SemaDeclCXX.cpp revision b320e0c322fb71d6235ebca9ec22940a97bdcdc7
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // If this function has a basic noexcept, it doesn't affect the outcome.
133  if (EST == EST_BasicNoexcept)
134    return;
135
136  // If we have a throw-all spec at this point, ignore the function.
137  if (ComputedEST == EST_None)
138    return;
139
140  // If we're still at noexcept(true) and there's a nothrow() callee,
141  // change to that specification.
142  if (EST == EST_DynamicNone) {
143    if (ComputedEST == EST_BasicNoexcept)
144      ComputedEST = EST_DynamicNone;
145    return;
146  }
147
148  // Check out noexcept specs.
149  if (EST == EST_ComputedNoexcept) {
150    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
151    assert(NR != FunctionProtoType::NR_NoNoexcept &&
152           "Must have noexcept result for EST_ComputedNoexcept.");
153    assert(NR != FunctionProtoType::NR_Dependent &&
154           "Should not generate implicit declarations for dependent cases, "
155           "and don't know how to handle them anyway.");
156
157    // noexcept(false) -> no spec on the new function
158    if (NR == FunctionProtoType::NR_Throw) {
159      ClearExceptions();
160      ComputedEST = EST_None;
161    }
162    // noexcept(true) won't change anything either.
163    return;
164  }
165
166  assert(EST == EST_Dynamic && "EST case not considered earlier.");
167  assert(ComputedEST != EST_None &&
168         "Shouldn't collect exceptions when throw-all is guaranteed.");
169  ComputedEST = EST_Dynamic;
170  // Record the exceptions in this function's exception specification.
171  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
172                                          EEnd = Proto->exception_end();
173       E != EEnd; ++E)
174    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
175      Exceptions.push_back(*E);
176}
177
178bool
179Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
180                              SourceLocation EqualLoc) {
181  if (RequireCompleteType(Param->getLocation(), Param->getType(),
182                          diag::err_typecheck_decl_incomplete_type)) {
183    Param->setInvalidDecl();
184    return true;
185  }
186
187  // C++ [dcl.fct.default]p5
188  //   A default argument expression is implicitly converted (clause
189  //   4) to the parameter type. The default argument expression has
190  //   the same semantic constraints as the initializer expression in
191  //   a declaration of a variable of the parameter type, using the
192  //   copy-initialization semantics (8.5).
193  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
194                                                                    Param);
195  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
196                                                           EqualLoc);
197  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
198  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
199                                      MultiExprArg(*this, &Arg, 1));
200  if (Result.isInvalid())
201    return true;
202  Arg = Result.takeAs<Expr>();
203
204  CheckImplicitConversions(Arg, EqualLoc);
205  Arg = MaybeCreateExprWithCleanups(Arg);
206
207  // Okay: add the default argument to the parameter
208  Param->setDefaultArg(Arg);
209
210  // We have already instantiated this parameter; provide each of the
211  // instantiations with the uninstantiated default argument.
212  UnparsedDefaultArgInstantiationsMap::iterator InstPos
213    = UnparsedDefaultArgInstantiations.find(Param);
214  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
215    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
216      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
217
218    // We're done tracking this parameter's instantiations.
219    UnparsedDefaultArgInstantiations.erase(InstPos);
220  }
221
222  return false;
223}
224
225/// ActOnParamDefaultArgument - Check whether the default argument
226/// provided for a function parameter is well-formed. If so, attach it
227/// to the parameter declaration.
228void
229Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
230                                Expr *DefaultArg) {
231  if (!param || !DefaultArg)
232    return;
233
234  ParmVarDecl *Param = cast<ParmVarDecl>(param);
235  UnparsedDefaultArgLocs.erase(Param);
236
237  // Default arguments are only permitted in C++
238  if (!getLangOptions().CPlusPlus) {
239    Diag(EqualLoc, diag::err_param_default_argument)
240      << DefaultArg->getSourceRange();
241    Param->setInvalidDecl();
242    return;
243  }
244
245  // Check for unexpanded parameter packs.
246  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
247    Param->setInvalidDecl();
248    return;
249  }
250
251  // Check that the default argument is well-formed
252  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
253  if (DefaultArgChecker.Visit(DefaultArg)) {
254    Param->setInvalidDecl();
255    return;
256  }
257
258  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
259}
260
261/// ActOnParamUnparsedDefaultArgument - We've seen a default
262/// argument for a function parameter, but we can't parse it yet
263/// because we're inside a class definition. Note that this default
264/// argument will be parsed later.
265void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
266                                             SourceLocation EqualLoc,
267                                             SourceLocation ArgLoc) {
268  if (!param)
269    return;
270
271  ParmVarDecl *Param = cast<ParmVarDecl>(param);
272  if (Param)
273    Param->setUnparsedDefaultArg();
274
275  UnparsedDefaultArgLocs[Param] = ArgLoc;
276}
277
278/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
279/// the default argument for the parameter param failed.
280void Sema::ActOnParamDefaultArgumentError(Decl *param) {
281  if (!param)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285
286  Param->setInvalidDecl();
287
288  UnparsedDefaultArgLocs.erase(Param);
289}
290
291/// CheckExtraCXXDefaultArguments - Check for any extra default
292/// arguments in the declarator, which is not a function declaration
293/// or definition and therefore is not permitted to have default
294/// arguments. This routine should be invoked for every declarator
295/// that is not a function declaration or definition.
296void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
297  // C++ [dcl.fct.default]p3
298  //   A default argument expression shall be specified only in the
299  //   parameter-declaration-clause of a function declaration or in a
300  //   template-parameter (14.1). It shall not be specified for a
301  //   parameter pack. If it is specified in a
302  //   parameter-declaration-clause, it shall not occur within a
303  //   declarator or abstract-declarator of a parameter-declaration.
304  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
305    DeclaratorChunk &chunk = D.getTypeObject(i);
306    if (chunk.Kind == DeclaratorChunk::Function) {
307      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
308        ParmVarDecl *Param =
309          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
310        if (Param->hasUnparsedDefaultArg()) {
311          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
312          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
313            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
314          delete Toks;
315          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
316        } else if (Param->getDefaultArg()) {
317          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
318            << Param->getDefaultArg()->getSourceRange();
319          Param->setDefaultArg(0);
320        }
321      }
322    }
323  }
324}
325
326// MergeCXXFunctionDecl - Merge two declarations of the same C++
327// function, once we already know that they have the same
328// type. Subroutine of MergeFunctionDecl. Returns true if there was an
329// error, false otherwise.
330bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
331  bool Invalid = false;
332
333  // C++ [dcl.fct.default]p4:
334  //   For non-template functions, default arguments can be added in
335  //   later declarations of a function in the same
336  //   scope. Declarations in different scopes have completely
337  //   distinct sets of default arguments. That is, declarations in
338  //   inner scopes do not acquire default arguments from
339  //   declarations in outer scopes, and vice versa. In a given
340  //   function declaration, all parameters subsequent to a
341  //   parameter with a default argument shall have default
342  //   arguments supplied in this or previous declarations. A
343  //   default argument shall not be redefined by a later
344  //   declaration (not even to the same value).
345  //
346  // C++ [dcl.fct.default]p6:
347  //   Except for member functions of class templates, the default arguments
348  //   in a member function definition that appears outside of the class
349  //   definition are added to the set of default arguments provided by the
350  //   member function declaration in the class definition.
351  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
352    ParmVarDecl *OldParam = Old->getParamDecl(p);
353    ParmVarDecl *NewParam = New->getParamDecl(p);
354
355    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
356
357      unsigned DiagDefaultParamID =
358        diag::err_param_default_argument_redefinition;
359
360      // MSVC accepts that default parameters be redefined for member functions
361      // of template class. The new default parameter's value is ignored.
362      Invalid = true;
363      if (getLangOptions().Microsoft) {
364        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
365        if (MD && MD->getParent()->getDescribedClassTemplate()) {
366          // Merge the old default argument into the new parameter.
367          NewParam->setHasInheritedDefaultArg();
368          if (OldParam->hasUninstantiatedDefaultArg())
369            NewParam->setUninstantiatedDefaultArg(
370                                      OldParam->getUninstantiatedDefaultArg());
371          else
372            NewParam->setDefaultArg(OldParam->getInit());
373          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
374          Invalid = false;
375        }
376      }
377
378      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
379      // hint here. Alternatively, we could walk the type-source information
380      // for NewParam to find the last source location in the type... but it
381      // isn't worth the effort right now. This is the kind of test case that
382      // is hard to get right:
383      //   int f(int);
384      //   void g(int (*fp)(int) = f);
385      //   void g(int (*fp)(int) = &f);
386      Diag(NewParam->getLocation(), DiagDefaultParamID)
387        << NewParam->getDefaultArgRange();
388
389      // Look for the function declaration where the default argument was
390      // actually written, which may be a declaration prior to Old.
391      for (FunctionDecl *Older = Old->getPreviousDeclaration();
392           Older; Older = Older->getPreviousDeclaration()) {
393        if (!Older->getParamDecl(p)->hasDefaultArg())
394          break;
395
396        OldParam = Older->getParamDecl(p);
397      }
398
399      Diag(OldParam->getLocation(), diag::note_previous_definition)
400        << OldParam->getDefaultArgRange();
401    } else if (OldParam->hasDefaultArg()) {
402      // Merge the old default argument into the new parameter.
403      // It's important to use getInit() here;  getDefaultArg()
404      // strips off any top-level ExprWithCleanups.
405      NewParam->setHasInheritedDefaultArg();
406      if (OldParam->hasUninstantiatedDefaultArg())
407        NewParam->setUninstantiatedDefaultArg(
408                                      OldParam->getUninstantiatedDefaultArg());
409      else
410        NewParam->setDefaultArg(OldParam->getInit());
411    } else if (NewParam->hasDefaultArg()) {
412      if (New->getDescribedFunctionTemplate()) {
413        // Paragraph 4, quoted above, only applies to non-template functions.
414        Diag(NewParam->getLocation(),
415             diag::err_param_default_argument_template_redecl)
416          << NewParam->getDefaultArgRange();
417        Diag(Old->getLocation(), diag::note_template_prev_declaration)
418          << false;
419      } else if (New->getTemplateSpecializationKind()
420                   != TSK_ImplicitInstantiation &&
421                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
422        // C++ [temp.expr.spec]p21:
423        //   Default function arguments shall not be specified in a declaration
424        //   or a definition for one of the following explicit specializations:
425        //     - the explicit specialization of a function template;
426        //     - the explicit specialization of a member function template;
427        //     - the explicit specialization of a member function of a class
428        //       template where the class template specialization to which the
429        //       member function specialization belongs is implicitly
430        //       instantiated.
431        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
432          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
433          << New->getDeclName()
434          << NewParam->getDefaultArgRange();
435      } else if (New->getDeclContext()->isDependentContext()) {
436        // C++ [dcl.fct.default]p6 (DR217):
437        //   Default arguments for a member function of a class template shall
438        //   be specified on the initial declaration of the member function
439        //   within the class template.
440        //
441        // Reading the tea leaves a bit in DR217 and its reference to DR205
442        // leads me to the conclusion that one cannot add default function
443        // arguments for an out-of-line definition of a member function of a
444        // dependent type.
445        int WhichKind = 2;
446        if (CXXRecordDecl *Record
447              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
448          if (Record->getDescribedClassTemplate())
449            WhichKind = 0;
450          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
451            WhichKind = 1;
452          else
453            WhichKind = 2;
454        }
455
456        Diag(NewParam->getLocation(),
457             diag::err_param_default_argument_member_template_redecl)
458          << WhichKind
459          << NewParam->getDefaultArgRange();
460      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
461        CXXSpecialMember NewSM = getSpecialMember(Ctor),
462                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
463        if (NewSM != OldSM) {
464          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
465            << NewParam->getDefaultArgRange() << NewSM;
466          Diag(Old->getLocation(), diag::note_previous_declaration_special)
467            << OldSM;
468        }
469      }
470    }
471  }
472
473  if (CheckEquivalentExceptionSpec(Old, New))
474    Invalid = true;
475
476  return Invalid;
477}
478
479/// \brief Merge the exception specifications of two variable declarations.
480///
481/// This is called when there's a redeclaration of a VarDecl. The function
482/// checks if the redeclaration might have an exception specification and
483/// validates compatibility and merges the specs if necessary.
484void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
485  // Shortcut if exceptions are disabled.
486  if (!getLangOptions().CXXExceptions)
487    return;
488
489  assert(Context.hasSameType(New->getType(), Old->getType()) &&
490         "Should only be called if types are otherwise the same.");
491
492  QualType NewType = New->getType();
493  QualType OldType = Old->getType();
494
495  // We're only interested in pointers and references to functions, as well
496  // as pointers to member functions.
497  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
498    NewType = R->getPointeeType();
499    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
500  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
501    NewType = P->getPointeeType();
502    OldType = OldType->getAs<PointerType>()->getPointeeType();
503  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
504    NewType = M->getPointeeType();
505    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
506  }
507
508  if (!NewType->isFunctionProtoType())
509    return;
510
511  // There's lots of special cases for functions. For function pointers, system
512  // libraries are hopefully not as broken so that we don't need these
513  // workarounds.
514  if (CheckEquivalentExceptionSpec(
515        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
516        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
517    New->setInvalidDecl();
518  }
519}
520
521/// CheckCXXDefaultArguments - Verify that the default arguments for a
522/// function declaration are well-formed according to C++
523/// [dcl.fct.default].
524void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
525  unsigned NumParams = FD->getNumParams();
526  unsigned p;
527
528  // Find first parameter with a default argument
529  for (p = 0; p < NumParams; ++p) {
530    ParmVarDecl *Param = FD->getParamDecl(p);
531    if (Param->hasDefaultArg())
532      break;
533  }
534
535  // C++ [dcl.fct.default]p4:
536  //   In a given function declaration, all parameters
537  //   subsequent to a parameter with a default argument shall
538  //   have default arguments supplied in this or previous
539  //   declarations. A default argument shall not be redefined
540  //   by a later declaration (not even to the same value).
541  unsigned LastMissingDefaultArg = 0;
542  for (; p < NumParams; ++p) {
543    ParmVarDecl *Param = FD->getParamDecl(p);
544    if (!Param->hasDefaultArg()) {
545      if (Param->isInvalidDecl())
546        /* We already complained about this parameter. */;
547      else if (Param->getIdentifier())
548        Diag(Param->getLocation(),
549             diag::err_param_default_argument_missing_name)
550          << Param->getIdentifier();
551      else
552        Diag(Param->getLocation(),
553             diag::err_param_default_argument_missing);
554
555      LastMissingDefaultArg = p;
556    }
557  }
558
559  if (LastMissingDefaultArg > 0) {
560    // Some default arguments were missing. Clear out all of the
561    // default arguments up to (and including) the last missing
562    // default argument, so that we leave the function parameters
563    // in a semantically valid state.
564    for (p = 0; p <= LastMissingDefaultArg; ++p) {
565      ParmVarDecl *Param = FD->getParamDecl(p);
566      if (Param->hasDefaultArg()) {
567        Param->setDefaultArg(0);
568      }
569    }
570  }
571}
572
573/// isCurrentClassName - Determine whether the identifier II is the
574/// name of the class type currently being defined. In the case of
575/// nested classes, this will only return true if II is the name of
576/// the innermost class.
577bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
578                              const CXXScopeSpec *SS) {
579  assert(getLangOptions().CPlusPlus && "No class names in C!");
580
581  CXXRecordDecl *CurDecl;
582  if (SS && SS->isSet() && !SS->isInvalid()) {
583    DeclContext *DC = computeDeclContext(*SS, true);
584    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
585  } else
586    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
587
588  if (CurDecl && CurDecl->getIdentifier())
589    return &II == CurDecl->getIdentifier();
590  else
591    return false;
592}
593
594/// \brief Check the validity of a C++ base class specifier.
595///
596/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
597/// and returns NULL otherwise.
598CXXBaseSpecifier *
599Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
600                         SourceRange SpecifierRange,
601                         bool Virtual, AccessSpecifier Access,
602                         TypeSourceInfo *TInfo,
603                         SourceLocation EllipsisLoc) {
604  QualType BaseType = TInfo->getType();
605
606  // C++ [class.union]p1:
607  //   A union shall not have base classes.
608  if (Class->isUnion()) {
609    Diag(Class->getLocation(), diag::err_base_clause_on_union)
610      << SpecifierRange;
611    return 0;
612  }
613
614  if (EllipsisLoc.isValid() &&
615      !TInfo->getType()->containsUnexpandedParameterPack()) {
616    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
617      << TInfo->getTypeLoc().getSourceRange();
618    EllipsisLoc = SourceLocation();
619  }
620
621  if (BaseType->isDependentType())
622    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
623                                          Class->getTagKind() == TTK_Class,
624                                          Access, TInfo, EllipsisLoc);
625
626  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
627
628  // Base specifiers must be record types.
629  if (!BaseType->isRecordType()) {
630    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
631    return 0;
632  }
633
634  // C++ [class.union]p1:
635  //   A union shall not be used as a base class.
636  if (BaseType->isUnionType()) {
637    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
638    return 0;
639  }
640
641  // C++ [class.derived]p2:
642  //   The class-name in a base-specifier shall not be an incompletely
643  //   defined class.
644  if (RequireCompleteType(BaseLoc, BaseType,
645                          PDiag(diag::err_incomplete_base_class)
646                            << SpecifierRange)) {
647    Class->setInvalidDecl();
648    return 0;
649  }
650
651  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
652  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
653  assert(BaseDecl && "Record type has no declaration");
654  BaseDecl = BaseDecl->getDefinition();
655  assert(BaseDecl && "Base type is not incomplete, but has no definition");
656  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
657  assert(CXXBaseDecl && "Base type is not a C++ type");
658
659  // C++ [class]p3:
660  //   If a class is marked final and it appears as a base-type-specifier in
661  //   base-clause, the program is ill-formed.
662  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
663    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
664      << CXXBaseDecl->getDeclName();
665    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
666      << CXXBaseDecl->getDeclName();
667    return 0;
668  }
669
670  if (BaseDecl->isInvalidDecl())
671    Class->setInvalidDecl();
672
673  // Create the base specifier.
674  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
675                                        Class->getTagKind() == TTK_Class,
676                                        Access, TInfo, EllipsisLoc);
677}
678
679/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
680/// one entry in the base class list of a class specifier, for
681/// example:
682///    class foo : public bar, virtual private baz {
683/// 'public bar' and 'virtual private baz' are each base-specifiers.
684BaseResult
685Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
686                         bool Virtual, AccessSpecifier Access,
687                         ParsedType basetype, SourceLocation BaseLoc,
688                         SourceLocation EllipsisLoc) {
689  if (!classdecl)
690    return true;
691
692  AdjustDeclIfTemplate(classdecl);
693  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
694  if (!Class)
695    return true;
696
697  TypeSourceInfo *TInfo = 0;
698  GetTypeFromParser(basetype, &TInfo);
699
700  if (EllipsisLoc.isInvalid() &&
701      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
702                                      UPPC_BaseType))
703    return true;
704
705  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
706                                                      Virtual, Access, TInfo,
707                                                      EllipsisLoc))
708    return BaseSpec;
709
710  return true;
711}
712
713/// \brief Performs the actual work of attaching the given base class
714/// specifiers to a C++ class.
715bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
716                                unsigned NumBases) {
717 if (NumBases == 0)
718    return false;
719
720  // Used to keep track of which base types we have already seen, so
721  // that we can properly diagnose redundant direct base types. Note
722  // that the key is always the unqualified canonical type of the base
723  // class.
724  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
725
726  // Copy non-redundant base specifiers into permanent storage.
727  unsigned NumGoodBases = 0;
728  bool Invalid = false;
729  for (unsigned idx = 0; idx < NumBases; ++idx) {
730    QualType NewBaseType
731      = Context.getCanonicalType(Bases[idx]->getType());
732    NewBaseType = NewBaseType.getLocalUnqualifiedType();
733    if (!Class->hasObjectMember()) {
734      if (const RecordType *FDTTy =
735            NewBaseType.getTypePtr()->getAs<RecordType>())
736        if (FDTTy->getDecl()->hasObjectMember())
737          Class->setHasObjectMember(true);
738    }
739
740    if (KnownBaseTypes[NewBaseType]) {
741      // C++ [class.mi]p3:
742      //   A class shall not be specified as a direct base class of a
743      //   derived class more than once.
744      Diag(Bases[idx]->getSourceRange().getBegin(),
745           diag::err_duplicate_base_class)
746        << KnownBaseTypes[NewBaseType]->getType()
747        << Bases[idx]->getSourceRange();
748
749      // Delete the duplicate base class specifier; we're going to
750      // overwrite its pointer later.
751      Context.Deallocate(Bases[idx]);
752
753      Invalid = true;
754    } else {
755      // Okay, add this new base class.
756      KnownBaseTypes[NewBaseType] = Bases[idx];
757      Bases[NumGoodBases++] = Bases[idx];
758    }
759  }
760
761  // Attach the remaining base class specifiers to the derived class.
762  Class->setBases(Bases, NumGoodBases);
763
764  // Delete the remaining (good) base class specifiers, since their
765  // data has been copied into the CXXRecordDecl.
766  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
767    Context.Deallocate(Bases[idx]);
768
769  return Invalid;
770}
771
772/// ActOnBaseSpecifiers - Attach the given base specifiers to the
773/// class, after checking whether there are any duplicate base
774/// classes.
775void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
776                               unsigned NumBases) {
777  if (!ClassDecl || !Bases || !NumBases)
778    return;
779
780  AdjustDeclIfTemplate(ClassDecl);
781  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
782                       (CXXBaseSpecifier**)(Bases), NumBases);
783}
784
785static CXXRecordDecl *GetClassForType(QualType T) {
786  if (const RecordType *RT = T->getAs<RecordType>())
787    return cast<CXXRecordDecl>(RT->getDecl());
788  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
789    return ICT->getDecl();
790  else
791    return 0;
792}
793
794/// \brief Determine whether the type \p Derived is a C++ class that is
795/// derived from the type \p Base.
796bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
797  if (!getLangOptions().CPlusPlus)
798    return false;
799
800  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
801  if (!DerivedRD)
802    return false;
803
804  CXXRecordDecl *BaseRD = GetClassForType(Base);
805  if (!BaseRD)
806    return false;
807
808  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
809  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
810}
811
812/// \brief Determine whether the type \p Derived is a C++ class that is
813/// derived from the type \p Base.
814bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
815  if (!getLangOptions().CPlusPlus)
816    return false;
817
818  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
819  if (!DerivedRD)
820    return false;
821
822  CXXRecordDecl *BaseRD = GetClassForType(Base);
823  if (!BaseRD)
824    return false;
825
826  return DerivedRD->isDerivedFrom(BaseRD, Paths);
827}
828
829void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
830                              CXXCastPath &BasePathArray) {
831  assert(BasePathArray.empty() && "Base path array must be empty!");
832  assert(Paths.isRecordingPaths() && "Must record paths!");
833
834  const CXXBasePath &Path = Paths.front();
835
836  // We first go backward and check if we have a virtual base.
837  // FIXME: It would be better if CXXBasePath had the base specifier for
838  // the nearest virtual base.
839  unsigned Start = 0;
840  for (unsigned I = Path.size(); I != 0; --I) {
841    if (Path[I - 1].Base->isVirtual()) {
842      Start = I - 1;
843      break;
844    }
845  }
846
847  // Now add all bases.
848  for (unsigned I = Start, E = Path.size(); I != E; ++I)
849    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
850}
851
852/// \brief Determine whether the given base path includes a virtual
853/// base class.
854bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
855  for (CXXCastPath::const_iterator B = BasePath.begin(),
856                                BEnd = BasePath.end();
857       B != BEnd; ++B)
858    if ((*B)->isVirtual())
859      return true;
860
861  return false;
862}
863
864/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
865/// conversion (where Derived and Base are class types) is
866/// well-formed, meaning that the conversion is unambiguous (and
867/// that all of the base classes are accessible). Returns true
868/// and emits a diagnostic if the code is ill-formed, returns false
869/// otherwise. Loc is the location where this routine should point to
870/// if there is an error, and Range is the source range to highlight
871/// if there is an error.
872bool
873Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
874                                   unsigned InaccessibleBaseID,
875                                   unsigned AmbigiousBaseConvID,
876                                   SourceLocation Loc, SourceRange Range,
877                                   DeclarationName Name,
878                                   CXXCastPath *BasePath) {
879  // First, determine whether the path from Derived to Base is
880  // ambiguous. This is slightly more expensive than checking whether
881  // the Derived to Base conversion exists, because here we need to
882  // explore multiple paths to determine if there is an ambiguity.
883  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
884                     /*DetectVirtual=*/false);
885  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
886  assert(DerivationOkay &&
887         "Can only be used with a derived-to-base conversion");
888  (void)DerivationOkay;
889
890  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
891    if (InaccessibleBaseID) {
892      // Check that the base class can be accessed.
893      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
894                                   InaccessibleBaseID)) {
895        case AR_inaccessible:
896          return true;
897        case AR_accessible:
898        case AR_dependent:
899        case AR_delayed:
900          break;
901      }
902    }
903
904    // Build a base path if necessary.
905    if (BasePath)
906      BuildBasePathArray(Paths, *BasePath);
907    return false;
908  }
909
910  // We know that the derived-to-base conversion is ambiguous, and
911  // we're going to produce a diagnostic. Perform the derived-to-base
912  // search just one more time to compute all of the possible paths so
913  // that we can print them out. This is more expensive than any of
914  // the previous derived-to-base checks we've done, but at this point
915  // performance isn't as much of an issue.
916  Paths.clear();
917  Paths.setRecordingPaths(true);
918  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
919  assert(StillOkay && "Can only be used with a derived-to-base conversion");
920  (void)StillOkay;
921
922  // Build up a textual representation of the ambiguous paths, e.g.,
923  // D -> B -> A, that will be used to illustrate the ambiguous
924  // conversions in the diagnostic. We only print one of the paths
925  // to each base class subobject.
926  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
927
928  Diag(Loc, AmbigiousBaseConvID)
929  << Derived << Base << PathDisplayStr << Range << Name;
930  return true;
931}
932
933bool
934Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
935                                   SourceLocation Loc, SourceRange Range,
936                                   CXXCastPath *BasePath,
937                                   bool IgnoreAccess) {
938  return CheckDerivedToBaseConversion(Derived, Base,
939                                      IgnoreAccess ? 0
940                                       : diag::err_upcast_to_inaccessible_base,
941                                      diag::err_ambiguous_derived_to_base_conv,
942                                      Loc, Range, DeclarationName(),
943                                      BasePath);
944}
945
946
947/// @brief Builds a string representing ambiguous paths from a
948/// specific derived class to different subobjects of the same base
949/// class.
950///
951/// This function builds a string that can be used in error messages
952/// to show the different paths that one can take through the
953/// inheritance hierarchy to go from the derived class to different
954/// subobjects of a base class. The result looks something like this:
955/// @code
956/// struct D -> struct B -> struct A
957/// struct D -> struct C -> struct A
958/// @endcode
959std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
960  std::string PathDisplayStr;
961  std::set<unsigned> DisplayedPaths;
962  for (CXXBasePaths::paths_iterator Path = Paths.begin();
963       Path != Paths.end(); ++Path) {
964    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
965      // We haven't displayed a path to this particular base
966      // class subobject yet.
967      PathDisplayStr += "\n    ";
968      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
969      for (CXXBasePath::const_iterator Element = Path->begin();
970           Element != Path->end(); ++Element)
971        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
972    }
973  }
974
975  return PathDisplayStr;
976}
977
978//===----------------------------------------------------------------------===//
979// C++ class member Handling
980//===----------------------------------------------------------------------===//
981
982/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
983Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
984                                 SourceLocation ASLoc,
985                                 SourceLocation ColonLoc) {
986  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
987  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
988                                                  ASLoc, ColonLoc);
989  CurContext->addHiddenDecl(ASDecl);
990  return ASDecl;
991}
992
993/// CheckOverrideControl - Check C++0x override control semantics.
994void Sema::CheckOverrideControl(const Decl *D) {
995  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
996  if (!MD || !MD->isVirtual())
997    return;
998
999  if (MD->isDependentContext())
1000    return;
1001
1002  // C++0x [class.virtual]p3:
1003  //   If a virtual function is marked with the virt-specifier override and does
1004  //   not override a member function of a base class,
1005  //   the program is ill-formed.
1006  bool HasOverriddenMethods =
1007    MD->begin_overridden_methods() != MD->end_overridden_methods();
1008  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1009    Diag(MD->getLocation(),
1010                 diag::err_function_marked_override_not_overriding)
1011      << MD->getDeclName();
1012    return;
1013  }
1014}
1015
1016/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1017/// function overrides a virtual member function marked 'final', according to
1018/// C++0x [class.virtual]p3.
1019bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1020                                                  const CXXMethodDecl *Old) {
1021  if (!Old->hasAttr<FinalAttr>())
1022    return false;
1023
1024  Diag(New->getLocation(), diag::err_final_function_overridden)
1025    << New->getDeclName();
1026  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1027  return true;
1028}
1029
1030/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1031/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1032/// bitfield width if there is one and 'InitExpr' specifies the initializer if
1033/// any.
1034Decl *
1035Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1036                               MultiTemplateParamsArg TemplateParameterLists,
1037                               ExprTy *BW, const VirtSpecifiers &VS,
1038                               ExprTy *InitExpr, bool IsDefinition) {
1039  const DeclSpec &DS = D.getDeclSpec();
1040  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1041  DeclarationName Name = NameInfo.getName();
1042  SourceLocation Loc = NameInfo.getLoc();
1043
1044  // For anonymous bitfields, the location should point to the type.
1045  if (Loc.isInvalid())
1046    Loc = D.getSourceRange().getBegin();
1047
1048  Expr *BitWidth = static_cast<Expr*>(BW);
1049  Expr *Init = static_cast<Expr*>(InitExpr);
1050
1051  assert(isa<CXXRecordDecl>(CurContext));
1052  assert(!DS.isFriendSpecified());
1053
1054  bool isFunc = false;
1055  if (D.isFunctionDeclarator())
1056    isFunc = true;
1057  else if (D.getNumTypeObjects() == 0 &&
1058           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
1059    QualType TDType = GetTypeFromParser(DS.getRepAsType());
1060    isFunc = TDType->isFunctionType();
1061  }
1062
1063  // C++ 9.2p6: A member shall not be declared to have automatic storage
1064  // duration (auto, register) or with the extern storage-class-specifier.
1065  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1066  // data members and cannot be applied to names declared const or static,
1067  // and cannot be applied to reference members.
1068  switch (DS.getStorageClassSpec()) {
1069    case DeclSpec::SCS_unspecified:
1070    case DeclSpec::SCS_typedef:
1071    case DeclSpec::SCS_static:
1072      // FALL THROUGH.
1073      break;
1074    case DeclSpec::SCS_mutable:
1075      if (isFunc) {
1076        if (DS.getStorageClassSpecLoc().isValid())
1077          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1078        else
1079          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1080
1081        // FIXME: It would be nicer if the keyword was ignored only for this
1082        // declarator. Otherwise we could get follow-up errors.
1083        D.getMutableDeclSpec().ClearStorageClassSpecs();
1084      }
1085      break;
1086    default:
1087      if (DS.getStorageClassSpecLoc().isValid())
1088        Diag(DS.getStorageClassSpecLoc(),
1089             diag::err_storageclass_invalid_for_member);
1090      else
1091        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1092      D.getMutableDeclSpec().ClearStorageClassSpecs();
1093  }
1094
1095  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1096                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1097                      !isFunc);
1098
1099  Decl *Member;
1100  if (isInstField) {
1101    CXXScopeSpec &SS = D.getCXXScopeSpec();
1102
1103    if (SS.isSet() && !SS.isInvalid()) {
1104      // The user provided a superfluous scope specifier inside a class
1105      // definition:
1106      //
1107      // class X {
1108      //   int X::member;
1109      // };
1110      DeclContext *DC = 0;
1111      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1112        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1113        << Name << FixItHint::CreateRemoval(SS.getRange());
1114      else
1115        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1116          << Name << SS.getRange();
1117
1118      SS.clear();
1119    }
1120
1121    // FIXME: Check for template parameters!
1122    // FIXME: Check that the name is an identifier!
1123    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1124                         AS);
1125    assert(Member && "HandleField never returns null");
1126  } else {
1127    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1128    if (!Member) {
1129      return 0;
1130    }
1131
1132    // Non-instance-fields can't have a bitfield.
1133    if (BitWidth) {
1134      if (Member->isInvalidDecl()) {
1135        // don't emit another diagnostic.
1136      } else if (isa<VarDecl>(Member)) {
1137        // C++ 9.6p3: A bit-field shall not be a static member.
1138        // "static member 'A' cannot be a bit-field"
1139        Diag(Loc, diag::err_static_not_bitfield)
1140          << Name << BitWidth->getSourceRange();
1141      } else if (isa<TypedefDecl>(Member)) {
1142        // "typedef member 'x' cannot be a bit-field"
1143        Diag(Loc, diag::err_typedef_not_bitfield)
1144          << Name << BitWidth->getSourceRange();
1145      } else {
1146        // A function typedef ("typedef int f(); f a;").
1147        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1148        Diag(Loc, diag::err_not_integral_type_bitfield)
1149          << Name << cast<ValueDecl>(Member)->getType()
1150          << BitWidth->getSourceRange();
1151      }
1152
1153      BitWidth = 0;
1154      Member->setInvalidDecl();
1155    }
1156
1157    Member->setAccess(AS);
1158
1159    // If we have declared a member function template, set the access of the
1160    // templated declaration as well.
1161    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1162      FunTmpl->getTemplatedDecl()->setAccess(AS);
1163  }
1164
1165  if (VS.isOverrideSpecified()) {
1166    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1167    if (!MD || !MD->isVirtual()) {
1168      Diag(Member->getLocStart(),
1169           diag::override_keyword_only_allowed_on_virtual_member_functions)
1170        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1171    } else
1172      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1173  }
1174  if (VS.isFinalSpecified()) {
1175    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1176    if (!MD || !MD->isVirtual()) {
1177      Diag(Member->getLocStart(),
1178           diag::override_keyword_only_allowed_on_virtual_member_functions)
1179      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1180    } else
1181      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1182  }
1183
1184  if (VS.getLastLocation().isValid()) {
1185    // Update the end location of a method that has a virt-specifiers.
1186    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1187      MD->setRangeEnd(VS.getLastLocation());
1188  }
1189
1190  CheckOverrideControl(Member);
1191
1192  assert((Name || isInstField) && "No identifier for non-field ?");
1193
1194  if (Init)
1195    AddInitializerToDecl(Member, Init, false,
1196                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1197
1198  FinalizeDeclaration(Member);
1199
1200  if (isInstField)
1201    FieldCollector->Add(cast<FieldDecl>(Member));
1202  return Member;
1203}
1204
1205/// \brief Find the direct and/or virtual base specifiers that
1206/// correspond to the given base type, for use in base initialization
1207/// within a constructor.
1208static bool FindBaseInitializer(Sema &SemaRef,
1209                                CXXRecordDecl *ClassDecl,
1210                                QualType BaseType,
1211                                const CXXBaseSpecifier *&DirectBaseSpec,
1212                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1213  // First, check for a direct base class.
1214  DirectBaseSpec = 0;
1215  for (CXXRecordDecl::base_class_const_iterator Base
1216         = ClassDecl->bases_begin();
1217       Base != ClassDecl->bases_end(); ++Base) {
1218    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1219      // We found a direct base of this type. That's what we're
1220      // initializing.
1221      DirectBaseSpec = &*Base;
1222      break;
1223    }
1224  }
1225
1226  // Check for a virtual base class.
1227  // FIXME: We might be able to short-circuit this if we know in advance that
1228  // there are no virtual bases.
1229  VirtualBaseSpec = 0;
1230  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1231    // We haven't found a base yet; search the class hierarchy for a
1232    // virtual base class.
1233    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1234                       /*DetectVirtual=*/false);
1235    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1236                              BaseType, Paths)) {
1237      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1238           Path != Paths.end(); ++Path) {
1239        if (Path->back().Base->isVirtual()) {
1240          VirtualBaseSpec = Path->back().Base;
1241          break;
1242        }
1243      }
1244    }
1245  }
1246
1247  return DirectBaseSpec || VirtualBaseSpec;
1248}
1249
1250/// ActOnMemInitializer - Handle a C++ member initializer.
