SemaDeclCXX.cpp revision b9bbe49f513080b3307e88bdee0d383f4b8c1d4e
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/TypeOrdering.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Parse/DeclSpec.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm> // for std::equal
25#include <map>
26
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30// CheckDefaultArgumentVisitor
31//===----------------------------------------------------------------------===//
32
33namespace {
34  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
35  /// the default argument of a parameter to determine whether it
36  /// contains any ill-formed subexpressions. For example, this will
37  /// diagnose the use of local variables or parameters within the
38  /// default argument expression.
39  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
40    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
41    Expr *DefaultArg;
42    Sema *S;
43
44  public:
45    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
46      : DefaultArg(defarg), S(s) {}
47
48    bool VisitExpr(Expr *Node);
49    bool VisitDeclRefExpr(DeclRefExpr *DRE);
50    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
51  };
52
53  /// VisitExpr - Visit all of the children of this expression.
54  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
55    bool IsInvalid = false;
56    for (Stmt::child_iterator I = Node->child_begin(),
57         E = Node->child_end(); I != E; ++I)
58      IsInvalid |= Visit(*I);
59    return IsInvalid;
60  }
61
62  /// VisitDeclRefExpr - Visit a reference to a declaration, to
63  /// determine whether this declaration can be used in the default
64  /// argument expression.
65  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
66    NamedDecl *Decl = DRE->getDecl();
67    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
68      // C++ [dcl.fct.default]p9
69      //   Default arguments are evaluated each time the function is
70      //   called. The order of evaluation of function arguments is
71      //   unspecified. Consequently, parameters of a function shall not
72      //   be used in default argument expressions, even if they are not
73      //   evaluated. Parameters of a function declared before a default
74      //   argument expression are in scope and can hide namespace and
75      //   class member names.
76      return S->Diag(DRE->getSourceRange().getBegin(),
77                     diag::err_param_default_argument_references_param)
78         << Param->getDeclName() << DefaultArg->getSourceRange();
79    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
80      // C++ [dcl.fct.default]p7
81      //   Local variables shall not be used in default argument
82      //   expressions.
83      if (VDecl->isBlockVarDecl())
84        return S->Diag(DRE->getSourceRange().getBegin(),
85                       diag::err_param_default_argument_references_local)
86          << VDecl->getDeclName() << DefaultArg->getSourceRange();
87    }
88
89    return false;
90  }
91
92  /// VisitCXXThisExpr - Visit a C++ "this" expression.
93  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
94    // C++ [dcl.fct.default]p8:
95    //   The keyword this shall not be used in a default argument of a
96    //   member function.
97    return S->Diag(ThisE->getSourceRange().getBegin(),
98                   diag::err_param_default_argument_references_this)
99               << ThisE->getSourceRange();
100  }
101}
102
103/// ActOnParamDefaultArgument - Check whether the default argument
104/// provided for a function parameter is well-formed. If so, attach it
105/// to the parameter declaration.
106void
107Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
108                                ExprArg defarg) {
109  ParmVarDecl *Param = (ParmVarDecl *)param;
110  ExprOwningPtr<Expr> DefaultArg(this, (Expr *)defarg.release());
111  QualType ParamType = Param->getType();
112
113  // Default arguments are only permitted in C++
114  if (!getLangOptions().CPlusPlus) {
115    Diag(EqualLoc, diag::err_param_default_argument)
116      << DefaultArg->getSourceRange();
117    Param->setInvalidDecl();
118    return;
119  }
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  Expr *DefaultArgPtr = DefaultArg.get();
128  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
129                                                 EqualLoc,
130                                                 Param->getDeclName(),
131                                                 /*DirectInit=*/false);
132  if (DefaultArgPtr != DefaultArg.get()) {
133    DefaultArg.take();
134    DefaultArg.reset(DefaultArgPtr);
135  }
136  if (DefaultInitFailed) {
137    return;
138  }
139
140  // Check that the default argument is well-formed
141  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
142  if (DefaultArgChecker.Visit(DefaultArg.get())) {
143    Param->setInvalidDecl();
144    return;
145  }
146
147  // Okay: add the default argument to the parameter
148  Param->setDefaultArg(DefaultArg.take());
149}
150
151/// ActOnParamUnparsedDefaultArgument - We've seen a default
152/// argument for a function parameter, but we can't parse it yet
153/// because we're inside a class definition. Note that this default
154/// argument will be parsed later.
155void Sema::ActOnParamUnparsedDefaultArgument(DeclTy *param,
156                                             SourceLocation EqualLoc) {
157  ParmVarDecl *Param = (ParmVarDecl*)param;
158  if (Param)
159    Param->setUnparsedDefaultArg();
160}
161
162/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
163/// the default argument for the parameter param failed.
164void Sema::ActOnParamDefaultArgumentError(DeclTy *param) {
165  ((ParmVarDecl*)param)->setInvalidDecl();
166}
167
168/// CheckExtraCXXDefaultArguments - Check for any extra default
169/// arguments in the declarator, which is not a function declaration
170/// or definition and therefore is not permitted to have default
171/// arguments. This routine should be invoked for every declarator
172/// that is not a function declaration or definition.
173void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
174  // C++ [dcl.fct.default]p3
175  //   A default argument expression shall be specified only in the
176  //   parameter-declaration-clause of a function declaration or in a
177  //   template-parameter (14.1). It shall not be specified for a
178  //   parameter pack. If it is specified in a
179  //   parameter-declaration-clause, it shall not occur within a
180  //   declarator or abstract-declarator of a parameter-declaration.
181  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
182    DeclaratorChunk &chunk = D.getTypeObject(i);
183    if (chunk.Kind == DeclaratorChunk::Function) {
184      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
185        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
186        if (Param->hasUnparsedDefaultArg()) {
187          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
188          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
189            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
190          delete Toks;
191          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
192        } else if (Param->getDefaultArg()) {
193          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
194            << Param->getDefaultArg()->getSourceRange();
195          Param->setDefaultArg(0);
196        }
197      }
198    }
199  }
200}
201
202// MergeCXXFunctionDecl - Merge two declarations of the same C++
203// function, once we already know that they have the same
204// type. Subroutine of MergeFunctionDecl. Returns true if there was an
205// error, false otherwise.
206bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
207  bool Invalid = false;
208
209  // C++ [dcl.fct.default]p4:
210  //
211  //   For non-template functions, default arguments can be added in
212  //   later declarations of a function in the same
213  //   scope. Declarations in different scopes have completely
214  //   distinct sets of default arguments. That is, declarations in
215  //   inner scopes do not acquire default arguments from
216  //   declarations in outer scopes, and vice versa. In a given
217  //   function declaration, all parameters subsequent to a
218  //   parameter with a default argument shall have default
219  //   arguments supplied in this or previous declarations. A
220  //   default argument shall not be redefined by a later
221  //   declaration (not even to the same value).
222  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
223    ParmVarDecl *OldParam = Old->getParamDecl(p);
224    ParmVarDecl *NewParam = New->getParamDecl(p);
225
226    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
227      Diag(NewParam->getLocation(),
228           diag::err_param_default_argument_redefinition)
229        << NewParam->getDefaultArg()->getSourceRange();
230      Diag(OldParam->getLocation(), diag::note_previous_definition);
231      Invalid = true;
232    } else if (OldParam->getDefaultArg()) {
233      // Merge the old default argument into the new parameter
234      NewParam->setDefaultArg(OldParam->getDefaultArg());
235    }
236  }
237
238  return Invalid;
239}
240
241/// CheckCXXDefaultArguments - Verify that the default arguments for a
242/// function declaration are well-formed according to C++
243/// [dcl.fct.default].
244void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
245  unsigned NumParams = FD->getNumParams();
246  unsigned p;
247
248  // Find first parameter with a default argument
249  for (p = 0; p < NumParams; ++p) {
250    ParmVarDecl *Param = FD->getParamDecl(p);
251    if (Param->getDefaultArg())
252      break;
253  }
254
255  // C++ [dcl.fct.default]p4:
256  //   In a given function declaration, all parameters
257  //   subsequent to a parameter with a default argument shall
258  //   have default arguments supplied in this or previous
259  //   declarations. A default argument shall not be redefined
260  //   by a later declaration (not even to the same value).
261  unsigned LastMissingDefaultArg = 0;
262  for(; p < NumParams; ++p) {
263    ParmVarDecl *Param = FD->getParamDecl(p);
264    if (!Param->getDefaultArg()) {
265      if (Param->isInvalidDecl())
266        /* We already complained about this parameter. */;
267      else if (Param->getIdentifier())
268        Diag(Param->getLocation(),
269             diag::err_param_default_argument_missing_name)
270          << Param->getIdentifier();
271      else
272        Diag(Param->getLocation(),
273             diag::err_param_default_argument_missing);
274
275      LastMissingDefaultArg = p;
276    }
277  }
278
279  if (LastMissingDefaultArg > 0) {
280    // Some default arguments were missing. Clear out all of the
281    // default arguments up to (and including) the last missing
282    // default argument, so that we leave the function parameters
283    // in a semantically valid state.
284    for (p = 0; p <= LastMissingDefaultArg; ++p) {
285      ParmVarDecl *Param = FD->getParamDecl(p);
286      if (Param->getDefaultArg()) {
287        if (!Param->hasUnparsedDefaultArg())
288          Param->getDefaultArg()->Destroy(Context);
289        Param->setDefaultArg(0);
290      }
291    }
292  }
293}
294
295/// isCurrentClassName - Determine whether the identifier II is the
296/// name of the class type currently being defined. In the case of
297/// nested classes, this will only return true if II is the name of
298/// the innermost class.
299bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
300                              const CXXScopeSpec *SS) {
301  CXXRecordDecl *CurDecl;
302  if (SS && SS->isSet() && !SS->isInvalid()) {
303    DeclContext *DC = computeDeclContext(*SS);
304    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
305  } else
306    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
307
308  if (CurDecl)
309    return &II == CurDecl->getIdentifier();
310  else
311    return false;
312}
313
314/// \brief Check the validity of a C++ base class specifier.
315///
316/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
317/// and returns NULL otherwise.
318CXXBaseSpecifier *
319Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
320                         SourceRange SpecifierRange,
321                         bool Virtual, AccessSpecifier Access,
322                         QualType BaseType,
323                         SourceLocation BaseLoc) {
324  // C++ [class.union]p1:
325  //   A union shall not have base classes.
326  if (Class->isUnion()) {
327    Diag(Class->getLocation(), diag::err_base_clause_on_union)
328      << SpecifierRange;
329    return 0;
330  }
331
332  if (BaseType->isDependentType())
333    return new CXXBaseSpecifier(SpecifierRange, Virtual,
334                                Class->getTagKind() == RecordDecl::TK_class,
335                                Access, BaseType);
336
337  // Base specifiers must be record types.
338  if (!BaseType->isRecordType()) {
339    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
340    return 0;
341  }
342
343  // C++ [class.union]p1:
344  //   A union shall not be used as a base class.
345  if (BaseType->isUnionType()) {
346    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
347    return 0;
348  }
349
350  // C++ [class.derived]p2:
351  //   The class-name in a base-specifier shall not be an incompletely
352  //   defined class.
353  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
354                          SpecifierRange))
355    return 0;
356
357  // If the base class is polymorphic, the new one is, too.
358  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
359  assert(BaseDecl && "Record type has no declaration");
360  BaseDecl = BaseDecl->getDefinition(Context);
361  assert(BaseDecl && "Base type is not incomplete, but has no definition");
362  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
363    Class->setPolymorphic(true);
364
365  // C++ [dcl.init.aggr]p1:
366  //   An aggregate is [...] a class with [...] no base classes [...].
367  Class->setAggregate(false);
368  Class->setPOD(false);
369
370  // Create the base specifier.
371  // FIXME: Allocate via ASTContext?
372  return new CXXBaseSpecifier(SpecifierRange, Virtual,
373                              Class->getTagKind() == RecordDecl::TK_class,
374                              Access, BaseType);
375}
376
377/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
378/// one entry in the base class list of a class specifier, for
379/// example:
380///    class foo : public bar, virtual private baz {
381/// 'public bar' and 'virtual private baz' are each base-specifiers.
382Sema::BaseResult
383Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
384                         bool Virtual, AccessSpecifier Access,
385                         TypeTy *basetype, SourceLocation BaseLoc) {
386  AdjustDeclIfTemplate(classdecl);
387  CXXRecordDecl *Class = cast<CXXRecordDecl>((Decl*)classdecl);
388  QualType BaseType = QualType::getFromOpaquePtr(basetype);
389  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
390                                                      Virtual, Access,
391                                                      BaseType, BaseLoc))
392    return BaseSpec;
393
394  return true;
395}
396
397/// \brief Performs the actual work of attaching the given base class
398/// specifiers to a C++ class.
399bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
400                                unsigned NumBases) {
401 if (NumBases == 0)
402    return false;
403
404  // Used to keep track of which base types we have already seen, so
405  // that we can properly diagnose redundant direct base types. Note
406  // that the key is always the unqualified canonical type of the base
407  // class.
408  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
409
410  // Copy non-redundant base specifiers into permanent storage.
411  unsigned NumGoodBases = 0;
412  bool Invalid = false;
413  for (unsigned idx = 0; idx < NumBases; ++idx) {
414    QualType NewBaseType
415      = Context.getCanonicalType(Bases[idx]->getType());
416    NewBaseType = NewBaseType.getUnqualifiedType();
417
418    if (KnownBaseTypes[NewBaseType]) {
419      // C++ [class.mi]p3:
420      //   A class shall not be specified as a direct base class of a
421      //   derived class more than once.
422      Diag(Bases[idx]->getSourceRange().getBegin(),
423           diag::err_duplicate_base_class)
424        << KnownBaseTypes[NewBaseType]->getType()
425        << Bases[idx]->getSourceRange();
426
427      // Delete the duplicate base class specifier; we're going to
428      // overwrite its pointer later.
429      delete Bases[idx];
430
431      Invalid = true;
432    } else {
433      // Okay, add this new base class.
434      KnownBaseTypes[NewBaseType] = Bases[idx];
435      Bases[NumGoodBases++] = Bases[idx];
436    }
437  }
438
439  // Attach the remaining base class specifiers to the derived class.
440  Class->setBases(Bases, NumGoodBases);
441
442  // Delete the remaining (good) base class specifiers, since their
443  // data has been copied into the CXXRecordDecl.
444  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
445    delete Bases[idx];
446
447  return Invalid;
448}
449
450/// ActOnBaseSpecifiers - Attach the given base specifiers to the
451/// class, after checking whether there are any duplicate base
452/// classes.
453void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
454                               unsigned NumBases) {
455  if (!ClassDecl || !Bases || !NumBases)
456    return;
457
458  AdjustDeclIfTemplate(ClassDecl);
459  AttachBaseSpecifiers(cast<CXXRecordDecl>((Decl*)ClassDecl),
460                       (CXXBaseSpecifier**)(Bases), NumBases);
461}
462
463//===----------------------------------------------------------------------===//
464// C++ class member Handling
465//===----------------------------------------------------------------------===//
466
467/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
468/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
469/// bitfield width if there is one and 'InitExpr' specifies the initializer if
470/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
471/// declarators on it.
472Sema::DeclTy *
473Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
474                               ExprTy *BW, ExprTy *InitExpr,
475                               DeclTy *LastInGroup) {
476  const DeclSpec &DS = D.getDeclSpec();
477  DeclarationName Name = GetNameForDeclarator(D);
478  Expr *BitWidth = static_cast<Expr*>(BW);
479  Expr *Init = static_cast<Expr*>(InitExpr);
480  SourceLocation Loc = D.getIdentifierLoc();
481
482  bool isFunc = D.isFunctionDeclarator();
483
484  // C++ 9.2p6: A member shall not be declared to have automatic storage
485  // duration (auto, register) or with the extern storage-class-specifier.
486  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
487  // data members and cannot be applied to names declared const or static,
488  // and cannot be applied to reference members.
489  switch (DS.getStorageClassSpec()) {
490    case DeclSpec::SCS_unspecified:
491    case DeclSpec::SCS_typedef:
492    case DeclSpec::SCS_static:
493      // FALL THROUGH.
494      break;
495    case DeclSpec::SCS_mutable:
496      if (isFunc) {
497        if (DS.getStorageClassSpecLoc().isValid())
498          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
499        else
500          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
501
502        // FIXME: It would be nicer if the keyword was ignored only for this
503        // declarator. Otherwise we could get follow-up errors.
504        D.getMutableDeclSpec().ClearStorageClassSpecs();
505      } else {
506        QualType T = GetTypeForDeclarator(D, S);
507        diag::kind err = static_cast<diag::kind>(0);
508        if (T->isReferenceType())
509          err = diag::err_mutable_reference;
510        else if (T.isConstQualified())
511          err = diag::err_mutable_const;
512        if (err != 0) {
513          if (DS.getStorageClassSpecLoc().isValid())
514            Diag(DS.getStorageClassSpecLoc(), err);
515          else
516            Diag(DS.getThreadSpecLoc(), err);
517          // FIXME: It would be nicer if the keyword was ignored only for this
518          // declarator. Otherwise we could get follow-up errors.
519          D.getMutableDeclSpec().ClearStorageClassSpecs();
520        }
521      }
522      break;
523    default:
524      if (DS.getStorageClassSpecLoc().isValid())
525        Diag(DS.getStorageClassSpecLoc(),
526             diag::err_storageclass_invalid_for_member);
527      else
528        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
529      D.getMutableDeclSpec().ClearStorageClassSpecs();
530  }
531
532  if (!isFunc &&
533      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
534      D.getNumTypeObjects() == 0) {
535    // Check also for this case:
536    //
537    // typedef int f();
538    // f a;
539    //
540    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
541    isFunc = TDType->isFunctionType();
542  }
543
544  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
545                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
546                      !isFunc);
547
548  Decl *Member;
549  if (isInstField) {
550    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
551                         AS);
552    assert(Member && "HandleField never returns null");
553  } else {
554    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
555    if (!Member) {
556      if (BitWidth) DeleteExpr(BitWidth);
557      return LastInGroup;
558    }
559
560    // Non-instance-fields can't have a bitfield.
561    if (BitWidth) {
562      if (Member->isInvalidDecl()) {
563        // don't emit another diagnostic.
564      } else if (isa<VarDecl>(Member)) {
565        // C++ 9.6p3: A bit-field shall not be a static member.
566        // "static member 'A' cannot be a bit-field"
567        Diag(Loc, diag::err_static_not_bitfield)
568          << Name << BitWidth->getSourceRange();
569      } else if (isa<TypedefDecl>(Member)) {
570        // "typedef member 'x' cannot be a bit-field"
571        Diag(Loc, diag::err_typedef_not_bitfield)
572          << Name << BitWidth->getSourceRange();
573      } else {
574        // A function typedef ("typedef int f(); f a;").
