5530  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5531  if (FTI.TypeQuals != 0) {
5532    if (FTI.TypeQuals & Qualifiers::Const)
5533      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5534        << "const" << SourceRange(D.getIdentifierLoc());
5535    if (FTI.TypeQuals & Qualifiers::Volatile)
5536      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5537        << "volatile" << SourceRange(D.getIdentifierLoc());
5538    if (FTI.TypeQuals & Qualifiers::Restrict)
5539      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5540        << "restrict" << SourceRange(D.getIdentifierLoc());
5541    D.setInvalidType();
5542  }
5543
5544  // C++0x [class.ctor]p4:
5545  //   A constructor shall not be declared with a ref-qualifier.
5546  if (FTI.hasRefQualifier()) {
5547    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5548      << FTI.RefQualifierIsLValueRef
5549      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5550    D.setInvalidType();
5551  }
5552
5553  // Rebuild the function type "R" without any type qualifiers (in
5554  // case any of the errors above fired) and with "void" as the
5555  // return type, since constructors don't have return types.
5556  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5557  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5558    return R;
5559
5560  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5561  EPI.TypeQuals = 0;
5562  EPI.RefQualifier = RQ_None;
5563
5564  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5565                                 Proto->getNumArgs(), EPI);
5566}
5567
5568/// CheckConstructor - Checks a fully-formed constructor for
5569/// well-formedness, issuing any diagnostics required. Returns true if
5570/// the constructor declarator is invalid.
5571void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5572  CXXRecordDecl *ClassDecl
5573    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5574  if (!ClassDecl)
5575    return Constructor->setInvalidDecl();
5576
5577  // C++ [class.copy]p3:
5578  //   A declaration of a constructor for a class X is ill-formed if
5579  //   its first parameter is of type (optionally cv-qualified) X and
5580  //   either there are no other parameters or else all other
5581  //   parameters have default arguments.
5582  if (!Constructor->isInvalidDecl() &&
5583      ((Constructor->getNumParams() == 1) ||
5584       (Constructor->getNumParams() > 1 &&
5585        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5586      Constructor->getTemplateSpecializationKind()
5587                                              != TSK_ImplicitInstantiation) {
5588    QualType ParamType = Constructor->getParamDecl(0)->getType();
5589    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5590    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5591      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5592      const char *ConstRef
5593        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5594                                                        : " const &";
5595      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5596        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5597
5598      // FIXME: Rather that making the constructor invalid, we should endeavor
5599      // to fix the type.
5600      Constructor->setInvalidDecl();
5601    }
5602  }
5603}
5604
5605/// CheckDestructor - Checks a fully-formed destructor definition for
5606/// well-formedness, issuing any diagnostics required.  Returns true
5607/// on error.
5608bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5609  CXXRecordDecl *RD = Destructor->getParent();
5610
5611  if (Destructor->isVirtual()) {
5612    SourceLocation Loc;
5613
5614    if (!Destructor->isImplicit())
5615      Loc = Destructor->getLocation();
5616    else
5617      Loc = RD->getLocation();
5618
5619    // If we have a virtual destructor, look up the deallocation function
5620    FunctionDecl *OperatorDelete = 0;
5621    DeclarationName Name =
5622    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5623    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5624      return true;
5625
5626    MarkFunctionReferenced(Loc, OperatorDelete);
5627
5628    Destructor->setOperatorDelete(OperatorDelete);
5629  }
5630
5631  return false;
5632}
5633
5634static inline bool
5635FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5636  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5637          FTI.ArgInfo[0].Param &&
5638          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5639}
5640
5641/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5642/// the well-formednes of the destructor declarator @p D with type @p
5643/// R. If there are any errors in the declarator, this routine will
5644/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5645/// will be updated to reflect a well-formed type for the destructor and
5646/// returned.
5647QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5648                                         StorageClass& SC) {
5649  // C++ [class.dtor]p1:
5650  //   [...] A typedef-name that names a class is a class-name
5651  //   (7.1.3); however, a typedef-name that names a class shall not
5652  //   be used as the identifier in the declarator for a destructor
5653  //   declaration.
5654  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5655  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5656    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5657      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5658  else if (const TemplateSpecializationType *TST =
5659             DeclaratorType->getAs<TemplateSpecializationType>())
5660    if (TST->isTypeAlias())
5661      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5662        << DeclaratorType << 1;
5663
5664  // C++ [class.dtor]p2:
5665  //   A destructor is used to destroy objects of its class type. A
5666  //   destructor takes no parameters, and no return type can be
5667  //   specified for it (not even void). The address of a destructor
5668  //   shall not be taken. A destructor shall not be static. A
5669  //   destructor can be invoked for a const, volatile or const
5670  //   volatile object. A destructor shall not be declared const,
5671  //   volatile or const volatile (9.3.2).
5672  if (SC == SC_Static) {
5673    if (!D.isInvalidType())
5674      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5675        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5676        << SourceRange(D.getIdentifierLoc())
5677        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5678
5679    SC = SC_None;
5680  }
5681  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5682    // Destructors don't have return types, but the parser will
5683    // happily parse something like:
5684    //
5685    //   class X {
5686    //     float ~X();
5687    //   };
5688    //
5689    // The return type will be eliminated later.
5690    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5691      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5692      << SourceRange(D.getIdentifierLoc());
5693  }
5694
5695  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5696  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5697    if (FTI.TypeQuals & Qualifiers::Const)
5698      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5699        << "const" << SourceRange(D.getIdentifierLoc());
5700    if (FTI.TypeQuals & Qualifiers::Volatile)
5701      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5702        << "volatile" << SourceRange(D.getIdentifierLoc());
5703    if (FTI.TypeQuals & Qualifiers::Restrict)
5704      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5705        << "restrict" << SourceRange(D.getIdentifierLoc());
5706    D.setInvalidType();
5707  }
5708
5709  // C++0x [class.dtor]p2:
5710  //   A destructor shall not be declared with a ref-qualifier.
5711  if (FTI.hasRefQualifier()) {
5712    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5713      << FTI.RefQualifierIsLValueRef
5714      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5715    D.setInvalidType();
5716  }
5717
5718  // Make sure we don't have any parameters.
5719  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5720    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5721
5722    // Delete the parameters.
5723    FTI.freeArgs();
5724    D.setInvalidType();
5725  }
5726
5727  // Make sure the destructor isn't variadic.
5728  if (FTI.isVariadic) {
5729    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5730    D.setInvalidType();
5731  }
5732
5733  // Rebuild the function type "R" without any type qualifiers or
5734  // parameters (in case any of the errors above fired) and with
5735  // "void" as the return type, since destructors don't have return
5736  // types.
5737  if (!D.isInvalidType())
5738    return R;
5739
5740  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5741  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5742  EPI.Variadic = false;
5743  EPI.TypeQuals = 0;
5744  EPI.RefQualifier = RQ_None;
5745  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5746}
5747
5748/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5749/// well-formednes of the conversion function declarator @p D with
5750/// type @p R. If there are any errors in the declarator, this routine
5751/// will emit diagnostics and return true. Otherwise, it will return
5752/// false. Either way, the type @p R will be updated to reflect a
5753/// well-formed type for the conversion operator.
5754void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5755                                     StorageClass& SC) {
5756  // C++ [class.conv.fct]p1:
5757  //   Neither parameter types nor return type can be specified. The
5758  //   type of a conversion function (8.3.5) is "function taking no
5759  //   parameter returning conversion-type-id."
5760  if (SC == SC_Static) {
5761    if (!D.isInvalidType())
5762      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5763        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5764        << SourceRange(D.getIdentifierLoc());
5765    D.setInvalidType();
5766    SC = SC_None;
5767  }
5768
5769  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5770
5771  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5772    // Conversion functions don't have return types, but the parser will
5773    // happily parse something like:
5774    //
5775    //   class X {
5776    //     float operator bool();
5777    //   };
5778    //
5779    // The return type will be changed later anyway.
5780    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5781      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5782      << SourceRange(D.getIdentifierLoc());
5783    D.setInvalidType();
5784  }
5785
5786  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5787
5788  // Make sure we don't have any parameters.
5789  if (Proto->getNumArgs() > 0) {
5790    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5791
5792    // Delete the parameters.
5793    D.getFunctionTypeInfo().freeArgs();
5794    D.setInvalidType();
5795  } else if (Proto->isVariadic()) {
5796    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5797    D.setInvalidType();
5798  }
5799
5800  // Diagnose "&operator bool()" and other such nonsense.  This
5801  // is actually a gcc extension which we don't support.
5802  if (Proto->getResultType() != ConvType) {
5803    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5804      << Proto->getResultType();
5805    D.setInvalidType();
5806    ConvType = Proto->getResultType();
5807  }
5808
5809  // C++ [class.conv.fct]p4:
5810  //   The conversion-type-id shall not represent a function type nor
5811  //   an array type.
5812  if (ConvType->isArrayType()) {
5813    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5814    ConvType = Context.getPointerType(ConvType);
5815    D.setInvalidType();
5816  } else if (ConvType->isFunctionType()) {
5817    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5818    ConvType = Context.getPointerType(ConvType);
5819    D.setInvalidType();
5820  }
5821
5822  // Rebuild the function type "R" without any parameters (in case any
5823  // of the errors above fired) and with the conversion type as the
5824  // return type.
5825  if (D.isInvalidType())
5826    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5827
5828  // C++0x explicit conversion operators.
5829  if (D.getDeclSpec().isExplicitSpecified())
5830    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5831         getLangOpts().CPlusPlus0x ?
5832           diag::warn_cxx98_compat_explicit_conversion_functions :
5833           diag::ext_explicit_conversion_functions)
5834      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5835}
5836
5837/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5838/// the declaration of the given C++ conversion function. This routine
5839/// is responsible for recording the conversion function in the C++
5840/// class, if possible.
5841Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5842  assert(Conversion && "Expected to receive a conversion function declaration");
5843
5844  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5845
5846  // Make sure we aren't redeclaring the conversion function.
5847  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5848
5849  // C++ [class.conv.fct]p1:
5850  //   [...] A conversion function is never used to convert a
5851  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5852  //   same object type (or a reference to it), to a (possibly
5853  //   cv-qualified) base class of that type (or a reference to it),
5854  //   or to (possibly cv-qualified) void.
5855  // FIXME: Suppress this warning if the conversion function ends up being a
5856  // virtual function that overrides a virtual function in a base class.
5857  QualType ClassType
5858    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5859  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5860    ConvType = ConvTypeRef->getPointeeType();
5861  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5862      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5863    /* Suppress diagnostics for instantiations. */;
5864  else if (ConvType->isRecordType()) {
5865    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5866    if (ConvType == ClassType)
5867      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5868        << ClassType;
5869    else if (IsDerivedFrom(ClassType, ConvType))
5870      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5871        <<  ClassType << ConvType;
5872  } else if (ConvType->isVoidType()) {
5873    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5874      << ClassType << ConvType;
5875  }
5876
5877  if (FunctionTemplateDecl *ConversionTemplate
5878                                = Conversion->getDescribedFunctionTemplate())
5879    return ConversionTemplate;
5880
5881  return Conversion;
5882}
5883
5884//===----------------------------------------------------------------------===//
5885// Namespace Handling
5886//===----------------------------------------------------------------------===//
5887
5888/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
5889/// reopened.
5890static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
5891                                            SourceLocation Loc,
5892                                            IdentifierInfo *II, bool *IsInline,
5893                                            NamespaceDecl *PrevNS) {
5894  assert(*IsInline != PrevNS->isInline());
5895
5896  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
5897  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
5898  // inline namespaces, with the intention of bringing names into namespace std.
5899  //
5900  // We support this just well enough to get that case working; this is not
5901  // sufficient to support reopening namespaces as inline in general.
5902  if (*IsInline && II && II->getName().startswith("__atomic") &&
5903      S.getSourceManager().isInSystemHeader(Loc)) {
5904    // Mark all prior declarations of the namespace as inline.
5905    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
5906         NS = NS->getPreviousDecl())
5907      NS->setInline(*IsInline);
5908    // Patch up the lookup table for the containing namespace. This isn't really
5909    // correct, but it's good enough for this particular case.
5910    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
5911                                    E = PrevNS->decls_end(); I != E; ++I)
5912      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
5913        PrevNS->getParent()->makeDeclVisibleInContext(ND);
5914    return;
5915  }
5916
5917  if (PrevNS->isInline())
5918    // The user probably just forgot the 'inline', so suggest that it
5919    // be added back.
5920    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5921      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
5922  else
5923    S.Diag(Loc, diag::err_inline_namespace_mismatch)
5924      << IsInline;
5925
5926  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
5927  *IsInline = PrevNS->isInline();
5928}
5929
5930/// ActOnStartNamespaceDef - This is called at the start of a namespace
5931/// definition.
5932Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5933                                   SourceLocation InlineLoc,
5934                                   SourceLocation NamespaceLoc,
5935                                   SourceLocation IdentLoc,
5936                                   IdentifierInfo *II,
5937                                   SourceLocation LBrace,
5938                                   AttributeList *AttrList) {
5939  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5940  // For anonymous namespace, take the location of the left brace.
5941  SourceLocation Loc = II ? IdentLoc : LBrace;
5942  bool IsInline = InlineLoc.isValid();
5943  bool IsInvalid = false;
5944  bool IsStd = false;
5945  bool AddToKnown = false;
5946  Scope *DeclRegionScope = NamespcScope->getParent();
5947
5948  NamespaceDecl *PrevNS = 0;
5949  if (II) {
5950    // C++ [namespace.def]p2:
5951    //   The identifier in an original-namespace-definition shall not
5952    //   have been previously defined in the declarative region in
5953    //   which the original-namespace-definition appears. The
5954    //   identifier in an original-namespace-definition is the name of
5955    //   the namespace. Subsequently in that declarative region, it is
5956    //   treated as an original-namespace-name.
5957    //
5958    // Since namespace names are unique in their scope, and we don't
5959    // look through using directives, just look for any ordinary names.
5960
5961    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5962    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5963    Decl::IDNS_Namespace;
5964    NamedDecl *PrevDecl = 0;
5965    for (DeclContext::lookup_result R
5966         = CurContext->getRedeclContext()->lookup(II);
5967         R.first != R.second; ++R.first) {
5968      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5969        PrevDecl = *R.first;
5970        break;
5971      }
5972    }
5973
5974    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5975
5976    if (PrevNS) {
5977      // This is an extended namespace definition.
5978      if (IsInline != PrevNS->isInline())
5979        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
5980                                        &IsInline, PrevNS);
5981    } else if (PrevDecl) {
5982      // This is an invalid name redefinition.
5983      Diag(Loc, diag::err_redefinition_different_kind)
5984        << II;
5985      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5986      IsInvalid = true;
5987      // Continue on to push Namespc as current DeclContext and return it.
5988    } else if (II->isStr("std") &&
5989               CurContext->getRedeclContext()->isTranslationUnit()) {
5990      // This is the first "real" definition of the namespace "std", so update
5991      // our cache of the "std" namespace to point at this definition.
5992      PrevNS = getStdNamespace();
5993      IsStd = true;
5994      AddToKnown = !IsInline;
5995    } else {
5996      // We've seen this namespace for the first time.
5997      AddToKnown = !IsInline;
5998    }
5999  } else {
6000    // Anonymous namespaces.
6001
6002    // Determine whether the parent already has an anonymous namespace.
6003    DeclContext *Parent = CurContext->getRedeclContext();
6004    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6005      PrevNS = TU->getAnonymousNamespace();
6006    } else {
6007      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6008      PrevNS = ND->getAnonymousNamespace();
6009    }
6010
6011    if (PrevNS && IsInline != PrevNS->isInline())
6012      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6013                                      &IsInline, PrevNS);
6014  }
6015
6016  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6017                                                 StartLoc, Loc, II, PrevNS);
6018  if (IsInvalid)
6019    Namespc->setInvalidDecl();
6020
6021  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6022
6023  // FIXME: Should we be merging attributes?
6024  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6025    PushNamespaceVisibilityAttr(Attr, Loc);
6026
6027  if (IsStd)
6028    StdNamespace = Namespc;
6029  if (AddToKnown)
6030    KnownNamespaces[Namespc] = false;
6031
6032  if (II) {
6033    PushOnScopeChains(Namespc, DeclRegionScope);
6034  } else {
6035    // Link the anonymous namespace into its parent.
6036    DeclContext *Parent = CurContext->getRedeclContext();
6037    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6038      TU->setAnonymousNamespace(Namespc);
6039    } else {
6040      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6041    }
6042
6043    CurContext->addDecl(Namespc);
6044
6045    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6046    //   behaves as if it were replaced by
6047    //     namespace unique { /* empty body */ }
6048    //     using namespace unique;
6049    //     namespace unique { namespace-body }
6050    //   where all occurrences of 'unique' in a translation unit are
6051    //   replaced by the same identifier and this identifier differs
6052    //   from all other identifiers in the entire program.
6053
6054    // We just create the namespace with an empty name and then add an
6055    // implicit using declaration, just like the standard suggests.
6056    //
6057    // CodeGen enforces the "universally unique" aspect by giving all
6058    // declarations semantically contained within an anonymous
6059    // namespace internal linkage.
6060
6061    if (!PrevNS) {
6062      UsingDirectiveDecl* UD
6063        = UsingDirectiveDecl::Create(Context, Parent,
6064                                     /* 'using' */ LBrace,
6065                                     /* 'namespace' */ SourceLocation(),
6066                                     /* qualifier */ NestedNameSpecifierLoc(),
6067                                     /* identifier */ SourceLocation(),
6068                                     Namespc,
6069                                     /* Ancestor */ Parent);
6070      UD->setImplicit();
6071      Parent->addDecl(UD);
6072    }
6073  }
6074
6075  ActOnDocumentableDecl(Namespc);
6076
6077  // Although we could have an invalid decl (i.e. the namespace name is a
6078  // redefinition), push it as current DeclContext and try to continue parsing.
6079  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6080  // for the namespace has the declarations that showed up in that particular
6081  // namespace definition.
6082  PushDeclContext(NamespcScope, Namespc);
6083  return Namespc;
6084}
6085
6086/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6087/// is a namespace alias, returns the namespace it points to.
6088static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6089  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6090    return AD->getNamespace();
6091  return dyn_cast_or_null<NamespaceDecl>(D);
6092}
6093
6094/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6095/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6096void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6097  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6098  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6099  Namespc->setRBraceLoc(RBrace);
6100  PopDeclContext();
6101  if (Namespc->hasAttr<VisibilityAttr>())
6102    PopPragmaVisibility(true, RBrace);
6103}
6104
6105CXXRecordDecl *Sema::getStdBadAlloc() const {
6106  return cast_or_null<CXXRecordDecl>(
6107                                  StdBadAlloc.get(Context.getExternalSource()));
6108}
6109
6110NamespaceDecl *Sema::getStdNamespace() const {
6111  return cast_or_null<NamespaceDecl>(
6112                                 StdNamespace.get(Context.getExternalSource()));
6113}
6114
6115/// \brief Retrieve the special "std" namespace, which may require us to
6116/// implicitly define the namespace.
6117NamespaceDecl *Sema::getOrCreateStdNamespace() {
6118  if (!StdNamespace) {
6119    // The "std" namespace has not yet been defined, so build one implicitly.
6120    StdNamespace = NamespaceDecl::Create(Context,
6121                                         Context.getTranslationUnitDecl(),
6122                                         /*Inline=*/false,
6123                                         SourceLocation(), SourceLocation(),
6124                                         &PP.getIdentifierTable().get("std"),
6125                                         /*PrevDecl=*/0);
6126    getStdNamespace()->setImplicit(true);
6127  }
6128
6129  return getStdNamespace();
6130}
6131
6132bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6133  assert(getLangOpts().CPlusPlus &&
6134         "Looking for std::initializer_list outside of C++.");
6135
6136  // We're looking for implicit instantiations of
6137  // template <typename E> class std::initializer_list.
6138
6139  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6140    return false;
6141
6142  ClassTemplateDecl *Template = 0;
6143  const TemplateArgument *Arguments = 0;
6144
6145  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6146
6147    ClassTemplateSpecializationDecl *Specialization =
6148        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6149    if (!Specialization)
6150      return false;
6151
6152    Template = Specialization->getSpecializedTemplate();
6153    Arguments = Specialization->getTemplateArgs().data();
6154  } else if (const TemplateSpecializationType *TST =
6155                 Ty->getAs<TemplateSpecializationType>()) {
6156    Template = dyn_cast_or_null<ClassTemplateDecl>(
6157        TST->getTemplateName().getAsTemplateDecl());
6158    Arguments = TST->getArgs();
6159  }
6160  if (!Template)
6161    return false;
6162
6163  if (!StdInitializerList) {
6164    // Haven't recognized std::initializer_list yet, maybe this is it.
6165    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6166    if (TemplateClass->getIdentifier() !=
6167            &PP.getIdentifierTable().get("initializer_list") ||
6168        !getStdNamespace()->InEnclosingNamespaceSetOf(
6169            TemplateClass->getDeclContext()))
6170      return false;
6171    // This is a template called std::initializer_list, but is it the right
6172    // template?
6173    TemplateParameterList *Params = Template->getTemplateParameters();
6174    if (Params->getMinRequiredArguments() != 1)
6175      return false;
6176    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6177      return false;
6178
6179    // It's the right template.
6180    StdInitializerList = Template;
6181  }
6182
6183  if (Template != StdInitializerList)
6184    return false;
6185
6186  // This is an instance of std::initializer_list. Find the argument type.
6187  if (Element)
6188    *Element = Arguments[0].getAsType();
6189  return true;
6190}
6191
6192static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6193  NamespaceDecl *Std = S.getStdNamespace();
6194  if (!Std) {
6195    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6196    return 0;
6197  }
6198
6199  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6200                      Loc, Sema::LookupOrdinaryName);
6201  if (!S.LookupQualifiedName(Result, Std)) {
6202    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6203    return 0;
6204  }
6205  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6206  if (!Template) {
6207    Result.suppressDiagnostics();
6208    // We found something weird. Complain about the first thing we found.
6209    NamedDecl *Found = *Result.begin();
6210    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6211    return 0;
6212  }
6213
6214  // We found some template called std::initializer_list. Now verify that it's
6215  // correct.
6216  TemplateParameterList *Params = Template->getTemplateParameters();
6217  if (Params->getMinRequiredArguments() != 1 ||
6218      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6219    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6220    return 0;
6221  }
6222
6223  return Template;
6224}
6225
6226QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6227  if (!StdInitializerList) {
6228    StdInitializerList = LookupStdInitializerList(*this, Loc);
6229    if (!StdInitializerList)
6230      return QualType();
6231  }
6232
6233  TemplateArgumentListInfo Args(Loc, Loc);
6234  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6235                                       Context.getTrivialTypeSourceInfo(Element,
6236                                                                        Loc)));
6237  return Context.getCanonicalType(
6238      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6239}
6240
6241bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6242  // C++ [dcl.init.list]p2:
6243  //   A constructor is an initializer-list constructor if its first parameter
6244  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6245  //   std::initializer_list<E> for some type E, and either there are no other
6246  //   parameters or else all other parameters have default arguments.
6247  if (Ctor->getNumParams() < 1 ||
6248      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6249    return false;
6250
6251  QualType ArgType = Ctor->getParamDecl(0)->getType();
6252  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6253    ArgType = RT->getPointeeType().getUnqualifiedType();
6254
6255  return isStdInitializerList(ArgType, 0);
6256}
6257
6258/// \brief Determine whether a using statement is in a context where it will be
6259/// apply in all contexts.
6260static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6261  switch (CurContext->getDeclKind()) {
6262    case Decl::TranslationUnit:
6263      return true;
6264    case Decl::LinkageSpec:
6265      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6266    default:
6267      return false;
6268  }
6269}
6270
6271namespace {
6272
6273// Callback to only accept typo corrections that are namespaces.
6274class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6275 public:
6276  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
6277    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
6278      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6279    }
6280    return false;
6281  }
6282};
6283
6284}
6285
6286static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6287                                       CXXScopeSpec &SS,
6288                                       SourceLocation IdentLoc,
6289                                       IdentifierInfo *Ident) {
6290  NamespaceValidatorCCC Validator;
6291  R.clear();
6292  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6293                                               R.getLookupKind(), Sc, &SS,
6294                                               Validator)) {
6295    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6296    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
6297    if (DeclContext *DC = S.computeDeclContext(SS, false))
6298      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6299        << Ident << DC << CorrectedQuotedStr << SS.getRange()
6300        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
6301                                        CorrectedStr);
6302    else
6303      S.Diag(IdentLoc, diag::err_using_directive_suggest)
6304        << Ident << CorrectedQuotedStr
6305        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6306
6307    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6308         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6309
6310    R.addDecl(Corrected.getCorrectionDecl());
6311    return true;
6312  }
6313  return false;
6314}
6315
6316Decl *Sema::ActOnUsingDirective(Scope *S,
6317                                          SourceLocation UsingLoc,
6318                                          SourceLocation NamespcLoc,
6319                                          CXXScopeSpec &SS,
6320                                          SourceLocation IdentLoc,
6321                                          IdentifierInfo *NamespcName,
6322                                          AttributeList *AttrList) {
6323  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6324  assert(NamespcName && "Invalid NamespcName.");
6325  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6326
6327  // This can only happen along a recovery path.
6328  while (S->getFlags() & Scope::TemplateParamScope)
6329    S = S->getParent();
6330  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6331
6332  UsingDirectiveDecl *UDir = 0;
6333  NestedNameSpecifier *Qualifier = 0;
6334  if (SS.isSet())
6335    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6336
6337  // Lookup namespace name.