1251MemInitResult
1252Sema::ActOnMemInitializer(Decl *ConstructorD,
1253                          Scope *S,
1254                          CXXScopeSpec &SS,
1255                          IdentifierInfo *MemberOrBase,
1256                          ParsedType TemplateTypeTy,
1257                          SourceLocation IdLoc,
1258                          SourceLocation LParenLoc,
1259                          ExprTy **Args, unsigned NumArgs,
1260                          SourceLocation RParenLoc,
1261                          SourceLocation EllipsisLoc) {
1262  if (!ConstructorD)
1263    return true;
1264
1265  AdjustDeclIfTemplate(ConstructorD);
1266
1267  CXXConstructorDecl *Constructor
1268    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1269  if (!Constructor) {
1270    // The user wrote a constructor initializer on a function that is
1271    // not a C++ constructor. Ignore the error for now, because we may
1272    // have more member initializers coming; we'll diagnose it just
1273    // once in ActOnMemInitializers.
1274    return true;
1275  }
1276
1277  CXXRecordDecl *ClassDecl = Constructor->getParent();
1278
1279  // C++ [class.base.init]p2:
1280  //   Names in a mem-initializer-id are looked up in the scope of the
1281  //   constructor's class and, if not found in that scope, are looked
1282  //   up in the scope containing the constructor's definition.
1283  //   [Note: if the constructor's class contains a member with the
1284  //   same name as a direct or virtual base class of the class, a
1285  //   mem-initializer-id naming the member or base class and composed
1286  //   of a single identifier refers to the class member. A
1287  //   mem-initializer-id for the hidden base class may be specified
1288  //   using a qualified name. ]
1289  if (!SS.getScopeRep() && !TemplateTypeTy) {
1290    // Look for a member, first.
1291    FieldDecl *Member = 0;
1292    DeclContext::lookup_result Result
1293      = ClassDecl->lookup(MemberOrBase);
1294    if (Result.first != Result.second) {
1295      Member = dyn_cast<FieldDecl>(*Result.first);
1296
1297      if (Member) {
1298        if (EllipsisLoc.isValid())
1299          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1300            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1301
1302        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1303                                    LParenLoc, RParenLoc);
1304      }
1305
1306      // Handle anonymous union case.
1307      if (IndirectFieldDecl* IndirectField
1308            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1309        if (EllipsisLoc.isValid())
1310          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1311            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1312
1313         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1314                                       NumArgs, IdLoc,
1315                                       LParenLoc, RParenLoc);
1316      }
1317    }
1318  }
1319  // It didn't name a member, so see if it names a class.
1320  QualType BaseType;
1321  TypeSourceInfo *TInfo = 0;
1322
1323  if (TemplateTypeTy) {
1324    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1325  } else {
1326    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1327    LookupParsedName(R, S, &SS);
1328
1329    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1330    if (!TyD) {
1331      if (R.isAmbiguous()) return true;
1332
1333      // We don't want access-control diagnostics here.
1334      R.suppressDiagnostics();
1335
1336      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1337        bool NotUnknownSpecialization = false;
1338        DeclContext *DC = computeDeclContext(SS, false);
1339        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1340          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1341
1342        if (!NotUnknownSpecialization) {
1343          // When the scope specifier can refer to a member of an unknown
1344          // specialization, we take it as a type name.
1345          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1346                                       SS.getWithLocInContext(Context),
1347                                       *MemberOrBase, IdLoc);
1348          if (BaseType.isNull())
1349            return true;
1350
1351          R.clear();
1352          R.setLookupName(MemberOrBase);
1353        }
1354      }
1355
1356      // If no results were found, try to correct typos.
1357      if (R.empty() && BaseType.isNull() &&
1358          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1359          R.isSingleResult()) {
1360        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1361          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1362            // We have found a non-static data member with a similar
1363            // name to what was typed; complain and initialize that
1364            // member.
1365            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1366              << MemberOrBase << true << R.getLookupName()
1367              << FixItHint::CreateReplacement(R.getNameLoc(),
1368                                              R.getLookupName().getAsString());
1369            Diag(Member->getLocation(), diag::note_previous_decl)
1370              << Member->getDeclName();
1371
1372            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1373                                          LParenLoc, RParenLoc);
1374          }
1375        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1376          const CXXBaseSpecifier *DirectBaseSpec;
1377          const CXXBaseSpecifier *VirtualBaseSpec;
1378          if (FindBaseInitializer(*this, ClassDecl,
1379                                  Context.getTypeDeclType(Type),
1380                                  DirectBaseSpec, VirtualBaseSpec)) {
1381            // We have found a direct or virtual base class with a
1382            // similar name to what was typed; complain and initialize
1383            // that base class.
1384            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1385              << MemberOrBase << false << R.getLookupName()
1386              << FixItHint::CreateReplacement(R.getNameLoc(),
1387                                              R.getLookupName().getAsString());
1388
1389            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1390                                                             : VirtualBaseSpec;
1391            Diag(BaseSpec->getSourceRange().getBegin(),
1392                 diag::note_base_class_specified_here)
1393              << BaseSpec->getType()
1394              << BaseSpec->getSourceRange();
1395
1396            TyD = Type;
1397          }
1398        }
1399      }
1400
1401      if (!TyD && BaseType.isNull()) {
1402        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1403          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1404        return true;
1405      }
1406    }
1407
1408    if (BaseType.isNull()) {
1409      BaseType = Context.getTypeDeclType(TyD);
1410      if (SS.isSet()) {
1411        NestedNameSpecifier *Qualifier =
1412          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1413
1414        // FIXME: preserve source range information
1415        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1416      }
1417    }
1418  }
1419
1420  if (!TInfo)
1421    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1422
1423  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1424                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1425}
1426
1427/// Checks an initializer expression for use of uninitialized fields, such as
1428/// containing the field that is being initialized. Returns true if there is an
1429/// uninitialized field was used an updates the SourceLocation parameter; false
1430/// otherwise.
1431static bool InitExprContainsUninitializedFields(const Stmt *S,
1432                                                const ValueDecl *LhsField,
1433                                                SourceLocation *L) {
1434  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1435
1436  if (isa<CallExpr>(S)) {
1437    // Do not descend into function calls or constructors, as the use
1438    // of an uninitialized field may be valid. One would have to inspect
1439    // the contents of the function/ctor to determine if it is safe or not.
1440    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1441    // may be safe, depending on what the function/ctor does.
1442    return false;
1443  }
1444  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1445    const NamedDecl *RhsField = ME->getMemberDecl();
1446
1447    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1448      // The member expression points to a static data member.
1449      assert(VD->isStaticDataMember() &&
1450             "Member points to non-static data member!");
1451      (void)VD;
1452      return false;
1453    }
1454
1455    if (isa<EnumConstantDecl>(RhsField)) {
1456      // The member expression points to an enum.
1457      return false;
1458    }
1459
1460    if (RhsField == LhsField) {
1461      // Initializing a field with itself. Throw a warning.
1462      // But wait; there are exceptions!
1463      // Exception #1:  The field may not belong to this record.
1464      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1465      const Expr *base = ME->getBase();
1466      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1467        // Even though the field matches, it does not belong to this record.
1468        return false;
1469      }
1470      // None of the exceptions triggered; return true to indicate an
1471      // uninitialized field was used.
1472      *L = ME->getMemberLoc();
1473      return true;
1474    }
1475  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1476    // sizeof/alignof doesn't reference contents, do not warn.
1477    return false;
1478  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1479    // address-of doesn't reference contents (the pointer may be dereferenced
1480    // in the same expression but it would be rare; and weird).
1481    if (UOE->getOpcode() == UO_AddrOf)
1482      return false;
1483  }
1484  for (Stmt::const_child_range it = S->children(); it; ++it) {
1485    if (!*it) {
1486      // An expression such as 'member(arg ?: "")' may trigger this.
1487      continue;
1488    }
1489    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1490      return true;
1491  }
1492  return false;
1493}
1494
1495MemInitResult
1496Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1497                             unsigned NumArgs, SourceLocation IdLoc,
1498                             SourceLocation LParenLoc,
1499                             SourceLocation RParenLoc) {
1500  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1501  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1502  assert((DirectMember || IndirectMember) &&
1503         "Member must be a FieldDecl or IndirectFieldDecl");
1504
1505  if (Member->isInvalidDecl())
1506    return true;
1507
1508  // Diagnose value-uses of fields to initialize themselves, e.g.
1509  //   foo(foo)
1510  // where foo is not also a parameter to the constructor.
1511  // TODO: implement -Wuninitialized and fold this into that framework.
1512  for (unsigned i = 0; i < NumArgs; ++i) {
1513    SourceLocation L;
1514    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1515      // FIXME: Return true in the case when other fields are used before being
1516      // uninitialized. For example, let this field be the i'th field. When
1517      // initializing the i'th field, throw a warning if any of the >= i'th
1518      // fields are used, as they are not yet initialized.
1519      // Right now we are only handling the case where the i'th field uses
1520      // itself in its initializer.
1521      Diag(L, diag::warn_field_is_uninit);
1522    }
1523  }
1524
1525  bool HasDependentArg = false;
1526  for (unsigned i = 0; i < NumArgs; i++)
1527    HasDependentArg |= Args[i]->isTypeDependent();
1528
1529  Expr *Init;
1530  if (Member->getType()->isDependentType() || HasDependentArg) {
1531    // Can't check initialization for a member of dependent type or when
1532    // any of the arguments are type-dependent expressions.
1533    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1534                                       RParenLoc);
1535
1536    // Erase any temporaries within this evaluation context; we're not
1537    // going to track them in the AST, since we'll be rebuilding the
1538    // ASTs during template instantiation.
1539    ExprTemporaries.erase(
1540              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1541                          ExprTemporaries.end());
1542  } else {
1543    // Initialize the member.
1544    InitializedEntity MemberEntity =
1545      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1546                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1547    InitializationKind Kind =
1548      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1549
1550    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1551
1552    ExprResult MemberInit =
1553      InitSeq.Perform(*this, MemberEntity, Kind,
1554                      MultiExprArg(*this, Args, NumArgs), 0);
1555    if (MemberInit.isInvalid())
1556      return true;
1557
1558    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1559
1560    // C++0x [class.base.init]p7:
1561    //   The initialization of each base and member constitutes a
1562    //   full-expression.
1563    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1564    if (MemberInit.isInvalid())
1565      return true;
1566
1567    // If we are in a dependent context, template instantiation will
1568    // perform this type-checking again. Just save the arguments that we
1569    // received in a ParenListExpr.
1570    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1571    // of the information that we have about the member
1572    // initializer. However, deconstructing the ASTs is a dicey process,
1573    // and this approach is far more likely to get the corner cases right.
1574    if (CurContext->isDependentContext())
1575      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1576                                               RParenLoc);
1577    else
1578      Init = MemberInit.get();
1579  }
1580
1581  if (DirectMember) {
1582    return new (Context) CXXCtorInitializer(Context, DirectMember,
1583                                                    IdLoc, LParenLoc, Init,
1584                                                    RParenLoc);
1585  } else {
1586    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1587                                                    IdLoc, LParenLoc, Init,
1588                                                    RParenLoc);
1589  }
1590}
1591
1592MemInitResult
1593Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1594                                 Expr **Args, unsigned NumArgs,
1595                                 SourceLocation NameLoc,
1596                                 SourceLocation LParenLoc,
1597                                 SourceLocation RParenLoc,
1598                                 CXXRecordDecl *ClassDecl) {
1599  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1600  if (!LangOpts.CPlusPlus0x)
1601    return Diag(Loc, diag::err_delegation_0x_only)
1602      << TInfo->getTypeLoc().getLocalSourceRange();
1603
1604  // Initialize the object.
1605  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1606                                     QualType(ClassDecl->getTypeForDecl(), 0));
1607  InitializationKind Kind =
1608    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1609
1610  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1611
1612  ExprResult DelegationInit =
1613    InitSeq.Perform(*this, DelegationEntity, Kind,
1614                    MultiExprArg(*this, Args, NumArgs), 0);
1615  if (DelegationInit.isInvalid())
1616    return true;
1617
1618  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1619  CXXConstructorDecl *Constructor
1620    = ConExpr->getConstructor();
1621  assert(Constructor && "Delegating constructor with no target?");
1622
1623  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1624
1625  // C++0x [class.base.init]p7:
1626  //   The initialization of each base and member constitutes a
1627  //   full-expression.
1628  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1629  if (DelegationInit.isInvalid())
1630    return true;
1631
1632  // If we are in a dependent context, template instantiation will
1633  // perform this type-checking again. Just save the arguments that we
1634  // received in a ParenListExpr.
1635  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1636  // of the information that we have about the base
1637  // initializer. However, deconstructing the ASTs is a dicey process,
1638  // and this approach is far more likely to get the corner cases right.
1639  if (CurContext->isDependentContext()) {
1640    ExprResult Init
1641      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args,
1642                                          NumArgs, RParenLoc));
1643    return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc,
1644                                            Constructor, Init.takeAs<Expr>(),
1645                                            RParenLoc);
1646  }
1647
1648  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1649                                          DelegationInit.takeAs<Expr>(),
1650                                          RParenLoc);
1651}
1652
1653MemInitResult
1654Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1655                           Expr **Args, unsigned NumArgs,
1656                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1657                           CXXRecordDecl *ClassDecl,
1658                           SourceLocation EllipsisLoc) {
1659  bool HasDependentArg = false;
1660  for (unsigned i = 0; i < NumArgs; i++)
1661    HasDependentArg |= Args[i]->isTypeDependent();
1662
1663  SourceLocation BaseLoc
1664    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1665
1666  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1667    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1668             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1669
1670  // C++ [class.base.init]p2:
1671  //   [...] Unless the mem-initializer-id names a nonstatic data
1672  //   member of the constructor's class or a direct or virtual base
1673  //   of that class, the mem-initializer is ill-formed. A
1674  //   mem-initializer-list can initialize a base class using any
1675  //   name that denotes that base class type.
1676  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1677
1678  if (EllipsisLoc.isValid()) {
1679    // This is a pack expansion.
1680    if (!BaseType->containsUnexpandedParameterPack())  {
1681      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1682        << SourceRange(BaseLoc, RParenLoc);
1683
1684      EllipsisLoc = SourceLocation();
1685    }
1686  } else {
1687    // Check for any unexpanded parameter packs.
1688    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1689      return true;
1690
1691    for (unsigned I = 0; I != NumArgs; ++I)
1692      if (DiagnoseUnexpandedParameterPack(Args[I]))
1693        return true;
1694  }
1695
1696  // Check for direct and virtual base classes.
1697  const CXXBaseSpecifier *DirectBaseSpec = 0;
1698  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1699  if (!Dependent) {
1700    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1701                                       BaseType))
1702      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1703                                        LParenLoc, RParenLoc, ClassDecl);
1704
1705    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1706                        VirtualBaseSpec);
1707
1708    // C++ [base.class.init]p2:
1709    // Unless the mem-initializer-id names a nonstatic data member of the
1710    // constructor's class or a direct or virtual base of that class, the
1711    // mem-initializer is ill-formed.
1712    if (!DirectBaseSpec && !VirtualBaseSpec) {
1713      // If the class has any dependent bases, then it's possible that
1714      // one of those types will resolve to the same type as
1715      // BaseType. Therefore, just treat this as a dependent base
1716      // class initialization.  FIXME: Should we try to check the
1717      // initialization anyway? It seems odd.
1718      if (ClassDecl->hasAnyDependentBases())
1719        Dependent = true;
1720      else
1721        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1722          << BaseType << Context.getTypeDeclType(ClassDecl)
1723          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1724    }
1725  }
1726
1727  if (Dependent) {
1728    // Can't check initialization for a base of dependent type or when
1729    // any of the arguments are type-dependent expressions.
1730    ExprResult BaseInit
1731      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1732                                          RParenLoc));
1733
1734    // Erase any temporaries within this evaluation context; we're not
1735    // going to track them in the AST, since we'll be rebuilding the
1736    // ASTs during template instantiation.
1737    ExprTemporaries.erase(
1738              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1739                          ExprTemporaries.end());
1740
1741    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1742                                                    /*IsVirtual=*/false,
1743                                                    LParenLoc,
1744                                                    BaseInit.takeAs<Expr>(),
1745                                                    RParenLoc,
1746                                                    EllipsisLoc);
1747  }
1748
1749  // C++ [base.class.init]p2:
1750  //   If a mem-initializer-id is ambiguous because it designates both
1751  //   a direct non-virtual base class and an inherited virtual base
1752  //   class, the mem-initializer is ill-formed.
1753  if (DirectBaseSpec && VirtualBaseSpec)
1754    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1755      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1756
1757  CXXBaseSpecifier *BaseSpec
1758    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1759  if (!BaseSpec)
1760    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1761
1762  // Initialize the base.
1763  InitializedEntity BaseEntity =
1764    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1765  InitializationKind Kind =
1766    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1767
1768  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1769
1770  ExprResult BaseInit =
1771    InitSeq.Perform(*this, BaseEntity, Kind,
1772                    MultiExprArg(*this, Args, NumArgs), 0);
1773  if (BaseInit.isInvalid())
1774    return true;
1775
1776  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1777
1778  // C++0x [class.base.init]p7:
1779  //   The initialization of each base and member constitutes a
1780  //   full-expression.
1781  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1782  if (BaseInit.isInvalid())
1783    return true;
1784
1785  // If we are in a dependent context, template instantiation will
1786  // perform this type-checking again. Just save the arguments that we
1787  // received in a ParenListExpr.
1788  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1789  // of the information that we have about the base
1790  // initializer. However, deconstructing the ASTs is a dicey process,
1791  // and this approach is far more likely to get the corner cases right.
1792  if (CurContext->isDependentContext()) {
1793    ExprResult Init
1794      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1795                                          RParenLoc));
1796    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1797                                                    BaseSpec->isVirtual(),
1798                                                    LParenLoc,
1799                                                    Init.takeAs<Expr>(),
1800                                                    RParenLoc,
1801                                                    EllipsisLoc);
1802  }
1803
1804  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1805                                                  BaseSpec->isVirtual(),
1806                                                  LParenLoc,
1807                                                  BaseInit.takeAs<Expr>(),
1808                                                  RParenLoc,
1809                                                  EllipsisLoc);
1810}
1811
1812/// ImplicitInitializerKind - How an implicit base or member initializer should
1813/// initialize its base or member.
1814enum ImplicitInitializerKind {
1815  IIK_Default,
1816  IIK_Copy,
1817  IIK_Move
1818};
1819
1820static bool
1821BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1822                             ImplicitInitializerKind ImplicitInitKind,
1823                             CXXBaseSpecifier *BaseSpec,
1824                             bool IsInheritedVirtualBase,
1825                             CXXCtorInitializer *&CXXBaseInit) {
1826  InitializedEntity InitEntity
1827    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1828                                        IsInheritedVirtualBase);
1829
1830  ExprResult BaseInit;
1831
1832  switch (ImplicitInitKind) {
1833  case IIK_Default: {
1834    InitializationKind InitKind
1835      = InitializationKind::CreateDefault(Constructor->getLocation());
1836    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1837    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1838                               MultiExprArg(SemaRef, 0, 0));
1839    break;
1840  }
1841
1842  case IIK_Copy: {
1843    ParmVarDecl *Param = Constructor->getParamDecl(0);
1844    QualType ParamType = Param->getType().getNonReferenceType();
1845
1846    Expr *CopyCtorArg =
1847      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1848                          Constructor->getLocation(), ParamType,
1849                          VK_LValue, 0);
1850
1851    // Cast to the base class to avoid ambiguities.
1852    QualType ArgTy =
1853      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1854                                       ParamType.getQualifiers());
1855
1856    CXXCastPath BasePath;
1857    BasePath.push_back(BaseSpec);
1858    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1859                                            CK_UncheckedDerivedToBase,
1860                                            VK_LValue, &BasePath).take();
1861
1862    InitializationKind InitKind
1863      = InitializationKind::CreateDirect(Constructor->getLocation(),
1864                                         SourceLocation(), SourceLocation());
1865    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1866                                   &CopyCtorArg, 1);
1867    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1868                               MultiExprArg(&CopyCtorArg, 1));
1869    break;
1870  }
1871
1872  case IIK_Move:
1873    assert(false && "Unhandled initializer kind!");
1874  }
1875
1876  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1877  if (BaseInit.isInvalid())
1878    return true;
1879
1880  CXXBaseInit =
1881    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1882               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1883                                                        SourceLocation()),
1884                                             BaseSpec->isVirtual(),
1885                                             SourceLocation(),
1886                                             BaseInit.takeAs<Expr>(),
1887                                             SourceLocation(),
1888                                             SourceLocation());
1889
1890  return false;
1891}
1892
1893static bool
1894BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1895                               ImplicitInitializerKind ImplicitInitKind,
1896                               FieldDecl *Field,
1897                               CXXCtorInitializer *&CXXMemberInit) {
1898  if (Field->isInvalidDecl())
1899    return true;
1900
1901  SourceLocation Loc = Constructor->getLocation();
1902
1903  if (ImplicitInitKind == IIK_Copy) {
1904    ParmVarDecl *Param = Constructor->getParamDecl(0);
1905    QualType ParamType = Param->getType().getNonReferenceType();
1906
1907    Expr *MemberExprBase =
1908      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1909                          Loc, ParamType, VK_LValue, 0);
1910
1911    // Build a reference to this field within the parameter.
1912    CXXScopeSpec SS;
1913    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1914                              Sema::LookupMemberName);
1915    MemberLookup.addDecl(Field, AS_public);
1916    MemberLookup.resolveKind();
1917    ExprResult CopyCtorArg
1918      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1919                                         ParamType, Loc,
1920                                         /*IsArrow=*/false,
1921                                         SS,
1922                                         /*FirstQualifierInScope=*/0,
1923                                         MemberLookup,
1924                                         /*TemplateArgs=*/0);
1925    if (CopyCtorArg.isInvalid())
1926      return true;
1927
1928    // When the field we are copying is an array, create index variables for
1929    // each dimension of the array. We use these index variables to subscript
1930    // the source array, and other clients (e.g., CodeGen) will perform the
1931    // necessary iteration with these index variables.
1932    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1933    QualType BaseType = Field->getType();
1934    QualType SizeType = SemaRef.Context.getSizeType();
1935    while (const ConstantArrayType *Array
1936                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1937      // Create the iteration variable for this array index.
1938      IdentifierInfo *IterationVarName = 0;
1939      {
1940        llvm::SmallString<8> Str;
1941        llvm::raw_svector_ostream OS(Str);
1942        OS << "__i" << IndexVariables.size();
1943        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1944      }
1945      VarDecl *IterationVar
1946        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
1947                          IterationVarName, SizeType,
1948                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1949                          SC_None, SC_None);
1950      IndexVariables.push_back(IterationVar);
1951
1952      // Create a reference to the iteration variable.
1953      ExprResult IterationVarRef
1954        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1955      assert(!IterationVarRef.isInvalid() &&
1956             "Reference to invented variable cannot fail!");
1957
1958      // Subscript the array with this iteration variable.
1959      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1960                                                            Loc,
1961                                                        IterationVarRef.take(),
1962                                                            Loc);
1963      if (CopyCtorArg.isInvalid())
1964        return true;
1965
1966      BaseType = Array->getElementType();
1967    }
1968
1969    // Construct the entity that we will be initializing. For an array, this
1970    // will be first element in the array, which may require several levels
1971    // of array-subscript entities.
1972    llvm::SmallVector<InitializedEntity, 4> Entities;
1973    Entities.reserve(1 + IndexVariables.size());
1974    Entities.push_back(InitializedEntity::InitializeMember(Field));
1975    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1976      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1977                                                              0,
1978                                                              Entities.back()));
1979
1980    // Direct-initialize to use the copy constructor.
1981    InitializationKind InitKind =
1982      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1983
1984    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1985    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1986                                   &CopyCtorArgE, 1);
1987
1988    ExprResult MemberInit
1989      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1990                        MultiExprArg(&CopyCtorArgE, 1));
1991    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1992    if (MemberInit.isInvalid())
1993      return true;
1994
1995    CXXMemberInit
1996      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1997                                           MemberInit.takeAs<Expr>(), Loc,
1998                                           IndexVariables.data(),
1999                                           IndexVariables.size());
2000    return false;
2001  }
2002
2003  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2004
2005  QualType FieldBaseElementType =
2006    SemaRef.Context.getBaseElementType(Field->getType());
2007
2008  if (FieldBaseElementType->isRecordType()) {
2009    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
2010    InitializationKind InitKind =
2011      InitializationKind::CreateDefault(Loc);
2012
2013    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2014    ExprResult MemberInit =
2015      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2016
2017    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2018    if (MemberInit.isInvalid())
2019      return true;
2020
2021    CXXMemberInit =
2022      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2023                                                       Field, Loc, Loc,
2024                                                       MemberInit.get(),
2025                                                       Loc);
2026    return false;
2027  }
2028
2029  if (!Field->getParent()->isUnion()) {
2030    if (FieldBaseElementType->isReferenceType()) {
2031      SemaRef.Diag(Constructor->getLocation(),
2032                   diag::err_uninitialized_member_in_ctor)
2033      << (int)Constructor->isImplicit()
2034      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2035      << 0 << Field->getDeclName();
2036      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2037      return true;
2038    }
2039
2040    if (FieldBaseElementType.isConstQualified()) {
2041      SemaRef.Diag(Constructor->getLocation(),
2042                   diag::err_uninitialized_member_in_ctor)
2043      << (int)Constructor->isImplicit()
2044      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2045      << 1 << Field->getDeclName();
2046      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2047      return true;
2048    }
2049  }
2050
2051  // Nothing to initialize.
2052  CXXMemberInit = 0;
2053  return false;
2054}
2055
2056namespace {
2057struct BaseAndFieldInfo {
2058  Sema &S;
2059  CXXConstructorDecl *Ctor;
2060  bool AnyErrorsInInits;
2061  ImplicitInitializerKind IIK;
2062  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2063  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
2064
2065  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2066    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2067    // FIXME: Handle implicit move constructors.
2068    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
2069      IIK = IIK_Copy;
2070    else
2071      IIK = IIK_Default;
2072  }
2073};
2074}
2075
2076static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
2077                                    FieldDecl *Top, FieldDecl *Field) {
2078
2079  // Overwhelmingly common case: we have a direct initializer for this field.
2080  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2081    Info.AllToInit.push_back(Init);
2082    return false;
2083  }
2084
2085  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
2086    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
2087    assert(FieldClassType && "anonymous struct/union without record type");
2088    CXXRecordDecl *FieldClassDecl
2089      = cast<CXXRecordDecl>(FieldClassType->getDecl());
2090
2091    // Even though union members never have non-trivial default
2092    // constructions in C++03, we still build member initializers for aggregate
2093    // record types which can be union members, and C++0x allows non-trivial
2094    // default constructors for union members, so we ensure that only one
2095    // member is initialized for these.
2096    if (FieldClassDecl->isUnion()) {
2097      // First check for an explicit initializer for one field.
2098      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2099           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2100        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2101          Info.AllToInit.push_back(Init);
2102
2103          // Once we've initialized a field of an anonymous union, the union
2104          // field in the class is also initialized, so exit immediately.
2105          return false;
2106        } else if ((*FA)->isAnonymousStructOrUnion()) {
2107          if (CollectFieldInitializer(Info, Top, *FA))
2108            return true;
2109        }
2110      }
2111
2112      // Fallthrough and construct a default initializer for the union as
2113      // a whole, which can call its default constructor if such a thing exists
2114      // (C++0x perhaps). FIXME: It's not clear that this is the correct
2115      // behavior going forward with C++0x, when anonymous unions there are
2116      // finalized, we should revisit this.
2117    } else {
2118      // For structs, we simply descend through to initialize all members where
2119      // necessary.
2120      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2121           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2122        if (CollectFieldInitializer(Info, Top, *FA))
2123          return true;
2124      }
2125    }
2126  }
2127
2128  // Don't try to build an implicit initializer if there were semantic
2129  // errors in any of the initializers (and therefore we might be
2130  // missing some that the user actually wrote).
2131  if (Info.AnyErrorsInInits)
2132    return false;
2133
2134  CXXCtorInitializer *Init = 0;
2135  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2136    return true;
2137
2138  if (Init)
2139    Info.AllToInit.push_back(Init);
2140
2141  return false;
2142}
2143
2144bool
2145Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2146                               CXXCtorInitializer *Initializer) {
2147  assert(Initializer->isDelegatingInitializer());
2148  Constructor->setNumCtorInitializers(1);
2149  CXXCtorInitializer **initializer =
2150    new (Context) CXXCtorInitializer*[1];
2151  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2152  Constructor->setCtorInitializers(initializer);
2153
2154  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2155    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2156    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2157  }
2158
2159  DelegatingCtorDecls.push_back(Constructor);
2160
2161  return false;
2162}
2163
2164bool
2165Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2166                                  CXXCtorInitializer **Initializers,
2167                                  unsigned NumInitializers,
2168                                  bool AnyErrors) {
2169  if (Constructor->getDeclContext()->isDependentContext()) {
2170    // Just store the initializers as written, they will be checked during
2171    // instantiation.
2172    if (NumInitializers > 0) {
2173      Constructor->setNumCtorInitializers(NumInitializers);
2174      CXXCtorInitializer **baseOrMemberInitializers =
2175        new (Context) CXXCtorInitializer*[NumInitializers];
2176      memcpy(baseOrMemberInitializers, Initializers,
2177             NumInitializers * sizeof(CXXCtorInitializer*));
2178      Constructor->setCtorInitializers(baseOrMemberInitializers);
2179    }
2180
2181    return false;
2182  }
2183
2184  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2185
2186  // We need to build the initializer AST according to order of construction
2187  // and not what user specified in the Initializers list.
2188  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2189  if (!ClassDecl)
2190    return true;
2191
2192  bool HadError = false;
2193
2194  for (unsigned i = 0; i < NumInitializers; i++) {
2195    CXXCtorInitializer *Member = Initializers[i];
2196
2197    if (Member->isBaseInitializer())
2198      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2199    else
2200      Info.AllBaseFields[Member->getAnyMember()] = Member;
2201  }
2202
2203  // Keep track of the direct virtual bases.
2204  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2205  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2206       E = ClassDecl->bases_end(); I != E; ++I) {
2207    if (I->isVirtual())
2208      DirectVBases.insert(I);
2209  }
2210
2211  // Push virtual bases before others.
2212  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2213       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2214
2215    if (CXXCtorInitializer *Value
2216        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2217      Info.AllToInit.push_back(Value);
2218    } else if (!AnyErrors) {
2219      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2220      CXXCtorInitializer *CXXBaseInit;
2221      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2222                                       VBase, IsInheritedVirtualBase,
2223                                       CXXBaseInit)) {
2224        HadError = true;
2225        continue;
2226      }
2227
2228      Info.AllToInit.push_back(CXXBaseInit);
2229    }
2230  }
2231
2232  // Non-virtual bases.
2233  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2234       E = ClassDecl->bases_end(); Base != E; ++Base) {
2235    // Virtuals are in the virtual base list and already constructed.
2236    if (Base->isVirtual())
2237      continue;
2238
2239    if (CXXCtorInitializer *Value
2240          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2241      Info.AllToInit.push_back(Value);
2242    } else if (!AnyErrors) {
2243      CXXCtorInitializer *CXXBaseInit;
2244      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2245                                       Base, /*IsInheritedVirtualBase=*/false,
2246                                       CXXBaseInit)) {
2247        HadError = true;
2248        continue;
2249      }
2250
2251      Info.AllToInit.push_back(CXXBaseInit);
2252    }
2253  }
2254
2255  // Fields.
2256  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2257       E = ClassDecl->field_end(); Field != E; ++Field) {
2258    if ((*Field)->getType()->isIncompleteArrayType()) {
2259      assert(ClassDecl->hasFlexibleArrayMember() &&
2260             "Incomplete array type is not valid");
2261      continue;
2262    }
2263    if (CollectFieldInitializer(Info, *Field, *Field))
2264      HadError = true;
2265  }
2266
2267  NumInitializers = Info.AllToInit.size();
2268  if (NumInitializers > 0) {
2269    Constructor->setNumCtorInitializers(NumInitializers);
2270    CXXCtorInitializer **baseOrMemberInitializers =
2271      new (Context) CXXCtorInitializer*[NumInitializers];
2272    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2273           NumInitializers * sizeof(CXXCtorInitializer*));
2274    Constructor->setCtorInitializers(baseOrMemberInitializers);
2275
2276    // Constructors implicitly reference the base and member
2277    // destructors.
2278    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2279                                           Constructor->getParent());
2280  }
2281
2282  return HadError;
2283}
2284
2285static void *GetKeyForTopLevelField(FieldDecl *Field) {
2286  // For anonymous unions, use the class declaration as the key.
2287  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2288    if (RT->getDecl()->isAnonymousStructOrUnion())
2289      return static_cast<void *>(RT->getDecl());
2290  }
2291  return static_cast<void *>(Field);
2292}
2293
2294static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2295  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2296}
2297
2298static void *GetKeyForMember(ASTContext &Context,
2299                             CXXCtorInitializer *Member) {
2300  if (!Member->isAnyMemberInitializer())
2301    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2302
2303  // For fields injected into the class via declaration of an anonymous union,
2304  // use its anonymous union class declaration as the unique key.
2305  FieldDecl *Field = Member->getAnyMember();
2306
2307  // If the field is a member of an anonymous struct or union, our key
2308  // is the anonymous record decl that's a direct child of the class.
2309  RecordDecl *RD = Field->getParent();
2310  if (RD->isAnonymousStructOrUnion()) {
2311    while (true) {
2312      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2313      if (Parent->isAnonymousStructOrUnion())
2314        RD = Parent;
2315      else
2316        break;
2317    }
2318
2319    return static_cast<void *>(RD);
2320  }
2321
2322  return static_cast<void *>(Field);
2323}
2324
2325static void
2326DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2327                                  const CXXConstructorDecl *Constructor,
2328                                  CXXCtorInitializer **Inits,
2329                                  unsigned NumInits) {
2330  if (Constructor->getDeclContext()->isDependentContext())
2331    return;
2332
2333  // Don't check initializers order unless the warning is enabled at the
2334  // location of at least one initializer.
2335  bool ShouldCheckOrder = false;
2336  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2337    CXXCtorInitializer *Init = Inits[InitIndex];
2338    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2339                                         Init->getSourceLocation())
2340          != Diagnostic::Ignored) {
2341      ShouldCheckOrder = true;
2342      break;
2343    }
2344  }
2345  if (!ShouldCheckOrder)
2346    return;
2347
2348  // Build the list of bases and members in the order that they'll
2349  // actually be initialized.  The explicit initializers should be in
2350  // this same order but may be missing things.
2351  llvm::SmallVector<const void*, 32> IdealInitKeys;
2352
2353  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2354
2355  // 1. Virtual bases.
2356  for (CXXRecordDecl::base_class_const_iterator VBase =
2357       ClassDecl->vbases_begin(),
2358       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2359    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2360
2361  // 2. Non-virtual bases.
2362  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2363       E = ClassDecl->bases_end(); Base != E; ++Base) {
2364    if (Base->isVirtual())
2365      continue;
2366    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2367  }
2368
2369  // 3. Direct fields.
2370  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2371       E = ClassDecl->field_end(); Field != E; ++Field)
2372    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2373
2374  unsigned NumIdealInits = IdealInitKeys.size();
2375  unsigned IdealIndex = 0;
2376
2377  CXXCtorInitializer *PrevInit = 0;
2378  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2379    CXXCtorInitializer *Init = Inits[InitIndex];
2380    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2381
2382    // Scan forward to try to find this initializer in the idealized
2383    // initializers list.
2384    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2385      if (InitKey == IdealInitKeys[IdealIndex])
2386        break;
2387
2388    // If we didn't find this initializer, it must be because we
2389    // scanned past it on a previous iteration.  That can only
2390    // happen if we're out of order;  emit a warning.
2391    if (IdealIndex == NumIdealInits && PrevInit) {
2392      Sema::SemaDiagnosticBuilder D =
2393        SemaRef.Diag(PrevInit->getSourceLocation(),
2394                     diag::warn_initializer_out_of_order);
2395
2396      if (PrevInit->isAnyMemberInitializer())
2397        D << 0 << PrevInit->getAnyMember()->getDeclName();
2398      else
2399        D << 1 << PrevInit->getBaseClassInfo()->getType();
2400
2401      if (Init->isAnyMemberInitializer())
2402        D << 0 << Init->getAnyMember()->getDeclName();
2403      else
2404        D << 1 << Init->getBaseClassInfo()->getType();
2405
2406      // Move back to the initializer's location in the ideal list.
