SemaDeclCXX.cpp revision b0f65ca9853d1148211a38736141c8ccf2aa4a1d
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      NewParam->setHasInheritedDefaultArg();
302      if (OldParam->hasUninstantiatedDefaultArg())
303        NewParam->setUninstantiatedDefaultArg(
304                                      OldParam->getUninstantiatedDefaultArg());
305      else
306        NewParam->setDefaultArg(OldParam->getDefaultArg());
307    } else if (NewParam->hasDefaultArg()) {
308      if (New->getDescribedFunctionTemplate()) {
309        // Paragraph 4, quoted above, only applies to non-template functions.
310        Diag(NewParam->getLocation(),
311             diag::err_param_default_argument_template_redecl)
312          << NewParam->getDefaultArgRange();
313        Diag(Old->getLocation(), diag::note_template_prev_declaration)
314          << false;
315      } else if (New->getTemplateSpecializationKind()
316                   != TSK_ImplicitInstantiation &&
317                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
318        // C++ [temp.expr.spec]p21:
319        //   Default function arguments shall not be specified in a declaration
320        //   or a definition for one of the following explicit specializations:
321        //     - the explicit specialization of a function template;
322        //     - the explicit specialization of a member function template;
323        //     - the explicit specialization of a member function of a class
324        //       template where the class template specialization to which the
325        //       member function specialization belongs is implicitly
326        //       instantiated.
327        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
328          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
329          << New->getDeclName()
330          << NewParam->getDefaultArgRange();
331      } else if (New->getDeclContext()->isDependentContext()) {
332        // C++ [dcl.fct.default]p6 (DR217):
333        //   Default arguments for a member function of a class template shall
334        //   be specified on the initial declaration of the member function
335        //   within the class template.
336        //
337        // Reading the tea leaves a bit in DR217 and its reference to DR205
338        // leads me to the conclusion that one cannot add default function
339        // arguments for an out-of-line definition of a member function of a
340        // dependent type.
341        int WhichKind = 2;
342        if (CXXRecordDecl *Record
343              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
344          if (Record->getDescribedClassTemplate())
345            WhichKind = 0;
346          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
347            WhichKind = 1;
348          else
349            WhichKind = 2;
350        }
351
352        Diag(NewParam->getLocation(),
353             diag::err_param_default_argument_member_template_redecl)
354          << WhichKind
355          << NewParam->getDefaultArgRange();
356      }
357    }
358  }
359
360  if (CheckEquivalentExceptionSpec(Old, New))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        if (!Param->hasUnparsedDefaultArg())
413          Param->getDefaultArg()->Destroy(Context);
414        Param->setDefaultArg(0);
415      }
416    }
417  }
418}
419
420/// isCurrentClassName - Determine whether the identifier II is the
421/// name of the class type currently being defined. In the case of
422/// nested classes, this will only return true if II is the name of
423/// the innermost class.
424bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
425                              const CXXScopeSpec *SS) {
426  assert(getLangOptions().CPlusPlus && "No class names in C!");
427
428  CXXRecordDecl *CurDecl;
429  if (SS && SS->isSet() && !SS->isInvalid()) {
430    DeclContext *DC = computeDeclContext(*SS, true);
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
432  } else
433    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
434
435  if (CurDecl && CurDecl->getIdentifier())
436    return &II == CurDecl->getIdentifier();
437  else
438    return false;
439}
440
441/// \brief Check the validity of a C++ base class specifier.
442///
443/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
444/// and returns NULL otherwise.
445CXXBaseSpecifier *
446Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
447                         SourceRange SpecifierRange,
448                         bool Virtual, AccessSpecifier Access,
449                         QualType BaseType,
450                         SourceLocation BaseLoc) {
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                Class->getTagKind() == RecordDecl::TK_class,
462                                Access, BaseType);
463
464  // Base specifiers must be record types.
465  if (!BaseType->isRecordType()) {
466    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
467    return 0;
468  }
469
470  // C++ [class.union]p1:
471  //   A union shall not be used as a base class.
472  if (BaseType->isUnionType()) {
473    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
474    return 0;
475  }
476
477  // C++ [class.derived]p2:
478  //   The class-name in a base-specifier shall not be an incompletely
479  //   defined class.
480  if (RequireCompleteType(BaseLoc, BaseType,
481                          PDiag(diag::err_incomplete_base_class)
482                            << SpecifierRange))
483    return 0;
484
485  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
486  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
487  assert(BaseDecl && "Record type has no declaration");
488  BaseDecl = BaseDecl->getDefinition();
489  assert(BaseDecl && "Base type is not incomplete, but has no definition");
490  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
491  assert(CXXBaseDecl && "Base type is not a C++ type");
492
493  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
494  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
495    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
496    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
497      << BaseType;
498    return 0;
499  }
500
501  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
502
503  // Create the base specifier.
504  // FIXME: Allocate via ASTContext?
505  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
506                              Class->getTagKind() == RecordDecl::TK_class,
507                              Access, BaseType);
508}
509
510void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
511                                          const CXXRecordDecl *BaseClass,
512                                          bool BaseIsVirtual) {
513  // A class with a non-empty base class is not empty.
514  // FIXME: Standard ref?
515  if (!BaseClass->isEmpty())
516    Class->setEmpty(false);
517
518  // C++ [class.virtual]p1:
519  //   A class that [...] inherits a virtual function is called a polymorphic
520  //   class.
521  if (BaseClass->isPolymorphic())
522    Class->setPolymorphic(true);
523
524  // C++ [dcl.init.aggr]p1:
525  //   An aggregate is [...] a class with [...] no base classes [...].
526  Class->setAggregate(false);
527
528  // C++ [class]p4:
529  //   A POD-struct is an aggregate class...
530  Class->setPOD(false);
531
532  if (BaseIsVirtual) {
533    // C++ [class.ctor]p5:
534    //   A constructor is trivial if its class has no virtual base classes.
535    Class->setHasTrivialConstructor(false);
536
537    // C++ [class.copy]p6:
538    //   A copy constructor is trivial if its class has no virtual base classes.
539    Class->setHasTrivialCopyConstructor(false);
540
541    // C++ [class.copy]p11:
542    //   A copy assignment operator is trivial if its class has no virtual
543    //   base classes.
544    Class->setHasTrivialCopyAssignment(false);
545
546    // C++0x [meta.unary.prop] is_empty:
547    //    T is a class type, but not a union type, with ... no virtual base
548    //    classes
549    Class->setEmpty(false);
550  } else {
551    // C++ [class.ctor]p5:
552    //   A constructor is trivial if all the direct base classes of its
553    //   class have trivial constructors.
554    if (!BaseClass->hasTrivialConstructor())
555      Class->setHasTrivialConstructor(false);
556
557    // C++ [class.copy]p6:
558    //   A copy constructor is trivial if all the direct base classes of its
559    //   class have trivial copy constructors.
560    if (!BaseClass->hasTrivialCopyConstructor())
561      Class->setHasTrivialCopyConstructor(false);
562
563    // C++ [class.copy]p11:
564    //   A copy assignment operator is trivial if all the direct base classes
565    //   of its class have trivial copy assignment operators.
566    if (!BaseClass->hasTrivialCopyAssignment())
567      Class->setHasTrivialCopyAssignment(false);
568  }
569
570  // C++ [class.ctor]p3:
571  //   A destructor is trivial if all the direct base classes of its class
572  //   have trivial destructors.
573  if (!BaseClass->hasTrivialDestructor())
574    Class->setHasTrivialDestructor(false);
575}
576
577/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
578/// one entry in the base class list of a class specifier, for
579/// example:
580///    class foo : public bar, virtual private baz {
581/// 'public bar' and 'virtual private baz' are each base-specifiers.
582Sema::BaseResult
583Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
584                         bool Virtual, AccessSpecifier Access,
585                         TypeTy *basetype, SourceLocation BaseLoc) {
586  if (!classdecl)
587    return true;
588
589  AdjustDeclIfTemplate(classdecl);
590  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
591  if (!Class)
592    return true;
593
594  QualType BaseType = GetTypeFromParser(basetype);
595  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
596                                                      Virtual, Access,
597                                                      BaseType, BaseLoc))
598    return BaseSpec;
599
600  return true;
601}
602
603/// \brief Performs the actual work of attaching the given base class
604/// specifiers to a C++ class.
605bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
606                                unsigned NumBases) {
607 if (NumBases == 0)
608    return false;
609
610  // Used to keep track of which base types we have already seen, so
611  // that we can properly diagnose redundant direct base types. Note
612  // that the key is always the unqualified canonical type of the base
613  // class.
614  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
615
616  // Copy non-redundant base specifiers into permanent storage.
617  unsigned NumGoodBases = 0;
618  bool Invalid = false;
619  for (unsigned idx = 0; idx < NumBases; ++idx) {
620    QualType NewBaseType
621      = Context.getCanonicalType(Bases[idx]->getType());
622    NewBaseType = NewBaseType.getLocalUnqualifiedType();
623
624    if (KnownBaseTypes[NewBaseType]) {
625      // C++ [class.mi]p3:
626      //   A class shall not be specified as a direct base class of a
627      //   derived class more than once.
628      Diag(Bases[idx]->getSourceRange().getBegin(),
629           diag::err_duplicate_base_class)
630        << KnownBaseTypes[NewBaseType]->getType()
631        << Bases[idx]->getSourceRange();
632
633      // Delete the duplicate base class specifier; we're going to
634      // overwrite its pointer later.
635      Context.Deallocate(Bases[idx]);
636
637      Invalid = true;
638    } else {
639      // Okay, add this new base class.
640      KnownBaseTypes[NewBaseType] = Bases[idx];
641      Bases[NumGoodBases++] = Bases[idx];
642    }
643  }
644
645  // Attach the remaining base class specifiers to the derived class.
646  Class->setBases(Bases, NumGoodBases);
647
648  // Delete the remaining (good) base class specifiers, since their
649  // data has been copied into the CXXRecordDecl.
650  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
651    Context.Deallocate(Bases[idx]);
652
653  return Invalid;
654}
655
656/// ActOnBaseSpecifiers - Attach the given base specifiers to the
657/// class, after checking whether there are any duplicate base
658/// classes.
659void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
660                               unsigned NumBases) {
661  if (!ClassDecl || !Bases || !NumBases)
662    return;
663
664  AdjustDeclIfTemplate(ClassDecl);
665  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
666                       (CXXBaseSpecifier**)(Bases), NumBases);
667}
668
669static CXXRecordDecl *GetClassForType(QualType T) {
670  if (const RecordType *RT = T->getAs<RecordType>())
671    return cast<CXXRecordDecl>(RT->getDecl());
672  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
673    return ICT->getDecl();
674  else
675    return 0;
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
693  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
694}
695
696/// \brief Determine whether the type \p Derived is a C++ class that is
697/// derived from the type \p Base.
698bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
699  if (!getLangOptions().CPlusPlus)
700    return false;
701
702  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
703  if (!DerivedRD)
704    return false;
705
706  CXXRecordDecl *BaseRD = GetClassForType(Base);
707  if (!BaseRD)
708    return false;
709
710  return DerivedRD->isDerivedFrom(BaseRD, Paths);
711}
712
713/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
714/// conversion (where Derived and Base are class types) is
715/// well-formed, meaning that the conversion is unambiguous (and
716/// that all of the base classes are accessible). Returns true
717/// and emits a diagnostic if the code is ill-formed, returns false
718/// otherwise. Loc is the location where this routine should point to
719/// if there is an error, and Range is the source range to highlight
720/// if there is an error.
721bool
722Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
723                                   unsigned InaccessibleBaseID,
724                                   unsigned AmbigiousBaseConvID,
725                                   SourceLocation Loc, SourceRange Range,
726                                   DeclarationName Name) {
727  // First, determine whether the path from Derived to Base is
728  // ambiguous. This is slightly more expensive than checking whether
729  // the Derived to Base conversion exists, because here we need to
730  // explore multiple paths to determine if there is an ambiguity.
731  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
732                     /*DetectVirtual=*/false);
733  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
734  assert(DerivationOkay &&
735         "Can only be used with a derived-to-base conversion");
736  (void)DerivationOkay;
737
738  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
739    if (!InaccessibleBaseID)
740      return false;
741
742    // Check that the base class can be accessed.
743    switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
744                                 InaccessibleBaseID)) {
745    case AR_accessible: return false;
746    case AR_inaccessible: return true;
747    case AR_dependent: return false;
748    case AR_delayed: return false;
749    }
750  }
751
752  // We know that the derived-to-base conversion is ambiguous, and
753  // we're going to produce a diagnostic. Perform the derived-to-base
754  // search just one more time to compute all of the possible paths so
755  // that we can print them out. This is more expensive than any of
756  // the previous derived-to-base checks we've done, but at this point
757  // performance isn't as much of an issue.
758  Paths.clear();
759  Paths.setRecordingPaths(true);
760  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
761  assert(StillOkay && "Can only be used with a derived-to-base conversion");
762  (void)StillOkay;
763
764  // Build up a textual representation of the ambiguous paths, e.g.,
765  // D -> B -> A, that will be used to illustrate the ambiguous
766  // conversions in the diagnostic. We only print one of the paths
767  // to each base class subobject.
768  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
769
770  Diag(Loc, AmbigiousBaseConvID)
771  << Derived << Base << PathDisplayStr << Range << Name;
772  return true;
773}
774
775bool
776Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
777                                   SourceLocation Loc, SourceRange Range,
778                                   bool IgnoreAccess) {
779  return CheckDerivedToBaseConversion(Derived, Base,
780                                      IgnoreAccess ? 0
781                                       : diag::err_upcast_to_inaccessible_base,
782                                      diag::err_ambiguous_derived_to_base_conv,
783                                      Loc, Range, DeclarationName());
784}
785
786
787/// @brief Builds a string representing ambiguous paths from a
788/// specific derived class to different subobjects of the same base
789/// class.
790///
791/// This function builds a string that can be used in error messages
792/// to show the different paths that one can take through the
793/// inheritance hierarchy to go from the derived class to different
794/// subobjects of a base class. The result looks something like this:
795/// @code
796/// struct D -> struct B -> struct A
797/// struct D -> struct C -> struct A
798/// @endcode
799std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
800  std::string PathDisplayStr;
801  std::set<unsigned> DisplayedPaths;
802  for (CXXBasePaths::paths_iterator Path = Paths.begin();
803       Path != Paths.end(); ++Path) {
804    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
805      // We haven't displayed a path to this particular base
806      // class subobject yet.
807      PathDisplayStr += "\n    ";
808      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
809      for (CXXBasePath::const_iterator Element = Path->begin();
810           Element != Path->end(); ++Element)
811        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
812    }
813  }
814
815  return PathDisplayStr;
816}
817
818//===----------------------------------------------------------------------===//
819// C++ class member Handling
820//===----------------------------------------------------------------------===//
821
822/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
823/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
824/// bitfield width if there is one and 'InitExpr' specifies the initializer if
825/// any.
826Sema::DeclPtrTy
827Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
828                               MultiTemplateParamsArg TemplateParameterLists,
829                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
830                               bool Deleted) {
831  const DeclSpec &DS = D.getDeclSpec();
832  DeclarationName Name = GetNameForDeclarator(D);
833  Expr *BitWidth = static_cast<Expr*>(BW);
834  Expr *Init = static_cast<Expr*>(InitExpr);
835  SourceLocation Loc = D.getIdentifierLoc();
836
837  bool isFunc = D.isFunctionDeclarator();
838
839  assert(!DS.isFriendSpecified());
840
841  // C++ 9.2p6: A member shall not be declared to have automatic storage
842  // duration (auto, register) or with the extern storage-class-specifier.
843  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
844  // data members and cannot be applied to names declared const or static,
845  // and cannot be applied to reference members.
846  switch (DS.getStorageClassSpec()) {
847    case DeclSpec::SCS_unspecified:
848    case DeclSpec::SCS_typedef:
849    case DeclSpec::SCS_static:
850      // FALL THROUGH.
851      break;
852    case DeclSpec::SCS_mutable:
853      if (isFunc) {
854        if (DS.getStorageClassSpecLoc().isValid())
855          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
856        else
857          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
858
859        // FIXME: It would be nicer if the keyword was ignored only for this
860        // declarator. Otherwise we could get follow-up errors.
861        D.getMutableDeclSpec().ClearStorageClassSpecs();
862      } else {
863        QualType T = GetTypeForDeclarator(D, S);
864        diag::kind err = static_cast<diag::kind>(0);
865        if (T->isReferenceType())
866          err = diag::err_mutable_reference;
867        else if (T.isConstQualified())
868          err = diag::err_mutable_const;
869        if (err != 0) {
870          if (DS.getStorageClassSpecLoc().isValid())
871            Diag(DS.getStorageClassSpecLoc(), err);
872          else
873            Diag(DS.getThreadSpecLoc(), err);
874          // FIXME: It would be nicer if the keyword was ignored only for this
875          // declarator. Otherwise we could get follow-up errors.
876          D.getMutableDeclSpec().ClearStorageClassSpecs();
877        }
878      }
879      break;
880    default:
881      if (DS.getStorageClassSpecLoc().isValid())
882        Diag(DS.getStorageClassSpecLoc(),
883             diag::err_storageclass_invalid_for_member);
884      else
885        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
886      D.getMutableDeclSpec().ClearStorageClassSpecs();
887  }
888
889  if (!isFunc &&
890      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
891      D.getNumTypeObjects() == 0) {
892    // Check also for this case:
893    //
894    // typedef int f();
895    // f a;
896    //
897    QualType TDType = GetTypeFromParser(DS.getTypeRep());
898    isFunc = TDType->isFunctionType();
899  }
900
901  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
902                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
903                      !isFunc);
904
905  Decl *Member;
906  if (isInstField) {
907    // FIXME: Check for template parameters!
908    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
909                         AS);
910    assert(Member && "HandleField never returns null");
911  } else {
912    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
913               .getAs<Decl>();
914    if (!Member) {
915      if (BitWidth) DeleteExpr(BitWidth);
916      return DeclPtrTy();
917    }
918
919    // Non-instance-fields can't have a bitfield.
920    if (BitWidth) {
921      if (Member->isInvalidDecl()) {
922        // don't emit another diagnostic.
923      } else if (isa<VarDecl>(Member)) {
924        // C++ 9.6p3: A bit-field shall not be a static member.
925        // "static member 'A' cannot be a bit-field"
926        Diag(Loc, diag::err_static_not_bitfield)
927          << Name << BitWidth->getSourceRange();
928      } else if (isa<TypedefDecl>(Member)) {
929        // "typedef member 'x' cannot be a bit-field"
930        Diag(Loc, diag::err_typedef_not_bitfield)
931          << Name << BitWidth->getSourceRange();
932      } else {
933        // A function typedef ("typedef int f(); f a;").
934        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
935        Diag(Loc, diag::err_not_integral_type_bitfield)
936          << Name << cast<ValueDecl>(Member)->getType()
937          << BitWidth->getSourceRange();
938      }
939
940      DeleteExpr(BitWidth);
941      BitWidth = 0;
942      Member->setInvalidDecl();
943    }
944
945    Member->setAccess(AS);
946
947    // If we have declared a member function template, set the access of the
948    // templated declaration as well.
949    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
950      FunTmpl->getTemplatedDecl()->setAccess(AS);
951  }
952
953  assert((Name || isInstField) && "No identifier for non-field ?");
954
955  if (Init)
956    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
957  if (Deleted) // FIXME: Source location is not very good.
958    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
959
960  if (isInstField) {
961    FieldCollector->Add(cast<FieldDecl>(Member));
962    return DeclPtrTy();
963  }
964  return DeclPtrTy::make(Member);
965}
966
967/// \brief Find the direct and/or virtual base specifiers that
968/// correspond to the given base type, for use in base initialization
969/// within a constructor.
970static bool FindBaseInitializer(Sema &SemaRef,
971                                CXXRecordDecl *ClassDecl,
972                                QualType BaseType,
973                                const CXXBaseSpecifier *&DirectBaseSpec,
974                                const CXXBaseSpecifier *&VirtualBaseSpec) {
975  // First, check for a direct base class.
976  DirectBaseSpec = 0;
977  for (CXXRecordDecl::base_class_const_iterator Base
978         = ClassDecl->bases_begin();
979       Base != ClassDecl->bases_end(); ++Base) {
980    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
981      // We found a direct base of this type. That's what we're
982      // initializing.
983      DirectBaseSpec = &*Base;
984      break;
985    }
986  }
987
988  // Check for a virtual base class.
989  // FIXME: We might be able to short-circuit this if we know in advance that
990  // there are no virtual bases.
991  VirtualBaseSpec = 0;
992  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
993    // We haven't found a base yet; search the class hierarchy for a
994    // virtual base class.
995    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
996                       /*DetectVirtual=*/false);
997    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
998                              BaseType, Paths)) {
999      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1000           Path != Paths.end(); ++Path) {
1001        if (Path->back().Base->isVirtual()) {
1002          VirtualBaseSpec = Path->back().Base;
1003          break;
1004        }
1005      }
1006    }
1007  }
1008
1009  return DirectBaseSpec || VirtualBaseSpec;
1010}
1011
1012/// ActOnMemInitializer - Handle a C++ member initializer.
1013Sema::MemInitResult
1014Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1015                          Scope *S,
1016                          const CXXScopeSpec &SS,
1017                          IdentifierInfo *MemberOrBase,
1018                          TypeTy *TemplateTypeTy,
1019                          SourceLocation IdLoc,
1020                          SourceLocation LParenLoc,
1021                          ExprTy **Args, unsigned NumArgs,
1022                          SourceLocation *CommaLocs,
1023                          SourceLocation RParenLoc) {
1024  if (!ConstructorD)
1025    return true;
1026
1027  AdjustDeclIfTemplate(ConstructorD);
1028
1029  CXXConstructorDecl *Constructor
1030    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1031  if (!Constructor) {
1032    // The user wrote a constructor initializer on a function that is
1033    // not a C++ constructor. Ignore the error for now, because we may
1034    // have more member initializers coming; we'll diagnose it just
1035    // once in ActOnMemInitializers.
1036    return true;
1037  }
1038
1039  CXXRecordDecl *ClassDecl = Constructor->getParent();
1040
1041  // C++ [class.base.init]p2:
1042  //   Names in a mem-initializer-id are looked up in the scope of the
1043  //   constructor’s class and, if not found in that scope, are looked
1044  //   up in the scope containing the constructor’s
1045  //   definition. [Note: if the constructor’s class contains a member
1046  //   with the same name as a direct or virtual base class of the
1047  //   class, a mem-initializer-id naming the member or base class and
1048  //   composed of a single identifier refers to the class member. A
1049  //   mem-initializer-id for the hidden base class may be specified
1050  //   using a qualified name. ]
1051  if (!SS.getScopeRep() && !TemplateTypeTy) {
1052    // Look for a member, first.
1053    FieldDecl *Member = 0;
1054    DeclContext::lookup_result Result
1055      = ClassDecl->lookup(MemberOrBase);
1056    if (Result.first != Result.second)
1057      Member = dyn_cast<FieldDecl>(*Result.first);
1058
1059    // FIXME: Handle members of an anonymous union.