575        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
576        Diag(Loc, diag::err_not_integral_type_bitfield)
577          << Name << cast<ValueDecl>(Member)->getType()
578          << BitWidth->getSourceRange();
579      }
580
581      DeleteExpr(BitWidth);
582      BitWidth = 0;
583      Member->setInvalidDecl();
584    }
585
586    Member->setAccess(AS);
587  }
588
589  assert((Name || isInstField) && "No identifier for non-field ?");
590
591  if (Init)
592    AddInitializerToDecl(Member, ExprArg(*this, Init), false);
593
594  if (isInstField) {
595    FieldCollector->Add(cast<FieldDecl>(Member));
596    return LastInGroup;
597  }
598  return Member;
599}
600
601/// ActOnMemInitializer - Handle a C++ member initializer.
602Sema::MemInitResult
603Sema::ActOnMemInitializer(DeclTy *ConstructorD,
604                          Scope *S,
605                          IdentifierInfo *MemberOrBase,
606                          SourceLocation IdLoc,
607                          SourceLocation LParenLoc,
608                          ExprTy **Args, unsigned NumArgs,
609                          SourceLocation *CommaLocs,
610                          SourceLocation RParenLoc) {
611  CXXConstructorDecl *Constructor
612    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
613  if (!Constructor) {
614    // The user wrote a constructor initializer on a function that is
615    // not a C++ constructor. Ignore the error for now, because we may
616    // have more member initializers coming; we'll diagnose it just
617    // once in ActOnMemInitializers.
618    return true;
619  }
620
621  CXXRecordDecl *ClassDecl = Constructor->getParent();
622
623  // C++ [class.base.init]p2:
624  //   Names in a mem-initializer-id are looked up in the scope of the
625  //   constructor’s class and, if not found in that scope, are looked
626  //   up in the scope containing the constructor’s
627  //   definition. [Note: if the constructor’s class contains a member
628  //   with the same name as a direct or virtual base class of the
629  //   class, a mem-initializer-id naming the member or base class and
630  //   composed of a single identifier refers to the class member. A
631  //   mem-initializer-id for the hidden base class may be specified
632  //   using a qualified name. ]
633  // Look for a member, first.
634  FieldDecl *Member = 0;
635  DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
636  if (Result.first != Result.second)
637    Member = dyn_cast<FieldDecl>(*Result.first);
638
639  // FIXME: Handle members of an anonymous union.
640
641  if (Member) {
642    // FIXME: Perform direct initialization of the member.
643    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
644  }
645
646  // It didn't name a member, so see if it names a class.
647  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
648  if (!BaseTy)
649    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
650      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
651
652  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
653  if (!BaseType->isRecordType())
654    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
655      << BaseType << SourceRange(IdLoc, RParenLoc);
656
657  // C++ [class.base.init]p2:
658  //   [...] Unless the mem-initializer-id names a nonstatic data
659  //   member of the constructor’s class or a direct or virtual base
660  //   of that class, the mem-initializer is ill-formed. A
661  //   mem-initializer-list can initialize a base class using any
662  //   name that denotes that base class type.
663
664  // First, check for a direct base class.
665  const CXXBaseSpecifier *DirectBaseSpec = 0;
666  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
667       Base != ClassDecl->bases_end(); ++Base) {
668    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
669        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
670      // We found a direct base of this type. That's what we're
671      // initializing.
672      DirectBaseSpec = &*Base;
673      break;
674    }
675  }
676
677  // Check for a virtual base class.
678  // FIXME: We might be able to short-circuit this if we know in
679  // advance that there are no virtual bases.
680  const CXXBaseSpecifier *VirtualBaseSpec = 0;
681  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
682    // We haven't found a base yet; search the class hierarchy for a
683    // virtual base class.
684    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
685                    /*DetectVirtual=*/false);
686    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
687      for (BasePaths::paths_iterator Path = Paths.begin();
688           Path != Paths.end(); ++Path) {
689        if (Path->back().Base->isVirtual()) {
690          VirtualBaseSpec = Path->back().Base;
691          break;
692        }
693      }
694    }
695  }
696
697  // C++ [base.class.init]p2:
698  //   If a mem-initializer-id is ambiguous because it designates both
699  //   a direct non-virtual base class and an inherited virtual base
700  //   class, the mem-initializer is ill-formed.
701  if (DirectBaseSpec && VirtualBaseSpec)
702    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
703      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
704
705  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
706}
707
708namespace {
709  /// PureVirtualMethodCollector - traverses a class and its superclasses
710  /// and determines if it has any pure virtual methods.
711  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
712    ASTContext &Context;
713
714  public:
715    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
716
717  private:
718    MethodList Methods;
719
720    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
721
722  public:
723    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
724      : Context(Ctx) {
725
726      MethodList List;
727      Collect(RD, List);
728
729      // Copy the temporary list to methods, and make sure to ignore any
730      // null entries.
731      for (size_t i = 0, e = List.size(); i != e; ++i) {
732        if (List[i])
733          Methods.push_back(List[i]);
734      }
735    }
736
737    bool empty() const { return Methods.empty(); }
738
739    MethodList::const_iterator methods_begin() { return Methods.begin(); }
740    MethodList::const_iterator methods_end() { return Methods.end(); }
741  };
742
743  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
744                                           MethodList& Methods) {
745    // First, collect the pure virtual methods for the base classes.
746    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
747         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
748      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
749        const CXXRecordDecl *BaseDecl
750          = cast<CXXRecordDecl>(RT->getDecl());
751        if (BaseDecl && BaseDecl->isAbstract())
752          Collect(BaseDecl, Methods);
753      }
754    }
755
756    // Next, zero out any pure virtual methods that this class overrides.
757    for (size_t i = 0, e = Methods.size(); i != e; ++i) {
758      const CXXMethodDecl *VMD = dyn_cast_or_null<CXXMethodDecl>(Methods[i]);
759      if (!VMD)
760        continue;
761
762      DeclContext::lookup_const_iterator I, E;
763      for (llvm::tie(I, E) = RD->lookup(VMD->getDeclName()); I != E; ++I) {
764        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I)) {
765          if (Context.getCanonicalType(MD->getType()) ==
766              Context.getCanonicalType(VMD->getType())) {
767            // We did find a matching method, which means that this is not a
768            // pure virtual method in the current class. Zero it out.