2407      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2408        if (InitKey == IdealInitKeys[IdealIndex])
2409          break;
2410
2411      assert(IdealIndex != NumIdealInits &&
2412             "initializer not found in initializer list");
2413    }
2414
2415    PrevInit = Init;
2416  }
2417}
2418
2419namespace {
2420bool CheckRedundantInit(Sema &S,
2421                        CXXCtorInitializer *Init,
2422                        CXXCtorInitializer *&PrevInit) {
2423  if (!PrevInit) {
2424    PrevInit = Init;
2425    return false;
2426  }
2427
2428  if (FieldDecl *Field = Init->getMember())
2429    S.Diag(Init->getSourceLocation(),
2430           diag::err_multiple_mem_initialization)
2431      << Field->getDeclName()
2432      << Init->getSourceRange();
2433  else {
2434    const Type *BaseClass = Init->getBaseClass();
2435    assert(BaseClass && "neither field nor base");
2436    S.Diag(Init->getSourceLocation(),
2437           diag::err_multiple_base_initialization)
2438      << QualType(BaseClass, 0)
2439      << Init->getSourceRange();
2440  }
2441  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2442    << 0 << PrevInit->getSourceRange();
2443
2444  return true;
2445}
2446
2447typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2448typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2449
2450bool CheckRedundantUnionInit(Sema &S,
2451                             CXXCtorInitializer *Init,
2452                             RedundantUnionMap &Unions) {
2453  FieldDecl *Field = Init->getAnyMember();
2454  RecordDecl *Parent = Field->getParent();
2455  if (!Parent->isAnonymousStructOrUnion())
2456    return false;
2457
2458  NamedDecl *Child = Field;
2459  do {
2460    if (Parent->isUnion()) {
2461      UnionEntry &En = Unions[Parent];
2462      if (En.first && En.first != Child) {
2463        S.Diag(Init->getSourceLocation(),
2464               diag::err_multiple_mem_union_initialization)
2465          << Field->getDeclName()
2466          << Init->getSourceRange();
2467        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2468          << 0 << En.second->getSourceRange();
2469        return true;
2470      } else if (!En.first) {
2471        En.first = Child;
2472        En.second = Init;
2473      }
2474    }
2475
2476    Child = Parent;
2477    Parent = cast<RecordDecl>(Parent->getDeclContext());
2478  } while (Parent->isAnonymousStructOrUnion());
2479
2480  return false;
2481}
2482}
2483
2484/// ActOnMemInitializers - Handle the member initializers for a constructor.
2485void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2486                                SourceLocation ColonLoc,
2487                                MemInitTy **meminits, unsigned NumMemInits,
2488                                bool AnyErrors) {
2489  if (!ConstructorDecl)
2490    return;
2491
2492  AdjustDeclIfTemplate(ConstructorDecl);
2493
2494  CXXConstructorDecl *Constructor
2495    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2496
2497  if (!Constructor) {
2498    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2499    return;
2500  }
2501
2502  CXXCtorInitializer **MemInits =
2503    reinterpret_cast<CXXCtorInitializer **>(meminits);
2504
2505  // Mapping for the duplicate initializers check.
2506  // For member initializers, this is keyed with a FieldDecl*.
2507  // For base initializers, this is keyed with a Type*.
2508  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2509
2510  // Mapping for the inconsistent anonymous-union initializers check.
2511  RedundantUnionMap MemberUnions;
2512
2513  bool HadError = false;
2514  for (unsigned i = 0; i < NumMemInits; i++) {
2515    CXXCtorInitializer *Init = MemInits[i];
2516
2517    // Set the source order index.
2518    Init->setSourceOrder(i);
2519
2520    if (Init->isAnyMemberInitializer()) {
2521      FieldDecl *Field = Init->getAnyMember();
2522      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2523          CheckRedundantUnionInit(*this, Init, MemberUnions))
2524        HadError = true;
2525    } else if (Init->isBaseInitializer()) {
2526      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2527      if (CheckRedundantInit(*this, Init, Members[Key]))
2528        HadError = true;
2529    } else {
2530      assert(Init->isDelegatingInitializer());
2531      // This must be the only initializer
2532      if (i != 0 || NumMemInits > 1) {
2533        Diag(MemInits[0]->getSourceLocation(),
2534             diag::err_delegating_initializer_alone)
2535          << MemInits[0]->getSourceRange();
2536        HadError = true;
2537        // We will treat this as being the only initializer.
2538      }
2539      SetDelegatingInitializer(Constructor, MemInits[i]);
2540      // Return immediately as the initializer is set.
2541      return;
2542    }
2543  }
2544
2545  if (HadError)
2546    return;
2547
2548  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2549
2550  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2551}
2552
2553void
2554Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2555                                             CXXRecordDecl *ClassDecl) {
2556  // Ignore dependent contexts.
2557  if (ClassDecl->isDependentContext())
2558    return;
2559
2560  // FIXME: all the access-control diagnostics are positioned on the
2561  // field/base declaration.  That's probably good; that said, the
2562  // user might reasonably want to know why the destructor is being
2563  // emitted, and we currently don't say.
2564
2565  // Non-static data members.
2566  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2567       E = ClassDecl->field_end(); I != E; ++I) {
2568    FieldDecl *Field = *I;
2569    if (Field->isInvalidDecl())
2570      continue;
2571    QualType FieldType = Context.getBaseElementType(Field->getType());
2572
2573    const RecordType* RT = FieldType->getAs<RecordType>();
2574    if (!RT)
2575      continue;
2576
2577    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2578    if (FieldClassDecl->isInvalidDecl())
2579      continue;
2580    if (FieldClassDecl->hasTrivialDestructor())
2581      continue;
2582
2583    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2584    assert(Dtor && "No dtor found for FieldClassDecl!");
2585    CheckDestructorAccess(Field->getLocation(), Dtor,
2586                          PDiag(diag::err_access_dtor_field)
2587                            << Field->getDeclName()
2588                            << FieldType);
2589
2590    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2591  }
2592
2593  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2594
2595  // Bases.
2596  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2597       E = ClassDecl->bases_end(); Base != E; ++Base) {
2598    // Bases are always records in a well-formed non-dependent class.
2599    const RecordType *RT = Base->getType()->getAs<RecordType>();
2600
2601    // Remember direct virtual bases.
2602    if (Base->isVirtual())
2603      DirectVirtualBases.insert(RT);
2604
2605    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2606    // If our base class is invalid, we probably can't get its dtor anyway.
2607    if (BaseClassDecl->isInvalidDecl())
2608      continue;
2609    // Ignore trivial destructors.
2610    if (BaseClassDecl->hasTrivialDestructor())
2611      continue;
2612
2613    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2614    assert(Dtor && "No dtor found for BaseClassDecl!");
2615
2616    // FIXME: caret should be on the start of the class name
2617    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2618                          PDiag(diag::err_access_dtor_base)
2619                            << Base->getType()
2620                            << Base->getSourceRange());
2621
2622    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2623  }
2624
2625  // Virtual bases.
2626  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2627       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2628
2629    // Bases are always records in a well-formed non-dependent class.
2630    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2631
2632    // Ignore direct virtual bases.
2633    if (DirectVirtualBases.count(RT))
2634      continue;
2635
2636    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2637    // If our base class is invalid, we probably can't get its dtor anyway.
2638    if (BaseClassDecl->isInvalidDecl())
2639      continue;
2640    // Ignore trivial destructors.
2641    if (BaseClassDecl->hasTrivialDestructor())
2642      continue;
2643
2644    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2645    assert(Dtor && "No dtor found for BaseClassDecl!");
2646    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2647                          PDiag(diag::err_access_dtor_vbase)
2648                            << VBase->getType());
2649
2650    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2651  }
2652}
2653
2654void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2655  if (!CDtorDecl)
2656    return;
2657
2658  if (CXXConstructorDecl *Constructor
2659      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2660    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2661}
2662
2663bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2664                                  unsigned DiagID, AbstractDiagSelID SelID) {
2665  if (SelID == -1)
2666    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2667  else
2668    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2669}
2670
2671bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2672                                  const PartialDiagnostic &PD) {
2673  if (!getLangOptions().CPlusPlus)
2674    return false;
2675
2676  if (const ArrayType *AT = Context.getAsArrayType(T))
2677    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2678
2679  if (const PointerType *PT = T->getAs<PointerType>()) {
2680    // Find the innermost pointer type.
2681    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2682      PT = T;
2683
2684    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2685      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2686  }
2687
2688  const RecordType *RT = T->getAs<RecordType>();
2689  if (!RT)
2690    return false;
2691
2692  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2693
2694  // We can't answer whether something is abstract until it has a
2695  // definition.  If it's currently being defined, we'll walk back
2696  // over all the declarations when we have a full definition.
2697  const CXXRecordDecl *Def = RD->getDefinition();
2698  if (!Def || Def->isBeingDefined())
2699    return false;
2700
2701  if (!RD->isAbstract())
2702    return false;
2703
2704  Diag(Loc, PD) << RD->getDeclName();
2705  DiagnoseAbstractType(RD);
2706
2707  return true;
2708}
2709
2710void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2711  // Check if we've already emitted the list of pure virtual functions
2712  // for this class.
2713  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2714    return;
2715
2716  CXXFinalOverriderMap FinalOverriders;
2717  RD->getFinalOverriders(FinalOverriders);
2718
2719  // Keep a set of seen pure methods so we won't diagnose the same method
2720  // more than once.
2721  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2722
2723  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2724                                   MEnd = FinalOverriders.end();
2725       M != MEnd;
2726       ++M) {
2727    for (OverridingMethods::iterator SO = M->second.begin(),
2728                                  SOEnd = M->second.end();
2729         SO != SOEnd; ++SO) {
2730      // C++ [class.abstract]p4:
2731      //   A class is abstract if it contains or inherits at least one
2732      //   pure virtual function for which the final overrider is pure
2733      //   virtual.
2734
2735      //
2736      if (SO->second.size() != 1)
2737        continue;
2738
2739      if (!SO->second.front().Method->isPure())
2740        continue;
2741
2742      if (!SeenPureMethods.insert(SO->second.front().Method))
2743        continue;
2744
2745      Diag(SO->second.front().Method->getLocation(),
2746           diag::note_pure_virtual_function)
2747        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2748    }
2749  }
2750
2751  if (!PureVirtualClassDiagSet)
2752    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2753  PureVirtualClassDiagSet->insert(RD);
2754}
2755
2756namespace {
2757struct AbstractUsageInfo {
2758  Sema &S;
2759  CXXRecordDecl *Record;
2760  CanQualType AbstractType;
2761  bool Invalid;
2762
2763  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2764    : S(S), Record(Record),
2765      AbstractType(S.Context.getCanonicalType(
2766                   S.Context.getTypeDeclType(Record))),
2767      Invalid(false) {}
2768
2769  void DiagnoseAbstractType() {
2770    if (Invalid) return;
2771    S.DiagnoseAbstractType(Record);
2772    Invalid = true;
2773  }
2774
2775  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2776};
2777
2778struct CheckAbstractUsage {
2779  AbstractUsageInfo &Info;
2780  const NamedDecl *Ctx;
2781
2782  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2783    : Info(Info), Ctx(Ctx) {}
2784
2785  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2786    switch (TL.getTypeLocClass()) {
2787#define ABSTRACT_TYPELOC(CLASS, PARENT)
2788#define TYPELOC(CLASS, PARENT) \
2789    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2790#include "clang/AST/TypeLocNodes.def"
2791    }
2792  }
2793
2794  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2795    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2796    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2797      if (!TL.getArg(I))
2798        continue;
2799
2800      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2801      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2802    }
2803  }
2804
2805  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2806    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2807  }
2808
2809  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2810    // Visit the type parameters from a permissive context.
2811    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2812      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2813      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2814        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2815          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2816      // TODO: other template argument types?
2817    }
2818  }
2819
2820  // Visit pointee types from a permissive context.
2821#define CheckPolymorphic(Type) \
2822  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2823    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2824  }
2825  CheckPolymorphic(PointerTypeLoc)
2826  CheckPolymorphic(ReferenceTypeLoc)
2827  CheckPolymorphic(MemberPointerTypeLoc)
2828  CheckPolymorphic(BlockPointerTypeLoc)
2829
2830  /// Handle all the types we haven't given a more specific
2831  /// implementation for above.
2832  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2833    // Every other kind of type that we haven't called out already
2834    // that has an inner type is either (1) sugar or (2) contains that
2835    // inner type in some way as a subobject.
2836    if (TypeLoc Next = TL.getNextTypeLoc())
2837      return Visit(Next, Sel);
2838
2839    // If there's no inner type and we're in a permissive context,
2840    // don't diagnose.
2841    if (Sel == Sema::AbstractNone) return;
2842
2843    // Check whether the type matches the abstract type.
2844    QualType T = TL.getType();
2845    if (T->isArrayType()) {
2846      Sel = Sema::AbstractArrayType;
2847      T = Info.S.Context.getBaseElementType(T);
2848    }
2849    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2850    if (CT != Info.AbstractType) return;
2851
2852    // It matched; do some magic.
2853    if (Sel == Sema::AbstractArrayType) {
2854      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2855        << T << TL.getSourceRange();
2856    } else {
2857      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2858        << Sel << T << TL.getSourceRange();
2859    }
2860    Info.DiagnoseAbstractType();
2861  }
2862};
2863
2864void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2865                                  Sema::AbstractDiagSelID Sel) {
2866  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2867}
2868
2869}
2870
2871/// Check for invalid uses of an abstract type in a method declaration.
2872static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2873                                    CXXMethodDecl *MD) {
2874  // No need to do the check on definitions, which require that
2875  // the return/param types be complete.
2876  if (MD->doesThisDeclarationHaveABody())
2877    return;
2878
2879  // For safety's sake, just ignore it if we don't have type source
2880  // information.  This should never happen for non-implicit methods,
2881  // but...
2882  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2883    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2884}
2885
2886/// Check for invalid uses of an abstract type within a class definition.
2887static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2888                                    CXXRecordDecl *RD) {
2889  for (CXXRecordDecl::decl_iterator
2890         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2891    Decl *D = *I;
2892    if (D->isImplicit()) continue;
2893
2894    // Methods and method templates.
2895    if (isa<CXXMethodDecl>(D)) {
2896      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2897    } else if (isa<FunctionTemplateDecl>(D)) {
2898      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2899      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2900
2901    // Fields and static variables.
2902    } else if (isa<FieldDecl>(D)) {
2903      FieldDecl *FD = cast<FieldDecl>(D);
2904      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2905        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2906    } else if (isa<VarDecl>(D)) {
2907      VarDecl *VD = cast<VarDecl>(D);
2908      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2909        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2910
2911    // Nested classes and class templates.
2912    } else if (isa<CXXRecordDecl>(D)) {
2913      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2914    } else if (isa<ClassTemplateDecl>(D)) {
2915      CheckAbstractClassUsage(Info,
2916                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2917    }
2918  }
2919}
2920
2921/// \brief Perform semantic checks on a class definition that has been
2922/// completing, introducing implicitly-declared members, checking for
2923/// abstract types, etc.
2924void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2925  if (!Record)
2926    return;
2927
2928  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2929    AbstractUsageInfo Info(*this, Record);
2930    CheckAbstractClassUsage(Info, Record);
2931  }
2932
2933  // If this is not an aggregate type and has no user-declared constructor,
2934  // complain about any non-static data members of reference or const scalar
2935  // type, since they will never get initializers.
2936  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2937      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2938    bool Complained = false;
2939    for (RecordDecl::field_iterator F = Record->field_begin(),
2940                                 FEnd = Record->field_end();
2941         F != FEnd; ++F) {
2942      if (F->getType()->isReferenceType() ||
2943          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2944        if (!Complained) {
2945          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2946            << Record->getTagKind() << Record;
2947          Complained = true;
2948        }
2949
2950        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2951          << F->getType()->isReferenceType()
2952          << F->getDeclName();
2953      }
2954    }
2955  }
2956
2957  if (Record->isDynamicClass() && !Record->isDependentType())
2958    DynamicClasses.push_back(Record);
2959
2960  if (Record->getIdentifier()) {
2961    // C++ [class.mem]p13:
2962    //   If T is the name of a class, then each of the following shall have a
2963    //   name different from T:
2964    //     - every member of every anonymous union that is a member of class T.
2965    //
2966    // C++ [class.mem]p14:
2967    //   In addition, if class T has a user-declared constructor (12.1), every
2968    //   non-static data member of class T shall have a name different from T.
2969    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2970         R.first != R.second; ++R.first) {
2971      NamedDecl *D = *R.first;
2972      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2973          isa<IndirectFieldDecl>(D)) {
2974        Diag(D->getLocation(), diag::err_member_name_of_class)
2975          << D->getDeclName();
2976        break;
2977      }
2978    }
2979  }
2980
2981  // Warn if the class has virtual methods but non-virtual public destructor.
2982  if (Record->isPolymorphic() && !Record->isDependentType()) {
2983    CXXDestructorDecl *dtor = Record->getDestructor();
2984    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2985      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2986           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2987  }
2988
2989  // See if a method overloads virtual methods in a base
2990  /// class without overriding any.
2991  if (!Record->isDependentType()) {
2992    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2993                                     MEnd = Record->method_end();
2994         M != MEnd; ++M) {
2995      if (!(*M)->isStatic())
2996        DiagnoseHiddenVirtualMethods(Record, *M);
2997    }
2998  }
2999
3000  // Declare inherited constructors. We do this eagerly here because:
3001  // - The standard requires an eager diagnostic for conflicting inherited
3002  //   constructors from different classes.
3003  // - The lazy declaration of the other implicit constructors is so as to not
3004  //   waste space and performance on classes that are not meant to be
3005  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3006  //   have inherited constructors.
3007  DeclareInheritedConstructors(Record);
3008
3009  if (!Record->isDependentType())
3010    CheckExplicitlyDefaultedMethods(Record);
3011}
3012
3013void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3014  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3015                                      ME = Record->method_end();
3016       MI != ME; ++MI) {
3017    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3018      switch (getSpecialMember(*MI)) {
3019      case CXXDefaultConstructor:
3020        CheckExplicitlyDefaultedDefaultConstructor(
3021                                                  cast<CXXConstructorDecl>(*MI));
3022        break;
3023
3024      case CXXDestructor:
3025        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3026        break;
3027
3028      case CXXCopyConstructor:
3029        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3030        break;
3031
3032      case CXXCopyAssignment:
3033        CheckExplicitlyDefaultedCopyAssignment(*MI);
3034        break;
3035
3036      case CXXMoveConstructor:
3037      case CXXMoveAssignment:
3038        Diag(MI->getLocation(), diag::err_defaulted_move_unsupported);
3039        break;
3040
3041      default:
3042        // FIXME: Do moves once they exist
3043        llvm_unreachable("non-special member explicitly defaulted!");
3044      }
3045    }
3046  }
3047
3048}
3049
3050void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3051  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3052
3053  // Whether this was the first-declared instance of the constructor.
3054  // This affects whether we implicitly add an exception spec (and, eventually,
3055  // constexpr). It is also ill-formed to explicitly default a constructor such
3056  // that it would be deleted. (C++0x [decl.fct.def.default])
3057  bool First = CD == CD->getCanonicalDecl();
3058
3059  bool HadError = false;
3060  if (CD->getNumParams() != 0) {
3061    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3062      << CD->getSourceRange();
3063    HadError = true;
3064  }
3065
3066  ImplicitExceptionSpecification Spec
3067    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3068  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3069  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3070                          *ExceptionType = Context.getFunctionType(
3071                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3072
3073  if (CtorType->hasExceptionSpec()) {
3074    if (CheckEquivalentExceptionSpec(
3075          PDiag(diag::err_incorrect_defaulted_exception_spec)
3076            << CXXDefaultConstructor,
3077          PDiag(),
3078          ExceptionType, SourceLocation(),
3079          CtorType, CD->getLocation())) {
3080      HadError = true;
3081    }
3082  } else if (First) {
3083    // We set the declaration to have the computed exception spec here.
3084    // We know there are no parameters.
3085    EPI.ExtInfo = CtorType->getExtInfo();
3086    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3087  }
3088
3089  if (HadError) {
3090    CD->setInvalidDecl();
3091    return;
3092  }
3093
3094  if (ShouldDeleteDefaultConstructor(CD)) {
3095    if (First) {
3096      CD->setDeletedAsWritten();
3097    } else {
3098      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3099        << CXXDefaultConstructor;
3100      CD->setInvalidDecl();
3101    }
3102  }
3103}
3104
3105void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3106  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3107
3108  // Whether this was the first-declared instance of the constructor.
3109  bool First = CD == CD->getCanonicalDecl();
3110
3111  bool HadError = false;
3112  if (CD->getNumParams() != 1) {
3113    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3114      << CD->getSourceRange();
3115    HadError = true;
3116  }
3117
3118  ImplicitExceptionSpecification Spec(Context);
3119  bool Const;
3120  llvm::tie(Spec, Const) =
3121    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3122
3123  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3124  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3125                          *ExceptionType = Context.getFunctionType(
3126                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3127
3128  // Check for parameter type matching.
3129  // This is a copy ctor so we know it's a cv-qualified reference to T.
3130  QualType ArgType = CtorType->getArgType(0);
3131  if (ArgType->getPointeeType().isVolatileQualified()) {
3132    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3133    HadError = true;
3134  }
3135  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3136    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3137    HadError = true;
3138  }
3139
3140  if (CtorType->hasExceptionSpec()) {
3141    if (CheckEquivalentExceptionSpec(
3142          PDiag(diag::err_incorrect_defaulted_exception_spec)
3143            << CXXCopyConstructor,
3144          PDiag(),
3145          ExceptionType, SourceLocation(),
3146          CtorType, CD->getLocation())) {
3147      HadError = true;
3148    }
3149  } else if (First) {
3150    // We set the declaration to have the computed exception spec here.
3151    // We duplicate the one parameter type.
3152    EPI.ExtInfo = CtorType->getExtInfo();
3153    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3154  }
3155
3156  if (HadError) {
3157    CD->setInvalidDecl();
3158    return;
3159  }
3160
3161  if (ShouldDeleteCopyConstructor(CD)) {
3162    if (First) {
3163      CD->setDeletedAsWritten();
3164    } else {
3165      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3166        << CXXCopyConstructor;
3167      CD->setInvalidDecl();
3168    }
3169  }
3170}
3171
3172void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3173  assert(MD->isExplicitlyDefaulted());
3174
3175  // Whether this was the first-declared instance of the operator
3176  bool First = MD == MD->getCanonicalDecl();
3177
3178  bool HadError = false;
3179  if (MD->getNumParams() != 1) {
3180    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3181      << MD->getSourceRange();
3182    HadError = true;
3183  }
3184
3185  QualType ReturnType =
3186    MD->getType()->getAs<FunctionType>()->getResultType();
3187  if (!ReturnType->isLValueReferenceType() ||
3188      !Context.hasSameType(
3189        Context.getCanonicalType(ReturnType->getPointeeType()),
3190        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3191    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3192    HadError = true;
3193  }
3194
3195  ImplicitExceptionSpecification Spec(Context);
3196  bool Const;
3197  llvm::tie(Spec, Const) =
3198    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3199
3200  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3201  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3202                          *ExceptionType = Context.getFunctionType(
3203                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3204
3205  QualType ArgType = OperType->getArgType(0);
3206  if (!ArgType->isReferenceType()) {
3207    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3208    HadError = true;
3209  } else {
3210    if (ArgType->getPointeeType().isVolatileQualified()) {
3211      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3212      HadError = true;
3213    }
3214    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3215      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3216      HadError = true;
3217    }
3218  }
3219
3220  if (OperType->getTypeQuals()) {
3221    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3222    HadError = true;
3223  }
3224
3225  if (OperType->hasExceptionSpec()) {
3226    if (CheckEquivalentExceptionSpec(
3227          PDiag(diag::err_incorrect_defaulted_exception_spec)
3228            << CXXCopyAssignment,
3229          PDiag(),
3230          ExceptionType, SourceLocation(),
3231          OperType, MD->getLocation())) {
3232      HadError = true;
3233    }
3234  } else if (First) {
3235    // We set the declaration to have the computed exception spec here.
3236    // We duplicate the one parameter type.
3237    EPI.RefQualifier = OperType->getRefQualifier();
3238    EPI.ExtInfo = OperType->getExtInfo();
3239    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3240  }
3241
3242  if (HadError) {
3243    MD->setInvalidDecl();
3244    return;
3245  }
3246
3247  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3248    if (First) {
3249      MD->setDeletedAsWritten();
3250    } else {
3251      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3252        << CXXCopyAssignment;
3253      MD->setInvalidDecl();
3254    }
3255  }
3256}
3257
3258void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
3259  assert(DD->isExplicitlyDefaulted());
3260
3261  // Whether this was the first-declared instance of the destructor.
3262  bool First = DD == DD->getCanonicalDecl();
3263
3264  ImplicitExceptionSpecification Spec
3265    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
3266  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3267  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
3268                          *ExceptionType = Context.getFunctionType(
3269                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3270
3271  if (DtorType->hasExceptionSpec()) {
3272    if (CheckEquivalentExceptionSpec(
3273          PDiag(diag::err_incorrect_defaulted_exception_spec)
3274            << CXXDestructor,
3275          PDiag(),
3276          ExceptionType, SourceLocation(),
3277          DtorType, DD->getLocation())) {
3278      DD->setInvalidDecl();
3279      return;
3280    }
3281  } else if (First) {
3282    // We set the declaration to have the computed exception spec here.
3283    // There are no parameters.
3284    EPI.ExtInfo = DtorType->getExtInfo();
3285    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3286  }
3287
3288  if (ShouldDeleteDestructor(DD)) {
3289    if (First) {
3290      DD->setDeletedAsWritten();
3291    } else {
3292      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
3293        << CXXDestructor;
3294      DD->setInvalidDecl();
3295    }
3296  }
3297}
3298
3299bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
3300  CXXRecordDecl *RD = CD->getParent();
3301  assert(!RD->isDependentType() && "do deletion after instantiation");
3302  if (!LangOpts.CPlusPlus0x)
3303    return false;
3304
3305  SourceLocation Loc = CD->getLocation();
3306
3307  // Do access control from the constructor
3308  ContextRAII CtorContext(*this, CD);
3309
3310  bool Union = RD->isUnion();
3311  bool AllConst = true;
3312
3313  // We do this because we should never actually use an anonymous
3314  // union's constructor.
3315  if (Union && RD->isAnonymousStructOrUnion())
3316    return false;
3317
3318  // FIXME: We should put some diagnostic logic right into this function.
3319
3320  // C++0x [class.ctor]/5
3321  //    A defaulted default constructor for class X is defined as deleted if:
3322
3323  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3324                                          BE = RD->bases_end();
3325       BI != BE; ++BI) {
3326    // We'll handle this one later
3327    if (BI->isVirtual())
3328      continue;
3329
3330    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3331    assert(BaseDecl && "base isn't a CXXRecordDecl");
3332
3333    // -- any [direct base class] has a type with a destructor that is
3334    //    deleted or inaccessible from the defaulted default constructor
3335    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3336    if (BaseDtor->isDeleted())
3337      return true;
3338    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3339        AR_accessible)
3340      return true;
3341
3342    // -- any [direct base class either] has no default constructor or
3343    //    overload resolution as applied to [its] default constructor
3344    //    results in an ambiguity or in a function that is deleted or
3345    //    inaccessible from the defaulted default constructor
3346    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3347    if (!BaseDefault || BaseDefault->isDeleted())
3348      return true;
3349
3350    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3351                               PDiag()) != AR_accessible)
3352      return true;
3353  }
3354
3355  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3356                                          BE = RD->vbases_end();
3357       BI != BE; ++BI) {
3358    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3359    assert(BaseDecl && "base isn't a CXXRecordDecl");
3360
3361    // -- any [virtual base class] has a type with a destructor that is
3362    //    delete or inaccessible from the defaulted default constructor
3363    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3364    if (BaseDtor->isDeleted())
3365      return true;
3366    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3367        AR_accessible)
3368      return true;
3369
3370    // -- any [virtual base class either] has no default constructor or
3371    //    overload resolution as applied to [its] default constructor
3372    //    results in an ambiguity or in a function that is deleted or
3373    //    inaccessible from the defaulted default constructor
3374    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3375    if (!BaseDefault || BaseDefault->isDeleted())
3376      return true;
3377
3378    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3379                               PDiag()) != AR_accessible)
3380      return true;
3381  }
3382
3383  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3384                                     FE = RD->field_end();
3385       FI != FE; ++FI) {
3386    QualType FieldType = Context.getBaseElementType(FI->getType());
3387    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3388
3389    // -- any non-static data member with no brace-or-equal-initializer is of
3390    //    reference type
3391    if (FieldType->isReferenceType())
3392      return true;
3393
3394    // -- X is a union and all its variant members are of const-qualified type
3395    //    (or array thereof)
3396    if (Union && !FieldType.isConstQualified())
3397      AllConst = false;
3398
3399    if (FieldRecord) {
3400      // -- X is a union-like class that has a variant member with a non-trivial
3401      //    default constructor
3402      if (Union && !FieldRecord->hasTrivialDefaultConstructor())
3403        return true;
3404
3405      CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3406      if (FieldDtor->isDeleted())
3407        return true;
3408      if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3409          AR_accessible)
3410        return true;
3411
3412      // -- any non-variant non-static data member of const-qualified type (or
3413      //    array thereof) with no brace-or-equal-initializer does not have a
3414      //    user-provided default constructor
3415      if (FieldType.isConstQualified() &&
3416          !FieldRecord->hasUserProvidedDefaultConstructor())
3417        return true;
3418
3419      if (!Union && FieldRecord->isUnion() &&
3420          FieldRecord->isAnonymousStructOrUnion()) {
3421        // We're okay to reuse AllConst here since we only care about the
3422        // value otherwise if we're in a union.
3423        AllConst = true;
3424
3425        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3426                                           UE = FieldRecord->field_end();
3427             UI != UE; ++UI) {
3428          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3429          CXXRecordDecl *UnionFieldRecord =
3430            UnionFieldType->getAsCXXRecordDecl();
3431
3432          if (!UnionFieldType.isConstQualified())
3433            AllConst = false;
3434
3435          if (UnionFieldRecord &&
3436              !UnionFieldRecord->hasTrivialDefaultConstructor())
3437            return true;
3438        }
3439
3440        if (AllConst)
3441          return true;
3442
3443        // Don't try to initialize the anonymous union
3444        // This is technically non-conformant, but sanity demands it.
3445        continue;
3446      }
3447
3448      // -- any non-static data member ... has class type M (or array thereof)
3449      //    and either M has no default constructor or overload resolution as
3450      //    applied to M's default constructor results in an ambiguity or in a
3451      //    function that is deleted or inaccessible from the defaulted default
3452      //    constructor.
3453      CXXConstructorDecl *FieldDefault = LookupDefaultConstructor(FieldRecord);
3454      if (!FieldDefault || FieldDefault->isDeleted())
3455        return true;
3456      if (CheckConstructorAccess(Loc, FieldDefault, FieldDefault->getAccess(),
3457                                 PDiag()) != AR_accessible)
3458        return true;
3459    } else if (!Union && FieldType.isConstQualified()) {
3460      // -- any non-variant non-static data member of const-qualified type (or
3461      //    array thereof) with no brace-or-equal-initializer does not have a
3462      //    user-provided default constructor
3463      return true;
3464    }
3465  }
3466
3467  if (Union && AllConst)
3468    return true;
3469
3470  return false;
3471}
3472
3473bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
3474  CXXRecordDecl *RD = CD->getParent();
3475  assert(!RD->isDependentType() && "do deletion after instantiation");
3476  if (!LangOpts.CPlusPlus0x)
3477    return false;
3478
3479  SourceLocation Loc = CD->getLocation();
3480
3481  // Do access control from the constructor
3482  ContextRAII CtorContext(*this, CD);
3483
3484    bool Union = RD->isUnion();
3485
3486  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
3487         "copy assignment arg has no pointee type");
3488  bool ConstArg =
3489    CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified();
3490
3491  // We do this because we should never actually use an anonymous
3492  // union's constructor.
3493  if (Union && RD->isAnonymousStructOrUnion())
3494    return false;
3495
3496  // FIXME: We should put some diagnostic logic right into this function.
3497
3498  // C++0x [class.copy]/11
3499  //    A defaulted [copy] constructor for class X is defined as delete if X has:
3500
3501  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3502                                          BE = RD->bases_end();
3503       BI != BE; ++BI) {
3504    // We'll handle this one later
3505    if (BI->isVirtual())
3506      continue;
3507
3508    QualType BaseType = BI->getType();
3509    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3510    assert(BaseDecl && "base isn't a CXXRecordDecl");
3511
3512    // -- any [direct base class] of a type with a destructor that is deleted or
3513    //    inaccessible from the defaulted constructor
3514    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3515    if (BaseDtor->isDeleted())
3516      return true;
3517    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3518        AR_accessible)
3519      return true;
3520
3521    // -- a [direct base class] B that cannot be [copied] because overload
3522    //    resolution, as applied to B's [copy] constructor, results in an
3523    //    ambiguity or a function that is deleted or inaccessible from the
3524    //    defaulted constructor
3525    InitializedEntity BaseEntity =
3526      InitializedEntity::InitializeBase(Context, BI, 0);
3527    InitializationKind Kind =
3528      InitializationKind::CreateDirect(Loc, Loc, Loc);
3529
3530    // Construct a fake expression to perform the copy overloading.
3531    QualType ArgType = BaseType.getUnqualifiedType();
3532    if (ConstArg)
3533      ArgType.addConst();
3534    Expr *Arg = new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue);
3535
3536    InitializationSequence InitSeq(*this, BaseEntity, Kind, &Arg, 1);
3537
3538    if (InitSeq.Failed())
3539      return true;
3540  }
3541
3542  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3543                                          BE = RD->vbases_end();
3544       BI != BE; ++BI) {
3545    QualType BaseType = BI->getType();
3546    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3547    assert(BaseDecl && "base isn't a CXXRecordDecl");
3548
3549    // -- any [virtual base class] of a type with a destructor that is deleted or
3550    //    inaccessible from the defaulted constructor
3551    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3552    if (BaseDtor->isDeleted())
3553      return true;
3554    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3555        AR_accessible)
3556      return true;
3557
3558    // -- a [virtual base class] B that cannot be [copied] because overload
3559    //    resolution, as applied to B's [copy] constructor, results in an
3560    //    ambiguity or a function that is deleted or inaccessible from the
3561    //    defaulted constructor
3562    InitializedEntity BaseEntity =
3563      InitializedEntity::InitializeBase(Context, BI, BI);
3564    InitializationKind Kind =
3565      InitializationKind::CreateDirect(Loc, Loc, Loc);
3566
3567    // Construct a fake expression to perform the copy overloading.
3568    QualType ArgType = BaseType.getUnqualifiedType();
3569    if (ConstArg)
3570      ArgType.addConst();
3571    Expr *Arg = new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue);
3572
3573    InitializationSequence InitSeq(*this, BaseEntity, Kind, &Arg, 1);
3574
3575    if (InitSeq.Failed())
3576      return true;
3577  }
3578
3579  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3580                                     FE = RD->field_end();
3581       FI != FE; ++FI) {
3582    QualType FieldType = Context.getBaseElementType(FI->getType());
3583
3584    // -- for a copy constructor, a non-static data member of rvalue reference
3585    //    type
3586    if (FieldType->isRValueReferenceType())
3587      return true;
3588
3589    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3590
3591    if (FieldRecord) {
3592      // This is an anonymous union
3593      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3594        // Anonymous unions inside unions do not variant members create
3595        if (!Union) {
3596          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3597                                             UE = FieldRecord->field_end();
3598               UI != UE; ++UI) {
3599            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3600            CXXRecordDecl *UnionFieldRecord =
3601              UnionFieldType->getAsCXXRecordDecl();
3602
3603            // -- a variant member with a non-trivial [copy] constructor and X
3604            //    is a union-like class
3605            if (UnionFieldRecord &&
3606                !UnionFieldRecord->hasTrivialCopyConstructor())
3607              return true;
3608          }
3609        }
3610
3611        // Don't try to initalize an anonymous union
3612        continue;
3613      } else {
3614         // -- a variant member with a non-trivial [copy] constructor and X is a
3615         //    union-like class
3616        if (Union && !FieldRecord->hasTrivialCopyConstructor())
3617          return true;
3618
3619        // -- any [non-static data member] of a type with a destructor that is
3620        //    deleted or inaccessible from the defaulted constructor
3621        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3622        if (FieldDtor->isDeleted())
3623          return true;
3624        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3625            AR_accessible)
3626          return true;
3627      }
3628    }
3629
3630    llvm::SmallVector<InitializedEntity, 4> Entities;
3631    QualType CurType = FI->getType();
3632    Entities.push_back(InitializedEntity::InitializeMember(*FI, 0));
3633    while (CurType->isArrayType()) {
3634      Entities.push_back(InitializedEntity::InitializeElement(Context, 0,
3635                                                              Entities.back()));
3636      CurType = Context.getAsArrayType(CurType)->getElementType();
3637    }
3638
3639    InitializationKind Kind =
3640      InitializationKind::CreateDirect(Loc, Loc, Loc);
3641
3642    // Construct a fake expression to perform the copy overloading.