1060
1061    if (Member)
1062      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1063                                    LParenLoc, RParenLoc);
1064  }
1065  // It didn't name a member, so see if it names a class.
1066  QualType BaseType;
1067  TypeSourceInfo *TInfo = 0;
1068
1069  if (TemplateTypeTy) {
1070    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1071  } else {
1072    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1073    LookupParsedName(R, S, &SS);
1074
1075    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1076    if (!TyD) {
1077      if (R.isAmbiguous()) return true;
1078
1079      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1080        bool NotUnknownSpecialization = false;
1081        DeclContext *DC = computeDeclContext(SS, false);
1082        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1083          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1084
1085        if (!NotUnknownSpecialization) {
1086          // When the scope specifier can refer to a member of an unknown
1087          // specialization, we take it as a type name.
1088          BaseType = CheckTypenameType((NestedNameSpecifier *)SS.getScopeRep(),
1089                                       *MemberOrBase, SS.getRange());
1090          if (BaseType.isNull())
1091            return true;
1092
1093          R.clear();
1094        }
1095      }
1096
1097      // If no results were found, try to correct typos.
1098      if (R.empty() && BaseType.isNull() &&
1099          CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) {
1100        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1101          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1102            // We have found a non-static data member with a similar
1103            // name to what was typed; complain and initialize that
1104            // member.
1105            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1106              << MemberOrBase << true << R.getLookupName()
1107              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1108                                               R.getLookupName().getAsString());
1109            Diag(Member->getLocation(), diag::note_previous_decl)
1110              << Member->getDeclName();
1111
1112            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1113                                          LParenLoc, RParenLoc);
1114          }
1115        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1116          const CXXBaseSpecifier *DirectBaseSpec;
1117          const CXXBaseSpecifier *VirtualBaseSpec;
1118          if (FindBaseInitializer(*this, ClassDecl,
1119                                  Context.getTypeDeclType(Type),
1120                                  DirectBaseSpec, VirtualBaseSpec)) {
1121            // We have found a direct or virtual base class with a
1122            // similar name to what was typed; complain and initialize
1123            // that base class.
1124            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1125              << MemberOrBase << false << R.getLookupName()
1126              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1127                                               R.getLookupName().getAsString());
1128
1129            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1130                                                             : VirtualBaseSpec;
1131            Diag(BaseSpec->getSourceRange().getBegin(),
1132                 diag::note_base_class_specified_here)
1133              << BaseSpec->getType()
1134              << BaseSpec->getSourceRange();
1135
1136            TyD = Type;
1137          }
1138        }
1139      }
1140
1141      if (!TyD && BaseType.isNull()) {
1142        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1143          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1144        return true;
1145      }
1146    }
1147
1148    if (BaseType.isNull()) {
1149      BaseType = Context.getTypeDeclType(TyD);
1150      if (SS.isSet()) {
1151        NestedNameSpecifier *Qualifier =
1152          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1153
1154        // FIXME: preserve source range information
1155        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1156      }
1157    }
1158  }
1159
1160  if (!TInfo)
1161    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1162
1163  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1164                              LParenLoc, RParenLoc, ClassDecl);
1165}
1166
1167/// Checks an initializer expression for use of uninitialized fields, such as
1168/// containing the field that is being initialized. Returns true if there is an
1169/// uninitialized field was used an updates the SourceLocation parameter; false
1170/// otherwise.
1171static bool InitExprContainsUninitializedFields(const Stmt* S,
1172                                                const FieldDecl* LhsField,
1173                                                SourceLocation* L) {
1174  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1175  if (ME) {
1176    const NamedDecl* RhsField = ME->getMemberDecl();
1177    if (RhsField == LhsField) {
1178      // Initializing a field with itself. Throw a warning.
1179      // But wait; there are exceptions!
1180      // Exception #1:  The field may not belong to this record.
1181      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1182      const Expr* base = ME->getBase();
1183      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1184        // Even though the field matches, it does not belong to this record.
1185        return false;
1186      }
1187      // None of the exceptions triggered; return true to indicate an
1188      // uninitialized field was used.
1189      *L = ME->getMemberLoc();
1190      return true;
1191    }
1192  }
1193  bool found = false;
1194  for (Stmt::const_child_iterator it = S->child_begin();
1195       it != S->child_end() && found == false;
1196       ++it) {
1197    if (isa<CallExpr>(S)) {
1198      // Do not descend into function calls or constructors, as the use
1199      // of an uninitialized field may be valid. One would have to inspect
1200      // the contents of the function/ctor to determine if it is safe or not.
1201      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1202      // may be safe, depending on what the function/ctor does.
1203      continue;
1204    }
1205    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1206  }
1207  return found;
1208}
1209
1210Sema::MemInitResult
1211Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1212                             unsigned NumArgs, SourceLocation IdLoc,
1213                             SourceLocation LParenLoc,
1214                             SourceLocation RParenLoc) {
1215  // Diagnose value-uses of fields to initialize themselves, e.g.
1216  //   foo(foo)
1217  // where foo is not also a parameter to the constructor.
1218  // TODO: implement -Wuninitialized and fold this into that framework.
1219  for (unsigned i = 0; i < NumArgs; ++i) {
1220    SourceLocation L;
1221    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1222      // FIXME: Return true in the case when other fields are used before being
1223      // uninitialized. For example, let this field be the i'th field. When
1224      // initializing the i'th field, throw a warning if any of the >= i'th
1225      // fields are used, as they are not yet initialized.
1226      // Right now we are only handling the case where the i'th field uses
1227      // itself in its initializer.
1228      Diag(L, diag::warn_field_is_uninit);
1229    }
1230  }
1231
1232  bool HasDependentArg = false;
1233  for (unsigned i = 0; i < NumArgs; i++)
1234    HasDependentArg |= Args[i]->isTypeDependent();
1235
1236  QualType FieldType = Member->getType();
1237  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1238    FieldType = Array->getElementType();
1239  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1240  if (FieldType->isDependentType() || HasDependentArg) {
1241    // Can't check initialization for a member of dependent type or when
1242    // any of the arguments are type-dependent expressions.
1243    OwningExprResult Init
1244      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1245                                          RParenLoc));
1246
1247    // Erase any temporaries within this evaluation context; we're not
1248    // going to track them in the AST, since we'll be rebuilding the
1249    // ASTs during template instantiation.
1250    ExprTemporaries.erase(
1251              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1252                          ExprTemporaries.end());
1253
1254    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1255                                                    LParenLoc,
1256                                                    Init.takeAs<Expr>(),
1257                                                    RParenLoc);
1258
1259  }
1260
1261  if (Member->isInvalidDecl())
1262    return true;
1263
1264  // Initialize the member.
1265  InitializedEntity MemberEntity =
1266    InitializedEntity::InitializeMember(Member, 0);
1267  InitializationKind Kind =
1268    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1269
1270  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1271
1272  OwningExprResult MemberInit =
1273    InitSeq.Perform(*this, MemberEntity, Kind,
1274                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1275  if (MemberInit.isInvalid())
1276    return true;
1277
1278  // C++0x [class.base.init]p7:
1279  //   The initialization of each base and member constitutes a
1280  //   full-expression.
1281  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1282  if (MemberInit.isInvalid())
1283    return true;
1284
1285  // If we are in a dependent context, template instantiation will
1286  // perform this type-checking again. Just save the arguments that we
1287  // received in a ParenListExpr.
1288  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1289  // of the information that we have about the member
1290  // initializer. However, deconstructing the ASTs is a dicey process,
1291  // and this approach is far more likely to get the corner cases right.
1292  if (CurContext->isDependentContext()) {
1293    // Bump the reference count of all of the arguments.
1294    for (unsigned I = 0; I != NumArgs; ++I)
1295      Args[I]->Retain();
1296
1297    OwningExprResult Init
1298      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1299                                          RParenLoc));
1300    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1301                                                    LParenLoc,
1302                                                    Init.takeAs<Expr>(),
1303                                                    RParenLoc);
1304  }
1305
1306  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1307                                                  LParenLoc,
1308                                                  MemberInit.takeAs<Expr>(),
1309                                                  RParenLoc);
1310}
1311
1312Sema::MemInitResult
1313Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1314                           Expr **Args, unsigned NumArgs,
1315                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1316                           CXXRecordDecl *ClassDecl) {
1317  bool HasDependentArg = false;
1318  for (unsigned i = 0; i < NumArgs; i++)
1319    HasDependentArg |= Args[i]->isTypeDependent();
1320
1321  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1322  if (BaseType->isDependentType() || HasDependentArg) {
1323    // Can't check initialization for a base of dependent type or when
1324    // any of the arguments are type-dependent expressions.
1325    OwningExprResult BaseInit
1326      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1327                                          RParenLoc));
1328
1329    // Erase any temporaries within this evaluation context; we're not
1330    // going to track them in the AST, since we'll be rebuilding the
1331    // ASTs during template instantiation.
1332    ExprTemporaries.erase(
1333              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1334                          ExprTemporaries.end());
1335
1336    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1337                                                    LParenLoc,
1338                                                    BaseInit.takeAs<Expr>(),
1339                                                    RParenLoc);
1340  }
1341
1342  if (!BaseType->isRecordType())
1343    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1344             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1345
1346  // C++ [class.base.init]p2:
1347  //   [...] Unless the mem-initializer-id names a nonstatic data
1348  //   member of the constructor’s class or a direct or virtual base
1349  //   of that class, the mem-initializer is ill-formed. A
1350  //   mem-initializer-list can initialize a base class using any
1351  //   name that denotes that base class type.
1352
1353  // Check for direct and virtual base classes.
1354  const CXXBaseSpecifier *DirectBaseSpec = 0;
1355  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1356  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1357                      VirtualBaseSpec);
1358
1359  // C++ [base.class.init]p2:
1360  //   If a mem-initializer-id is ambiguous because it designates both
1361  //   a direct non-virtual base class and an inherited virtual base
1362  //   class, the mem-initializer is ill-formed.
1363  if (DirectBaseSpec && VirtualBaseSpec)
1364    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1365      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1366  // C++ [base.class.init]p2:
1367  // Unless the mem-initializer-id names a nonstatic data membeer of the
1368  // constructor's class ot a direst or virtual base of that class, the
1369  // mem-initializer is ill-formed.
1370  if (!DirectBaseSpec && !VirtualBaseSpec)
1371    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1372      << BaseType << ClassDecl->getNameAsCString()
1373      << BaseTInfo->getTypeLoc().getSourceRange();
1374
1375  CXXBaseSpecifier *BaseSpec
1376    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1377  if (!BaseSpec)
1378    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1379
1380  // Initialize the base.
1381  InitializedEntity BaseEntity =
1382    InitializedEntity::InitializeBase(Context, BaseSpec);
1383  InitializationKind Kind =
1384    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1385
1386  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1387
1388  OwningExprResult BaseInit =
1389    InitSeq.Perform(*this, BaseEntity, Kind,
1390                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1391  if (BaseInit.isInvalid())
1392    return true;
1393
1394  // C++0x [class.base.init]p7:
1395  //   The initialization of each base and member constitutes a
1396  //   full-expression.
1397  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1398  if (BaseInit.isInvalid())
1399    return true;
1400
1401  // If we are in a dependent context, template instantiation will
1402  // perform this type-checking again. Just save the arguments that we
1403  // received in a ParenListExpr.
1404  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1405  // of the information that we have about the base
1406  // initializer. However, deconstructing the ASTs is a dicey process,
1407  // and this approach is far more likely to get the corner cases right.
1408  if (CurContext->isDependentContext()) {
1409    // Bump the reference count of all of the arguments.
1410    for (unsigned I = 0; I != NumArgs; ++I)
1411      Args[I]->Retain();
1412
1413    OwningExprResult Init
1414      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1415                                          RParenLoc));
1416    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1417                                                    LParenLoc,
1418                                                    Init.takeAs<Expr>(),
1419                                                    RParenLoc);
1420  }
1421
1422  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1423                                                  LParenLoc,
1424                                                  BaseInit.takeAs<Expr>(),
1425                                                  RParenLoc);
1426}
1427
1428bool
1429Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1430                                  CXXBaseOrMemberInitializer **Initializers,
1431                                  unsigned NumInitializers,
1432                                  bool IsImplicitConstructor,
1433                                  bool AnyErrors) {
1434  // We need to build the initializer AST according to order of construction
1435  // and not what user specified in the Initializers list.
1436  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1437  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1438  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1439  bool HasDependentBaseInit = false;
1440  bool HadError = false;
1441
1442  for (unsigned i = 0; i < NumInitializers; i++) {
1443    CXXBaseOrMemberInitializer *Member = Initializers[i];
1444    if (Member->isBaseInitializer()) {
1445      if (Member->getBaseClass()->isDependentType())
1446        HasDependentBaseInit = true;
1447      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1448    } else {
1449      AllBaseFields[Member->getMember()] = Member;
1450    }
1451  }
1452
1453  if (HasDependentBaseInit) {
1454    // FIXME. This does not preserve the ordering of the initializers.
1455    // Try (with -Wreorder)
1456    // template<class X> struct A {};
1457    // template<class X> struct B : A<X> {
1458    //   B() : x1(10), A<X>() {}
1459    //   int x1;
1460    // };
1461    // B<int> x;
1462    // On seeing one dependent type, we should essentially exit this routine
1463    // while preserving user-declared initializer list. When this routine is
1464    // called during instantiatiation process, this routine will rebuild the
1465    // ordered initializer list correctly.
1466
1467    // If we have a dependent base initialization, we can't determine the
1468    // association between initializers and bases; just dump the known
1469    // initializers into the list, and don't try to deal with other bases.
1470    for (unsigned i = 0; i < NumInitializers; i++) {
1471      CXXBaseOrMemberInitializer *Member = Initializers[i];
1472      if (Member->isBaseInitializer())
1473        AllToInit.push_back(Member);
1474    }
1475  } else {
1476    llvm::SmallVector<CXXBaseSpecifier *, 4> BasesToDefaultInit;
1477
1478    // Push virtual bases before others.
1479    for (CXXRecordDecl::base_class_iterator VBase =
1480         ClassDecl->vbases_begin(),
1481         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1482      if (VBase->getType()->isDependentType())
1483        continue;
1484      if (CXXBaseOrMemberInitializer *Value
1485            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1486        AllToInit.push_back(Value);
1487      } else if (!AnyErrors) {
1488        InitializedEntity InitEntity
1489          = InitializedEntity::InitializeBase(Context, VBase);
1490        InitializationKind InitKind
1491          = InitializationKind::CreateDefault(Constructor->getLocation());
1492        InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1493        OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1494                                                    MultiExprArg(*this, 0, 0));
1495        BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1496        if (BaseInit.isInvalid()) {
1497          HadError = true;
1498          continue;
1499        }
1500
1501        // Don't attach synthesized base initializers in a dependent
1502        // context; they'll be checked again at template instantiation
1503        // time.
1504        if (CurContext->isDependentContext())
1505          continue;
1506
1507        CXXBaseOrMemberInitializer *CXXBaseInit =
1508          new (Context) CXXBaseOrMemberInitializer(Context,
1509                             Context.getTrivialTypeSourceInfo(VBase->getType(),
1510                                                              SourceLocation()),
1511                                                   SourceLocation(),
1512                                                   BaseInit.takeAs<Expr>(),
1513                                                   SourceLocation());
1514        AllToInit.push_back(CXXBaseInit);
1515      }
1516    }
1517
1518    for (CXXRecordDecl::base_class_iterator Base =
1519         ClassDecl->bases_begin(),
1520         E = ClassDecl->bases_end(); Base != E; ++Base) {
1521      // Virtuals are in the virtual base list and already constructed.
1522      if (Base->isVirtual())
1523        continue;
1524      // Skip dependent types.
1525      if (Base->getType()->isDependentType())
1526        continue;
1527      if (CXXBaseOrMemberInitializer *Value
1528            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1529        AllToInit.push_back(Value);
1530      }
1531      else if (!AnyErrors) {
1532        InitializedEntity InitEntity
1533          = InitializedEntity::InitializeBase(Context, Base);
1534        InitializationKind InitKind
1535          = InitializationKind::CreateDefault(Constructor->getLocation());
1536        InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1537        OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1538                                                    MultiExprArg(*this, 0, 0));
1539        BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1540        if (BaseInit.isInvalid()) {
1541          HadError = true;
1542          continue;
1543        }
1544
1545        // Don't attach synthesized base initializers in a dependent
1546        // context; they'll be regenerated at template instantiation
1547        // time.
1548        if (CurContext->isDependentContext())
1549          continue;
1550
1551        CXXBaseOrMemberInitializer *CXXBaseInit =
1552          new (Context) CXXBaseOrMemberInitializer(Context,
1553                             Context.getTrivialTypeSourceInfo(Base->getType(),
1554                                                              SourceLocation()),
1555                                                   SourceLocation(),
1556                                                   BaseInit.takeAs<Expr>(),
1557                                                   SourceLocation());
1558        AllToInit.push_back(CXXBaseInit);
1559      }
1560    }
1561  }
1562
1563  // non-static data members.
1564  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1565       E = ClassDecl->field_end(); Field != E; ++Field) {
1566    if ((*Field)->isAnonymousStructOrUnion()) {
1567      if (const RecordType *FieldClassType =
1568          Field->getType()->getAs<RecordType>()) {
1569        CXXRecordDecl *FieldClassDecl
1570          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1571        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1572            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1573          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1574            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1575            // set to the anonymous union data member used in the initializer
1576            // list.
1577            Value->setMember(*Field);
1578            Value->setAnonUnionMember(*FA);
1579            AllToInit.push_back(Value);
1580            break;
1581          }
1582        }
1583      }
1584      continue;
1585    }
1586    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1587      AllToInit.push_back(Value);
1588      continue;
1589    }
1590
1591    if ((*Field)->getType()->isDependentType() || AnyErrors)
1592      continue;
1593
1594    QualType FT = Context.getBaseElementType((*Field)->getType());
1595    if (FT->getAs<RecordType>()) {
1596      InitializedEntity InitEntity
1597        = InitializedEntity::InitializeMember(*Field);
1598      InitializationKind InitKind
1599        = InitializationKind::CreateDefault(Constructor->getLocation());
1600
1601      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1602      OwningExprResult MemberInit = InitSeq.Perform(*this, InitEntity, InitKind,
1603                                                    MultiExprArg(*this, 0, 0));
1604      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1605      if (MemberInit.isInvalid()) {
1606        HadError = true;
1607        continue;
1608      }
1609
1610      // Don't attach synthesized member initializers in a dependent
1611      // context; they'll be regenerated a template instantiation
1612      // time.
1613      if (CurContext->isDependentContext())
1614        continue;
1615
1616      CXXBaseOrMemberInitializer *Member =
1617        new (Context) CXXBaseOrMemberInitializer(Context,
1618                                                 *Field, SourceLocation(),
1619                                                 SourceLocation(),
1620                                                 MemberInit.takeAs<Expr>(),
1621                                                 SourceLocation());
1622
1623      AllToInit.push_back(Member);
1624    }
1625    else if (FT->isReferenceType()) {
1626      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1627        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1628        << 0 << (*Field)->getDeclName();
1629      Diag((*Field)->getLocation(), diag::note_declared_at);
1630      HadError = true;
1631    }
1632    else if (FT.isConstQualified()) {
1633      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1634        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1635        << 1 << (*Field)->getDeclName();
1636      Diag((*Field)->getLocation(), diag::note_declared_at);
1637      HadError = true;
1638    }
1639  }
1640
1641  NumInitializers = AllToInit.size();
1642  if (NumInitializers > 0) {
1643    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1644    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1645      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1646    memcpy(baseOrMemberInitializers, AllToInit.data(),
1647           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1648    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1649
1650    // Constructors implicitly reference the base and member
1651    // destructors.
1652    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1653                                           Constructor->getParent());
1654  }
1655
1656  return HadError;
1657}
1658
1659static void *GetKeyForTopLevelField(FieldDecl *Field) {
1660  // For anonymous unions, use the class declaration as the key.
1661  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1662    if (RT->getDecl()->isAnonymousStructOrUnion())
1663      return static_cast<void *>(RT->getDecl());
1664  }
1665  return static_cast<void *>(Field);
1666}
1667
1668static void *GetKeyForBase(QualType BaseType) {
1669  if (const RecordType *RT = BaseType->getAs<RecordType>())
1670    return (void *)RT;
1671
1672  assert(0 && "Unexpected base type!");
1673  return 0;
1674}
1675
1676static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1677                             bool MemberMaybeAnon = false) {
1678  // For fields injected into the class via declaration of an anonymous union,
1679  // use its anonymous union class declaration as the unique key.
1680  if (Member->isMemberInitializer()) {
1681    FieldDecl *Field = Member->getMember();
1682
1683    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1684    // data member of the class. Data member used in the initializer list is
1685    // in AnonUnionMember field.
1686    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1687      Field = Member->getAnonUnionMember();
1688    if (Field->getDeclContext()->isRecord()) {
1689      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1690      if (RD->isAnonymousStructOrUnion())
1691        return static_cast<void *>(RD);
1692    }
1693    return static_cast<void *>(Field);
1694  }
1695
1696  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1697}
1698
1699/// ActOnMemInitializers - Handle the member initializers for a constructor.
1700void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1701                                SourceLocation ColonLoc,
1702                                MemInitTy **MemInits, unsigned NumMemInits,
1703                                bool AnyErrors) {
1704  if (!ConstructorDecl)
1705    return;
1706
1707  AdjustDeclIfTemplate(ConstructorDecl);
1708
1709  CXXConstructorDecl *Constructor
1710    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1711
1712  if (!Constructor) {
1713    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1714    return;
1715  }
1716
1717  if (!Constructor->isDependentContext()) {
1718    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1719    bool err = false;
1720    for (unsigned i = 0; i < NumMemInits; i++) {
1721      CXXBaseOrMemberInitializer *Member =
1722        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1723      void *KeyToMember = GetKeyForMember(Member);
1724      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1725      if (!PrevMember) {
1726        PrevMember = Member;
1727        continue;
1728      }
1729      if (FieldDecl *Field = Member->getMember())
1730        Diag(Member->getSourceLocation(),
1731             diag::error_multiple_mem_initialization)
1732          << Field->getNameAsString()
1733          << Member->getSourceRange();
1734      else {
1735        Type *BaseClass = Member->getBaseClass();
1736        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1737        Diag(Member->getSourceLocation(),
1738             diag::error_multiple_base_initialization)
1739          << QualType(BaseClass, 0)
1740          << Member->getSourceRange();
1741      }
1742      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1743        << 0;
1744      err = true;
1745    }
1746
1747    if (err)
1748      return;
1749  }
1750
1751  SetBaseOrMemberInitializers(Constructor,
1752                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1753                      NumMemInits, false, AnyErrors);
1754
1755  if (Constructor->isDependentContext())
1756    return;
1757
1758  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1759      Diagnostic::Ignored &&
1760      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1761      Diagnostic::Ignored)
1762    return;
1763
1764  // Also issue warning if order of ctor-initializer list does not match order
1765  // of 1) base class declarations and 2) order of non-static data members.
1766  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1767
1768  CXXRecordDecl *ClassDecl
1769    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1770  // Push virtual bases before others.