6338  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6339  LookupParsedName(R, S, &SS);
6340  if (R.isAmbiguous())
6341    return 0;
6342
6343  if (R.empty()) {
6344    R.clear();
6345    // Allow "using namespace std;" or "using namespace ::std;" even if
6346    // "std" hasn't been defined yet, for GCC compatibility.
6347    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6348        NamespcName->isStr("std")) {
6349      Diag(IdentLoc, diag::ext_using_undefined_std);
6350      R.addDecl(getOrCreateStdNamespace());
6351      R.resolveKind();
6352    }
6353    // Otherwise, attempt typo correction.
6354    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6355  }
6356
6357  if (!R.empty()) {
6358    NamedDecl *Named = R.getFoundDecl();
6359    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6360        && "expected namespace decl");
6361    // C++ [namespace.udir]p1:
6362    //   A using-directive specifies that the names in the nominated
6363    //   namespace can be used in the scope in which the
6364    //   using-directive appears after the using-directive. During
6365    //   unqualified name lookup (3.4.1), the names appear as if they
6366    //   were declared in the nearest enclosing namespace which
6367    //   contains both the using-directive and the nominated
6368    //   namespace. [Note: in this context, "contains" means "contains
6369    //   directly or indirectly". ]
6370
6371    // Find enclosing context containing both using-directive and
6372    // nominated namespace.
6373    NamespaceDecl *NS = getNamespaceDecl(Named);
6374    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6375    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6376      CommonAncestor = CommonAncestor->getParent();
6377
6378    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6379                                      SS.getWithLocInContext(Context),
6380                                      IdentLoc, Named, CommonAncestor);
6381
6382    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6383        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6384      Diag(IdentLoc, diag::warn_using_directive_in_header);
6385    }
6386
6387    PushUsingDirective(S, UDir);
6388  } else {
6389    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6390  }
6391
6392  // FIXME: We ignore attributes for now.
6393  return UDir;
6394}
6395
6396void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6397  // If the scope has an associated entity and the using directive is at
6398  // namespace or translation unit scope, add the UsingDirectiveDecl into
6399  // its lookup structure so qualified name lookup can find it.
6400  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6401  if (Ctx && !Ctx->isFunctionOrMethod())
6402    Ctx->addDecl(UDir);
6403  else
6404    // Otherwise, it is at block sope. The using-directives will affect lookup
6405    // only to the end of the scope.
6406    S->PushUsingDirective(UDir);
6407}
6408
6409
6410Decl *Sema::ActOnUsingDeclaration(Scope *S,
6411                                  AccessSpecifier AS,
6412                                  bool HasUsingKeyword,
6413                                  SourceLocation UsingLoc,
6414                                  CXXScopeSpec &SS,
6415                                  UnqualifiedId &Name,
6416                                  AttributeList *AttrList,
6417                                  bool IsTypeName,
6418                                  SourceLocation TypenameLoc) {
6419  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6420
6421  switch (Name.getKind()) {
6422  case UnqualifiedId::IK_ImplicitSelfParam:
6423  case UnqualifiedId::IK_Identifier:
6424  case UnqualifiedId::IK_OperatorFunctionId:
6425  case UnqualifiedId::IK_LiteralOperatorId:
6426  case UnqualifiedId::IK_ConversionFunctionId:
6427    break;
6428
6429  case UnqualifiedId::IK_ConstructorName:
6430  case UnqualifiedId::IK_ConstructorTemplateId:
6431    // C++11 inheriting constructors.
6432    Diag(Name.getLocStart(),
6433         getLangOpts().CPlusPlus0x ?
6434           // FIXME: Produce warn_cxx98_compat_using_decl_constructor
6435           //        instead once inheriting constructors work.
6436           diag::err_using_decl_constructor_unsupported :
6437           diag::err_using_decl_constructor)
6438      << SS.getRange();
6439
6440    if (getLangOpts().CPlusPlus0x) break;
6441
6442    return 0;
6443
6444  case UnqualifiedId::IK_DestructorName:
6445    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6446      << SS.getRange();
6447    return 0;
6448
6449  case UnqualifiedId::IK_TemplateId:
6450    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6451      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6452    return 0;
6453  }
6454
6455  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6456  DeclarationName TargetName = TargetNameInfo.getName();
6457  if (!TargetName)
6458    return 0;
6459
6460  // Warn about using declarations.
6461  // TODO: store that the declaration was written without 'using' and
6462  // talk about access decls instead of using decls in the
6463  // diagnostics.
6464  if (!HasUsingKeyword) {
6465    UsingLoc = Name.getLocStart();
6466
6467    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6468      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6469  }
6470
6471  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6472      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6473    return 0;
6474
6475  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6476                                        TargetNameInfo, AttrList,
6477                                        /* IsInstantiation */ false,
6478                                        IsTypeName, TypenameLoc);
6479  if (UD)
6480    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6481
6482  return UD;
6483}
6484
6485/// \brief Determine whether a using declaration considers the given
6486/// declarations as "equivalent", e.g., if they are redeclarations of
6487/// the same entity or are both typedefs of the same type.
6488static bool
6489IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6490                         bool &SuppressRedeclaration) {
6491  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6492    SuppressRedeclaration = false;
6493    return true;
6494  }
6495
6496  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6497    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6498      SuppressRedeclaration = true;
6499      return Context.hasSameType(TD1->getUnderlyingType(),
6500                                 TD2->getUnderlyingType());
6501    }
6502
6503  return false;
6504}
6505
6506
6507/// Determines whether to create a using shadow decl for a particular
6508/// decl, given the set of decls existing prior to this using lookup.
6509bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6510                                const LookupResult &Previous) {
6511  // Diagnose finding a decl which is not from a base class of the
6512  // current class.  We do this now because there are cases where this
6513  // function will silently decide not to build a shadow decl, which
6514  // will pre-empt further diagnostics.
6515  //
6516  // We don't need to do this in C++0x because we do the check once on
6517  // the qualifier.
6518  //
6519  // FIXME: diagnose the following if we care enough:
6520  //   struct A { int foo; };
6521  //   struct B : A { using A::foo; };
6522  //   template <class T> struct C : A {};
6523  //   template <class T> struct D : C<T> { using B::foo; } // <---
6524  // This is invalid (during instantiation) in C++03 because B::foo
6525  // resolves to the using decl in B, which is not a base class of D<T>.
6526  // We can't diagnose it immediately because C<T> is an unknown
6527  // specialization.  The UsingShadowDecl in D<T> then points directly
6528  // to A::foo, which will look well-formed when we instantiate.
6529  // The right solution is to not collapse the shadow-decl chain.
6530  if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
6531    DeclContext *OrigDC = Orig->getDeclContext();
6532
6533    // Handle enums and anonymous structs.
6534    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6535    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6536    while (OrigRec->isAnonymousStructOrUnion())
6537      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6538
6539    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6540      if (OrigDC == CurContext) {
6541        Diag(Using->getLocation(),
6542             diag::err_using_decl_nested_name_specifier_is_current_class)
6543          << Using->getQualifierLoc().getSourceRange();
6544        Diag(Orig->getLocation(), diag::note_using_decl_target);
6545        return true;
6546      }
6547
6548      Diag(Using->getQualifierLoc().getBeginLoc(),
6549           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6550        << Using->getQualifier()
6551        << cast<CXXRecordDecl>(CurContext)
6552        << Using->getQualifierLoc().getSourceRange();
6553      Diag(Orig->getLocation(), diag::note_using_decl_target);
6554      return true;
6555    }
6556  }
6557
6558  if (Previous.empty()) return false;
6559
6560  NamedDecl *Target = Orig;
6561  if (isa<UsingShadowDecl>(Target))
6562    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6563
6564  // If the target happens to be one of the previous declarations, we
6565  // don't have a conflict.
6566  //
6567  // FIXME: but we might be increasing its access, in which case we
6568  // should redeclare it.
6569  NamedDecl *NonTag = 0, *Tag = 0;
6570  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6571         I != E; ++I) {
6572    NamedDecl *D = (*I)->getUnderlyingDecl();
6573    bool Result;
6574    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6575      return Result;
6576
6577    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6578  }
6579
6580  if (Target->isFunctionOrFunctionTemplate()) {
6581    FunctionDecl *FD;
6582    if (isa<FunctionTemplateDecl>(Target))
6583      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6584    else
6585      FD = cast<FunctionDecl>(Target);
6586
6587    NamedDecl *OldDecl = 0;
6588    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6589    case Ovl_Overload:
6590      return false;
6591
6592    case Ovl_NonFunction:
6593      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6594      break;
6595
6596    // We found a decl with the exact signature.
6597    case Ovl_Match:
6598      // If we're in a record, we want to hide the target, so we
6599      // return true (without a diagnostic) to tell the caller not to
6600      // build a shadow decl.
6601      if (CurContext->isRecord())
6602        return true;
6603
6604      // If we're not in a record, this is an error.
6605      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6606      break;
6607    }
6608
6609    Diag(Target->getLocation(), diag::note_using_decl_target);
6610    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6611    return true;
6612  }
6613
6614  // Target is not a function.
6615
6616  if (isa<TagDecl>(Target)) {
6617    // No conflict between a tag and a non-tag.
6618    if (!Tag) return false;
6619
6620    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6621    Diag(Target->getLocation(), diag::note_using_decl_target);
6622    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6623    return true;
6624  }
6625
6626  // No conflict between a tag and a non-tag.
6627  if (!NonTag) return false;
6628
6629  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6630  Diag(Target->getLocation(), diag::note_using_decl_target);
6631  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6632  return true;
6633}
6634
6635/// Builds a shadow declaration corresponding to a 'using' declaration.
6636UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6637                                            UsingDecl *UD,
6638                                            NamedDecl *Orig) {
6639
6640  // If we resolved to another shadow declaration, just coalesce them.
6641  NamedDecl *Target = Orig;
6642  if (isa<UsingShadowDecl>(Target)) {
6643    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6644    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6645  }
6646
6647  UsingShadowDecl *Shadow
6648    = UsingShadowDecl::Create(Context, CurContext,
6649                              UD->getLocation(), UD, Target);
6650  UD->addShadowDecl(Shadow);
6651
6652  Shadow->setAccess(UD->getAccess());
6653  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6654    Shadow->setInvalidDecl();
6655
6656  if (S)
6657    PushOnScopeChains(Shadow, S);
6658  else
6659    CurContext->addDecl(Shadow);
6660
6661
6662  return Shadow;
6663}
6664
6665/// Hides a using shadow declaration.  This is required by the current
6666/// using-decl implementation when a resolvable using declaration in a
6667/// class is followed by a declaration which would hide or override
6668/// one or more of the using decl's targets; for example:
6669///
6670///   struct Base { void foo(int); };
6671///   struct Derived : Base {
6672///     using Base::foo;
6673///     void foo(int);
6674///   };
6675///
6676/// The governing language is C++03 [namespace.udecl]p12:
6677///
6678///   When a using-declaration brings names from a base class into a
6679///   derived class scope, member functions in the derived class
6680///   override and/or hide member functions with the same name and
6681///   parameter types in a base class (rather than conflicting).
6682///
6683/// There are two ways to implement this:
6684///   (1) optimistically create shadow decls when they're not hidden
6685///       by existing declarations, or
6686///   (2) don't create any shadow decls (or at least don't make them
6687///       visible) until we've fully parsed/instantiated the class.
6688/// The problem with (1) is that we might have to retroactively remove
6689/// a shadow decl, which requires several O(n) operations because the
6690/// decl structures are (very reasonably) not designed for removal.
6691/// (2) avoids this but is very fiddly and phase-dependent.
6692void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6693  if (Shadow->getDeclName().getNameKind() ==
6694        DeclarationName::CXXConversionFunctionName)
6695    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6696
6697  // Remove it from the DeclContext...
6698  Shadow->getDeclContext()->removeDecl(Shadow);
6699
6700  // ...and the scope, if applicable...
6701  if (S) {
6702    S->RemoveDecl(Shadow);
6703    IdResolver.RemoveDecl(Shadow);
6704  }
6705
6706  // ...and the using decl.
6707  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6708
6709  // TODO: complain somehow if Shadow was used.  It shouldn't
6710  // be possible for this to happen, because...?
6711}
6712
6713/// Builds a using declaration.
6714///
6715/// \param IsInstantiation - Whether this call arises from an
6716///   instantiation of an unresolved using declaration.  We treat
6717///   the lookup differently for these declarations.
6718NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6719                                       SourceLocation UsingLoc,
6720                                       CXXScopeSpec &SS,
6721                                       const DeclarationNameInfo &NameInfo,
6722                                       AttributeList *AttrList,
6723                                       bool IsInstantiation,
6724                                       bool IsTypeName,
6725                                       SourceLocation TypenameLoc) {
6726  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6727  SourceLocation IdentLoc = NameInfo.getLoc();
6728  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6729
6730  // FIXME: We ignore attributes for now.
6731
6732  if (SS.isEmpty()) {
6733    Diag(IdentLoc, diag::err_using_requires_qualname);
6734    return 0;
6735  }
6736
6737  // Do the redeclaration lookup in the current scope.
6738  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6739                        ForRedeclaration);
6740  Previous.setHideTags(false);
6741  if (S) {
6742    LookupName(Previous, S);
6743
6744    // It is really dumb that we have to do this.
6745    LookupResult::Filter F = Previous.makeFilter();
6746    while (F.hasNext()) {
6747      NamedDecl *D = F.next();
6748      if (!isDeclInScope(D, CurContext, S))
6749        F.erase();
6750    }
6751    F.done();
6752  } else {
6753    assert(IsInstantiation && "no scope in non-instantiation");
6754    assert(CurContext->isRecord() && "scope not record in instantiation");
6755    LookupQualifiedName(Previous, CurContext);
6756  }
6757
6758  // Check for invalid redeclarations.
6759  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6760    return 0;
6761
6762  // Check for bad qualifiers.
6763  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6764    return 0;
6765
6766  DeclContext *LookupContext = computeDeclContext(SS);
6767  NamedDecl *D;
6768  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6769  if (!LookupContext) {
6770    if (IsTypeName) {
6771      // FIXME: not all declaration name kinds are legal here
6772      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6773                                              UsingLoc, TypenameLoc,
6774                                              QualifierLoc,
6775                                              IdentLoc, NameInfo.getName());
6776    } else {
6777      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6778                                           QualifierLoc, NameInfo);
6779    }
6780  } else {
6781    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6782                          NameInfo, IsTypeName);
6783  }
6784  D->setAccess(AS);
6785  CurContext->addDecl(D);
6786
6787  if (!LookupContext) return D;
6788  UsingDecl *UD = cast<UsingDecl>(D);
6789
6790  if (RequireCompleteDeclContext(SS, LookupContext)) {
6791    UD->setInvalidDecl();
6792    return UD;
6793  }
6794
6795  // The normal rules do not apply to inheriting constructor declarations.
6796  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6797    if (CheckInheritingConstructorUsingDecl(UD))
6798      UD->setInvalidDecl();
6799    return UD;
6800  }
6801
6802  // Otherwise, look up the target name.
6803
6804  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6805
6806  // Unlike most lookups, we don't always want to hide tag
6807  // declarations: tag names are visible through the using declaration
6808  // even if hidden by ordinary names, *except* in a dependent context
6809  // where it's important for the sanity of two-phase lookup.
6810  if (!IsInstantiation)
6811    R.setHideTags(false);
6812
6813  // For the purposes of this lookup, we have a base object type
6814  // equal to that of the current context.
6815  if (CurContext->isRecord()) {
6816    R.setBaseObjectType(
6817                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6818  }
6819
6820  LookupQualifiedName(R, LookupContext);
6821
6822  if (R.empty()) {
6823    Diag(IdentLoc, diag::err_no_member)
6824      << NameInfo.getName() << LookupContext << SS.getRange();
6825    UD->setInvalidDecl();
6826    return UD;
6827  }
6828
6829  if (R.isAmbiguous()) {
6830    UD->setInvalidDecl();
6831    return UD;
6832  }
6833
6834  if (IsTypeName) {
6835    // If we asked for a typename and got a non-type decl, error out.
6836    if (!R.getAsSingle<TypeDecl>()) {
6837      Diag(IdentLoc, diag::err_using_typename_non_type);
6838      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6839        Diag((*I)->getUnderlyingDecl()->getLocation(),
6840             diag::note_using_decl_target);
6841      UD->setInvalidDecl();
6842      return UD;
6843    }
6844  } else {
6845    // If we asked for a non-typename and we got a type, error out,
6846    // but only if this is an instantiation of an unresolved using
6847    // decl.  Otherwise just silently find the type name.
6848    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6849      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6850      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6851      UD->setInvalidDecl();
6852      return UD;
6853    }
6854  }
6855
6856  // C++0x N2914 [namespace.udecl]p6:
6857  // A using-declaration shall not name a namespace.
6858  if (R.getAsSingle<NamespaceDecl>()) {
6859    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6860      << SS.getRange();
6861    UD->setInvalidDecl();
6862    return UD;
6863  }
6864
6865  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6866    if (!CheckUsingShadowDecl(UD, *I, Previous))
6867      BuildUsingShadowDecl(S, UD, *I);
6868  }
6869
6870  return UD;
6871}
6872
6873/// Additional checks for a using declaration referring to a constructor name.
6874bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6875  assert(!UD->isTypeName() && "expecting a constructor name");
6876
6877  const Type *SourceType = UD->getQualifier()->getAsType();
6878  assert(SourceType &&
6879         "Using decl naming constructor doesn't have type in scope spec.");
6880  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6881
6882  // Check whether the named type is a direct base class.
6883  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6884  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6885  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6886       BaseIt != BaseE; ++BaseIt) {
6887    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6888    if (CanonicalSourceType == BaseType)
6889      break;
6890    if (BaseIt->getType()->isDependentType())
6891      break;
6892  }
6893
6894  if (BaseIt == BaseE) {
6895    // Did not find SourceType in the bases.
6896    Diag(UD->getUsingLocation(),
6897         diag::err_using_decl_constructor_not_in_direct_base)
6898      << UD->getNameInfo().getSourceRange()
6899      << QualType(SourceType, 0) << TargetClass;
6900    return true;
6901  }
6902
6903  if (!CurContext->isDependentContext())
6904    BaseIt->setInheritConstructors();
6905
6906  return false;
6907}
6908
6909/// Checks that the given using declaration is not an invalid
6910/// redeclaration.  Note that this is checking only for the using decl
6911/// itself, not for any ill-formedness among the UsingShadowDecls.
6912bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6913                                       bool isTypeName,
6914                                       const CXXScopeSpec &SS,
6915                                       SourceLocation NameLoc,
6916                                       const LookupResult &Prev) {
6917  // C++03 [namespace.udecl]p8:
6918  // C++0x [namespace.udecl]p10:
6919  //   A using-declaration is a declaration and can therefore be used
6920  //   repeatedly where (and only where) multiple declarations are
6921  //   allowed.
6922  //
6923  // That's in non-member contexts.
6924  if (!CurContext->getRedeclContext()->isRecord())
6925    return false;
6926
6927  NestedNameSpecifier *Qual
6928    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6929
6930  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6931    NamedDecl *D = *I;
6932
6933    bool DTypename;
6934    NestedNameSpecifier *DQual;
6935    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6936      DTypename = UD->isTypeName();
6937      DQual = UD->getQualifier();
6938    } else if (UnresolvedUsingValueDecl *UD
6939                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6940      DTypename = false;
6941      DQual = UD->getQualifier();
6942    } else if (UnresolvedUsingTypenameDecl *UD
6943                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6944      DTypename = true;
6945      DQual = UD->getQualifier();
6946    } else continue;
6947
6948    // using decls differ if one says 'typename' and the other doesn't.
6949    // FIXME: non-dependent using decls?
6950    if (isTypeName != DTypename) continue;
6951
6952    // using decls differ if they name different scopes (but note that
6953    // template instantiation can cause this check to trigger when it
6954    // didn't before instantiation).
6955    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6956        Context.getCanonicalNestedNameSpecifier(DQual))
6957      continue;
6958
6959    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6960    Diag(D->getLocation(), diag::note_using_decl) << 1;
6961    return true;
6962  }
6963
6964  return false;
6965}
6966
6967
6968/// Checks that the given nested-name qualifier used in a using decl
6969/// in the current context is appropriately related to the current
6970/// scope.  If an error is found, diagnoses it and returns true.
6971bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6972                                   const CXXScopeSpec &SS,
6973                                   SourceLocation NameLoc) {
6974  DeclContext *NamedContext = computeDeclContext(SS);
6975
6976  if (!CurContext->isRecord()) {
6977    // C++03 [namespace.udecl]p3:
6978    // C++0x [namespace.udecl]p8:
6979    //   A using-declaration for a class member shall be a member-declaration.
6980
6981    // If we weren't able to compute a valid scope, it must be a
6982    // dependent class scope.
6983    if (!NamedContext || NamedContext->isRecord()) {
6984      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6985        << SS.getRange();
6986      return true;
6987    }
6988
6989    // Otherwise, everything is known to be fine.
6990    return false;
6991  }
6992
6993  // The current scope is a record.
6994
6995  // If the named context is dependent, we can't decide much.
6996  if (!NamedContext) {
6997    // FIXME: in C++0x, we can diagnose if we can prove that the
6998    // nested-name-specifier does not refer to a base class, which is
6999    // still possible in some cases.
7000
7001    // Otherwise we have to conservatively report that things might be
7002    // okay.
7003    return false;
7004  }
7005
7006  if (!NamedContext->isRecord()) {
7007    // Ideally this would point at the last name in the specifier,
7008    // but we don't have that level of source info.
7009    Diag(SS.getRange().getBegin(),
7010         diag::err_using_decl_nested_name_specifier_is_not_class)
7011      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7012    return true;
7013  }
7014
7015  if (!NamedContext->isDependentContext() &&
7016      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7017    return true;
7018
7019  if (getLangOpts().CPlusPlus0x) {
7020    // C++0x [namespace.udecl]p3:
7021    //   In a using-declaration used as a member-declaration, the
7022    //   nested-name-specifier shall name a base class of the class
7023    //   being defined.
7024
7025    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7026                                 cast<CXXRecordDecl>(NamedContext))) {
7027      if (CurContext == NamedContext) {
7028        Diag(NameLoc,
7029             diag::err_using_decl_nested_name_specifier_is_current_class)
7030          << SS.getRange();
7031        return true;
7032      }
7033
7034      Diag(SS.getRange().getBegin(),
7035           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7036        << (NestedNameSpecifier*) SS.getScopeRep()
7037        << cast<CXXRecordDecl>(CurContext)
7038        << SS.getRange();
7039      return true;
7040    }
7041
7042    return false;
7043  }
7044
7045  // C++03 [namespace.udecl]p4:
7046  //   A using-declaration used as a member-declaration shall refer
7047  //   to a member of a base class of the class being defined [etc.].
7048
7049  // Salient point: SS doesn't have to name a base class as long as
7050  // lookup only finds members from base classes.  Therefore we can
7051  // diagnose here only if we can prove that that can't happen,
7052  // i.e. if the class hierarchies provably don't intersect.
7053
7054  // TODO: it would be nice if "definitely valid" results were cached
7055  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7056  // need to be repeated.
7057
7058  struct UserData {
7059    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7060
7061    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7062      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7063      Data->Bases.insert(Base);
7064      return true;
7065    }
7066
7067    bool hasDependentBases(const CXXRecordDecl *Class) {
7068      return !Class->forallBases(collect, this);
7069    }
7070
7071    /// Returns true if the base is dependent or is one of the
7072    /// accumulated base classes.
7073    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7074      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7075      return !Data->Bases.count(Base);
7076    }
7077
7078    bool mightShareBases(const CXXRecordDecl *Class) {
7079      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7080    }
7081  };
7082
7083  UserData Data;
7084
7085  // Returns false if we find a dependent base.
7086  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7087    return false;
7088
7089  // Returns false if the class has a dependent base or if it or one
7090  // of its bases is present in the base set of the current context.
7091  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7092    return false;
7093
7094  Diag(SS.getRange().getBegin(),
7095       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7096    << (NestedNameSpecifier*) SS.getScopeRep()
7097    << cast<CXXRecordDecl>(CurContext)
7098    << SS.getRange();
7099
7100  return true;
7101}
7102
7103Decl *Sema::ActOnAliasDeclaration(Scope *S,
7104                                  AccessSpecifier AS,
7105                                  MultiTemplateParamsArg TemplateParamLists,
7106                                  SourceLocation UsingLoc,
7107                                  UnqualifiedId &Name,
7108                                  TypeResult Type) {
7109  // Skip up to the relevant declaration scope.
7110  while (S->getFlags() & Scope::TemplateParamScope)
7111    S = S->getParent();
7112  assert((S->getFlags() & Scope::DeclScope) &&
7113         "got alias-declaration outside of declaration scope");
7114
7115  if (Type.isInvalid())
7116    return 0;
7117
7118  bool Invalid = false;
7119  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7120  TypeSourceInfo *TInfo = 0;
7121  GetTypeFromParser(Type.get(), &TInfo);
7122
7123  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7124    return 0;
7125
7126  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7127                                      UPPC_DeclarationType)) {
7128    Invalid = true;
7129    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7130                                             TInfo->getTypeLoc().getBeginLoc());
7131  }
7132
7133  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7134  LookupName(Previous, S);
7135
7136  // Warn about shadowing the name of a template parameter.