769            Methods[i] = 0;
770          }
771        }
772      }
773    }
774
775    // Finally, add pure virtual methods from this class.
776    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
777         i != e; ++i) {
778      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
779        if (MD->isPure())
780          Methods.push_back(MD);
781      }
782    }
783  }
784}
785
786bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
787                                  unsigned DiagID, unsigned SelID) {
788
789  if (!getLangOptions().CPlusPlus)
790    return false;
791
792  const RecordType *RT = T->getAsRecordType();
793  if (!RT)
794    return false;
795
796  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
797  if (!RD)
798    return false;
799
800  if (!RD->isAbstract())
801    return false;
802
803  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
804
805  // Check if we've already emitted the list of pure virtual functions for this
806  // class.
807  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
808    return true;
809
810  PureVirtualMethodCollector Collector(Context, RD);
811
812  for (PureVirtualMethodCollector::MethodList::const_iterator I =
813       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
814    const CXXMethodDecl *MD = *I;
815
816    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
817      MD->getDeclName();
818  }
819
820  if (!PureVirtualClassDiagSet)
821    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
822  PureVirtualClassDiagSet->insert(RD);
823
824  return true;
825}
826
827void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
828                                             DeclTy *TagDecl,
829                                             SourceLocation LBrac,
830                                             SourceLocation RBrac) {
831  TemplateDecl *Template = AdjustDeclIfTemplate(TagDecl);
832  ActOnFields(S, RLoc, TagDecl,
833              (DeclTy**)FieldCollector->getCurFields(),
834              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
835
836  CXXRecordDecl *RD = cast<CXXRecordDecl>((Decl*)TagDecl);
837  if (!RD->isAbstract()) {
838    // Collect all the pure virtual methods and see if this is an abstract
839    // class after all.
840    PureVirtualMethodCollector Collector(Context, RD);
841    if (!Collector.empty())
842      RD->setAbstract(true);
843  }
844
845  if (!Template)
846    AddImplicitlyDeclaredMembersToClass(RD);
847}
848
849/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
850/// special functions, such as the default constructor, copy
851/// constructor, or destructor, to the given C++ class (C++
852/// [special]p1).  This routine can only be executed just before the
853/// definition of the class is complete.
854void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
855  QualType ClassType = Context.getTypeDeclType(ClassDecl);
856  ClassType = Context.getCanonicalType(ClassType);
857
858  if (!ClassDecl->hasUserDeclaredConstructor()) {
859    // C++ [class.ctor]p5:
860    //   A default constructor for a class X is a constructor of class X
861    //   that can be called without an argument. If there is no
862    //   user-declared constructor for class X, a default constructor is
863    //   implicitly declared. An implicitly-declared default constructor
864    //   is an inline public member of its class.
865    DeclarationName Name
866      = Context.DeclarationNames.getCXXConstructorName(ClassType);
867    CXXConstructorDecl *DefaultCon =
868      CXXConstructorDecl::Create(Context, ClassDecl,
869                                 ClassDecl->getLocation(), Name,
870                                 Context.getFunctionType(Context.VoidTy,
871                                                         0, 0, false, 0),
872                                 /*isExplicit=*/false,
873                                 /*isInline=*/true,
874                                 /*isImplicitlyDeclared=*/true);
875    DefaultCon->setAccess(AS_public);
876    DefaultCon->setImplicit();
877    ClassDecl->addDecl(DefaultCon);
878
879    // Notify the class that we've added a constructor.
880    ClassDecl->addedConstructor(Context, DefaultCon);
881  }
882
883  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
884    // C++ [class.copy]p4:
885    //   If the class definition does not explicitly declare a copy
886    //   constructor, one is declared implicitly.
887
888    // C++ [class.copy]p5:
889    //   The implicitly-declared copy constructor for a class X will
890    //   have the form
891    //
892    //       X::X(const X&)
893    //
894    //   if
895    bool HasConstCopyConstructor = true;
896
897    //     -- each direct or virtual base class B of X has a copy
898    //        constructor whose first parameter is of type const B& or
899    //        const volatile B&, and
900    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
901         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
902      const CXXRecordDecl *BaseClassDecl
903        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
904      HasConstCopyConstructor
905        = BaseClassDecl->hasConstCopyConstructor(Context);
906    }
907
908    //     -- for all the nonstatic data members of X that are of a
909    //        class type M (or array thereof), each such class type
910    //        has a copy constructor whose first parameter is of type
911    //        const M& or const volatile M&.
912    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
913         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
914      QualType FieldType = (*Field)->getType();
915      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
916        FieldType = Array->getElementType();
917      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
918        const CXXRecordDecl *FieldClassDecl
919          = cast<CXXRecordDecl>(FieldClassType->getDecl());
920        HasConstCopyConstructor
921          = FieldClassDecl->hasConstCopyConstructor(Context);
922      }
923    }
924
925    //   Otherwise, the implicitly declared copy constructor will have
926    //   the form
927    //
928    //       X::X(X&)
929    QualType ArgType = ClassType;
930    if (HasConstCopyConstructor)
931      ArgType = ArgType.withConst();
932    ArgType = Context.getLValueReferenceType(ArgType);
933
934    //   An implicitly-declared copy constructor is an inline public
935    //   member of its class.
936    DeclarationName Name
937      = Context.DeclarationNames.getCXXConstructorName(ClassType);
938    CXXConstructorDecl *CopyConstructor
939      = CXXConstructorDecl::Create(Context, ClassDecl,
940                                   ClassDecl->getLocation(), Name,
941                                   Context.getFunctionType(Context.VoidTy,
942                                                           &ArgType, 1,
943                                                           false, 0),
944                                   /*isExplicit=*/false,
945                                   /*isInline=*/true,
946                                   /*isImplicitlyDeclared=*/true);
947    CopyConstructor->setAccess(AS_public);
948    CopyConstructor->setImplicit();
949
950    // Add the parameter to the constructor.
951    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
952                                                 ClassDecl->getLocation(),
953                                                 /*IdentifierInfo=*/0,
954                                                 ArgType, VarDecl::None, 0);
955    CopyConstructor->setParams(Context, &FromParam, 1);
956
957    ClassDecl->addedConstructor(Context, CopyConstructor);
958    ClassDecl->addDecl(CopyConstructor);
959  }
960
961  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
962    // Note: The following rules are largely analoguous to the copy
963    // constructor rules. Note that virtual bases are not taken into account
964    // for determining the argument type of the operator. Note also that
965    // operators taking an object instead of a reference are allowed.