1771  for (CXXRecordDecl::base_class_iterator VBase =
1772       ClassDecl->vbases_begin(),
1773       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1774    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1775
1776  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1777       E = ClassDecl->bases_end(); Base != E; ++Base) {
1778    // Virtuals are alread in the virtual base list and are constructed
1779    // first.
1780    if (Base->isVirtual())
1781      continue;
1782    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1783  }
1784
1785  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1786       E = ClassDecl->field_end(); Field != E; ++Field)
1787    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1788
1789  int Last = AllBaseOrMembers.size();
1790  int curIndex = 0;
1791  CXXBaseOrMemberInitializer *PrevMember = 0;
1792  for (unsigned i = 0; i < NumMemInits; i++) {
1793    CXXBaseOrMemberInitializer *Member =
1794      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1795    void *MemberInCtorList = GetKeyForMember(Member, true);
1796
1797    for (; curIndex < Last; curIndex++)
1798      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1799        break;
1800    if (curIndex == Last) {
1801      assert(PrevMember && "Member not in member list?!");
1802      // Initializer as specified in ctor-initializer list is out of order.
1803      // Issue a warning diagnostic.
1804      if (PrevMember->isBaseInitializer()) {
1805        // Diagnostics is for an initialized base class.
1806        Type *BaseClass = PrevMember->getBaseClass();
1807        Diag(PrevMember->getSourceLocation(),
1808             diag::warn_base_initialized)
1809          << QualType(BaseClass, 0);
1810      } else {
1811        FieldDecl *Field = PrevMember->getMember();
1812        Diag(PrevMember->getSourceLocation(),
1813             diag::warn_field_initialized)
1814          << Field->getNameAsString();
1815      }
1816      // Also the note!
1817      if (FieldDecl *Field = Member->getMember())
1818        Diag(Member->getSourceLocation(),
1819             diag::note_fieldorbase_initialized_here) << 0
1820          << Field->getNameAsString();
1821      else {
1822        Type *BaseClass = Member->getBaseClass();
1823        Diag(Member->getSourceLocation(),
1824             diag::note_fieldorbase_initialized_here) << 1
1825          << QualType(BaseClass, 0);
1826      }
1827      for (curIndex = 0; curIndex < Last; curIndex++)
1828        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1829          break;
1830    }
1831    PrevMember = Member;
1832  }
1833}
1834
1835void
1836Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
1837                                             CXXRecordDecl *ClassDecl) {
1838  // Ignore dependent contexts.
1839  if (ClassDecl->isDependentContext())
1840    return;
1841
1842  // FIXME: all the access-control diagnostics are positioned on the
1843  // field/base declaration.  That's probably good; that said, the
1844  // user might reasonably want to know why the destructor is being
1845  // emitted, and we currently don't say.
1846
1847  // Non-static data members.
1848  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1849       E = ClassDecl->field_end(); I != E; ++I) {
1850    FieldDecl *Field = *I;
1851
1852    QualType FieldType = Context.getBaseElementType(Field->getType());
1853
1854    const RecordType* RT = FieldType->getAs<RecordType>();
1855    if (!RT)
1856      continue;
1857
1858    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1859    if (FieldClassDecl->hasTrivialDestructor())
1860      continue;
1861
1862    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1863    CheckDestructorAccess(Field->getLocation(), Dtor,
1864                          PartialDiagnostic(diag::err_access_dtor_field)
1865                            << Field->getDeclName()
1866                            << FieldType);
1867
1868    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1869  }
1870
1871  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
1872
1873  // Bases.
1874  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1875       E = ClassDecl->bases_end(); Base != E; ++Base) {
1876    // Bases are always records in a well-formed non-dependent class.
1877    const RecordType *RT = Base->getType()->getAs<RecordType>();
1878
1879    // Remember direct virtual bases.
1880    if (Base->isVirtual())
1881      DirectVirtualBases.insert(RT);
1882
1883    // Ignore trivial destructors.
1884    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1885    if (BaseClassDecl->hasTrivialDestructor())
1886      continue;
1887
1888    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1889
1890    // FIXME: caret should be on the start of the class name
1891    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
1892                          PartialDiagnostic(diag::err_access_dtor_base)
1893                            << Base->getType()
1894                            << Base->getSourceRange());
1895
1896    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1897  }
1898
1899  // Virtual bases.
1900  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1901       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1902
1903    // Bases are always records in a well-formed non-dependent class.
1904    const RecordType *RT = VBase->getType()->getAs<RecordType>();
1905
1906    // Ignore direct virtual bases.
1907    if (DirectVirtualBases.count(RT))
1908      continue;
1909
1910    // Ignore trivial destructors.
1911    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1912    if (BaseClassDecl->hasTrivialDestructor())
1913      continue;
1914
1915    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1916    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
1917                          PartialDiagnostic(diag::err_access_dtor_vbase)
1918                            << VBase->getType());
1919
1920    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1921  }
1922}
1923
1924void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1925  if (!CDtorDecl)
1926    return;
1927
1928  AdjustDeclIfTemplate(CDtorDecl);
1929
1930  if (CXXConstructorDecl *Constructor
1931      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1932    SetBaseOrMemberInitializers(Constructor, 0, 0, false, false);
1933}
1934
1935namespace {
1936  /// PureVirtualMethodCollector - traverses a class and its superclasses
1937  /// and determines if it has any pure virtual methods.
1938  class PureVirtualMethodCollector {
1939    ASTContext &Context;
1940
1941  public:
1942    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1943
1944  private:
1945    MethodList Methods;
1946
1947    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1948
1949  public:
1950    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1951      : Context(Ctx) {
1952
1953      MethodList List;
1954      Collect(RD, List);
1955
1956      // Copy the temporary list to methods, and make sure to ignore any
1957      // null entries.
1958      for (size_t i = 0, e = List.size(); i != e; ++i) {
1959        if (List[i])
1960          Methods.push_back(List[i]);
1961      }
1962    }
1963
1964    bool empty() const { return Methods.empty(); }
1965
1966    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1967    MethodList::const_iterator methods_end() { return Methods.end(); }
1968  };
1969
1970  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1971                                           MethodList& Methods) {
1972    // First, collect the pure virtual methods for the base classes.
1973    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1974         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1975      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1976        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1977        if (BaseDecl && BaseDecl->isAbstract())
1978          Collect(BaseDecl, Methods);
1979      }
1980    }
1981
1982    // Next, zero out any pure virtual methods that this class overrides.
1983    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1984
1985    MethodSetTy OverriddenMethods;
1986    size_t MethodsSize = Methods.size();
1987
1988    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1989         i != e; ++i) {
1990      // Traverse the record, looking for methods.
1991      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1992        // If the method is pure virtual, add it to the methods vector.
1993        if (MD->isPure())
1994          Methods.push_back(MD);
1995
1996        // Record all the overridden methods in our set.
1997        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1998             E = MD->end_overridden_methods(); I != E; ++I) {
1999          // Keep track of the overridden methods.
2000          OverriddenMethods.insert(*I);
2001        }
2002      }
2003    }
2004
2005    // Now go through the methods and zero out all the ones we know are
2006    // overridden.
2007    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
2008      if (OverriddenMethods.count(Methods[i]))
2009        Methods[i] = 0;
2010    }
2011
2012  }
2013}
2014
2015
2016bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2017                                  unsigned DiagID, AbstractDiagSelID SelID,
2018                                  const CXXRecordDecl *CurrentRD) {
2019  if (SelID == -1)
2020    return RequireNonAbstractType(Loc, T,
2021                                  PDiag(DiagID), CurrentRD);
2022  else
2023    return RequireNonAbstractType(Loc, T,
2024                                  PDiag(DiagID) << SelID, CurrentRD);
2025}
2026
2027bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2028                                  const PartialDiagnostic &PD,
2029                                  const CXXRecordDecl *CurrentRD) {
2030  if (!getLangOptions().CPlusPlus)
2031    return false;
2032
2033  if (const ArrayType *AT = Context.getAsArrayType(T))
2034    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2035                                  CurrentRD);
2036
2037  if (const PointerType *PT = T->getAs<PointerType>()) {
2038    // Find the innermost pointer type.
2039    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2040      PT = T;
2041
2042    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2043      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2044  }
2045
2046  const RecordType *RT = T->getAs<RecordType>();
2047  if (!RT)
2048    return false;
2049
2050  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2051
2052  if (CurrentRD && CurrentRD != RD)
2053    return false;
2054
2055  // FIXME: is this reasonable?  It matches current behavior, but....
2056  if (!RD->getDefinition())
2057    return false;
2058
2059  if (!RD->isAbstract())
2060    return false;
2061
2062  Diag(Loc, PD) << RD->getDeclName();
2063
2064  // Check if we've already emitted the list of pure virtual functions for this
2065  // class.
2066  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2067    return true;
2068
2069  PureVirtualMethodCollector Collector(Context, RD);
2070
2071  for (PureVirtualMethodCollector::MethodList::const_iterator I =
2072       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
2073    const CXXMethodDecl *MD = *I;
2074
2075    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
2076      MD->getDeclName();
2077  }
2078
2079  if (!PureVirtualClassDiagSet)
2080    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2081  PureVirtualClassDiagSet->insert(RD);
2082
2083  return true;
2084}
2085
2086namespace {
2087  class AbstractClassUsageDiagnoser
2088    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2089    Sema &SemaRef;
2090    CXXRecordDecl *AbstractClass;
2091
2092    bool VisitDeclContext(const DeclContext *DC) {
2093      bool Invalid = false;
2094
2095      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2096           E = DC->decls_end(); I != E; ++I)
2097        Invalid |= Visit(*I);
2098
2099      return Invalid;
2100    }
2101
2102  public:
2103    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2104      : SemaRef(SemaRef), AbstractClass(ac) {
2105        Visit(SemaRef.Context.getTranslationUnitDecl());
2106    }
2107
2108    bool VisitFunctionDecl(const FunctionDecl *FD) {
2109      if (FD->isThisDeclarationADefinition()) {
2110        // No need to do the check if we're in a definition, because it requires
2111        // that the return/param types are complete.
2112        // because that requires
2113        return VisitDeclContext(FD);
2114      }
2115
2116      // Check the return type.
2117      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2118      bool Invalid =
2119        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2120                                       diag::err_abstract_type_in_decl,
2121                                       Sema::AbstractReturnType,
2122                                       AbstractClass);
2123
2124      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2125           E = FD->param_end(); I != E; ++I) {
2126        const ParmVarDecl *VD = *I;
2127        Invalid |=
2128          SemaRef.RequireNonAbstractType(VD->getLocation(),
2129                                         VD->getOriginalType(),
2130                                         diag::err_abstract_type_in_decl,
2131                                         Sema::AbstractParamType,
2132                                         AbstractClass);
2133      }
2134
2135      return Invalid;
2136    }
2137
2138    bool VisitDecl(const Decl* D) {
2139      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2140        return VisitDeclContext(DC);
2141
2142      return false;
2143    }
2144  };
2145}
2146
2147/// \brief Perform semantic checks on a class definition that has been
2148/// completing, introducing implicitly-declared members, checking for
2149/// abstract types, etc.
2150void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2151  if (!Record || Record->isInvalidDecl())
2152    return;
2153
2154  if (!Record->isDependentType())
2155    AddImplicitlyDeclaredMembersToClass(Record);
2156
2157  if (Record->isInvalidDecl())
2158    return;
2159
2160  // Set access bits correctly on the directly-declared conversions.
2161  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2162  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2163    Convs->setAccess(I, (*I)->getAccess());
2164
2165  if (!Record->isAbstract()) {
2166    // Collect all the pure virtual methods and see if this is an abstract
2167    // class after all.
2168    PureVirtualMethodCollector Collector(Context, Record);
2169    if (!Collector.empty())
2170      Record->setAbstract(true);
2171  }
2172
2173  if (Record->isAbstract())
2174    (void)AbstractClassUsageDiagnoser(*this, Record);
2175}
2176
2177void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2178                                             DeclPtrTy TagDecl,
2179                                             SourceLocation LBrac,
2180                                             SourceLocation RBrac) {
2181  if (!TagDecl)
2182    return;
2183
2184  AdjustDeclIfTemplate(TagDecl);
2185
2186  ActOnFields(S, RLoc, TagDecl,
2187              (DeclPtrTy*)FieldCollector->getCurFields(),
2188              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
2189
2190  CheckCompletedCXXClass(
2191                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2192}
2193
2194/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2195/// special functions, such as the default constructor, copy
2196/// constructor, or destructor, to the given C++ class (C++
2197/// [special]p1).  This routine can only be executed just before the
2198/// definition of the class is complete.
2199void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2200  CanQualType ClassType
2201    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2202
2203  // FIXME: Implicit declarations have exception specifications, which are
2204  // the union of the specifications of the implicitly called functions.
2205
2206  if (!ClassDecl->hasUserDeclaredConstructor()) {
2207    // C++ [class.ctor]p5:
2208    //   A default constructor for a class X is a constructor of class X
2209    //   that can be called without an argument. If there is no
2210    //   user-declared constructor for class X, a default constructor is
2211    //   implicitly declared. An implicitly-declared default constructor
2212    //   is an inline public member of its class.
2213    DeclarationName Name
2214      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2215    CXXConstructorDecl *DefaultCon =
2216      CXXConstructorDecl::Create(Context, ClassDecl,
2217                                 ClassDecl->getLocation(), Name,
2218                                 Context.getFunctionType(Context.VoidTy,
2219                                                         0, 0, false, 0,
2220                                                         /*FIXME*/false, false,
2221                                                         0, 0, false,
2222                                                         CC_Default),
2223                                 /*TInfo=*/0,
2224                                 /*isExplicit=*/false,
2225                                 /*isInline=*/true,
2226                                 /*isImplicitlyDeclared=*/true);
2227    DefaultCon->setAccess(AS_public);
2228    DefaultCon->setImplicit();
2229    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2230    ClassDecl->addDecl(DefaultCon);
2231  }
2232
2233  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2234    // C++ [class.copy]p4:
2235    //   If the class definition does not explicitly declare a copy
2236    //   constructor, one is declared implicitly.
2237
2238    // C++ [class.copy]p5:
2239    //   The implicitly-declared copy constructor for a class X will
2240    //   have the form
2241    //
2242    //       X::X(const X&)
2243    //
2244    //   if
2245    bool HasConstCopyConstructor = true;
2246
2247    //     -- each direct or virtual base class B of X has a copy
2248    //        constructor whose first parameter is of type const B& or
2249    //        const volatile B&, and
2250    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2251         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2252      const CXXRecordDecl *BaseClassDecl
2253        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2254      HasConstCopyConstructor
2255        = BaseClassDecl->hasConstCopyConstructor(Context);
2256    }
2257
2258    //     -- for all the nonstatic data members of X that are of a
2259    //        class type M (or array thereof), each such class type
2260    //        has a copy constructor whose first parameter is of type
2261    //        const M& or const volatile M&.
2262    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2263         HasConstCopyConstructor && Field != ClassDecl->field_end();
2264         ++Field) {
2265      QualType FieldType = (*Field)->getType();
2266      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2267        FieldType = Array->getElementType();
2268      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2269        const CXXRecordDecl *FieldClassDecl
2270          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2271        HasConstCopyConstructor
2272          = FieldClassDecl->hasConstCopyConstructor(Context);
2273      }
2274    }
2275
2276    //   Otherwise, the implicitly declared copy constructor will have
2277    //   the form
2278    //
2279    //       X::X(X&)
2280    QualType ArgType = ClassType;
2281    if (HasConstCopyConstructor)
2282      ArgType = ArgType.withConst();
2283    ArgType = Context.getLValueReferenceType(ArgType);
2284
2285    //   An implicitly-declared copy constructor is an inline public
2286    //   member of its class.
2287    DeclarationName Name
2288      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2289    CXXConstructorDecl *CopyConstructor
2290      = CXXConstructorDecl::Create(Context, ClassDecl,
2291                                   ClassDecl->getLocation(), Name,
2292                                   Context.getFunctionType(Context.VoidTy,
2293                                                           &ArgType, 1,
2294                                                           false, 0,
2295                                                           /*FIXME:*/false,
2296                                                           false, 0, 0, false,
2297                                                           CC_Default),
2298                                   /*TInfo=*/0,
2299                                   /*isExplicit=*/false,
2300                                   /*isInline=*/true,
2301                                   /*isImplicitlyDeclared=*/true);
2302    CopyConstructor->setAccess(AS_public);
2303    CopyConstructor->setImplicit();
2304    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2305
2306    // Add the parameter to the constructor.
2307    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2308                                                 ClassDecl->getLocation(),
2309                                                 /*IdentifierInfo=*/0,
2310                                                 ArgType, /*TInfo=*/0,
2311                                                 VarDecl::None, 0);
2312    CopyConstructor->setParams(&FromParam, 1);
2313    ClassDecl->addDecl(CopyConstructor);
2314  }
2315
2316  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2317    // Note: The following rules are largely analoguous to the copy
2318    // constructor rules. Note that virtual bases are not taken into account
2319    // for determining the argument type of the operator. Note also that
2320    // operators taking an object instead of a reference are allowed.
2321    //
2322    // C++ [class.copy]p10:
2323    //   If the class definition does not explicitly declare a copy
2324    //   assignment operator, one is declared implicitly.
2325    //   The implicitly-defined copy assignment operator for a class X
2326    //   will have the form
2327    //
2328    //       X& X::operator=(const X&)
2329    //
2330    //   if
2331    bool HasConstCopyAssignment = true;
2332
2333    //       -- each direct base class B of X has a copy assignment operator
2334    //          whose parameter is of type const B&, const volatile B& or B,
2335    //          and
2336    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2337         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2338      assert(!Base->getType()->isDependentType() &&
2339            "Cannot generate implicit members for class with dependent bases.");
2340      const CXXRecordDecl *BaseClassDecl
2341        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2342      const CXXMethodDecl *MD = 0;
2343      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2344                                                                     MD);
2345    }
2346
2347    //       -- for all the nonstatic data members of X that are of a class
2348    //          type M (or array thereof), each such class type has a copy
2349    //          assignment operator whose parameter is of type const M&,
2350    //          const volatile M& or M.
2351    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2352         HasConstCopyAssignment && Field != ClassDecl->field_end();
2353         ++Field) {
2354      QualType FieldType = (*Field)->getType();
2355      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2356        FieldType = Array->getElementType();
2357      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2358        const CXXRecordDecl *FieldClassDecl
2359          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2360        const CXXMethodDecl *MD = 0;
2361        HasConstCopyAssignment
2362          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2363      }
2364    }
2365
2366    //   Otherwise, the implicitly declared copy assignment operator will
2367    //   have the form
2368    //
2369    //       X& X::operator=(X&)
2370    QualType ArgType = ClassType;
2371    QualType RetType = Context.getLValueReferenceType(ArgType);
2372    if (HasConstCopyAssignment)
2373      ArgType = ArgType.withConst();
2374    ArgType = Context.getLValueReferenceType(ArgType);
2375
2376    //   An implicitly-declared copy assignment operator is an inline public
2377    //   member of its class.
2378    DeclarationName Name =
2379      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2380    CXXMethodDecl *CopyAssignment =
2381      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2382                            Context.getFunctionType(RetType, &ArgType, 1,
2383                                                    false, 0,
2384                                                    /*FIXME:*/false,
2385                                                    false, 0, 0, false,
2386                                                    CC_Default),
2387                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2388    CopyAssignment->setAccess(AS_public);
2389    CopyAssignment->setImplicit();
2390    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2391    CopyAssignment->setCopyAssignment(true);
2392
2393    // Add the parameter to the operator.
2394    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2395                                                 ClassDecl->getLocation(),
2396                                                 /*IdentifierInfo=*/0,
2397                                                 ArgType, /*TInfo=*/0,
2398                                                 VarDecl::None, 0);
2399    CopyAssignment->setParams(&FromParam, 1);
2400
2401    // Don't call addedAssignmentOperator. There is no way to distinguish an
2402    // implicit from an explicit assignment operator.
2403    ClassDecl->addDecl(CopyAssignment);
2404    AddOverriddenMethods(ClassDecl, CopyAssignment);
2405  }
2406
2407  if (!ClassDecl->hasUserDeclaredDestructor()) {
2408    // C++ [class.dtor]p2:
2409    //   If a class has no user-declared destructor, a destructor is
2410    //   declared implicitly. An implicitly-declared destructor is an
2411    //   inline public member of its class.
2412    QualType Ty = Context.getFunctionType(Context.VoidTy,
2413                                          0, 0, false, 0,
2414                                          /*FIXME:*/false,
2415                                          false, 0, 0, false,
2416                                          CC_Default);
2417
2418    DeclarationName Name
2419      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2420    CXXDestructorDecl *Destructor
2421      = CXXDestructorDecl::Create(Context, ClassDecl,
2422                                  ClassDecl->getLocation(), Name, Ty,
2423                                  /*isInline=*/true,
2424                                  /*isImplicitlyDeclared=*/true);
2425    Destructor->setAccess(AS_public);
2426    Destructor->setImplicit();
2427    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2428    ClassDecl->addDecl(Destructor);
2429
2430    // This could be uniqued if it ever proves significant.
2431    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2432
2433    AddOverriddenMethods(ClassDecl, Destructor);
2434  }
2435}
2436
2437void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2438  Decl *D = TemplateD.getAs<Decl>();
2439  if (!D)
2440    return;
2441
2442  TemplateParameterList *Params = 0;
2443  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2444    Params = Template->getTemplateParameters();
2445  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2446           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2447    Params = PartialSpec->getTemplateParameters();
2448  else
2449    return;
2450
2451  for (TemplateParameterList::iterator Param = Params->begin(),
2452                                    ParamEnd = Params->end();
2453       Param != ParamEnd; ++Param) {
2454    NamedDecl *Named = cast<NamedDecl>(*Param);
2455    if (Named->getDeclName()) {
2456      S->AddDecl(DeclPtrTy::make(Named));
2457      IdResolver.AddDecl(Named);
2458    }
2459  }
2460}
2461
2462void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2463  if (!RecordD) return;
2464  AdjustDeclIfTemplate(RecordD);
2465  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2466  PushDeclContext(S, Record);
2467}
2468
2469void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2470  if (!RecordD) return;
2471  PopDeclContext();
2472}
2473
2474/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2475/// parsing a top-level (non-nested) C++ class, and we are now
2476/// parsing those parts of the given Method declaration that could
2477/// not be parsed earlier (C++ [class.mem]p2), such as default
2478/// arguments. This action should enter the scope of the given
2479/// Method declaration as if we had just parsed the qualified method
2480/// name. However, it should not bring the parameters into scope;
2481/// that will be performed by ActOnDelayedCXXMethodParameter.
2482void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2483}
2484
2485/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2486/// C++ method declaration. We're (re-)introducing the given
2487/// function parameter into scope for use in parsing later parts of
2488/// the method declaration. For example, we could see an
2489/// ActOnParamDefaultArgument event for this parameter.
2490void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2491  if (!ParamD)
2492    return;
2493
2494  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2495
2496  // If this parameter has an unparsed default argument, clear it out
2497  // to make way for the parsed default argument.