7137  if (Previous.isSingleResult() &&
7138      Previous.getFoundDecl()->isTemplateParameter()) {
7139    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7140    Previous.clear();
7141  }
7142
7143  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7144         "name in alias declaration must be an identifier");
7145  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7146                                               Name.StartLocation,
7147                                               Name.Identifier, TInfo);
7148
7149  NewTD->setAccess(AS);
7150
7151  if (Invalid)
7152    NewTD->setInvalidDecl();
7153
7154  CheckTypedefForVariablyModifiedType(S, NewTD);
7155  Invalid |= NewTD->isInvalidDecl();
7156
7157  bool Redeclaration = false;
7158
7159  NamedDecl *NewND;
7160  if (TemplateParamLists.size()) {
7161    TypeAliasTemplateDecl *OldDecl = 0;
7162    TemplateParameterList *OldTemplateParams = 0;
7163
7164    if (TemplateParamLists.size() != 1) {
7165      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7166        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7167         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7168    }
7169    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7170
7171    // Only consider previous declarations in the same scope.
7172    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7173                         /*ExplicitInstantiationOrSpecialization*/false);
7174    if (!Previous.empty()) {
7175      Redeclaration = true;
7176
7177      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7178      if (!OldDecl && !Invalid) {
7179        Diag(UsingLoc, diag::err_redefinition_different_kind)
7180          << Name.Identifier;
7181
7182        NamedDecl *OldD = Previous.getRepresentativeDecl();
7183        if (OldD->getLocation().isValid())
7184          Diag(OldD->getLocation(), diag::note_previous_definition);
7185
7186        Invalid = true;
7187      }
7188
7189      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7190        if (TemplateParameterListsAreEqual(TemplateParams,
7191                                           OldDecl->getTemplateParameters(),
7192                                           /*Complain=*/true,
7193                                           TPL_TemplateMatch))
7194          OldTemplateParams = OldDecl->getTemplateParameters();
7195        else
7196          Invalid = true;
7197
7198        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7199        if (!Invalid &&
7200            !Context.hasSameType(OldTD->getUnderlyingType(),
7201                                 NewTD->getUnderlyingType())) {
7202          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7203          // but we can't reasonably accept it.
7204          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7205            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7206          if (OldTD->getLocation().isValid())
7207            Diag(OldTD->getLocation(), diag::note_previous_definition);
7208          Invalid = true;
7209        }
7210      }
7211    }
7212
7213    // Merge any previous default template arguments into our parameters,
7214    // and check the parameter list.
7215    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7216                                   TPC_TypeAliasTemplate))
7217      return 0;
7218
7219    TypeAliasTemplateDecl *NewDecl =
7220      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7221                                    Name.Identifier, TemplateParams,
7222                                    NewTD);
7223
7224    NewDecl->setAccess(AS);
7225
7226    if (Invalid)
7227      NewDecl->setInvalidDecl();
7228    else if (OldDecl)
7229      NewDecl->setPreviousDeclaration(OldDecl);
7230
7231    NewND = NewDecl;
7232  } else {
7233    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7234    NewND = NewTD;
7235  }
7236
7237  if (!Redeclaration)
7238    PushOnScopeChains(NewND, S);
7239
7240  ActOnDocumentableDecl(NewND);
7241  return NewND;
7242}
7243
7244Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7245                                             SourceLocation NamespaceLoc,
7246                                             SourceLocation AliasLoc,
7247                                             IdentifierInfo *Alias,
7248                                             CXXScopeSpec &SS,
7249                                             SourceLocation IdentLoc,
7250                                             IdentifierInfo *Ident) {
7251
7252  // Lookup the namespace name.
7253  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7254  LookupParsedName(R, S, &SS);
7255
7256  // Check if we have a previous declaration with the same name.
7257  NamedDecl *PrevDecl
7258    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7259                       ForRedeclaration);
7260  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7261    PrevDecl = 0;
7262
7263  if (PrevDecl) {
7264    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7265      // We already have an alias with the same name that points to the same
7266      // namespace, so don't create a new one.
7267      // FIXME: At some point, we'll want to create the (redundant)
7268      // declaration to maintain better source information.
7269      if (!R.isAmbiguous() && !R.empty() &&
7270          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7271        return 0;
7272    }
7273
7274    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7275      diag::err_redefinition_different_kind;
7276    Diag(AliasLoc, DiagID) << Alias;
7277    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7278    return 0;
7279  }
7280
7281  if (R.isAmbiguous())
7282    return 0;
7283
7284  if (R.empty()) {
7285    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7286      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7287      return 0;
7288    }
7289  }
7290
7291  NamespaceAliasDecl *AliasDecl =
7292    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7293                               Alias, SS.getWithLocInContext(Context),
7294                               IdentLoc, R.getFoundDecl());
7295
7296  PushOnScopeChains(AliasDecl, S);
7297  return AliasDecl;
7298}
7299
7300Sema::ImplicitExceptionSpecification
7301Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7302                                               CXXMethodDecl *MD) {
7303  CXXRecordDecl *ClassDecl = MD->getParent();
7304
7305  // C++ [except.spec]p14:
7306  //   An implicitly declared special member function (Clause 12) shall have an
7307  //   exception-specification. [...]
7308  ImplicitExceptionSpecification ExceptSpec(*this);
7309  if (ClassDecl->isInvalidDecl())
7310    return ExceptSpec;
7311
7312  // Direct base-class constructors.
7313  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7314                                       BEnd = ClassDecl->bases_end();
7315       B != BEnd; ++B) {
7316    if (B->isVirtual()) // Handled below.
7317      continue;
7318
7319    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7320      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7321      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7322      // If this is a deleted function, add it anyway. This might be conformant
7323      // with the standard. This might not. I'm not sure. It might not matter.
7324      if (Constructor)
7325        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7326    }
7327  }
7328
7329  // Virtual base-class constructors.
7330  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7331                                       BEnd = ClassDecl->vbases_end();
7332       B != BEnd; ++B) {
7333    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7334      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7335      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7336      // If this is a deleted function, add it anyway. This might be conformant
7337      // with the standard. This might not. I'm not sure. It might not matter.
7338      if (Constructor)
7339        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7340    }
7341  }
7342
7343  // Field constructors.
7344  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7345                               FEnd = ClassDecl->field_end();
7346       F != FEnd; ++F) {
7347    if (F->hasInClassInitializer()) {
7348      if (Expr *E = F->getInClassInitializer())
7349        ExceptSpec.CalledExpr(E);
7350      else if (!F->isInvalidDecl())
7351        // DR1351:
7352        //   If the brace-or-equal-initializer of a non-static data member
7353        //   invokes a defaulted default constructor of its class or of an
7354        //   enclosing class in a potentially evaluated subexpression, the
7355        //   program is ill-formed.
7356        //
7357        // This resolution is unworkable: the exception specification of the
7358        // default constructor can be needed in an unevaluated context, in
7359        // particular, in the operand of a noexcept-expression, and we can be
7360        // unable to compute an exception specification for an enclosed class.
7361        //
7362        // We do not allow an in-class initializer to require the evaluation
7363        // of the exception specification for any in-class initializer whose
7364        // definition is not lexically complete.
7365        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7366    } else if (const RecordType *RecordTy
7367              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7368      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7369      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7370      // If this is a deleted function, add it anyway. This might be conformant
7371      // with the standard. This might not. I'm not sure. It might not matter.
7372      // In particular, the problem is that this function never gets called. It
7373      // might just be ill-formed because this function attempts to refer to
7374      // a deleted function here.
7375      if (Constructor)
7376        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7377    }
7378  }
7379
7380  return ExceptSpec;
7381}
7382
7383namespace {
7384/// RAII object to register a special member as being currently declared.
7385struct DeclaringSpecialMember {
7386  Sema &S;
7387  Sema::SpecialMemberDecl D;
7388  bool WasAlreadyBeingDeclared;
7389
7390  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
7391    : S(S), D(RD, CSM) {
7392    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
7393    if (WasAlreadyBeingDeclared)
7394      // This almost never happens, but if it does, ensure that our cache
7395      // doesn't contain a stale result.
7396      S.SpecialMemberCache.clear();
7397
7398    // FIXME: Register a note to be produced if we encounter an error while
7399    // declaring the special member.
7400  }
7401  ~DeclaringSpecialMember() {
7402    if (!WasAlreadyBeingDeclared)
7403      S.SpecialMembersBeingDeclared.erase(D);
7404  }
7405
7406  /// \brief Are we already trying to declare this special member?
7407  bool isAlreadyBeingDeclared() const {
7408    return WasAlreadyBeingDeclared;
7409  }
7410};
7411}
7412
7413CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7414                                                     CXXRecordDecl *ClassDecl) {
7415  // C++ [class.ctor]p5:
7416  //   A default constructor for a class X is a constructor of class X
7417  //   that can be called without an argument. If there is no
7418  //   user-declared constructor for class X, a default constructor is
7419  //   implicitly declared. An implicitly-declared default constructor
7420  //   is an inline public member of its class.
7421  assert(ClassDecl->needsImplicitDefaultConstructor() &&
7422         "Should not build implicit default constructor!");
7423
7424  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
7425  if (DSM.isAlreadyBeingDeclared())
7426    return 0;
7427
7428  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
7429                                                     CXXDefaultConstructor,
7430                                                     false);
7431
7432  // Create the actual constructor declaration.
7433  CanQualType ClassType
7434    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7435  SourceLocation ClassLoc = ClassDecl->getLocation();
7436  DeclarationName Name
7437    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7438  DeclarationNameInfo NameInfo(Name, ClassLoc);
7439  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7440      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
7441      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7442      Constexpr);
7443  DefaultCon->setAccess(AS_public);
7444  DefaultCon->setDefaulted();
7445  DefaultCon->setImplicit();
7446
7447  // Build an exception specification pointing back at this constructor.
7448  FunctionProtoType::ExtProtoInfo EPI;
7449  EPI.ExceptionSpecType = EST_Unevaluated;
7450  EPI.ExceptionSpecDecl = DefaultCon;
7451  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7452
7453  // We don't need to use SpecialMemberIsTrivial here; triviality for default
7454  // constructors is easy to compute.
7455  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7456
7457  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7458    DefaultCon->setDeletedAsWritten();
7459
7460  // Note that we have declared this constructor.
7461  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7462
7463  if (Scope *S = getScopeForContext(ClassDecl))
7464    PushOnScopeChains(DefaultCon, S, false);
7465  ClassDecl->addDecl(DefaultCon);
7466
7467  return DefaultCon;
7468}
7469
7470void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7471                                            CXXConstructorDecl *Constructor) {
7472  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7473          !Constructor->doesThisDeclarationHaveABody() &&
7474          !Constructor->isDeleted()) &&
7475    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7476
7477  CXXRecordDecl *ClassDecl = Constructor->getParent();
7478  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7479
7480  SynthesizedFunctionScope Scope(*this, Constructor);
7481  DiagnosticErrorTrap Trap(Diags);
7482  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7483      Trap.hasErrorOccurred()) {
7484    Diag(CurrentLocation, diag::note_member_synthesized_at)
7485      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7486    Constructor->setInvalidDecl();
7487    return;
7488  }
7489
7490  SourceLocation Loc = Constructor->getLocation();
7491  Constructor->setBody(new (Context) CompoundStmt(Loc));
7492
7493  Constructor->setUsed();
7494  MarkVTableUsed(CurrentLocation, ClassDecl);
7495
7496  if (ASTMutationListener *L = getASTMutationListener()) {
7497    L->CompletedImplicitDefinition(Constructor);
7498  }
7499}
7500
7501void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7502  if (!D) return;
7503  AdjustDeclIfTemplate(D);
7504
7505  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7506
7507  if (!ClassDecl->isDependentType())
7508    CheckExplicitlyDefaultedAndDeletedMethods(ClassDecl);
7509
7510  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
7511  // function that is not a constructor declares that member function to be
7512  // const. [...] The class of which that function is a member shall be
7513  // a literal type.
7514  //
7515  // If the class has virtual bases, any constexpr members will already have
7516  // been diagnosed by the checks performed on the member declaration, so
7517  // suppress this (less useful) diagnostic.
7518  //
7519  // We delay this until we know whether an explicitly-defaulted (or deleted)
7520  // destructor for the class is trivial.
7521  if (LangOpts.CPlusPlus0x && !ClassDecl->isDependentType() &&
7522      !ClassDecl->isLiteral() && !ClassDecl->getNumVBases()) {
7523    for (CXXRecordDecl::method_iterator M = ClassDecl->method_begin(),
7524                                     MEnd = ClassDecl->method_end();
7525         M != MEnd; ++M) {
7526      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
7527        switch (ClassDecl->getTemplateSpecializationKind()) {
7528        case TSK_ImplicitInstantiation:
7529        case TSK_ExplicitInstantiationDeclaration:
7530        case TSK_ExplicitInstantiationDefinition:
7531          // If a template instantiates to a non-literal type, but its members
7532          // instantiate to constexpr functions, the template is technically
7533          // ill-formed, but we allow it for sanity.
7534          continue;
7535
7536        case TSK_Undeclared:
7537        case TSK_ExplicitSpecialization:
7538          RequireLiteralType(M->getLocation(), Context.getRecordType(ClassDecl),
7539                             diag::err_constexpr_method_non_literal);
7540          break;
7541        }
7542
7543        // Only produce one error per class.
7544        break;
7545      }
7546    }
7547  }
7548}
7549
7550void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7551  // We start with an initial pass over the base classes to collect those that
7552  // inherit constructors from. If there are none, we can forgo all further
7553  // processing.
7554  typedef SmallVector<const RecordType *, 4> BasesVector;
7555  BasesVector BasesToInheritFrom;
7556  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7557                                          BaseE = ClassDecl->bases_end();
7558         BaseIt != BaseE; ++BaseIt) {
7559    if (BaseIt->getInheritConstructors()) {
7560      QualType Base = BaseIt->getType();
7561      if (Base->isDependentType()) {
7562        // If we inherit constructors from anything that is dependent, just
7563        // abort processing altogether. We'll get another chance for the
7564        // instantiations.
7565        return;
7566      }
7567      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7568    }
7569  }
7570  if (BasesToInheritFrom.empty())
7571    return;
7572
7573  // Now collect the constructors that we already have in the current class.
7574  // Those take precedence over inherited constructors.
7575  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7576  //   unless there is a user-declared constructor with the same signature in
7577  //   the class where the using-declaration appears.
7578  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7579  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7580                                    CtorE = ClassDecl->ctor_end();
7581       CtorIt != CtorE; ++CtorIt) {
7582    ExistingConstructors.insert(
7583        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7584  }
7585
7586  DeclarationName CreatedCtorName =
7587      Context.DeclarationNames.getCXXConstructorName(
7588          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7589
7590  // Now comes the true work.
7591  // First, we keep a map from constructor types to the base that introduced
7592  // them. Needed for finding conflicting constructors. We also keep the
7593  // actually inserted declarations in there, for pretty diagnostics.
7594  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7595  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7596  ConstructorToSourceMap InheritedConstructors;
7597  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7598                             BaseE = BasesToInheritFrom.end();
7599       BaseIt != BaseE; ++BaseIt) {
7600    const RecordType *Base = *BaseIt;
7601    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7602    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7603    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7604                                      CtorE = BaseDecl->ctor_end();
7605         CtorIt != CtorE; ++CtorIt) {
7606      // Find the using declaration for inheriting this base's constructors.
7607      // FIXME: Don't perform name lookup just to obtain a source location!
7608      DeclarationName Name =
7609          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7610      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
7611      LookupQualifiedName(Result, CurContext);
7612      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
7613      SourceLocation UsingLoc = UD ? UD->getLocation() :
7614                                     ClassDecl->getLocation();
7615
7616      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7617      //   from the class X named in the using-declaration consists of actual
7618      //   constructors and notional constructors that result from the
7619      //   transformation of defaulted parameters as follows:
7620      //   - all non-template default constructors of X, and
7621      //   - for each non-template constructor of X that has at least one
7622      //     parameter with a default argument, the set of constructors that
7623      //     results from omitting any ellipsis parameter specification and
7624      //     successively omitting parameters with a default argument from the
7625      //     end of the parameter-type-list.
7626      CXXConstructorDecl *BaseCtor = *CtorIt;
7627      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7628      const FunctionProtoType *BaseCtorType =
7629          BaseCtor->getType()->getAs<FunctionProtoType>();
7630
7631      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7632                    maxParams = BaseCtor->getNumParams();
7633           params <= maxParams; ++params) {
7634        // Skip default constructors. They're never inherited.
7635        if (params == 0)
7636          continue;
7637        // Skip copy and move constructors for the same reason.
7638        if (CanBeCopyOrMove && params == 1)
7639          continue;
7640
7641        // Build up a function type for this particular constructor.
7642        // FIXME: The working paper does not consider that the exception spec
7643        // for the inheriting constructor might be larger than that of the
7644        // source. This code doesn't yet, either. When it does, this code will
7645        // need to be delayed until after exception specifications and in-class
7646        // member initializers are attached.
7647        const Type *NewCtorType;
7648        if (params == maxParams)
7649          NewCtorType = BaseCtorType;
7650        else {
7651          SmallVector<QualType, 16> Args;
7652          for (unsigned i = 0; i < params; ++i) {
7653            Args.push_back(BaseCtorType->getArgType(i));
7654          }
7655          FunctionProtoType::ExtProtoInfo ExtInfo =
7656              BaseCtorType->getExtProtoInfo();
7657          ExtInfo.Variadic = false;
7658          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7659                                                Args.data(), params, ExtInfo)
7660                       .getTypePtr();
7661        }
7662        const Type *CanonicalNewCtorType =
7663            Context.getCanonicalType(NewCtorType);
7664
7665        // Now that we have the type, first check if the class already has a
7666        // constructor with this signature.
7667        if (ExistingConstructors.count(CanonicalNewCtorType))
7668          continue;
7669
7670        // Then we check if we have already declared an inherited constructor
7671        // with this signature.
7672        std::pair<ConstructorToSourceMap::iterator, bool> result =
7673            InheritedConstructors.insert(std::make_pair(
7674                CanonicalNewCtorType,
7675                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7676        if (!result.second) {
7677          // Already in the map. If it came from a different class, that's an
7678          // error. Not if it's from the same.
7679          CanQualType PreviousBase = result.first->second.first;
7680          if (CanonicalBase != PreviousBase) {
7681            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7682            const CXXConstructorDecl *PrevBaseCtor =
7683                PrevCtor->getInheritedConstructor();
7684            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7685
7686            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7687            Diag(BaseCtor->getLocation(),
7688                 diag::note_using_decl_constructor_conflict_current_ctor);
7689            Diag(PrevBaseCtor->getLocation(),
7690                 diag::note_using_decl_constructor_conflict_previous_ctor);
7691            Diag(PrevCtor->getLocation(),
7692                 diag::note_using_decl_constructor_conflict_previous_using);
7693          }
7694          continue;
7695        }
7696
7697        // OK, we're there, now add the constructor.
7698        // C++0x [class.inhctor]p8: [...] that would be performed by a
7699        //   user-written inline constructor [...]
7700        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7701        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7702            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7703            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7704            /*ImplicitlyDeclared=*/true,
7705            // FIXME: Due to a defect in the standard, we treat inherited
7706            // constructors as constexpr even if that makes them ill-formed.
7707            /*Constexpr=*/BaseCtor->isConstexpr());
7708        NewCtor->setAccess(BaseCtor->getAccess());
7709
7710        // Build up the parameter decls and add them.
7711        SmallVector<ParmVarDecl *, 16> ParamDecls;
7712        for (unsigned i = 0; i < params; ++i) {
7713          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7714                                                   UsingLoc, UsingLoc,
7715                                                   /*IdentifierInfo=*/0,
7716                                                   BaseCtorType->getArgType(i),
7717                                                   /*TInfo=*/0, SC_None,
7718                                                   SC_None, /*DefaultArg=*/0));
7719        }
7720        NewCtor->setParams(ParamDecls);
7721        NewCtor->setInheritedConstructor(BaseCtor);
7722
7723        ClassDecl->addDecl(NewCtor);
7724        result.first->second.second = NewCtor;
7725      }
7726    }
7727  }
7728}
7729
7730Sema::ImplicitExceptionSpecification
7731Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
7732  CXXRecordDecl *ClassDecl = MD->getParent();
7733
7734  // C++ [except.spec]p14:
7735  //   An implicitly declared special member function (Clause 12) shall have
7736  //   an exception-specification.
7737  ImplicitExceptionSpecification ExceptSpec(*this);
7738  if (ClassDecl->isInvalidDecl())
7739    return ExceptSpec;
7740
7741  // Direct base-class destructors.
7742  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7743                                       BEnd = ClassDecl->bases_end();
7744       B != BEnd; ++B) {
7745    if (B->isVirtual()) // Handled below.
7746      continue;
7747
7748    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7749      ExceptSpec.CalledDecl(B->getLocStart(),
7750                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7751  }
7752
7753  // Virtual base-class destructors.
7754  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7755                                       BEnd = ClassDecl->vbases_end();
7756       B != BEnd; ++B) {
7757    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7758      ExceptSpec.CalledDecl(B->getLocStart(),
7759                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7760  }
7761
7762  // Field destructors.
7763  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7764                               FEnd = ClassDecl->field_end();
7765       F != FEnd; ++F) {
7766    if (const RecordType *RecordTy
7767        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7768      ExceptSpec.CalledDecl(F->getLocation(),
7769                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7770  }
7771
7772  return ExceptSpec;
7773}
7774
7775CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7776  // C++ [class.dtor]p2:
7777  //   If a class has no user-declared destructor, a destructor is
7778  //   declared implicitly. An implicitly-declared destructor is an
7779  //   inline public member of its class.
7780  assert(ClassDecl->needsImplicitDestructor());
7781
7782  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
7783  if (DSM.isAlreadyBeingDeclared())
7784    return 0;
7785
7786  // Create the actual destructor declaration.
7787  CanQualType ClassType
7788    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7789  SourceLocation ClassLoc = ClassDecl->getLocation();
7790  DeclarationName Name
7791    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7792  DeclarationNameInfo NameInfo(Name, ClassLoc);
7793  CXXDestructorDecl *Destructor
7794      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7795                                  QualType(), 0, /*isInline=*/true,
7796                                  /*isImplicitlyDeclared=*/true);
7797  Destructor->setAccess(AS_public);
7798  Destructor->setDefaulted();
7799  Destructor->setImplicit();
7800
7801  // Build an exception specification pointing back at this destructor.
7802  FunctionProtoType::ExtProtoInfo EPI;
7803  EPI.ExceptionSpecType = EST_Unevaluated;
7804  EPI.ExceptionSpecDecl = Destructor;
7805  Destructor->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7806
7807  AddOverriddenMethods(ClassDecl, Destructor);
7808
7809  // We don't need to use SpecialMemberIsTrivial here; triviality for
7810  // destructors is easy to compute.
7811  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7812
7813  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7814    Destructor->setDeletedAsWritten();
7815
7816  // Note that we have declared this destructor.
7817  ++ASTContext::NumImplicitDestructorsDeclared;
7818
7819  // Introduce this destructor into its scope.
7820  if (Scope *S = getScopeForContext(ClassDecl))
7821    PushOnScopeChains(Destructor, S, false);
7822  ClassDecl->addDecl(Destructor);
7823
7824  return Destructor;
7825}
7826
7827void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7828                                    CXXDestructorDecl *Destructor) {
7829  assert((Destructor->isDefaulted() &&
7830          !Destructor->doesThisDeclarationHaveABody() &&
7831          !Destructor->isDeleted()) &&
7832         "DefineImplicitDestructor - call it for implicit default dtor");
7833  CXXRecordDecl *ClassDecl = Destructor->getParent();
7834  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7835
7836  if (Destructor->isInvalidDecl())
7837    return;
7838
7839  SynthesizedFunctionScope Scope(*this, Destructor);
7840
7841  DiagnosticErrorTrap Trap(Diags);
7842  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7843                                         Destructor->getParent());
7844
7845  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7846    Diag(CurrentLocation, diag::note_member_synthesized_at)
7847      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7848
7849    Destructor->setInvalidDecl();
7850    return;
7851  }
7852
7853  SourceLocation Loc = Destructor->getLocation();
7854  Destructor->setBody(new (Context) CompoundStmt(Loc));
7855  Destructor->setImplicitlyDefined(true);
7856  Destructor->setUsed();
7857  MarkVTableUsed(CurrentLocation, ClassDecl);
7858
7859  if (ASTMutationListener *L = getASTMutationListener()) {
7860    L->CompletedImplicitDefinition(Destructor);
7861  }
7862}
7863
7864/// \brief Perform any semantic analysis which needs to be delayed until all
7865/// pending class member declarations have been parsed.
7866void Sema::ActOnFinishCXXMemberDecls() {
7867  // Perform any deferred checking of exception specifications for virtual
7868  // destructors.
7869  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
7870       i != e; ++i) {
7871    const CXXDestructorDecl *Dtor =
7872        DelayedDestructorExceptionSpecChecks[i].first;
7873    assert(!Dtor->getParent()->isDependentType() &&
7874           "Should not ever add destructors of templates into the list.");
7875    CheckOverridingFunctionExceptionSpec(Dtor,
7876        DelayedDestructorExceptionSpecChecks[i].second);
7877  }
7878  DelayedDestructorExceptionSpecChecks.clear();
7879}
7880
7881void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
7882                                         CXXDestructorDecl *Destructor) {
7883  assert(getLangOpts().CPlusPlus0x &&
7884         "adjusting dtor exception specs was introduced in c++11");
7885
7886  // C++11 [class.dtor]p3:
7887  //   A declaration of a destructor that does not have an exception-
7888  //   specification is implicitly considered to have the same exception-
7889  //   specification as an implicit declaration.