966    //
967    // C++ [class.copy]p10:
968    //   If the class definition does not explicitly declare a copy
969    //   assignment operator, one is declared implicitly.
970    //   The implicitly-defined copy assignment operator for a class X
971    //   will have the form
972    //
973    //       X& X::operator=(const X&)
974    //
975    //   if
976    bool HasConstCopyAssignment = true;
977
978    //       -- each direct base class B of X has a copy assignment operator
979    //          whose parameter is of type const B&, const volatile B& or B,
980    //          and
981    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
982         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
983      const CXXRecordDecl *BaseClassDecl
984        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
985      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
986    }
987
988    //       -- for all the nonstatic data members of X that are of a class
989    //          type M (or array thereof), each such class type has a copy
990    //          assignment operator whose parameter is of type const M&,
991    //          const volatile M& or M.
992    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
993         HasConstCopyAssignment && Field != ClassDecl->field_end(); ++Field) {
994      QualType FieldType = (*Field)->getType();
995      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
996        FieldType = Array->getElementType();
997      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
998        const CXXRecordDecl *FieldClassDecl
999          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1000        HasConstCopyAssignment
1001          = FieldClassDecl->hasConstCopyAssignment(Context);
1002      }
1003    }
1004
1005    //   Otherwise, the implicitly declared copy assignment operator will
1006    //   have the form
1007    //
1008    //       X& X::operator=(X&)
1009    QualType ArgType = ClassType;
1010    QualType RetType = Context.getLValueReferenceType(ArgType);
1011    if (HasConstCopyAssignment)
1012      ArgType = ArgType.withConst();
1013    ArgType = Context.getLValueReferenceType(ArgType);
1014
1015    //   An implicitly-declared copy assignment operator is an inline public
1016    //   member of its class.
1017    DeclarationName Name =
1018      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1019    CXXMethodDecl *CopyAssignment =
1020      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1021                            Context.getFunctionType(RetType, &ArgType, 1,
1022                                                    false, 0),
1023                            /*isStatic=*/false, /*isInline=*/true);
1024    CopyAssignment->setAccess(AS_public);
1025    CopyAssignment->setImplicit();
1026
1027    // Add the parameter to the operator.
1028    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1029                                                 ClassDecl->getLocation(),
1030                                                 /*IdentifierInfo=*/0,
1031                                                 ArgType, VarDecl::None, 0);
1032    CopyAssignment->setParams(Context, &FromParam, 1);
1033
1034    // Don't call addedAssignmentOperator. There is no way to distinguish an
1035    // implicit from an explicit assignment operator.
1036    ClassDecl->addDecl(CopyAssignment);
1037  }
1038
1039  if (!ClassDecl->hasUserDeclaredDestructor()) {
1040    // C++ [class.dtor]p2:
1041    //   If a class has no user-declared destructor, a destructor is
1042    //   declared implicitly. An implicitly-declared destructor is an
1043    //   inline public member of its class.
1044    DeclarationName Name
1045      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1046    CXXDestructorDecl *Destructor
1047      = CXXDestructorDecl::Create(Context, ClassDecl,
1048                                  ClassDecl->getLocation(), Name,
1049                                  Context.getFunctionType(Context.VoidTy,
1050                                                          0, 0, false, 0),
1051                                  /*isInline=*/true,
1052                                  /*isImplicitlyDeclared=*/true);
1053    Destructor->setAccess(AS_public);
1054    Destructor->setImplicit();
1055    ClassDecl->addDecl(Destructor);
1056  }
1057}
1058
1059/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1060/// parsing a top-level (non-nested) C++ class, and we are now
1061/// parsing those parts of the given Method declaration that could
1062/// not be parsed earlier (C++ [class.mem]p2), such as default
1063/// arguments. This action should enter the scope of the given
1064/// Method declaration as if we had just parsed the qualified method
1065/// name. However, it should not bring the parameters into scope;
1066/// that will be performed by ActOnDelayedCXXMethodParameter.
1067void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclTy *Method) {
1068  CXXScopeSpec SS;
1069  SS.setScopeRep(((FunctionDecl*)Method)->getDeclContext());
1070  ActOnCXXEnterDeclaratorScope(S, SS);
1071}
1072
1073/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1074/// C++ method declaration. We're (re-)introducing the given
1075/// function parameter into scope for use in parsing later parts of
1076/// the method declaration. For example, we could see an
1077/// ActOnParamDefaultArgument event for this parameter.
1078void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclTy *ParamD) {
1079  ParmVarDecl *Param = (ParmVarDecl*)ParamD;
1080
1081  // If this parameter has an unparsed default argument, clear it out
1082  // to make way for the parsed default argument.
1083  if (Param->hasUnparsedDefaultArg())
1084    Param->setDefaultArg(0);
1085
1086  S->AddDecl(Param);
1087  if (Param->getDeclName())
1088    IdResolver.AddDecl(Param);
1089}
1090
1091/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1092/// processing the delayed method declaration for Method. The method
1093/// declaration is now considered finished. There may be a separate
1094/// ActOnStartOfFunctionDef action later (not necessarily
1095/// immediately!) for this method, if it was also defined inside the
1096/// class body.
1097void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclTy *MethodD) {
1098  FunctionDecl *Method = (FunctionDecl*)MethodD;
1099  CXXScopeSpec SS;
1100  SS.setScopeRep(Method->getDeclContext());
1101  ActOnCXXExitDeclaratorScope(S, SS);
1102
1103  // Now that we have our default arguments, check the constructor
1104  // again. It could produce additional diagnostics or affect whether
1105  // the class has implicitly-declared destructors, among other
1106  // things.
1107  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
1108    if (CheckConstructor(Constructor))
1109      Constructor->setInvalidDecl();
1110  }
1111
1112  // Check the default arguments, which we may have added.
1113  if (!Method->isInvalidDecl())
1114    CheckCXXDefaultArguments(Method);
1115}
1116
1117/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1118/// the well-formedness of the constructor declarator @p D with type @p
1119/// R. If there are any errors in the declarator, this routine will
1120/// emit diagnostics and return true. Otherwise, it will return
1121/// false. Either way, the type @p R will be updated to reflect a
1122/// well-formed type for the constructor.