2498  if (Param->hasUnparsedDefaultArg())
2499    Param->setDefaultArg(0);
2500
2501  S->AddDecl(DeclPtrTy::make(Param));
2502  if (Param->getDeclName())
2503    IdResolver.AddDecl(Param);
2504}
2505
2506/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2507/// processing the delayed method declaration for Method. The method
2508/// declaration is now considered finished. There may be a separate
2509/// ActOnStartOfFunctionDef action later (not necessarily
2510/// immediately!) for this method, if it was also defined inside the
2511/// class body.
2512void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2513  if (!MethodD)
2514    return;
2515
2516  AdjustDeclIfTemplate(MethodD);
2517
2518  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2519
2520  // Now that we have our default arguments, check the constructor
2521  // again. It could produce additional diagnostics or affect whether
2522  // the class has implicitly-declared destructors, among other
2523  // things.
2524  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2525    CheckConstructor(Constructor);
2526
2527  // Check the default arguments, which we may have added.
2528  if (!Method->isInvalidDecl())
2529    CheckCXXDefaultArguments(Method);
2530}
2531
2532/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2533/// the well-formedness of the constructor declarator @p D with type @p
2534/// R. If there are any errors in the declarator, this routine will
2535/// emit diagnostics and set the invalid bit to true.  In any case, the type
2536/// will be updated to reflect a well-formed type for the constructor and
2537/// returned.
2538QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2539                                          FunctionDecl::StorageClass &SC) {
2540  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2541
2542  // C++ [class.ctor]p3:
2543  //   A constructor shall not be virtual (10.3) or static (9.4). A
2544  //   constructor can be invoked for a const, volatile or const
2545  //   volatile object. A constructor shall not be declared const,
2546  //   volatile, or const volatile (9.3.2).
2547  if (isVirtual) {
2548    if (!D.isInvalidType())
2549      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2550        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2551        << SourceRange(D.getIdentifierLoc());
2552    D.setInvalidType();
2553  }
2554  if (SC == FunctionDecl::Static) {
2555    if (!D.isInvalidType())
2556      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2557        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2558        << SourceRange(D.getIdentifierLoc());
2559    D.setInvalidType();
2560    SC = FunctionDecl::None;
2561  }
2562
2563  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2564  if (FTI.TypeQuals != 0) {
2565    if (FTI.TypeQuals & Qualifiers::Const)
2566      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2567        << "const" << SourceRange(D.getIdentifierLoc());
2568    if (FTI.TypeQuals & Qualifiers::Volatile)
2569      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2570        << "volatile" << SourceRange(D.getIdentifierLoc());
2571    if (FTI.TypeQuals & Qualifiers::Restrict)
2572      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2573        << "restrict" << SourceRange(D.getIdentifierLoc());
2574  }
2575
2576  // Rebuild the function type "R" without any type qualifiers (in
2577  // case any of the errors above fired) and with "void" as the
2578  // return type, since constructors don't have return types. We
2579  // *always* have to do this, because GetTypeForDeclarator will
2580  // put in a result type of "int" when none was specified.
2581  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2582  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2583                                 Proto->getNumArgs(),
2584                                 Proto->isVariadic(), 0,
2585                                 Proto->hasExceptionSpec(),
2586                                 Proto->hasAnyExceptionSpec(),
2587                                 Proto->getNumExceptions(),
2588                                 Proto->exception_begin(),
2589                                 Proto->getNoReturnAttr(),
2590                                 Proto->getCallConv());
2591}
2592
2593/// CheckConstructor - Checks a fully-formed constructor for
2594/// well-formedness, issuing any diagnostics required. Returns true if
2595/// the constructor declarator is invalid.
2596void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2597  CXXRecordDecl *ClassDecl
2598    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2599  if (!ClassDecl)
2600    return Constructor->setInvalidDecl();
2601
2602  // C++ [class.copy]p3:
2603  //   A declaration of a constructor for a class X is ill-formed if
2604  //   its first parameter is of type (optionally cv-qualified) X and
2605  //   either there are no other parameters or else all other
2606  //   parameters have default arguments.
2607  if (!Constructor->isInvalidDecl() &&
2608      ((Constructor->getNumParams() == 1) ||
2609       (Constructor->getNumParams() > 1 &&
2610        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2611      Constructor->getTemplateSpecializationKind()
2612                                              != TSK_ImplicitInstantiation) {
2613    QualType ParamType = Constructor->getParamDecl(0)->getType();
2614    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2615    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2616      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2617      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2618        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2619
2620      // FIXME: Rather that making the constructor invalid, we should endeavor
2621      // to fix the type.
2622      Constructor->setInvalidDecl();
2623    }
2624  }
2625
2626  // Notify the class that we've added a constructor.
2627  ClassDecl->addedConstructor(Context, Constructor);
2628}
2629
2630/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2631/// issuing any diagnostics required. Returns true on error.
2632bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2633  CXXRecordDecl *RD = Destructor->getParent();
2634
2635  if (Destructor->isVirtual()) {
2636    SourceLocation Loc;
2637
2638    if (!Destructor->isImplicit())
2639      Loc = Destructor->getLocation();
2640    else
2641      Loc = RD->getLocation();
2642
2643    // If we have a virtual destructor, look up the deallocation function
2644    FunctionDecl *OperatorDelete = 0;
2645    DeclarationName Name =
2646    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2647    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2648      return true;
2649
2650    Destructor->setOperatorDelete(OperatorDelete);
2651  }
2652
2653  return false;
2654}
2655
2656static inline bool
2657FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2658  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2659          FTI.ArgInfo[0].Param &&
2660          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2661}
2662
2663/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2664/// the well-formednes of the destructor declarator @p D with type @p
2665/// R. If there are any errors in the declarator, this routine will
2666/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2667/// will be updated to reflect a well-formed type for the destructor and
2668/// returned.
2669QualType Sema::CheckDestructorDeclarator(Declarator &D,
2670                                         FunctionDecl::StorageClass& SC) {
2671  // C++ [class.dtor]p1:
2672  //   [...] A typedef-name that names a class is a class-name
2673  //   (7.1.3); however, a typedef-name that names a class shall not
2674  //   be used as the identifier in the declarator for a destructor
2675  //   declaration.
2676  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2677  if (isa<TypedefType>(DeclaratorType)) {
2678    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2679      << DeclaratorType;
2680    D.setInvalidType();
2681  }
2682
2683  // C++ [class.dtor]p2:
2684  //   A destructor is used to destroy objects of its class type. A
2685  //   destructor takes no parameters, and no return type can be
2686  //   specified for it (not even void). The address of a destructor
2687  //   shall not be taken. A destructor shall not be static. A
2688  //   destructor can be invoked for a const, volatile or const
2689  //   volatile object. A destructor shall not be declared const,
2690  //   volatile or const volatile (9.3.2).
2691  if (SC == FunctionDecl::Static) {
2692    if (!D.isInvalidType())
2693      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2694        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2695        << SourceRange(D.getIdentifierLoc());
2696    SC = FunctionDecl::None;
2697    D.setInvalidType();
2698  }
2699  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2700    // Destructors don't have return types, but the parser will
2701    // happily parse something like:
2702    //
2703    //   class X {
2704    //     float ~X();
2705    //   };
2706    //
2707    // The return type will be eliminated later.
2708    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2709      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2710      << SourceRange(D.getIdentifierLoc());
2711  }
2712
2713  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2714  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2715    if (FTI.TypeQuals & Qualifiers::Const)
2716      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2717        << "const" << SourceRange(D.getIdentifierLoc());
2718    if (FTI.TypeQuals & Qualifiers::Volatile)
2719      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2720        << "volatile" << SourceRange(D.getIdentifierLoc());
2721    if (FTI.TypeQuals & Qualifiers::Restrict)
2722      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2723        << "restrict" << SourceRange(D.getIdentifierLoc());
2724    D.setInvalidType();
2725  }
2726
2727  // Make sure we don't have any parameters.
2728  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2729    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2730
2731    // Delete the parameters.
2732    FTI.freeArgs();
2733    D.setInvalidType();
2734  }
2735
2736  // Make sure the destructor isn't variadic.
2737  if (FTI.isVariadic) {
2738    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2739    D.setInvalidType();
2740  }
2741
2742  // Rebuild the function type "R" without any type qualifiers or
2743  // parameters (in case any of the errors above fired) and with
2744  // "void" as the return type, since destructors don't have return
2745  // types. We *always* have to do this, because GetTypeForDeclarator
2746  // will put in a result type of "int" when none was specified.
2747  // FIXME: Exceptions!
2748  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2749                                 false, false, 0, 0, false, CC_Default);
2750}
2751
2752/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2753/// well-formednes of the conversion function declarator @p D with
2754/// type @p R. If there are any errors in the declarator, this routine
2755/// will emit diagnostics and return true. Otherwise, it will return
2756/// false. Either way, the type @p R will be updated to reflect a
2757/// well-formed type for the conversion operator.
2758void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2759                                     FunctionDecl::StorageClass& SC) {
2760  // C++ [class.conv.fct]p1:
2761  //   Neither parameter types nor return type can be specified. The
2762  //   type of a conversion function (8.3.5) is "function taking no
2763  //   parameter returning conversion-type-id."
2764  if (SC == FunctionDecl::Static) {
2765    if (!D.isInvalidType())
2766      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2767        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2768        << SourceRange(D.getIdentifierLoc());
2769    D.setInvalidType();
2770    SC = FunctionDecl::None;
2771  }
2772  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2773    // Conversion functions don't have return types, but the parser will
2774    // happily parse something like:
2775    //
2776    //   class X {
2777    //     float operator bool();
2778    //   };
2779    //
2780    // The return type will be changed later anyway.
2781    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2782      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2783      << SourceRange(D.getIdentifierLoc());
2784  }
2785
2786  // Make sure we don't have any parameters.
2787  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2788    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2789
2790    // Delete the parameters.
2791    D.getTypeObject(0).Fun.freeArgs();
2792    D.setInvalidType();
2793  }
2794
2795  // Make sure the conversion function isn't variadic.
2796  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2797    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2798    D.setInvalidType();
2799  }
2800
2801  // C++ [class.conv.fct]p4:
2802  //   The conversion-type-id shall not represent a function type nor
2803  //   an array type.
2804  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2805  if (ConvType->isArrayType()) {
2806    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2807    ConvType = Context.getPointerType(ConvType);
2808    D.setInvalidType();
2809  } else if (ConvType->isFunctionType()) {
2810    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2811    ConvType = Context.getPointerType(ConvType);
2812    D.setInvalidType();
2813  }
2814
2815  // Rebuild the function type "R" without any parameters (in case any
2816  // of the errors above fired) and with the conversion type as the
2817  // return type.
2818  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2819  R = Context.getFunctionType(ConvType, 0, 0, false,
2820                              Proto->getTypeQuals(),
2821                              Proto->hasExceptionSpec(),
2822                              Proto->hasAnyExceptionSpec(),
2823                              Proto->getNumExceptions(),
2824                              Proto->exception_begin(),
2825                              Proto->getNoReturnAttr(),
2826                              Proto->getCallConv());
2827
2828  // C++0x explicit conversion operators.
2829  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2830    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2831         diag::warn_explicit_conversion_functions)
2832      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2833}
2834
2835/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2836/// the declaration of the given C++ conversion function. This routine
2837/// is responsible for recording the conversion function in the C++
2838/// class, if possible.
2839Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2840  assert(Conversion && "Expected to receive a conversion function declaration");
2841
2842  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2843
2844  // Make sure we aren't redeclaring the conversion function.
2845  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2846
2847  // C++ [class.conv.fct]p1:
2848  //   [...] A conversion function is never used to convert a
2849  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2850  //   same object type (or a reference to it), to a (possibly
2851  //   cv-qualified) base class of that type (or a reference to it),
2852  //   or to (possibly cv-qualified) void.
2853  // FIXME: Suppress this warning if the conversion function ends up being a
2854  // virtual function that overrides a virtual function in a base class.
2855  QualType ClassType
2856    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2857  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2858    ConvType = ConvTypeRef->getPointeeType();
2859  if (ConvType->isRecordType()) {
2860    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2861    if (ConvType == ClassType)
2862      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2863        << ClassType;
2864    else if (IsDerivedFrom(ClassType, ConvType))
2865      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2866        <<  ClassType << ConvType;
2867  } else if (ConvType->isVoidType()) {
2868    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2869      << ClassType << ConvType;
2870  }
2871
2872  if (Conversion->getPrimaryTemplate()) {
2873    // ignore specializations
2874  } else if (Conversion->getPreviousDeclaration()) {
2875    if (FunctionTemplateDecl *ConversionTemplate
2876                                  = Conversion->getDescribedFunctionTemplate()) {
2877      if (ClassDecl->replaceConversion(
2878                                   ConversionTemplate->getPreviousDeclaration(),
2879                                       ConversionTemplate))
2880        return DeclPtrTy::make(ConversionTemplate);
2881    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
2882                                            Conversion))
2883      return DeclPtrTy::make(Conversion);
2884    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2885  } else if (FunctionTemplateDecl *ConversionTemplate
2886               = Conversion->getDescribedFunctionTemplate())
2887    ClassDecl->addConversionFunction(ConversionTemplate);
2888  else
2889    ClassDecl->addConversionFunction(Conversion);
2890
2891  return DeclPtrTy::make(Conversion);
2892}
2893
2894//===----------------------------------------------------------------------===//
2895// Namespace Handling
2896//===----------------------------------------------------------------------===//
2897
2898/// ActOnStartNamespaceDef - This is called at the start of a namespace
2899/// definition.
2900Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2901                                             SourceLocation IdentLoc,
2902                                             IdentifierInfo *II,
2903                                             SourceLocation LBrace,
2904                                             AttributeList *AttrList) {
2905  NamespaceDecl *Namespc =
2906      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2907  Namespc->setLBracLoc(LBrace);
2908
2909  Scope *DeclRegionScope = NamespcScope->getParent();
2910
2911  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
2912
2913  if (II) {
2914    // C++ [namespace.def]p2:
2915    // The identifier in an original-namespace-definition shall not have been
2916    // previously defined in the declarative region in which the
2917    // original-namespace-definition appears. The identifier in an
2918    // original-namespace-definition is the name of the namespace. Subsequently
2919    // in that declarative region, it is treated as an original-namespace-name.
2920
2921    NamedDecl *PrevDecl
2922      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2923                         ForRedeclaration);
2924
2925    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2926      // This is an extended namespace definition.
2927      // Attach this namespace decl to the chain of extended namespace
2928      // definitions.
2929      OrigNS->setNextNamespace(Namespc);
2930      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2931
2932      // Remove the previous declaration from the scope.
2933      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2934        IdResolver.RemoveDecl(OrigNS);
2935        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2936      }
2937    } else if (PrevDecl) {
2938      // This is an invalid name redefinition.
2939      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2940       << Namespc->getDeclName();
2941      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2942      Namespc->setInvalidDecl();
2943      // Continue on to push Namespc as current DeclContext and return it.
2944    } else if (II->isStr("std") &&
2945               CurContext->getLookupContext()->isTranslationUnit()) {
2946      // This is the first "real" definition of the namespace "std", so update
2947      // our cache of the "std" namespace to point at this definition.
2948      if (StdNamespace) {
2949        // We had already defined a dummy namespace "std". Link this new
2950        // namespace definition to the dummy namespace "std".
2951        StdNamespace->setNextNamespace(Namespc);
2952        StdNamespace->setLocation(IdentLoc);
2953        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2954      }
2955
2956      // Make our StdNamespace cache point at the first real definition of the
2957      // "std" namespace.
2958      StdNamespace = Namespc;
2959    }
2960
2961    PushOnScopeChains(Namespc, DeclRegionScope);
2962  } else {
2963    // Anonymous namespaces.
2964    assert(Namespc->isAnonymousNamespace());
2965    CurContext->addDecl(Namespc);
2966
2967    // Link the anonymous namespace into its parent.
2968    NamespaceDecl *PrevDecl;
2969    DeclContext *Parent = CurContext->getLookupContext();
2970    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
2971      PrevDecl = TU->getAnonymousNamespace();
2972      TU->setAnonymousNamespace(Namespc);
2973    } else {
2974      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
2975      PrevDecl = ND->getAnonymousNamespace();
2976      ND->setAnonymousNamespace(Namespc);
2977    }
2978
2979    // Link the anonymous namespace with its previous declaration.
2980    if (PrevDecl) {
2981      assert(PrevDecl->isAnonymousNamespace());
2982      assert(!PrevDecl->getNextNamespace());
2983      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
2984      PrevDecl->setNextNamespace(Namespc);
2985    }
2986
2987    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2988    //   behaves as if it were replaced by
2989    //     namespace unique { /* empty body */ }
2990    //     using namespace unique;
2991    //     namespace unique { namespace-body }
2992    //   where all occurrences of 'unique' in a translation unit are
2993    //   replaced by the same identifier and this identifier differs
2994    //   from all other identifiers in the entire program.
2995
2996    // We just create the namespace with an empty name and then add an
2997    // implicit using declaration, just like the standard suggests.
2998    //
2999    // CodeGen enforces the "universally unique" aspect by giving all
3000    // declarations semantically contained within an anonymous
3001    // namespace internal linkage.
3002
3003    if (!PrevDecl) {
3004      UsingDirectiveDecl* UD
3005        = UsingDirectiveDecl::Create(Context, CurContext,
3006                                     /* 'using' */ LBrace,
3007                                     /* 'namespace' */ SourceLocation(),
3008                                     /* qualifier */ SourceRange(),
3009                                     /* NNS */ NULL,
3010                                     /* identifier */ SourceLocation(),
3011                                     Namespc,
3012                                     /* Ancestor */ CurContext);
3013      UD->setImplicit();
3014      CurContext->addDecl(UD);
3015    }
3016  }
3017
3018  // Although we could have an invalid decl (i.e. the namespace name is a
3019  // redefinition), push it as current DeclContext and try to continue parsing.
3020  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3021  // for the namespace has the declarations that showed up in that particular
3022  // namespace definition.
3023  PushDeclContext(NamespcScope, Namespc);
3024  return DeclPtrTy::make(Namespc);
3025}
3026
3027/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3028/// is a namespace alias, returns the namespace it points to.
3029static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3030  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3031    return AD->getNamespace();
3032  return dyn_cast_or_null<NamespaceDecl>(D);
3033}
3034
3035/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3036/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3037void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3038  Decl *Dcl = D.getAs<Decl>();
3039  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3040  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3041  Namespc->setRBracLoc(RBrace);
3042  PopDeclContext();
3043}
3044
3045Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3046                                          SourceLocation UsingLoc,
3047                                          SourceLocation NamespcLoc,
3048                                          const CXXScopeSpec &SS,
3049                                          SourceLocation IdentLoc,
3050                                          IdentifierInfo *NamespcName,
3051                                          AttributeList *AttrList) {
3052  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3053  assert(NamespcName && "Invalid NamespcName.");
3054  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3055  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3056
3057  UsingDirectiveDecl *UDir = 0;
3058
3059  // Lookup namespace name.
3060  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3061  LookupParsedName(R, S, &SS);
3062  if (R.isAmbiguous())
3063    return DeclPtrTy();
3064
3065  if (!R.empty()) {
3066    NamedDecl *Named = R.getFoundDecl();
3067    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3068        && "expected namespace decl");
3069    // C++ [namespace.udir]p1:
3070    //   A using-directive specifies that the names in the nominated
3071    //   namespace can be used in the scope in which the
3072    //   using-directive appears after the using-directive. During
3073    //   unqualified name lookup (3.4.1), the names appear as if they
3074    //   were declared in the nearest enclosing namespace which
3075    //   contains both the using-directive and the nominated
3076    //   namespace. [Note: in this context, "contains" means "contains
3077    //   directly or indirectly". ]
3078
3079    // Find enclosing context containing both using-directive and
3080    // nominated namespace.
3081    NamespaceDecl *NS = getNamespaceDecl(Named);
3082    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3083    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3084      CommonAncestor = CommonAncestor->getParent();
3085
3086    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3087                                      SS.getRange(),
3088                                      (NestedNameSpecifier *)SS.getScopeRep(),
3089                                      IdentLoc, Named, CommonAncestor);
3090    PushUsingDirective(S, UDir);
3091  } else {
3092    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3093  }
3094
3095  // FIXME: We ignore attributes for now.
3096  delete AttrList;
3097  return DeclPtrTy::make(UDir);
3098}
3099
3100void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3101  // If scope has associated entity, then using directive is at namespace
3102  // or translation unit scope. We add UsingDirectiveDecls, into
3103  // it's lookup structure.
3104  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3105    Ctx->addDecl(UDir);
3106  else
3107    // Otherwise it is block-sope. using-directives will affect lookup
3108    // only to the end of scope.
3109    S->PushUsingDirective(DeclPtrTy::make(UDir));
3110}
3111
3112
3113Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3114                                            AccessSpecifier AS,
3115                                            bool HasUsingKeyword,
3116                                            SourceLocation UsingLoc,
3117                                            const CXXScopeSpec &SS,
3118                                            UnqualifiedId &Name,
3119                                            AttributeList *AttrList,
3120                                            bool IsTypeName,
3121                                            SourceLocation TypenameLoc) {
3122  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3123
3124  switch (Name.getKind()) {
3125  case UnqualifiedId::IK_Identifier:
3126  case UnqualifiedId::IK_OperatorFunctionId:
3127  case UnqualifiedId::IK_LiteralOperatorId:
3128  case UnqualifiedId::IK_ConversionFunctionId:
3129    break;
3130
3131  case UnqualifiedId::IK_ConstructorName:
3132  case UnqualifiedId::IK_ConstructorTemplateId:
3133    // C++0x inherited constructors.
3134    if (getLangOptions().CPlusPlus0x) break;
3135
3136    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3137      << SS.getRange();
3138    return DeclPtrTy();
3139
3140  case UnqualifiedId::IK_DestructorName:
3141    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3142      << SS.getRange();
3143    return DeclPtrTy();
3144
3145  case UnqualifiedId::IK_TemplateId:
3146    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3147      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3148    return DeclPtrTy();
3149  }
3150
3151  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3152  if (!TargetName)
3153    return DeclPtrTy();
3154
3155  // Warn about using declarations.
3156  // TODO: store that the declaration was written without 'using' and
3157  // talk about access decls instead of using decls in the
3158  // diagnostics.
3159  if (!HasUsingKeyword) {
3160    UsingLoc = Name.getSourceRange().getBegin();
3161
3162    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3163      << CodeModificationHint::CreateInsertion(SS.getRange().getBegin(),
3164                                               "using ");
3165  }
3166
3167  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3168                                        Name.getSourceRange().getBegin(),
3169                                        TargetName, AttrList,
3170                                        /* IsInstantiation */ false,
3171                                        IsTypeName, TypenameLoc);
3172  if (UD)
3173    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3174
3175  return DeclPtrTy::make(UD);
3176}
3177
3178/// Determines whether to create a using shadow decl for a particular
3179/// decl, given the set of decls existing prior to this using lookup.
3180bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3181                                const LookupResult &Previous) {
3182  // Diagnose finding a decl which is not from a base class of the
3183  // current class.  We do this now because there are cases where this
3184  // function will silently decide not to build a shadow decl, which
3185  // will pre-empt further diagnostics.