3643    QualType ArgType = FieldType;
3644    if (ArgType->isReferenceType())
3645      ArgType = ArgType->getPointeeType();
3646    else if (ConstArg)
3647      ArgType.addConst();
3648    Expr *Arg = new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue);
3649
3650    InitializationSequence InitSeq(*this, Entities.back(), Kind, &Arg, 1);
3651
3652    if (InitSeq.Failed())
3653      return true;
3654  }
3655
3656  return false;
3657}
3658
3659bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
3660  CXXRecordDecl *RD = MD->getParent();
3661  assert(!RD->isDependentType() && "do deletion after instantiation");
3662  if (!LangOpts.CPlusPlus0x)
3663    return false;
3664
3665  SourceLocation Loc = MD->getLocation();
3666
3667  // Do access control from the constructor
3668  ContextRAII MethodContext(*this, MD);
3669
3670  bool Union = RD->isUnion();
3671
3672  bool ConstArg =
3673    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified();
3674
3675  // We do this because we should never actually use an anonymous
3676  // union's constructor.
3677  if (Union && RD->isAnonymousStructOrUnion())
3678    return false;
3679
3680  DeclarationName OperatorName =
3681    Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3682  LookupResult R(*this, OperatorName, Loc, LookupOrdinaryName);
3683  R.suppressDiagnostics();
3684
3685  // FIXME: We should put some diagnostic logic right into this function.
3686
3687  // C++0x [class.copy]/11
3688  //    A defaulted [copy] assignment operator for class X is defined as deleted
3689  //    if X has:
3690
3691  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3692                                          BE = RD->bases_end();
3693       BI != BE; ++BI) {
3694    // We'll handle this one later
3695    if (BI->isVirtual())
3696      continue;
3697
3698    QualType BaseType = BI->getType();
3699    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3700    assert(BaseDecl && "base isn't a CXXRecordDecl");
3701
3702    // -- a [direct base class] B that cannot be [copied] because overload
3703    //    resolution, as applied to B's [copy] assignment operator, results in
3704    //    an ambiguity or a function that is deleted or inaccessible from the
3705    //    assignment operator
3706
3707    LookupQualifiedName(R, BaseDecl, false);
3708
3709    // Filter out any result that isn't a copy-assignment operator.
3710    LookupResult::Filter F = R.makeFilter();
3711    while (F.hasNext()) {
3712      NamedDecl *D = F.next();
3713      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3714        if (Method->isCopyAssignmentOperator())
3715          continue;
3716
3717      F.erase();
3718    }
3719    F.done();
3720
3721    // Build a fake argument expression
3722    QualType ArgType = BaseType;
3723    QualType ThisType = BaseType;
3724    if (ConstArg)
3725      ArgType.addConst();
3726    Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3727                   , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3728                   };
3729
3730    OverloadCandidateSet OCS((Loc));
3731    OverloadCandidateSet::iterator Best;
3732
3733    AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3734
3735    if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3736        OR_Success)
3737      return true;
3738  }
3739
3740  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3741                                          BE = RD->vbases_end();
3742       BI != BE; ++BI) {
3743    QualType BaseType = BI->getType();
3744    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3745    assert(BaseDecl && "base isn't a CXXRecordDecl");
3746
3747    // -- a [virtual base class] B that cannot be [copied] because overload
3748    //    resolution, as applied to B's [copy] assignment operator, results in
3749    //    an ambiguity or a function that is deleted or inaccessible from the
3750    //    assignment operator
3751
3752    LookupQualifiedName(R, BaseDecl, false);
3753
3754    // Filter out any result that isn't a copy-assignment operator.
3755    LookupResult::Filter F = R.makeFilter();
3756    while (F.hasNext()) {
3757      NamedDecl *D = F.next();
3758      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3759        if (Method->isCopyAssignmentOperator())
3760          continue;
3761
3762      F.erase();
3763    }
3764    F.done();
3765
3766    // Build a fake argument expression
3767    QualType ArgType = BaseType;
3768    QualType ThisType = BaseType;
3769    if (ConstArg)
3770      ArgType.addConst();
3771    Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3772                   , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3773                   };
3774
3775    OverloadCandidateSet OCS((Loc));
3776    OverloadCandidateSet::iterator Best;
3777
3778    AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3779
3780    if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3781        OR_Success)
3782      return true;
3783  }
3784
3785  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3786                                     FE = RD->field_end();
3787       FI != FE; ++FI) {
3788    QualType FieldType = Context.getBaseElementType(FI->getType());
3789
3790    // -- a non-static data member of reference type
3791    if (FieldType->isReferenceType())
3792      return true;
3793
3794    // -- a non-static data member of const non-class type (or array thereof)
3795    if (FieldType.isConstQualified() && !FieldType->isRecordType())
3796      return true;
3797
3798    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3799
3800    if (FieldRecord) {
3801      // This is an anonymous union
3802      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3803        // Anonymous unions inside unions do not variant members create
3804        if (!Union) {
3805          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3806                                             UE = FieldRecord->field_end();
3807               UI != UE; ++UI) {
3808            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3809            CXXRecordDecl *UnionFieldRecord =
3810              UnionFieldType->getAsCXXRecordDecl();
3811
3812            // -- a variant member with a non-trivial [copy] assignment operator
3813            //    and X is a union-like class
3814            if (UnionFieldRecord &&
3815                !UnionFieldRecord->hasTrivialCopyAssignment())
3816              return true;
3817          }
3818        }
3819
3820        // Don't try to initalize an anonymous union
3821        continue;
3822      // -- a variant member with a non-trivial [copy] assignment operator
3823      //    and X is a union-like class
3824      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
3825          return true;
3826      }
3827
3828      LookupQualifiedName(R, FieldRecord, false);
3829
3830      // Filter out any result that isn't a copy-assignment operator.
3831      LookupResult::Filter F = R.makeFilter();
3832      while (F.hasNext()) {
3833        NamedDecl *D = F.next();
3834        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3835          if (Method->isCopyAssignmentOperator())
3836            continue;
3837
3838        F.erase();
3839      }
3840      F.done();
3841
3842      // Build a fake argument expression
3843      QualType ArgType = FieldType;
3844      QualType ThisType = FieldType;
3845      if (ConstArg)
3846        ArgType.addConst();
3847      Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3848                     , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3849                     };
3850
3851      OverloadCandidateSet OCS((Loc));
3852      OverloadCandidateSet::iterator Best;
3853
3854      AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3855
3856      if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3857          OR_Success)
3858        return true;
3859    }
3860  }
3861
3862  return false;
3863}
3864
3865bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
3866  CXXRecordDecl *RD = DD->getParent();
3867  assert(!RD->isDependentType() && "do deletion after instantiation");
3868  if (!LangOpts.CPlusPlus0x)
3869    return false;
3870
3871  SourceLocation Loc = DD->getLocation();
3872
3873  // Do access control from the destructor
3874  ContextRAII CtorContext(*this, DD);
3875
3876  bool Union = RD->isUnion();
3877
3878  // We do this because we should never actually use an anonymous
3879  // union's destructor.
3880  if (Union && RD->isAnonymousStructOrUnion())
3881    return false;
3882
3883  // C++0x [class.dtor]p5
3884  //    A defaulted destructor for a class X is defined as deleted if:
3885  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3886                                          BE = RD->bases_end();
3887       BI != BE; ++BI) {
3888    // We'll handle this one later
3889    if (BI->isVirtual())
3890      continue;
3891
3892    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3893    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3894    assert(BaseDtor && "base has no destructor");
3895
3896    // -- any direct or virtual base class has a deleted destructor or
3897    //    a destructor that is inaccessible from the defaulted destructor
3898    if (BaseDtor->isDeleted())
3899      return true;
3900    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3901        AR_accessible)
3902      return true;
3903  }
3904
3905  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3906                                          BE = RD->vbases_end();
3907       BI != BE; ++BI) {
3908    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3909    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3910    assert(BaseDtor && "base has no destructor");
3911
3912    // -- any direct or virtual base class has a deleted destructor or
3913    //    a destructor that is inaccessible from the defaulted destructor
3914    if (BaseDtor->isDeleted())
3915      return true;
3916    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3917        AR_accessible)
3918      return true;
3919  }
3920
3921  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3922                                     FE = RD->field_end();
3923       FI != FE; ++FI) {
3924    QualType FieldType = Context.getBaseElementType(FI->getType());
3925    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3926    if (FieldRecord) {
3927      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3928         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3929                                            UE = FieldRecord->field_end();
3930              UI != UE; ++UI) {
3931           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
3932           CXXRecordDecl *UnionFieldRecord =
3933             UnionFieldType->getAsCXXRecordDecl();
3934
3935           // -- X is a union-like class that has a variant member with a non-
3936           //    trivial destructor.
3937           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
3938             return true;
3939         }
3940      // Technically we are supposed to do this next check unconditionally.
3941      // But that makes absolutely no sense.
3942      } else {
3943        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3944
3945        // -- any of the non-static data members has class type M (or array
3946        //    thereof) and M has a deleted destructor or a destructor that is
3947        //    inaccessible from the defaulted destructor
3948        if (FieldDtor->isDeleted())
3949          return true;
3950        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3951          AR_accessible)
3952        return true;
3953
3954        // -- X is a union-like class that has a variant member with a non-
3955        //    trivial destructor.
3956        if (Union && !FieldDtor->isTrivial())
3957          return true;
3958      }
3959    }
3960  }
3961
3962  if (DD->isVirtual()) {
3963    FunctionDecl *OperatorDelete = 0;
3964    DeclarationName Name =
3965      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3966    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
3967          false))
3968      return true;
3969  }
3970
3971
3972  return false;
3973}
3974
3975/// \brief Data used with FindHiddenVirtualMethod
3976namespace {
3977  struct FindHiddenVirtualMethodData {
3978    Sema *S;
3979    CXXMethodDecl *Method;
3980    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
3981    llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3982  };
3983}
3984
3985/// \brief Member lookup function that determines whether a given C++
3986/// method overloads virtual methods in a base class without overriding any,
3987/// to be used with CXXRecordDecl::lookupInBases().
3988static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
3989                                    CXXBasePath &Path,
3990                                    void *UserData) {
3991  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3992
3993  FindHiddenVirtualMethodData &Data
3994    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
3995
3996  DeclarationName Name = Data.Method->getDeclName();
3997  assert(Name.getNameKind() == DeclarationName::Identifier);
3998
3999  bool foundSameNameMethod = false;
4000  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4001  for (Path.Decls = BaseRecord->lookup(Name);
4002       Path.Decls.first != Path.Decls.second;
4003       ++Path.Decls.first) {
4004    NamedDecl *D = *Path.Decls.first;
4005    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4006      MD = MD->getCanonicalDecl();
4007      foundSameNameMethod = true;
4008      // Interested only in hidden virtual methods.
4009      if (!MD->isVirtual())
4010        continue;
4011      // If the method we are checking overrides a method from its base
4012      // don't warn about the other overloaded methods.
4013      if (!Data.S->IsOverload(Data.Method, MD, false))
4014        return true;
4015      // Collect the overload only if its hidden.
4016      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4017        overloadedMethods.push_back(MD);
4018    }
4019  }
4020
4021  if (foundSameNameMethod)
4022    Data.OverloadedMethods.append(overloadedMethods.begin(),
4023                                   overloadedMethods.end());
4024  return foundSameNameMethod;
4025}
4026
4027/// \brief See if a method overloads virtual methods in a base class without
4028/// overriding any.
4029void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4030  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4031                               MD->getLocation()) == Diagnostic::Ignored)
4032    return;
4033  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4034    return;
4035
4036  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4037                     /*bool RecordPaths=*/false,
4038                     /*bool DetectVirtual=*/false);
4039  FindHiddenVirtualMethodData Data;
4040  Data.Method = MD;
4041  Data.S = this;
4042
4043  // Keep the base methods that were overriden or introduced in the subclass
4044  // by 'using' in a set. A base method not in this set is hidden.
4045  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4046       res.first != res.second; ++res.first) {
4047    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4048      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4049                                          E = MD->end_overridden_methods();
4050           I != E; ++I)
4051        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4052    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4053      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4054        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4055  }
4056
4057  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4058      !Data.OverloadedMethods.empty()) {
4059    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4060      << MD << (Data.OverloadedMethods.size() > 1);
4061
4062    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4063      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4064      Diag(overloadedMD->getLocation(),
4065           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4066    }
4067  }
4068}
4069
4070void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4071                                             Decl *TagDecl,
4072                                             SourceLocation LBrac,
4073                                             SourceLocation RBrac,
4074                                             AttributeList *AttrList) {
4075  if (!TagDecl)
4076    return;
4077
4078  AdjustDeclIfTemplate(TagDecl);
4079
4080  ActOnFields(S, RLoc, TagDecl,
4081              // strict aliasing violation!
4082              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4083              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
4084
4085  CheckCompletedCXXClass(
4086                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4087}
4088
4089/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4090/// special functions, such as the default constructor, copy
4091/// constructor, or destructor, to the given C++ class (C++
4092/// [special]p1).  This routine can only be executed just before the
4093/// definition of the class is complete.
4094void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4095  if (!ClassDecl->hasUserDeclaredConstructor())
4096    ++ASTContext::NumImplicitDefaultConstructors;
4097
4098  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4099    ++ASTContext::NumImplicitCopyConstructors;
4100
4101  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4102    ++ASTContext::NumImplicitCopyAssignmentOperators;
4103
4104    // If we have a dynamic class, then the copy assignment operator may be
4105    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4106    // it shows up in the right place in the vtable and that we diagnose
4107    // problems with the implicit exception specification.
4108    if (ClassDecl->isDynamicClass())
4109      DeclareImplicitCopyAssignment(ClassDecl);
4110  }
4111
4112  if (!ClassDecl->hasUserDeclaredDestructor()) {
4113    ++ASTContext::NumImplicitDestructors;
4114
4115    // If we have a dynamic class, then the destructor may be virtual, so we
4116    // have to declare the destructor immediately. This ensures that, e.g., it
4117    // shows up in the right place in the vtable and that we diagnose problems
4118    // with the implicit exception specification.
4119    if (ClassDecl->isDynamicClass())
4120      DeclareImplicitDestructor(ClassDecl);
4121  }
4122}
4123
4124void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4125  if (!D)
4126    return;
4127
4128  int NumParamList = D->getNumTemplateParameterLists();
4129  for (int i = 0; i < NumParamList; i++) {
4130    TemplateParameterList* Params = D->getTemplateParameterList(i);
4131    for (TemplateParameterList::iterator Param = Params->begin(),
4132                                      ParamEnd = Params->end();
4133          Param != ParamEnd; ++Param) {
4134      NamedDecl *Named = cast<NamedDecl>(*Param);
4135      if (Named->getDeclName()) {
4136        S->AddDecl(Named);
4137        IdResolver.AddDecl(Named);
4138      }
4139    }
4140  }
4141}
4142
4143void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4144  if (!D)
4145    return;
4146
4147  TemplateParameterList *Params = 0;
4148  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4149    Params = Template->getTemplateParameters();
4150  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4151           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4152    Params = PartialSpec->getTemplateParameters();
4153  else
4154    return;
4155
4156  for (TemplateParameterList::iterator Param = Params->begin(),
4157                                    ParamEnd = Params->end();
4158       Param != ParamEnd; ++Param) {
4159    NamedDecl *Named = cast<NamedDecl>(*Param);
4160    if (Named->getDeclName()) {
4161      S->AddDecl(Named);
4162      IdResolver.AddDecl(Named);
4163    }
4164  }
4165}
4166
4167void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4168  if (!RecordD) return;
4169  AdjustDeclIfTemplate(RecordD);
4170  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4171  PushDeclContext(S, Record);
4172}
4173
4174void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4175  if (!RecordD) return;
4176  PopDeclContext();
4177}
4178
4179/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4180/// parsing a top-level (non-nested) C++ class, and we are now
4181/// parsing those parts of the given Method declaration that could
4182/// not be parsed earlier (C++ [class.mem]p2), such as default
4183/// arguments. This action should enter the scope of the given
4184/// Method declaration as if we had just parsed the qualified method
4185/// name. However, it should not bring the parameters into scope;
4186/// that will be performed by ActOnDelayedCXXMethodParameter.
4187void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4188}
4189
4190/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4191/// C++ method declaration. We're (re-)introducing the given
4192/// function parameter into scope for use in parsing later parts of
4193/// the method declaration. For example, we could see an
4194/// ActOnParamDefaultArgument event for this parameter.
4195void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4196  if (!ParamD)
4197    return;
4198
4199  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4200
4201  // If this parameter has an unparsed default argument, clear it out
4202  // to make way for the parsed default argument.
4203  if (Param->hasUnparsedDefaultArg())
4204    Param->setDefaultArg(0);
4205
4206  S->AddDecl(Param);
4207  if (Param->getDeclName())
4208    IdResolver.AddDecl(Param);
4209}
4210
4211/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4212/// processing the delayed method declaration for Method. The method
4213/// declaration is now considered finished. There may be a separate
4214/// ActOnStartOfFunctionDef action later (not necessarily
4215/// immediately!) for this method, if it was also defined inside the
4216/// class body.
4217void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4218  if (!MethodD)
4219    return;
4220
4221  AdjustDeclIfTemplate(MethodD);
4222
4223  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4224
4225  // Now that we have our default arguments, check the constructor
4226  // again. It could produce additional diagnostics or affect whether
4227  // the class has implicitly-declared destructors, among other
4228  // things.
4229  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4230    CheckConstructor(Constructor);
4231
4232  // Check the default arguments, which we may have added.
4233  if (!Method->isInvalidDecl())
4234    CheckCXXDefaultArguments(Method);
4235}
4236
4237/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4238/// the well-formedness of the constructor declarator @p D with type @p
4239/// R. If there are any errors in the declarator, this routine will
4240/// emit diagnostics and set the invalid bit to true.  In any case, the type
4241/// will be updated to reflect a well-formed type for the constructor and
4242/// returned.
4243QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4244                                          StorageClass &SC) {
4245  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4246
4247  // C++ [class.ctor]p3:
4248  //   A constructor shall not be virtual (10.3) or static (9.4). A
4249  //   constructor can be invoked for a const, volatile or const
4250  //   volatile object. A constructor shall not be declared const,
4251  //   volatile, or const volatile (9.3.2).
4252  if (isVirtual) {
4253    if (!D.isInvalidType())
4254      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4255        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4256        << SourceRange(D.getIdentifierLoc());
4257    D.setInvalidType();
4258  }
4259  if (SC == SC_Static) {
4260    if (!D.isInvalidType())
4261      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4262        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4263        << SourceRange(D.getIdentifierLoc());
4264    D.setInvalidType();
4265    SC = SC_None;
4266  }
4267
4268  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4269  if (FTI.TypeQuals != 0) {
4270    if (FTI.TypeQuals & Qualifiers::Const)
4271      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4272        << "const" << SourceRange(D.getIdentifierLoc());
4273    if (FTI.TypeQuals & Qualifiers::Volatile)
4274      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4275        << "volatile" << SourceRange(D.getIdentifierLoc());
4276    if (FTI.TypeQuals & Qualifiers::Restrict)
4277      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4278        << "restrict" << SourceRange(D.getIdentifierLoc());
4279    D.setInvalidType();
4280  }
4281
4282  // C++0x [class.ctor]p4:
4283  //   A constructor shall not be declared with a ref-qualifier.
4284  if (FTI.hasRefQualifier()) {
4285    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4286      << FTI.RefQualifierIsLValueRef
4287      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4288    D.setInvalidType();
4289  }
4290
4291  // Rebuild the function type "R" without any type qualifiers (in
4292  // case any of the errors above fired) and with "void" as the
4293  // return type, since constructors don't have return types.
4294  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4295  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4296    return R;
4297
4298  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4299  EPI.TypeQuals = 0;
4300  EPI.RefQualifier = RQ_None;
4301
4302  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4303                                 Proto->getNumArgs(), EPI);
4304}
4305
4306/// CheckConstructor - Checks a fully-formed constructor for
4307/// well-formedness, issuing any diagnostics required. Returns true if
4308/// the constructor declarator is invalid.
4309void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4310  CXXRecordDecl *ClassDecl
4311    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4312  if (!ClassDecl)
4313    return Constructor->setInvalidDecl();
4314
4315  // C++ [class.copy]p3:
4316  //   A declaration of a constructor for a class X is ill-formed if
4317  //   its first parameter is of type (optionally cv-qualified) X and
4318  //   either there are no other parameters or else all other
4319  //   parameters have default arguments.
4320  if (!Constructor->isInvalidDecl() &&
4321      ((Constructor->getNumParams() == 1) ||
4322       (Constructor->getNumParams() > 1 &&
4323        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4324      Constructor->getTemplateSpecializationKind()
4325                                              != TSK_ImplicitInstantiation) {
4326    QualType ParamType = Constructor->getParamDecl(0)->getType();
4327    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4328    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4329      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4330      const char *ConstRef
4331        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4332                                                        : " const &";
4333      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4334        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4335
4336      // FIXME: Rather that making the constructor invalid, we should endeavor
4337      // to fix the type.
4338      Constructor->setInvalidDecl();
4339    }
4340  }
4341}
4342
4343/// CheckDestructor - Checks a fully-formed destructor definition for
4344/// well-formedness, issuing any diagnostics required.  Returns true
4345/// on error.
4346bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4347  CXXRecordDecl *RD = Destructor->getParent();
4348
4349  if (Destructor->isVirtual()) {
4350    SourceLocation Loc;
4351
4352    if (!Destructor->isImplicit())
4353      Loc = Destructor->getLocation();
4354    else
4355      Loc = RD->getLocation();
4356
4357    // If we have a virtual destructor, look up the deallocation function
4358    FunctionDecl *OperatorDelete = 0;
4359    DeclarationName Name =
4360    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4361    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4362      return true;
4363
4364    MarkDeclarationReferenced(Loc, OperatorDelete);
4365
4366    Destructor->setOperatorDelete(OperatorDelete);
4367  }
4368
4369  return false;
4370}
4371
4372static inline bool
4373FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4374  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4375          FTI.ArgInfo[0].Param &&
4376          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4377}
4378
4379/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4380/// the well-formednes of the destructor declarator @p D with type @p
4381/// R. If there are any errors in the declarator, this routine will
4382/// emit diagnostics and set the declarator to invalid.  Even if this happens,
4383/// will be updated to reflect a well-formed type for the destructor and
4384/// returned.
4385QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
4386                                         StorageClass& SC) {
4387  // C++ [class.dtor]p1:
4388  //   [...] A typedef-name that names a class is a class-name
4389  //   (7.1.3); however, a typedef-name that names a class shall not
4390  //   be used as the identifier in the declarator for a destructor
4391  //   declaration.
4392  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
4393  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
4394    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4395      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
4396  else if (const TemplateSpecializationType *TST =
4397             DeclaratorType->getAs<TemplateSpecializationType>())
4398    if (TST->isTypeAlias())
4399      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4400        << DeclaratorType << 1;
4401
4402  // C++ [class.dtor]p2:
4403  //   A destructor is used to destroy objects of its class type. A
4404  //   destructor takes no parameters, and no return type can be
4405  //   specified for it (not even void). The address of a destructor
4406  //   shall not be taken. A destructor shall not be static. A
4407  //   destructor can be invoked for a const, volatile or const
4408  //   volatile object. A destructor shall not be declared const,
4409  //   volatile or const volatile (9.3.2).
4410  if (SC == SC_Static) {
4411    if (!D.isInvalidType())
4412      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
4413        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4414        << SourceRange(D.getIdentifierLoc())
4415        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4416
4417    SC = SC_None;
4418  }
4419  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4420    // Destructors don't have return types, but the parser will
4421    // happily parse something like:
4422    //
4423    //   class X {
4424    //     float ~X();
4425    //   };
4426    //
4427    // The return type will be eliminated later.
4428    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
4429      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4430      << SourceRange(D.getIdentifierLoc());
4431  }
4432
4433  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4434  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
4435    if (FTI.TypeQuals & Qualifiers::Const)
4436      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4437        << "const" << SourceRange(D.getIdentifierLoc());
4438    if (FTI.TypeQuals & Qualifiers::Volatile)
4439      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4440        << "volatile" << SourceRange(D.getIdentifierLoc());
4441    if (FTI.TypeQuals & Qualifiers::Restrict)
4442      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4443        << "restrict" << SourceRange(D.getIdentifierLoc());
4444    D.setInvalidType();
4445  }
4446
4447  // C++0x [class.dtor]p2:
4448  //   A destructor shall not be declared with a ref-qualifier.
4449  if (FTI.hasRefQualifier()) {
4450    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
4451      << FTI.RefQualifierIsLValueRef
4452      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4453    D.setInvalidType();
4454  }
4455
4456  // Make sure we don't have any parameters.
4457  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
4458    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
4459
4460    // Delete the parameters.
4461    FTI.freeArgs();
4462    D.setInvalidType();
4463  }
4464
4465  // Make sure the destructor isn't variadic.
4466  if (FTI.isVariadic) {
4467    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
4468    D.setInvalidType();
4469  }
4470
4471  // Rebuild the function type "R" without any type qualifiers or
4472  // parameters (in case any of the errors above fired) and with
4473  // "void" as the return type, since destructors don't have return
4474  // types.
4475  if (!D.isInvalidType())
4476    return R;
4477
4478  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4479  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4480  EPI.Variadic = false;
4481  EPI.TypeQuals = 0;
4482  EPI.RefQualifier = RQ_None;
4483  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4484}
4485
4486/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
4487/// well-formednes of the conversion function declarator @p D with
4488/// type @p R. If there are any errors in the declarator, this routine
4489/// will emit diagnostics and return true. Otherwise, it will return
4490/// false. Either way, the type @p R will be updated to reflect a
4491/// well-formed type for the conversion operator.
4492void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
4493                                     StorageClass& SC) {
4494  // C++ [class.conv.fct]p1:
4495  //   Neither parameter types nor return type can be specified. The
4496  //   type of a conversion function (8.3.5) is "function taking no
4497  //   parameter returning conversion-type-id."
4498  if (SC == SC_Static) {
4499    if (!D.isInvalidType())
4500      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
4501        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4502        << SourceRange(D.getIdentifierLoc());
4503    D.setInvalidType();
4504    SC = SC_None;
4505  }
4506
4507  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
4508
4509  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4510    // Conversion functions don't have return types, but the parser will
4511    // happily parse something like:
4512    //
4513    //   class X {
4514    //     float operator bool();
4515    //   };
4516    //
4517    // The return type will be changed later anyway.
4518    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
4519      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4520      << SourceRange(D.getIdentifierLoc());
4521    D.setInvalidType();
4522  }
4523
4524  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4525
4526  // Make sure we don't have any parameters.
4527  if (Proto->getNumArgs() > 0) {
4528    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
4529
4530    // Delete the parameters.
4531    D.getFunctionTypeInfo().freeArgs();
4532    D.setInvalidType();
4533  } else if (Proto->isVariadic()) {
4534    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
4535    D.setInvalidType();
4536  }
4537
4538  // Diagnose "&operator bool()" and other such nonsense.  This
4539  // is actually a gcc extension which we don't support.
4540  if (Proto->getResultType() != ConvType) {
4541    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
4542      << Proto->getResultType();
4543    D.setInvalidType();
4544    ConvType = Proto->getResultType();
4545  }
4546
4547  // C++ [class.conv.fct]p4:
4548  //   The conversion-type-id shall not represent a function type nor
4549  //   an array type.
4550  if (ConvType->isArrayType()) {
4551    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
4552    ConvType = Context.getPointerType(ConvType);
4553    D.setInvalidType();
4554  } else if (ConvType->isFunctionType()) {
4555    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
4556    ConvType = Context.getPointerType(ConvType);
4557    D.setInvalidType();
4558  }
4559
4560  // Rebuild the function type "R" without any parameters (in case any
4561  // of the errors above fired) and with the conversion type as the
4562  // return type.
4563  if (D.isInvalidType())
4564    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
4565
4566  // C++0x explicit conversion operators.
4567  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
4568    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4569         diag::warn_explicit_conversion_functions)
4570      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
4571}
4572
4573/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
4574/// the declaration of the given C++ conversion function. This routine
4575/// is responsible for recording the conversion function in the C++
4576/// class, if possible.
4577Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
4578  assert(Conversion && "Expected to receive a conversion function declaration");
4579
4580  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
4581
4582  // Make sure we aren't redeclaring the conversion function.
4583  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
4584
4585  // C++ [class.conv.fct]p1:
4586  //   [...] A conversion function is never used to convert a
4587  //   (possibly cv-qualified) object to the (possibly cv-qualified)
4588  //   same object type (or a reference to it), to a (possibly
4589  //   cv-qualified) base class of that type (or a reference to it),
4590  //   or to (possibly cv-qualified) void.
4591  // FIXME: Suppress this warning if the conversion function ends up being a
4592  // virtual function that overrides a virtual function in a base class.
4593  QualType ClassType
4594    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4595  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
4596    ConvType = ConvTypeRef->getPointeeType();
4597  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
4598      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4599    /* Suppress diagnostics for instantiations. */;
4600  else if (ConvType->isRecordType()) {
4601    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
4602    if (ConvType == ClassType)
4603      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
4604        << ClassType;
4605    else if (IsDerivedFrom(ClassType, ConvType))
4606      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
4607        <<  ClassType << ConvType;
4608  } else if (ConvType->isVoidType()) {
4609    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
4610      << ClassType << ConvType;
4611  }
4612
4613  if (FunctionTemplateDecl *ConversionTemplate
4614                                = Conversion->getDescribedFunctionTemplate())
4615    return ConversionTemplate;
4616
4617  return Conversion;
4618}
4619
4620//===----------------------------------------------------------------------===//
4621// Namespace Handling
4622//===----------------------------------------------------------------------===//
4623
4624
4625
4626/// ActOnStartNamespaceDef - This is called at the start of a namespace
4627/// definition.
4628Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
4629                                   SourceLocation InlineLoc,
4630                                   SourceLocation NamespaceLoc,
4631                                   SourceLocation IdentLoc,
4632                                   IdentifierInfo *II,
4633                                   SourceLocation LBrace,
4634                                   AttributeList *AttrList) {
4635  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
4636  // For anonymous namespace, take the location of the left brace.
4637  SourceLocation Loc = II ? IdentLoc : LBrace;
4638  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
4639                                                 StartLoc, Loc, II);
4640  Namespc->setInline(InlineLoc.isValid());
4641
4642  Scope *DeclRegionScope = NamespcScope->getParent();
4643
4644  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
4645
4646  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
4647    PushNamespaceVisibilityAttr(Attr);
4648
4649  if (II) {
4650    // C++ [namespace.def]p2:
4651    //   The identifier in an original-namespace-definition shall not
4652    //   have been previously defined in the declarative region in
4653    //   which the original-namespace-definition appears. The
4654    //   identifier in an original-namespace-definition is the name of
4655    //   the namespace. Subsequently in that declarative region, it is
4656    //   treated as an original-namespace-name.
4657    //
4658    // Since namespace names are unique in their scope, and we don't
4659    // look through using directives, just look for any ordinary names.
4660
4661    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
4662      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
4663      Decl::IDNS_Namespace;
4664    NamedDecl *PrevDecl = 0;
4665    for (DeclContext::lookup_result R
4666            = CurContext->getRedeclContext()->lookup(II);
4667         R.first != R.second; ++R.first) {
4668      if ((*R.first)->getIdentifierNamespace() & IDNS) {
4669        PrevDecl = *R.first;
4670        break;
4671      }
4672    }
4673
4674    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
4675      // This is an extended namespace definition.
4676      if (Namespc->isInline() != OrigNS->isInline()) {
4677        // inline-ness must match
4678        if (OrigNS->isInline()) {
4679          // The user probably just forgot the 'inline', so suggest that it
4680          // be added back.
4681          Diag(Namespc->getLocation(),
4682               diag::warn_inline_namespace_reopened_noninline)
4683            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
4684        } else {
4685          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4686            << Namespc->isInline();
4687        }
4688        Diag(OrigNS->getLocation(), diag::note_previous_definition);
4689
4690        // Recover by ignoring the new namespace's inline status.
4691        Namespc->setInline(OrigNS->isInline());
4692      }
4693
4694      // Attach this namespace decl to the chain of extended namespace
4695      // definitions.
4696      OrigNS->setNextNamespace(Namespc);
4697      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
4698
4699      // Remove the previous declaration from the scope.
4700      if (DeclRegionScope->isDeclScope(OrigNS)) {
4701        IdResolver.RemoveDecl(OrigNS);
4702        DeclRegionScope->RemoveDecl(OrigNS);
4703      }
4704    } else if (PrevDecl) {
4705      // This is an invalid name redefinition.
4706      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
4707       << Namespc->getDeclName();
4708      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4709      Namespc->setInvalidDecl();
4710      // Continue on to push Namespc as current DeclContext and return it.
4711    } else if (II->isStr("std") &&
4712               CurContext->getRedeclContext()->isTranslationUnit()) {
4713      // This is the first "real" definition of the namespace "std", so update
4714      // our cache of the "std" namespace to point at this definition.
4715      if (NamespaceDecl *StdNS = getStdNamespace()) {
4716        // We had already defined a dummy namespace "std". Link this new
4717        // namespace definition to the dummy namespace "std".
4718        StdNS->setNextNamespace(Namespc);
4719        StdNS->setLocation(IdentLoc);
4720        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
4721      }
4722
4723      // Make our StdNamespace cache point at the first real definition of the
4724      // "std" namespace.
4725      StdNamespace = Namespc;
4726    }
4727
4728    PushOnScopeChains(Namespc, DeclRegionScope);
4729  } else {
4730    // Anonymous namespaces.
4731    assert(Namespc->isAnonymousNamespace());
4732
4733    // Link the anonymous namespace into its parent.
4734    NamespaceDecl *PrevDecl;
4735    DeclContext *Parent = CurContext->getRedeclContext();
4736    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
4737      PrevDecl = TU->getAnonymousNamespace();
4738      TU->setAnonymousNamespace(Namespc);
4739    } else {
4740      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
4741      PrevDecl = ND->getAnonymousNamespace();
4742      ND->setAnonymousNamespace(Namespc);
4743    }
4744
4745    // Link the anonymous namespace with its previous declaration.
4746    if (PrevDecl) {
4747      assert(PrevDecl->isAnonymousNamespace());
4748      assert(!PrevDecl->getNextNamespace());
4749      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
4750      PrevDecl->setNextNamespace(Namespc);
4751
4752      if (Namespc->isInline() != PrevDecl->isInline()) {
4753        // inline-ness must match
4754        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4755          << Namespc->isInline();
4756        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4757        Namespc->setInvalidDecl();
4758        // Recover by ignoring the new namespace's inline status.
4759        Namespc->setInline(PrevDecl->isInline());
4760      }
4761    }
4762
4763    CurContext->addDecl(Namespc);
4764
4765    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
4766    //   behaves as if it were replaced by
4767    //     namespace unique { /* empty body */ }
4768    //     using namespace unique;
4769    //     namespace unique { namespace-body }
4770    //   where all occurrences of 'unique' in a translation unit are
4771    //   replaced by the same identifier and this identifier differs
4772    //   from all other identifiers in the entire program.
4773
4774    // We just create the namespace with an empty name and then add an
4775    // implicit using declaration, just like the standard suggests.
4776    //
4777    // CodeGen enforces the "universally unique" aspect by giving all
4778    // declarations semantically contained within an anonymous
4779    // namespace internal linkage.
4780
4781    if (!PrevDecl) {
4782      UsingDirectiveDecl* UD
4783        = UsingDirectiveDecl::Create(Context, CurContext,
4784                                     /* 'using' */ LBrace,
4785                                     /* 'namespace' */ SourceLocation(),
4786                                     /* qualifier */ NestedNameSpecifierLoc(),
4787                                     /* identifier */ SourceLocation(),
4788                                     Namespc,
4789                                     /* Ancestor */ CurContext);
4790      UD->setImplicit();
4791      CurContext->addDecl(UD);
4792    }
4793  }
4794
4795  // Although we could have an invalid decl (i.e. the namespace name is a
4796  // redefinition), push it as current DeclContext and try to continue parsing.
4797  // FIXME: We should be able to push Namespc here, so that the each DeclContext
4798  // for the namespace has the declarations that showed up in that particular
4799  // namespace definition.
4800  PushDeclContext(NamespcScope, Namespc);
4801  return Namespc;
4802}
4803
4804/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
4805/// is a namespace alias, returns the namespace it points to.
4806static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
4807  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
4808    return AD->getNamespace();
4809  return dyn_cast_or_null<NamespaceDecl>(D);
4810}
4811
4812/// ActOnFinishNamespaceDef - This callback is called after a namespace is
4813/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
4814void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
4815  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
4816  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
4817  Namespc->setRBraceLoc(RBrace);
4818  PopDeclContext();
4819  if (Namespc->hasAttr<VisibilityAttr>())
4820    PopPragmaVisibility();
4821}
4822
4823CXXRecordDecl *Sema::getStdBadAlloc() const {
4824  return cast_or_null<CXXRecordDecl>(
4825                                  StdBadAlloc.get(Context.getExternalSource()));
4826}
4827
4828NamespaceDecl *Sema::getStdNamespace() const {
4829  return cast_or_null<NamespaceDecl>(
4830                                 StdNamespace.get(Context.getExternalSource()));
4831}
4832
4833/// \brief Retrieve the special "std" namespace, which may require us to
4834/// implicitly define the namespace.