7890  const FunctionProtoType *DtorType = Destructor->getType()->
7891                                        getAs<FunctionProtoType>();
7892  if (DtorType->hasExceptionSpec())
7893    return;
7894
7895  // Replace the destructor's type, building off the existing one. Fortunately,
7896  // the only thing of interest in the destructor type is its extended info.
7897  // The return and arguments are fixed.
7898  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
7899  EPI.ExceptionSpecType = EST_Unevaluated;
7900  EPI.ExceptionSpecDecl = Destructor;
7901  Destructor->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7902
7903  // FIXME: If the destructor has a body that could throw, and the newly created
7904  // spec doesn't allow exceptions, we should emit a warning, because this
7905  // change in behavior can break conforming C++03 programs at runtime.
7906  // However, we don't have a body or an exception specification yet, so it
7907  // needs to be done somewhere else.
7908}
7909
7910/// When generating a defaulted copy or move assignment operator, if a field
7911/// should be copied with __builtin_memcpy rather than via explicit assignments,
7912/// do so. This optimization only applies for arrays of scalars, and for arrays
7913/// of class type where the selected copy/move-assignment operator is trivial.
7914static StmtResult
7915buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
7916                           Expr *To, Expr *From) {
7917  // Compute the size of the memory buffer to be copied.
7918  QualType SizeType = S.Context.getSizeType();
7919  llvm::APInt Size(S.Context.getTypeSize(SizeType),
7920                   S.Context.getTypeSizeInChars(T).getQuantity());
7921
7922  // Take the address of the field references for "from" and "to". We
7923  // directly construct UnaryOperators here because semantic analysis
7924  // does not permit us to take the address of an xvalue.
7925  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
7926                         S.Context.getPointerType(From->getType()),
7927                         VK_RValue, OK_Ordinary, Loc);
7928  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
7929                       S.Context.getPointerType(To->getType()),
7930                       VK_RValue, OK_Ordinary, Loc);
7931
7932  const Type *E = T->getBaseElementTypeUnsafe();
7933  bool NeedsCollectableMemCpy =
7934    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
7935
7936  // Create a reference to the __builtin_objc_memmove_collectable function
7937  StringRef MemCpyName = NeedsCollectableMemCpy ?
7938    "__builtin_objc_memmove_collectable" :
7939    "__builtin_memcpy";
7940  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
7941                 Sema::LookupOrdinaryName);
7942  S.LookupName(R, S.TUScope, true);
7943
7944  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
7945  if (!MemCpy)
7946    // Something went horribly wrong earlier, and we will have complained
7947    // about it.
7948    return StmtError();
7949
7950  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
7951                                            VK_RValue, Loc, 0);
7952  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
7953
7954  Expr *CallArgs[] = {
7955    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
7956  };
7957  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
7958                                    Loc, CallArgs, Loc);
7959
7960  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7961  return S.Owned(Call.takeAs<Stmt>());
7962}
7963
7964/// \brief Builds a statement that copies/moves the given entity from \p From to
7965/// \c To.
7966///
7967/// This routine is used to copy/move the members of a class with an
7968/// implicitly-declared copy/move assignment operator. When the entities being
7969/// copied are arrays, this routine builds for loops to copy them.
7970///
7971/// \param S The Sema object used for type-checking.
7972///
7973/// \param Loc The location where the implicit copy/move is being generated.
7974///
7975/// \param T The type of the expressions being copied/moved. Both expressions
7976/// must have this type.
7977///
7978/// \param To The expression we are copying/moving to.
7979///
7980/// \param From The expression we are copying/moving from.
7981///
7982/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7983/// Otherwise, it's a non-static member subobject.
7984///
7985/// \param Copying Whether we're copying or moving.
7986///
7987/// \param Depth Internal parameter recording the depth of the recursion.
7988///
7989/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
7990/// if a memcpy should be used instead.
7991static StmtResult
7992buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
7993                                 Expr *To, Expr *From,
7994                                 bool CopyingBaseSubobject, bool Copying,
7995                                 unsigned Depth = 0) {
7996  // C++11 [class.copy]p28:
7997  //   Each subobject is assigned in the manner appropriate to its type:
7998  //
7999  //     - if the subobject is of class type, as if by a call to operator= with
8000  //       the subobject as the object expression and the corresponding
8001  //       subobject of x as a single function argument (as if by explicit
8002  //       qualification; that is, ignoring any possible virtual overriding
8003  //       functions in more derived classes);
8004  //
8005  // C++03 [class.copy]p13:
8006  //     - if the subobject is of class type, the copy assignment operator for
8007  //       the class is used (as if by explicit qualification; that is,
8008  //       ignoring any possible virtual overriding functions in more derived
8009  //       classes);
8010  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8011    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8012
8013    // Look for operator=.
8014    DeclarationName Name
8015      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8016    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8017    S.LookupQualifiedName(OpLookup, ClassDecl, false);
8018
8019    // Prior to C++11, filter out any result that isn't a copy/move-assignment
8020    // operator.
8021    if (!S.getLangOpts().CPlusPlus0x) {
8022      LookupResult::Filter F = OpLookup.makeFilter();
8023      while (F.hasNext()) {
8024        NamedDecl *D = F.next();
8025        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8026          if (Method->isCopyAssignmentOperator() ||
8027              (!Copying && Method->isMoveAssignmentOperator()))
8028            continue;
8029
8030        F.erase();
8031      }
8032      F.done();
8033    }
8034
8035    // Suppress the protected check (C++ [class.protected]) for each of the
8036    // assignment operators we found. This strange dance is required when
8037    // we're assigning via a base classes's copy-assignment operator. To
8038    // ensure that we're getting the right base class subobject (without
8039    // ambiguities), we need to cast "this" to that subobject type; to
8040    // ensure that we don't go through the virtual call mechanism, we need
8041    // to qualify the operator= name with the base class (see below). However,
8042    // this means that if the base class has a protected copy assignment
8043    // operator, the protected member access check will fail. So, we
8044    // rewrite "protected" access to "public" access in this case, since we
8045    // know by construction that we're calling from a derived class.
8046    if (CopyingBaseSubobject) {
8047      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8048           L != LEnd; ++L) {
8049        if (L.getAccess() == AS_protected)
8050          L.setAccess(AS_public);
8051      }
8052    }
8053
8054    // Create the nested-name-specifier that will be used to qualify the
8055    // reference to operator=; this is required to suppress the virtual
8056    // call mechanism.
8057    CXXScopeSpec SS;
8058    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
8059    SS.MakeTrivial(S.Context,
8060                   NestedNameSpecifier::Create(S.Context, 0, false,
8061                                               CanonicalT),
8062                   Loc);
8063
8064    // Create the reference to operator=.
8065    ExprResult OpEqualRef
8066      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
8067                                   /*TemplateKWLoc=*/SourceLocation(),
8068                                   /*FirstQualifierInScope=*/0,
8069                                   OpLookup,
8070                                   /*TemplateArgs=*/0,
8071                                   /*SuppressQualifierCheck=*/true);
8072    if (OpEqualRef.isInvalid())
8073      return StmtError();
8074
8075    // Build the call to the assignment operator.
8076
8077    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
8078                                                  OpEqualRef.takeAs<Expr>(),
8079                                                  Loc, &From, 1, Loc);
8080    if (Call.isInvalid())
8081      return StmtError();
8082
8083    // If we built a call to a trivial 'operator=' while copying an array,
8084    // bail out. We'll replace the whole shebang with a memcpy.
8085    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
8086    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
8087      return StmtResult((Stmt*)0);
8088
8089    // Convert to an expression-statement, and clean up any produced
8090    // temporaries.
8091    return S.ActOnExprStmt(S.MakeFullExpr(Call.take(), Loc));
8092  }
8093
8094  //     - if the subobject is of scalar type, the built-in assignment
8095  //       operator is used.
8096  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
8097  if (!ArrayTy) {
8098    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
8099    if (Assignment.isInvalid())
8100      return StmtError();
8101    return S.ActOnExprStmt(S.MakeFullExpr(Assignment.take(), Loc));
8102  }
8103
8104  //     - if the subobject is an array, each element is assigned, in the
8105  //       manner appropriate to the element type;
8106
8107  // Construct a loop over the array bounds, e.g.,
8108  //
8109  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
8110  //
8111  // that will copy each of the array elements.
8112  QualType SizeType = S.Context.getSizeType();
8113
8114  // Create the iteration variable.
8115  IdentifierInfo *IterationVarName = 0;
8116  {
8117    SmallString<8> Str;
8118    llvm::raw_svector_ostream OS(Str);
8119    OS << "__i" << Depth;
8120    IterationVarName = &S.Context.Idents.get(OS.str());
8121  }
8122  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
8123                                          IterationVarName, SizeType,
8124                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
8125                                          SC_None, SC_None);
8126
8127  // Initialize the iteration variable to zero.
8128  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8129  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8130
8131  // Create a reference to the iteration variable; we'll use this several
8132  // times throughout.
8133  Expr *IterationVarRef
8134    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
8135  assert(IterationVarRef && "Reference to invented variable cannot fail!");
8136  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
8137  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
8138
8139  // Create the DeclStmt that holds the iteration variable.
8140  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
8141
8142  // Subscript the "from" and "to" expressions with the iteration variable.
8143  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
8144                                                         IterationVarRefRVal,
8145                                                         Loc));
8146  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
8147                                                       IterationVarRefRVal,
8148                                                       Loc));
8149  if (!Copying) // Cast to rvalue
8150    From = CastForMoving(S, From);
8151
8152  // Build the copy/move for an individual element of the array.
8153  StmtResult Copy =
8154    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
8155                                     To, From, CopyingBaseSubobject,
8156                                     Copying, Depth + 1);
8157  // Bail out if copying fails or if we determined that we should use memcpy.
8158  if (Copy.isInvalid() || !Copy.get())
8159    return Copy;
8160
8161  // Create the comparison against the array bound.
8162  llvm::APInt Upper
8163    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
8164  Expr *Comparison
8165    = new (S.Context) BinaryOperator(IterationVarRefRVal,
8166                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
8167                                     BO_NE, S.Context.BoolTy,
8168                                     VK_RValue, OK_Ordinary, Loc, false);
8169
8170  // Create the pre-increment of the iteration variable.
8171  Expr *Increment
8172    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
8173                                    VK_LValue, OK_Ordinary, Loc);
8174
8175  // Construct the loop that copies all elements of this array.
8176  return S.ActOnForStmt(Loc, Loc, InitStmt,
8177                        S.MakeFullExpr(Comparison),
8178                        0, S.MakeFullExpr(Increment),
8179                        Loc, Copy.take());
8180}
8181
8182static StmtResult
8183buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
8184                      Expr *To, Expr *From,
8185                      bool CopyingBaseSubobject, bool Copying) {
8186  // Maybe we should use a memcpy?
8187  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
8188      T.isTriviallyCopyableType(S.Context))
8189    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8190
8191  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
8192                                                     CopyingBaseSubobject,
8193                                                     Copying, 0));
8194
8195  // If we ended up picking a trivial assignment operator for an array of a
8196  // non-trivially-copyable class type, just emit a memcpy.
8197  if (!Result.isInvalid() && !Result.get())
8198    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8199
8200  return Result;
8201}
8202
8203Sema::ImplicitExceptionSpecification
8204Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
8205  CXXRecordDecl *ClassDecl = MD->getParent();
8206
8207  ImplicitExceptionSpecification ExceptSpec(*this);
8208  if (ClassDecl->isInvalidDecl())
8209    return ExceptSpec;
8210
8211  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8212  assert(T->getNumArgs() == 1 && "not a copy assignment op");
8213  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8214
8215  // C++ [except.spec]p14:
8216  //   An implicitly declared special member function (Clause 12) shall have an
8217  //   exception-specification. [...]
8218
8219  // It is unspecified whether or not an implicit copy assignment operator
8220  // attempts to deduplicate calls to assignment operators of virtual bases are
8221  // made. As such, this exception specification is effectively unspecified.
8222  // Based on a similar decision made for constness in C++0x, we're erring on
8223  // the side of assuming such calls to be made regardless of whether they
8224  // actually happen.
8225  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8226                                       BaseEnd = ClassDecl->bases_end();
8227       Base != BaseEnd; ++Base) {
8228    if (Base->isVirtual())
8229      continue;
8230
8231    CXXRecordDecl *BaseClassDecl
8232      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8233    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8234                                                            ArgQuals, false, 0))
8235      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8236  }
8237
8238  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8239                                       BaseEnd = ClassDecl->vbases_end();
8240       Base != BaseEnd; ++Base) {
8241    CXXRecordDecl *BaseClassDecl
8242      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8243    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8244                                                            ArgQuals, false, 0))
8245      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8246  }
8247
8248  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8249                                  FieldEnd = ClassDecl->field_end();
8250       Field != FieldEnd;
8251       ++Field) {
8252    QualType FieldType = Context.getBaseElementType(Field->getType());
8253    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8254      if (CXXMethodDecl *CopyAssign =
8255          LookupCopyingAssignment(FieldClassDecl,
8256                                  ArgQuals | FieldType.getCVRQualifiers(),
8257                                  false, 0))
8258        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
8259    }
8260  }
8261
8262  return ExceptSpec;
8263}
8264
8265CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
8266  // Note: The following rules are largely analoguous to the copy
8267  // constructor rules. Note that virtual bases are not taken into account
8268  // for determining the argument type of the operator. Note also that
8269  // operators taking an object instead of a reference are allowed.
8270  assert(ClassDecl->needsImplicitCopyAssignment());
8271
8272  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
8273  if (DSM.isAlreadyBeingDeclared())
8274    return 0;
8275
8276  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8277  QualType RetType = Context.getLValueReferenceType(ArgType);
8278  if (ClassDecl->implicitCopyAssignmentHasConstParam())
8279    ArgType = ArgType.withConst();
8280  ArgType = Context.getLValueReferenceType(ArgType);
8281
8282  //   An implicitly-declared copy assignment operator is an inline public
8283  //   member of its class.
8284  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8285  SourceLocation ClassLoc = ClassDecl->getLocation();
8286  DeclarationNameInfo NameInfo(Name, ClassLoc);
8287  CXXMethodDecl *CopyAssignment
8288    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8289                            /*TInfo=*/0, /*isStatic=*/false,
8290                            /*StorageClassAsWritten=*/SC_None,
8291                            /*isInline=*/true, /*isConstexpr=*/false,
8292                            SourceLocation());
8293  CopyAssignment->setAccess(AS_public);
8294  CopyAssignment->setDefaulted();
8295  CopyAssignment->setImplicit();
8296
8297  // Build an exception specification pointing back at this member.
8298  FunctionProtoType::ExtProtoInfo EPI;
8299  EPI.ExceptionSpecType = EST_Unevaluated;
8300  EPI.ExceptionSpecDecl = CopyAssignment;
8301  CopyAssignment->setType(Context.getFunctionType(RetType, &ArgType, 1, EPI));
8302
8303  // Add the parameter to the operator.
8304  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
8305                                               ClassLoc, ClassLoc, /*Id=*/0,
8306                                               ArgType, /*TInfo=*/0,
8307                                               SC_None,
8308                                               SC_None, 0);
8309  CopyAssignment->setParams(FromParam);
8310
8311  AddOverriddenMethods(ClassDecl, CopyAssignment);
8312
8313  CopyAssignment->setTrivial(
8314    ClassDecl->needsOverloadResolutionForCopyAssignment()
8315      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
8316      : ClassDecl->hasTrivialCopyAssignment());
8317
8318  // C++0x [class.copy]p19:
8319  //   ....  If the class definition does not explicitly declare a copy
8320  //   assignment operator, there is no user-declared move constructor, and
8321  //   there is no user-declared move assignment operator, a copy assignment
8322  //   operator is implicitly declared as defaulted.
8323  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
8324    CopyAssignment->setDeletedAsWritten();
8325
8326  // Note that we have added this copy-assignment operator.
8327  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
8328
8329  if (Scope *S = getScopeForContext(ClassDecl))
8330    PushOnScopeChains(CopyAssignment, S, false);
8331  ClassDecl->addDecl(CopyAssignment);
8332
8333  return CopyAssignment;
8334}
8335
8336void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
8337                                        CXXMethodDecl *CopyAssignOperator) {
8338  assert((CopyAssignOperator->isDefaulted() &&
8339          CopyAssignOperator->isOverloadedOperator() &&
8340          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
8341          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
8342          !CopyAssignOperator->isDeleted()) &&
8343         "DefineImplicitCopyAssignment called for wrong function");
8344
8345  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
8346
8347  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
8348    CopyAssignOperator->setInvalidDecl();
8349    return;
8350  }
8351
8352  CopyAssignOperator->setUsed();
8353
8354  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
8355  DiagnosticErrorTrap Trap(Diags);
8356
8357  // C++0x [class.copy]p30:
8358  //   The implicitly-defined or explicitly-defaulted copy assignment operator
8359  //   for a non-union class X performs memberwise copy assignment of its
8360  //   subobjects. The direct base classes of X are assigned first, in the
8361  //   order of their declaration in the base-specifier-list, and then the
8362  //   immediate non-static data members of X are assigned, in the order in
8363  //   which they were declared in the class definition.
8364
8365  // The statements that form the synthesized function body.
8366  SmallVector<Stmt*, 8> Statements;
8367
8368  // The parameter for the "other" object, which we are copying from.
8369  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
8370  Qualifiers OtherQuals = Other->getType().getQualifiers();
8371  QualType OtherRefType = Other->getType();
8372  if (const LValueReferenceType *OtherRef
8373                                = OtherRefType->getAs<LValueReferenceType>()) {
8374    OtherRefType = OtherRef->getPointeeType();
8375    OtherQuals = OtherRefType.getQualifiers();
8376  }
8377
8378  // Our location for everything implicitly-generated.
8379  SourceLocation Loc = CopyAssignOperator->getLocation();
8380
8381  // Construct a reference to the "other" object. We'll be using this
8382  // throughout the generated ASTs.
8383  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8384  assert(OtherRef && "Reference to parameter cannot fail!");
8385
8386  // Construct the "this" pointer. We'll be using this throughout the generated
8387  // ASTs.
8388  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8389  assert(This && "Reference to this cannot fail!");
8390
8391  // Assign base classes.
8392  bool Invalid = false;
8393  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8394       E = ClassDecl->bases_end(); Base != E; ++Base) {
8395    // Form the assignment:
8396    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
8397    QualType BaseType = Base->getType().getUnqualifiedType();
8398    if (!BaseType->isRecordType()) {
8399      Invalid = true;
8400      continue;
8401    }
8402
8403    CXXCastPath BasePath;
8404    BasePath.push_back(Base);
8405
8406    // Construct the "from" expression, which is an implicit cast to the
8407    // appropriately-qualified base type.
8408    Expr *From = OtherRef;
8409    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
8410                             CK_UncheckedDerivedToBase,
8411                             VK_LValue, &BasePath).take();
8412
8413    // Dereference "this".
8414    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8415
8416    // Implicitly cast "this" to the appropriately-qualified base type.
8417    To = ImpCastExprToType(To.take(),
8418                           Context.getCVRQualifiedType(BaseType,
8419                                     CopyAssignOperator->getTypeQualifiers()),
8420                           CK_UncheckedDerivedToBase,
8421                           VK_LValue, &BasePath);
8422
8423    // Build the copy.
8424    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
8425                                            To.get(), From,
8426                                            /*CopyingBaseSubobject=*/true,
8427                                            /*Copying=*/true);
8428    if (Copy.isInvalid()) {
8429      Diag(CurrentLocation, diag::note_member_synthesized_at)
8430        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8431      CopyAssignOperator->setInvalidDecl();
8432      return;
8433    }
8434
8435    // Success! Record the copy.
8436    Statements.push_back(Copy.takeAs<Expr>());
8437  }
8438
8439  // Assign non-static members.
8440  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8441                                  FieldEnd = ClassDecl->field_end();
8442       Field != FieldEnd; ++Field) {
8443    if (Field->isUnnamedBitfield())
8444      continue;
8445
8446    // Check for members of reference type; we can't copy those.
8447    if (Field->getType()->isReferenceType()) {
8448      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8449        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8450      Diag(Field->getLocation(), diag::note_declared_at);
8451      Diag(CurrentLocation, diag::note_member_synthesized_at)
8452        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8453      Invalid = true;
8454      continue;
8455    }
8456
8457    // Check for members of const-qualified, non-class type.
8458    QualType BaseType = Context.getBaseElementType(Field->getType());
8459    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8460      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8461        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8462      Diag(Field->getLocation(), diag::note_declared_at);
8463      Diag(CurrentLocation, diag::note_member_synthesized_at)
8464        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8465      Invalid = true;
8466      continue;
8467    }
8468
8469    // Suppress assigning zero-width bitfields.
8470    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8471      continue;
8472
8473    QualType FieldType = Field->getType().getNonReferenceType();
8474    if (FieldType->isIncompleteArrayType()) {
8475      assert(ClassDecl->hasFlexibleArrayMember() &&
8476             "Incomplete array type is not valid");
8477      continue;
8478    }
8479
8480    // Build references to the field in the object we're copying from and to.
8481    CXXScopeSpec SS; // Intentionally empty
8482    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8483                              LookupMemberName);
8484    MemberLookup.addDecl(*Field);
8485    MemberLookup.resolveKind();
8486    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8487                                               Loc, /*IsArrow=*/false,
8488                                               SS, SourceLocation(), 0,
8489                                               MemberLookup, 0);
8490    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8491                                             Loc, /*IsArrow=*/true,
8492                                             SS, SourceLocation(), 0,
8493                                             MemberLookup, 0);
8494    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8495    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8496
8497    // Build the copy of this field.
8498    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
8499                                            To.get(), From.get(),
8500                                            /*CopyingBaseSubobject=*/false,
8501                                            /*Copying=*/true);
8502    if (Copy.isInvalid()) {
8503      Diag(CurrentLocation, diag::note_member_synthesized_at)
8504        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8505      CopyAssignOperator->setInvalidDecl();
8506      return;
8507    }
8508
8509    // Success! Record the copy.
8510    Statements.push_back(Copy.takeAs<Stmt>());
8511  }
8512
8513  if (!Invalid) {
8514    // Add a "return *this;"
8515    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8516
8517    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8518    if (Return.isInvalid())
8519      Invalid = true;
8520    else {
8521      Statements.push_back(Return.takeAs<Stmt>());
8522
8523      if (Trap.hasErrorOccurred()) {
8524        Diag(CurrentLocation, diag::note_member_synthesized_at)
8525          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8526        Invalid = true;
8527      }
8528    }
8529  }
8530
8531  if (Invalid) {
8532    CopyAssignOperator->setInvalidDecl();
8533    return;
8534  }
8535
8536  StmtResult Body;
8537  {
8538    CompoundScopeRAII CompoundScope(*this);
8539    Body = ActOnCompoundStmt(Loc, Loc, Statements,
8540                             /*isStmtExpr=*/false);
8541    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8542  }
8543  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8544
8545  if (ASTMutationListener *L = getASTMutationListener()) {
8546    L->CompletedImplicitDefinition(CopyAssignOperator);
8547  }
8548}
8549
8550Sema::ImplicitExceptionSpecification
8551Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
8552  CXXRecordDecl *ClassDecl = MD->getParent();
8553
8554  ImplicitExceptionSpecification ExceptSpec(*this);
8555  if (ClassDecl->isInvalidDecl())
8556    return ExceptSpec;
8557
8558  // C++0x [except.spec]p14:
8559  //   An implicitly declared special member function (Clause 12) shall have an
8560  //   exception-specification. [...]
8561
8562  // It is unspecified whether or not an implicit move assignment operator
8563  // attempts to deduplicate calls to assignment operators of virtual bases are
8564  // made. As such, this exception specification is effectively unspecified.
8565  // Based on a similar decision made for constness in C++0x, we're erring on
8566  // the side of assuming such calls to be made regardless of whether they
8567  // actually happen.
8568  // Note that a move constructor is not implicitly declared when there are
8569  // virtual bases, but it can still be user-declared and explicitly defaulted.
8570  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8571                                       BaseEnd = ClassDecl->bases_end();
8572       Base != BaseEnd; ++Base) {
8573    if (Base->isVirtual())
8574      continue;
8575
8576    CXXRecordDecl *BaseClassDecl
8577      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8578    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8579                                                           0, false, 0))
8580      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8581  }
8582
8583  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8584                                       BaseEnd = ClassDecl->vbases_end();
8585       Base != BaseEnd; ++Base) {
8586    CXXRecordDecl *BaseClassDecl
8587      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8588    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8589                                                           0, false, 0))
8590      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8591  }
8592
8593  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8594                                  FieldEnd = ClassDecl->field_end();
8595       Field != FieldEnd;
8596       ++Field) {
8597    QualType FieldType = Context.getBaseElementType(Field->getType());
8598    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8599      if (CXXMethodDecl *MoveAssign =
8600              LookupMovingAssignment(FieldClassDecl,
8601                                     FieldType.getCVRQualifiers(),
8602                                     false, 0))
8603        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8604    }
8605  }
8606
8607  return ExceptSpec;
8608}
8609
8610/// Determine whether the class type has any direct or indirect virtual base
8611/// classes which have a non-trivial move assignment operator.
8612static bool
8613hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8614  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8615                                          BaseEnd = ClassDecl->vbases_end();
8616       Base != BaseEnd; ++Base) {
8617    CXXRecordDecl *BaseClass =
8618        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8619
8620    // Try to declare the move assignment. If it would be deleted, then the
8621    // class does not have a non-trivial move assignment.