3186  //
3187  // We don't need to do this in C++0x because we do the check once on
3188  // the qualifier.
3189  //
3190  // FIXME: diagnose the following if we care enough:
3191  //   struct A { int foo; };
3192  //   struct B : A { using A::foo; };
3193  //   template <class T> struct C : A {};
3194  //   template <class T> struct D : C<T> { using B::foo; } // <---
3195  // This is invalid (during instantiation) in C++03 because B::foo
3196  // resolves to the using decl in B, which is not a base class of D<T>.
3197  // We can't diagnose it immediately because C<T> is an unknown
3198  // specialization.  The UsingShadowDecl in D<T> then points directly
3199  // to A::foo, which will look well-formed when we instantiate.
3200  // The right solution is to not collapse the shadow-decl chain.
3201  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3202    DeclContext *OrigDC = Orig->getDeclContext();
3203
3204    // Handle enums and anonymous structs.
3205    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3206    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3207    while (OrigRec->isAnonymousStructOrUnion())
3208      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3209
3210    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3211      if (OrigDC == CurContext) {
3212        Diag(Using->getLocation(),
3213             diag::err_using_decl_nested_name_specifier_is_current_class)
3214          << Using->getNestedNameRange();
3215        Diag(Orig->getLocation(), diag::note_using_decl_target);
3216        return true;
3217      }
3218
3219      Diag(Using->getNestedNameRange().getBegin(),
3220           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3221        << Using->getTargetNestedNameDecl()
3222        << cast<CXXRecordDecl>(CurContext)
3223        << Using->getNestedNameRange();
3224      Diag(Orig->getLocation(), diag::note_using_decl_target);
3225      return true;
3226    }
3227  }
3228
3229  if (Previous.empty()) return false;
3230
3231  NamedDecl *Target = Orig;
3232  if (isa<UsingShadowDecl>(Target))
3233    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3234
3235  // If the target happens to be one of the previous declarations, we
3236  // don't have a conflict.
3237  //
3238  // FIXME: but we might be increasing its access, in which case we
3239  // should redeclare it.
3240  NamedDecl *NonTag = 0, *Tag = 0;
3241  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3242         I != E; ++I) {
3243    NamedDecl *D = (*I)->getUnderlyingDecl();
3244    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3245      return false;
3246
3247    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3248  }
3249
3250  if (Target->isFunctionOrFunctionTemplate()) {
3251    FunctionDecl *FD;
3252    if (isa<FunctionTemplateDecl>(Target))
3253      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3254    else
3255      FD = cast<FunctionDecl>(Target);
3256
3257    NamedDecl *OldDecl = 0;
3258    switch (CheckOverload(FD, Previous, OldDecl)) {
3259    case Ovl_Overload:
3260      return false;
3261
3262    case Ovl_NonFunction:
3263      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3264      break;
3265
3266    // We found a decl with the exact signature.
3267    case Ovl_Match:
3268      if (isa<UsingShadowDecl>(OldDecl)) {
3269        // Silently ignore the possible conflict.
3270        return false;
3271      }
3272
3273      // If we're in a record, we want to hide the target, so we
3274      // return true (without a diagnostic) to tell the caller not to
3275      // build a shadow decl.
3276      if (CurContext->isRecord())
3277        return true;
3278
3279      // If we're not in a record, this is an error.
3280      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3281      break;
3282    }
3283
3284    Diag(Target->getLocation(), diag::note_using_decl_target);
3285    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3286    return true;
3287  }
3288
3289  // Target is not a function.
3290
3291  if (isa<TagDecl>(Target)) {
3292    // No conflict between a tag and a non-tag.
3293    if (!Tag) return false;
3294
3295    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3296    Diag(Target->getLocation(), diag::note_using_decl_target);
3297    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3298    return true;
3299  }
3300
3301  // No conflict between a tag and a non-tag.
3302  if (!NonTag) return false;
3303
3304  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3305  Diag(Target->getLocation(), diag::note_using_decl_target);
3306  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3307  return true;
3308}
3309
3310/// Builds a shadow declaration corresponding to a 'using' declaration.
3311UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3312                                            UsingDecl *UD,
3313                                            NamedDecl *Orig) {
3314
3315  // If we resolved to another shadow declaration, just coalesce them.
3316  NamedDecl *Target = Orig;
3317  if (isa<UsingShadowDecl>(Target)) {
3318    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3319    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3320  }
3321
3322  UsingShadowDecl *Shadow
3323    = UsingShadowDecl::Create(Context, CurContext,
3324                              UD->getLocation(), UD, Target);
3325  UD->addShadowDecl(Shadow);
3326
3327  if (S)
3328    PushOnScopeChains(Shadow, S);
3329  else
3330    CurContext->addDecl(Shadow);
3331  Shadow->setAccess(UD->getAccess());
3332
3333  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3334    Shadow->setInvalidDecl();
3335
3336  return Shadow;
3337}
3338
3339/// Hides a using shadow declaration.  This is required by the current
3340/// using-decl implementation when a resolvable using declaration in a
3341/// class is followed by a declaration which would hide or override
3342/// one or more of the using decl's targets; for example:
3343///
3344///   struct Base { void foo(int); };
3345///   struct Derived : Base {
3346///     using Base::foo;
3347///     void foo(int);
3348///   };
3349///
3350/// The governing language is C++03 [namespace.udecl]p12:
3351///
3352///   When a using-declaration brings names from a base class into a
3353///   derived class scope, member functions in the derived class
3354///   override and/or hide member functions with the same name and
3355///   parameter types in a base class (rather than conflicting).
3356///
3357/// There are two ways to implement this:
3358///   (1) optimistically create shadow decls when they're not hidden
3359///       by existing declarations, or
3360///   (2) don't create any shadow decls (or at least don't make them
3361///       visible) until we've fully parsed/instantiated the class.
3362/// The problem with (1) is that we might have to retroactively remove
3363/// a shadow decl, which requires several O(n) operations because the
3364/// decl structures are (very reasonably) not designed for removal.
3365/// (2) avoids this but is very fiddly and phase-dependent.
3366void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3367  // Remove it from the DeclContext...
3368  Shadow->getDeclContext()->removeDecl(Shadow);
3369
3370  // ...and the scope, if applicable...
3371  if (S) {
3372    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3373    IdResolver.RemoveDecl(Shadow);
3374  }
3375
3376  // ...and the using decl.
3377  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3378
3379  // TODO: complain somehow if Shadow was used.  It shouldn't
3380  // be possible for this to happen, because
3381}
3382
3383/// Builds a using declaration.
3384///
3385/// \param IsInstantiation - Whether this call arises from an
3386///   instantiation of an unresolved using declaration.  We treat
3387///   the lookup differently for these declarations.
3388NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3389                                       SourceLocation UsingLoc,
3390                                       const CXXScopeSpec &SS,
3391                                       SourceLocation IdentLoc,
3392                                       DeclarationName Name,
3393                                       AttributeList *AttrList,
3394                                       bool IsInstantiation,
3395                                       bool IsTypeName,
3396                                       SourceLocation TypenameLoc) {
3397  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3398  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3399
3400  // FIXME: We ignore attributes for now.
3401  delete AttrList;
3402
3403  if (SS.isEmpty()) {
3404    Diag(IdentLoc, diag::err_using_requires_qualname);
3405    return 0;
3406  }
3407
3408  // Do the redeclaration lookup in the current scope.
3409  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3410                        ForRedeclaration);
3411  Previous.setHideTags(false);
3412  if (S) {
3413    LookupName(Previous, S);
3414
3415    // It is really dumb that we have to do this.
3416    LookupResult::Filter F = Previous.makeFilter();
3417    while (F.hasNext()) {
3418      NamedDecl *D = F.next();
3419      if (!isDeclInScope(D, CurContext, S))
3420        F.erase();
3421    }
3422    F.done();
3423  } else {
3424    assert(IsInstantiation && "no scope in non-instantiation");
3425    assert(CurContext->isRecord() && "scope not record in instantiation");
3426    LookupQualifiedName(Previous, CurContext);
3427  }
3428
3429  NestedNameSpecifier *NNS =
3430    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3431
3432  // Check for invalid redeclarations.
3433  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3434    return 0;
3435
3436  // Check for bad qualifiers.
3437  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3438    return 0;
3439
3440  DeclContext *LookupContext = computeDeclContext(SS);
3441  NamedDecl *D;
3442  if (!LookupContext) {
3443    if (IsTypeName) {
3444      // FIXME: not all declaration name kinds are legal here
3445      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3446                                              UsingLoc, TypenameLoc,
3447                                              SS.getRange(), NNS,
3448                                              IdentLoc, Name);
3449    } else {
3450      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3451                                           UsingLoc, SS.getRange(), NNS,
3452                                           IdentLoc, Name);
3453    }
3454  } else {
3455    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3456                          SS.getRange(), UsingLoc, NNS, Name,
3457                          IsTypeName);
3458  }
3459  D->setAccess(AS);
3460  CurContext->addDecl(D);
3461
3462  if (!LookupContext) return D;
3463  UsingDecl *UD = cast<UsingDecl>(D);
3464
3465  if (RequireCompleteDeclContext(SS)) {
3466    UD->setInvalidDecl();
3467    return UD;
3468  }
3469
3470  // Look up the target name.
3471
3472  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3473
3474  // Unlike most lookups, we don't always want to hide tag
3475  // declarations: tag names are visible through the using declaration
3476  // even if hidden by ordinary names, *except* in a dependent context
3477  // where it's important for the sanity of two-phase lookup.
3478  if (!IsInstantiation)
3479    R.setHideTags(false);
3480
3481  LookupQualifiedName(R, LookupContext);
3482
3483  if (R.empty()) {
3484    Diag(IdentLoc, diag::err_no_member)
3485      << Name << LookupContext << SS.getRange();
3486    UD->setInvalidDecl();
3487    return UD;
3488  }
3489
3490  if (R.isAmbiguous()) {
3491    UD->setInvalidDecl();
3492    return UD;
3493  }
3494
3495  if (IsTypeName) {
3496    // If we asked for a typename and got a non-type decl, error out.
3497    if (!R.getAsSingle<TypeDecl>()) {
3498      Diag(IdentLoc, diag::err_using_typename_non_type);
3499      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3500        Diag((*I)->getUnderlyingDecl()->getLocation(),
3501             diag::note_using_decl_target);
3502      UD->setInvalidDecl();
3503      return UD;
3504    }
3505  } else {
3506    // If we asked for a non-typename and we got a type, error out,
3507    // but only if this is an instantiation of an unresolved using
3508    // decl.  Otherwise just silently find the type name.
3509    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3510      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3511      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3512      UD->setInvalidDecl();
3513      return UD;
3514    }
3515  }
3516
3517  // C++0x N2914 [namespace.udecl]p6:
3518  // A using-declaration shall not name a namespace.
3519  if (R.getAsSingle<NamespaceDecl>()) {
3520    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3521      << SS.getRange();
3522    UD->setInvalidDecl();
3523    return UD;
3524  }
3525
3526  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3527    if (!CheckUsingShadowDecl(UD, *I, Previous))
3528      BuildUsingShadowDecl(S, UD, *I);
3529  }
3530
3531  return UD;
3532}
3533
3534/// Checks that the given using declaration is not an invalid
3535/// redeclaration.  Note that this is checking only for the using decl
3536/// itself, not for any ill-formedness among the UsingShadowDecls.
3537bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3538                                       bool isTypeName,
3539                                       const CXXScopeSpec &SS,
3540                                       SourceLocation NameLoc,
3541                                       const LookupResult &Prev) {
3542  // C++03 [namespace.udecl]p8:
3543  // C++0x [namespace.udecl]p10:
3544  //   A using-declaration is a declaration and can therefore be used
3545  //   repeatedly where (and only where) multiple declarations are
3546  //   allowed.
3547  // That's only in file contexts.
3548  if (CurContext->getLookupContext()->isFileContext())
3549    return false;
3550
3551  NestedNameSpecifier *Qual
3552    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3553
3554  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3555    NamedDecl *D = *I;
3556
3557    bool DTypename;
3558    NestedNameSpecifier *DQual;
3559    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3560      DTypename = UD->isTypeName();
3561      DQual = UD->getTargetNestedNameDecl();
3562    } else if (UnresolvedUsingValueDecl *UD
3563                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3564      DTypename = false;
3565      DQual = UD->getTargetNestedNameSpecifier();
3566    } else if (UnresolvedUsingTypenameDecl *UD
3567                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3568      DTypename = true;
3569      DQual = UD->getTargetNestedNameSpecifier();
3570    } else continue;
3571
3572    // using decls differ if one says 'typename' and the other doesn't.
3573    // FIXME: non-dependent using decls?
3574    if (isTypeName != DTypename) continue;
3575
3576    // using decls differ if they name different scopes (but note that
3577    // template instantiation can cause this check to trigger when it
3578    // didn't before instantiation).
3579    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3580        Context.getCanonicalNestedNameSpecifier(DQual))
3581      continue;
3582
3583    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3584    Diag(D->getLocation(), diag::note_using_decl) << 1;
3585    return true;
3586  }
3587
3588  return false;
3589}
3590
3591
3592/// Checks that the given nested-name qualifier used in a using decl
3593/// in the current context is appropriately related to the current
3594/// scope.  If an error is found, diagnoses it and returns true.
3595bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3596                                   const CXXScopeSpec &SS,
3597                                   SourceLocation NameLoc) {
3598  DeclContext *NamedContext = computeDeclContext(SS);
3599
3600  if (!CurContext->isRecord()) {
3601    // C++03 [namespace.udecl]p3:
3602    // C++0x [namespace.udecl]p8:
3603    //   A using-declaration for a class member shall be a member-declaration.
3604
3605    // If we weren't able to compute a valid scope, it must be a
3606    // dependent class scope.
3607    if (!NamedContext || NamedContext->isRecord()) {
3608      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3609        << SS.getRange();
3610      return true;
3611    }
3612
3613    // Otherwise, everything is known to be fine.
3614    return false;
3615  }
3616
3617  // The current scope is a record.
3618
3619  // If the named context is dependent, we can't decide much.
3620  if (!NamedContext) {
3621    // FIXME: in C++0x, we can diagnose if we can prove that the
3622    // nested-name-specifier does not refer to a base class, which is
3623    // still possible in some cases.
3624
3625    // Otherwise we have to conservatively report that things might be
3626    // okay.
3627    return false;
3628  }
3629
3630  if (!NamedContext->isRecord()) {
3631    // Ideally this would point at the last name in the specifier,
3632    // but we don't have that level of source info.
3633    Diag(SS.getRange().getBegin(),
3634         diag::err_using_decl_nested_name_specifier_is_not_class)
3635      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3636    return true;
3637  }
3638
3639  if (getLangOptions().CPlusPlus0x) {
3640    // C++0x [namespace.udecl]p3:
3641    //   In a using-declaration used as a member-declaration, the
3642    //   nested-name-specifier shall name a base class of the class
3643    //   being defined.
3644
3645    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3646                                 cast<CXXRecordDecl>(NamedContext))) {
3647      if (CurContext == NamedContext) {
3648        Diag(NameLoc,
3649             diag::err_using_decl_nested_name_specifier_is_current_class)
3650          << SS.getRange();
3651        return true;
3652      }
3653
3654      Diag(SS.getRange().getBegin(),
3655           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3656        << (NestedNameSpecifier*) SS.getScopeRep()
3657        << cast<CXXRecordDecl>(CurContext)
3658        << SS.getRange();
3659      return true;
3660    }
3661
3662    return false;
3663  }
3664
3665  // C++03 [namespace.udecl]p4:
3666  //   A using-declaration used as a member-declaration shall refer
3667  //   to a member of a base class of the class being defined [etc.].
3668
3669  // Salient point: SS doesn't have to name a base class as long as
3670  // lookup only finds members from base classes.  Therefore we can
3671  // diagnose here only if we can prove that that can't happen,
3672  // i.e. if the class hierarchies provably don't intersect.
3673
3674  // TODO: it would be nice if "definitely valid" results were cached
3675  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3676  // need to be repeated.
3677
3678  struct UserData {
3679    llvm::DenseSet<const CXXRecordDecl*> Bases;
3680
3681    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3682      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3683      Data->Bases.insert(Base);
3684      return true;
3685    }
3686
3687    bool hasDependentBases(const CXXRecordDecl *Class) {
3688      return !Class->forallBases(collect, this);
3689    }
3690
3691    /// Returns true if the base is dependent or is one of the
3692    /// accumulated base classes.
3693    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3694      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3695      return !Data->Bases.count(Base);
3696    }
3697
3698    bool mightShareBases(const CXXRecordDecl *Class) {
3699      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3700    }
3701  };
3702
3703  UserData Data;
3704
3705  // Returns false if we find a dependent base.
3706  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3707    return false;
3708
3709  // Returns false if the class has a dependent base or if it or one
3710  // of its bases is present in the base set of the current context.
3711  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3712    return false;
3713
3714  Diag(SS.getRange().getBegin(),
3715       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3716    << (NestedNameSpecifier*) SS.getScopeRep()
3717    << cast<CXXRecordDecl>(CurContext)
3718    << SS.getRange();
3719
3720  return true;
3721}
3722
3723Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3724                                             SourceLocation NamespaceLoc,
3725                                             SourceLocation AliasLoc,
3726                                             IdentifierInfo *Alias,
3727                                             const CXXScopeSpec &SS,
3728                                             SourceLocation IdentLoc,
3729                                             IdentifierInfo *Ident) {
3730
3731  // Lookup the namespace name.
3732  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3733  LookupParsedName(R, S, &SS);
3734
3735  // Check if we have a previous declaration with the same name.
3736  if (NamedDecl *PrevDecl
3737        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3738    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3739      // We already have an alias with the same name that points to the same
3740      // namespace, so don't create a new one.
3741      if (!R.isAmbiguous() && !R.empty() &&
3742          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
3743        return DeclPtrTy();
3744    }
3745
3746    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3747      diag::err_redefinition_different_kind;
3748    Diag(AliasLoc, DiagID) << Alias;
3749    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3750    return DeclPtrTy();
3751  }
3752
3753  if (R.isAmbiguous())
3754    return DeclPtrTy();
3755
3756  if (R.empty()) {
3757    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3758    return DeclPtrTy();
3759  }
3760
3761  NamespaceAliasDecl *AliasDecl =
3762    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3763                               Alias, SS.getRange(),
3764                               (NestedNameSpecifier *)SS.getScopeRep(),
3765                               IdentLoc, R.getFoundDecl());
3766
3767  PushOnScopeChains(AliasDecl, S);
3768  return DeclPtrTy::make(AliasDecl);
3769}
3770
3771void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3772                                            CXXConstructorDecl *Constructor) {
3773  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3774          !Constructor->isUsed()) &&
3775    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3776
3777  CXXRecordDecl *ClassDecl
3778    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3779  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3780
3781  DeclContext *PreviousContext = CurContext;
3782  CurContext = Constructor;
3783  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true, false)) {
3784    Diag(CurrentLocation, diag::note_member_synthesized_at)
3785      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3786    Constructor->setInvalidDecl();
3787  } else {
3788    Constructor->setUsed();
3789  }
3790  CurContext = PreviousContext;
3791}
3792
3793void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3794                                    CXXDestructorDecl *Destructor) {
3795  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3796         "DefineImplicitDestructor - call it for implicit default dtor");
3797  CXXRecordDecl *ClassDecl = Destructor->getParent();
3798  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3799
3800  DeclContext *PreviousContext = CurContext;
3801  CurContext = Destructor;
3802
3803  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
3804                                         Destructor->getParent());
3805
3806  // FIXME: If CheckDestructor fails, we should emit a note about where the
3807  // implicit destructor was needed.
3808  if (CheckDestructor(Destructor)) {
3809    Diag(CurrentLocation, diag::note_member_synthesized_at)
3810      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3811
3812    Destructor->setInvalidDecl();
3813    CurContext = PreviousContext;
3814
3815    return;
3816  }
3817  CurContext = PreviousContext;
3818
3819  Destructor->setUsed();
3820}
3821
3822void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3823                                          CXXMethodDecl *MethodDecl) {
3824  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3825          MethodDecl->getOverloadedOperator() == OO_Equal &&
3826          !MethodDecl->isUsed()) &&
3827         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3828
3829  CXXRecordDecl *ClassDecl
3830    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3831
3832  DeclContext *PreviousContext = CurContext;
3833  CurContext = MethodDecl;
3834
3835  // C++[class.copy] p12
3836  // Before the implicitly-declared copy assignment operator for a class is
3837  // implicitly defined, all implicitly-declared copy assignment operators
3838  // for its direct base classes and its nonstatic data members shall have
3839  // been implicitly defined.
3840  bool err = false;
3841  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3842       E = ClassDecl->bases_end(); Base != E; ++Base) {
3843    CXXRecordDecl *BaseClassDecl
3844      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3845    if (CXXMethodDecl *BaseAssignOpMethod =
3846          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3847                                  BaseClassDecl)) {
3848      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3849                              BaseAssignOpMethod,
3850                              PartialDiagnostic(diag::err_access_assign_base)
3851                                << Base->getType());
3852
3853      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3854    }
3855  }
3856  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3857       E = ClassDecl->field_end(); Field != E; ++Field) {
3858    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3859    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3860      FieldType = Array->getElementType();
3861    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3862      CXXRecordDecl *FieldClassDecl
3863        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3864      if (CXXMethodDecl *FieldAssignOpMethod =
3865          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3866                                  FieldClassDecl)) {
3867        CheckDirectMemberAccess(Field->getLocation(),
3868                                FieldAssignOpMethod,
3869                                PartialDiagnostic(diag::err_access_assign_field)
3870                                  << Field->getDeclName() << Field->getType());
3871
3872        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3873      }
3874    } else if (FieldType->isReferenceType()) {
3875      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3876      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3877      Diag(Field->getLocation(), diag::note_declared_at);
3878      Diag(CurrentLocation, diag::note_first_required_here);
3879      err = true;
3880    } else if (FieldType.isConstQualified()) {
3881      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3882      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3883      Diag(Field->getLocation(), diag::note_declared_at);
3884      Diag(CurrentLocation, diag::note_first_required_here);
3885      err = true;
3886    }
3887  }
3888  if (!err)
3889    MethodDecl->setUsed();
3890
3891  CurContext = PreviousContext;
3892}
3893
3894CXXMethodDecl *
3895Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3896                              ParmVarDecl *ParmDecl,
3897                              CXXRecordDecl *ClassDecl) {
3898  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3899  QualType RHSType(LHSType);
3900  // If class's assignment operator argument is const/volatile qualified,
3901  // look for operator = (const/volatile B&). Otherwise, look for
3902  // operator = (B&).