4835NamespaceDecl *Sema::getOrCreateStdNamespace() {
4836  if (!StdNamespace) {
4837    // The "std" namespace has not yet been defined, so build one implicitly.
4838    StdNamespace = NamespaceDecl::Create(Context,
4839                                         Context.getTranslationUnitDecl(),
4840                                         SourceLocation(), SourceLocation(),
4841                                         &PP.getIdentifierTable().get("std"));
4842    getStdNamespace()->setImplicit(true);
4843  }
4844
4845  return getStdNamespace();
4846}
4847
4848/// \brief Determine whether a using statement is in a context where it will be
4849/// apply in all contexts.
4850static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
4851  switch (CurContext->getDeclKind()) {
4852    case Decl::TranslationUnit:
4853      return true;
4854    case Decl::LinkageSpec:
4855      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
4856    default:
4857      return false;
4858  }
4859}
4860
4861Decl *Sema::ActOnUsingDirective(Scope *S,
4862                                          SourceLocation UsingLoc,
4863                                          SourceLocation NamespcLoc,
4864                                          CXXScopeSpec &SS,
4865                                          SourceLocation IdentLoc,
4866                                          IdentifierInfo *NamespcName,
4867                                          AttributeList *AttrList) {
4868  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4869  assert(NamespcName && "Invalid NamespcName.");
4870  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
4871
4872  // This can only happen along a recovery path.
4873  while (S->getFlags() & Scope::TemplateParamScope)
4874    S = S->getParent();
4875  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4876
4877  UsingDirectiveDecl *UDir = 0;
4878  NestedNameSpecifier *Qualifier = 0;
4879  if (SS.isSet())
4880    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4881
4882  // Lookup namespace name.
4883  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
4884  LookupParsedName(R, S, &SS);
4885  if (R.isAmbiguous())
4886    return 0;
4887
4888  if (R.empty()) {
4889    // Allow "using namespace std;" or "using namespace ::std;" even if
4890    // "std" hasn't been defined yet, for GCC compatibility.
4891    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
4892        NamespcName->isStr("std")) {
4893      Diag(IdentLoc, diag::ext_using_undefined_std);
4894      R.addDecl(getOrCreateStdNamespace());
4895      R.resolveKind();
4896    }
4897    // Otherwise, attempt typo correction.
4898    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4899                                                       CTC_NoKeywords, 0)) {
4900      if (R.getAsSingle<NamespaceDecl>() ||
4901          R.getAsSingle<NamespaceAliasDecl>()) {
4902        if (DeclContext *DC = computeDeclContext(SS, false))
4903          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4904            << NamespcName << DC << Corrected << SS.getRange()
4905            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4906        else
4907          Diag(IdentLoc, diag::err_using_directive_suggest)
4908            << NamespcName << Corrected
4909            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4910        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4911          << Corrected;
4912
4913        NamespcName = Corrected.getAsIdentifierInfo();
4914      } else {
4915        R.clear();
4916        R.setLookupName(NamespcName);
4917      }
4918    }
4919  }
4920
4921  if (!R.empty()) {
4922    NamedDecl *Named = R.getFoundDecl();
4923    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
4924        && "expected namespace decl");
4925    // C++ [namespace.udir]p1:
4926    //   A using-directive specifies that the names in the nominated
4927    //   namespace can be used in the scope in which the
4928    //   using-directive appears after the using-directive. During
4929    //   unqualified name lookup (3.4.1), the names appear as if they
4930    //   were declared in the nearest enclosing namespace which
4931    //   contains both the using-directive and the nominated
4932    //   namespace. [Note: in this context, "contains" means "contains
4933    //   directly or indirectly". ]
4934
4935    // Find enclosing context containing both using-directive and
4936    // nominated namespace.
4937    NamespaceDecl *NS = getNamespaceDecl(Named);
4938    DeclContext *CommonAncestor = cast<DeclContext>(NS);
4939    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
4940      CommonAncestor = CommonAncestor->getParent();
4941
4942    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
4943                                      SS.getWithLocInContext(Context),
4944                                      IdentLoc, Named, CommonAncestor);
4945
4946    if (IsUsingDirectiveInToplevelContext(CurContext) &&
4947        !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
4948      Diag(IdentLoc, diag::warn_using_directive_in_header);
4949    }
4950
4951    PushUsingDirective(S, UDir);
4952  } else {
4953    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
4954  }
4955
4956  // FIXME: We ignore attributes for now.
4957  return UDir;
4958}
4959
4960void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
4961  // If scope has associated entity, then using directive is at namespace
4962  // or translation unit scope. We add UsingDirectiveDecls, into
4963  // it's lookup structure.
4964  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
4965    Ctx->addDecl(UDir);
4966  else
4967    // Otherwise it is block-sope. using-directives will affect lookup
4968    // only to the end of scope.
4969    S->PushUsingDirective(UDir);
4970}
4971
4972
4973Decl *Sema::ActOnUsingDeclaration(Scope *S,
4974                                  AccessSpecifier AS,
4975                                  bool HasUsingKeyword,
4976                                  SourceLocation UsingLoc,
4977                                  CXXScopeSpec &SS,
4978                                  UnqualifiedId &Name,
4979                                  AttributeList *AttrList,
4980                                  bool IsTypeName,
4981                                  SourceLocation TypenameLoc) {
4982  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4983
4984  switch (Name.getKind()) {
4985  case UnqualifiedId::IK_Identifier:
4986  case UnqualifiedId::IK_OperatorFunctionId:
4987  case UnqualifiedId::IK_LiteralOperatorId:
4988  case UnqualifiedId::IK_ConversionFunctionId:
4989    break;
4990
4991  case UnqualifiedId::IK_ConstructorName:
4992  case UnqualifiedId::IK_ConstructorTemplateId:
4993    // C++0x inherited constructors.
4994    if (getLangOptions().CPlusPlus0x) break;
4995
4996    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
4997      << SS.getRange();
4998    return 0;
4999
5000  case UnqualifiedId::IK_DestructorName:
5001    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5002      << SS.getRange();
5003    return 0;
5004
5005  case UnqualifiedId::IK_TemplateId:
5006    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5007      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5008    return 0;
5009  }
5010
5011  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5012  DeclarationName TargetName = TargetNameInfo.getName();
5013  if (!TargetName)
5014    return 0;
5015
5016  // Warn about using declarations.
5017  // TODO: store that the declaration was written without 'using' and
5018  // talk about access decls instead of using decls in the
5019  // diagnostics.
5020  if (!HasUsingKeyword) {
5021    UsingLoc = Name.getSourceRange().getBegin();
5022
5023    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5024      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5025  }
5026
5027  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5028      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5029    return 0;
5030
5031  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5032                                        TargetNameInfo, AttrList,
5033                                        /* IsInstantiation */ false,
5034                                        IsTypeName, TypenameLoc);
5035  if (UD)
5036    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5037
5038  return UD;
5039}
5040
5041/// \brief Determine whether a using declaration considers the given
5042/// declarations as "equivalent", e.g., if they are redeclarations of
5043/// the same entity or are both typedefs of the same type.
5044static bool
5045IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5046                         bool &SuppressRedeclaration) {
5047  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5048    SuppressRedeclaration = false;
5049    return true;
5050  }
5051
5052  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5053    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5054      SuppressRedeclaration = true;
5055      return Context.hasSameType(TD1->getUnderlyingType(),
5056                                 TD2->getUnderlyingType());
5057    }
5058
5059  return false;
5060}
5061
5062
5063/// Determines whether to create a using shadow decl for a particular
5064/// decl, given the set of decls existing prior to this using lookup.
5065bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5066                                const LookupResult &Previous) {
5067  // Diagnose finding a decl which is not from a base class of the
5068  // current class.  We do this now because there are cases where this
5069  // function will silently decide not to build a shadow decl, which
5070  // will pre-empt further diagnostics.
5071  //
5072  // We don't need to do this in C++0x because we do the check once on
5073  // the qualifier.
5074  //
5075  // FIXME: diagnose the following if we care enough:
5076  //   struct A { int foo; };
5077  //   struct B : A { using A::foo; };
5078  //   template <class T> struct C : A {};
5079  //   template <class T> struct D : C<T> { using B::foo; } // <---
5080  // This is invalid (during instantiation) in C++03 because B::foo
5081  // resolves to the using decl in B, which is not a base class of D<T>.
5082  // We can't diagnose it immediately because C<T> is an unknown
5083  // specialization.  The UsingShadowDecl in D<T> then points directly
5084  // to A::foo, which will look well-formed when we instantiate.
5085  // The right solution is to not collapse the shadow-decl chain.
5086  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5087    DeclContext *OrigDC = Orig->getDeclContext();
5088
5089    // Handle enums and anonymous structs.
5090    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5091    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5092    while (OrigRec->isAnonymousStructOrUnion())
5093      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5094
5095    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5096      if (OrigDC == CurContext) {
5097        Diag(Using->getLocation(),
5098             diag::err_using_decl_nested_name_specifier_is_current_class)
5099          << Using->getQualifierLoc().getSourceRange();
5100        Diag(Orig->getLocation(), diag::note_using_decl_target);
5101        return true;
5102      }
5103
5104      Diag(Using->getQualifierLoc().getBeginLoc(),
5105           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5106        << Using->getQualifier()
5107        << cast<CXXRecordDecl>(CurContext)
5108        << Using->getQualifierLoc().getSourceRange();
5109      Diag(Orig->getLocation(), diag::note_using_decl_target);
5110      return true;
5111    }
5112  }
5113
5114  if (Previous.empty()) return false;
5115
5116  NamedDecl *Target = Orig;
5117  if (isa<UsingShadowDecl>(Target))
5118    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5119
5120  // If the target happens to be one of the previous declarations, we
5121  // don't have a conflict.
5122  //
5123  // FIXME: but we might be increasing its access, in which case we
5124  // should redeclare it.
5125  NamedDecl *NonTag = 0, *Tag = 0;
5126  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5127         I != E; ++I) {
5128    NamedDecl *D = (*I)->getUnderlyingDecl();
5129    bool Result;
5130    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5131      return Result;
5132
5133    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5134  }
5135
5136  if (Target->isFunctionOrFunctionTemplate()) {
5137    FunctionDecl *FD;
5138    if (isa<FunctionTemplateDecl>(Target))
5139      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5140    else
5141      FD = cast<FunctionDecl>(Target);
5142
5143    NamedDecl *OldDecl = 0;
5144    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5145    case Ovl_Overload:
5146      return false;
5147
5148    case Ovl_NonFunction:
5149      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5150      break;
5151
5152    // We found a decl with the exact signature.
5153    case Ovl_Match:
5154      // If we're in a record, we want to hide the target, so we
5155      // return true (without a diagnostic) to tell the caller not to
5156      // build a shadow decl.
5157      if (CurContext->isRecord())
5158        return true;
5159
5160      // If we're not in a record, this is an error.
5161      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5162      break;
5163    }
5164
5165    Diag(Target->getLocation(), diag::note_using_decl_target);
5166    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5167    return true;
5168  }
5169
5170  // Target is not a function.
5171
5172  if (isa<TagDecl>(Target)) {
5173    // No conflict between a tag and a non-tag.
5174    if (!Tag) return false;
5175
5176    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5177    Diag(Target->getLocation(), diag::note_using_decl_target);
5178    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5179    return true;
5180  }
5181
5182  // No conflict between a tag and a non-tag.
5183  if (!NonTag) return false;
5184
5185  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5186  Diag(Target->getLocation(), diag::note_using_decl_target);
5187  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5188  return true;
5189}
5190
5191/// Builds a shadow declaration corresponding to a 'using' declaration.
5192UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5193                                            UsingDecl *UD,
5194                                            NamedDecl *Orig) {
5195
5196  // If we resolved to another shadow declaration, just coalesce them.
5197  NamedDecl *Target = Orig;
5198  if (isa<UsingShadowDecl>(Target)) {
5199    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5200    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5201  }
5202
5203  UsingShadowDecl *Shadow
5204    = UsingShadowDecl::Create(Context, CurContext,
5205                              UD->getLocation(), UD, Target);
5206  UD->addShadowDecl(Shadow);
5207
5208  Shadow->setAccess(UD->getAccess());
5209  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
5210    Shadow->setInvalidDecl();
5211
5212  if (S)
5213    PushOnScopeChains(Shadow, S);
5214  else
5215    CurContext->addDecl(Shadow);
5216
5217
5218  return Shadow;
5219}
5220
5221/// Hides a using shadow declaration.  This is required by the current
5222/// using-decl implementation when a resolvable using declaration in a
5223/// class is followed by a declaration which would hide or override
5224/// one or more of the using decl's targets; for example:
5225///
5226///   struct Base { void foo(int); };
5227///   struct Derived : Base {
5228///     using Base::foo;
5229///     void foo(int);
5230///   };
5231///
5232/// The governing language is C++03 [namespace.udecl]p12:
5233///
5234///   When a using-declaration brings names from a base class into a
5235///   derived class scope, member functions in the derived class
5236///   override and/or hide member functions with the same name and
5237///   parameter types in a base class (rather than conflicting).
5238///
5239/// There are two ways to implement this:
5240///   (1) optimistically create shadow decls when they're not hidden
5241///       by existing declarations, or
5242///   (2) don't create any shadow decls (or at least don't make them
5243///       visible) until we've fully parsed/instantiated the class.
5244/// The problem with (1) is that we might have to retroactively remove
5245/// a shadow decl, which requires several O(n) operations because the
5246/// decl structures are (very reasonably) not designed for removal.
5247/// (2) avoids this but is very fiddly and phase-dependent.
5248void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
5249  if (Shadow->getDeclName().getNameKind() ==
5250        DeclarationName::CXXConversionFunctionName)
5251    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
5252
5253  // Remove it from the DeclContext...
5254  Shadow->getDeclContext()->removeDecl(Shadow);
5255
5256  // ...and the scope, if applicable...
5257  if (S) {
5258    S->RemoveDecl(Shadow);
5259    IdResolver.RemoveDecl(Shadow);
5260  }
5261
5262  // ...and the using decl.
5263  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
5264
5265  // TODO: complain somehow if Shadow was used.  It shouldn't
5266  // be possible for this to happen, because...?
5267}
5268
5269/// Builds a using declaration.
5270///
5271/// \param IsInstantiation - Whether this call arises from an
5272///   instantiation of an unresolved using declaration.  We treat
5273///   the lookup differently for these declarations.
5274NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
5275                                       SourceLocation UsingLoc,
5276                                       CXXScopeSpec &SS,
5277                                       const DeclarationNameInfo &NameInfo,
5278                                       AttributeList *AttrList,
5279                                       bool IsInstantiation,
5280                                       bool IsTypeName,
5281                                       SourceLocation TypenameLoc) {
5282  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5283  SourceLocation IdentLoc = NameInfo.getLoc();
5284  assert(IdentLoc.isValid() && "Invalid TargetName location.");
5285
5286  // FIXME: We ignore attributes for now.
5287
5288  if (SS.isEmpty()) {
5289    Diag(IdentLoc, diag::err_using_requires_qualname);
5290    return 0;
5291  }
5292
5293  // Do the redeclaration lookup in the current scope.
5294  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
5295                        ForRedeclaration);
5296  Previous.setHideTags(false);
5297  if (S) {
5298    LookupName(Previous, S);
5299
5300    // It is really dumb that we have to do this.
5301    LookupResult::Filter F = Previous.makeFilter();
5302    while (F.hasNext()) {
5303      NamedDecl *D = F.next();
5304      if (!isDeclInScope(D, CurContext, S))
5305        F.erase();
5306    }
5307    F.done();
5308  } else {
5309    assert(IsInstantiation && "no scope in non-instantiation");
5310    assert(CurContext->isRecord() && "scope not record in instantiation");
5311    LookupQualifiedName(Previous, CurContext);
5312  }
5313
5314  // Check for invalid redeclarations.
5315  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
5316    return 0;
5317
5318  // Check for bad qualifiers.
5319  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
5320    return 0;
5321
5322  DeclContext *LookupContext = computeDeclContext(SS);
5323  NamedDecl *D;
5324  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
5325  if (!LookupContext) {
5326    if (IsTypeName) {
5327      // FIXME: not all declaration name kinds are legal here
5328      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
5329                                              UsingLoc, TypenameLoc,
5330                                              QualifierLoc,
5331                                              IdentLoc, NameInfo.getName());
5332    } else {
5333      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
5334                                           QualifierLoc, NameInfo);
5335    }
5336  } else {
5337    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
5338                          NameInfo, IsTypeName);
5339  }
5340  D->setAccess(AS);
5341  CurContext->addDecl(D);
5342
5343  if (!LookupContext) return D;
5344  UsingDecl *UD = cast<UsingDecl>(D);
5345
5346  if (RequireCompleteDeclContext(SS, LookupContext)) {
5347    UD->setInvalidDecl();
5348    return UD;
5349  }
5350
5351  // Constructor inheriting using decls get special treatment.
5352  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
5353    if (CheckInheritedConstructorUsingDecl(UD))
5354      UD->setInvalidDecl();
5355    return UD;
5356  }
5357
5358  // Otherwise, look up the target name.
5359
5360  LookupResult R(*this, NameInfo, LookupOrdinaryName);
5361  R.setUsingDeclaration(true);
5362
5363  // Unlike most lookups, we don't always want to hide tag
5364  // declarations: tag names are visible through the using declaration
5365  // even if hidden by ordinary names, *except* in a dependent context
5366  // where it's important for the sanity of two-phase lookup.
5367  if (!IsInstantiation)
5368    R.setHideTags(false);
5369
5370  LookupQualifiedName(R, LookupContext);
5371
5372  if (R.empty()) {
5373    Diag(IdentLoc, diag::err_no_member)
5374      << NameInfo.getName() << LookupContext << SS.getRange();
5375    UD->setInvalidDecl();
5376    return UD;
5377  }
5378
5379  if (R.isAmbiguous()) {
5380    UD->setInvalidDecl();
5381    return UD;
5382  }
5383
5384  if (IsTypeName) {
5385    // If we asked for a typename and got a non-type decl, error out.
5386    if (!R.getAsSingle<TypeDecl>()) {
5387      Diag(IdentLoc, diag::err_using_typename_non_type);
5388      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
5389        Diag((*I)->getUnderlyingDecl()->getLocation(),
5390             diag::note_using_decl_target);
5391      UD->setInvalidDecl();
5392      return UD;
5393    }
5394  } else {
5395    // If we asked for a non-typename and we got a type, error out,
5396    // but only if this is an instantiation of an unresolved using
5397    // decl.  Otherwise just silently find the type name.
5398    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
5399      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
5400      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
5401      UD->setInvalidDecl();
5402      return UD;
5403    }
5404  }
5405
5406  // C++0x N2914 [namespace.udecl]p6:
5407  // A using-declaration shall not name a namespace.
5408  if (R.getAsSingle<NamespaceDecl>()) {
5409    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
5410      << SS.getRange();
5411    UD->setInvalidDecl();
5412    return UD;
5413  }
5414
5415  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
5416    if (!CheckUsingShadowDecl(UD, *I, Previous))
5417      BuildUsingShadowDecl(S, UD, *I);
5418  }
5419
5420  return UD;
5421}
5422
5423/// Additional checks for a using declaration referring to a constructor name.
5424bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
5425  if (UD->isTypeName()) {
5426    // FIXME: Cannot specify typename when specifying constructor
5427    return true;
5428  }
5429
5430  const Type *SourceType = UD->getQualifier()->getAsType();
5431  assert(SourceType &&
5432         "Using decl naming constructor doesn't have type in scope spec.");
5433  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
5434
5435  // Check whether the named type is a direct base class.
5436  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
5437  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
5438  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
5439       BaseIt != BaseE; ++BaseIt) {
5440    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
5441    if (CanonicalSourceType == BaseType)
5442      break;
5443  }
5444
5445  if (BaseIt == BaseE) {
5446    // Did not find SourceType in the bases.
5447    Diag(UD->getUsingLocation(),
5448         diag::err_using_decl_constructor_not_in_direct_base)
5449      << UD->getNameInfo().getSourceRange()
5450      << QualType(SourceType, 0) << TargetClass;
5451    return true;
5452  }
5453
5454  BaseIt->setInheritConstructors();
5455
5456  return false;
5457}
5458
5459/// Checks that the given using declaration is not an invalid
5460/// redeclaration.  Note that this is checking only for the using decl
5461/// itself, not for any ill-formedness among the UsingShadowDecls.
5462bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5463                                       bool isTypeName,
5464                                       const CXXScopeSpec &SS,
5465                                       SourceLocation NameLoc,
5466                                       const LookupResult &Prev) {
5467  // C++03 [namespace.udecl]p8:
5468  // C++0x [namespace.udecl]p10:
5469  //   A using-declaration is a declaration and can therefore be used
5470  //   repeatedly where (and only where) multiple declarations are
5471  //   allowed.
5472  //
5473  // That's in non-member contexts.
5474  if (!CurContext->getRedeclContext()->isRecord())
5475    return false;
5476
5477  NestedNameSpecifier *Qual
5478    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5479
5480  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
5481    NamedDecl *D = *I;
5482
5483    bool DTypename;
5484    NestedNameSpecifier *DQual;
5485    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
5486      DTypename = UD->isTypeName();
5487      DQual = UD->getQualifier();
5488    } else if (UnresolvedUsingValueDecl *UD
5489                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
5490      DTypename = false;
5491      DQual = UD->getQualifier();
5492    } else if (UnresolvedUsingTypenameDecl *UD
5493                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
5494      DTypename = true;
5495      DQual = UD->getQualifier();
5496    } else continue;
5497
5498    // using decls differ if one says 'typename' and the other doesn't.
5499    // FIXME: non-dependent using decls?
5500    if (isTypeName != DTypename) continue;
5501
5502    // using decls differ if they name different scopes (but note that
5503    // template instantiation can cause this check to trigger when it
5504    // didn't before instantiation).
5505    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
5506        Context.getCanonicalNestedNameSpecifier(DQual))
5507      continue;
5508
5509    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
5510    Diag(D->getLocation(), diag::note_using_decl) << 1;
5511    return true;
5512  }
5513
5514  return false;
5515}
5516
5517
5518/// Checks that the given nested-name qualifier used in a using decl
5519/// in the current context is appropriately related to the current
5520/// scope.  If an error is found, diagnoses it and returns true.
5521bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
5522                                   const CXXScopeSpec &SS,
5523                                   SourceLocation NameLoc) {
5524  DeclContext *NamedContext = computeDeclContext(SS);
5525
5526  if (!CurContext->isRecord()) {
5527    // C++03 [namespace.udecl]p3:
5528    // C++0x [namespace.udecl]p8:
5529    //   A using-declaration for a class member shall be a member-declaration.
5530
5531    // If we weren't able to compute a valid scope, it must be a
5532    // dependent class scope.
5533    if (!NamedContext || NamedContext->isRecord()) {
5534      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
5535        << SS.getRange();
5536      return true;
5537    }
5538
5539    // Otherwise, everything is known to be fine.
5540    return false;
5541  }
5542
5543  // The current scope is a record.
5544
5545  // If the named context is dependent, we can't decide much.
5546  if (!NamedContext) {
5547    // FIXME: in C++0x, we can diagnose if we can prove that the
5548    // nested-name-specifier does not refer to a base class, which is
5549    // still possible in some cases.
5550
5551    // Otherwise we have to conservatively report that things might be
5552    // okay.
5553    return false;
5554  }
5555
5556  if (!NamedContext->isRecord()) {
5557    // Ideally this would point at the last name in the specifier,
5558    // but we don't have that level of source info.
5559    Diag(SS.getRange().getBegin(),
5560         diag::err_using_decl_nested_name_specifier_is_not_class)
5561      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
5562    return true;
5563  }
5564
5565  if (!NamedContext->isDependentContext() &&
5566      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
5567    return true;
5568
5569  if (getLangOptions().CPlusPlus0x) {
5570    // C++0x [namespace.udecl]p3:
5571    //   In a using-declaration used as a member-declaration, the
5572    //   nested-name-specifier shall name a base class of the class
5573    //   being defined.
5574
5575    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
5576                                 cast<CXXRecordDecl>(NamedContext))) {
5577      if (CurContext == NamedContext) {
5578        Diag(NameLoc,
5579             diag::err_using_decl_nested_name_specifier_is_current_class)
5580          << SS.getRange();
5581        return true;
5582      }
5583
5584      Diag(SS.getRange().getBegin(),
5585           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5586        << (NestedNameSpecifier*) SS.getScopeRep()
5587        << cast<CXXRecordDecl>(CurContext)
5588        << SS.getRange();
5589      return true;
5590    }
5591
5592    return false;
5593  }
5594
5595  // C++03 [namespace.udecl]p4:
5596  //   A using-declaration used as a member-declaration shall refer
5597  //   to a member of a base class of the class being defined [etc.].
5598
5599  // Salient point: SS doesn't have to name a base class as long as
5600  // lookup only finds members from base classes.  Therefore we can
5601  // diagnose here only if we can prove that that can't happen,
5602  // i.e. if the class hierarchies provably don't intersect.
5603
5604  // TODO: it would be nice if "definitely valid" results were cached
5605  // in the UsingDecl and UsingShadowDecl so that these checks didn't
5606  // need to be repeated.
5607
5608  struct UserData {
5609    llvm::DenseSet<const CXXRecordDecl*> Bases;
5610
5611    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
5612      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5613      Data->Bases.insert(Base);
5614      return true;
5615    }
5616
5617    bool hasDependentBases(const CXXRecordDecl *Class) {
5618      return !Class->forallBases(collect, this);
5619    }
5620
5621    /// Returns true if the base is dependent or is one of the
5622    /// accumulated base classes.
5623    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
5624      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5625      return !Data->Bases.count(Base);
5626    }
5627
5628    bool mightShareBases(const CXXRecordDecl *Class) {
5629      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
5630    }
5631  };
5632
5633  UserData Data;
5634
5635  // Returns false if we find a dependent base.
5636  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
5637    return false;
5638
5639  // Returns false if the class has a dependent base or if it or one
5640  // of its bases is present in the base set of the current context.
5641  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
5642    return false;
5643
5644  Diag(SS.getRange().getBegin(),
5645       diag::err_using_decl_nested_name_specifier_is_not_base_class)
5646    << (NestedNameSpecifier*) SS.getScopeRep()
5647    << cast<CXXRecordDecl>(CurContext)
5648    << SS.getRange();
5649
5650  return true;
5651}
5652
5653Decl *Sema::ActOnAliasDeclaration(Scope *S,
5654                                  AccessSpecifier AS,
5655                                  MultiTemplateParamsArg TemplateParamLists,
5656                                  SourceLocation UsingLoc,
5657                                  UnqualifiedId &Name,
5658                                  TypeResult Type) {
5659  // Skip up to the relevant declaration scope.
5660  while (S->getFlags() & Scope::TemplateParamScope)
5661    S = S->getParent();
5662  assert((S->getFlags() & Scope::DeclScope) &&
5663         "got alias-declaration outside of declaration scope");
5664
5665  if (Type.isInvalid())
5666    return 0;
5667
5668  bool Invalid = false;
5669  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
5670  TypeSourceInfo *TInfo = 0;
5671  GetTypeFromParser(Type.get(), &TInfo);
5672
5673  if (DiagnoseClassNameShadow(CurContext, NameInfo))
5674    return 0;
5675
5676  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
5677                                      UPPC_DeclarationType)) {
5678    Invalid = true;
5679    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
5680                                             TInfo->getTypeLoc().getBeginLoc());
5681  }
5682
5683  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
5684  LookupName(Previous, S);
5685
5686  // Warn about shadowing the name of a template parameter.
5687  if (Previous.isSingleResult() &&
5688      Previous.getFoundDecl()->isTemplateParameter()) {
5689    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
5690                                        Previous.getFoundDecl()))
5691      Invalid = true;
5692    Previous.clear();
5693  }
5694
5695  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
5696         "name in alias declaration must be an identifier");
5697  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
5698                                               Name.StartLocation,
5699                                               Name.Identifier, TInfo);
5700
5701  NewTD->setAccess(AS);
5702
5703  if (Invalid)
5704    NewTD->setInvalidDecl();
5705
5706  CheckTypedefForVariablyModifiedType(S, NewTD);
5707  Invalid |= NewTD->isInvalidDecl();
5708
5709  bool Redeclaration = false;
5710
5711  NamedDecl *NewND;
5712  if (TemplateParamLists.size()) {
5713    TypeAliasTemplateDecl *OldDecl = 0;
5714    TemplateParameterList *OldTemplateParams = 0;
5715
5716    if (TemplateParamLists.size() != 1) {
5717      Diag(UsingLoc, diag::err_alias_template_extra_headers)
5718        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
5719         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
5720    }
5721    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
5722
5723    // Only consider previous declarations in the same scope.
5724    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
5725                         /*ExplicitInstantiationOrSpecialization*/false);
5726    if (!Previous.empty()) {
5727      Redeclaration = true;
5728
5729      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
5730      if (!OldDecl && !Invalid) {
5731        Diag(UsingLoc, diag::err_redefinition_different_kind)
5732          << Name.Identifier;
5733
5734        NamedDecl *OldD = Previous.getRepresentativeDecl();
5735        if (OldD->getLocation().isValid())
5736          Diag(OldD->getLocation(), diag::note_previous_definition);
5737
5738        Invalid = true;
5739      }
5740
5741      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
5742        if (TemplateParameterListsAreEqual(TemplateParams,
5743                                           OldDecl->getTemplateParameters(),
5744                                           /*Complain=*/true,
5745                                           TPL_TemplateMatch))
5746          OldTemplateParams = OldDecl->getTemplateParameters();
5747        else
5748          Invalid = true;
5749
5750        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
5751        if (!Invalid &&
5752            !Context.hasSameType(OldTD->getUnderlyingType(),
5753                                 NewTD->getUnderlyingType())) {
5754          // FIXME: The C++0x standard does not clearly say this is ill-formed,
5755          // but we can't reasonably accept it.
5756          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
5757            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
5758          if (OldTD->getLocation().isValid())
5759            Diag(OldTD->getLocation(), diag::note_previous_definition);
5760          Invalid = true;
5761        }
5762      }
5763    }
5764
5765    // Merge any previous default template arguments into our parameters,
5766    // and check the parameter list.
5767    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
5768                                   TPC_TypeAliasTemplate))
5769      return 0;
5770
5771    TypeAliasTemplateDecl *NewDecl =
5772      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
5773                                    Name.Identifier, TemplateParams,
5774                                    NewTD);
5775
5776    NewDecl->setAccess(AS);
5777
5778    if (Invalid)
5779      NewDecl->setInvalidDecl();
5780    else if (OldDecl)
5781      NewDecl->setPreviousDeclaration(OldDecl);
5782
5783    NewND = NewDecl;
5784  } else {
5785    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
5786    NewND = NewTD;
5787  }
5788
5789  if (!Redeclaration)
5790    PushOnScopeChains(NewND, S);
5791
5792  return NewND;
5793}
5794
5795Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
5796                                             SourceLocation NamespaceLoc,
5797                                             SourceLocation AliasLoc,
5798                                             IdentifierInfo *Alias,
5799                                             CXXScopeSpec &SS,
5800                                             SourceLocation IdentLoc,
5801                                             IdentifierInfo *Ident) {
5802
5803  // Lookup the namespace name.
5804  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
5805  LookupParsedName(R, S, &SS);
5806
5807  // Check if we have a previous declaration with the same name.
5808  NamedDecl *PrevDecl
5809    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
5810                       ForRedeclaration);
5811  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
5812    PrevDecl = 0;
5813
5814  if (PrevDecl) {
5815    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
5816      // We already have an alias with the same name that points to the same
5817      // namespace, so don't create a new one.
5818      // FIXME: At some point, we'll want to create the (redundant)
5819      // declaration to maintain better source information.
5820      if (!R.isAmbiguous() && !R.empty() &&
5821          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
5822        return 0;
5823    }
5824
5825    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
5826      diag::err_redefinition_different_kind;
5827    Diag(AliasLoc, DiagID) << Alias;
5828    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5829    return 0;
5830  }
5831
5832  if (R.isAmbiguous())
5833    return 0;
5834
5835  if (R.empty()) {
5836    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
5837                                                CTC_NoKeywords, 0)) {
5838      if (R.getAsSingle<NamespaceDecl>() ||
5839          R.getAsSingle<NamespaceAliasDecl>()) {
5840        if (DeclContext *DC = computeDeclContext(SS, false))
5841          Diag(IdentLoc, diag::err_using_directive_member_suggest)
5842            << Ident << DC << Corrected << SS.getRange()
5843            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5844        else
5845          Diag(IdentLoc, diag::err_using_directive_suggest)
5846            << Ident << Corrected
5847            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5848
5849        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
5850          << Corrected;
5851
5852        Ident = Corrected.getAsIdentifierInfo();
5853      } else {
5854        R.clear();
5855        R.setLookupName(Ident);
5856      }
5857    }
5858
5859    if (R.empty()) {
5860      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
5861      return 0;
5862    }
5863  }
5864
5865  NamespaceAliasDecl *AliasDecl =
5866    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
5867                               Alias, SS.getWithLocInContext(Context),
5868                               IdentLoc, R.getFoundDecl());
5869
5870  PushOnScopeChains(AliasDecl, S);
5871  return AliasDecl;
5872}
5873
5874namespace {
5875  /// \brief Scoped object used to handle the state changes required in Sema
5876  /// to implicitly define the body of a C++ member function;
5877  class ImplicitlyDefinedFunctionScope {
5878    Sema &S;
5879    Sema::ContextRAII SavedContext;
5880
5881  public:
5882    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
5883      : S(S), SavedContext(S, Method)
5884    {
5885      S.PushFunctionScope();
5886      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
5887    }
5888
5889    ~ImplicitlyDefinedFunctionScope() {
5890      S.PopExpressionEvaluationContext();
5891      S.PopFunctionOrBlockScope();
5892    }
5893  };
5894}
5895
5896Sema::ImplicitExceptionSpecification
5897Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
5898  // C++ [except.spec]p14:
5899  //   An implicitly declared special member function (Clause 12) shall have an
5900  //   exception-specification. [...]
5901  ImplicitExceptionSpecification ExceptSpec(Context);
5902
5903  // Direct base-class constructors.
5904  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5905                                       BEnd = ClassDecl->bases_end();
5906       B != BEnd; ++B) {
5907    if (B->isVirtual()) // Handled below.
5908      continue;
5909
5910    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5911      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5912      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
5913      // If this is a deleted function, add it anyway. This might be conformant
5914      // with the standard. This might not. I'm not sure. It might not matter.
5915      if (Constructor)
5916        ExceptSpec.CalledDecl(Constructor);
5917    }
5918  }
5919
5920  // Virtual base-class constructors.
5921  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5922                                       BEnd = ClassDecl->vbases_end();
5923       B != BEnd; ++B) {
5924    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5925      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5926      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
5927      // If this is a deleted function, add it anyway. This might be conformant
5928      // with the standard. This might not. I'm not sure. It might not matter.
5929      if (Constructor)
5930        ExceptSpec.CalledDecl(Constructor);
5931    }
5932  }
5933
5934  // Field constructors.
5935  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5936                               FEnd = ClassDecl->field_end();
5937       F != FEnd; ++F) {
5938    if (const RecordType *RecordTy
5939              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
5940      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5941      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
5942      // If this is a deleted function, add it anyway. This might be conformant
5943      // with the standard. This might not. I'm not sure. It might not matter.
5944      // In particular, the problem is that this function never gets called. It
5945      // might just be ill-formed because this function attempts to refer to
5946      // a deleted function here.
5947      if (Constructor)
5948        ExceptSpec.CalledDecl(Constructor);
5949    }
5950  }
5951
5952  return ExceptSpec;
5953}
5954
5955CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
5956                                                     CXXRecordDecl *ClassDecl) {
5957  // C++ [class.ctor]p5:
5958  //   A default constructor for a class X is a constructor of class X
5959  //   that can be called without an argument. If there is no
5960  //   user-declared constructor for class X, a default constructor is
5961  //   implicitly declared. An implicitly-declared default constructor
5962  //   is an inline public member of its class.
5963  assert(!ClassDecl->hasUserDeclaredConstructor() &&
5964         "Should not build implicit default constructor!");
5965
5966  ImplicitExceptionSpecification Spec =
5967    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
5968  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
5969
5970  // Create the actual constructor declaration.