8622    if (BaseClass->needsImplicitMoveAssignment())
8623      S.DeclareImplicitMoveAssignment(BaseClass);
8624
8625    if (BaseClass->hasNonTrivialMoveAssignment())
8626      return true;
8627  }
8628
8629  return false;
8630}
8631
8632/// Determine whether the given type either has a move constructor or is
8633/// trivially copyable.
8634static bool
8635hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8636  Type = S.Context.getBaseElementType(Type);
8637
8638  // FIXME: Technically, non-trivially-copyable non-class types, such as
8639  // reference types, are supposed to return false here, but that appears
8640  // to be a standard defect.
8641  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8642  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
8643    return true;
8644
8645  if (Type.isTriviallyCopyableType(S.Context))
8646    return true;
8647
8648  if (IsConstructor) {
8649    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
8650    // give the right answer.
8651    if (ClassDecl->needsImplicitMoveConstructor())
8652      S.DeclareImplicitMoveConstructor(ClassDecl);
8653    return ClassDecl->hasMoveConstructor();
8654  }
8655
8656  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
8657  // give the right answer.
8658  if (ClassDecl->needsImplicitMoveAssignment())
8659    S.DeclareImplicitMoveAssignment(ClassDecl);
8660  return ClassDecl->hasMoveAssignment();
8661}
8662
8663/// Determine whether all non-static data members and direct or virtual bases
8664/// of class \p ClassDecl have either a move operation, or are trivially
8665/// copyable.
8666static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8667                                            bool IsConstructor) {
8668  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8669                                          BaseEnd = ClassDecl->bases_end();
8670       Base != BaseEnd; ++Base) {
8671    if (Base->isVirtual())
8672      continue;
8673
8674    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8675      return false;
8676  }
8677
8678  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8679                                          BaseEnd = ClassDecl->vbases_end();
8680       Base != BaseEnd; ++Base) {
8681    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8682      return false;
8683  }
8684
8685  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8686                                     FieldEnd = ClassDecl->field_end();
8687       Field != FieldEnd; ++Field) {
8688    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8689      return false;
8690  }
8691
8692  return true;
8693}
8694
8695CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8696  // C++11 [class.copy]p20:
8697  //   If the definition of a class X does not explicitly declare a move
8698  //   assignment operator, one will be implicitly declared as defaulted
8699  //   if and only if:
8700  //
8701  //   - [first 4 bullets]
8702  assert(ClassDecl->needsImplicitMoveAssignment());
8703
8704  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
8705  if (DSM.isAlreadyBeingDeclared())
8706    return 0;
8707
8708  // [Checked after we build the declaration]
8709  //   - the move assignment operator would not be implicitly defined as
8710  //     deleted,
8711
8712  // [DR1402]:
8713  //   - X has no direct or indirect virtual base class with a non-trivial
8714  //     move assignment operator, and
8715  //   - each of X's non-static data members and direct or virtual base classes
8716  //     has a type that either has a move assignment operator or is trivially
8717  //     copyable.
8718  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8719      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8720    ClassDecl->setFailedImplicitMoveAssignment();
8721    return 0;
8722  }
8723
8724  // Note: The following rules are largely analoguous to the move
8725  // constructor rules.
8726
8727  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8728  QualType RetType = Context.getLValueReferenceType(ArgType);
8729  ArgType = Context.getRValueReferenceType(ArgType);
8730
8731  //   An implicitly-declared move assignment operator is an inline public
8732  //   member of its class.
8733  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8734  SourceLocation ClassLoc = ClassDecl->getLocation();
8735  DeclarationNameInfo NameInfo(Name, ClassLoc);
8736  CXXMethodDecl *MoveAssignment
8737    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8738                            /*TInfo=*/0, /*isStatic=*/false,
8739                            /*StorageClassAsWritten=*/SC_None,
8740                            /*isInline=*/true,
8741                            /*isConstexpr=*/false,
8742                            SourceLocation());
8743  MoveAssignment->setAccess(AS_public);
8744  MoveAssignment->setDefaulted();
8745  MoveAssignment->setImplicit();
8746
8747  // Build an exception specification pointing back at this member.
8748  FunctionProtoType::ExtProtoInfo EPI;
8749  EPI.ExceptionSpecType = EST_Unevaluated;
8750  EPI.ExceptionSpecDecl = MoveAssignment;
8751  MoveAssignment->setType(Context.getFunctionType(RetType, &ArgType, 1, EPI));
8752
8753  // Add the parameter to the operator.
8754  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8755                                               ClassLoc, ClassLoc, /*Id=*/0,
8756                                               ArgType, /*TInfo=*/0,
8757                                               SC_None,
8758                                               SC_None, 0);
8759  MoveAssignment->setParams(FromParam);
8760
8761  AddOverriddenMethods(ClassDecl, MoveAssignment);
8762
8763  MoveAssignment->setTrivial(
8764    ClassDecl->needsOverloadResolutionForMoveAssignment()
8765      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
8766      : ClassDecl->hasTrivialMoveAssignment());
8767
8768  // C++0x [class.copy]p9:
8769  //   If the definition of a class X does not explicitly declare a move
8770  //   assignment operator, one will be implicitly declared as defaulted if and
8771  //   only if:
8772  //   [...]
8773  //   - the move assignment operator would not be implicitly defined as
8774  //     deleted.
8775  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8776    // Cache this result so that we don't try to generate this over and over
8777    // on every lookup, leaking memory and wasting time.
8778    ClassDecl->setFailedImplicitMoveAssignment();
8779    return 0;
8780  }
8781
8782  // Note that we have added this copy-assignment operator.
8783  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8784
8785  if (Scope *S = getScopeForContext(ClassDecl))
8786    PushOnScopeChains(MoveAssignment, S, false);
8787  ClassDecl->addDecl(MoveAssignment);
8788
8789  return MoveAssignment;
8790}
8791
8792void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8793                                        CXXMethodDecl *MoveAssignOperator) {
8794  assert((MoveAssignOperator->isDefaulted() &&
8795          MoveAssignOperator->isOverloadedOperator() &&
8796          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8797          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8798          !MoveAssignOperator->isDeleted()) &&
8799         "DefineImplicitMoveAssignment called for wrong function");
8800
8801  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8802
8803  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8804    MoveAssignOperator->setInvalidDecl();
8805    return;
8806  }
8807
8808  MoveAssignOperator->setUsed();
8809
8810  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
8811  DiagnosticErrorTrap Trap(Diags);
8812
8813  // C++0x [class.copy]p28:
8814  //   The implicitly-defined or move assignment operator for a non-union class
8815  //   X performs memberwise move assignment of its subobjects. The direct base
8816  //   classes of X are assigned first, in the order of their declaration in the
8817  //   base-specifier-list, and then the immediate non-static data members of X
8818  //   are assigned, in the order in which they were declared in the class
8819  //   definition.
8820
8821  // The statements that form the synthesized function body.
8822  SmallVector<Stmt*, 8> Statements;
8823
8824  // The parameter for the "other" object, which we are move from.
8825  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8826  QualType OtherRefType = Other->getType()->
8827      getAs<RValueReferenceType>()->getPointeeType();
8828  assert(OtherRefType.getQualifiers() == 0 &&
8829         "Bad argument type of defaulted move assignment");
8830
8831  // Our location for everything implicitly-generated.
8832  SourceLocation Loc = MoveAssignOperator->getLocation();
8833
8834  // Construct a reference to the "other" object. We'll be using this
8835  // throughout the generated ASTs.
8836  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8837  assert(OtherRef && "Reference to parameter cannot fail!");
8838  // Cast to rvalue.
8839  OtherRef = CastForMoving(*this, OtherRef);
8840
8841  // Construct the "this" pointer. We'll be using this throughout the generated
8842  // ASTs.
8843  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8844  assert(This && "Reference to this cannot fail!");
8845
8846  // Assign base classes.
8847  bool Invalid = false;
8848  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8849       E = ClassDecl->bases_end(); Base != E; ++Base) {
8850    // Form the assignment:
8851    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8852    QualType BaseType = Base->getType().getUnqualifiedType();
8853    if (!BaseType->isRecordType()) {
8854      Invalid = true;
8855      continue;
8856    }
8857
8858    CXXCastPath BasePath;
8859    BasePath.push_back(Base);
8860
8861    // Construct the "from" expression, which is an implicit cast to the
8862    // appropriately-qualified base type.
8863    Expr *From = OtherRef;
8864    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8865                             VK_XValue, &BasePath).take();
8866
8867    // Dereference "this".
8868    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8869
8870    // Implicitly cast "this" to the appropriately-qualified base type.
8871    To = ImpCastExprToType(To.take(),
8872                           Context.getCVRQualifiedType(BaseType,
8873                                     MoveAssignOperator->getTypeQualifiers()),
8874                           CK_UncheckedDerivedToBase,
8875                           VK_LValue, &BasePath);
8876
8877    // Build the move.
8878    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
8879                                            To.get(), From,
8880                                            /*CopyingBaseSubobject=*/true,
8881                                            /*Copying=*/false);
8882    if (Move.isInvalid()) {
8883      Diag(CurrentLocation, diag::note_member_synthesized_at)
8884        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8885      MoveAssignOperator->setInvalidDecl();
8886      return;
8887    }
8888
8889    // Success! Record the move.
8890    Statements.push_back(Move.takeAs<Expr>());
8891  }
8892
8893  // Assign non-static members.
8894  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8895                                  FieldEnd = ClassDecl->field_end();
8896       Field != FieldEnd; ++Field) {
8897    if (Field->isUnnamedBitfield())
8898      continue;
8899
8900    // Check for members of reference type; we can't move those.
8901    if (Field->getType()->isReferenceType()) {
8902      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8903        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8904      Diag(Field->getLocation(), diag::note_declared_at);
8905      Diag(CurrentLocation, diag::note_member_synthesized_at)
8906        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8907      Invalid = true;
8908      continue;
8909    }
8910
8911    // Check for members of const-qualified, non-class type.
8912    QualType BaseType = Context.getBaseElementType(Field->getType());
8913    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8914      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8915        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8916      Diag(Field->getLocation(), diag::note_declared_at);
8917      Diag(CurrentLocation, diag::note_member_synthesized_at)
8918        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8919      Invalid = true;
8920      continue;
8921    }
8922
8923    // Suppress assigning zero-width bitfields.
8924    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8925      continue;
8926
8927    QualType FieldType = Field->getType().getNonReferenceType();
8928    if (FieldType->isIncompleteArrayType()) {
8929      assert(ClassDecl->hasFlexibleArrayMember() &&
8930             "Incomplete array type is not valid");
8931      continue;
8932    }
8933
8934    // Build references to the field in the object we're copying from and to.
8935    CXXScopeSpec SS; // Intentionally empty
8936    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8937                              LookupMemberName);
8938    MemberLookup.addDecl(*Field);
8939    MemberLookup.resolveKind();
8940    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8941                                               Loc, /*IsArrow=*/false,
8942                                               SS, SourceLocation(), 0,
8943                                               MemberLookup, 0);
8944    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8945                                             Loc, /*IsArrow=*/true,
8946                                             SS, SourceLocation(), 0,
8947                                             MemberLookup, 0);
8948    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8949    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8950
8951    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8952        "Member reference with rvalue base must be rvalue except for reference "
8953        "members, which aren't allowed for move assignment.");
8954
8955    // Build the move of this field.
8956    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
8957                                            To.get(), From.get(),
8958                                            /*CopyingBaseSubobject=*/false,
8959                                            /*Copying=*/false);
8960    if (Move.isInvalid()) {
8961      Diag(CurrentLocation, diag::note_member_synthesized_at)
8962        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8963      MoveAssignOperator->setInvalidDecl();
8964      return;
8965    }
8966
8967    // Success! Record the copy.
8968    Statements.push_back(Move.takeAs<Stmt>());
8969  }
8970
8971  if (!Invalid) {
8972    // Add a "return *this;"
8973    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8974
8975    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8976    if (Return.isInvalid())
8977      Invalid = true;
8978    else {
8979      Statements.push_back(Return.takeAs<Stmt>());
8980
8981      if (Trap.hasErrorOccurred()) {
8982        Diag(CurrentLocation, diag::note_member_synthesized_at)
8983          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8984        Invalid = true;
8985      }
8986    }
8987  }
8988
8989  if (Invalid) {
8990    MoveAssignOperator->setInvalidDecl();
8991    return;
8992  }
8993
8994  StmtResult Body;
8995  {
8996    CompoundScopeRAII CompoundScope(*this);
8997    Body = ActOnCompoundStmt(Loc, Loc, Statements,
8998                             /*isStmtExpr=*/false);
8999    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9000  }
9001  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9002
9003  if (ASTMutationListener *L = getASTMutationListener()) {
9004    L->CompletedImplicitDefinition(MoveAssignOperator);
9005  }
9006}
9007
9008Sema::ImplicitExceptionSpecification
9009Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9010  CXXRecordDecl *ClassDecl = MD->getParent();
9011
9012  ImplicitExceptionSpecification ExceptSpec(*this);
9013  if (ClassDecl->isInvalidDecl())
9014    return ExceptSpec;
9015
9016  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9017  assert(T->getNumArgs() >= 1 && "not a copy ctor");
9018  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9019
9020  // C++ [except.spec]p14:
9021  //   An implicitly declared special member function (Clause 12) shall have an
9022  //   exception-specification. [...]
9023  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9024                                       BaseEnd = ClassDecl->bases_end();
9025       Base != BaseEnd;
9026       ++Base) {
9027    // Virtual bases are handled below.
9028    if (Base->isVirtual())
9029      continue;
9030
9031    CXXRecordDecl *BaseClassDecl
9032      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9033    if (CXXConstructorDecl *CopyConstructor =
9034          LookupCopyingConstructor(BaseClassDecl, Quals))
9035      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9036  }
9037  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9038                                       BaseEnd = ClassDecl->vbases_end();
9039       Base != BaseEnd;
9040       ++Base) {
9041    CXXRecordDecl *BaseClassDecl
9042      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9043    if (CXXConstructorDecl *CopyConstructor =
9044          LookupCopyingConstructor(BaseClassDecl, Quals))
9045      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9046  }
9047  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9048                                  FieldEnd = ClassDecl->field_end();
9049       Field != FieldEnd;
9050       ++Field) {
9051    QualType FieldType = Context.getBaseElementType(Field->getType());
9052    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9053      if (CXXConstructorDecl *CopyConstructor =
9054              LookupCopyingConstructor(FieldClassDecl,
9055                                       Quals | FieldType.getCVRQualifiers()))
9056      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
9057    }
9058  }
9059
9060  return ExceptSpec;
9061}
9062
9063CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
9064                                                    CXXRecordDecl *ClassDecl) {
9065  // C++ [class.copy]p4:
9066  //   If the class definition does not explicitly declare a copy
9067  //   constructor, one is declared implicitly.
9068  assert(ClassDecl->needsImplicitCopyConstructor());
9069
9070  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
9071  if (DSM.isAlreadyBeingDeclared())
9072    return 0;
9073
9074  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9075  QualType ArgType = ClassType;
9076  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
9077  if (Const)
9078    ArgType = ArgType.withConst();
9079  ArgType = Context.getLValueReferenceType(ArgType);
9080
9081  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9082                                                     CXXCopyConstructor,
9083                                                     Const);
9084
9085  DeclarationName Name
9086    = Context.DeclarationNames.getCXXConstructorName(
9087                                           Context.getCanonicalType(ClassType));
9088  SourceLocation ClassLoc = ClassDecl->getLocation();
9089  DeclarationNameInfo NameInfo(Name, ClassLoc);
9090
9091  //   An implicitly-declared copy constructor is an inline public
9092  //   member of its class.
9093  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
9094      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9095      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9096      Constexpr);
9097  CopyConstructor->setAccess(AS_public);
9098  CopyConstructor->setDefaulted();
9099
9100  // Build an exception specification pointing back at this member.
9101  FunctionProtoType::ExtProtoInfo EPI;
9102  EPI.ExceptionSpecType = EST_Unevaluated;
9103  EPI.ExceptionSpecDecl = CopyConstructor;
9104  CopyConstructor->setType(
9105      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
9106
9107  // Add the parameter to the constructor.
9108  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
9109                                               ClassLoc, ClassLoc,
9110                                               /*IdentifierInfo=*/0,
9111                                               ArgType, /*TInfo=*/0,
9112                                               SC_None,
9113                                               SC_None, 0);
9114  CopyConstructor->setParams(FromParam);
9115
9116  CopyConstructor->setTrivial(
9117    ClassDecl->needsOverloadResolutionForCopyConstructor()
9118      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
9119      : ClassDecl->hasTrivialCopyConstructor());
9120
9121  // C++11 [class.copy]p8:
9122  //   ... If the class definition does not explicitly declare a copy
9123  //   constructor, there is no user-declared move constructor, and there is no
9124  //   user-declared move assignment operator, a copy constructor is implicitly
9125  //   declared as defaulted.
9126  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
9127    CopyConstructor->setDeletedAsWritten();
9128
9129  // Note that we have declared this constructor.
9130  ++ASTContext::NumImplicitCopyConstructorsDeclared;
9131
9132  if (Scope *S = getScopeForContext(ClassDecl))
9133    PushOnScopeChains(CopyConstructor, S, false);
9134  ClassDecl->addDecl(CopyConstructor);
9135
9136  return CopyConstructor;
9137}
9138
9139void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
9140                                   CXXConstructorDecl *CopyConstructor) {
9141  assert((CopyConstructor->isDefaulted() &&
9142          CopyConstructor->isCopyConstructor() &&
9143          !CopyConstructor->doesThisDeclarationHaveABody() &&
9144          !CopyConstructor->isDeleted()) &&
9145         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
9146
9147  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
9148  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
9149
9150  SynthesizedFunctionScope Scope(*this, CopyConstructor);
9151  DiagnosticErrorTrap Trap(Diags);
9152
9153  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
9154      Trap.hasErrorOccurred()) {
9155    Diag(CurrentLocation, diag::note_member_synthesized_at)
9156      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
9157    CopyConstructor->setInvalidDecl();
9158  }  else {
9159    Sema::CompoundScopeRAII CompoundScope(*this);
9160    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
9161                                               CopyConstructor->getLocation(),
9162                                               MultiStmtArg(),
9163                                               /*isStmtExpr=*/false)
9164                                                              .takeAs<Stmt>());
9165    CopyConstructor->setImplicitlyDefined(true);
9166  }
9167
9168  CopyConstructor->setUsed();
9169  if (ASTMutationListener *L = getASTMutationListener()) {
9170    L->CompletedImplicitDefinition(CopyConstructor);
9171  }
9172}
9173
9174Sema::ImplicitExceptionSpecification
9175Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
9176  CXXRecordDecl *ClassDecl = MD->getParent();
9177
9178  // C++ [except.spec]p14:
9179  //   An implicitly declared special member function (Clause 12) shall have an
9180  //   exception-specification. [...]
9181  ImplicitExceptionSpecification ExceptSpec(*this);
9182  if (ClassDecl->isInvalidDecl())
9183    return ExceptSpec;
9184
9185  // Direct base-class constructors.
9186  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
9187                                       BEnd = ClassDecl->bases_end();
9188       B != BEnd; ++B) {
9189    if (B->isVirtual()) // Handled below.
9190      continue;
9191
9192    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9193      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9194      CXXConstructorDecl *Constructor =
9195          LookupMovingConstructor(BaseClassDecl, 0);
9196      // If this is a deleted function, add it anyway. This might be conformant
9197      // with the standard. This might not. I'm not sure. It might not matter.
9198      if (Constructor)
9199        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9200    }
9201  }
9202
9203  // Virtual base-class constructors.
9204  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
9205                                       BEnd = ClassDecl->vbases_end();
9206       B != BEnd; ++B) {
9207    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9208      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9209      CXXConstructorDecl *Constructor =
9210          LookupMovingConstructor(BaseClassDecl, 0);
9211      // If this is a deleted function, add it anyway. This might be conformant
9212      // with the standard. This might not. I'm not sure. It might not matter.
9213      if (Constructor)
9214        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9215    }
9216  }
9217
9218  // Field constructors.
9219  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
9220                               FEnd = ClassDecl->field_end();
9221       F != FEnd; ++F) {
9222    QualType FieldType = Context.getBaseElementType(F->getType());
9223    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
9224      CXXConstructorDecl *Constructor =
9225          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
9226      // If this is a deleted function, add it anyway. This might be conformant
9227      // with the standard. This might not. I'm not sure. It might not matter.
9228      // In particular, the problem is that this function never gets called. It
9229      // might just be ill-formed because this function attempts to refer to
9230      // a deleted function here.
9231      if (Constructor)
9232        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
9233    }
9234  }
9235
9236  return ExceptSpec;
9237}
9238
9239CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
9240                                                    CXXRecordDecl *ClassDecl) {
9241  // C++11 [class.copy]p9:
9242  //   If the definition of a class X does not explicitly declare a move
9243  //   constructor, one will be implicitly declared as defaulted if and only if:
9244  //
9245  //   - [first 4 bullets]
9246  assert(ClassDecl->needsImplicitMoveConstructor());
9247
9248  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
9249  if (DSM.isAlreadyBeingDeclared())
9250    return 0;
9251
9252  // [Checked after we build the declaration]
9253  //   - the move assignment operator would not be implicitly defined as
9254  //     deleted,
9255
9256  // [DR1402]:
9257  //   - each of X's non-static data members and direct or virtual base classes
9258  //     has a type that either has a move constructor or is trivially copyable.
9259  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
9260    ClassDecl->setFailedImplicitMoveConstructor();
9261    return 0;
9262  }
9263
9264  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9265  QualType ArgType = Context.getRValueReferenceType(ClassType);
9266
9267  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9268                                                     CXXMoveConstructor,
9269                                                     false);
9270
9271  DeclarationName Name
9272    = Context.DeclarationNames.getCXXConstructorName(
9273                                           Context.getCanonicalType(ClassType));
9274  SourceLocation ClassLoc = ClassDecl->getLocation();
9275  DeclarationNameInfo NameInfo(Name, ClassLoc);
9276
9277  // C++0x [class.copy]p11:
9278  //   An implicitly-declared copy/move constructor is an inline public
9279  //   member of its class.
9280  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
9281      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9282      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9283      Constexpr);
9284  MoveConstructor->setAccess(AS_public);
9285  MoveConstructor->setDefaulted();
9286
9287  // Build an exception specification pointing back at this member.
9288  FunctionProtoType::ExtProtoInfo EPI;
9289  EPI.ExceptionSpecType = EST_Unevaluated;
9290  EPI.ExceptionSpecDecl = MoveConstructor;
9291  MoveConstructor->setType(
9292      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
9293
9294  // Add the parameter to the constructor.
9295  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
9296                                               ClassLoc, ClassLoc,
9297                                               /*IdentifierInfo=*/0,
9298                                               ArgType, /*TInfo=*/0,
9299                                               SC_None,
9300                                               SC_None, 0);
9301  MoveConstructor->setParams(FromParam);
9302
9303  MoveConstructor->setTrivial(
9304    ClassDecl->needsOverloadResolutionForMoveConstructor()
9305      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
9306      : ClassDecl->hasTrivialMoveConstructor());
9307
9308  // C++0x [class.copy]p9:
9309  //   If the definition of a class X does not explicitly declare a move
9310  //   constructor, one will be implicitly declared as defaulted if and only if:
9311  //   [...]
9312  //   - the move constructor would not be implicitly defined as deleted.
9313  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9314    // Cache this result so that we don't try to generate this over and over
9315    // on every lookup, leaking memory and wasting time.
9316    ClassDecl->setFailedImplicitMoveConstructor();
9317    return 0;
9318  }
9319
9320  // Note that we have declared this constructor.
9321  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9322
9323  if (Scope *S = getScopeForContext(ClassDecl))
9324    PushOnScopeChains(MoveConstructor, S, false);
9325  ClassDecl->addDecl(MoveConstructor);
9326
9327  return MoveConstructor;
9328}
9329
9330void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9331                                   CXXConstructorDecl *MoveConstructor) {
9332  assert((MoveConstructor->isDefaulted() &&
9333          MoveConstructor->isMoveConstructor() &&
9334          !MoveConstructor->doesThisDeclarationHaveABody() &&
9335          !MoveConstructor->isDeleted()) &&
9336         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9337
9338  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9339  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9340
9341  SynthesizedFunctionScope Scope(*this, MoveConstructor);
9342  DiagnosticErrorTrap Trap(Diags);
9343
9344  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
9345      Trap.hasErrorOccurred()) {
9346    Diag(CurrentLocation, diag::note_member_synthesized_at)
9347      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9348    MoveConstructor->setInvalidDecl();
9349  }  else {
9350    Sema::CompoundScopeRAII CompoundScope(*this);
9351    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9352                                               MoveConstructor->getLocation(),
9353                                               MultiStmtArg(),
9354                                               /*isStmtExpr=*/false)
9355                                                              .takeAs<Stmt>());
9356    MoveConstructor->setImplicitlyDefined(true);
9357  }
9358
9359  MoveConstructor->setUsed();
9360
9361  if (ASTMutationListener *L = getASTMutationListener()) {
9362    L->CompletedImplicitDefinition(MoveConstructor);
9363  }
9364}
9365
9366bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
9367  return FD->isDeleted() &&
9368         (FD->isDefaulted() || FD->isImplicit()) &&
9369         isa<CXXMethodDecl>(FD);
9370}
9371
9372/// \brief Mark the call operator of the given lambda closure type as "used".