3903  RHSType = Context.getCVRQualifiedType(RHSType,
3904                                     ParmDecl->getType().getCVRQualifiers());
3905  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3906                                                           LHSType,
3907                                                           SourceLocation()));
3908  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3909                                                           RHSType,
3910                                                           CurrentLocation));
3911  Expr *Args[2] = { &*LHS, &*RHS };
3912  OverloadCandidateSet CandidateSet(CurrentLocation);
3913  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3914                              CandidateSet);
3915  OverloadCandidateSet::iterator Best;
3916  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3917    return cast<CXXMethodDecl>(Best->Function);
3918  assert(false &&
3919         "getAssignOperatorMethod - copy assignment operator method not found");
3920  return 0;
3921}
3922
3923void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3924                                   CXXConstructorDecl *CopyConstructor,
3925                                   unsigned TypeQuals) {
3926  assert((CopyConstructor->isImplicit() &&
3927          CopyConstructor->isCopyConstructor(TypeQuals) &&
3928          !CopyConstructor->isUsed()) &&
3929         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3930
3931  CXXRecordDecl *ClassDecl
3932    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3933  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3934
3935  DeclContext *PreviousContext = CurContext;
3936  CurContext = CopyConstructor;
3937
3938  // C++ [class.copy] p209
3939  // Before the implicitly-declared copy constructor for a class is
3940  // implicitly defined, all the implicitly-declared copy constructors
3941  // for its base class and its non-static data members shall have been
3942  // implicitly defined.
3943  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3944       Base != ClassDecl->bases_end(); ++Base) {
3945    CXXRecordDecl *BaseClassDecl
3946      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3947    if (CXXConstructorDecl *BaseCopyCtor =
3948        BaseClassDecl->getCopyConstructor(Context, TypeQuals)) {
3949      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3950                              BaseCopyCtor,
3951                              PartialDiagnostic(diag::err_access_copy_base)
3952                                << Base->getType());
3953
3954      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3955    }
3956  }
3957  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3958                                  FieldEnd = ClassDecl->field_end();
3959       Field != FieldEnd; ++Field) {
3960    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3961    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3962      FieldType = Array->getElementType();
3963    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3964      CXXRecordDecl *FieldClassDecl
3965        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3966      if (CXXConstructorDecl *FieldCopyCtor =
3967          FieldClassDecl->getCopyConstructor(Context, TypeQuals)) {
3968        CheckDirectMemberAccess(Field->getLocation(),
3969                                FieldCopyCtor,
3970                                PartialDiagnostic(diag::err_access_copy_field)
3971                                  << Field->getDeclName() << Field->getType());
3972
3973        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3974      }
3975    }
3976  }
3977  CopyConstructor->setUsed();
3978
3979  CurContext = PreviousContext;
3980}
3981
3982Sema::OwningExprResult
3983Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3984                            CXXConstructorDecl *Constructor,
3985                            MultiExprArg ExprArgs,
3986                            bool RequiresZeroInit,
3987                            bool BaseInitialization) {
3988  bool Elidable = false;
3989
3990  // C++ [class.copy]p15:
3991  //   Whenever a temporary class object is copied using a copy constructor, and
3992  //   this object and the copy have the same cv-unqualified type, an
3993  //   implementation is permitted to treat the original and the copy as two
3994  //   different ways of referring to the same object and not perform a copy at
3995  //   all, even if the class copy constructor or destructor have side effects.
3996
3997  // FIXME: Is this enough?
3998  if (Constructor->isCopyConstructor()) {
3999    Expr *E = ((Expr **)ExprArgs.get())[0];
4000    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4001      if (ICE->getCastKind() == CastExpr::CK_NoOp)
4002        E = ICE->getSubExpr();
4003    if (CXXFunctionalCastExpr *FCE = dyn_cast<CXXFunctionalCastExpr>(E))
4004      E = FCE->getSubExpr();
4005    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
4006      E = BE->getSubExpr();
4007    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4008      if (ICE->getCastKind() == CastExpr::CK_NoOp)
4009        E = ICE->getSubExpr();
4010
4011    if (CallExpr *CE = dyn_cast<CallExpr>(E))
4012      Elidable = !CE->getCallReturnType()->isReferenceType();
4013    else if (isa<CXXTemporaryObjectExpr>(E))
4014      Elidable = true;
4015    else if (isa<CXXConstructExpr>(E))
4016      Elidable = true;
4017  }
4018
4019  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4020                               Elidable, move(ExprArgs), RequiresZeroInit,
4021                               BaseInitialization);
4022}
4023
4024/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4025/// including handling of its default argument expressions.
4026Sema::OwningExprResult
4027Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4028                            CXXConstructorDecl *Constructor, bool Elidable,
4029                            MultiExprArg ExprArgs,
4030                            bool RequiresZeroInit,
4031                            bool BaseInitialization) {
4032  unsigned NumExprs = ExprArgs.size();
4033  Expr **Exprs = (Expr **)ExprArgs.release();
4034
4035  MarkDeclarationReferenced(ConstructLoc, Constructor);
4036  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4037                                        Constructor, Elidable, Exprs, NumExprs,
4038                                        RequiresZeroInit, BaseInitialization));
4039}
4040
4041bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4042                                        CXXConstructorDecl *Constructor,
4043                                        MultiExprArg Exprs) {
4044  OwningExprResult TempResult =
4045    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4046                          move(Exprs));
4047  if (TempResult.isInvalid())
4048    return true;
4049
4050  Expr *Temp = TempResult.takeAs<Expr>();
4051  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4052  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4053  VD->setInit(Temp);
4054
4055  return false;
4056}
4057
4058void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4059  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4060  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4061      !ClassDecl->hasTrivialDestructor()) {
4062    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4063    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4064    CheckDestructorAccess(VD->getLocation(), Destructor,
4065                          PartialDiagnostic(diag::err_access_dtor_var)
4066                            << VD->getDeclName()
4067                            << VD->getType());
4068  }
4069}
4070
4071/// AddCXXDirectInitializerToDecl - This action is called immediately after
4072/// ActOnDeclarator, when a C++ direct initializer is present.
4073/// e.g: "int x(1);"
4074void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4075                                         SourceLocation LParenLoc,
4076                                         MultiExprArg Exprs,
4077                                         SourceLocation *CommaLocs,
4078                                         SourceLocation RParenLoc) {
4079  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4080  Decl *RealDecl = Dcl.getAs<Decl>();
4081
4082  // If there is no declaration, there was an error parsing it.  Just ignore
4083  // the initializer.
4084  if (RealDecl == 0)
4085    return;
4086
4087  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4088  if (!VDecl) {
4089    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4090    RealDecl->setInvalidDecl();
4091    return;
4092  }
4093
4094  // We will represent direct-initialization similarly to copy-initialization:
4095  //    int x(1);  -as-> int x = 1;
4096  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4097  //
4098  // Clients that want to distinguish between the two forms, can check for
4099  // direct initializer using VarDecl::hasCXXDirectInitializer().
4100  // A major benefit is that clients that don't particularly care about which
4101  // exactly form was it (like the CodeGen) can handle both cases without
4102  // special case code.
4103
4104  // C++ 8.5p11:
4105  // The form of initialization (using parentheses or '=') is generally
4106  // insignificant, but does matter when the entity being initialized has a
4107  // class type.
4108  QualType DeclInitType = VDecl->getType();
4109  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4110    DeclInitType = Context.getBaseElementType(Array);
4111
4112  if (!VDecl->getType()->isDependentType() &&
4113      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4114                          diag::err_typecheck_decl_incomplete_type)) {
4115    VDecl->setInvalidDecl();
4116    return;
4117  }
4118
4119  // The variable can not have an abstract class type.
4120  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4121                             diag::err_abstract_type_in_decl,
4122                             AbstractVariableType))
4123    VDecl->setInvalidDecl();
4124
4125  const VarDecl *Def;
4126  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4127    Diag(VDecl->getLocation(), diag::err_redefinition)
4128    << VDecl->getDeclName();
4129    Diag(Def->getLocation(), diag::note_previous_definition);
4130    VDecl->setInvalidDecl();
4131    return;
4132  }
4133
4134  // If either the declaration has a dependent type or if any of the
4135  // expressions is type-dependent, we represent the initialization
4136  // via a ParenListExpr for later use during template instantiation.
4137  if (VDecl->getType()->isDependentType() ||
4138      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4139    // Let clients know that initialization was done with a direct initializer.
4140    VDecl->setCXXDirectInitializer(true);
4141
4142    // Store the initialization expressions as a ParenListExpr.
4143    unsigned NumExprs = Exprs.size();
4144    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4145                                               (Expr **)Exprs.release(),
4146                                               NumExprs, RParenLoc));
4147    return;
4148  }
4149
4150  // Capture the variable that is being initialized and the style of
4151  // initialization.
4152  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4153
4154  // FIXME: Poor source location information.
4155  InitializationKind Kind
4156    = InitializationKind::CreateDirect(VDecl->getLocation(),
4157                                       LParenLoc, RParenLoc);
4158
4159  InitializationSequence InitSeq(*this, Entity, Kind,
4160                                 (Expr**)Exprs.get(), Exprs.size());
4161  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4162  if (Result.isInvalid()) {
4163    VDecl->setInvalidDecl();
4164    return;
4165  }
4166
4167  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4168  VDecl->setInit(Result.takeAs<Expr>());
4169  VDecl->setCXXDirectInitializer(true);
4170
4171  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4172    FinalizeVarWithDestructor(VDecl, Record);
4173}
4174
4175/// \brief Add the applicable constructor candidates for an initialization
4176/// by constructor.
4177static void AddConstructorInitializationCandidates(Sema &SemaRef,
4178                                                   QualType ClassType,
4179                                                   Expr **Args,
4180                                                   unsigned NumArgs,
4181                                                   InitializationKind Kind,
4182                                           OverloadCandidateSet &CandidateSet) {
4183  // C++ [dcl.init]p14:
4184  //   If the initialization is direct-initialization, or if it is
4185  //   copy-initialization where the cv-unqualified version of the
4186  //   source type is the same class as, or a derived class of, the
4187  //   class of the destination, constructors are considered. The
4188  //   applicable constructors are enumerated (13.3.1.3), and the
4189  //   best one is chosen through overload resolution (13.3). The
4190  //   constructor so selected is called to initialize the object,
4191  //   with the initializer expression(s) as its argument(s). If no
4192  //   constructor applies, or the overload resolution is ambiguous,
4193  //   the initialization is ill-formed.
4194  const RecordType *ClassRec = ClassType->getAs<RecordType>();
4195  assert(ClassRec && "Can only initialize a class type here");
4196
4197  // FIXME: When we decide not to synthesize the implicitly-declared
4198  // constructors, we'll need to make them appear here.
4199
4200  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
4201  DeclarationName ConstructorName
4202    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
4203              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
4204  DeclContext::lookup_const_iterator Con, ConEnd;
4205  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
4206       Con != ConEnd; ++Con) {
4207    DeclAccessPair FoundDecl = DeclAccessPair::make(*Con, (*Con)->getAccess());
4208
4209    // Find the constructor (which may be a template).
4210    CXXConstructorDecl *Constructor = 0;
4211    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4212    if (ConstructorTmpl)
4213      Constructor
4214      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4215    else
4216      Constructor = cast<CXXConstructorDecl>(*Con);
4217
4218    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4219        (Kind.getKind() == InitializationKind::IK_Value) ||
4220        (Kind.getKind() == InitializationKind::IK_Copy &&
4221         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4222        ((Kind.getKind() == InitializationKind::IK_Default) &&
4223         Constructor->isDefaultConstructor())) {
4224      if (ConstructorTmpl)
4225        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4226                                             /*ExplicitArgs*/ 0,
4227                                             Args, NumArgs, CandidateSet);
4228      else
4229        SemaRef.AddOverloadCandidate(Constructor, FoundDecl,
4230                                     Args, NumArgs, CandidateSet);
4231    }
4232  }
4233}
4234
4235/// \brief Attempt to perform initialization by constructor
4236/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4237/// copy-initialization.
4238///
4239/// This routine determines whether initialization by constructor is possible,
4240/// but it does not emit any diagnostics in the case where the initialization
4241/// is ill-formed.
4242///
4243/// \param ClassType the type of the object being initialized, which must have
4244/// class type.
4245///
4246/// \param Args the arguments provided to initialize the object
4247///
4248/// \param NumArgs the number of arguments provided to initialize the object
4249///
4250/// \param Kind the type of initialization being performed
4251///
4252/// \returns the constructor used to initialize the object, if successful.
4253/// Otherwise, emits a diagnostic and returns NULL.
4254CXXConstructorDecl *
4255Sema::TryInitializationByConstructor(QualType ClassType,
4256                                     Expr **Args, unsigned NumArgs,
4257                                     SourceLocation Loc,
4258                                     InitializationKind Kind) {
4259  // Build the overload candidate set
4260  OverloadCandidateSet CandidateSet(Loc);
4261  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4262                                         CandidateSet);
4263
4264  // Determine whether we found a constructor we can use.
4265  OverloadCandidateSet::iterator Best;
4266  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4267    case OR_Success:
4268    case OR_Deleted:
4269      // We found a constructor. Return it.
4270      return cast<CXXConstructorDecl>(Best->Function);
4271
4272    case OR_No_Viable_Function:
4273    case OR_Ambiguous:
4274      // Overload resolution failed. Return nothing.
4275      return 0;
4276  }
4277
4278  // Silence GCC warning
4279  return 0;
4280}
4281
4282/// \brief Given a constructor and the set of arguments provided for the
4283/// constructor, convert the arguments and add any required default arguments
4284/// to form a proper call to this constructor.
4285///
4286/// \returns true if an error occurred, false otherwise.
4287bool
4288Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4289                              MultiExprArg ArgsPtr,
4290                              SourceLocation Loc,
4291                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4292  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4293  unsigned NumArgs = ArgsPtr.size();
4294  Expr **Args = (Expr **)ArgsPtr.get();
4295
4296  const FunctionProtoType *Proto
4297    = Constructor->getType()->getAs<FunctionProtoType>();
4298  assert(Proto && "Constructor without a prototype?");
4299  unsigned NumArgsInProto = Proto->getNumArgs();
4300
4301  // If too few arguments are available, we'll fill in the rest with defaults.
4302  if (NumArgs < NumArgsInProto)
4303    ConvertedArgs.reserve(NumArgsInProto);
4304  else
4305    ConvertedArgs.reserve(NumArgs);
4306
4307  VariadicCallType CallType =
4308    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4309  llvm::SmallVector<Expr *, 8> AllArgs;
4310  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4311                                        Proto, 0, Args, NumArgs, AllArgs,
4312                                        CallType);
4313  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4314    ConvertedArgs.push_back(AllArgs[i]);
4315  return Invalid;
4316}
4317
4318/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4319/// determine whether they are reference-related,
4320/// reference-compatible, reference-compatible with added
4321/// qualification, or incompatible, for use in C++ initialization by
4322/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4323/// type, and the first type (T1) is the pointee type of the reference
4324/// type being initialized.
4325Sema::ReferenceCompareResult
4326Sema::CompareReferenceRelationship(SourceLocation Loc,
4327                                   QualType OrigT1, QualType OrigT2,
4328                                   bool& DerivedToBase) {
4329  assert(!OrigT1->isReferenceType() &&
4330    "T1 must be the pointee type of the reference type");
4331  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4332
4333  QualType T1 = Context.getCanonicalType(OrigT1);
4334  QualType T2 = Context.getCanonicalType(OrigT2);
4335  Qualifiers T1Quals, T2Quals;
4336  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4337  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4338
4339  // C++ [dcl.init.ref]p4:
4340  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4341  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4342  //   T1 is a base class of T2.
4343  if (UnqualT1 == UnqualT2)
4344    DerivedToBase = false;
4345  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4346           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4347           IsDerivedFrom(UnqualT2, UnqualT1))
4348    DerivedToBase = true;
4349  else
4350    return Ref_Incompatible;
4351
4352  // At this point, we know that T1 and T2 are reference-related (at
4353  // least).
4354
4355  // If the type is an array type, promote the element qualifiers to the type
4356  // for comparison.
4357  if (isa<ArrayType>(T1) && T1Quals)
4358    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4359  if (isa<ArrayType>(T2) && T2Quals)
4360    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4361
4362  // C++ [dcl.init.ref]p4:
4363  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4364  //   reference-related to T2 and cv1 is the same cv-qualification
4365  //   as, or greater cv-qualification than, cv2. For purposes of
4366  //   overload resolution, cases for which cv1 is greater
4367  //   cv-qualification than cv2 are identified as
4368  //   reference-compatible with added qualification (see 13.3.3.2).
4369  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
4370    return Ref_Compatible;
4371  else if (T1.isMoreQualifiedThan(T2))
4372    return Ref_Compatible_With_Added_Qualification;
4373  else
4374    return Ref_Related;
4375}
4376
4377/// CheckReferenceInit - Check the initialization of a reference
4378/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4379/// the initializer (either a simple initializer or an initializer
4380/// list), and DeclType is the type of the declaration. When ICS is
4381/// non-null, this routine will compute the implicit conversion
4382/// sequence according to C++ [over.ics.ref] and will not produce any
4383/// diagnostics; when ICS is null, it will emit diagnostics when any
4384/// errors are found. Either way, a return value of true indicates
4385/// that there was a failure, a return value of false indicates that
4386/// the reference initialization succeeded.
4387///
4388/// When @p SuppressUserConversions, user-defined conversions are
4389/// suppressed.
4390/// When @p AllowExplicit, we also permit explicit user-defined
4391/// conversion functions.
4392/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4393/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4394/// This is used when this is called from a C-style cast.
4395bool
4396Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4397                         SourceLocation DeclLoc,
4398                         bool SuppressUserConversions,
4399                         bool AllowExplicit, bool ForceRValue,
4400                         ImplicitConversionSequence *ICS,
4401                         bool IgnoreBaseAccess) {
4402  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4403
4404  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4405  QualType T2 = Init->getType();
4406
4407  // If the initializer is the address of an overloaded function, try
4408  // to resolve the overloaded function. If all goes well, T2 is the
4409  // type of the resulting function.
4410  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4411    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4412                                                          ICS != 0);
4413    if (Fn) {
4414      // Since we're performing this reference-initialization for
4415      // real, update the initializer with the resulting function.
4416      if (!ICS) {
4417        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4418          return true;
4419
4420        Init = FixOverloadedFunctionReference(Init, Fn);
4421      }
4422
4423      T2 = Fn->getType();
4424    }
4425  }
4426
4427  // Compute some basic properties of the types and the initializer.
4428  bool isRValRef = DeclType->isRValueReferenceType();
4429  bool DerivedToBase = false;
4430  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4431                                                  Init->isLvalue(Context);
4432  ReferenceCompareResult RefRelationship
4433    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4434
4435  // Most paths end in a failed conversion.
4436  if (ICS) {
4437    ICS->setBad(BadConversionSequence::no_conversion, Init, DeclType);
4438  }
4439
4440  // C++ [dcl.init.ref]p5:
4441  //   A reference to type "cv1 T1" is initialized by an expression
4442  //   of type "cv2 T2" as follows:
4443
4444  //     -- If the initializer expression
4445
4446  // Rvalue references cannot bind to lvalues (N2812).
4447  // There is absolutely no situation where they can. In particular, note that
4448  // this is ill-formed, even if B has a user-defined conversion to A&&:
4449  //   B b;
4450  //   A&& r = b;
4451  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4452    if (!ICS)
4453      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4454        << Init->getSourceRange();
4455    return true;
4456  }
4457
4458  bool BindsDirectly = false;
4459  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4460  //          reference-compatible with "cv2 T2," or
4461  //
4462  // Note that the bit-field check is skipped if we are just computing
4463  // the implicit conversion sequence (C++ [over.best.ics]p2).
4464  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4465      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4466    BindsDirectly = true;
4467
4468    if (ICS) {
4469      // C++ [over.ics.ref]p1:
4470      //   When a parameter of reference type binds directly (8.5.3)
4471      //   to an argument expression, the implicit conversion sequence
4472      //   is the identity conversion, unless the argument expression
4473      //   has a type that is a derived class of the parameter type,
4474      //   in which case the implicit conversion sequence is a
4475      //   derived-to-base Conversion (13.3.3.1).
4476      ICS->setStandard();
4477      ICS->Standard.First = ICK_Identity;
4478      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4479      ICS->Standard.Third = ICK_Identity;
4480      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4481      ICS->Standard.setToType(0, T2);
4482      ICS->Standard.setToType(1, T1);
4483      ICS->Standard.setToType(2, T1);
4484      ICS->Standard.ReferenceBinding = true;
4485      ICS->Standard.DirectBinding = true;
4486      ICS->Standard.RRefBinding = false;
4487      ICS->Standard.CopyConstructor = 0;
4488
4489      // Nothing more to do: the inaccessibility/ambiguity check for
4490      // derived-to-base conversions is suppressed when we're
4491      // computing the implicit conversion sequence (C++
4492      // [over.best.ics]p2).
4493      return false;
4494    } else {
4495      // Perform the conversion.
4496      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4497      if (DerivedToBase)
4498        CK = CastExpr::CK_DerivedToBase;
4499      else if(CheckExceptionSpecCompatibility(Init, T1))
4500        return true;
4501      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4502    }
4503  }
4504
4505  //       -- has a class type (i.e., T2 is a class type) and can be
4506  //          implicitly converted to an lvalue of type "cv3 T3,"
4507  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4508  //          92) (this conversion is selected by enumerating the
4509  //          applicable conversion functions (13.3.1.6) and choosing
4510  //          the best one through overload resolution (13.3)),
4511  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4512      !RequireCompleteType(DeclLoc, T2, 0)) {
4513    CXXRecordDecl *T2RecordDecl
4514      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4515
4516    OverloadCandidateSet CandidateSet(DeclLoc);
4517    const UnresolvedSetImpl *Conversions
4518      = T2RecordDecl->getVisibleConversionFunctions();
4519    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4520           E = Conversions->end(); I != E; ++I) {
4521      NamedDecl *D = *I;
4522      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4523      if (isa<UsingShadowDecl>(D))
4524        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4525
4526      FunctionTemplateDecl *ConvTemplate
4527        = dyn_cast<FunctionTemplateDecl>(D);
4528      CXXConversionDecl *Conv;
4529      if (ConvTemplate)
4530        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4531      else
4532        Conv = cast<CXXConversionDecl>(D);
4533
4534      // If the conversion function doesn't return a reference type,
4535      // it can't be considered for this conversion.
4536      if (Conv->getConversionType()->isLValueReferenceType() &&
4537          (AllowExplicit || !Conv->isExplicit())) {
4538        if (ConvTemplate)
4539          AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4540                                         Init, DeclType, CandidateSet);
4541        else
4542          AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4543                                 DeclType, CandidateSet);
4544      }
4545    }
4546
4547    OverloadCandidateSet::iterator Best;
4548    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4549    case OR_Success:
4550      // C++ [over.ics.ref]p1:
4551      //
4552      //   [...] If the parameter binds directly to the result of
4553      //   applying a conversion function to the argument
4554      //   expression, the implicit conversion sequence is a
4555      //   user-defined conversion sequence (13.3.3.1.2), with the
4556      //   second standard conversion sequence either an identity
4557      //   conversion or, if the conversion function returns an
4558      //   entity of a type that is a derived class of the parameter
4559      //   type, a derived-to-base Conversion.
4560      if (!Best->FinalConversion.DirectBinding)
4561        break;
4562
4563      // This is a direct binding.