5971  CanQualType ClassType
5972    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5973  SourceLocation ClassLoc = ClassDecl->getLocation();
5974  DeclarationName Name
5975    = Context.DeclarationNames.getCXXConstructorName(ClassType);
5976  DeclarationNameInfo NameInfo(Name, ClassLoc);
5977  CXXConstructorDecl *DefaultCon
5978    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5979                                 Context.getFunctionType(Context.VoidTy,
5980                                                         0, 0, EPI),
5981                                 /*TInfo=*/0,
5982                                 /*isExplicit=*/false,
5983                                 /*isInline=*/true,
5984                                 /*isImplicitlyDeclared=*/true);
5985  DefaultCon->setAccess(AS_public);
5986  DefaultCon->setDefaulted();
5987  DefaultCon->setImplicit();
5988  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
5989
5990  // Note that we have declared this constructor.
5991  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
5992
5993  if (Scope *S = getScopeForContext(ClassDecl))
5994    PushOnScopeChains(DefaultCon, S, false);
5995  ClassDecl->addDecl(DefaultCon);
5996
5997  if (ShouldDeleteDefaultConstructor(DefaultCon))
5998    DefaultCon->setDeletedAsWritten();
5999
6000  return DefaultCon;
6001}
6002
6003void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6004                                            CXXConstructorDecl *Constructor) {
6005  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6006          !Constructor->doesThisDeclarationHaveABody() &&
6007          !Constructor->isDeleted()) &&
6008    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6009
6010  CXXRecordDecl *ClassDecl = Constructor->getParent();
6011  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6012
6013  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6014  DiagnosticErrorTrap Trap(Diags);
6015  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6016      Trap.hasErrorOccurred()) {
6017    Diag(CurrentLocation, diag::note_member_synthesized_at)
6018      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6019    Constructor->setInvalidDecl();
6020    return;
6021  }
6022
6023  SourceLocation Loc = Constructor->getLocation();
6024  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6025
6026  Constructor->setUsed();
6027  MarkVTableUsed(CurrentLocation, ClassDecl);
6028
6029  if (ASTMutationListener *L = getASTMutationListener()) {
6030    L->CompletedImplicitDefinition(Constructor);
6031  }
6032}
6033
6034void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6035  // We start with an initial pass over the base classes to collect those that
6036  // inherit constructors from. If there are none, we can forgo all further
6037  // processing.
6038  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
6039  BasesVector BasesToInheritFrom;
6040  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6041                                          BaseE = ClassDecl->bases_end();
6042         BaseIt != BaseE; ++BaseIt) {
6043    if (BaseIt->getInheritConstructors()) {
6044      QualType Base = BaseIt->getType();
6045      if (Base->isDependentType()) {
6046        // If we inherit constructors from anything that is dependent, just
6047        // abort processing altogether. We'll get another chance for the
6048        // instantiations.
6049        return;
6050      }
6051      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6052    }
6053  }
6054  if (BasesToInheritFrom.empty())
6055    return;
6056
6057  // Now collect the constructors that we already have in the current class.
6058  // Those take precedence over inherited constructors.
6059  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6060  //   unless there is a user-declared constructor with the same signature in
6061  //   the class where the using-declaration appears.
6062  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6063  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6064                                    CtorE = ClassDecl->ctor_end();
6065       CtorIt != CtorE; ++CtorIt) {
6066    ExistingConstructors.insert(
6067        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6068  }
6069
6070  Scope *S = getScopeForContext(ClassDecl);
6071  DeclarationName CreatedCtorName =
6072      Context.DeclarationNames.getCXXConstructorName(
6073          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6074
6075  // Now comes the true work.
6076  // First, we keep a map from constructor types to the base that introduced
6077  // them. Needed for finding conflicting constructors. We also keep the
6078  // actually inserted declarations in there, for pretty diagnostics.
6079  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6080  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6081  ConstructorToSourceMap InheritedConstructors;
6082  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6083                             BaseE = BasesToInheritFrom.end();
6084       BaseIt != BaseE; ++BaseIt) {
6085    const RecordType *Base = *BaseIt;
6086    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6087    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6088    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6089                                      CtorE = BaseDecl->ctor_end();
6090         CtorIt != CtorE; ++CtorIt) {
6091      // Find the using declaration for inheriting this base's constructors.
6092      DeclarationName Name =
6093          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6094      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6095          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6096      SourceLocation UsingLoc = UD ? UD->getLocation() :
6097                                     ClassDecl->getLocation();
6098
6099      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6100      //   from the class X named in the using-declaration consists of actual
6101      //   constructors and notional constructors that result from the
6102      //   transformation of defaulted parameters as follows:
6103      //   - all non-template default constructors of X, and
6104      //   - for each non-template constructor of X that has at least one
6105      //     parameter with a default argument, the set of constructors that
6106      //     results from omitting any ellipsis parameter specification and
6107      //     successively omitting parameters with a default argument from the
6108      //     end of the parameter-type-list.
6109      CXXConstructorDecl *BaseCtor = *CtorIt;
6110      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6111      const FunctionProtoType *BaseCtorType =
6112          BaseCtor->getType()->getAs<FunctionProtoType>();
6113
6114      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6115                    maxParams = BaseCtor->getNumParams();
6116           params <= maxParams; ++params) {
6117        // Skip default constructors. They're never inherited.
6118        if (params == 0)
6119          continue;
6120        // Skip copy and move constructors for the same reason.
6121        if (CanBeCopyOrMove && params == 1)
6122          continue;
6123
6124        // Build up a function type for this particular constructor.
6125        // FIXME: The working paper does not consider that the exception spec
6126        // for the inheriting constructor might be larger than that of the
6127        // source. This code doesn't yet, either.
6128        const Type *NewCtorType;
6129        if (params == maxParams)
6130          NewCtorType = BaseCtorType;
6131        else {
6132          llvm::SmallVector<QualType, 16> Args;
6133          for (unsigned i = 0; i < params; ++i) {
6134            Args.push_back(BaseCtorType->getArgType(i));
6135          }
6136          FunctionProtoType::ExtProtoInfo ExtInfo =
6137              BaseCtorType->getExtProtoInfo();
6138          ExtInfo.Variadic = false;
6139          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6140                                                Args.data(), params, ExtInfo)
6141                       .getTypePtr();
6142        }
6143        const Type *CanonicalNewCtorType =
6144            Context.getCanonicalType(NewCtorType);
6145
6146        // Now that we have the type, first check if the class already has a
6147        // constructor with this signature.
6148        if (ExistingConstructors.count(CanonicalNewCtorType))
6149          continue;
6150
6151        // Then we check if we have already declared an inherited constructor
6152        // with this signature.
6153        std::pair<ConstructorToSourceMap::iterator, bool> result =
6154            InheritedConstructors.insert(std::make_pair(
6155                CanonicalNewCtorType,
6156                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6157        if (!result.second) {
6158          // Already in the map. If it came from a different class, that's an
6159          // error. Not if it's from the same.
6160          CanQualType PreviousBase = result.first->second.first;
6161          if (CanonicalBase != PreviousBase) {
6162            const CXXConstructorDecl *PrevCtor = result.first->second.second;
6163            const CXXConstructorDecl *PrevBaseCtor =
6164                PrevCtor->getInheritedConstructor();
6165            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
6166
6167            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
6168            Diag(BaseCtor->getLocation(),
6169                 diag::note_using_decl_constructor_conflict_current_ctor);
6170            Diag(PrevBaseCtor->getLocation(),
6171                 diag::note_using_decl_constructor_conflict_previous_ctor);
6172            Diag(PrevCtor->getLocation(),
6173                 diag::note_using_decl_constructor_conflict_previous_using);
6174          }
6175          continue;
6176        }
6177
6178        // OK, we're there, now add the constructor.
6179        // C++0x [class.inhctor]p8: [...] that would be performed by a
6180        //   user-writtern inline constructor [...]
6181        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
6182        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
6183            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
6184            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
6185            /*ImplicitlyDeclared=*/true);
6186        NewCtor->setAccess(BaseCtor->getAccess());
6187
6188        // Build up the parameter decls and add them.
6189        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
6190        for (unsigned i = 0; i < params; ++i) {
6191          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
6192                                                   UsingLoc, UsingLoc,
6193                                                   /*IdentifierInfo=*/0,
6194                                                   BaseCtorType->getArgType(i),
6195                                                   /*TInfo=*/0, SC_None,
6196                                                   SC_None, /*DefaultArg=*/0));
6197        }
6198        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
6199        NewCtor->setInheritedConstructor(BaseCtor);
6200
6201        PushOnScopeChains(NewCtor, S, false);
6202        ClassDecl->addDecl(NewCtor);
6203        result.first->second.second = NewCtor;
6204      }
6205    }
6206  }
6207}
6208
6209Sema::ImplicitExceptionSpecification
6210Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6211  // C++ [except.spec]p14:
6212  //   An implicitly declared special member function (Clause 12) shall have
6213  //   an exception-specification.
6214  ImplicitExceptionSpecification ExceptSpec(Context);
6215
6216  // Direct base-class destructors.
6217  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6218                                       BEnd = ClassDecl->bases_end();
6219       B != BEnd; ++B) {
6220    if (B->isVirtual()) // Handled below.
6221      continue;
6222
6223    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6224      ExceptSpec.CalledDecl(
6225                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6226  }
6227
6228  // Virtual base-class destructors.
6229  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6230                                       BEnd = ClassDecl->vbases_end();
6231       B != BEnd; ++B) {
6232    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6233      ExceptSpec.CalledDecl(
6234                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6235  }
6236
6237  // Field destructors.
6238  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6239                               FEnd = ClassDecl->field_end();
6240       F != FEnd; ++F) {
6241    if (const RecordType *RecordTy
6242        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
6243      ExceptSpec.CalledDecl(
6244                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
6245  }
6246
6247  return ExceptSpec;
6248}
6249
6250CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
6251  // C++ [class.dtor]p2:
6252  //   If a class has no user-declared destructor, a destructor is
6253  //   declared implicitly. An implicitly-declared destructor is an
6254  //   inline public member of its class.
6255
6256  ImplicitExceptionSpecification Spec =
6257      ComputeDefaultedDtorExceptionSpec(ClassDecl);
6258  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6259
6260  // Create the actual destructor declaration.
6261  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
6262
6263  CanQualType ClassType
6264    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6265  SourceLocation ClassLoc = ClassDecl->getLocation();
6266  DeclarationName Name
6267    = Context.DeclarationNames.getCXXDestructorName(ClassType);
6268  DeclarationNameInfo NameInfo(Name, ClassLoc);
6269  CXXDestructorDecl *Destructor
6270      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
6271                                  /*isInline=*/true,
6272                                  /*isImplicitlyDeclared=*/true);
6273  Destructor->setAccess(AS_public);
6274  Destructor->setDefaulted();
6275  Destructor->setImplicit();
6276  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
6277
6278  // Note that we have declared this destructor.
6279  ++ASTContext::NumImplicitDestructorsDeclared;
6280
6281  // Introduce this destructor into its scope.
6282  if (Scope *S = getScopeForContext(ClassDecl))
6283    PushOnScopeChains(Destructor, S, false);
6284  ClassDecl->addDecl(Destructor);
6285
6286  // This could be uniqued if it ever proves significant.
6287  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
6288
6289  if (ShouldDeleteDestructor(Destructor))
6290    Destructor->setDeletedAsWritten();
6291
6292  AddOverriddenMethods(ClassDecl, Destructor);
6293
6294  return Destructor;
6295}
6296
6297void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
6298                                    CXXDestructorDecl *Destructor) {
6299  assert((Destructor->isDefaulted() &&
6300          !Destructor->doesThisDeclarationHaveABody()) &&
6301         "DefineImplicitDestructor - call it for implicit default dtor");
6302  CXXRecordDecl *ClassDecl = Destructor->getParent();
6303  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
6304
6305  if (Destructor->isInvalidDecl())
6306    return;
6307
6308  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
6309
6310  DiagnosticErrorTrap Trap(Diags);
6311  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6312                                         Destructor->getParent());
6313
6314  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
6315    Diag(CurrentLocation, diag::note_member_synthesized_at)
6316      << CXXDestructor << Context.getTagDeclType(ClassDecl);
6317
6318    Destructor->setInvalidDecl();
6319    return;
6320  }
6321
6322  SourceLocation Loc = Destructor->getLocation();
6323  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6324
6325  Destructor->setUsed();
6326  MarkVTableUsed(CurrentLocation, ClassDecl);
6327
6328  if (ASTMutationListener *L = getASTMutationListener()) {
6329    L->CompletedImplicitDefinition(Destructor);
6330  }
6331}
6332
6333void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
6334                                         CXXDestructorDecl *destructor) {
6335  // C++11 [class.dtor]p3:
6336  //   A declaration of a destructor that does not have an exception-
6337  //   specification is implicitly considered to have the same exception-
6338  //   specification as an implicit declaration.
6339  const FunctionProtoType *dtorType = destructor->getType()->
6340                                        getAs<FunctionProtoType>();
6341  if (dtorType->hasExceptionSpec())
6342    return;
6343
6344  ImplicitExceptionSpecification exceptSpec =
6345      ComputeDefaultedDtorExceptionSpec(classDecl);
6346
6347  // Replace the destructor's type.
6348  FunctionProtoType::ExtProtoInfo epi;
6349  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
6350  epi.NumExceptions = exceptSpec.size();
6351  epi.Exceptions = exceptSpec.data();
6352  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
6353
6354  destructor->setType(ty);
6355
6356  // FIXME: If the destructor has a body that could throw, and the newly created
6357  // spec doesn't allow exceptions, we should emit a warning, because this
6358  // change in behavior can break conforming C++03 programs at runtime.
6359  // However, we don't have a body yet, so it needs to be done somewhere else.
6360}
6361
6362/// \brief Builds a statement that copies the given entity from \p From to
6363/// \c To.
6364///
6365/// This routine is used to copy the members of a class with an
6366/// implicitly-declared copy assignment operator. When the entities being
6367/// copied are arrays, this routine builds for loops to copy them.
6368///
6369/// \param S The Sema object used for type-checking.
6370///
6371/// \param Loc The location where the implicit copy is being generated.
6372///
6373/// \param T The type of the expressions being copied. Both expressions must
6374/// have this type.
6375///
6376/// \param To The expression we are copying to.
6377///
6378/// \param From The expression we are copying from.
6379///
6380/// \param CopyingBaseSubobject Whether we're copying a base subobject.
6381/// Otherwise, it's a non-static member subobject.
6382///
6383/// \param Depth Internal parameter recording the depth of the recursion.
6384///
6385/// \returns A statement or a loop that copies the expressions.
6386static StmtResult
6387BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
6388                      Expr *To, Expr *From,
6389                      bool CopyingBaseSubobject, unsigned Depth = 0) {
6390  // C++0x [class.copy]p30:
6391  //   Each subobject is assigned in the manner appropriate to its type:
6392  //
6393  //     - if the subobject is of class type, the copy assignment operator
6394  //       for the class is used (as if by explicit qualification; that is,
6395  //       ignoring any possible virtual overriding functions in more derived
6396  //       classes);
6397  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
6398    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6399
6400    // Look for operator=.
6401    DeclarationName Name
6402      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6403    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
6404    S.LookupQualifiedName(OpLookup, ClassDecl, false);
6405
6406    // Filter out any result that isn't a copy-assignment operator.
6407    LookupResult::Filter F = OpLookup.makeFilter();
6408    while (F.hasNext()) {
6409      NamedDecl *D = F.next();
6410      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
6411        if (Method->isCopyAssignmentOperator())
6412          continue;
6413
6414      F.erase();
6415    }
6416    F.done();
6417
6418    // Suppress the protected check (C++ [class.protected]) for each of the
6419    // assignment operators we found. This strange dance is required when
6420    // we're assigning via a base classes's copy-assignment operator. To
6421    // ensure that we're getting the right base class subobject (without
6422    // ambiguities), we need to cast "this" to that subobject type; to
6423    // ensure that we don't go through the virtual call mechanism, we need
6424    // to qualify the operator= name with the base class (see below). However,
6425    // this means that if the base class has a protected copy assignment
6426    // operator, the protected member access check will fail. So, we
6427    // rewrite "protected" access to "public" access in this case, since we
6428    // know by construction that we're calling from a derived class.
6429    if (CopyingBaseSubobject) {
6430      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
6431           L != LEnd; ++L) {
6432        if (L.getAccess() == AS_protected)
6433          L.setAccess(AS_public);
6434      }
6435    }
6436
6437    // Create the nested-name-specifier that will be used to qualify the
6438    // reference to operator=; this is required to suppress the virtual
6439    // call mechanism.
6440    CXXScopeSpec SS;
6441    SS.MakeTrivial(S.Context,
6442                   NestedNameSpecifier::Create(S.Context, 0, false,
6443                                               T.getTypePtr()),
6444                   Loc);
6445
6446    // Create the reference to operator=.
6447    ExprResult OpEqualRef
6448      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
6449                                   /*FirstQualifierInScope=*/0, OpLookup,
6450                                   /*TemplateArgs=*/0,
6451                                   /*SuppressQualifierCheck=*/true);
6452    if (OpEqualRef.isInvalid())
6453      return StmtError();
6454
6455    // Build the call to the assignment operator.
6456
6457    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
6458                                                  OpEqualRef.takeAs<Expr>(),
6459                                                  Loc, &From, 1, Loc);
6460    if (Call.isInvalid())
6461      return StmtError();
6462
6463    return S.Owned(Call.takeAs<Stmt>());
6464  }
6465
6466  //     - if the subobject is of scalar type, the built-in assignment
6467  //       operator is used.
6468  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
6469  if (!ArrayTy) {
6470    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
6471    if (Assignment.isInvalid())
6472      return StmtError();
6473
6474    return S.Owned(Assignment.takeAs<Stmt>());
6475  }
6476
6477  //     - if the subobject is an array, each element is assigned, in the
6478  //       manner appropriate to the element type;
6479
6480  // Construct a loop over the array bounds, e.g.,
6481  //
6482  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
6483  //
6484  // that will copy each of the array elements.
6485  QualType SizeType = S.Context.getSizeType();
6486
6487  // Create the iteration variable.
6488  IdentifierInfo *IterationVarName = 0;
6489  {
6490    llvm::SmallString<8> Str;
6491    llvm::raw_svector_ostream OS(Str);
6492    OS << "__i" << Depth;
6493    IterationVarName = &S.Context.Idents.get(OS.str());
6494  }
6495  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
6496                                          IterationVarName, SizeType,
6497                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
6498                                          SC_None, SC_None);
6499
6500  // Initialize the iteration variable to zero.
6501  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
6502  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
6503
6504  // Create a reference to the iteration variable; we'll use this several
6505  // times throughout.
6506  Expr *IterationVarRef
6507    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
6508  assert(IterationVarRef && "Reference to invented variable cannot fail!");
6509
6510  // Create the DeclStmt that holds the iteration variable.
6511  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
6512
6513  // Create the comparison against the array bound.
6514  llvm::APInt Upper
6515    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
6516  Expr *Comparison
6517    = new (S.Context) BinaryOperator(IterationVarRef,
6518                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
6519                                     BO_NE, S.Context.BoolTy,
6520                                     VK_RValue, OK_Ordinary, Loc);
6521
6522  // Create the pre-increment of the iteration variable.
6523  Expr *Increment
6524    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
6525                                    VK_LValue, OK_Ordinary, Loc);
6526
6527  // Subscript the "from" and "to" expressions with the iteration variable.
6528  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
6529                                                         IterationVarRef, Loc));
6530  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
6531                                                       IterationVarRef, Loc));
6532
6533  // Build the copy for an individual element of the array.
6534  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
6535                                          To, From, CopyingBaseSubobject,
6536                                          Depth + 1);
6537  if (Copy.isInvalid())
6538    return StmtError();
6539
6540  // Construct the loop that copies all elements of this array.
6541  return S.ActOnForStmt(Loc, Loc, InitStmt,
6542                        S.MakeFullExpr(Comparison),
6543                        0, S.MakeFullExpr(Increment),
6544                        Loc, Copy.take());
6545}
6546
6547/// \brief Determine whether the given class has a copy assignment operator
6548/// that accepts a const-qualified argument.
6549static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
6550  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
6551
6552  if (!Class->hasDeclaredCopyAssignment())
6553    S.DeclareImplicitCopyAssignment(Class);
6554
6555  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
6556  DeclarationName OpName
6557    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6558
6559  DeclContext::lookup_const_iterator Op, OpEnd;
6560  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
6561    // C++ [class.copy]p9:
6562    //   A user-declared copy assignment operator is a non-static non-template
6563    //   member function of class X with exactly one parameter of type X, X&,
6564    //   const X&, volatile X& or const volatile X&.
6565    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
6566    if (!Method)
6567      continue;
6568
6569    if (Method->isStatic())
6570      continue;
6571    if (Method->getPrimaryTemplate())
6572      continue;
6573    const FunctionProtoType *FnType =
6574    Method->getType()->getAs<FunctionProtoType>();
6575    assert(FnType && "Overloaded operator has no prototype.");
6576    // Don't assert on this; an invalid decl might have been left in the AST.
6577    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
6578      continue;
6579    bool AcceptsConst = true;
6580    QualType ArgType = FnType->getArgType(0);
6581    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
6582      ArgType = Ref->getPointeeType();
6583      // Is it a non-const lvalue reference?
6584      if (!ArgType.isConstQualified())
6585        AcceptsConst = false;
6586    }
6587    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
6588      continue;
6589
6590    // We have a single argument of type cv X or cv X&, i.e. we've found the
6591    // copy assignment operator. Return whether it accepts const arguments.
6592    return AcceptsConst;
6593  }
6594  assert(Class->isInvalidDecl() &&
6595         "No copy assignment operator declared in valid code.");
6596  return false;
6597}
6598
6599std::pair<Sema::ImplicitExceptionSpecification, bool>
6600Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
6601                                                   CXXRecordDecl *ClassDecl) {
6602  // C++ [class.copy]p10:
6603  //   If the class definition does not explicitly declare a copy
6604  //   assignment operator, one is declared implicitly.
6605  //   The implicitly-defined copy assignment operator for a class X
6606  //   will have the form
6607  //
6608  //       X& X::operator=(const X&)
6609  //
6610  //   if
6611  bool HasConstCopyAssignment = true;
6612
6613  //       -- each direct base class B of X has a copy assignment operator
6614  //          whose parameter is of type const B&, const volatile B& or B,
6615  //          and
6616  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6617                                       BaseEnd = ClassDecl->bases_end();
6618       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6619    assert(!Base->getType()->isDependentType() &&
6620           "Cannot generate implicit members for class with dependent bases.");
6621    const CXXRecordDecl *BaseClassDecl
6622      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6623    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
6624  }
6625
6626  //       -- for all the nonstatic data members of X that are of a class
6627  //          type M (or array thereof), each such class type has a copy
6628  //          assignment operator whose parameter is of type const M&,
6629  //          const volatile M& or M.
6630  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6631                                  FieldEnd = ClassDecl->field_end();
6632       HasConstCopyAssignment && Field != FieldEnd;
6633       ++Field) {
6634    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6635    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6636      const CXXRecordDecl *FieldClassDecl
6637        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6638      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
6639    }
6640  }
6641
6642  //   Otherwise, the implicitly declared copy assignment operator will
6643  //   have the form
6644  //
6645  //       X& X::operator=(X&)
6646
6647  // C++ [except.spec]p14:
6648  //   An implicitly declared special member function (Clause 12) shall have an
6649  //   exception-specification. [...]
6650  ImplicitExceptionSpecification ExceptSpec(Context);
6651  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6652                                       BaseEnd = ClassDecl->bases_end();
6653       Base != BaseEnd; ++Base) {
6654    CXXRecordDecl *BaseClassDecl
6655      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6656
6657    if (!BaseClassDecl->hasDeclaredCopyAssignment())
6658      DeclareImplicitCopyAssignment(BaseClassDecl);
6659
6660    if (CXXMethodDecl *CopyAssign
6661           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
6662      ExceptSpec.CalledDecl(CopyAssign);
6663  }
6664  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6665                                  FieldEnd = ClassDecl->field_end();
6666       Field != FieldEnd;
6667       ++Field) {
6668    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6669    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6670      CXXRecordDecl *FieldClassDecl
6671        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6672
6673      if (!FieldClassDecl->hasDeclaredCopyAssignment())
6674        DeclareImplicitCopyAssignment(FieldClassDecl);
6675
6676      if (CXXMethodDecl *CopyAssign
6677            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
6678        ExceptSpec.CalledDecl(CopyAssign);
6679    }
6680  }
6681
6682  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
6683}
6684
6685CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
6686  // Note: The following rules are largely analoguous to the copy
6687  // constructor rules. Note that virtual bases are not taken into account
6688  // for determining the argument type of the operator. Note also that
6689  // operators taking an object instead of a reference are allowed.
6690
6691  ImplicitExceptionSpecification Spec(Context);
6692  bool Const;
6693  llvm::tie(Spec, Const) =
6694    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
6695
6696  QualType ArgType = Context.getTypeDeclType(ClassDecl);
6697  QualType RetType = Context.getLValueReferenceType(ArgType);
6698  if (Const)
6699    ArgType = ArgType.withConst();
6700  ArgType = Context.getLValueReferenceType(ArgType);
6701
6702  //   An implicitly-declared copy assignment operator is an inline public
6703  //   member of its class.
6704  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6705  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6706  SourceLocation ClassLoc = ClassDecl->getLocation();
6707  DeclarationNameInfo NameInfo(Name, ClassLoc);
6708  CXXMethodDecl *CopyAssignment
6709    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6710                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
6711                            /*TInfo=*/0, /*isStatic=*/false,
6712                            /*StorageClassAsWritten=*/SC_None,
6713                            /*isInline=*/true,
6714                            SourceLocation());
6715  CopyAssignment->setAccess(AS_public);
6716  CopyAssignment->setDefaulted();
6717  CopyAssignment->setImplicit();
6718  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
6719
6720  // Add the parameter to the operator.
6721  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
6722                                               ClassLoc, ClassLoc, /*Id=*/0,
6723                                               ArgType, /*TInfo=*/0,
6724                                               SC_None,
6725                                               SC_None, 0);
6726  CopyAssignment->setParams(&FromParam, 1);
6727
6728  // Note that we have added this copy-assignment operator.
6729  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
6730
6731  if (Scope *S = getScopeForContext(ClassDecl))
6732    PushOnScopeChains(CopyAssignment, S, false);
6733  ClassDecl->addDecl(CopyAssignment);
6734
6735  if (ShouldDeleteCopyAssignmentOperator(CopyAssignment))
6736    CopyAssignment->setDeletedAsWritten();
6737
6738  AddOverriddenMethods(ClassDecl, CopyAssignment);
6739  return CopyAssignment;
6740}
6741
6742void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6743                                        CXXMethodDecl *CopyAssignOperator) {
6744  assert((CopyAssignOperator->isDefaulted() &&
6745          CopyAssignOperator->isOverloadedOperator() &&
6746          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
6747          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
6748         "DefineImplicitCopyAssignment called for wrong function");
6749
6750  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
6751
6752  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
6753    CopyAssignOperator->setInvalidDecl();
6754    return;
6755  }
6756
6757  CopyAssignOperator->setUsed();
6758
6759  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
6760  DiagnosticErrorTrap Trap(Diags);
6761
6762  // C++0x [class.copy]p30:
6763  //   The implicitly-defined or explicitly-defaulted copy assignment operator
6764  //   for a non-union class X performs memberwise copy assignment of its
6765  //   subobjects. The direct base classes of X are assigned first, in the
6766  //   order of their declaration in the base-specifier-list, and then the
6767  //   immediate non-static data members of X are assigned, in the order in
6768  //   which they were declared in the class definition.
6769
6770  // The statements that form the synthesized function body.
6771  ASTOwningVector<Stmt*> Statements(*this);
6772
6773  // The parameter for the "other" object, which we are copying from.
6774  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
6775  Qualifiers OtherQuals = Other->getType().getQualifiers();
6776  QualType OtherRefType = Other->getType();
6777  if (const LValueReferenceType *OtherRef
6778                                = OtherRefType->getAs<LValueReferenceType>()) {
6779    OtherRefType = OtherRef->getPointeeType();
6780    OtherQuals = OtherRefType.getQualifiers();
6781  }
6782
6783  // Our location for everything implicitly-generated.
6784  SourceLocation Loc = CopyAssignOperator->getLocation();
6785
6786  // Construct a reference to the "other" object. We'll be using this
6787  // throughout the generated ASTs.
6788  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
6789  assert(OtherRef && "Reference to parameter cannot fail!");
6790
6791  // Construct the "this" pointer. We'll be using this throughout the generated
6792  // ASTs.
6793  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
6794  assert(This && "Reference to this cannot fail!");
6795
6796  // Assign base classes.
6797  bool Invalid = false;
6798  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6799       E = ClassDecl->bases_end(); Base != E; ++Base) {
6800    // Form the assignment:
6801    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
6802    QualType BaseType = Base->getType().getUnqualifiedType();
6803    if (!BaseType->isRecordType()) {
6804      Invalid = true;
6805      continue;
6806    }
6807
6808    CXXCastPath BasePath;
6809    BasePath.push_back(Base);
6810
6811    // Construct the "from" expression, which is an implicit cast to the
6812    // appropriately-qualified base type.
6813    Expr *From = OtherRef;
6814    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
6815                             CK_UncheckedDerivedToBase,
6816                             VK_LValue, &BasePath).take();
6817
6818    // Dereference "this".
6819    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
6820
6821    // Implicitly cast "this" to the appropriately-qualified base type.
6822    To = ImpCastExprToType(To.take(),
6823                           Context.getCVRQualifiedType(BaseType,
6824                                     CopyAssignOperator->getTypeQualifiers()),
6825                           CK_UncheckedDerivedToBase,
6826                           VK_LValue, &BasePath);
6827
6828    // Build the copy.
6829    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
6830                                            To.get(), From,
6831                                            /*CopyingBaseSubobject=*/true);
6832    if (Copy.isInvalid()) {
6833      Diag(CurrentLocation, diag::note_member_synthesized_at)
6834        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6835      CopyAssignOperator->setInvalidDecl();
6836      return;
6837    }
6838
6839    // Success! Record the copy.
6840    Statements.push_back(Copy.takeAs<Expr>());
6841  }
6842
6843  // \brief Reference to the __builtin_memcpy function.
6844  Expr *BuiltinMemCpyRef = 0;
6845  // \brief Reference to the __builtin_objc_memmove_collectable function.
6846  Expr *CollectableMemCpyRef = 0;
6847
6848  // Assign non-static members.
6849  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6850                                  FieldEnd = ClassDecl->field_end();
6851       Field != FieldEnd; ++Field) {
6852    // Check for members of reference type; we can't copy those.
6853    if (Field->getType()->isReferenceType()) {
6854      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6855        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
6856      Diag(Field->getLocation(), diag::note_declared_at);
6857      Diag(CurrentLocation, diag::note_member_synthesized_at)
6858        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6859      Invalid = true;
6860      continue;
6861    }
6862
6863    // Check for members of const-qualified, non-class type.
6864    QualType BaseType = Context.getBaseElementType(Field->getType());
6865    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
6866      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6867        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
6868      Diag(Field->getLocation(), diag::note_declared_at);
6869      Diag(CurrentLocation, diag::note_member_synthesized_at)
6870        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6871      Invalid = true;
6872      continue;
6873    }
6874
6875    QualType FieldType = Field->getType().getNonReferenceType();
6876    if (FieldType->isIncompleteArrayType()) {
6877      assert(ClassDecl->hasFlexibleArrayMember() &&
6878             "Incomplete array type is not valid");
6879      continue;
6880    }
6881
6882    // Build references to the field in the object we're copying from and to.
6883    CXXScopeSpec SS; // Intentionally empty
6884    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
6885                              LookupMemberName);
6886    MemberLookup.addDecl(*Field);
6887    MemberLookup.resolveKind();
6888    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
6889                                               Loc, /*IsArrow=*/false,
6890                                               SS, 0, MemberLookup, 0);
6891    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
6892                                             Loc, /*IsArrow=*/true,
6893                                             SS, 0, MemberLookup, 0);
6894    assert(!From.isInvalid() && "Implicit field reference cannot fail");
6895    assert(!To.isInvalid() && "Implicit field reference cannot fail");
6896
6897    // If the field should be copied with __builtin_memcpy rather than via
6898    // explicit assignments, do so. This optimization only applies for arrays
6899    // of scalars and arrays of class type with trivial copy-assignment
6900    // operators.
6901    if (FieldType->isArrayType() &&
6902        (!BaseType->isRecordType() ||
6903         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
6904           ->hasTrivialCopyAssignment())) {
6905      // Compute the size of the memory buffer to be copied.
6906      QualType SizeType = Context.getSizeType();
6907      llvm::APInt Size(Context.getTypeSize(SizeType),
6908                       Context.getTypeSizeInChars(BaseType).getQuantity());
6909      for (const ConstantArrayType *Array
6910              = Context.getAsConstantArrayType(FieldType);
6911           Array;
6912           Array = Context.getAsConstantArrayType(Array->getElementType())) {
6913        llvm::APInt ArraySize
6914          = Array->getSize().zextOrTrunc(Size.getBitWidth());
6915        Size *= ArraySize;
6916      }
6917
6918      // Take the address of the field references for "from" and "to".
6919      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
6920      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
6921
6922      bool NeedsCollectableMemCpy =
6923          (BaseType->isRecordType() &&
6924           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
6925
6926      if (NeedsCollectableMemCpy) {
6927        if (!CollectableMemCpyRef) {
6928          // Create a reference to the __builtin_objc_memmove_collectable function.
6929          LookupResult R(*this,
6930                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
6931                         Loc, LookupOrdinaryName);
6932          LookupName(R, TUScope, true);
6933
6934          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
6935          if (!CollectableMemCpy) {
6936            // Something went horribly wrong earlier, and we will have
6937            // complained about it.
6938            Invalid = true;
6939            continue;
6940          }
6941
6942          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
6943                                                  CollectableMemCpy->getType(),
6944                                                  VK_LValue, Loc, 0).take();
6945          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
6946        }
6947      }
6948      // Create a reference to the __builtin_memcpy builtin function.
6949      else if (!BuiltinMemCpyRef) {
6950        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
6951                       LookupOrdinaryName);
6952        LookupName(R, TUScope, true);
6953
6954        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
6955        if (!BuiltinMemCpy) {
6956          // Something went horribly wrong earlier, and we will have complained
6957          // about it.
6958          Invalid = true;
6959          continue;
6960        }
6961
6962        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
6963                                            BuiltinMemCpy->getType(),
6964                                            VK_LValue, Loc, 0).take();
6965        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
6966      }
6967
6968      ASTOwningVector<Expr*> CallArgs(*this);
6969      CallArgs.push_back(To.takeAs<Expr>());
6970      CallArgs.push_back(From.takeAs<Expr>());
6971      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
6972      ExprResult Call = ExprError();
6973      if (NeedsCollectableMemCpy)
6974        Call = ActOnCallExpr(/*Scope=*/0,
6975                             CollectableMemCpyRef,
6976                             Loc, move_arg(CallArgs),
6977                             Loc);
6978      else
6979        Call = ActOnCallExpr(/*Scope=*/0,
6980                             BuiltinMemCpyRef,
6981                             Loc, move_arg(CallArgs),
6982                             Loc);
6983
6984      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
6985      Statements.push_back(Call.takeAs<Expr>());
6986      continue;
6987    }
6988
6989    // Build the copy of this field.
6990    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
6991                                                  To.get(), From.get(),
6992                                              /*CopyingBaseSubobject=*/false);
6993    if (Copy.isInvalid()) {
6994      Diag(CurrentLocation, diag::note_member_synthesized_at)
6995        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6996      CopyAssignOperator->setInvalidDecl();
6997      return;
6998    }
6999
7000    // Success! Record the copy.
7001    Statements.push_back(Copy.takeAs<Stmt>());
7002  }
7003
7004  if (!Invalid) {
7005    // Add a "return *this;"
7006    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7007
7008    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7009    if (Return.isInvalid())
7010      Invalid = true;
7011    else {
7012      Statements.push_back(Return.takeAs<Stmt>());
7013
7014      if (Trap.hasErrorOccurred()) {
7015        Diag(CurrentLocation, diag::note_member_synthesized_at)
7016          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7017        Invalid = true;
7018      }
7019    }
7020  }
7021
7022  if (Invalid) {
7023    CopyAssignOperator->setInvalidDecl();
7024    return;
7025  }
7026
7027  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7028                                            /*isStmtExpr=*/false);
7029  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7030  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7031
7032  if (ASTMutationListener *L = getASTMutationListener()) {
7033    L->CompletedImplicitDefinition(CopyAssignOperator);
7034  }
7035}
7036
7037std::pair<Sema::ImplicitExceptionSpecification, bool>
7038Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
7039  // C++ [class.copy]p5:
7040  //   The implicitly-declared copy constructor for a class X will
7041  //   have the form
7042  //
7043  //       X::X(const X&)
7044  //
7045  //   if
7046  bool HasConstCopyConstructor = true;
7047
7048  //     -- each direct or virtual base class B of X has a copy
7049  //        constructor whose first parameter is of type const B& or
7050  //        const volatile B&, and
7051  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7052                                       BaseEnd = ClassDecl->bases_end();
7053       HasConstCopyConstructor && Base != BaseEnd;
7054       ++Base) {
7055    // Virtual bases are handled below.