9373static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
9374  CXXMethodDecl *CallOperator
9375    = cast<CXXMethodDecl>(
9376        *Lambda->lookup(
9377          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
9378  CallOperator->setReferenced();
9379  CallOperator->setUsed();
9380}
9381
9382void Sema::DefineImplicitLambdaToFunctionPointerConversion(
9383       SourceLocation CurrentLocation,
9384       CXXConversionDecl *Conv)
9385{
9386  CXXRecordDecl *Lambda = Conv->getParent();
9387
9388  // Make sure that the lambda call operator is marked used.
9389  markLambdaCallOperatorUsed(*this, Lambda);
9390
9391  Conv->setUsed();
9392
9393  SynthesizedFunctionScope Scope(*this, Conv);
9394  DiagnosticErrorTrap Trap(Diags);
9395
9396  // Return the address of the __invoke function.
9397  DeclarationName InvokeName = &Context.Idents.get("__invoke");
9398  CXXMethodDecl *Invoke
9399    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
9400  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9401                                       VK_LValue, Conv->getLocation()).take();
9402  assert(FunctionRef && "Can't refer to __invoke function?");
9403  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9404  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
9405                                           Conv->getLocation(),
9406                                           Conv->getLocation()));
9407
9408  // Fill in the __invoke function with a dummy implementation. IR generation
9409  // will fill in the actual details.
9410  Invoke->setUsed();
9411  Invoke->setReferenced();
9412  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
9413
9414  if (ASTMutationListener *L = getASTMutationListener()) {
9415    L->CompletedImplicitDefinition(Conv);
9416    L->CompletedImplicitDefinition(Invoke);
9417  }
9418}
9419
9420void Sema::DefineImplicitLambdaToBlockPointerConversion(
9421       SourceLocation CurrentLocation,
9422       CXXConversionDecl *Conv)
9423{
9424  Conv->setUsed();
9425
9426  SynthesizedFunctionScope Scope(*this, Conv);
9427  DiagnosticErrorTrap Trap(Diags);
9428
9429  // Copy-initialize the lambda object as needed to capture it.
9430  Expr *This = ActOnCXXThis(CurrentLocation).take();
9431  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9432
9433  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9434                                                        Conv->getLocation(),
9435                                                        Conv, DerefThis);
9436
9437  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9438  // behavior.  Note that only the general conversion function does this
9439  // (since it's unusable otherwise); in the case where we inline the
9440  // block literal, it has block literal lifetime semantics.
9441  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9442    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9443                                          CK_CopyAndAutoreleaseBlockObject,
9444                                          BuildBlock.get(), 0, VK_RValue);
9445
9446  if (BuildBlock.isInvalid()) {
9447    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9448    Conv->setInvalidDecl();
9449    return;
9450  }
9451
9452  // Create the return statement that returns the block from the conversion
9453  // function.
9454  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9455  if (Return.isInvalid()) {
9456    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9457    Conv->setInvalidDecl();
9458    return;
9459  }
9460
9461  // Set the body of the conversion function.
9462  Stmt *ReturnS = Return.take();
9463  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
9464                                           Conv->getLocation(),
9465                                           Conv->getLocation()));
9466
9467  // We're done; notify the mutation listener, if any.
9468  if (ASTMutationListener *L = getASTMutationListener()) {
9469    L->CompletedImplicitDefinition(Conv);
9470  }
9471}
9472
9473/// \brief Determine whether the given list arguments contains exactly one
9474/// "real" (non-default) argument.
9475static bool hasOneRealArgument(MultiExprArg Args) {
9476  switch (Args.size()) {
9477  case 0:
9478    return false;
9479
9480  default:
9481    if (!Args[1]->isDefaultArgument())
9482      return false;
9483
9484    // fall through
9485  case 1:
9486    return !Args[0]->isDefaultArgument();
9487  }
9488
9489  return false;
9490}
9491
9492ExprResult
9493Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9494                            CXXConstructorDecl *Constructor,
9495                            MultiExprArg ExprArgs,
9496                            bool HadMultipleCandidates,
9497                            bool RequiresZeroInit,
9498                            unsigned ConstructKind,
9499                            SourceRange ParenRange) {
9500  bool Elidable = false;
9501
9502  // C++0x [class.copy]p34:
9503  //   When certain criteria are met, an implementation is allowed to
9504  //   omit the copy/move construction of a class object, even if the
9505  //   copy/move constructor and/or destructor for the object have
9506  //   side effects. [...]
9507  //     - when a temporary class object that has not been bound to a
9508  //       reference (12.2) would be copied/moved to a class object
9509  //       with the same cv-unqualified type, the copy/move operation
9510  //       can be omitted by constructing the temporary object
9511  //       directly into the target of the omitted copy/move
9512  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9513      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9514    Expr *SubExpr = ExprArgs[0];
9515    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9516  }
9517
9518  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9519                               Elidable, ExprArgs, HadMultipleCandidates,
9520                               RequiresZeroInit, ConstructKind, ParenRange);
9521}
9522
9523/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9524/// including handling of its default argument expressions.
9525ExprResult
9526Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9527                            CXXConstructorDecl *Constructor, bool Elidable,
9528                            MultiExprArg ExprArgs,
9529                            bool HadMultipleCandidates,
9530                            bool RequiresZeroInit,
9531                            unsigned ConstructKind,
9532                            SourceRange ParenRange) {
9533  MarkFunctionReferenced(ConstructLoc, Constructor);
9534  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9535                                        Constructor, Elidable, ExprArgs,
9536                                        HadMultipleCandidates, /*FIXME*/false,
9537                                        RequiresZeroInit,
9538              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9539                                        ParenRange));
9540}
9541
9542bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9543                                        CXXConstructorDecl *Constructor,
9544                                        MultiExprArg Exprs,
9545                                        bool HadMultipleCandidates) {
9546  // FIXME: Provide the correct paren SourceRange when available.
9547  ExprResult TempResult =
9548    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9549                          Exprs, HadMultipleCandidates, false,
9550                          CXXConstructExpr::CK_Complete, SourceRange());
9551  if (TempResult.isInvalid())
9552    return true;
9553
9554  Expr *Temp = TempResult.takeAs<Expr>();
9555  CheckImplicitConversions(Temp, VD->getLocation());
9556  MarkFunctionReferenced(VD->getLocation(), Constructor);
9557  Temp = MaybeCreateExprWithCleanups(Temp);
9558  VD->setInit(Temp);
9559
9560  return false;
9561}
9562
9563void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9564  if (VD->isInvalidDecl()) return;
9565
9566  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9567  if (ClassDecl->isInvalidDecl()) return;
9568  if (ClassDecl->hasIrrelevantDestructor()) return;
9569  if (ClassDecl->isDependentContext()) return;
9570
9571  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9572  MarkFunctionReferenced(VD->getLocation(), Destructor);
9573  CheckDestructorAccess(VD->getLocation(), Destructor,
9574                        PDiag(diag::err_access_dtor_var)
9575                        << VD->getDeclName()
9576                        << VD->getType());
9577  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9578
9579  if (!VD->hasGlobalStorage()) return;
9580
9581  // Emit warning for non-trivial dtor in global scope (a real global,
9582  // class-static, function-static).
9583  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9584
9585  // TODO: this should be re-enabled for static locals by !CXAAtExit
9586  if (!VD->isStaticLocal())
9587    Diag(VD->getLocation(), diag::warn_global_destructor);
9588}
9589
9590/// \brief Given a constructor and the set of arguments provided for the
9591/// constructor, convert the arguments and add any required default arguments
9592/// to form a proper call to this constructor.
9593///
9594/// \returns true if an error occurred, false otherwise.
9595bool
9596Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9597                              MultiExprArg ArgsPtr,
9598                              SourceLocation Loc,
9599                              SmallVectorImpl<Expr*> &ConvertedArgs,
9600                              bool AllowExplicit) {
9601  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9602  unsigned NumArgs = ArgsPtr.size();
9603  Expr **Args = ArgsPtr.data();
9604
9605  const FunctionProtoType *Proto
9606    = Constructor->getType()->getAs<FunctionProtoType>();
9607  assert(Proto && "Constructor without a prototype?");
9608  unsigned NumArgsInProto = Proto->getNumArgs();
9609
9610  // If too few arguments are available, we'll fill in the rest with defaults.
9611  if (NumArgs < NumArgsInProto)
9612    ConvertedArgs.reserve(NumArgsInProto);
9613  else
9614    ConvertedArgs.reserve(NumArgs);
9615
9616  VariadicCallType CallType =
9617    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9618  SmallVector<Expr *, 8> AllArgs;
9619  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9620                                        Proto, 0, Args, NumArgs, AllArgs,
9621                                        CallType, AllowExplicit);
9622  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9623
9624  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9625
9626  CheckConstructorCall(Constructor, AllArgs.data(), AllArgs.size(),
9627                       Proto, Loc);
9628
9629  return Invalid;
9630}
9631
9632static inline bool
9633CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9634                                       const FunctionDecl *FnDecl) {
9635  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9636  if (isa<NamespaceDecl>(DC)) {
9637    return SemaRef.Diag(FnDecl->getLocation(),
9638                        diag::err_operator_new_delete_declared_in_namespace)
9639      << FnDecl->getDeclName();
9640  }
9641
9642  if (isa<TranslationUnitDecl>(DC) &&
9643      FnDecl->getStorageClass() == SC_Static) {
9644    return SemaRef.Diag(FnDecl->getLocation(),
9645                        diag::err_operator_new_delete_declared_static)
9646      << FnDecl->getDeclName();
9647  }
9648
9649  return false;
9650}
9651
9652static inline bool
9653CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9654                            CanQualType ExpectedResultType,
9655                            CanQualType ExpectedFirstParamType,
9656                            unsigned DependentParamTypeDiag,
9657                            unsigned InvalidParamTypeDiag) {
9658  QualType ResultType =
9659    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9660
9661  // Check that the result type is not dependent.
9662  if (ResultType->isDependentType())
9663    return SemaRef.Diag(FnDecl->getLocation(),
9664                        diag::err_operator_new_delete_dependent_result_type)
9665    << FnDecl->getDeclName() << ExpectedResultType;
9666
9667  // Check that the result type is what we expect.
9668  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9669    return SemaRef.Diag(FnDecl->getLocation(),
9670                        diag::err_operator_new_delete_invalid_result_type)
9671    << FnDecl->getDeclName() << ExpectedResultType;
9672
9673  // A function template must have at least 2 parameters.
9674  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9675    return SemaRef.Diag(FnDecl->getLocation(),
9676                      diag::err_operator_new_delete_template_too_few_parameters)
9677        << FnDecl->getDeclName();
9678
9679  // The function decl must have at least 1 parameter.
9680  if (FnDecl->getNumParams() == 0)
9681    return SemaRef.Diag(FnDecl->getLocation(),
9682                        diag::err_operator_new_delete_too_few_parameters)
9683      << FnDecl->getDeclName();
9684
9685  // Check the first parameter type is not dependent.
9686  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9687  if (FirstParamType->isDependentType())
9688    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9689      << FnDecl->getDeclName() << ExpectedFirstParamType;
9690
9691  // Check that the first parameter type is what we expect.
9692  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9693      ExpectedFirstParamType)
9694    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9695    << FnDecl->getDeclName() << ExpectedFirstParamType;
9696
9697  return false;
9698}
9699
9700static bool
9701CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9702  // C++ [basic.stc.dynamic.allocation]p1:
9703  //   A program is ill-formed if an allocation function is declared in a
9704  //   namespace scope other than global scope or declared static in global
9705  //   scope.
9706  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9707    return true;
9708
9709  CanQualType SizeTy =
9710    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9711
9712  // C++ [basic.stc.dynamic.allocation]p1:
9713  //  The return type shall be void*. The first parameter shall have type
9714  //  std::size_t.
9715  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9716                                  SizeTy,
9717                                  diag::err_operator_new_dependent_param_type,
9718                                  diag::err_operator_new_param_type))
9719    return true;
9720
9721  // C++ [basic.stc.dynamic.allocation]p1:
9722  //  The first parameter shall not have an associated default argument.
9723  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9724    return SemaRef.Diag(FnDecl->getLocation(),
9725                        diag::err_operator_new_default_arg)
9726      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9727
9728  return false;
9729}
9730
9731static bool
9732CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
9733  // C++ [basic.stc.dynamic.deallocation]p1:
9734  //   A program is ill-formed if deallocation functions are declared in a
9735  //   namespace scope other than global scope or declared static in global
9736  //   scope.
9737  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9738    return true;
9739
9740  // C++ [basic.stc.dynamic.deallocation]p2:
9741  //   Each deallocation function shall return void and its first parameter
9742  //   shall be void*.
9743  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9744                                  SemaRef.Context.VoidPtrTy,
9745                                 diag::err_operator_delete_dependent_param_type,
9746                                 diag::err_operator_delete_param_type))
9747    return true;
9748
9749  return false;
9750}
9751
9752/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9753/// of this overloaded operator is well-formed. If so, returns false;
9754/// otherwise, emits appropriate diagnostics and returns true.
9755bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9756  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9757         "Expected an overloaded operator declaration");
9758
9759  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9760
9761  // C++ [over.oper]p5:
9762  //   The allocation and deallocation functions, operator new,
9763  //   operator new[], operator delete and operator delete[], are
9764  //   described completely in 3.7.3. The attributes and restrictions
9765  //   found in the rest of this subclause do not apply to them unless
9766  //   explicitly stated in 3.7.3.
9767  if (Op == OO_Delete || Op == OO_Array_Delete)
9768    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9769
9770  if (Op == OO_New || Op == OO_Array_New)
9771    return CheckOperatorNewDeclaration(*this, FnDecl);
9772
9773  // C++ [over.oper]p6:
9774  //   An operator function shall either be a non-static member
9775  //   function or be a non-member function and have at least one
9776  //   parameter whose type is a class, a reference to a class, an
9777  //   enumeration, or a reference to an enumeration.
9778  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9779    if (MethodDecl->isStatic())
9780      return Diag(FnDecl->getLocation(),
9781                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9782  } else {
9783    bool ClassOrEnumParam = false;
9784    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9785                                   ParamEnd = FnDecl->param_end();
9786         Param != ParamEnd; ++Param) {
9787      QualType ParamType = (*Param)->getType().getNonReferenceType();
9788      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9789          ParamType->isEnumeralType()) {
9790        ClassOrEnumParam = true;
9791        break;
9792      }
9793    }
9794
9795    if (!ClassOrEnumParam)
9796      return Diag(FnDecl->getLocation(),
9797                  diag::err_operator_overload_needs_class_or_enum)
9798        << FnDecl->getDeclName();
9799  }
9800
9801  // C++ [over.oper]p8:
9802  //   An operator function cannot have default arguments (8.3.6),
9803  //   except where explicitly stated below.
9804  //
9805  // Only the function-call operator allows default arguments
9806  // (C++ [over.call]p1).
9807  if (Op != OO_Call) {
9808    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9809         Param != FnDecl->param_end(); ++Param) {
9810      if ((*Param)->hasDefaultArg())
9811        return Diag((*Param)->getLocation(),
9812                    diag::err_operator_overload_default_arg)
9813          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9814    }
9815  }
9816
9817  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9818    { false, false, false }
9819#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9820    , { Unary, Binary, MemberOnly }
9821#include "clang/Basic/OperatorKinds.def"
9822  };
9823
9824  bool CanBeUnaryOperator = OperatorUses[Op][0];
9825  bool CanBeBinaryOperator = OperatorUses[Op][1];
9826  bool MustBeMemberOperator = OperatorUses[Op][2];
9827
9828  // C++ [over.oper]p8:
9829  //   [...] Operator functions cannot have more or fewer parameters
9830  //   than the number required for the corresponding operator, as
9831  //   described in the rest of this subclause.
9832  unsigned NumParams = FnDecl->getNumParams()
9833                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9834  if (Op != OO_Call &&
9835      ((NumParams == 1 && !CanBeUnaryOperator) ||
9836       (NumParams == 2 && !CanBeBinaryOperator) ||
9837       (NumParams < 1) || (NumParams > 2))) {
9838    // We have the wrong number of parameters.
9839    unsigned ErrorKind;
9840    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9841      ErrorKind = 2;  // 2 -> unary or binary.
9842    } else if (CanBeUnaryOperator) {
9843      ErrorKind = 0;  // 0 -> unary
9844    } else {
9845      assert(CanBeBinaryOperator &&
9846             "All non-call overloaded operators are unary or binary!");
9847      ErrorKind = 1;  // 1 -> binary
9848    }
9849
9850    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9851      << FnDecl->getDeclName() << NumParams << ErrorKind;
9852  }
9853
9854  // Overloaded operators other than operator() cannot be variadic.
9855  if (Op != OO_Call &&
9856      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9857    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9858      << FnDecl->getDeclName();
9859  }
9860
9861  // Some operators must be non-static member functions.
9862  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9863    return Diag(FnDecl->getLocation(),
9864                diag::err_operator_overload_must_be_member)
9865      << FnDecl->getDeclName();
9866  }
9867
9868  // C++ [over.inc]p1:
9869  //   The user-defined function called operator++ implements the
9870  //   prefix and postfix ++ operator. If this function is a member
9871  //   function with no parameters, or a non-member function with one
9872  //   parameter of class or enumeration type, it defines the prefix
9873  //   increment operator ++ for objects of that type. If the function
9874  //   is a member function with one parameter (which shall be of type
9875  //   int) or a non-member function with two parameters (the second
9876  //   of which shall be of type int), it defines the postfix
9877  //   increment operator ++ for objects of that type.
9878  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9879    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9880    bool ParamIsInt = false;
9881    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9882      ParamIsInt = BT->getKind() == BuiltinType::Int;
9883
9884    if (!ParamIsInt)
9885      return Diag(LastParam->getLocation(),
9886                  diag::err_operator_overload_post_incdec_must_be_int)
9887        << LastParam->getType() << (Op == OO_MinusMinus);
9888  }
9889
9890  return false;
9891}
9892
9893/// CheckLiteralOperatorDeclaration - Check whether the declaration
9894/// of this literal operator function is well-formed. If so, returns
9895/// false; otherwise, emits appropriate diagnostics and returns true.
9896bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9897  if (isa<CXXMethodDecl>(FnDecl)) {
9898    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9899      << FnDecl->getDeclName();
9900    return true;
9901  }
9902
9903  if (FnDecl->isExternC()) {
9904    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9905    return true;
9906  }
9907
9908  bool Valid = false;
9909
9910  // This might be the definition of a literal operator template.
9911  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9912  // This might be a specialization of a literal operator template.
9913  if (!TpDecl)
9914    TpDecl = FnDecl->getPrimaryTemplate();
9915
9916  // template <char...> type operator "" name() is the only valid template
9917  // signature, and the only valid signature with no parameters.
9918  if (TpDecl) {
9919    if (FnDecl->param_size() == 0) {
9920      // Must have only one template parameter
9921      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9922      if (Params->size() == 1) {
9923        NonTypeTemplateParmDecl *PmDecl =
9924          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9925
9926        // The template parameter must be a char parameter pack.
9927        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9928            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9929          Valid = true;
9930      }
9931    }
9932  } else if (FnDecl->param_size()) {
9933    // Check the first parameter
9934    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9935
9936    QualType T = (*Param)->getType().getUnqualifiedType();
9937
9938    // unsigned long long int, long double, and any character type are allowed
9939    // as the only parameters.
9940    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9941        Context.hasSameType(T, Context.LongDoubleTy) ||
9942        Context.hasSameType(T, Context.CharTy) ||
9943        Context.hasSameType(T, Context.WCharTy) ||
9944        Context.hasSameType(T, Context.Char16Ty) ||
9945        Context.hasSameType(T, Context.Char32Ty)) {
9946      if (++Param == FnDecl->param_end())
9947        Valid = true;
9948      goto FinishedParams;
9949    }
9950
9951    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9952    const PointerType *PT = T->getAs<PointerType>();
9953    if (!PT)
9954      goto FinishedParams;
9955    T = PT->getPointeeType();
9956    if (!T.isConstQualified() || T.isVolatileQualified())
9957      goto FinishedParams;
9958    T = T.getUnqualifiedType();
9959
9960    // Move on to the second parameter;
9961    ++Param;
9962
9963    // If there is no second parameter, the first must be a const char *
9964    if (Param == FnDecl->param_end()) {
9965      if (Context.hasSameType(T, Context.CharTy))
9966        Valid = true;
9967      goto FinishedParams;
9968    }
9969
9970    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9971    // are allowed as the first parameter to a two-parameter function
9972    if (!(Context.hasSameType(T, Context.CharTy) ||
9973          Context.hasSameType(T, Context.WCharTy) ||
9974          Context.hasSameType(T, Context.Char16Ty) ||
9975          Context.hasSameType(T, Context.Char32Ty)))
9976      goto FinishedParams;
9977
9978    // The second and final parameter must be an std::size_t
9979    T = (*Param)->getType().getUnqualifiedType();
9980    if (Context.hasSameType(T, Context.getSizeType()) &&
9981        ++Param == FnDecl->param_end())
9982      Valid = true;
9983  }
9984
9985  // FIXME: This diagnostic is absolutely terrible.
9986FinishedParams:
9987  if (!Valid) {
9988    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9989      << FnDecl->getDeclName();
9990    return true;
9991  }
9992
9993  // A parameter-declaration-clause containing a default argument is not
9994  // equivalent to any of the permitted forms.
9995  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9996                                    ParamEnd = FnDecl->param_end();
9997       Param != ParamEnd; ++Param) {
9998    if ((*Param)->hasDefaultArg()) {
9999      Diag((*Param)->getDefaultArgRange().getBegin(),
10000           diag::err_literal_operator_default_argument)
10001        << (*Param)->getDefaultArgRange();
10002      break;
10003    }
10004  }
10005
10006  StringRef LiteralName
10007    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
10008  if (LiteralName[0] != '_') {
10009    // C++11 [usrlit.suffix]p1:
10010    //   Literal suffix identifiers that do not start with an underscore
10011    //   are reserved for future standardization.
10012    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
10013  }
10014
10015  return false;
10016}
10017
10018/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10019/// linkage specification, including the language and (if present)
10020/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10021/// the location of the language string literal, which is provided
10022/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10023/// the '{' brace. Otherwise, this linkage specification does not
10024/// have any braces.
10025Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10026                                           SourceLocation LangLoc,
10027                                           StringRef Lang,
10028                                           SourceLocation LBraceLoc) {
10029  LinkageSpecDecl::LanguageIDs Language;
10030  if (Lang == "\"C\"")
10031    Language = LinkageSpecDecl::lang_c;
10032  else if (Lang == "\"C++\"")
10033    Language = LinkageSpecDecl::lang_cxx;
10034  else {
10035    Diag(LangLoc, diag::err_bad_language);
10036    return 0;
10037  }
10038
10039  // FIXME: Add all the various semantics of linkage specifications
10040
10041  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
10042                                               ExternLoc, LangLoc, Language);
10043  CurContext->addDecl(D);
10044  PushDeclContext(S, D);
10045  return D;
10046}
10047
10048/// ActOnFinishLinkageSpecification - Complete the definition of
10049/// the C++ linkage specification LinkageSpec. If RBraceLoc is
10050/// valid, it's the position of the closing '}' brace in a linkage
10051/// specification that uses braces.
10052Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
10053                                            Decl *LinkageSpec,
10054                                            SourceLocation RBraceLoc) {
10055  if (LinkageSpec) {
10056    if (RBraceLoc.isValid()) {
10057      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
10058      LSDecl->setRBraceLoc(RBraceLoc);
10059    }
10060    PopDeclContext();
10061  }
10062  return LinkageSpec;
10063}
10064
10065/// \brief Perform semantic analysis for the variable declaration that
10066/// occurs within a C++ catch clause, returning the newly-created
10067/// variable.
10068VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
10069                                         TypeSourceInfo *TInfo,
10070                                         SourceLocation StartLoc,
10071                                         SourceLocation Loc,
10072                                         IdentifierInfo *Name) {
10073  bool Invalid = false;
10074  QualType ExDeclType = TInfo->getType();
10075
10076  // Arrays and functions decay.
10077  if (ExDeclType->isArrayType())
10078    ExDeclType = Context.getArrayDecayedType(ExDeclType);
10079  else if (ExDeclType->isFunctionType())
10080    ExDeclType = Context.getPointerType(ExDeclType);
10081
10082  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
10083  // The exception-declaration shall not denote a pointer or reference to an
10084  // incomplete type, other than [cv] void*.
10085  // N2844 forbids rvalue references.
10086  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
10087    Diag(Loc, diag::err_catch_rvalue_ref);
10088    Invalid = true;
10089  }
10090
10091  QualType BaseType = ExDeclType;
10092  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
10093  unsigned DK = diag::err_catch_incomplete;
10094  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
10095    BaseType = Ptr->getPointeeType();
10096    Mode = 1;
10097    DK = diag::err_catch_incomplete_ptr;
10098  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
10099    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
10100    BaseType = Ref->getPointeeType();
10101    Mode = 2;
10102    DK = diag::err_catch_incomplete_ref;
10103  }
10104  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
10105      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
10106    Invalid = true;
10107
10108  if (!Invalid && !ExDeclType->isDependentType() &&
10109      RequireNonAbstractType(Loc, ExDeclType,
10110                             diag::err_abstract_type_in_decl,
10111                             AbstractVariableType))
10112    Invalid = true;
10113
10114  // Only the non-fragile NeXT runtime currently supports C++ catches
10115  // of ObjC types, and no runtime supports catching ObjC types by value.