4564      BindsDirectly = true;
4565
4566      if (ICS) {
4567        ICS->setUserDefined();
4568        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4569        ICS->UserDefined.After = Best->FinalConversion;
4570        ICS->UserDefined.ConversionFunction = Best->Function;
4571        ICS->UserDefined.EllipsisConversion = false;
4572        assert(ICS->UserDefined.After.ReferenceBinding &&
4573               ICS->UserDefined.After.DirectBinding &&
4574               "Expected a direct reference binding!");
4575        return false;
4576      } else {
4577        OwningExprResult InitConversion =
4578          BuildCXXCastArgument(DeclLoc, QualType(),
4579                               CastExpr::CK_UserDefinedConversion,
4580                               cast<CXXMethodDecl>(Best->Function),
4581                               Owned(Init));
4582        Init = InitConversion.takeAs<Expr>();
4583
4584        if (CheckExceptionSpecCompatibility(Init, T1))
4585          return true;
4586        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4587                          /*isLvalue=*/true);
4588      }
4589      break;
4590
4591    case OR_Ambiguous:
4592      if (ICS) {
4593        ICS->setAmbiguous();
4594        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4595             Cand != CandidateSet.end(); ++Cand)
4596          if (Cand->Viable)
4597            ICS->Ambiguous.addConversion(Cand->Function);
4598        break;
4599      }
4600      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4601            << Init->getSourceRange();
4602      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Init, 1);
4603      return true;
4604
4605    case OR_No_Viable_Function:
4606    case OR_Deleted:
4607      // There was no suitable conversion, or we found a deleted
4608      // conversion; continue with other checks.
4609      break;
4610    }
4611  }
4612
4613  if (BindsDirectly) {
4614    // C++ [dcl.init.ref]p4:
4615    //   [...] In all cases where the reference-related or
4616    //   reference-compatible relationship of two types is used to
4617    //   establish the validity of a reference binding, and T1 is a
4618    //   base class of T2, a program that necessitates such a binding
4619    //   is ill-formed if T1 is an inaccessible (clause 11) or
4620    //   ambiguous (10.2) base class of T2.
4621    //
4622    // Note that we only check this condition when we're allowed to
4623    // complain about errors, because we should not be checking for
4624    // ambiguity (or inaccessibility) unless the reference binding
4625    // actually happens.
4626    if (DerivedToBase)
4627      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4628                                          Init->getSourceRange(),
4629                                          IgnoreBaseAccess);
4630    else
4631      return false;
4632  }
4633
4634  //     -- Otherwise, the reference shall be to a non-volatile const
4635  //        type (i.e., cv1 shall be const), or the reference shall be an
4636  //        rvalue reference and the initializer expression shall be an rvalue.
4637  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4638    if (!ICS)
4639      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4640        << T1.isVolatileQualified()
4641        << T1 << int(InitLvalue != Expr::LV_Valid)
4642        << T2 << Init->getSourceRange();
4643    return true;
4644  }
4645
4646  //       -- If the initializer expression is an rvalue, with T2 a
4647  //          class type, and "cv1 T1" is reference-compatible with
4648  //          "cv2 T2," the reference is bound in one of the
4649  //          following ways (the choice is implementation-defined):
4650  //
4651  //          -- The reference is bound to the object represented by
4652  //             the rvalue (see 3.10) or to a sub-object within that
4653  //             object.
4654  //
4655  //          -- A temporary of type "cv1 T2" [sic] is created, and
4656  //             a constructor is called to copy the entire rvalue
4657  //             object into the temporary. The reference is bound to
4658  //             the temporary or to a sub-object within the
4659  //             temporary.
4660  //
4661  //          The constructor that would be used to make the copy
4662  //          shall be callable whether or not the copy is actually
4663  //          done.
4664  //
4665  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4666  // freedom, so we will always take the first option and never build
4667  // a temporary in this case. FIXME: We will, however, have to check
4668  // for the presence of a copy constructor in C++98/03 mode.
4669  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4670      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4671    if (ICS) {
4672      ICS->setStandard();
4673      ICS->Standard.First = ICK_Identity;
4674      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4675      ICS->Standard.Third = ICK_Identity;
4676      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4677      ICS->Standard.setToType(0, T2);
4678      ICS->Standard.setToType(1, T1);
4679      ICS->Standard.setToType(2, T1);
4680      ICS->Standard.ReferenceBinding = true;
4681      ICS->Standard.DirectBinding = false;
4682      ICS->Standard.RRefBinding = isRValRef;
4683      ICS->Standard.CopyConstructor = 0;
4684    } else {
4685      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4686      if (DerivedToBase)
4687        CK = CastExpr::CK_DerivedToBase;
4688      else if(CheckExceptionSpecCompatibility(Init, T1))
4689        return true;
4690      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4691    }
4692    return false;
4693  }
4694
4695  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4696  //          initialized from the initializer expression using the
4697  //          rules for a non-reference copy initialization (8.5). The
4698  //          reference is then bound to the temporary. If T1 is
4699  //          reference-related to T2, cv1 must be the same
4700  //          cv-qualification as, or greater cv-qualification than,
4701  //          cv2; otherwise, the program is ill-formed.
4702  if (RefRelationship == Ref_Related) {
4703    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4704    // we would be reference-compatible or reference-compatible with
4705    // added qualification. But that wasn't the case, so the reference
4706    // initialization fails.
4707    if (!ICS)
4708      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4709        << T1 << int(InitLvalue != Expr::LV_Valid)
4710        << T2 << Init->getSourceRange();
4711    return true;
4712  }
4713
4714  // If at least one of the types is a class type, the types are not
4715  // related, and we aren't allowed any user conversions, the
4716  // reference binding fails. This case is important for breaking
4717  // recursion, since TryImplicitConversion below will attempt to
4718  // create a temporary through the use of a copy constructor.
4719  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4720      (T1->isRecordType() || T2->isRecordType())) {
4721    if (!ICS)
4722      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4723        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4724    return true;
4725  }
4726
4727  // Actually try to convert the initializer to T1.
4728  if (ICS) {
4729    // C++ [over.ics.ref]p2:
4730    //
4731    //   When a parameter of reference type is not bound directly to
4732    //   an argument expression, the conversion sequence is the one
4733    //   required to convert the argument expression to the
4734    //   underlying type of the reference according to
4735    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4736    //   to copy-initializing a temporary of the underlying type with
4737    //   the argument expression. Any difference in top-level
4738    //   cv-qualification is subsumed by the initialization itself
4739    //   and does not constitute a conversion.
4740    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4741                                 /*AllowExplicit=*/false,
4742                                 /*ForceRValue=*/false,
4743                                 /*InOverloadResolution=*/false);
4744
4745    // Of course, that's still a reference binding.
4746    if (ICS->isStandard()) {
4747      ICS->Standard.ReferenceBinding = true;
4748      ICS->Standard.RRefBinding = isRValRef;
4749    } else if (ICS->isUserDefined()) {
4750      ICS->UserDefined.After.ReferenceBinding = true;
4751      ICS->UserDefined.After.RRefBinding = isRValRef;
4752    }
4753    return ICS->isBad();
4754  } else {
4755    ImplicitConversionSequence Conversions;
4756    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4757                                                   false, false,
4758                                                   Conversions);
4759    if (badConversion) {
4760      if (Conversions.isAmbiguous()) {
4761        Diag(DeclLoc,
4762             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4763        for (int j = Conversions.Ambiguous.conversions().size()-1;
4764             j >= 0; j--) {
4765          FunctionDecl *Func = Conversions.Ambiguous.conversions()[j];
4766          NoteOverloadCandidate(Func);
4767        }
4768      }
4769      else {
4770        if (isRValRef)
4771          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4772            << Init->getSourceRange();
4773        else
4774          Diag(DeclLoc, diag::err_invalid_initialization)
4775            << DeclType << Init->getType() << Init->getSourceRange();
4776      }
4777    }
4778    return badConversion;
4779  }
4780}
4781
4782static inline bool
4783CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4784                                       const FunctionDecl *FnDecl) {
4785  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4786  if (isa<NamespaceDecl>(DC)) {
4787    return SemaRef.Diag(FnDecl->getLocation(),
4788                        diag::err_operator_new_delete_declared_in_namespace)
4789      << FnDecl->getDeclName();
4790  }
4791
4792  if (isa<TranslationUnitDecl>(DC) &&
4793      FnDecl->getStorageClass() == FunctionDecl::Static) {
4794    return SemaRef.Diag(FnDecl->getLocation(),
4795                        diag::err_operator_new_delete_declared_static)
4796      << FnDecl->getDeclName();
4797  }
4798
4799  return false;
4800}
4801
4802static inline bool
4803CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4804                            CanQualType ExpectedResultType,
4805                            CanQualType ExpectedFirstParamType,
4806                            unsigned DependentParamTypeDiag,
4807                            unsigned InvalidParamTypeDiag) {
4808  QualType ResultType =
4809    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4810
4811  // Check that the result type is not dependent.
4812  if (ResultType->isDependentType())
4813    return SemaRef.Diag(FnDecl->getLocation(),
4814                        diag::err_operator_new_delete_dependent_result_type)
4815    << FnDecl->getDeclName() << ExpectedResultType;
4816
4817  // Check that the result type is what we expect.
4818  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4819    return SemaRef.Diag(FnDecl->getLocation(),
4820                        diag::err_operator_new_delete_invalid_result_type)
4821    << FnDecl->getDeclName() << ExpectedResultType;
4822
4823  // A function template must have at least 2 parameters.
4824  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4825    return SemaRef.Diag(FnDecl->getLocation(),
4826                      diag::err_operator_new_delete_template_too_few_parameters)
4827        << FnDecl->getDeclName();
4828
4829  // The function decl must have at least 1 parameter.
4830  if (FnDecl->getNumParams() == 0)
4831    return SemaRef.Diag(FnDecl->getLocation(),
4832                        diag::err_operator_new_delete_too_few_parameters)
4833      << FnDecl->getDeclName();
4834
4835  // Check the the first parameter type is not dependent.
4836  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4837  if (FirstParamType->isDependentType())
4838    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4839      << FnDecl->getDeclName() << ExpectedFirstParamType;
4840
4841  // Check that the first parameter type is what we expect.
4842  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4843      ExpectedFirstParamType)
4844    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4845    << FnDecl->getDeclName() << ExpectedFirstParamType;
4846
4847  return false;
4848}
4849
4850static bool
4851CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4852  // C++ [basic.stc.dynamic.allocation]p1:
4853  //   A program is ill-formed if an allocation function is declared in a
4854  //   namespace scope other than global scope or declared static in global
4855  //   scope.
4856  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4857    return true;
4858
4859  CanQualType SizeTy =
4860    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4861
4862  // C++ [basic.stc.dynamic.allocation]p1:
4863  //  The return type shall be void*. The first parameter shall have type
4864  //  std::size_t.
4865  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4866                                  SizeTy,
4867                                  diag::err_operator_new_dependent_param_type,
4868                                  diag::err_operator_new_param_type))
4869    return true;
4870
4871  // C++ [basic.stc.dynamic.allocation]p1:
4872  //  The first parameter shall not have an associated default argument.
4873  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4874    return SemaRef.Diag(FnDecl->getLocation(),
4875                        diag::err_operator_new_default_arg)
4876      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4877
4878  return false;
4879}
4880
4881static bool
4882CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4883  // C++ [basic.stc.dynamic.deallocation]p1:
4884  //   A program is ill-formed if deallocation functions are declared in a
4885  //   namespace scope other than global scope or declared static in global
4886  //   scope.
4887  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4888    return true;
4889
4890  // C++ [basic.stc.dynamic.deallocation]p2:
4891  //   Each deallocation function shall return void and its first parameter
4892  //   shall be void*.
4893  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4894                                  SemaRef.Context.VoidPtrTy,
4895                                 diag::err_operator_delete_dependent_param_type,
4896                                 diag::err_operator_delete_param_type))
4897    return true;
4898
4899  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4900  if (FirstParamType->isDependentType())
4901    return SemaRef.Diag(FnDecl->getLocation(),
4902                        diag::err_operator_delete_dependent_param_type)
4903    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4904
4905  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4906      SemaRef.Context.VoidPtrTy)
4907    return SemaRef.Diag(FnDecl->getLocation(),
4908                        diag::err_operator_delete_param_type)
4909      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4910
4911  return false;
4912}
4913
4914/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4915/// of this overloaded operator is well-formed. If so, returns false;
4916/// otherwise, emits appropriate diagnostics and returns true.
4917bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4918  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4919         "Expected an overloaded operator declaration");
4920
4921  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4922
4923  // C++ [over.oper]p5:
4924  //   The allocation and deallocation functions, operator new,
4925  //   operator new[], operator delete and operator delete[], are
4926  //   described completely in 3.7.3. The attributes and restrictions
4927  //   found in the rest of this subclause do not apply to them unless
4928  //   explicitly stated in 3.7.3.
4929  if (Op == OO_Delete || Op == OO_Array_Delete)
4930    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4931
4932  if (Op == OO_New || Op == OO_Array_New)
4933    return CheckOperatorNewDeclaration(*this, FnDecl);
4934
4935  // C++ [over.oper]p6:
4936  //   An operator function shall either be a non-static member
4937  //   function or be a non-member function and have at least one
4938  //   parameter whose type is a class, a reference to a class, an
4939  //   enumeration, or a reference to an enumeration.
4940  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4941    if (MethodDecl->isStatic())
4942      return Diag(FnDecl->getLocation(),
4943                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4944  } else {
4945    bool ClassOrEnumParam = false;
4946    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4947                                   ParamEnd = FnDecl->param_end();
4948         Param != ParamEnd; ++Param) {
4949      QualType ParamType = (*Param)->getType().getNonReferenceType();
4950      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4951          ParamType->isEnumeralType()) {
4952        ClassOrEnumParam = true;
4953        break;
4954      }
4955    }
4956
4957    if (!ClassOrEnumParam)
4958      return Diag(FnDecl->getLocation(),
4959                  diag::err_operator_overload_needs_class_or_enum)
4960        << FnDecl->getDeclName();
4961  }
4962
4963  // C++ [over.oper]p8:
4964  //   An operator function cannot have default arguments (8.3.6),
4965  //   except where explicitly stated below.
4966  //
4967  // Only the function-call operator allows default arguments
4968  // (C++ [over.call]p1).
4969  if (Op != OO_Call) {
4970    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4971         Param != FnDecl->param_end(); ++Param) {
4972      if ((*Param)->hasDefaultArg())
4973        return Diag((*Param)->getLocation(),
4974                    diag::err_operator_overload_default_arg)
4975          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4976    }
4977  }
4978
4979  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4980    { false, false, false }
4981#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4982    , { Unary, Binary, MemberOnly }
4983#include "clang/Basic/OperatorKinds.def"
4984  };
4985
4986  bool CanBeUnaryOperator = OperatorUses[Op][0];
4987  bool CanBeBinaryOperator = OperatorUses[Op][1];
4988  bool MustBeMemberOperator = OperatorUses[Op][2];
4989
4990  // C++ [over.oper]p8:
4991  //   [...] Operator functions cannot have more or fewer parameters
4992  //   than the number required for the corresponding operator, as
4993  //   described in the rest of this subclause.
4994  unsigned NumParams = FnDecl->getNumParams()
4995                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4996  if (Op != OO_Call &&
4997      ((NumParams == 1 && !CanBeUnaryOperator) ||
4998       (NumParams == 2 && !CanBeBinaryOperator) ||
4999       (NumParams < 1) || (NumParams > 2))) {
5000    // We have the wrong number of parameters.
5001    unsigned ErrorKind;
5002    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5003      ErrorKind = 2;  // 2 -> unary or binary.
5004    } else if (CanBeUnaryOperator) {
5005      ErrorKind = 0;  // 0 -> unary
5006    } else {
5007      assert(CanBeBinaryOperator &&
5008             "All non-call overloaded operators are unary or binary!");
5009      ErrorKind = 1;  // 1 -> binary
5010    }
5011
5012    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5013      << FnDecl->getDeclName() << NumParams << ErrorKind;
5014  }
5015
5016  // Overloaded operators other than operator() cannot be variadic.
5017  if (Op != OO_Call &&
5018      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5019    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5020      << FnDecl->getDeclName();
5021  }
5022
5023  // Some operators must be non-static member functions.
5024  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5025    return Diag(FnDecl->getLocation(),
5026                diag::err_operator_overload_must_be_member)
5027      << FnDecl->getDeclName();
5028  }
5029
5030  // C++ [over.inc]p1:
5031  //   The user-defined function called operator++ implements the
5032  //   prefix and postfix ++ operator. If this function is a member
5033  //   function with no parameters, or a non-member function with one
5034  //   parameter of class or enumeration type, it defines the prefix
5035  //   increment operator ++ for objects of that type. If the function
5036  //   is a member function with one parameter (which shall be of type
5037  //   int) or a non-member function with two parameters (the second
5038  //   of which shall be of type int), it defines the postfix
5039  //   increment operator ++ for objects of that type.
5040  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5041    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5042    bool ParamIsInt = false;
5043    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5044      ParamIsInt = BT->getKind() == BuiltinType::Int;
5045
5046    if (!ParamIsInt)
5047      return Diag(LastParam->getLocation(),
5048                  diag::err_operator_overload_post_incdec_must_be_int)
5049        << LastParam->getType() << (Op == OO_MinusMinus);
5050  }
5051
5052  // Notify the class if it got an assignment operator.
5053  if (Op == OO_Equal) {
5054    // Would have returned earlier otherwise.
5055    assert(isa<CXXMethodDecl>(FnDecl) &&
5056      "Overloaded = not member, but not filtered.");
5057    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5058    Method->getParent()->addedAssignmentOperator(Context, Method);
5059  }
5060
5061  return false;
5062}
5063
5064/// CheckLiteralOperatorDeclaration - Check whether the declaration
5065/// of this literal operator function is well-formed. If so, returns
5066/// false; otherwise, emits appropriate diagnostics and returns true.
5067bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5068  DeclContext *DC = FnDecl->getDeclContext();
5069  Decl::Kind Kind = DC->getDeclKind();
5070  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5071      Kind != Decl::LinkageSpec) {
5072    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5073      << FnDecl->getDeclName();
5074    return true;
5075  }
5076
5077  bool Valid = false;
5078
5079  // FIXME: Check for the one valid template signature
5080  // template <char...> type operator "" name();
5081
5082  if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
5083    // Check the first parameter
5084    QualType T = (*Param)->getType();
5085
5086    // unsigned long long int and long double are allowed, but only
5087    // alone.
5088    // We also allow any character type; their omission seems to be a bug
5089    // in n3000
5090    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5091        Context.hasSameType(T, Context.LongDoubleTy) ||
5092        Context.hasSameType(T, Context.CharTy) ||
5093        Context.hasSameType(T, Context.WCharTy) ||
5094        Context.hasSameType(T, Context.Char16Ty) ||
5095        Context.hasSameType(T, Context.Char32Ty)) {
5096      if (++Param == FnDecl->param_end())
5097        Valid = true;
5098      goto FinishedParams;
5099    }
5100
5101    // Otherwise it must be a pointer to const; let's strip those.
5102    const PointerType *PT = T->getAs<PointerType>();
5103    if (!PT)
5104      goto FinishedParams;
5105    T = PT->getPointeeType();
5106    if (!T.isConstQualified())
5107      goto FinishedParams;
5108    T = T.getUnqualifiedType();
5109
5110    // Move on to the second parameter;
5111    ++Param;
5112
5113    // If there is no second parameter, the first must be a const char *
5114    if (Param == FnDecl->param_end()) {
5115      if (Context.hasSameType(T, Context.CharTy))
5116        Valid = true;
5117      goto FinishedParams;
5118    }
5119
5120    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5121    // are allowed as the first parameter to a two-parameter function
5122    if (!(Context.hasSameType(T, Context.CharTy) ||
5123          Context.hasSameType(T, Context.WCharTy) ||
5124          Context.hasSameType(T, Context.Char16Ty) ||
5125          Context.hasSameType(T, Context.Char32Ty)))
5126      goto FinishedParams;
5127
5128    // The second and final parameter must be an std::size_t
5129    T = (*Param)->getType().getUnqualifiedType();
5130    if (Context.hasSameType(T, Context.getSizeType()) &&
5131        ++Param == FnDecl->param_end())
5132      Valid = true;
5133  }
5134
5135  // FIXME: This diagnostic is absolutely terrible.
5136FinishedParams:
5137  if (!Valid) {
5138    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5139      << FnDecl->getDeclName();
5140    return true;
5141  }
5142
5143  return false;
5144}
5145
5146/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5147/// linkage specification, including the language and (if present)
5148/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5149/// the location of the language string literal, which is provided
5150/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5151/// the '{' brace. Otherwise, this linkage specification does not
5152/// have any braces.
5153Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5154                                                     SourceLocation ExternLoc,
5155                                                     SourceLocation LangLoc,
5156                                                     const char *Lang,
5157                                                     unsigned StrSize,
5158                                                     SourceLocation LBraceLoc) {
5159  LinkageSpecDecl::LanguageIDs Language;
5160  if (strncmp(Lang, "\"C\"", StrSize) == 0)
5161    Language = LinkageSpecDecl::lang_c;
5162  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
5163    Language = LinkageSpecDecl::lang_cxx;
5164  else {
5165    Diag(LangLoc, diag::err_bad_language);
5166    return DeclPtrTy();
5167  }
5168
5169  // FIXME: Add all the various semantics of linkage specifications
5170
5171  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5172                                               LangLoc, Language,
5173                                               LBraceLoc.isValid());
5174  CurContext->addDecl(D);
5175  PushDeclContext(S, D);
5176  return DeclPtrTy::make(D);
5177}
5178
5179/// ActOnFinishLinkageSpecification - Completely the definition of
5180/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5181/// valid, it's the position of the closing '}' brace in a linkage
5182/// specification that uses braces.
5183Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5184                                                      DeclPtrTy LinkageSpec,
5185                                                      SourceLocation RBraceLoc) {
5186  if (LinkageSpec)
5187    PopDeclContext();
5188  return LinkageSpec;
5189}
5190
5191/// \brief Perform semantic analysis for the variable declaration that
5192/// occurs within a C++ catch clause, returning the newly-created
5193/// variable.
5194VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5195                                         TypeSourceInfo *TInfo,
5196                                         IdentifierInfo *Name,
5197                                         SourceLocation Loc,
5198                                         SourceRange Range) {
5199  bool Invalid = false;
5200
5201  // Arrays and functions decay.
5202  if (ExDeclType->isArrayType())
5203    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5204  else if (ExDeclType->isFunctionType())
5205    ExDeclType = Context.getPointerType(ExDeclType);
5206
5207  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5208  // The exception-declaration shall not denote a pointer or reference to an
5209  // incomplete type, other than [cv] void*.
5210  // N2844 forbids rvalue references.
5211  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5212    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5213    Invalid = true;
5214  }
5215
5216  // GCC allows catching pointers and references to incomplete types
5217  // as an extension; so do we, but we warn by default.