7056    if (Base->isVirtual())
7057      continue;
7058
7059    CXXRecordDecl *BaseClassDecl
7060      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7061    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7062      DeclareImplicitCopyConstructor(BaseClassDecl);
7063
7064    HasConstCopyConstructor = BaseClassDecl->hasConstCopyConstructor();
7065  }
7066
7067  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7068                                       BaseEnd = ClassDecl->vbases_end();
7069       HasConstCopyConstructor && Base != BaseEnd;
7070       ++Base) {
7071    CXXRecordDecl *BaseClassDecl
7072      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7073    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7074      DeclareImplicitCopyConstructor(BaseClassDecl);
7075
7076    HasConstCopyConstructor= BaseClassDecl->hasConstCopyConstructor();
7077  }
7078
7079  //     -- for all the nonstatic data members of X that are of a
7080  //        class type M (or array thereof), each such class type
7081  //        has a copy constructor whose first parameter is of type
7082  //        const M& or const volatile M&.
7083  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7084                                  FieldEnd = ClassDecl->field_end();
7085       HasConstCopyConstructor && Field != FieldEnd;
7086       ++Field) {
7087    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7088    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
7089      CXXRecordDecl *FieldClassDecl
7090        = cast<CXXRecordDecl>(FieldClassType->getDecl());
7091      if (!FieldClassDecl->hasDeclaredCopyConstructor())
7092        DeclareImplicitCopyConstructor(FieldClassDecl);
7093
7094      HasConstCopyConstructor = FieldClassDecl->hasConstCopyConstructor();
7095    }
7096  }
7097  //   Otherwise, the implicitly declared copy constructor will have
7098  //   the form
7099  //
7100  //       X::X(X&)
7101
7102  // C++ [except.spec]p14:
7103  //   An implicitly declared special member function (Clause 12) shall have an
7104  //   exception-specification. [...]
7105  ImplicitExceptionSpecification ExceptSpec(Context);
7106  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
7107  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7108                                       BaseEnd = ClassDecl->bases_end();
7109       Base != BaseEnd;
7110       ++Base) {
7111    // Virtual bases are handled below.
7112    if (Base->isVirtual())
7113      continue;
7114
7115    CXXRecordDecl *BaseClassDecl
7116      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7117    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7118      DeclareImplicitCopyConstructor(BaseClassDecl);
7119
7120    if (CXXConstructorDecl *CopyConstructor
7121                          = BaseClassDecl->getCopyConstructor(Quals))
7122      ExceptSpec.CalledDecl(CopyConstructor);
7123  }
7124  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7125                                       BaseEnd = ClassDecl->vbases_end();
7126       Base != BaseEnd;
7127       ++Base) {
7128    CXXRecordDecl *BaseClassDecl
7129      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7130    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7131      DeclareImplicitCopyConstructor(BaseClassDecl);
7132
7133    if (CXXConstructorDecl *CopyConstructor
7134                          = BaseClassDecl->getCopyConstructor(Quals))
7135      ExceptSpec.CalledDecl(CopyConstructor);
7136  }
7137  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7138                                  FieldEnd = ClassDecl->field_end();
7139       Field != FieldEnd;
7140       ++Field) {
7141    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7142    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
7143      CXXRecordDecl *FieldClassDecl
7144        = cast<CXXRecordDecl>(FieldClassType->getDecl());
7145      if (!FieldClassDecl->hasDeclaredCopyConstructor())
7146        DeclareImplicitCopyConstructor(FieldClassDecl);
7147
7148      if (CXXConstructorDecl *CopyConstructor
7149                          = FieldClassDecl->getCopyConstructor(Quals))
7150        ExceptSpec.CalledDecl(CopyConstructor);
7151    }
7152  }
7153
7154  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
7155}
7156
7157CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
7158                                                    CXXRecordDecl *ClassDecl) {
7159  // C++ [class.copy]p4:
7160  //   If the class definition does not explicitly declare a copy
7161  //   constructor, one is declared implicitly.
7162
7163  ImplicitExceptionSpecification Spec(Context);
7164  bool Const;
7165  llvm::tie(Spec, Const) =
7166    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
7167
7168  QualType ClassType = Context.getTypeDeclType(ClassDecl);
7169  QualType ArgType = ClassType;
7170  if (Const)
7171    ArgType = ArgType.withConst();
7172  ArgType = Context.getLValueReferenceType(ArgType);
7173
7174  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7175
7176  DeclarationName Name
7177    = Context.DeclarationNames.getCXXConstructorName(
7178                                           Context.getCanonicalType(ClassType));
7179  SourceLocation ClassLoc = ClassDecl->getLocation();
7180  DeclarationNameInfo NameInfo(Name, ClassLoc);
7181
7182  //   An implicitly-declared copy constructor is an inline public
7183  //   member of its class.
7184  CXXConstructorDecl *CopyConstructor
7185    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7186                                 Context.getFunctionType(Context.VoidTy,
7187                                                         &ArgType, 1, EPI),
7188                                 /*TInfo=*/0,
7189                                 /*isExplicit=*/false,
7190                                 /*isInline=*/true,
7191                                 /*isImplicitlyDeclared=*/true);
7192  CopyConstructor->setAccess(AS_public);
7193  CopyConstructor->setDefaulted();
7194  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
7195
7196  // Note that we have declared this constructor.
7197  ++ASTContext::NumImplicitCopyConstructorsDeclared;
7198
7199  // Add the parameter to the constructor.
7200  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
7201                                               ClassLoc, ClassLoc,
7202                                               /*IdentifierInfo=*/0,
7203                                               ArgType, /*TInfo=*/0,
7204                                               SC_None,
7205                                               SC_None, 0);
7206  CopyConstructor->setParams(&FromParam, 1);
7207
7208  if (Scope *S = getScopeForContext(ClassDecl))
7209    PushOnScopeChains(CopyConstructor, S, false);
7210  ClassDecl->addDecl(CopyConstructor);
7211
7212  if (ShouldDeleteCopyConstructor(CopyConstructor))
7213    CopyConstructor->setDeletedAsWritten();
7214
7215  return CopyConstructor;
7216}
7217
7218void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
7219                                   CXXConstructorDecl *CopyConstructor) {
7220  assert((CopyConstructor->isDefaulted() &&
7221          CopyConstructor->isCopyConstructor() &&
7222          !CopyConstructor->doesThisDeclarationHaveABody()) &&
7223         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
7224
7225  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
7226  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
7227
7228  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
7229  DiagnosticErrorTrap Trap(Diags);
7230
7231  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
7232      Trap.hasErrorOccurred()) {
7233    Diag(CurrentLocation, diag::note_member_synthesized_at)
7234      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
7235    CopyConstructor->setInvalidDecl();
7236  }  else {
7237    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
7238                                               CopyConstructor->getLocation(),
7239                                               MultiStmtArg(*this, 0, 0),
7240                                               /*isStmtExpr=*/false)
7241                                                              .takeAs<Stmt>());
7242  }
7243
7244  CopyConstructor->setUsed();
7245
7246  if (ASTMutationListener *L = getASTMutationListener()) {
7247    L->CompletedImplicitDefinition(CopyConstructor);
7248  }
7249}
7250
7251ExprResult
7252Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7253                            CXXConstructorDecl *Constructor,
7254                            MultiExprArg ExprArgs,
7255                            bool RequiresZeroInit,
7256                            unsigned ConstructKind,
7257                            SourceRange ParenRange) {
7258  bool Elidable = false;
7259
7260  // C++0x [class.copy]p34:
7261  //   When certain criteria are met, an implementation is allowed to
7262  //   omit the copy/move construction of a class object, even if the
7263  //   copy/move constructor and/or destructor for the object have
7264  //   side effects. [...]
7265  //     - when a temporary class object that has not been bound to a
7266  //       reference (12.2) would be copied/moved to a class object
7267  //       with the same cv-unqualified type, the copy/move operation
7268  //       can be omitted by constructing the temporary object
7269  //       directly into the target of the omitted copy/move
7270  if (ConstructKind == CXXConstructExpr::CK_Complete &&
7271      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
7272    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
7273    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
7274  }
7275
7276  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
7277                               Elidable, move(ExprArgs), RequiresZeroInit,
7278                               ConstructKind, ParenRange);
7279}
7280
7281/// BuildCXXConstructExpr - Creates a complete call to a constructor,
7282/// including handling of its default argument expressions.
7283ExprResult
7284Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7285                            CXXConstructorDecl *Constructor, bool Elidable,
7286                            MultiExprArg ExprArgs,
7287                            bool RequiresZeroInit,
7288                            unsigned ConstructKind,
7289                            SourceRange ParenRange) {
7290  unsigned NumExprs = ExprArgs.size();
7291  Expr **Exprs = (Expr **)ExprArgs.release();
7292
7293  for (specific_attr_iterator<NonNullAttr>
7294           i = Constructor->specific_attr_begin<NonNullAttr>(),
7295           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
7296    const NonNullAttr *NonNull = *i;
7297    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
7298  }
7299
7300  MarkDeclarationReferenced(ConstructLoc, Constructor);
7301  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
7302                                        Constructor, Elidable, Exprs, NumExprs,
7303                                        RequiresZeroInit,
7304              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
7305                                        ParenRange));
7306}
7307
7308bool Sema::InitializeVarWithConstructor(VarDecl *VD,
7309                                        CXXConstructorDecl *Constructor,
7310                                        MultiExprArg Exprs) {
7311  // FIXME: Provide the correct paren SourceRange when available.
7312  ExprResult TempResult =
7313    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
7314                          move(Exprs), false, CXXConstructExpr::CK_Complete,
7315                          SourceRange());
7316  if (TempResult.isInvalid())
7317    return true;
7318
7319  Expr *Temp = TempResult.takeAs<Expr>();
7320  CheckImplicitConversions(Temp, VD->getLocation());
7321  MarkDeclarationReferenced(VD->getLocation(), Constructor);
7322  Temp = MaybeCreateExprWithCleanups(Temp);
7323  VD->setInit(Temp);
7324
7325  return false;
7326}
7327
7328void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
7329  if (VD->isInvalidDecl()) return;
7330
7331  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
7332  if (ClassDecl->isInvalidDecl()) return;
7333  if (ClassDecl->hasTrivialDestructor()) return;
7334  if (ClassDecl->isDependentContext()) return;
7335
7336  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
7337  MarkDeclarationReferenced(VD->getLocation(), Destructor);
7338  CheckDestructorAccess(VD->getLocation(), Destructor,
7339                        PDiag(diag::err_access_dtor_var)
7340                        << VD->getDeclName()
7341                        << VD->getType());
7342
7343  if (!VD->hasGlobalStorage()) return;
7344
7345  // Emit warning for non-trivial dtor in global scope (a real global,
7346  // class-static, function-static).
7347  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
7348
7349  // TODO: this should be re-enabled for static locals by !CXAAtExit
7350  if (!VD->isStaticLocal())
7351    Diag(VD->getLocation(), diag::warn_global_destructor);
7352}
7353
7354/// AddCXXDirectInitializerToDecl - This action is called immediately after
7355/// ActOnDeclarator, when a C++ direct initializer is present.
7356/// e.g: "int x(1);"
7357void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
7358                                         SourceLocation LParenLoc,
7359                                         MultiExprArg Exprs,
7360                                         SourceLocation RParenLoc,
7361                                         bool TypeMayContainAuto) {
7362  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
7363
7364  // If there is no declaration, there was an error parsing it.  Just ignore
7365  // the initializer.
7366  if (RealDecl == 0)
7367    return;
7368
7369  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7370  if (!VDecl) {
7371    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7372    RealDecl->setInvalidDecl();
7373    return;
7374  }
7375
7376  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7377  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
7378    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
7379    if (Exprs.size() > 1) {
7380      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
7381           diag::err_auto_var_init_multiple_expressions)
7382        << VDecl->getDeclName() << VDecl->getType()
7383        << VDecl->getSourceRange();
7384      RealDecl->setInvalidDecl();
7385      return;
7386    }
7387
7388    Expr *Init = Exprs.get()[0];
7389    TypeSourceInfo *DeducedType = 0;
7390    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
7391      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
7392        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
7393        << Init->getSourceRange();
7394    if (!DeducedType) {
7395      RealDecl->setInvalidDecl();
7396      return;
7397    }
7398    VDecl->setTypeSourceInfo(DeducedType);
7399    VDecl->setType(DeducedType->getType());
7400
7401    // If this is a redeclaration, check that the type we just deduced matches
7402    // the previously declared type.
7403    if (VarDecl *Old = VDecl->getPreviousDeclaration())
7404      MergeVarDeclTypes(VDecl, Old);
7405  }
7406
7407  // We will represent direct-initialization similarly to copy-initialization:
7408  //    int x(1);  -as-> int x = 1;
7409  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7410  //
7411  // Clients that want to distinguish between the two forms, can check for
7412  // direct initializer using VarDecl::hasCXXDirectInitializer().
7413  // A major benefit is that clients that don't particularly care about which
7414  // exactly form was it (like the CodeGen) can handle both cases without
7415  // special case code.
7416
7417  // C++ 8.5p11:
7418  // The form of initialization (using parentheses or '=') is generally
7419  // insignificant, but does matter when the entity being initialized has a
7420  // class type.
7421
7422  if (!VDecl->getType()->isDependentType() &&
7423      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
7424                          diag::err_typecheck_decl_incomplete_type)) {
7425    VDecl->setInvalidDecl();
7426    return;
7427  }
7428
7429  // The variable can not have an abstract class type.
7430  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7431                             diag::err_abstract_type_in_decl,
7432                             AbstractVariableType))
7433    VDecl->setInvalidDecl();
7434
7435  const VarDecl *Def;
7436  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7437    Diag(VDecl->getLocation(), diag::err_redefinition)
7438    << VDecl->getDeclName();
7439    Diag(Def->getLocation(), diag::note_previous_definition);
7440    VDecl->setInvalidDecl();
7441    return;
7442  }
7443
7444  // C++ [class.static.data]p4
7445  //   If a static data member is of const integral or const
7446  //   enumeration type, its declaration in the class definition can
7447  //   specify a constant-initializer which shall be an integral
7448  //   constant expression (5.19). In that case, the member can appear
7449  //   in integral constant expressions. The member shall still be
7450  //   defined in a namespace scope if it is used in the program and the
7451  //   namespace scope definition shall not contain an initializer.
7452  //
7453  // We already performed a redefinition check above, but for static
7454  // data members we also need to check whether there was an in-class
7455  // declaration with an initializer.
7456  const VarDecl* PrevInit = 0;
7457  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7458    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
7459    Diag(PrevInit->getLocation(), diag::note_previous_definition);
7460    return;
7461  }
7462
7463  bool IsDependent = false;
7464  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
7465    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
7466      VDecl->setInvalidDecl();
7467      return;
7468    }
7469
7470    if (Exprs.get()[I]->isTypeDependent())
7471      IsDependent = true;
7472  }
7473
7474  // If either the declaration has a dependent type or if any of the
7475  // expressions is type-dependent, we represent the initialization
7476  // via a ParenListExpr for later use during template instantiation.
7477  if (VDecl->getType()->isDependentType() || IsDependent) {
7478    // Let clients know that initialization was done with a direct initializer.
7479    VDecl->setCXXDirectInitializer(true);
7480
7481    // Store the initialization expressions as a ParenListExpr.
7482    unsigned NumExprs = Exprs.size();
7483    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
7484                                               (Expr **)Exprs.release(),
7485                                               NumExprs, RParenLoc));
7486    return;
7487  }
7488
7489  // Capture the variable that is being initialized and the style of
7490  // initialization.
7491  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7492
7493  // FIXME: Poor source location information.
7494  InitializationKind Kind
7495    = InitializationKind::CreateDirect(VDecl->getLocation(),
7496                                       LParenLoc, RParenLoc);
7497
7498  InitializationSequence InitSeq(*this, Entity, Kind,
7499                                 Exprs.get(), Exprs.size());
7500  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
7501  if (Result.isInvalid()) {
7502    VDecl->setInvalidDecl();
7503    return;
7504  }
7505
7506  CheckImplicitConversions(Result.get(), LParenLoc);
7507
7508  Result = MaybeCreateExprWithCleanups(Result);
7509  VDecl->setInit(Result.takeAs<Expr>());
7510  VDecl->setCXXDirectInitializer(true);
7511
7512  CheckCompleteVariableDeclaration(VDecl);
7513}
7514
7515/// \brief Given a constructor and the set of arguments provided for the
7516/// constructor, convert the arguments and add any required default arguments
7517/// to form a proper call to this constructor.
7518///
7519/// \returns true if an error occurred, false otherwise.
7520bool
7521Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
7522                              MultiExprArg ArgsPtr,
7523                              SourceLocation Loc,
7524                              ASTOwningVector<Expr*> &ConvertedArgs) {
7525  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
7526  unsigned NumArgs = ArgsPtr.size();
7527  Expr **Args = (Expr **)ArgsPtr.get();
7528
7529  const FunctionProtoType *Proto
7530    = Constructor->getType()->getAs<FunctionProtoType>();
7531  assert(Proto && "Constructor without a prototype?");
7532  unsigned NumArgsInProto = Proto->getNumArgs();
7533
7534  // If too few arguments are available, we'll fill in the rest with defaults.
7535  if (NumArgs < NumArgsInProto)
7536    ConvertedArgs.reserve(NumArgsInProto);
7537  else
7538    ConvertedArgs.reserve(NumArgs);
7539
7540  VariadicCallType CallType =
7541    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
7542  llvm::SmallVector<Expr *, 8> AllArgs;
7543  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
7544                                        Proto, 0, Args, NumArgs, AllArgs,
7545                                        CallType);
7546  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
7547    ConvertedArgs.push_back(AllArgs[i]);
7548  return Invalid;
7549}
7550
7551static inline bool
7552CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
7553                                       const FunctionDecl *FnDecl) {
7554  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
7555  if (isa<NamespaceDecl>(DC)) {
7556    return SemaRef.Diag(FnDecl->getLocation(),
7557                        diag::err_operator_new_delete_declared_in_namespace)
7558      << FnDecl->getDeclName();
7559  }
7560
7561  if (isa<TranslationUnitDecl>(DC) &&
7562      FnDecl->getStorageClass() == SC_Static) {
7563    return SemaRef.Diag(FnDecl->getLocation(),
7564                        diag::err_operator_new_delete_declared_static)
7565      << FnDecl->getDeclName();
7566  }
7567
7568  return false;
7569}
7570
7571static inline bool
7572CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
7573                            CanQualType ExpectedResultType,
7574                            CanQualType ExpectedFirstParamType,
7575                            unsigned DependentParamTypeDiag,
7576                            unsigned InvalidParamTypeDiag) {
7577  QualType ResultType =
7578    FnDecl->getType()->getAs<FunctionType>()->getResultType();
7579
7580  // Check that the result type is not dependent.
7581  if (ResultType->isDependentType())
7582    return SemaRef.Diag(FnDecl->getLocation(),
7583                        diag::err_operator_new_delete_dependent_result_type)
7584    << FnDecl->getDeclName() << ExpectedResultType;
7585
7586  // Check that the result type is what we expect.
7587  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
7588    return SemaRef.Diag(FnDecl->getLocation(),
7589                        diag::err_operator_new_delete_invalid_result_type)
7590    << FnDecl->getDeclName() << ExpectedResultType;
7591
7592  // A function template must have at least 2 parameters.
7593  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
7594    return SemaRef.Diag(FnDecl->getLocation(),
7595                      diag::err_operator_new_delete_template_too_few_parameters)
7596        << FnDecl->getDeclName();
7597
7598  // The function decl must have at least 1 parameter.
7599  if (FnDecl->getNumParams() == 0)
7600    return SemaRef.Diag(FnDecl->getLocation(),
7601                        diag::err_operator_new_delete_too_few_parameters)
7602      << FnDecl->getDeclName();
7603
7604  // Check the the first parameter type is not dependent.
7605  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
7606  if (FirstParamType->isDependentType())
7607    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
7608      << FnDecl->getDeclName() << ExpectedFirstParamType;
7609
7610  // Check that the first parameter type is what we expect.
7611  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
7612      ExpectedFirstParamType)
7613    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
7614    << FnDecl->getDeclName() << ExpectedFirstParamType;
7615
7616  return false;
7617}
7618
7619static bool
7620CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7621  // C++ [basic.stc.dynamic.allocation]p1:
7622  //   A program is ill-formed if an allocation function is declared in a
7623  //   namespace scope other than global scope or declared static in global
7624  //   scope.
7625  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7626    return true;
7627
7628  CanQualType SizeTy =
7629    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
7630
7631  // C++ [basic.stc.dynamic.allocation]p1:
7632  //  The return type shall be void*. The first parameter shall have type
7633  //  std::size_t.
7634  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
7635                                  SizeTy,
7636                                  diag::err_operator_new_dependent_param_type,
7637                                  diag::err_operator_new_param_type))
7638    return true;
7639
7640  // C++ [basic.stc.dynamic.allocation]p1:
7641  //  The first parameter shall not have an associated default argument.
7642  if (FnDecl->getParamDecl(0)->hasDefaultArg())
7643    return SemaRef.Diag(FnDecl->getLocation(),
7644                        diag::err_operator_new_default_arg)
7645      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
7646
7647  return false;
7648}
7649
7650static bool
7651CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7652  // C++ [basic.stc.dynamic.deallocation]p1:
7653  //   A program is ill-formed if deallocation functions are declared in a
7654  //   namespace scope other than global scope or declared static in global
7655  //   scope.
7656  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7657    return true;
7658
7659  // C++ [basic.stc.dynamic.deallocation]p2:
7660  //   Each deallocation function shall return void and its first parameter
7661  //   shall be void*.
7662  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
7663                                  SemaRef.Context.VoidPtrTy,
7664                                 diag::err_operator_delete_dependent_param_type,
7665                                 diag::err_operator_delete_param_type))
7666    return true;
7667
7668  return false;
7669}
7670
7671/// CheckOverloadedOperatorDeclaration - Check whether the declaration
7672/// of this overloaded operator is well-formed. If so, returns false;
7673/// otherwise, emits appropriate diagnostics and returns true.
7674bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
7675  assert(FnDecl && FnDecl->isOverloadedOperator() &&
7676         "Expected an overloaded operator declaration");
7677
7678  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
7679
7680  // C++ [over.oper]p5:
7681  //   The allocation and deallocation functions, operator new,
7682  //   operator new[], operator delete and operator delete[], are
7683  //   described completely in 3.7.3. The attributes and restrictions
7684  //   found in the rest of this subclause do not apply to them unless
7685  //   explicitly stated in 3.7.3.
7686  if (Op == OO_Delete || Op == OO_Array_Delete)
7687    return CheckOperatorDeleteDeclaration(*this, FnDecl);
7688
7689  if (Op == OO_New || Op == OO_Array_New)
7690    return CheckOperatorNewDeclaration(*this, FnDecl);
7691
7692  // C++ [over.oper]p6:
7693  //   An operator function shall either be a non-static member
7694  //   function or be a non-member function and have at least one
7695  //   parameter whose type is a class, a reference to a class, an
7696  //   enumeration, or a reference to an enumeration.
7697  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
7698    if (MethodDecl->isStatic())
7699      return Diag(FnDecl->getLocation(),
7700                  diag::err_operator_overload_static) << FnDecl->getDeclName();
7701  } else {
7702    bool ClassOrEnumParam = false;
7703    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
7704                                   ParamEnd = FnDecl->param_end();
7705         Param != ParamEnd; ++Param) {
7706      QualType ParamType = (*Param)->getType().getNonReferenceType();
7707      if (ParamType->isDependentType() || ParamType->isRecordType() ||
7708          ParamType->isEnumeralType()) {
7709        ClassOrEnumParam = true;
7710        break;
7711      }
7712    }
7713
7714    if (!ClassOrEnumParam)
7715      return Diag(FnDecl->getLocation(),
7716                  diag::err_operator_overload_needs_class_or_enum)
7717        << FnDecl->getDeclName();
7718  }
7719
7720  // C++ [over.oper]p8:
7721  //   An operator function cannot have default arguments (8.3.6),
7722  //   except where explicitly stated below.
7723  //
7724  // Only the function-call operator allows default arguments
7725  // (C++ [over.call]p1).
7726  if (Op != OO_Call) {
7727    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
7728         Param != FnDecl->param_end(); ++Param) {
7729      if ((*Param)->hasDefaultArg())
7730        return Diag((*Param)->getLocation(),
7731                    diag::err_operator_overload_default_arg)
7732          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
7733    }
7734  }
7735
7736  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
7737    { false, false, false }
7738#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
7739    , { Unary, Binary, MemberOnly }
7740#include "clang/Basic/OperatorKinds.def"
7741  };
7742
7743  bool CanBeUnaryOperator = OperatorUses[Op][0];
7744  bool CanBeBinaryOperator = OperatorUses[Op][1];
7745  bool MustBeMemberOperator = OperatorUses[Op][2];
7746
7747  // C++ [over.oper]p8:
7748  //   [...] Operator functions cannot have more or fewer parameters
7749  //   than the number required for the corresponding operator, as
7750  //   described in the rest of this subclause.
7751  unsigned NumParams = FnDecl->getNumParams()
7752                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
7753  if (Op != OO_Call &&
7754      ((NumParams == 1 && !CanBeUnaryOperator) ||
7755       (NumParams == 2 && !CanBeBinaryOperator) ||
7756       (NumParams < 1) || (NumParams > 2))) {
7757    // We have the wrong number of parameters.
7758    unsigned ErrorKind;
7759    if (CanBeUnaryOperator && CanBeBinaryOperator) {
7760      ErrorKind = 2;  // 2 -> unary or binary.
7761    } else if (CanBeUnaryOperator) {
7762      ErrorKind = 0;  // 0 -> unary
7763    } else {
7764      assert(CanBeBinaryOperator &&
7765             "All non-call overloaded operators are unary or binary!");
7766      ErrorKind = 1;  // 1 -> binary
7767    }
7768
7769    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
7770      << FnDecl->getDeclName() << NumParams << ErrorKind;
7771  }
7772
7773  // Overloaded operators other than operator() cannot be variadic.
7774  if (Op != OO_Call &&
7775      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
7776    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
7777      << FnDecl->getDeclName();
7778  }
7779
7780  // Some operators must be non-static member functions.
7781  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
7782    return Diag(FnDecl->getLocation(),
7783                diag::err_operator_overload_must_be_member)
7784      << FnDecl->getDeclName();
7785  }
7786
7787  // C++ [over.inc]p1:
7788  //   The user-defined function called operator++ implements the
7789  //   prefix and postfix ++ operator. If this function is a member
7790  //   function with no parameters, or a non-member function with one
7791  //   parameter of class or enumeration type, it defines the prefix
7792  //   increment operator ++ for objects of that type. If the function
7793  //   is a member function with one parameter (which shall be of type
7794  //   int) or a non-member function with two parameters (the second
7795  //   of which shall be of type int), it defines the postfix
7796  //   increment operator ++ for objects of that type.
7797  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
7798    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
7799    bool ParamIsInt = false;
7800    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
7801      ParamIsInt = BT->getKind() == BuiltinType::Int;
7802
7803    if (!ParamIsInt)
7804      return Diag(LastParam->getLocation(),
7805                  diag::err_operator_overload_post_incdec_must_be_int)
7806        << LastParam->getType() << (Op == OO_MinusMinus);
7807  }
7808
7809  return false;
7810}
7811
7812/// CheckLiteralOperatorDeclaration - Check whether the declaration
7813/// of this literal operator function is well-formed. If so, returns
7814/// false; otherwise, emits appropriate diagnostics and returns true.
7815bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
7816  DeclContext *DC = FnDecl->getDeclContext();
7817  Decl::Kind Kind = DC->getDeclKind();
7818  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
7819      Kind != Decl::LinkageSpec) {
7820    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
7821      << FnDecl->getDeclName();
7822    return true;
7823  }
7824
7825  bool Valid = false;
7826
7827  // template <char...> type operator "" name() is the only valid template
7828  // signature, and the only valid signature with no parameters.
7829  if (FnDecl->param_size() == 0) {
7830    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
7831      // Must have only one template parameter
7832      TemplateParameterList *Params = TpDecl->getTemplateParameters();
7833      if (Params->size() == 1) {
7834        NonTypeTemplateParmDecl *PmDecl =
7835          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
7836
7837        // The template parameter must be a char parameter pack.
7838        if (PmDecl && PmDecl->isTemplateParameterPack() &&
7839            Context.hasSameType(PmDecl->getType(), Context.CharTy))
7840          Valid = true;
7841      }
7842    }
7843  } else {
7844    // Check the first parameter
7845    FunctionDecl::param_iterator Param = FnDecl->param_begin();
7846
7847    QualType T = (*Param)->getType();
7848
7849    // unsigned long long int, long double, and any character type are allowed
7850    // as the only parameters.
7851    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
7852        Context.hasSameType(T, Context.LongDoubleTy) ||
7853        Context.hasSameType(T, Context.CharTy) ||
7854        Context.hasSameType(T, Context.WCharTy) ||
7855        Context.hasSameType(T, Context.Char16Ty) ||
7856        Context.hasSameType(T, Context.Char32Ty)) {
7857      if (++Param == FnDecl->param_end())
7858        Valid = true;
7859      goto FinishedParams;
7860    }
7861
7862    // Otherwise it must be a pointer to const; let's strip those qualifiers.
7863    const PointerType *PT = T->getAs<PointerType>();
7864    if (!PT)
7865      goto FinishedParams;
7866    T = PT->getPointeeType();
7867    if (!T.isConstQualified())
7868      goto FinishedParams;
7869    T = T.getUnqualifiedType();
7870
7871    // Move on to the second parameter;
7872    ++Param;
7873
7874    // If there is no second parameter, the first must be a const char *
7875    if (Param == FnDecl->param_end()) {
7876      if (Context.hasSameType(T, Context.CharTy))
7877        Valid = true;
7878      goto FinishedParams;
7879    }
7880
7881    // const char *, const wchar_t*, const char16_t*, and const char32_t*
7882    // are allowed as the first parameter to a two-parameter function
7883    if (!(Context.hasSameType(T, Context.CharTy) ||
7884          Context.hasSameType(T, Context.WCharTy) ||
7885          Context.hasSameType(T, Context.Char16Ty) ||
7886          Context.hasSameType(T, Context.Char32Ty)))
7887      goto FinishedParams;
7888
7889    // The second and final parameter must be an std::size_t
7890    T = (*Param)->getType().getUnqualifiedType();
7891    if (Context.hasSameType(T, Context.getSizeType()) &&
7892        ++Param == FnDecl->param_end())
7893      Valid = true;
7894  }
7895
7896  // FIXME: This diagnostic is absolutely terrible.
7897FinishedParams:
7898  if (!Valid) {
7899    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
7900      << FnDecl->getDeclName();
7901    return true;
7902  }
7903
7904  return false;
7905}
7906
7907/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
7908/// linkage specification, including the language and (if present)
7909/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
7910/// the location of the language string literal, which is provided
7911/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
7912/// the '{' brace. Otherwise, this linkage specification does not
7913/// have any braces.
7914Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
7915                                           SourceLocation LangLoc,
7916                                           llvm::StringRef Lang,
7917                                           SourceLocation LBraceLoc) {
7918  LinkageSpecDecl::LanguageIDs Language;
7919  if (Lang == "\"C\"")
7920    Language = LinkageSpecDecl::lang_c;
7921  else if (Lang == "\"C++\"")
7922    Language = LinkageSpecDecl::lang_cxx;
7923  else {
7924    Diag(LangLoc, diag::err_bad_language);
7925    return 0;
7926  }
7927
7928  // FIXME: Add all the various semantics of linkage specifications
7929
7930  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
7931                                               ExternLoc, LangLoc, Language);
7932  CurContext->addDecl(D);
7933  PushDeclContext(S, D);
7934  return D;
7935}
7936
7937/// ActOnFinishLinkageSpecification - Complete the definition of
7938/// the C++ linkage specification LinkageSpec. If RBraceLoc is
7939/// valid, it's the position of the closing '}' brace in a linkage
7940/// specification that uses braces.
7941Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
7942                                            Decl *LinkageSpec,
7943                                            SourceLocation RBraceLoc) {
7944  if (LinkageSpec) {
7945    if (RBraceLoc.isValid()) {
7946      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
7947      LSDecl->setRBraceLoc(RBraceLoc);
7948    }
7949    PopDeclContext();
7950  }
7951  return LinkageSpec;
7952}
7953
7954/// \brief Perform semantic analysis for the variable declaration that
7955/// occurs within a C++ catch clause, returning the newly-created
7956/// variable.
7957VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
7958                                         TypeSourceInfo *TInfo,
7959                                         SourceLocation StartLoc,
7960                                         SourceLocation Loc,
7961                                         IdentifierInfo *Name) {
7962  bool Invalid = false;
7963  QualType ExDeclType = TInfo->getType();
7964
7965  // Arrays and functions decay.
7966  if (ExDeclType->isArrayType())
7967    ExDeclType = Context.getArrayDecayedType(ExDeclType);
7968  else if (ExDeclType->isFunctionType())
7969    ExDeclType = Context.getPointerType(ExDeclType);
7970
7971  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
7972  // The exception-declaration shall not denote a pointer or reference to an
7973  // incomplete type, other than [cv] void*.
7974  // N2844 forbids rvalue references.
7975  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
7976    Diag(Loc, diag::err_catch_rvalue_ref);
7977    Invalid = true;
7978  }
7979
7980  // GCC allows catching pointers and references to incomplete types
7981  // as an extension; so do we, but we warn by default.
7982
7983  QualType BaseType = ExDeclType;
7984  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
7985  unsigned DK = diag::err_catch_incomplete;
7986  bool IncompleteCatchIsInvalid = true;
7987  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
7988    BaseType = Ptr->getPointeeType();
7989    Mode = 1;
7990    DK = diag::ext_catch_incomplete_ptr;
7991    IncompleteCatchIsInvalid = false;
7992  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
7993    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
7994    BaseType = Ref->getPointeeType();
7995    Mode = 2;
7996    DK = diag::ext_catch_incomplete_ref;
7997    IncompleteCatchIsInvalid = false;
7998  }
7999  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
8000      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
8001      IncompleteCatchIsInvalid)
8002    Invalid = true;
8003
8004  if (!Invalid && !ExDeclType->isDependentType() &&
8005      RequireNonAbstractType(Loc, ExDeclType,
8006                             diag::err_abstract_type_in_decl,
8007                             AbstractVariableType))
8008    Invalid = true;
8009
8010  // Only the non-fragile NeXT runtime currently supports C++ catches
8011  // of ObjC types, and no runtime supports catching ObjC types by value.
8012  if (!Invalid && getLangOptions().ObjC1) {
8013    QualType T = ExDeclType;
8014    if (const ReferenceType *RT = T->getAs<ReferenceType>())
8015      T = RT->getPointeeType();
8016
8017    if (T->isObjCObjectType()) {
8018      Diag(Loc, diag::err_objc_object_catch);
8019      Invalid = true;
8020    } else if (T->isObjCObjectPointerType()) {
8021      if (!getLangOptions().ObjCNonFragileABI) {
8022        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
8023        Invalid = true;
8024      }
8025    }
8026  }
8027
8028  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
8029                                    ExDeclType, TInfo, SC_None, SC_None);
8030  ExDecl->setExceptionVariable(true);
8031
8032  if (!Invalid) {
8033    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
8034      // C++ [except.handle]p16:
8035      //   The object declared in an exception-declaration or, if the
8036      //   exception-declaration does not specify a name, a temporary (12.2) is
8037      //   copy-initialized (8.5) from the exception object. [...]
8038      //   The object is destroyed when the handler exits, after the destruction
8039      //   of any automatic objects initialized within the handler.
8040      //
8041      // We just pretend to initialize the object with itself, then make sure
8042      // it can be destroyed later.
8043      QualType initType = ExDeclType;
8044
8045      InitializedEntity entity =
8046        InitializedEntity::InitializeVariable(ExDecl);
8047      InitializationKind initKind =
8048        InitializationKind::CreateCopy(Loc, SourceLocation());
8049
8050      Expr *opaqueValue =
8051        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
8052      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
8053      ExprResult result = sequence.Perform(*this, entity, initKind,
8054                                           MultiExprArg(&opaqueValue, 1));
8055      if (result.isInvalid())
8056        Invalid = true;
8057      else {
8058        // If the constructor used was non-trivial, set this as the
8059        // "initializer".