10116  if (!Invalid && getLangOpts().ObjC1) {
10117    QualType T = ExDeclType;
10118    if (const ReferenceType *RT = T->getAs<ReferenceType>())
10119      T = RT->getPointeeType();
10120
10121    if (T->isObjCObjectType()) {
10122      Diag(Loc, diag::err_objc_object_catch);
10123      Invalid = true;
10124    } else if (T->isObjCObjectPointerType()) {
10125      // FIXME: should this be a test for macosx-fragile specifically?
10126      if (getLangOpts().ObjCRuntime.isFragile())
10127        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
10128    }
10129  }
10130
10131  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
10132                                    ExDeclType, TInfo, SC_None, SC_None);
10133  ExDecl->setExceptionVariable(true);
10134
10135  // In ARC, infer 'retaining' for variables of retainable type.
10136  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
10137    Invalid = true;
10138
10139  if (!Invalid && !ExDeclType->isDependentType()) {
10140    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
10141      // C++ [except.handle]p16:
10142      //   The object declared in an exception-declaration or, if the
10143      //   exception-declaration does not specify a name, a temporary (12.2) is
10144      //   copy-initialized (8.5) from the exception object. [...]
10145      //   The object is destroyed when the handler exits, after the destruction
10146      //   of any automatic objects initialized within the handler.
10147      //
10148      // We just pretend to initialize the object with itself, then make sure
10149      // it can be destroyed later.
10150      QualType initType = ExDeclType;
10151
10152      InitializedEntity entity =
10153        InitializedEntity::InitializeVariable(ExDecl);
10154      InitializationKind initKind =
10155        InitializationKind::CreateCopy(Loc, SourceLocation());
10156
10157      Expr *opaqueValue =
10158        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
10159      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
10160      ExprResult result = sequence.Perform(*this, entity, initKind,
10161                                           MultiExprArg(&opaqueValue, 1));
10162      if (result.isInvalid())
10163        Invalid = true;
10164      else {
10165        // If the constructor used was non-trivial, set this as the
10166        // "initializer".
10167        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
10168        if (!construct->getConstructor()->isTrivial()) {
10169          Expr *init = MaybeCreateExprWithCleanups(construct);
10170          ExDecl->setInit(init);
10171        }
10172
10173        // And make sure it's destructable.
10174        FinalizeVarWithDestructor(ExDecl, recordType);
10175      }
10176    }
10177  }
10178
10179  if (Invalid)
10180    ExDecl->setInvalidDecl();
10181
10182  return ExDecl;
10183}
10184
10185/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
10186/// handler.
10187Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
10188  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10189  bool Invalid = D.isInvalidType();
10190
10191  // Check for unexpanded parameter packs.
10192  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10193                                               UPPC_ExceptionType)) {
10194    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10195                                             D.getIdentifierLoc());
10196    Invalid = true;
10197  }
10198
10199  IdentifierInfo *II = D.getIdentifier();
10200  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
10201                                             LookupOrdinaryName,
10202                                             ForRedeclaration)) {
10203    // The scope should be freshly made just for us. There is just no way
10204    // it contains any previous declaration.
10205    assert(!S->isDeclScope(PrevDecl));
10206    if (PrevDecl->isTemplateParameter()) {
10207      // Maybe we will complain about the shadowed template parameter.
10208      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10209      PrevDecl = 0;
10210    }
10211  }
10212
10213  if (D.getCXXScopeSpec().isSet() && !Invalid) {
10214    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
10215      << D.getCXXScopeSpec().getRange();
10216    Invalid = true;
10217  }
10218
10219  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
10220                                              D.getLocStart(),
10221                                              D.getIdentifierLoc(),
10222                                              D.getIdentifier());
10223  if (Invalid)
10224    ExDecl->setInvalidDecl();
10225
10226  // Add the exception declaration into this scope.
10227  if (II)
10228    PushOnScopeChains(ExDecl, S);
10229  else
10230    CurContext->addDecl(ExDecl);
10231
10232  ProcessDeclAttributes(S, ExDecl, D);
10233  return ExDecl;
10234}
10235
10236Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10237                                         Expr *AssertExpr,
10238                                         Expr *AssertMessageExpr,
10239                                         SourceLocation RParenLoc) {
10240  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
10241
10242  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
10243    return 0;
10244
10245  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
10246                                      AssertMessage, RParenLoc, false);
10247}
10248
10249Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10250                                         Expr *AssertExpr,
10251                                         StringLiteral *AssertMessage,
10252                                         SourceLocation RParenLoc,
10253                                         bool Failed) {
10254  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
10255      !Failed) {
10256    // In a static_assert-declaration, the constant-expression shall be a
10257    // constant expression that can be contextually converted to bool.
10258    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
10259    if (Converted.isInvalid())
10260      Failed = true;
10261
10262    llvm::APSInt Cond;
10263    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
10264          diag::err_static_assert_expression_is_not_constant,
10265          /*AllowFold=*/false).isInvalid())
10266      Failed = true;
10267
10268    if (!Failed && !Cond) {
10269      llvm::SmallString<256> MsgBuffer;
10270      llvm::raw_svector_ostream Msg(MsgBuffer);
10271      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
10272      Diag(StaticAssertLoc, diag::err_static_assert_failed)
10273        << Msg.str() << AssertExpr->getSourceRange();
10274      Failed = true;
10275    }
10276  }
10277
10278  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
10279                                        AssertExpr, AssertMessage, RParenLoc,
10280                                        Failed);
10281
10282  CurContext->addDecl(Decl);
10283  return Decl;
10284}
10285
10286/// \brief Perform semantic analysis of the given friend type declaration.
10287///
10288/// \returns A friend declaration that.
10289FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
10290                                      SourceLocation FriendLoc,
10291                                      TypeSourceInfo *TSInfo) {
10292  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
10293
10294  QualType T = TSInfo->getType();
10295  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
10296
10297  // C++03 [class.friend]p2:
10298  //   An elaborated-type-specifier shall be used in a friend declaration
10299  //   for a class.*
10300  //
10301  //   * The class-key of the elaborated-type-specifier is required.
10302  if (!ActiveTemplateInstantiations.empty()) {
10303    // Do not complain about the form of friend template types during
10304    // template instantiation; we will already have complained when the
10305    // template was declared.
10306  } else if (!T->isElaboratedTypeSpecifier()) {
10307    // If we evaluated the type to a record type, suggest putting
10308    // a tag in front.
10309    if (const RecordType *RT = T->getAs<RecordType>()) {
10310      RecordDecl *RD = RT->getDecl();
10311
10312      std::string InsertionText = std::string(" ") + RD->getKindName();
10313
10314      Diag(TypeRange.getBegin(),
10315           getLangOpts().CPlusPlus0x ?
10316             diag::warn_cxx98_compat_unelaborated_friend_type :
10317             diag::ext_unelaborated_friend_type)
10318        << (unsigned) RD->getTagKind()
10319        << T
10320        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10321                                      InsertionText);
10322    } else {
10323      Diag(FriendLoc,
10324           getLangOpts().CPlusPlus0x ?
10325             diag::warn_cxx98_compat_nonclass_type_friend :
10326             diag::ext_nonclass_type_friend)
10327        << T
10328        << TypeRange;
10329    }
10330  } else if (T->getAs<EnumType>()) {
10331    Diag(FriendLoc,
10332         getLangOpts().CPlusPlus0x ?
10333           diag::warn_cxx98_compat_enum_friend :
10334           diag::ext_enum_friend)
10335      << T
10336      << TypeRange;
10337  }
10338
10339  // C++11 [class.friend]p3:
10340  //   A friend declaration that does not declare a function shall have one
10341  //   of the following forms:
10342  //     friend elaborated-type-specifier ;
10343  //     friend simple-type-specifier ;
10344  //     friend typename-specifier ;
10345  if (getLangOpts().CPlusPlus0x && LocStart != FriendLoc)
10346    Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
10347
10348  //   If the type specifier in a friend declaration designates a (possibly
10349  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10350  //   the friend declaration is ignored.
10351  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
10352}
10353
10354/// Handle a friend tag declaration where the scope specifier was
10355/// templated.
10356Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10357                                    unsigned TagSpec, SourceLocation TagLoc,
10358                                    CXXScopeSpec &SS,
10359                                    IdentifierInfo *Name, SourceLocation NameLoc,
10360                                    AttributeList *Attr,
10361                                    MultiTemplateParamsArg TempParamLists) {
10362  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10363
10364  bool isExplicitSpecialization = false;
10365  bool Invalid = false;
10366
10367  if (TemplateParameterList *TemplateParams
10368        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10369                                                  TempParamLists.data(),
10370                                                  TempParamLists.size(),
10371                                                  /*friend*/ true,
10372                                                  isExplicitSpecialization,
10373                                                  Invalid)) {
10374    if (TemplateParams->size() > 0) {
10375      // This is a declaration of a class template.
10376      if (Invalid)
10377        return 0;
10378
10379      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10380                                SS, Name, NameLoc, Attr,
10381                                TemplateParams, AS_public,
10382                                /*ModulePrivateLoc=*/SourceLocation(),
10383                                TempParamLists.size() - 1,
10384                                TempParamLists.data()).take();
10385    } else {
10386      // The "template<>" header is extraneous.
10387      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10388        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10389      isExplicitSpecialization = true;
10390    }
10391  }
10392
10393  if (Invalid) return 0;
10394
10395  bool isAllExplicitSpecializations = true;
10396  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10397    if (TempParamLists[I]->size()) {
10398      isAllExplicitSpecializations = false;
10399      break;
10400    }
10401  }
10402
10403  // FIXME: don't ignore attributes.
10404
10405  // If it's explicit specializations all the way down, just forget
10406  // about the template header and build an appropriate non-templated
10407  // friend.  TODO: for source fidelity, remember the headers.
10408  if (isAllExplicitSpecializations) {
10409    if (SS.isEmpty()) {
10410      bool Owned = false;
10411      bool IsDependent = false;
10412      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10413                      Attr, AS_public,
10414                      /*ModulePrivateLoc=*/SourceLocation(),
10415                      MultiTemplateParamsArg(), Owned, IsDependent,
10416                      /*ScopedEnumKWLoc=*/SourceLocation(),
10417                      /*ScopedEnumUsesClassTag=*/false,
10418                      /*UnderlyingType=*/TypeResult());
10419    }
10420
10421    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10422    ElaboratedTypeKeyword Keyword
10423      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10424    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10425                                   *Name, NameLoc);
10426    if (T.isNull())
10427      return 0;
10428
10429    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10430    if (isa<DependentNameType>(T)) {
10431      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10432      TL.setElaboratedKeywordLoc(TagLoc);
10433      TL.setQualifierLoc(QualifierLoc);
10434      TL.setNameLoc(NameLoc);
10435    } else {
10436      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10437      TL.setElaboratedKeywordLoc(TagLoc);
10438      TL.setQualifierLoc(QualifierLoc);
10439      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10440    }
10441
10442    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10443                                            TSI, FriendLoc);
10444    Friend->setAccess(AS_public);
10445    CurContext->addDecl(Friend);
10446    return Friend;
10447  }
10448
10449  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10450
10451
10452
10453  // Handle the case of a templated-scope friend class.  e.g.
10454  //   template <class T> class A<T>::B;
10455  // FIXME: we don't support these right now.
10456  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10457  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10458  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10459  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10460  TL.setElaboratedKeywordLoc(TagLoc);
10461  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10462  TL.setNameLoc(NameLoc);
10463
10464  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10465                                          TSI, FriendLoc);
10466  Friend->setAccess(AS_public);
10467  Friend->setUnsupportedFriend(true);
10468  CurContext->addDecl(Friend);
10469  return Friend;
10470}
10471
10472
10473/// Handle a friend type declaration.  This works in tandem with
10474/// ActOnTag.
10475///
10476/// Notes on friend class templates:
10477///
10478/// We generally treat friend class declarations as if they were
10479/// declaring a class.  So, for example, the elaborated type specifier
10480/// in a friend declaration is required to obey the restrictions of a
10481/// class-head (i.e. no typedefs in the scope chain), template
10482/// parameters are required to match up with simple template-ids, &c.
10483/// However, unlike when declaring a template specialization, it's
10484/// okay to refer to a template specialization without an empty
10485/// template parameter declaration, e.g.
10486///   friend class A<T>::B<unsigned>;
10487/// We permit this as a special case; if there are any template
10488/// parameters present at all, require proper matching, i.e.
10489///   template <> template \<class T> friend class A<int>::B;
10490Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10491                                MultiTemplateParamsArg TempParams) {
10492  SourceLocation Loc = DS.getLocStart();
10493
10494  assert(DS.isFriendSpecified());
10495  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10496
10497  // Try to convert the decl specifier to a type.  This works for
10498  // friend templates because ActOnTag never produces a ClassTemplateDecl
10499  // for a TUK_Friend.
10500  Declarator TheDeclarator(DS, Declarator::MemberContext);
10501  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10502  QualType T = TSI->getType();
10503  if (TheDeclarator.isInvalidType())
10504    return 0;
10505
10506  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10507    return 0;
10508
10509  // This is definitely an error in C++98.  It's probably meant to
10510  // be forbidden in C++0x, too, but the specification is just
10511  // poorly written.
10512  //
10513  // The problem is with declarations like the following:
10514  //   template <T> friend A<T>::foo;
10515  // where deciding whether a class C is a friend or not now hinges
10516  // on whether there exists an instantiation of A that causes
10517  // 'foo' to equal C.  There are restrictions on class-heads
10518  // (which we declare (by fiat) elaborated friend declarations to
10519  // be) that makes this tractable.
10520  //
10521  // FIXME: handle "template <> friend class A<T>;", which
10522  // is possibly well-formed?  Who even knows?
10523  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10524    Diag(Loc, diag::err_tagless_friend_type_template)
10525      << DS.getSourceRange();
10526    return 0;
10527  }
10528
10529  // C++98 [class.friend]p1: A friend of a class is a function
10530  //   or class that is not a member of the class . . .
10531  // This is fixed in DR77, which just barely didn't make the C++03
10532  // deadline.  It's also a very silly restriction that seriously
10533  // affects inner classes and which nobody else seems to implement;
10534  // thus we never diagnose it, not even in -pedantic.
10535  //
10536  // But note that we could warn about it: it's always useless to
10537  // friend one of your own members (it's not, however, worthless to
10538  // friend a member of an arbitrary specialization of your template).
10539
10540  Decl *D;
10541  if (unsigned NumTempParamLists = TempParams.size())
10542    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10543                                   NumTempParamLists,
10544                                   TempParams.data(),
10545                                   TSI,
10546                                   DS.getFriendSpecLoc());
10547  else
10548    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10549
10550  if (!D)
10551    return 0;
10552
10553  D->setAccess(AS_public);
10554  CurContext->addDecl(D);
10555
10556  return D;
10557}
10558
10559Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10560                                    MultiTemplateParamsArg TemplateParams) {
10561  const DeclSpec &DS = D.getDeclSpec();
10562
10563  assert(DS.isFriendSpecified());
10564  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10565
10566  SourceLocation Loc = D.getIdentifierLoc();
10567  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10568
10569  // C++ [class.friend]p1
10570  //   A friend of a class is a function or class....
10571  // Note that this sees through typedefs, which is intended.
10572  // It *doesn't* see through dependent types, which is correct
10573  // according to [temp.arg.type]p3:
10574  //   If a declaration acquires a function type through a
10575  //   type dependent on a template-parameter and this causes
10576  //   a declaration that does not use the syntactic form of a
10577  //   function declarator to have a function type, the program
10578  //   is ill-formed.
10579  if (!TInfo->getType()->isFunctionType()) {
10580    Diag(Loc, diag::err_unexpected_friend);
10581
10582    // It might be worthwhile to try to recover by creating an
10583    // appropriate declaration.
10584    return 0;
10585  }
10586
10587  // C++ [namespace.memdef]p3
10588  //  - If a friend declaration in a non-local class first declares a
10589  //    class or function, the friend class or function is a member
10590  //    of the innermost enclosing namespace.
10591  //  - The name of the friend is not found by simple name lookup
10592  //    until a matching declaration is provided in that namespace
10593  //    scope (either before or after the class declaration granting
10594  //    friendship).
10595  //  - If a friend function is called, its name may be found by the
10596  //    name lookup that considers functions from namespaces and
10597  //    classes associated with the types of the function arguments.
10598  //  - When looking for a prior declaration of a class or a function
10599  //    declared as a friend, scopes outside the innermost enclosing
10600  //    namespace scope are not considered.
10601
10602  CXXScopeSpec &SS = D.getCXXScopeSpec();
10603  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10604  DeclarationName Name = NameInfo.getName();
10605  assert(Name);
10606
10607  // Check for unexpanded parameter packs.
10608  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10609      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10610      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10611    return 0;
10612
10613  // The context we found the declaration in, or in which we should
10614  // create the declaration.
10615  DeclContext *DC;
10616  Scope *DCScope = S;
10617  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10618                        ForRedeclaration);
10619
10620  // FIXME: there are different rules in local classes
10621
10622  // There are four cases here.
10623  //   - There's no scope specifier, in which case we just go to the
10624  //     appropriate scope and look for a function or function template
10625  //     there as appropriate.
10626  // Recover from invalid scope qualifiers as if they just weren't there.
10627  if (SS.isInvalid() || !SS.isSet()) {
10628    // C++0x [namespace.memdef]p3:
10629    //   If the name in a friend declaration is neither qualified nor
10630    //   a template-id and the declaration is a function or an
10631    //   elaborated-type-specifier, the lookup to determine whether
10632    //   the entity has been previously declared shall not consider
10633    //   any scopes outside the innermost enclosing namespace.
10634    // C++0x [class.friend]p11:
10635    //   If a friend declaration appears in a local class and the name
10636    //   specified is an unqualified name, a prior declaration is
10637    //   looked up without considering scopes that are outside the
10638    //   innermost enclosing non-class scope. For a friend function
10639    //   declaration, if there is no prior declaration, the program is
10640    //   ill-formed.
10641    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10642    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10643
10644    // Find the appropriate context according to the above.
10645    DC = CurContext;
10646    while (true) {
10647      // Skip class contexts.  If someone can cite chapter and verse
10648      // for this behavior, that would be nice --- it's what GCC and
10649      // EDG do, and it seems like a reasonable intent, but the spec
10650      // really only says that checks for unqualified existing
10651      // declarations should stop at the nearest enclosing namespace,
10652      // not that they should only consider the nearest enclosing
10653      // namespace.
10654      while (DC->isRecord() || DC->isTransparentContext())
10655        DC = DC->getParent();
10656
10657      LookupQualifiedName(Previous, DC);
10658
10659      // TODO: decide what we think about using declarations.
10660      if (isLocal || !Previous.empty())
10661        break;
10662
10663      if (isTemplateId) {
10664        if (isa<TranslationUnitDecl>(DC)) break;
10665      } else {
10666        if (DC->isFileContext()) break;
10667      }
10668      DC = DC->getParent();
10669    }
10670
10671    // C++ [class.friend]p1: A friend of a class is a function or
10672    //   class that is not a member of the class . . .
10673    // C++11 changes this for both friend types and functions.
10674    // Most C++ 98 compilers do seem to give an error here, so
10675    // we do, too.
10676    if (!Previous.empty() && DC->Equals(CurContext))
10677      Diag(DS.getFriendSpecLoc(),
10678           getLangOpts().CPlusPlus0x ?
10679             diag::warn_cxx98_compat_friend_is_member :
10680             diag::err_friend_is_member);
10681
10682    DCScope = getScopeForDeclContext(S, DC);
10683
10684    // C++ [class.friend]p6:
10685    //   A function can be defined in a friend declaration of a class if and
10686    //   only if the class is a non-local class (9.8), the function name is
10687    //   unqualified, and the function has namespace scope.
10688    if (isLocal && D.isFunctionDefinition()) {
10689      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10690    }
10691
10692  //   - There's a non-dependent scope specifier, in which case we
10693  //     compute it and do a previous lookup there for a function
10694  //     or function template.
10695  } else if (!SS.getScopeRep()->isDependent()) {
10696    DC = computeDeclContext(SS);
10697    if (!DC) return 0;
10698
10699    if (RequireCompleteDeclContext(SS, DC)) return 0;
10700
10701    LookupQualifiedName(Previous, DC);
10702
10703    // Ignore things found implicitly in the wrong scope.
10704    // TODO: better diagnostics for this case.  Suggesting the right
10705    // qualified scope would be nice...
10706    LookupResult::Filter F = Previous.makeFilter();
10707    while (F.hasNext()) {
10708      NamedDecl *D = F.next();
10709      if (!DC->InEnclosingNamespaceSetOf(
10710              D->getDeclContext()->getRedeclContext()))
10711        F.erase();
10712    }
10713    F.done();
10714
10715    if (Previous.empty()) {
10716      D.setInvalidType();
10717      Diag(Loc, diag::err_qualified_friend_not_found)
10718          << Name << TInfo->getType();
10719      return 0;
10720    }
10721
10722    // C++ [class.friend]p1: A friend of a class is a function or
10723    //   class that is not a member of the class . . .
10724    if (DC->Equals(CurContext))
10725      Diag(DS.getFriendSpecLoc(),
10726           getLangOpts().CPlusPlus0x ?
10727             diag::warn_cxx98_compat_friend_is_member :
10728             diag::err_friend_is_member);
10729
10730    if (D.isFunctionDefinition()) {
10731      // C++ [class.friend]p6:
10732      //   A function can be defined in a friend declaration of a class if and
10733      //   only if the class is a non-local class (9.8), the function name is
10734      //   unqualified, and the function has namespace scope.
10735      SemaDiagnosticBuilder DB
10736        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10737
10738      DB << SS.getScopeRep();
10739      if (DC->isFileContext())
10740        DB << FixItHint::CreateRemoval(SS.getRange());
10741      SS.clear();
10742    }
10743
10744  //   - There's a scope specifier that does not match any template
10745  //     parameter lists, in which case we use some arbitrary context,
10746  //     create a method or method template, and wait for instantiation.
10747  //   - There's a scope specifier that does match some template
10748  //     parameter lists, which we don't handle right now.
10749  } else {
10750    if (D.isFunctionDefinition()) {
10751      // C++ [class.friend]p6:
10752      //   A function can be defined in a friend declaration of a class if and
10753      //   only if the class is a non-local class (9.8), the function name is
10754      //   unqualified, and the function has namespace scope.
10755      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10756        << SS.getScopeRep();
10757    }
10758
10759    DC = CurContext;
10760    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10761  }
10762
10763  if (!DC->isRecord()) {
10764    // This implies that it has to be an operator or function.
10765    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10766        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10767        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10768      Diag(Loc, diag::err_introducing_special_friend) <<
10769        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10770         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10771      return 0;
10772    }
10773  }
10774
10775  // FIXME: This is an egregious hack to cope with cases where the scope stack
10776  // does not contain the declaration context, i.e., in an out-of-line
10777  // definition of a class.
10778  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10779  if (!DCScope) {
10780    FakeDCScope.setEntity(DC);
10781    DCScope = &FakeDCScope;
10782  }
10783
10784  bool AddToScope = true;
10785  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10786                                          TemplateParams, AddToScope);
10787  if (!ND) return 0;
10788
10789  assert(ND->getDeclContext() == DC);
10790  assert(ND->getLexicalDeclContext() == CurContext);
10791
10792  // Add the function declaration to the appropriate lookup tables,
10793  // adjusting the redeclarations list as necessary.  We don't
10794  // want to do this yet if the friending class is dependent.
10795  //
10796  // Also update the scope-based lookup if the target context's
10797  // lookup context is in lexical scope.
10798  if (!CurContext->isDependentContext()) {
10799    DC = DC->getRedeclContext();
10800    DC->makeDeclVisibleInContext(ND);
10801    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10802      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10803  }
10804
10805  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10806                                       D.getIdentifierLoc(), ND,
10807                                       DS.getFriendSpecLoc());
10808  FrD->setAccess(AS_public);
10809  CurContext->addDecl(FrD);
10810
10811  if (ND->isInvalidDecl()) {
10812    FrD->setInvalidDecl();
10813  } else {
10814    if (DC->isRecord()) CheckFriendAccess(ND);
10815
10816    FunctionDecl *FD;
10817    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10818      FD = FTD->getTemplatedDecl();
10819    else
10820      FD = cast<FunctionDecl>(ND);
10821
10822    // Mark templated-scope function declarations as unsupported.
10823    if (FD->getNumTemplateParameterLists())
10824      FrD->setUnsupportedFriend(true);
10825  }
10826
10827  return ND;
10828}
10829
10830void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10831  AdjustDeclIfTemplate(Dcl);
10832
10833  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10834  if (!Fn) {
10835    Diag(DelLoc, diag::err_deleted_non_function);
10836    return;
10837  }
10838  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10839    // Don't consider the implicit declaration we generate for explicit
10840    // specializations. FIXME: Do not generate these implicit declarations.
10841    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
10842        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
10843      Diag(DelLoc, diag::err_deleted_decl_not_first);
10844      Diag(Prev->getLocation(), diag::note_previous_declaration);
10845    }
10846    // If the declaration wasn't the first, we delete the function anyway for
10847    // recovery.
10848  }
10849  Fn->setDeletedAsWritten();
10850}
10851
10852void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10853  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10854
10855  if (MD) {
10856    if (MD->getParent()->isDependentType()) {
10857      MD->setDefaulted();
10858      MD->setExplicitlyDefaulted();
10859      return;
10860    }
10861
10862    CXXSpecialMember Member = getSpecialMember(MD);
10863    if (Member == CXXInvalid) {
10864      Diag(DefaultLoc, diag::err_default_special_members);
10865      return;
10866    }
10867
10868    MD->setDefaulted();
10869    MD->setExplicitlyDefaulted();
10870
10871    // If this definition appears within the record, do the checking when
10872    // the record is complete.