1123bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
1124                                      FunctionDecl::StorageClass& SC) {
1125  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1126  bool isInvalid = false;
1127
1128  // C++ [class.ctor]p3:
1129  //   A constructor shall not be virtual (10.3) or static (9.4). A
1130  //   constructor can be invoked for a const, volatile or const
1131  //   volatile object. A constructor shall not be declared const,
1132  //   volatile, or const volatile (9.3.2).
1133  if (isVirtual) {
1134    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1135      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1136      << SourceRange(D.getIdentifierLoc());
1137    isInvalid = true;
1138  }
1139  if (SC == FunctionDecl::Static) {
1140    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1141      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1142      << SourceRange(D.getIdentifierLoc());
1143    isInvalid = true;
1144    SC = FunctionDecl::None;
1145  }
1146  if (D.getDeclSpec().hasTypeSpecifier()) {
1147    // Constructors don't have return types, but the parser will
1148    // happily parse something like:
1149    //
1150    //   class X {
1151    //     float X(float);
1152    //   };
1153    //
1154    // The return type will be eliminated later.
1155    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
1156      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1157      << SourceRange(D.getIdentifierLoc());
1158  }
1159  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1160    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1161    if (FTI.TypeQuals & QualType::Const)
1162      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1163        << "const" << SourceRange(D.getIdentifierLoc());
1164    if (FTI.TypeQuals & QualType::Volatile)
1165      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1166        << "volatile" << SourceRange(D.getIdentifierLoc());
1167    if (FTI.TypeQuals & QualType::Restrict)
1168      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1169        << "restrict" << SourceRange(D.getIdentifierLoc());
1170  }
1171
1172  // Rebuild the function type "R" without any type qualifiers (in
1173  // case any of the errors above fired) and with "void" as the
1174  // return type, since constructors don't have return types. We
1175  // *always* have to do this, because GetTypeForDeclarator will
1176  // put in a result type of "int" when none was specified.
1177  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1178  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1179                              Proto->getNumArgs(),
1180                              Proto->isVariadic(),
1181                              0);
1182
1183  return isInvalid;
1184}
1185
1186/// CheckConstructor - Checks a fully-formed constructor for
1187/// well-formedness, issuing any diagnostics required. Returns true if
1188/// the constructor declarator is invalid.
1189bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1190  if (Constructor->isInvalidDecl())
1191    return true;
1192
1193  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1194  bool Invalid = false;
1195
1196  // C++ [class.copy]p3:
1197  //   A declaration of a constructor for a class X is ill-formed if
1198  //   its first parameter is of type (optionally cv-qualified) X and
1199  //   either there are no other parameters or else all other
1200  //   parameters have default arguments.
1201  if ((Constructor->getNumParams() == 1) ||
1202      (Constructor->getNumParams() > 1 &&
1203       Constructor->getParamDecl(1)->getDefaultArg() != 0)) {
1204    QualType ParamType = Constructor->getParamDecl(0)->getType();
1205    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1206    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1207      Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg)
1208        << SourceRange(Constructor->getParamDecl(0)->getLocation());
1209      Invalid = true;
1210    }
1211  }
1212
1213  // Notify the class that we've added a constructor.
1214  ClassDecl->addedConstructor(Context, Constructor);
1215
1216  return Invalid;
1217}
1218
1219/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1220/// the well-formednes of the destructor declarator @p D with type @p
1221/// R. If there are any errors in the declarator, this routine will
1222/// emit diagnostics and return true. Otherwise, it will return
1223/// false. Either way, the type @p R will be updated to reflect a
1224/// well-formed type for the destructor.
1225bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1226                                     FunctionDecl::StorageClass& SC) {
1227  bool isInvalid = false;
1228
1229  // C++ [class.dtor]p1:
1230  //   [...] A typedef-name that names a class is a class-name
1231  //   (7.1.3); however, a typedef-name that names a class shall not
1232  //   be used as the identifier in the declarator for a destructor
1233  //   declaration.
1234  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1235  if (DeclaratorType->getAsTypedefType()) {
1236    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1237      << DeclaratorType;
1238    isInvalid = true;
1239  }
1240
1241  // C++ [class.dtor]p2:
1242  //   A destructor is used to destroy objects of its class type. A
1243  //   destructor takes no parameters, and no return type can be
1244  //   specified for it (not even void). The address of a destructor
1245  //   shall not be taken. A destructor shall not be static. A
1246  //   destructor can be invoked for a const, volatile or const
1247  //   volatile object. A destructor shall not be declared const,
1248  //   volatile or const volatile (9.3.2).
1249  if (SC == FunctionDecl::Static) {
1250    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1251      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1252      << SourceRange(D.getIdentifierLoc());
1253    isInvalid = true;
1254    SC = FunctionDecl::None;
1255  }
1256  if (D.getDeclSpec().hasTypeSpecifier()) {
1257    // Destructors don't have return types, but the parser will
1258    // happily parse something like:
1259    //
1260    //   class X {
1261    //     float ~X();
1262    //   };
1263    //
1264    // The return type will be eliminated later.
1265    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1266      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1267      << SourceRange(D.getIdentifierLoc());
1268  }
1269  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1270    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1271    if (FTI.TypeQuals & QualType::Const)
1272      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1273        << "const" << SourceRange(D.getIdentifierLoc());
1274    if (FTI.TypeQuals & QualType::Volatile)
1275      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1276        << "volatile" << SourceRange(D.getIdentifierLoc());
1277    if (FTI.TypeQuals & QualType::Restrict)
1278      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1279        << "restrict" << SourceRange(D.getIdentifierLoc());
1280  }
1281
1282  // Make sure we don't have any parameters.
1283  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1284    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1285
1286    // Delete the parameters.
1287    D.getTypeObject(0).Fun.freeArgs();
1288  }
1289
1290  // Make sure the destructor isn't variadic.
1291  if (R->getAsFunctionProtoType()->isVariadic())
1292    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1293
1294  // Rebuild the function type "R" without any type qualifiers or
1295  // parameters (in case any of the errors above fired) and with
1296  // "void" as the return type, since destructors don't have return
1297  // types. We *always* have to do this, because GetTypeForDeclarator
1298  // will put in a result type of "int" when none was specified.
1299  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1300
1301  return isInvalid;
1302}
1303
1304/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1305/// well-formednes of the conversion function declarator @p D with
1306/// type @p R. If there are any errors in the declarator, this routine
1307/// will emit diagnostics and return true. Otherwise, it will return
1308/// false. Either way, the type @p R will be updated to reflect a
1309/// well-formed type for the conversion operator.