8060        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
8061        if (!construct->getConstructor()->isTrivial()) {
8062          Expr *init = MaybeCreateExprWithCleanups(construct);
8063          ExDecl->setInit(init);
8064        }
8065
8066        // And make sure it's destructable.
8067        FinalizeVarWithDestructor(ExDecl, recordType);
8068      }
8069    }
8070  }
8071
8072  if (Invalid)
8073    ExDecl->setInvalidDecl();
8074
8075  return ExDecl;
8076}
8077
8078/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
8079/// handler.
8080Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
8081  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8082  bool Invalid = D.isInvalidType();
8083
8084  // Check for unexpanded parameter packs.
8085  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8086                                               UPPC_ExceptionType)) {
8087    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8088                                             D.getIdentifierLoc());
8089    Invalid = true;
8090  }
8091
8092  IdentifierInfo *II = D.getIdentifier();
8093  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
8094                                             LookupOrdinaryName,
8095                                             ForRedeclaration)) {
8096    // The scope should be freshly made just for us. There is just no way
8097    // it contains any previous declaration.
8098    assert(!S->isDeclScope(PrevDecl));
8099    if (PrevDecl->isTemplateParameter()) {
8100      // Maybe we will complain about the shadowed template parameter.
8101      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8102    }
8103  }
8104
8105  if (D.getCXXScopeSpec().isSet() && !Invalid) {
8106    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
8107      << D.getCXXScopeSpec().getRange();
8108    Invalid = true;
8109  }
8110
8111  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
8112                                              D.getSourceRange().getBegin(),
8113                                              D.getIdentifierLoc(),
8114                                              D.getIdentifier());
8115  if (Invalid)
8116    ExDecl->setInvalidDecl();
8117
8118  // Add the exception declaration into this scope.
8119  if (II)
8120    PushOnScopeChains(ExDecl, S);
8121  else
8122    CurContext->addDecl(ExDecl);
8123
8124  ProcessDeclAttributes(S, ExDecl, D);
8125  return ExDecl;
8126}
8127
8128Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
8129                                         Expr *AssertExpr,
8130                                         Expr *AssertMessageExpr_,
8131                                         SourceLocation RParenLoc) {
8132  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
8133
8134  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
8135    llvm::APSInt Value(32);
8136    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
8137      Diag(StaticAssertLoc,
8138           diag::err_static_assert_expression_is_not_constant) <<
8139        AssertExpr->getSourceRange();
8140      return 0;
8141    }
8142
8143    if (Value == 0) {
8144      Diag(StaticAssertLoc, diag::err_static_assert_failed)
8145        << AssertMessage->getString() << AssertExpr->getSourceRange();
8146    }
8147  }
8148
8149  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
8150    return 0;
8151
8152  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
8153                                        AssertExpr, AssertMessage, RParenLoc);
8154
8155  CurContext->addDecl(Decl);
8156  return Decl;
8157}
8158
8159/// \brief Perform semantic analysis of the given friend type declaration.
8160///
8161/// \returns A friend declaration that.
8162FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
8163                                      TypeSourceInfo *TSInfo) {
8164  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
8165
8166  QualType T = TSInfo->getType();
8167  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
8168
8169  if (!getLangOptions().CPlusPlus0x) {
8170    // C++03 [class.friend]p2:
8171    //   An elaborated-type-specifier shall be used in a friend declaration
8172    //   for a class.*
8173    //
8174    //   * The class-key of the elaborated-type-specifier is required.
8175    if (!ActiveTemplateInstantiations.empty()) {
8176      // Do not complain about the form of friend template types during
8177      // template instantiation; we will already have complained when the
8178      // template was declared.
8179    } else if (!T->isElaboratedTypeSpecifier()) {
8180      // If we evaluated the type to a record type, suggest putting
8181      // a tag in front.
8182      if (const RecordType *RT = T->getAs<RecordType>()) {
8183        RecordDecl *RD = RT->getDecl();
8184
8185        std::string InsertionText = std::string(" ") + RD->getKindName();
8186
8187        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
8188          << (unsigned) RD->getTagKind()
8189          << T
8190          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
8191                                        InsertionText);
8192      } else {
8193        Diag(FriendLoc, diag::ext_nonclass_type_friend)
8194          << T
8195          << SourceRange(FriendLoc, TypeRange.getEnd());
8196      }
8197    } else if (T->getAs<EnumType>()) {
8198      Diag(FriendLoc, diag::ext_enum_friend)
8199        << T
8200        << SourceRange(FriendLoc, TypeRange.getEnd());
8201    }
8202  }
8203
8204  // C++0x [class.friend]p3:
8205  //   If the type specifier in a friend declaration designates a (possibly
8206  //   cv-qualified) class type, that class is declared as a friend; otherwise,
8207  //   the friend declaration is ignored.
8208
8209  // FIXME: C++0x has some syntactic restrictions on friend type declarations
8210  // in [class.friend]p3 that we do not implement.
8211
8212  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
8213}
8214
8215/// Handle a friend tag declaration where the scope specifier was
8216/// templated.
8217Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
8218                                    unsigned TagSpec, SourceLocation TagLoc,
8219                                    CXXScopeSpec &SS,
8220                                    IdentifierInfo *Name, SourceLocation NameLoc,
8221                                    AttributeList *Attr,
8222                                    MultiTemplateParamsArg TempParamLists) {
8223  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8224
8225  bool isExplicitSpecialization = false;
8226  bool Invalid = false;
8227
8228  if (TemplateParameterList *TemplateParams
8229        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
8230                                                  TempParamLists.get(),
8231                                                  TempParamLists.size(),
8232                                                  /*friend*/ true,
8233                                                  isExplicitSpecialization,
8234                                                  Invalid)) {
8235    if (TemplateParams->size() > 0) {
8236      // This is a declaration of a class template.
8237      if (Invalid)
8238        return 0;
8239
8240      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
8241                                SS, Name, NameLoc, Attr,
8242                                TemplateParams, AS_public,
8243                                TempParamLists.size() - 1,
8244                   (TemplateParameterList**) TempParamLists.release()).take();
8245    } else {
8246      // The "template<>" header is extraneous.
8247      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8248        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8249      isExplicitSpecialization = true;
8250    }
8251  }
8252
8253  if (Invalid) return 0;
8254
8255  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
8256
8257  bool isAllExplicitSpecializations = true;
8258  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
8259    if (TempParamLists.get()[I]->size()) {
8260      isAllExplicitSpecializations = false;
8261      break;
8262    }
8263  }
8264
8265  // FIXME: don't ignore attributes.
8266
8267  // If it's explicit specializations all the way down, just forget
8268  // about the template header and build an appropriate non-templated
8269  // friend.  TODO: for source fidelity, remember the headers.
8270  if (isAllExplicitSpecializations) {
8271    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8272    ElaboratedTypeKeyword Keyword
8273      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8274    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
8275                                   *Name, NameLoc);
8276    if (T.isNull())
8277      return 0;
8278
8279    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8280    if (isa<DependentNameType>(T)) {
8281      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8282      TL.setKeywordLoc(TagLoc);
8283      TL.setQualifierLoc(QualifierLoc);
8284      TL.setNameLoc(NameLoc);
8285    } else {
8286      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
8287      TL.setKeywordLoc(TagLoc);
8288      TL.setQualifierLoc(QualifierLoc);
8289      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
8290    }
8291
8292    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8293                                            TSI, FriendLoc);
8294    Friend->setAccess(AS_public);
8295    CurContext->addDecl(Friend);
8296    return Friend;
8297  }
8298
8299  // Handle the case of a templated-scope friend class.  e.g.
8300  //   template <class T> class A<T>::B;
8301  // FIXME: we don't support these right now.
8302  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8303  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
8304  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8305  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8306  TL.setKeywordLoc(TagLoc);
8307  TL.setQualifierLoc(SS.getWithLocInContext(Context));
8308  TL.setNameLoc(NameLoc);
8309
8310  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8311                                          TSI, FriendLoc);
8312  Friend->setAccess(AS_public);
8313  Friend->setUnsupportedFriend(true);
8314  CurContext->addDecl(Friend);
8315  return Friend;
8316}
8317
8318
8319/// Handle a friend type declaration.  This works in tandem with
8320/// ActOnTag.
8321///
8322/// Notes on friend class templates:
8323///
8324/// We generally treat friend class declarations as if they were
8325/// declaring a class.  So, for example, the elaborated type specifier
8326/// in a friend declaration is required to obey the restrictions of a
8327/// class-head (i.e. no typedefs in the scope chain), template
8328/// parameters are required to match up with simple template-ids, &c.
8329/// However, unlike when declaring a template specialization, it's
8330/// okay to refer to a template specialization without an empty
8331/// template parameter declaration, e.g.
8332///   friend class A<T>::B<unsigned>;
8333/// We permit this as a special case; if there are any template
8334/// parameters present at all, require proper matching, i.e.
8335///   template <> template <class T> friend class A<int>::B;
8336Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
8337                                MultiTemplateParamsArg TempParams) {
8338  SourceLocation Loc = DS.getSourceRange().getBegin();
8339
8340  assert(DS.isFriendSpecified());
8341  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8342
8343  // Try to convert the decl specifier to a type.  This works for
8344  // friend templates because ActOnTag never produces a ClassTemplateDecl
8345  // for a TUK_Friend.
8346  Declarator TheDeclarator(DS, Declarator::MemberContext);
8347  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
8348  QualType T = TSI->getType();
8349  if (TheDeclarator.isInvalidType())
8350    return 0;
8351
8352  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
8353    return 0;
8354
8355  // This is definitely an error in C++98.  It's probably meant to
8356  // be forbidden in C++0x, too, but the specification is just
8357  // poorly written.
8358  //
8359  // The problem is with declarations like the following:
8360  //   template <T> friend A<T>::foo;
8361  // where deciding whether a class C is a friend or not now hinges
8362  // on whether there exists an instantiation of A that causes
8363  // 'foo' to equal C.  There are restrictions on class-heads
8364  // (which we declare (by fiat) elaborated friend declarations to
8365  // be) that makes this tractable.
8366  //
8367  // FIXME: handle "template <> friend class A<T>;", which
8368  // is possibly well-formed?  Who even knows?
8369  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
8370    Diag(Loc, diag::err_tagless_friend_type_template)
8371      << DS.getSourceRange();
8372    return 0;
8373  }
8374
8375  // C++98 [class.friend]p1: A friend of a class is a function
8376  //   or class that is not a member of the class . . .
8377  // This is fixed in DR77, which just barely didn't make the C++03
8378  // deadline.  It's also a very silly restriction that seriously
8379  // affects inner classes and which nobody else seems to implement;
8380  // thus we never diagnose it, not even in -pedantic.
8381  //
8382  // But note that we could warn about it: it's always useless to
8383  // friend one of your own members (it's not, however, worthless to
8384  // friend a member of an arbitrary specialization of your template).
8385
8386  Decl *D;
8387  if (unsigned NumTempParamLists = TempParams.size())
8388    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
8389                                   NumTempParamLists,
8390                                   TempParams.release(),
8391                                   TSI,
8392                                   DS.getFriendSpecLoc());
8393  else
8394    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
8395
8396  if (!D)
8397    return 0;
8398
8399  D->setAccess(AS_public);
8400  CurContext->addDecl(D);
8401
8402  return D;
8403}
8404
8405Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
8406                                    MultiTemplateParamsArg TemplateParams) {
8407  const DeclSpec &DS = D.getDeclSpec();
8408
8409  assert(DS.isFriendSpecified());
8410  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8411
8412  SourceLocation Loc = D.getIdentifierLoc();
8413  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8414  QualType T = TInfo->getType();
8415
8416  // C++ [class.friend]p1
8417  //   A friend of a class is a function or class....
8418  // Note that this sees through typedefs, which is intended.
8419  // It *doesn't* see through dependent types, which is correct
8420  // according to [temp.arg.type]p3:
8421  //   If a declaration acquires a function type through a
8422  //   type dependent on a template-parameter and this causes
8423  //   a declaration that does not use the syntactic form of a
8424  //   function declarator to have a function type, the program
8425  //   is ill-formed.
8426  if (!T->isFunctionType()) {
8427    Diag(Loc, diag::err_unexpected_friend);
8428
8429    // It might be worthwhile to try to recover by creating an
8430    // appropriate declaration.
8431    return 0;
8432  }
8433
8434  // C++ [namespace.memdef]p3
8435  //  - If a friend declaration in a non-local class first declares a
8436  //    class or function, the friend class or function is a member
8437  //    of the innermost enclosing namespace.
8438  //  - The name of the friend is not found by simple name lookup
8439  //    until a matching declaration is provided in that namespace
8440  //    scope (either before or after the class declaration granting
8441  //    friendship).
8442  //  - If a friend function is called, its name may be found by the
8443  //    name lookup that considers functions from namespaces and
8444  //    classes associated with the types of the function arguments.
8445  //  - When looking for a prior declaration of a class or a function
8446  //    declared as a friend, scopes outside the innermost enclosing
8447  //    namespace scope are not considered.
8448
8449  CXXScopeSpec &SS = D.getCXXScopeSpec();
8450  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8451  DeclarationName Name = NameInfo.getName();
8452  assert(Name);
8453
8454  // Check for unexpanded parameter packs.
8455  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
8456      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
8457      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
8458    return 0;
8459
8460  // The context we found the declaration in, or in which we should
8461  // create the declaration.
8462  DeclContext *DC;
8463  Scope *DCScope = S;
8464  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8465                        ForRedeclaration);
8466
8467  // FIXME: there are different rules in local classes
8468
8469  // There are four cases here.
8470  //   - There's no scope specifier, in which case we just go to the
8471  //     appropriate scope and look for a function or function template
8472  //     there as appropriate.
8473  // Recover from invalid scope qualifiers as if they just weren't there.
8474  if (SS.isInvalid() || !SS.isSet()) {
8475    // C++0x [namespace.memdef]p3:
8476    //   If the name in a friend declaration is neither qualified nor
8477    //   a template-id and the declaration is a function or an
8478    //   elaborated-type-specifier, the lookup to determine whether
8479    //   the entity has been previously declared shall not consider
8480    //   any scopes outside the innermost enclosing namespace.
8481    // C++0x [class.friend]p11:
8482    //   If a friend declaration appears in a local class and the name
8483    //   specified is an unqualified name, a prior declaration is
8484    //   looked up without considering scopes that are outside the
8485    //   innermost enclosing non-class scope. For a friend function
8486    //   declaration, if there is no prior declaration, the program is
8487    //   ill-formed.
8488    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
8489    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
8490
8491    // Find the appropriate context according to the above.
8492    DC = CurContext;
8493    while (true) {
8494      // Skip class contexts.  If someone can cite chapter and verse
8495      // for this behavior, that would be nice --- it's what GCC and
8496      // EDG do, and it seems like a reasonable intent, but the spec
8497      // really only says that checks for unqualified existing
8498      // declarations should stop at the nearest enclosing namespace,
8499      // not that they should only consider the nearest enclosing
8500      // namespace.
8501      while (DC->isRecord())
8502        DC = DC->getParent();
8503
8504      LookupQualifiedName(Previous, DC);
8505
8506      // TODO: decide what we think about using declarations.
8507      if (isLocal || !Previous.empty())
8508        break;
8509
8510      if (isTemplateId) {
8511        if (isa<TranslationUnitDecl>(DC)) break;
8512      } else {
8513        if (DC->isFileContext()) break;
8514      }
8515      DC = DC->getParent();
8516    }
8517
8518    // C++ [class.friend]p1: A friend of a class is a function or
8519    //   class that is not a member of the class . . .
8520    // C++0x changes this for both friend types and functions.
8521    // Most C++ 98 compilers do seem to give an error here, so
8522    // we do, too.
8523    if (!Previous.empty() && DC->Equals(CurContext)
8524        && !getLangOptions().CPlusPlus0x)
8525      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8526
8527    DCScope = getScopeForDeclContext(S, DC);
8528
8529  //   - There's a non-dependent scope specifier, in which case we
8530  //     compute it and do a previous lookup there for a function
8531  //     or function template.
8532  } else if (!SS.getScopeRep()->isDependent()) {
8533    DC = computeDeclContext(SS);
8534    if (!DC) return 0;
8535
8536    if (RequireCompleteDeclContext(SS, DC)) return 0;
8537
8538    LookupQualifiedName(Previous, DC);
8539
8540    // Ignore things found implicitly in the wrong scope.
8541    // TODO: better diagnostics for this case.  Suggesting the right
8542    // qualified scope would be nice...
8543    LookupResult::Filter F = Previous.makeFilter();
8544    while (F.hasNext()) {
8545      NamedDecl *D = F.next();
8546      if (!DC->InEnclosingNamespaceSetOf(
8547              D->getDeclContext()->getRedeclContext()))
8548        F.erase();
8549    }
8550    F.done();
8551
8552    if (Previous.empty()) {
8553      D.setInvalidType();
8554      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
8555      return 0;
8556    }
8557
8558    // C++ [class.friend]p1: A friend of a class is a function or
8559    //   class that is not a member of the class . . .
8560    if (DC->Equals(CurContext))
8561      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8562
8563  //   - There's a scope specifier that does not match any template
8564  //     parameter lists, in which case we use some arbitrary context,
8565  //     create a method or method template, and wait for instantiation.
8566  //   - There's a scope specifier that does match some template
8567  //     parameter lists, which we don't handle right now.
8568  } else {
8569    DC = CurContext;
8570    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
8571  }
8572
8573  if (!DC->isRecord()) {
8574    // This implies that it has to be an operator or function.
8575    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
8576        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
8577        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
8578      Diag(Loc, diag::err_introducing_special_friend) <<
8579        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
8580         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
8581      return 0;
8582    }
8583  }
8584
8585  bool Redeclaration = false;
8586  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
8587                                          move(TemplateParams),
8588                                          IsDefinition,
8589                                          Redeclaration);
8590  if (!ND) return 0;
8591
8592  assert(ND->getDeclContext() == DC);
8593  assert(ND->getLexicalDeclContext() == CurContext);
8594
8595  // Add the function declaration to the appropriate lookup tables,
8596  // adjusting the redeclarations list as necessary.  We don't
8597  // want to do this yet if the friending class is dependent.
8598  //
8599  // Also update the scope-based lookup if the target context's
8600  // lookup context is in lexical scope.
8601  if (!CurContext->isDependentContext()) {
8602    DC = DC->getRedeclContext();
8603    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
8604    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8605      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
8606  }
8607
8608  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
8609                                       D.getIdentifierLoc(), ND,
8610                                       DS.getFriendSpecLoc());
8611  FrD->setAccess(AS_public);
8612  CurContext->addDecl(FrD);
8613
8614  if (ND->isInvalidDecl())
8615    FrD->setInvalidDecl();
8616  else {
8617    FunctionDecl *FD;
8618    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
8619      FD = FTD->getTemplatedDecl();
8620    else
8621      FD = cast<FunctionDecl>(ND);
8622
8623    // Mark templated-scope function declarations as unsupported.
8624    if (FD->getNumTemplateParameterLists())
8625      FrD->setUnsupportedFriend(true);
8626  }
8627
8628  return ND;
8629}
8630
8631void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
8632  AdjustDeclIfTemplate(Dcl);
8633
8634  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
8635  if (!Fn) {
8636    Diag(DelLoc, diag::err_deleted_non_function);
8637    return;
8638  }
8639  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
8640    Diag(DelLoc, diag::err_deleted_decl_not_first);
8641    Diag(Prev->getLocation(), diag::note_previous_declaration);
8642    // If the declaration wasn't the first, we delete the function anyway for
8643    // recovery.
8644  }
8645  Fn->setDeletedAsWritten();
8646}
8647
8648void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
8649  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
8650
8651  if (MD) {
8652    if (MD->getParent()->isDependentType()) {
8653      MD->setDefaulted();
8654      MD->setExplicitlyDefaulted();
8655      return;
8656    }
8657
8658    CXXSpecialMember Member = getSpecialMember(MD);
8659    if (Member == CXXInvalid) {
8660      Diag(DefaultLoc, diag::err_default_special_members);
8661      return;
8662    }
8663
8664    MD->setDefaulted();
8665    MD->setExplicitlyDefaulted();
8666
8667    // If this definition appears within the record, do the checking when
8668    // the record is complete.
8669    const FunctionDecl *Primary = MD;
8670    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
8671      // Find the uninstantiated declaration that actually had the '= default'
8672      // on it.
8673      MD->getTemplateInstantiationPattern()->isDefined(Primary);
8674
8675    if (Primary == Primary->getCanonicalDecl())
8676      return;
8677
8678    switch (Member) {
8679    case CXXDefaultConstructor: {
8680      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8681      CheckExplicitlyDefaultedDefaultConstructor(CD);
8682      if (!CD->isInvalidDecl())
8683        DefineImplicitDefaultConstructor(DefaultLoc, CD);
8684      break;
8685    }
8686
8687    case CXXCopyConstructor: {
8688      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8689      CheckExplicitlyDefaultedCopyConstructor(CD);
8690      if (!CD->isInvalidDecl())
8691        DefineImplicitCopyConstructor(DefaultLoc, CD);
8692      break;
8693    }
8694
8695    case CXXCopyAssignment: {
8696      CheckExplicitlyDefaultedCopyAssignment(MD);
8697      if (!MD->isInvalidDecl())
8698        DefineImplicitCopyAssignment(DefaultLoc, MD);
8699      break;
8700    }
8701
8702    case CXXDestructor: {
8703      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
8704      CheckExplicitlyDefaultedDestructor(DD);
8705      if (!DD->isInvalidDecl())
8706        DefineImplicitDestructor(DefaultLoc, DD);
8707      break;
8708    }
8709
8710    case CXXMoveConstructor:
8711    case CXXMoveAssignment:
8712      Diag(Dcl->getLocation(), diag::err_defaulted_move_unsupported);
8713      break;
8714
8715    default:
8716      // FIXME: Do the rest once we have move functions
8717      break;
8718    }
8719  } else {
8720    Diag(DefaultLoc, diag::err_default_special_members);
8721  }
8722}
8723
8724static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
8725  for (Stmt::child_range CI = S->children(); CI; ++CI) {
8726    Stmt *SubStmt = *CI;
8727    if (!SubStmt)
8728      continue;
8729    if (isa<ReturnStmt>(SubStmt))
8730      Self.Diag(SubStmt->getSourceRange().getBegin(),
8731           diag::err_return_in_constructor_handler);
8732    if (!isa<Expr>(SubStmt))
8733      SearchForReturnInStmt(Self, SubStmt);
8734  }
8735}
8736
8737void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
8738  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
8739    CXXCatchStmt *Handler = TryBlock->getHandler(I);
8740    SearchForReturnInStmt(*this, Handler);
8741  }
8742}
8743
8744bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
8745                                             const CXXMethodDecl *Old) {
8746  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
8747  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
8748
8749  if (Context.hasSameType(NewTy, OldTy) ||
8750      NewTy->isDependentType() || OldTy->isDependentType())
8751    return false;
8752
8753  // Check if the return types are covariant
8754  QualType NewClassTy, OldClassTy;
8755
8756  /// Both types must be pointers or references to classes.
8757  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
8758    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
8759      NewClassTy = NewPT->getPointeeType();
8760      OldClassTy = OldPT->getPointeeType();
8761    }
8762  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
8763    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
8764      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
8765        NewClassTy = NewRT->getPointeeType();
8766        OldClassTy = OldRT->getPointeeType();
8767      }
8768    }
8769  }
8770
8771  // The return types aren't either both pointers or references to a class type.
8772  if (NewClassTy.isNull()) {
8773    Diag(New->getLocation(),
8774         diag::err_different_return_type_for_overriding_virtual_function)
8775      << New->getDeclName() << NewTy << OldTy;
8776    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8777
8778    return true;
8779  }
8780
8781  // C++ [class.virtual]p6:
8782  //   If the return type of D::f differs from the return type of B::f, the
8783  //   class type in the return type of D::f shall be complete at the point of
8784  //   declaration of D::f or shall be the class type D.
8785  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
8786    if (!RT->isBeingDefined() &&
8787        RequireCompleteType(New->getLocation(), NewClassTy,
8788                            PDiag(diag::err_covariant_return_incomplete)
8789                              << New->getDeclName()))
8790    return true;
8791  }
8792
8793  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
8794    // Check if the new class derives from the old class.
8795    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
8796      Diag(New->getLocation(),
8797           diag::err_covariant_return_not_derived)
8798      << New->getDeclName() << NewTy << OldTy;
8799      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8800      return true;
8801    }
8802
8803    // Check if we the conversion from derived to base is valid.
8804    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
8805                    diag::err_covariant_return_inaccessible_base,
8806                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
8807                    // FIXME: Should this point to the return type?
8808                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
8809      // FIXME: this note won't trigger for delayed access control
8810      // diagnostics, and it's impossible to get an undelayed error
8811      // here from access control during the original parse because
8812      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
8813      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8814      return true;
8815    }
8816  }
8817
8818  // The qualifiers of the return types must be the same.
8819  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
8820    Diag(New->getLocation(),
8821         diag::err_covariant_return_type_different_qualifications)
8822    << New->getDeclName() << NewTy << OldTy;
8823    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8824    return true;
8825  };
8826
8827
8828  // The new class type must have the same or less qualifiers as the old type.
8829  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
8830    Diag(New->getLocation(),
8831         diag::err_covariant_return_type_class_type_more_qualified)
8832    << New->getDeclName() << NewTy << OldTy;
8833    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8834    return true;
8835  };
8836
8837  return false;
8838}
8839
8840/// \brief Mark the given method pure.
8841///
8842/// \param Method the method to be marked pure.
8843///
8844/// \param InitRange the source range that covers the "0" initializer.
8845bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
8846  SourceLocation EndLoc = InitRange.getEnd();
8847  if (EndLoc.isValid())
8848    Method->setRangeEnd(EndLoc);
8849
8850  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
8851    Method->setPure();
8852    return false;
8853  }
8854
8855  if (!Method->isInvalidDecl())
8856    Diag(Method->getLocation(), diag::err_non_virtual_pure)
8857      << Method->getDeclName() << InitRange;
8858  return true;
8859}
8860
8861/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
8862/// an initializer for the out-of-line declaration 'Dcl'.  The scope
8863/// is a fresh scope pushed for just this purpose.
8864///
8865/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
8866/// static data member of class X, names should be looked up in the scope of
8867/// class X.
8868void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
8869  // If there is no declaration, there was an error parsing it.
8870  if (D == 0 || D->isInvalidDecl()) return;
8871
8872  // We should only get called for declarations with scope specifiers, like:
8873  //   int foo::bar;
8874  assert(D->isOutOfLine());
8875  EnterDeclaratorContext(S, D->getDeclContext());
8876}
8877
8878/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
8879/// initializer for the out-of-line declaration 'D'.
8880void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
8881  // If there is no declaration, there was an error parsing it.
8882  if (D == 0 || D->isInvalidDecl()) return;
8883
8884  assert(D->isOutOfLine());
8885  ExitDeclaratorContext(S);
8886}
8887
8888/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
8889/// C++ if/switch/while/for statement.
8890/// e.g: "if (int x = f()) {...}"
8891DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
8892  // C++ 6.4p2:
8893  // The declarator shall not specify a function or an array.
8894  // The type-specifier-seq shall not contain typedef and shall not declare a
8895  // new class or enumeration.
8896  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
8897         "Parser allowed 'typedef' as storage class of condition decl.");
8898
8899  TagDecl *OwnedTag = 0;
8900  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
8901  QualType Ty = TInfo->getType();
8902
8903  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
8904                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
8905                              // would be created and CXXConditionDeclExpr wants a VarDecl.
8906    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
8907      << D.getSourceRange();
8908    return DeclResult();
8909  } else if (OwnedTag && OwnedTag->isDefinition()) {
8910    // The type-specifier-seq shall not declare a new class or enumeration.
8911    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
8912  }
8913
8914  Decl *Dcl = ActOnDeclarator(S, D);
8915  if (!Dcl)
8916    return DeclResult();
8917
8918  return Dcl;
8919}
8920
8921void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
8922                          bool DefinitionRequired) {
8923  // Ignore any vtable uses in unevaluated operands or for classes that do
8924  // not have a vtable.
8925  if (!Class->isDynamicClass() || Class->isDependentContext() ||
8926      CurContext->isDependentContext() ||
8927      ExprEvalContexts.back().Context == Unevaluated)
8928    return;
8929
8930  // Try to insert this class into the map.
8931  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
8932  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
8933    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
8934  if (!Pos.second) {
8935    // If we already had an entry, check to see if we are promoting this vtable
8936    // to required a definition. If so, we need to reappend to the VTableUses
8937    // list, since we may have already processed the first entry.
8938    if (DefinitionRequired && !Pos.first->second) {
8939      Pos.first->second = true;
8940    } else {
8941      // Otherwise, we can early exit.
8942      return;
8943    }
8944  }
8945
8946  // Local classes need to have their virtual members marked
8947  // immediately. For all other classes, we mark their virtual members
8948  // at the end of the translation unit.
8949  if (Class->isLocalClass())
8950    MarkVirtualMembersReferenced(Loc, Class);
8951  else
8952    VTableUses.push_back(std::make_pair(Class, Loc));
8953}
8954
8955bool Sema::DefineUsedVTables() {
8956  if (VTableUses.empty())
8957    return false;
8958
8959  // Note: The VTableUses vector could grow as a result of marking
8960  // the members of a class as "used", so we check the size each
8961  // time through the loop and prefer indices (with are stable) to
8962  // iterators (which are not).
8963  bool DefinedAnything = false;
8964  for (unsigned I = 0; I != VTableUses.size(); ++I) {
8965    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
8966    if (!Class)
8967      continue;
8968
8969    SourceLocation Loc = VTableUses[I].second;
8970
8971    // If this class has a key function, but that key function is
8972    // defined in another translation unit, we don't need to emit the
8973    // vtable even though we're using it.
8974    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
8975    if (KeyFunction && !KeyFunction->hasBody()) {
8976      switch (KeyFunction->getTemplateSpecializationKind()) {
8977      case TSK_Undeclared:
8978      case TSK_ExplicitSpecialization:
8979      case TSK_ExplicitInstantiationDeclaration:
8980        // The key function is in another translation unit.
8981        continue;
8982
8983      case TSK_ExplicitInstantiationDefinition:
8984      case TSK_ImplicitInstantiation:
8985        // We will be instantiating the key function.
8986        break;
8987      }
8988    } else if (!KeyFunction) {
8989      // If we have a class with no key function that is the subject
8990      // of an explicit instantiation declaration, suppress the
8991      // vtable; it will live with the explicit instantiation
8992      // definition.
8993      bool IsExplicitInstantiationDeclaration
8994        = Class->getTemplateSpecializationKind()
8995                                      == TSK_ExplicitInstantiationDeclaration;
8996      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
8997                                 REnd = Class->redecls_end();
8998           R != REnd; ++R) {
8999        TemplateSpecializationKind TSK
9000          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
9001        if (TSK == TSK_ExplicitInstantiationDeclaration)
9002          IsExplicitInstantiationDeclaration = true;
9003        else if (TSK == TSK_ExplicitInstantiationDefinition) {
9004          IsExplicitInstantiationDeclaration = false;
9005          break;
9006        }
9007      }
9008
9009      if (IsExplicitInstantiationDeclaration)
9010        continue;
9011    }
9012
9013    // Mark all of the virtual members of this class as referenced, so
9014    // that we can build a vtable. Then, tell the AST consumer that a
9015    // vtable for this class is required.
9016    DefinedAnything = true;
9017    MarkVirtualMembersReferenced(Loc, Class);
9018    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
9019    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
9020
9021    // Optionally warn if we're emitting a weak vtable.
9022    if (Class->getLinkage() == ExternalLinkage &&
9023        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
9024      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
9025        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
9026    }
9027  }
9028  VTableUses.clear();
9029
9030  return DefinedAnything;
9031}
9032
9033void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
9034                                        const CXXRecordDecl *RD) {
9035  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
9036       e = RD->method_end(); i != e; ++i) {
9037    CXXMethodDecl *MD = *i;
9038
9039    // C++ [basic.def.odr]p2:
9040    //   [...] A virtual member function is used if it is not pure. [...]
9041    if (MD->isVirtual() && !MD->isPure())
9042      MarkDeclarationReferenced(Loc, MD);
9043  }
9044
9045  // Only classes that have virtual bases need a VTT.
9046  if (RD->getNumVBases() == 0)
9047    return;
9048
9049  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
9050           e = RD->bases_end(); i != e; ++i) {
9051    const CXXRecordDecl *Base =
9052        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
9053    if (Base->getNumVBases() == 0)
9054      continue;
9055    MarkVirtualMembersReferenced(Loc, Base);
9056  }
9057}
9058
9059/// SetIvarInitializers - This routine builds initialization ASTs for the
9060/// Objective-C implementation whose ivars need be initialized.
9061void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
9062  if (!getLangOptions().CPlusPlus)
9063    return;
9064  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
9065    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
9066    CollectIvarsToConstructOrDestruct(OID, ivars);
9067    if (ivars.empty())
9068      return;
9069    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
9070    for (unsigned i = 0; i < ivars.size(); i++) {
9071      FieldDecl *Field = ivars[i];
9072      if (Field->isInvalidDecl())
9073        continue;
9074
9075      CXXCtorInitializer *Member;
9076      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
9077      InitializationKind InitKind =
9078        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
9079
9080      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
9081      ExprResult MemberInit =
9082        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
9083      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
9084      // Note, MemberInit could actually come back empty if no initialization
9085      // is required (e.g., because it would call a trivial default constructor)
9086      if (!MemberInit.get() || MemberInit.isInvalid())
9087        continue;
9088
9089      Member =
9090        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
9091                                         SourceLocation(),
9092                                         MemberInit.takeAs<Expr>(),
9093                                         SourceLocation());
9094      AllToInit.push_back(Member);
9095
9096      // Be sure that the destructor is accessible and is marked as referenced.
9097      if (const RecordType *RecordTy
9098                  = Context.getBaseElementType(Field->getType())
9099                                                        ->getAs<RecordType>()) {
9100                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
9101        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
9102          MarkDeclarationReferenced(Field->getLocation(), Destructor);
9103          CheckDestructorAccess(Field->getLocation(), Destructor,
9104                            PDiag(diag::err_access_dtor_ivar)
9105                              << Context.getBaseElementType(Field->getType()));
9106        }
9107      }
9108    }
9109    ObjCImplementation->setIvarInitializers(Context,
9110                                            AllToInit.data(), AllToInit.size());
9111  }
9112}
9113
9114static
9115void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
9116                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
9117                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
9118                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
9119                           Sema &S) {
9120  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9121                                                   CE = Current.end();
9122  if (Ctor->isInvalidDecl())
9123    return;
9124
9125  const FunctionDecl *FNTarget = 0;
9126  CXXConstructorDecl *Target;
9127
9128  // We ignore the result here since if we don't have a body, Target will be
9129  // null below.
9130  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
9131  Target
9132= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
9133
9134  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
9135                     // Avoid dereferencing a null pointer here.
9136                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
9137
9138  if (!Current.insert(Canonical))
9139    return;
9140
9141  // We know that beyond here, we aren't chaining into a cycle.
9142  if (!Target || !Target->isDelegatingConstructor() ||
9143      Target->isInvalidDecl() || Valid.count(TCanonical)) {
9144    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9145      Valid.insert(*CI);
9146    Current.clear();
9147  // We've hit a cycle.
9148  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
9149             Current.count(TCanonical)) {
9150    // If we haven't diagnosed this cycle yet, do so now.
9151    if (!Invalid.count(TCanonical)) {
9152      S.Diag((*Ctor->init_begin())->getSourceLocation(),
9153             diag::warn_delegating_ctor_cycle)
9154        << Ctor;
9155
9156      // Don't add a note for a function delegating directo to itself.
9157      if (TCanonical != Canonical)
9158        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
9159
9160      CXXConstructorDecl *C = Target;
9161      while (C->getCanonicalDecl() != Canonical) {
9162        (void)C->getTargetConstructor()->hasBody(FNTarget);
9163        assert(FNTarget && "Ctor cycle through bodiless function");
9164
9165        C
9166       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
9167        S.Diag(C->getLocation(), diag::note_which_delegates_to);
9168      }
9169    }
9170
9171    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9172      Invalid.insert(*CI);
9173    Current.clear();
9174  } else {
9175    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
9176  }
9177}
9178
9179
9180void Sema::CheckDelegatingCtorCycles() {
9181  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
9182
9183  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9184                                                   CE = Current.end();
9185
9186  for (llvm::SmallVector<CXXConstructorDecl*, 4>::iterator
9187         I = DelegatingCtorDecls.begin(),
9188         E = DelegatingCtorDecls.end();
9189       I != E; ++I) {
9190   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
9191  }
9192
9193  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
9194    (*CI)->setInvalidDecl();
9195}
9196