10873    const FunctionDecl *Primary = MD;
10874    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
10875      // Find the uninstantiated declaration that actually had the '= default'
10876      // on it.
10877      Pattern->isDefined(Primary);
10878
10879    if (Primary == Primary->getCanonicalDecl())
10880      return;
10881
10882    CheckExplicitlyDefaultedSpecialMember(MD);
10883
10884    switch (Member) {
10885    case CXXDefaultConstructor: {
10886      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10887      if (!CD->isInvalidDecl())
10888        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10889      break;
10890    }
10891
10892    case CXXCopyConstructor: {
10893      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10894      if (!CD->isInvalidDecl())
10895        DefineImplicitCopyConstructor(DefaultLoc, CD);
10896      break;
10897    }
10898
10899    case CXXCopyAssignment: {
10900      if (!MD->isInvalidDecl())
10901        DefineImplicitCopyAssignment(DefaultLoc, MD);
10902      break;
10903    }
10904
10905    case CXXDestructor: {
10906      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10907      if (!DD->isInvalidDecl())
10908        DefineImplicitDestructor(DefaultLoc, DD);
10909      break;
10910    }
10911
10912    case CXXMoveConstructor: {
10913      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10914      if (!CD->isInvalidDecl())
10915        DefineImplicitMoveConstructor(DefaultLoc, CD);
10916      break;
10917    }
10918
10919    case CXXMoveAssignment: {
10920      if (!MD->isInvalidDecl())
10921        DefineImplicitMoveAssignment(DefaultLoc, MD);
10922      break;
10923    }
10924
10925    case CXXInvalid:
10926      llvm_unreachable("Invalid special member.");
10927    }
10928  } else {
10929    Diag(DefaultLoc, diag::err_default_special_members);
10930  }
10931}
10932
10933static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10934  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10935    Stmt *SubStmt = *CI;
10936    if (!SubStmt)
10937      continue;
10938    if (isa<ReturnStmt>(SubStmt))
10939      Self.Diag(SubStmt->getLocStart(),
10940           diag::err_return_in_constructor_handler);
10941    if (!isa<Expr>(SubStmt))
10942      SearchForReturnInStmt(Self, SubStmt);
10943  }
10944}
10945
10946void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10947  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10948    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10949    SearchForReturnInStmt(*this, Handler);
10950  }
10951}
10952
10953bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10954                                             const CXXMethodDecl *Old) {
10955  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10956  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10957
10958  if (Context.hasSameType(NewTy, OldTy) ||
10959      NewTy->isDependentType() || OldTy->isDependentType())
10960    return false;
10961
10962  // Check if the return types are covariant
10963  QualType NewClassTy, OldClassTy;
10964
10965  /// Both types must be pointers or references to classes.
10966  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10967    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10968      NewClassTy = NewPT->getPointeeType();
10969      OldClassTy = OldPT->getPointeeType();
10970    }
10971  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10972    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10973      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10974        NewClassTy = NewRT->getPointeeType();
10975        OldClassTy = OldRT->getPointeeType();
10976      }
10977    }
10978  }
10979
10980  // The return types aren't either both pointers or references to a class type.
10981  if (NewClassTy.isNull()) {
10982    Diag(New->getLocation(),
10983         diag::err_different_return_type_for_overriding_virtual_function)
10984      << New->getDeclName() << NewTy << OldTy;
10985    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10986
10987    return true;
10988  }
10989
10990  // C++ [class.virtual]p6:
10991  //   If the return type of D::f differs from the return type of B::f, the
10992  //   class type in the return type of D::f shall be complete at the point of
10993  //   declaration of D::f or shall be the class type D.
10994  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10995    if (!RT->isBeingDefined() &&
10996        RequireCompleteType(New->getLocation(), NewClassTy,
10997                            diag::err_covariant_return_incomplete,
10998                            New->getDeclName()))
10999    return true;
11000  }
11001
11002  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
11003    // Check if the new class derives from the old class.
11004    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
11005      Diag(New->getLocation(),
11006           diag::err_covariant_return_not_derived)
11007      << New->getDeclName() << NewTy << OldTy;
11008      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11009      return true;
11010    }
11011
11012    // Check if we the conversion from derived to base is valid.
11013    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
11014                    diag::err_covariant_return_inaccessible_base,
11015                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
11016                    // FIXME: Should this point to the return type?
11017                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
11018      // FIXME: this note won't trigger for delayed access control
11019      // diagnostics, and it's impossible to get an undelayed error
11020      // here from access control during the original parse because
11021      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
11022      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11023      return true;
11024    }
11025  }
11026
11027  // The qualifiers of the return types must be the same.
11028  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
11029    Diag(New->getLocation(),
11030         diag::err_covariant_return_type_different_qualifications)
11031    << New->getDeclName() << NewTy << OldTy;
11032    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11033    return true;
11034  };
11035
11036
11037  // The new class type must have the same or less qualifiers as the old type.
11038  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
11039    Diag(New->getLocation(),
11040         diag::err_covariant_return_type_class_type_more_qualified)
11041    << New->getDeclName() << NewTy << OldTy;
11042    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11043    return true;
11044  };
11045
11046  return false;
11047}
11048
11049/// \brief Mark the given method pure.
11050///
11051/// \param Method the method to be marked pure.
11052///
11053/// \param InitRange the source range that covers the "0" initializer.
11054bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
11055  SourceLocation EndLoc = InitRange.getEnd();
11056  if (EndLoc.isValid())
11057    Method->setRangeEnd(EndLoc);
11058
11059  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
11060    Method->setPure();
11061    return false;
11062  }
11063
11064  if (!Method->isInvalidDecl())
11065    Diag(Method->getLocation(), diag::err_non_virtual_pure)
11066      << Method->getDeclName() << InitRange;
11067  return true;
11068}
11069
11070/// \brief Determine whether the given declaration is a static data member.
11071static bool isStaticDataMember(Decl *D) {
11072  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
11073  if (!Var)
11074    return false;
11075
11076  return Var->isStaticDataMember();
11077}
11078/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
11079/// an initializer for the out-of-line declaration 'Dcl'.  The scope
11080/// is a fresh scope pushed for just this purpose.
11081///
11082/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
11083/// static data member of class X, names should be looked up in the scope of
11084/// class X.
11085void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
11086  // If there is no declaration, there was an error parsing it.
11087  if (D == 0 || D->isInvalidDecl()) return;
11088
11089  // We should only get called for declarations with scope specifiers, like:
11090  //   int foo::bar;
11091  assert(D->isOutOfLine());
11092  EnterDeclaratorContext(S, D->getDeclContext());
11093
11094  // If we are parsing the initializer for a static data member, push a
11095  // new expression evaluation context that is associated with this static
11096  // data member.
11097  if (isStaticDataMember(D))
11098    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
11099}
11100
11101/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
11102/// initializer for the out-of-line declaration 'D'.
11103void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
11104  // If there is no declaration, there was an error parsing it.
11105  if (D == 0 || D->isInvalidDecl()) return;
11106
11107  if (isStaticDataMember(D))
11108    PopExpressionEvaluationContext();
11109
11110  assert(D->isOutOfLine());
11111  ExitDeclaratorContext(S);
11112}
11113
11114/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
11115/// C++ if/switch/while/for statement.
11116/// e.g: "if (int x = f()) {...}"
11117DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
11118  // C++ 6.4p2:
11119  // The declarator shall not specify a function or an array.
11120  // The type-specifier-seq shall not contain typedef and shall not declare a
11121  // new class or enumeration.
11122  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
11123         "Parser allowed 'typedef' as storage class of condition decl.");
11124
11125  Decl *Dcl = ActOnDeclarator(S, D);
11126  if (!Dcl)
11127    return true;
11128
11129  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
11130    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
11131      << D.getSourceRange();
11132    return true;
11133  }
11134
11135  return Dcl;
11136}
11137
11138void Sema::LoadExternalVTableUses() {
11139  if (!ExternalSource)
11140    return;
11141
11142  SmallVector<ExternalVTableUse, 4> VTables;
11143  ExternalSource->ReadUsedVTables(VTables);
11144  SmallVector<VTableUse, 4> NewUses;
11145  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
11146    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
11147      = VTablesUsed.find(VTables[I].Record);
11148    // Even if a definition wasn't required before, it may be required now.
11149    if (Pos != VTablesUsed.end()) {
11150      if (!Pos->second && VTables[I].DefinitionRequired)
11151        Pos->second = true;
11152      continue;
11153    }
11154
11155    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
11156    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
11157  }
11158
11159  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
11160}
11161
11162void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
11163                          bool DefinitionRequired) {
11164  // Ignore any vtable uses in unevaluated operands or for classes that do
11165  // not have a vtable.
11166  if (!Class->isDynamicClass() || Class->isDependentContext() ||
11167      CurContext->isDependentContext() ||
11168      ExprEvalContexts.back().Context == Unevaluated)
11169    return;
11170
11171  // Try to insert this class into the map.
11172  LoadExternalVTableUses();
11173  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11174  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
11175    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
11176  if (!Pos.second) {
11177    // If we already had an entry, check to see if we are promoting this vtable
11178    // to required a definition. If so, we need to reappend to the VTableUses
11179    // list, since we may have already processed the first entry.
11180    if (DefinitionRequired && !Pos.first->second) {
11181      Pos.first->second = true;
11182    } else {
11183      // Otherwise, we can early exit.
11184      return;
11185    }
11186  }
11187
11188  // Local classes need to have their virtual members marked
11189  // immediately. For all other classes, we mark their virtual members
11190  // at the end of the translation unit.
11191  if (Class->isLocalClass())
11192    MarkVirtualMembersReferenced(Loc, Class);
11193  else
11194    VTableUses.push_back(std::make_pair(Class, Loc));
11195}
11196
11197bool Sema::DefineUsedVTables() {
11198  LoadExternalVTableUses();
11199  if (VTableUses.empty())
11200    return false;
11201
11202  // Note: The VTableUses vector could grow as a result of marking
11203  // the members of a class as "used", so we check the size each
11204  // time through the loop and prefer indices (which are stable) to
11205  // iterators (which are not).
11206  bool DefinedAnything = false;
11207  for (unsigned I = 0; I != VTableUses.size(); ++I) {
11208    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
11209    if (!Class)
11210      continue;
11211
11212    SourceLocation Loc = VTableUses[I].second;
11213
11214    bool DefineVTable = true;
11215
11216    // If this class has a key function, but that key function is
11217    // defined in another translation unit, we don't need to emit the
11218    // vtable even though we're using it.
11219    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
11220    if (KeyFunction && !KeyFunction->hasBody()) {
11221      switch (KeyFunction->getTemplateSpecializationKind()) {
11222      case TSK_Undeclared:
11223      case TSK_ExplicitSpecialization:
11224      case TSK_ExplicitInstantiationDeclaration:
11225        // The key function is in another translation unit.
11226        DefineVTable = false;
11227        break;
11228
11229      case TSK_ExplicitInstantiationDefinition:
11230      case TSK_ImplicitInstantiation:
11231        // We will be instantiating the key function.
11232        break;
11233      }
11234    } else if (!KeyFunction) {
11235      // If we have a class with no key function that is the subject
11236      // of an explicit instantiation declaration, suppress the
11237      // vtable; it will live with the explicit instantiation
11238      // definition.
11239      bool IsExplicitInstantiationDeclaration
11240        = Class->getTemplateSpecializationKind()
11241                                      == TSK_ExplicitInstantiationDeclaration;
11242      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
11243                                 REnd = Class->redecls_end();
11244           R != REnd; ++R) {
11245        TemplateSpecializationKind TSK
11246          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
11247        if (TSK == TSK_ExplicitInstantiationDeclaration)
11248          IsExplicitInstantiationDeclaration = true;
11249        else if (TSK == TSK_ExplicitInstantiationDefinition) {
11250          IsExplicitInstantiationDeclaration = false;
11251          break;
11252        }
11253      }
11254
11255      if (IsExplicitInstantiationDeclaration)
11256        DefineVTable = false;
11257    }
11258
11259    // The exception specifications for all virtual members may be needed even
11260    // if we are not providing an authoritative form of the vtable in this TU.
11261    // We may choose to emit it available_externally anyway.
11262    if (!DefineVTable) {
11263      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
11264      continue;
11265    }
11266
11267    // Mark all of the virtual members of this class as referenced, so
11268    // that we can build a vtable. Then, tell the AST consumer that a
11269    // vtable for this class is required.
11270    DefinedAnything = true;
11271    MarkVirtualMembersReferenced(Loc, Class);
11272    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11273    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
11274
11275    // Optionally warn if we're emitting a weak vtable.
11276    if (Class->getLinkage() == ExternalLinkage &&
11277        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
11278      const FunctionDecl *KeyFunctionDef = 0;
11279      if (!KeyFunction ||
11280          (KeyFunction->hasBody(KeyFunctionDef) &&
11281           KeyFunctionDef->isInlined()))
11282        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
11283             TSK_ExplicitInstantiationDefinition
11284             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
11285          << Class;
11286    }
11287  }
11288  VTableUses.clear();
11289
11290  return DefinedAnything;
11291}
11292
11293void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
11294                                                 const CXXRecordDecl *RD) {
11295  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
11296                                      E = RD->method_end(); I != E; ++I)
11297    if ((*I)->isVirtual() && !(*I)->isPure())
11298      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
11299}
11300
11301void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
11302                                        const CXXRecordDecl *RD) {
11303  // Mark all functions which will appear in RD's vtable as used.
11304  CXXFinalOverriderMap FinalOverriders;
11305  RD->getFinalOverriders(FinalOverriders);
11306  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
11307                                            E = FinalOverriders.end();
11308       I != E; ++I) {
11309    for (OverridingMethods::const_iterator OI = I->second.begin(),
11310                                           OE = I->second.end();
11311         OI != OE; ++OI) {
11312      assert(OI->second.size() > 0 && "no final overrider");
11313      CXXMethodDecl *Overrider = OI->second.front().Method;
11314
11315      // C++ [basic.def.odr]p2:
11316      //   [...] A virtual member function is used if it is not pure. [...]
11317      if (!Overrider->isPure())
11318        MarkFunctionReferenced(Loc, Overrider);
11319    }
11320  }
11321
11322  // Only classes that have virtual bases need a VTT.
11323  if (RD->getNumVBases() == 0)
11324    return;
11325
11326  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
11327           e = RD->bases_end(); i != e; ++i) {
11328    const CXXRecordDecl *Base =
11329        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
11330    if (Base->getNumVBases() == 0)
11331      continue;
11332    MarkVirtualMembersReferenced(Loc, Base);
11333  }
11334}
11335
11336/// SetIvarInitializers - This routine builds initialization ASTs for the
11337/// Objective-C implementation whose ivars need be initialized.
11338void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
11339  if (!getLangOpts().CPlusPlus)
11340    return;
11341  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
11342    SmallVector<ObjCIvarDecl*, 8> ivars;
11343    CollectIvarsToConstructOrDestruct(OID, ivars);
11344    if (ivars.empty())
11345      return;
11346    SmallVector<CXXCtorInitializer*, 32> AllToInit;
11347    for (unsigned i = 0; i < ivars.size(); i++) {
11348      FieldDecl *Field = ivars[i];
11349      if (Field->isInvalidDecl())
11350        continue;
11351
11352      CXXCtorInitializer *Member;
11353      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
11354      InitializationKind InitKind =
11355        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
11356
11357      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
11358      ExprResult MemberInit =
11359        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
11360      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
11361      // Note, MemberInit could actually come back empty if no initialization
11362      // is required (e.g., because it would call a trivial default constructor)
11363      if (!MemberInit.get() || MemberInit.isInvalid())
11364        continue;
11365
11366      Member =
11367        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
11368                                         SourceLocation(),
11369                                         MemberInit.takeAs<Expr>(),
11370                                         SourceLocation());
11371      AllToInit.push_back(Member);
11372
11373      // Be sure that the destructor is accessible and is marked as referenced.
11374      if (const RecordType *RecordTy
11375                  = Context.getBaseElementType(Field->getType())
11376                                                        ->getAs<RecordType>()) {
11377                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
11378        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
11379          MarkFunctionReferenced(Field->getLocation(), Destructor);
11380          CheckDestructorAccess(Field->getLocation(), Destructor,
11381                            PDiag(diag::err_access_dtor_ivar)
11382                              << Context.getBaseElementType(Field->getType()));
11383        }
11384      }
11385    }
11386    ObjCImplementation->setIvarInitializers(Context,
11387                                            AllToInit.data(), AllToInit.size());
11388  }
11389}
11390
11391static
11392void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11393                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11394                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11395                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11396                           Sema &S) {
11397  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11398                                                   CE = Current.end();
11399  if (Ctor->isInvalidDecl())
11400    return;
11401
11402  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
11403
11404  // Target may not be determinable yet, for instance if this is a dependent
11405  // call in an uninstantiated template.
11406  if (Target) {
11407    const FunctionDecl *FNTarget = 0;
11408    (void)Target->hasBody(FNTarget);
11409    Target = const_cast<CXXConstructorDecl*>(
11410      cast_or_null<CXXConstructorDecl>(FNTarget));
11411  }
11412
11413  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11414                     // Avoid dereferencing a null pointer here.
11415                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11416
11417  if (!Current.insert(Canonical))
11418    return;
11419
11420  // We know that beyond here, we aren't chaining into a cycle.
11421  if (!Target || !Target->isDelegatingConstructor() ||
11422      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11423    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11424      Valid.insert(*CI);
11425    Current.clear();
11426  // We've hit a cycle.
11427  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11428             Current.count(TCanonical)) {
11429    // If we haven't diagnosed this cycle yet, do so now.
11430    if (!Invalid.count(TCanonical)) {
11431      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11432             diag::warn_delegating_ctor_cycle)
11433        << Ctor;
11434
11435      // Don't add a note for a function delegating directly to itself.
11436      if (TCanonical != Canonical)
11437        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11438
11439      CXXConstructorDecl *C = Target;
11440      while (C->getCanonicalDecl() != Canonical) {
11441        const FunctionDecl *FNTarget = 0;
11442        (void)C->getTargetConstructor()->hasBody(FNTarget);
11443        assert(FNTarget && "Ctor cycle through bodiless function");
11444
11445        C = const_cast<CXXConstructorDecl*>(
11446          cast<CXXConstructorDecl>(FNTarget));
11447        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11448      }
11449    }
11450
11451    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11452      Invalid.insert(*CI);
11453    Current.clear();
11454  } else {
11455    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11456  }
11457}
11458
11459
11460void Sema::CheckDelegatingCtorCycles() {
11461  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11462
11463  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11464                                                   CE = Current.end();
11465
11466  for (DelegatingCtorDeclsType::iterator
11467         I = DelegatingCtorDecls.begin(ExternalSource),
11468         E = DelegatingCtorDecls.end();
11469       I != E; ++I)
11470    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11471
11472  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11473    (*CI)->setInvalidDecl();
11474}
11475
11476namespace {
11477  /// \brief AST visitor that finds references to the 'this' expression.
11478  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11479    Sema &S;
11480
11481  public:
11482    explicit FindCXXThisExpr(Sema &S) : S(S) { }
11483
11484    bool VisitCXXThisExpr(CXXThisExpr *E) {
11485      S.Diag(E->getLocation(), diag::err_this_static_member_func)
11486        << E->isImplicit();
11487      return false;
11488    }
11489  };
11490}
11491
11492bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11493  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11494  if (!TSInfo)
11495    return false;
11496
11497  TypeLoc TL = TSInfo->getTypeLoc();
11498  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11499  if (!ProtoTL)
11500    return false;
11501
11502  // C++11 [expr.prim.general]p3:
11503  //   [The expression this] shall not appear before the optional
11504  //   cv-qualifier-seq and it shall not appear within the declaration of a
11505  //   static member function (although its type and value category are defined
11506  //   within a static member function as they are within a non-static member
11507  //   function). [ Note: this is because declaration matching does not occur
11508  //  until the complete declarator is known. - end note ]
11509  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11510  FindCXXThisExpr Finder(*this);
11511
11512  // If the return type came after the cv-qualifier-seq, check it now.
11513  if (Proto->hasTrailingReturn() &&
11514      !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
11515    return true;
11516
11517  // Check the exception specification.
11518  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11519    return true;
11520
11521  return checkThisInStaticMemberFunctionAttributes(Method);
11522}
11523
11524bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11525  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11526  if (!TSInfo)
11527    return false;
11528
11529  TypeLoc TL = TSInfo->getTypeLoc();
11530  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11531  if (!ProtoTL)
11532    return false;
11533
11534  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11535  FindCXXThisExpr Finder(*this);
11536
11537  switch (Proto->getExceptionSpecType()) {
11538  case EST_Uninstantiated:
11539  case EST_Unevaluated:
11540  case EST_BasicNoexcept:
11541  case EST_DynamicNone:
11542  case EST_MSAny:
11543  case EST_None:
11544    break;
11545
11546  case EST_ComputedNoexcept:
11547    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11548      return true;
11549
11550  case EST_Dynamic:
11551    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11552         EEnd = Proto->exception_end();
11553         E != EEnd; ++E) {
11554      if (!Finder.TraverseType(*E))
11555        return true;
11556    }
11557    break;
11558  }
11559
11560  return false;
11561}
11562
11563bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11564  FindCXXThisExpr Finder(*this);
11565
11566  // Check attributes.
11567  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11568       A != AEnd; ++A) {
11569    // FIXME: This should be emitted by tblgen.
11570    Expr *Arg = 0;
11571    ArrayRef<Expr *> Args;
11572    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11573      Arg = G->getArg();
11574    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11575      Arg = G->getArg();
11576    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11577      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11578    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11579      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11580    else if (ExclusiveLockFunctionAttr *ELF
11581               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11582      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11583    else if (SharedLockFunctionAttr *SLF
11584               = dyn_cast<SharedLockFunctionAttr>(*A))
11585      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11586    else if (ExclusiveTrylockFunctionAttr *ETLF
11587               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11588      Arg = ETLF->getSuccessValue();
11589      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11590    } else if (SharedTrylockFunctionAttr *STLF
11591                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11592      Arg = STLF->getSuccessValue();
11593      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11594    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11595      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11596    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11597      Arg = LR->getArg();
11598    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11599      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11600    else if (ExclusiveLocksRequiredAttr *ELR
11601               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11602      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11603    else if (SharedLocksRequiredAttr *SLR
11604               = dyn_cast<SharedLocksRequiredAttr>(*A))
11605      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11606
11607    if (Arg && !Finder.TraverseStmt(Arg))
11608      return true;
11609
11610    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11611      if (!Finder.TraverseStmt(Args[I]))
11612        return true;
11613    }
11614  }
11615
11616  return false;
11617}
11618
11619void
11620Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11621                                  ArrayRef<ParsedType> DynamicExceptions,
11622                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11623                                  Expr *NoexceptExpr,
11624                                  llvm::SmallVectorImpl<QualType> &Exceptions,
11625                                  FunctionProtoType::ExtProtoInfo &EPI) {
11626  Exceptions.clear();
11627  EPI.ExceptionSpecType = EST;
11628  if (EST == EST_Dynamic) {
11629    Exceptions.reserve(DynamicExceptions.size());
11630    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11631      // FIXME: Preserve type source info.
11632      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11633
11634      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11635      collectUnexpandedParameterPacks(ET, Unexpanded);
11636      if (!Unexpanded.empty()) {
11637        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11638                                         UPPC_ExceptionType,
11639                                         Unexpanded);
11640        continue;
11641      }
11642
11643      // Check that the type is valid for an exception spec, and
11644      // drop it if not.
11645      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11646        Exceptions.push_back(ET);
11647    }
11648    EPI.NumExceptions = Exceptions.size();
11649    EPI.Exceptions = Exceptions.data();
11650    return;
11651  }
11652
11653  if (EST == EST_ComputedNoexcept) {
11654    // If an error occurred, there's no expression here.
11655    if (NoexceptExpr) {
11656      assert((NoexceptExpr->isTypeDependent() ||
11657              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11658              Context.BoolTy) &&
11659             "Parser should have made sure that the expression is boolean");
11660      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11661        EPI.ExceptionSpecType = EST_BasicNoexcept;
11662        return;
11663      }
11664
11665      if (!NoexceptExpr->isValueDependent())
11666        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11667                         diag::err_noexcept_needs_constant_expression,
11668                         /*AllowFold*/ false).take();
11669      EPI.NoexceptExpr = NoexceptExpr;
11670    }
11671    return;
11672  }
11673}
11674
11675/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11676Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11677  // Implicitly declared functions (e.g. copy constructors) are
11678  // __host__ __device__
11679  if (D->isImplicit())
11680    return CFT_HostDevice;
11681
11682  if (D->hasAttr<CUDAGlobalAttr>())
11683    return CFT_Global;
11684
11685  if (D->hasAttr<CUDADeviceAttr>()) {
11686    if (D->hasAttr<CUDAHostAttr>())
11687      return CFT_HostDevice;
11688    else
11689      return CFT_Device;
11690  }
11691
11692  return CFT_Host;
11693}
11694
11695bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11696                           CUDAFunctionTarget CalleeTarget) {
11697  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11698  // Callable from the device only."
11699  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11700    return true;
11701
11702  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11703  // Callable from the host only."
11704  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11705  // Callable from the host only."
11706  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11707      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11708    return true;
11709
11710  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11711    return true;
11712
11713  return false;
11714}
11715