5218
5219  QualType BaseType = ExDeclType;
5220  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5221  unsigned DK = diag::err_catch_incomplete;
5222  bool IncompleteCatchIsInvalid = true;
5223  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5224    BaseType = Ptr->getPointeeType();
5225    Mode = 1;
5226    DK = diag::ext_catch_incomplete_ptr;
5227    IncompleteCatchIsInvalid = false;
5228  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5229    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5230    BaseType = Ref->getPointeeType();
5231    Mode = 2;
5232    DK = diag::ext_catch_incomplete_ref;
5233    IncompleteCatchIsInvalid = false;
5234  }
5235  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5236      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5237      IncompleteCatchIsInvalid)
5238    Invalid = true;
5239
5240  if (!Invalid && !ExDeclType->isDependentType() &&
5241      RequireNonAbstractType(Loc, ExDeclType,
5242                             diag::err_abstract_type_in_decl,
5243                             AbstractVariableType))
5244    Invalid = true;
5245
5246  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5247                                    Name, ExDeclType, TInfo, VarDecl::None);
5248
5249  if (!Invalid) {
5250    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5251      // C++ [except.handle]p16:
5252      //   The object declared in an exception-declaration or, if the
5253      //   exception-declaration does not specify a name, a temporary (12.2) is
5254      //   copy-initialized (8.5) from the exception object. [...]
5255      //   The object is destroyed when the handler exits, after the destruction
5256      //   of any automatic objects initialized within the handler.
5257      //
5258      // We just pretend to initialize the object with itself, then make sure
5259      // it can be destroyed later.
5260      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5261      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5262                                            Loc, ExDeclType, 0);
5263      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5264                                                               SourceLocation());
5265      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5266      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5267                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5268      if (Result.isInvalid())
5269        Invalid = true;
5270      else
5271        FinalizeVarWithDestructor(ExDecl, RecordTy);
5272    }
5273  }
5274
5275  if (Invalid)
5276    ExDecl->setInvalidDecl();
5277
5278  return ExDecl;
5279}
5280
5281/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5282/// handler.
5283Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5284  TypeSourceInfo *TInfo = 0;
5285  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5286
5287  bool Invalid = D.isInvalidType();
5288  IdentifierInfo *II = D.getIdentifier();
5289  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5290    // The scope should be freshly made just for us. There is just no way
5291    // it contains any previous declaration.
5292    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5293    if (PrevDecl->isTemplateParameter()) {
5294      // Maybe we will complain about the shadowed template parameter.
5295      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5296    }
5297  }
5298
5299  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5300    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5301      << D.getCXXScopeSpec().getRange();
5302    Invalid = true;
5303  }
5304
5305  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5306                                              D.getIdentifier(),
5307                                              D.getIdentifierLoc(),
5308                                            D.getDeclSpec().getSourceRange());
5309
5310  if (Invalid)
5311    ExDecl->setInvalidDecl();
5312
5313  // Add the exception declaration into this scope.
5314  if (II)
5315    PushOnScopeChains(ExDecl, S);
5316  else
5317    CurContext->addDecl(ExDecl);
5318
5319  ProcessDeclAttributes(S, ExDecl, D);
5320  return DeclPtrTy::make(ExDecl);
5321}
5322
5323Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5324                                                   ExprArg assertexpr,
5325                                                   ExprArg assertmessageexpr) {
5326  Expr *AssertExpr = (Expr *)assertexpr.get();
5327  StringLiteral *AssertMessage =
5328    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5329
5330  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5331    llvm::APSInt Value(32);
5332    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5333      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5334        AssertExpr->getSourceRange();
5335      return DeclPtrTy();
5336    }
5337
5338    if (Value == 0) {
5339      Diag(AssertLoc, diag::err_static_assert_failed)
5340        << AssertMessage->getString() << AssertExpr->getSourceRange();
5341    }
5342  }
5343
5344  assertexpr.release();
5345  assertmessageexpr.release();
5346  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5347                                        AssertExpr, AssertMessage);
5348
5349  CurContext->addDecl(Decl);
5350  return DeclPtrTy::make(Decl);
5351}
5352
5353/// Handle a friend type declaration.  This works in tandem with
5354/// ActOnTag.
5355///
5356/// Notes on friend class templates:
5357///
5358/// We generally treat friend class declarations as if they were
5359/// declaring a class.  So, for example, the elaborated type specifier
5360/// in a friend declaration is required to obey the restrictions of a
5361/// class-head (i.e. no typedefs in the scope chain), template
5362/// parameters are required to match up with simple template-ids, &c.
5363/// However, unlike when declaring a template specialization, it's
5364/// okay to refer to a template specialization without an empty
5365/// template parameter declaration, e.g.
5366///   friend class A<T>::B<unsigned>;
5367/// We permit this as a special case; if there are any template
5368/// parameters present at all, require proper matching, i.e.
5369///   template <> template <class T> friend class A<int>::B;
5370Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5371                                          MultiTemplateParamsArg TempParams) {
5372  SourceLocation Loc = DS.getSourceRange().getBegin();
5373
5374  assert(DS.isFriendSpecified());
5375  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5376
5377  // Try to convert the decl specifier to a type.  This works for
5378  // friend templates because ActOnTag never produces a ClassTemplateDecl
5379  // for a TUK_Friend.
5380  Declarator TheDeclarator(DS, Declarator::MemberContext);
5381  QualType T = GetTypeForDeclarator(TheDeclarator, S);
5382  if (TheDeclarator.isInvalidType())
5383    return DeclPtrTy();
5384
5385  // This is definitely an error in C++98.  It's probably meant to
5386  // be forbidden in C++0x, too, but the specification is just
5387  // poorly written.
5388  //
5389  // The problem is with declarations like the following:
5390  //   template <T> friend A<T>::foo;
5391  // where deciding whether a class C is a friend or not now hinges
5392  // on whether there exists an instantiation of A that causes
5393  // 'foo' to equal C.  There are restrictions on class-heads
5394  // (which we declare (by fiat) elaborated friend declarations to
5395  // be) that makes this tractable.
5396  //
5397  // FIXME: handle "template <> friend class A<T>;", which
5398  // is possibly well-formed?  Who even knows?
5399  if (TempParams.size() && !isa<ElaboratedType>(T)) {
5400    Diag(Loc, diag::err_tagless_friend_type_template)
5401      << DS.getSourceRange();
5402    return DeclPtrTy();
5403  }
5404
5405  // C++ [class.friend]p2:
5406  //   An elaborated-type-specifier shall be used in a friend declaration
5407  //   for a class.*
5408  //   * The class-key of the elaborated-type-specifier is required.
5409  // This is one of the rare places in Clang where it's legitimate to
5410  // ask about the "spelling" of the type.
5411  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
5412    // If we evaluated the type to a record type, suggest putting
5413    // a tag in front.
5414    if (const RecordType *RT = T->getAs<RecordType>()) {
5415      RecordDecl *RD = RT->getDecl();
5416
5417      std::string InsertionText = std::string(" ") + RD->getKindName();
5418
5419      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
5420        << (unsigned) RD->getTagKind()
5421        << T
5422        << SourceRange(DS.getFriendSpecLoc())
5423        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
5424                                                 InsertionText);
5425      return DeclPtrTy();
5426    }else {
5427      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
5428          << DS.getSourceRange();
5429      return DeclPtrTy();
5430    }
5431  }
5432
5433  // Enum types cannot be friends.
5434  if (T->getAs<EnumType>()) {
5435    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
5436      << SourceRange(DS.getFriendSpecLoc());
5437    return DeclPtrTy();
5438  }
5439
5440  // C++98 [class.friend]p1: A friend of a class is a function
5441  //   or class that is not a member of the class . . .
5442  // This is fixed in DR77, which just barely didn't make the C++03
5443  // deadline.  It's also a very silly restriction that seriously
5444  // affects inner classes and which nobody else seems to implement;
5445  // thus we never diagnose it, not even in -pedantic.
5446
5447  Decl *D;
5448  if (TempParams.size())
5449    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5450                                   TempParams.size(),
5451                                 (TemplateParameterList**) TempParams.release(),
5452                                   T.getTypePtr(),
5453                                   DS.getFriendSpecLoc());
5454  else
5455    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
5456                           DS.getFriendSpecLoc());
5457  D->setAccess(AS_public);
5458  CurContext->addDecl(D);
5459
5460  return DeclPtrTy::make(D);
5461}
5462
5463Sema::DeclPtrTy
5464Sema::ActOnFriendFunctionDecl(Scope *S,
5465                              Declarator &D,
5466                              bool IsDefinition,
5467                              MultiTemplateParamsArg TemplateParams) {
5468  const DeclSpec &DS = D.getDeclSpec();
5469
5470  assert(DS.isFriendSpecified());
5471  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5472
5473  SourceLocation Loc = D.getIdentifierLoc();
5474  TypeSourceInfo *TInfo = 0;
5475  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5476
5477  // C++ [class.friend]p1
5478  //   A friend of a class is a function or class....
5479  // Note that this sees through typedefs, which is intended.
5480  // It *doesn't* see through dependent types, which is correct
5481  // according to [temp.arg.type]p3:
5482  //   If a declaration acquires a function type through a
5483  //   type dependent on a template-parameter and this causes
5484  //   a declaration that does not use the syntactic form of a
5485  //   function declarator to have a function type, the program
5486  //   is ill-formed.
5487  if (!T->isFunctionType()) {
5488    Diag(Loc, diag::err_unexpected_friend);
5489
5490    // It might be worthwhile to try to recover by creating an
5491    // appropriate declaration.
5492    return DeclPtrTy();
5493  }
5494
5495  // C++ [namespace.memdef]p3
5496  //  - If a friend declaration in a non-local class first declares a
5497  //    class or function, the friend class or function is a member
5498  //    of the innermost enclosing namespace.
5499  //  - The name of the friend is not found by simple name lookup
5500  //    until a matching declaration is provided in that namespace
5501  //    scope (either before or after the class declaration granting
5502  //    friendship).
5503  //  - If a friend function is called, its name may be found by the
5504  //    name lookup that considers functions from namespaces and
5505  //    classes associated with the types of the function arguments.
5506  //  - When looking for a prior declaration of a class or a function
5507  //    declared as a friend, scopes outside the innermost enclosing
5508  //    namespace scope are not considered.
5509
5510  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5511  DeclarationName Name = GetNameForDeclarator(D);
5512  assert(Name);
5513
5514  // The context we found the declaration in, or in which we should
5515  // create the declaration.
5516  DeclContext *DC;
5517
5518  // FIXME: handle local classes
5519
5520  // Recover from invalid scope qualifiers as if they just weren't there.
5521  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5522                        ForRedeclaration);
5523  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5524    // FIXME: RequireCompleteDeclContext
5525    DC = computeDeclContext(ScopeQual);
5526
5527    // FIXME: handle dependent contexts
5528    if (!DC) return DeclPtrTy();
5529
5530    LookupQualifiedName(Previous, DC);
5531
5532    // If searching in that context implicitly found a declaration in
5533    // a different context, treat it like it wasn't found at all.
5534    // TODO: better diagnostics for this case.  Suggesting the right
5535    // qualified scope would be nice...
5536    // FIXME: getRepresentativeDecl() is not right here at all
5537    if (Previous.empty() ||
5538        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5539      D.setInvalidType();
5540      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5541      return DeclPtrTy();
5542    }
5543
5544    // C++ [class.friend]p1: A friend of a class is a function or
5545    //   class that is not a member of the class . . .
5546    if (DC->Equals(CurContext))
5547      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5548
5549  // Otherwise walk out to the nearest namespace scope looking for matches.
5550  } else {
5551    // TODO: handle local class contexts.
5552
5553    DC = CurContext;
5554    while (true) {
5555      // Skip class contexts.  If someone can cite chapter and verse
5556      // for this behavior, that would be nice --- it's what GCC and
5557      // EDG do, and it seems like a reasonable intent, but the spec
5558      // really only says that checks for unqualified existing
5559      // declarations should stop at the nearest enclosing namespace,
5560      // not that they should only consider the nearest enclosing
5561      // namespace.
5562      while (DC->isRecord())
5563        DC = DC->getParent();
5564
5565      LookupQualifiedName(Previous, DC);
5566
5567      // TODO: decide what we think about using declarations.
5568      if (!Previous.empty())
5569        break;
5570
5571      if (DC->isFileContext()) break;
5572      DC = DC->getParent();
5573    }
5574
5575    // C++ [class.friend]p1: A friend of a class is a function or
5576    //   class that is not a member of the class . . .
5577    // C++0x changes this for both friend types and functions.
5578    // Most C++ 98 compilers do seem to give an error here, so
5579    // we do, too.
5580    if (!Previous.empty() && DC->Equals(CurContext)
5581        && !getLangOptions().CPlusPlus0x)
5582      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5583  }
5584
5585  if (DC->isFileContext()) {
5586    // This implies that it has to be an operator or function.
5587    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5588        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5589        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5590      Diag(Loc, diag::err_introducing_special_friend) <<
5591        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5592         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5593      return DeclPtrTy();
5594    }
5595  }
5596
5597  bool Redeclaration = false;
5598  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5599                                          move(TemplateParams),
5600                                          IsDefinition,
5601                                          Redeclaration);
5602  if (!ND) return DeclPtrTy();
5603
5604  assert(ND->getDeclContext() == DC);
5605  assert(ND->getLexicalDeclContext() == CurContext);
5606
5607  // Add the function declaration to the appropriate lookup tables,
5608  // adjusting the redeclarations list as necessary.  We don't
5609  // want to do this yet if the friending class is dependent.
5610  //
5611  // Also update the scope-based lookup if the target context's
5612  // lookup context is in lexical scope.
5613  if (!CurContext->isDependentContext()) {
5614    DC = DC->getLookupContext();
5615    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5616    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5617      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5618  }
5619
5620  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5621                                       D.getIdentifierLoc(), ND,
5622                                       DS.getFriendSpecLoc());
5623  FrD->setAccess(AS_public);
5624  CurContext->addDecl(FrD);
5625
5626  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId)
5627    FrD->setSpecialization(true);
5628
5629  return DeclPtrTy::make(ND);
5630}
5631
5632void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5633  AdjustDeclIfTemplate(dcl);
5634
5635  Decl *Dcl = dcl.getAs<Decl>();
5636  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5637  if (!Fn) {
5638    Diag(DelLoc, diag::err_deleted_non_function);
5639    return;
5640  }
5641  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5642    Diag(DelLoc, diag::err_deleted_decl_not_first);
5643    Diag(Prev->getLocation(), diag::note_previous_declaration);
5644    // If the declaration wasn't the first, we delete the function anyway for
5645    // recovery.
5646  }
5647  Fn->setDeleted();
5648}
5649
5650static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5651  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5652       ++CI) {
5653    Stmt *SubStmt = *CI;
5654    if (!SubStmt)
5655      continue;
5656    if (isa<ReturnStmt>(SubStmt))
5657      Self.Diag(SubStmt->getSourceRange().getBegin(),
5658           diag::err_return_in_constructor_handler);
5659    if (!isa<Expr>(SubStmt))
5660      SearchForReturnInStmt(Self, SubStmt);
5661  }
5662}
5663
5664void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5665  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5666    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5667    SearchForReturnInStmt(*this, Handler);
5668  }
5669}
5670
5671bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5672                                             const CXXMethodDecl *Old) {
5673  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5674  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5675
5676  if (Context.hasSameType(NewTy, OldTy) ||
5677      NewTy->isDependentType() || OldTy->isDependentType())
5678    return false;
5679
5680  // Check if the return types are covariant
5681  QualType NewClassTy, OldClassTy;
5682
5683  /// Both types must be pointers or references to classes.
5684  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5685    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5686      NewClassTy = NewPT->getPointeeType();
5687      OldClassTy = OldPT->getPointeeType();
5688    }
5689  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5690    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5691      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5692        NewClassTy = NewRT->getPointeeType();
5693        OldClassTy = OldRT->getPointeeType();
5694      }
5695    }
5696  }
5697
5698  // The return types aren't either both pointers or references to a class type.
5699  if (NewClassTy.isNull()) {
5700    Diag(New->getLocation(),
5701         diag::err_different_return_type_for_overriding_virtual_function)
5702      << New->getDeclName() << NewTy << OldTy;
5703    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5704
5705    return true;
5706  }
5707
5708  // C++ [class.virtual]p6:
5709  //   If the return type of D::f differs from the return type of B::f, the
5710  //   class type in the return type of D::f shall be complete at the point of
5711  //   declaration of D::f or shall be the class type D.
5712  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5713    if (!RT->isBeingDefined() &&
5714        RequireCompleteType(New->getLocation(), NewClassTy,
5715                            PDiag(diag::err_covariant_return_incomplete)
5716                              << New->getDeclName()))
5717    return true;
5718  }
5719
5720  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5721    // Check if the new class derives from the old class.
5722    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5723      Diag(New->getLocation(),
5724           diag::err_covariant_return_not_derived)
5725      << New->getDeclName() << NewTy << OldTy;
5726      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5727      return true;
5728    }
5729
5730    // Check if we the conversion from derived to base is valid.
5731    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5732                      diag::err_covariant_return_inaccessible_base,
5733                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5734                      // FIXME: Should this point to the return type?
5735                      New->getLocation(), SourceRange(), New->getDeclName())) {
5736      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5737      return true;
5738    }
5739  }
5740
5741  // The qualifiers of the return types must be the same.
5742  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5743    Diag(New->getLocation(),
5744         diag::err_covariant_return_type_different_qualifications)
5745    << New->getDeclName() << NewTy << OldTy;
5746    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5747    return true;
5748  };
5749
5750
5751  // The new class type must have the same or less qualifiers as the old type.
5752  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5753    Diag(New->getLocation(),
5754         diag::err_covariant_return_type_class_type_more_qualified)
5755    << New->getDeclName() << NewTy << OldTy;
5756    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5757    return true;
5758  };
5759
5760  return false;
5761}
5762
5763bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5764                                             const CXXMethodDecl *Old)
5765{
5766  if (Old->hasAttr<FinalAttr>()) {
5767    Diag(New->getLocation(), diag::err_final_function_overridden)
5768      << New->getDeclName();
5769    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5770    return true;
5771  }
5772
5773  return false;
5774}
5775
5776/// \brief Mark the given method pure.
5777///
5778/// \param Method the method to be marked pure.
5779///
5780/// \param InitRange the source range that covers the "0" initializer.
5781bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5782  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5783    Method->setPure();
5784
5785    // A class is abstract if at least one function is pure virtual.
5786    Method->getParent()->setAbstract(true);
5787    return false;
5788  }
5789
5790  if (!Method->isInvalidDecl())
5791    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5792      << Method->getDeclName() << InitRange;
5793  return true;
5794}
5795
5796/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5797/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5798/// is a fresh scope pushed for just this purpose.
5799///
5800/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5801/// static data member of class X, names should be looked up in the scope of
5802/// class X.
5803void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5804  // If there is no declaration, there was an error parsing it.
5805  Decl *D = Dcl.getAs<Decl>();
5806  if (D == 0) return;
5807
5808  // We should only get called for declarations with scope specifiers, like:
5809  //   int foo::bar;
5810  assert(D->isOutOfLine());
5811  EnterDeclaratorContext(S, D->getDeclContext());
5812}
5813
5814/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5815/// initializer for the out-of-line declaration 'Dcl'.
5816void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5817  // If there is no declaration, there was an error parsing it.
5818  Decl *D = Dcl.getAs<Decl>();
5819  if (D == 0) return;
5820
5821  assert(D->isOutOfLine());
5822  ExitDeclaratorContext(S);
5823}
5824
5825/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5826/// C++ if/switch/while/for statement.
5827/// e.g: "if (int x = f()) {...}"
5828Action::DeclResult
5829Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5830  // C++ 6.4p2:
5831  // The declarator shall not specify a function or an array.
5832  // The type-specifier-seq shall not contain typedef and shall not declare a
5833  // new class or enumeration.
5834  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5835         "Parser allowed 'typedef' as storage class of condition decl.");
5836
5837  TypeSourceInfo *TInfo = 0;
5838  TagDecl *OwnedTag = 0;
5839  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5840
5841  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5842                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5843                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5844    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5845      << D.getSourceRange();
5846    return DeclResult();
5847  } else if (OwnedTag && OwnedTag->isDefinition()) {
5848    // The type-specifier-seq shall not declare a new class or enumeration.
5849    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5850  }
5851
5852  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5853  if (!Dcl)
5854    return DeclResult();
5855
5856  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5857  VD->setDeclaredInCondition(true);
5858  return Dcl;
5859}
5860
5861static bool needsVtable(CXXMethodDecl *MD, ASTContext &Context) {
5862  // Ignore dependent types.
5863  if (MD->isDependentContext())
5864    return false;
5865
5866  // Ignore declarations that are not definitions.
5867  if (!MD->isThisDeclarationADefinition())
5868    return false;
5869
5870  CXXRecordDecl *RD = MD->getParent();
5871
5872  // Ignore classes without a vtable.
5873  if (!RD->isDynamicClass())
5874    return false;
5875
5876  switch (MD->getParent()->getTemplateSpecializationKind()) {
5877  case TSK_Undeclared:
5878  case TSK_ExplicitSpecialization:
5879    // Classes that aren't instantiations of templates don't need their
5880    // virtual methods marked until we see the definition of the key
5881    // function.
5882    break;
5883
5884  case TSK_ImplicitInstantiation:
5885    // This is a constructor of a class template; mark all of the virtual
5886    // members as referenced to ensure that they get instantiatied.
5887    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
5888      return true;
5889    break;
5890
5891  case TSK_ExplicitInstantiationDeclaration:
5892    return false;
5893
5894  case TSK_ExplicitInstantiationDefinition:
5895    // This is method of a explicit instantiation; mark all of the virtual
5896    // members as referenced to ensure that they get instantiatied.
5897    return true;
5898  }
5899
5900  // Consider only out-of-line definitions of member functions. When we see
5901  // an inline definition, it's too early to compute the key function.
5902  if (!MD->isOutOfLine())
5903    return false;
5904
5905  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5906
5907  // If there is no key function, we will need a copy of the vtable.
5908  if (!KeyFunction)
5909    return true;
5910
5911  // If this is the key function, we need to mark virtual members.
5912  if (KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
5913    return true;
5914
5915  return false;
5916}
5917
5918void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5919                                             CXXMethodDecl *MD) {
5920  CXXRecordDecl *RD = MD->getParent();
5921
5922  // We will need to mark all of the virtual members as referenced to build the
5923  // vtable.
5924  if (!needsVtable(MD, Context))
5925    return;
5926
5927  TemplateSpecializationKind kind = RD->getTemplateSpecializationKind();
5928  if (kind == TSK_ImplicitInstantiation)
5929    ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5930  else
5931    MarkVirtualMembersReferenced(Loc, RD);
5932}
5933
5934bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5935  if (ClassesWithUnmarkedVirtualMembers.empty())
5936    return false;
5937
5938  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5939    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5940    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5941    ClassesWithUnmarkedVirtualMembers.pop_back();
5942    MarkVirtualMembersReferenced(Loc, RD);
5943  }
5944
5945  return true;
5946}
5947
5948void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, CXXRecordDecl *RD) {
5949  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5950       e = RD->method_end(); i != e; ++i) {
5951    CXXMethodDecl *MD = *i;
5952
5953    // C++ [basic.def.odr]p2:
5954    //   [...] A virtual member function is used if it is not pure. [...]
5955    if (MD->isVirtual() && !MD->isPure())
5956      MarkDeclarationReferenced(Loc, MD);
5957  }
5958}
5959