1310bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1311                                     FunctionDecl::StorageClass& SC) {
1312  bool isInvalid = false;
1313
1314  // C++ [class.conv.fct]p1:
1315  //   Neither parameter types nor return type can be specified. The
1316  //   type of a conversion function (8.3.5) is “function taking no
1317  //   parameter returning conversion-type-id.”
1318  if (SC == FunctionDecl::Static) {
1319    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1320      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1321      << SourceRange(D.getIdentifierLoc());
1322    isInvalid = true;
1323    SC = FunctionDecl::None;
1324  }
1325  if (D.getDeclSpec().hasTypeSpecifier()) {
1326    // Conversion functions don't have return types, but the parser will
1327    // happily parse something like:
1328    //
1329    //   class X {
1330    //     float operator bool();
1331    //   };
1332    //
1333    // The return type will be changed later anyway.
1334    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1335      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1336      << SourceRange(D.getIdentifierLoc());
1337  }
1338
1339  // Make sure we don't have any parameters.
1340  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1341    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1342
1343    // Delete the parameters.
1344    D.getTypeObject(0).Fun.freeArgs();
1345  }
1346
1347  // Make sure the conversion function isn't variadic.
1348  if (R->getAsFunctionProtoType()->isVariadic())
1349    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1350
1351  // C++ [class.conv.fct]p4:
1352  //   The conversion-type-id shall not represent a function type nor
1353  //   an array type.
1354  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1355  if (ConvType->isArrayType()) {
1356    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1357    ConvType = Context.getPointerType(ConvType);
1358  } else if (ConvType->isFunctionType()) {
1359    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1360    ConvType = Context.getPointerType(ConvType);
1361  }
1362
1363  // Rebuild the function type "R" without any parameters (in case any
1364  // of the errors above fired) and with the conversion type as the
1365  // return type.
1366  R = Context.getFunctionType(ConvType, 0, 0, false,
1367                              R->getAsFunctionProtoType()->getTypeQuals());
1368
1369  // C++0x explicit conversion operators.
1370  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1371    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1372         diag::warn_explicit_conversion_functions)
1373      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1374
1375  return isInvalid;
1376}
1377
1378/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1379/// the declaration of the given C++ conversion function. This routine
1380/// is responsible for recording the conversion function in the C++
1381/// class, if possible.
1382Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1383  assert(Conversion && "Expected to receive a conversion function declaration");
1384
1385  // Set the lexical context of this conversion function
1386  Conversion->setLexicalDeclContext(CurContext);
1387
1388  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1389
1390  // Make sure we aren't redeclaring the conversion function.
1391  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1392
1393  // C++ [class.conv.fct]p1:
1394  //   [...] A conversion function is never used to convert a
1395  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1396  //   same object type (or a reference to it), to a (possibly
1397  //   cv-qualified) base class of that type (or a reference to it),
1398  //   or to (possibly cv-qualified) void.
1399  // FIXME: Suppress this warning if the conversion function ends up
1400  // being a virtual function that overrides a virtual function in a
1401  // base class.
1402  QualType ClassType
1403    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1404  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1405    ConvType = ConvTypeRef->getPointeeType();
1406  if (ConvType->isRecordType()) {
1407    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1408    if (ConvType == ClassType)
1409      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1410        << ClassType;
1411    else if (IsDerivedFrom(ClassType, ConvType))
1412      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1413        <<  ClassType << ConvType;
1414  } else if (ConvType->isVoidType()) {
1415    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1416      << ClassType << ConvType;
1417  }
1418
1419  if (Conversion->getPreviousDeclaration()) {
1420    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1421    for (OverloadedFunctionDecl::function_iterator
1422           Conv = Conversions->function_begin(),
1423           ConvEnd = Conversions->function_end();
1424         Conv != ConvEnd; ++Conv) {
1425      if (*Conv == Conversion->getPreviousDeclaration()) {
1426        *Conv = Conversion;
1427        return (DeclTy *)Conversion;
1428      }
1429    }
1430    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1431  } else
1432    ClassDecl->addConversionFunction(Context, Conversion);
1433
1434  return (DeclTy *)Conversion;
1435}
1436
1437//===----------------------------------------------------------------------===//
1438// Namespace Handling
1439//===----------------------------------------------------------------------===//
1440
1441/// ActOnStartNamespaceDef - This is called at the start of a namespace
1442/// definition.
1443Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1444                                           SourceLocation IdentLoc,
1445                                           IdentifierInfo *II,
1446                                           SourceLocation LBrace) {
1447  NamespaceDecl *Namespc =
1448      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1449  Namespc->setLBracLoc(LBrace);
1450
1451  Scope *DeclRegionScope = NamespcScope->getParent();
1452
1453  if (II) {
1454    // C++ [namespace.def]p2:
1455    // The identifier in an original-namespace-definition shall not have been
1456    // previously defined in the declarative region in which the
1457    // original-namespace-definition appears. The identifier in an
1458    // original-namespace-definition is the name of the namespace. Subsequently
1459    // in that declarative region, it is treated as an original-namespace-name.
1460
1461    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1462                                     true);
1463
1464    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1465      // This is an extended namespace definition.
1466      // Attach this namespace decl to the chain of extended namespace
1467      // definitions.
1468      OrigNS->setNextNamespace(Namespc);
1469      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1470
1471      // Remove the previous declaration from the scope.
1472      if (DeclRegionScope->isDeclScope(OrigNS)) {
1473        IdResolver.RemoveDecl(OrigNS);
1474        DeclRegionScope->RemoveDecl(OrigNS);
1475      }
1476    } else if (PrevDecl) {
1477      // This is an invalid name redefinition.
1478      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1479       << Namespc->getDeclName();
1480      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1481      Namespc->setInvalidDecl();
1482      // Continue on to push Namespc as current DeclContext and return it.
1483    }
1484
1485    PushOnScopeChains(Namespc, DeclRegionScope);
1486  } else {
1487    // FIXME: Handle anonymous namespaces
1488  }
1489
1490  // Although we could have an invalid decl (i.e. the namespace name is a
1491  // redefinition), push it as current DeclContext and try to continue parsing.
1492  // FIXME: We should be able to push Namespc here, so that the
1493  // each DeclContext for the namespace has the declarations
1494  // that showed up in that particular namespace definition.
1495  PushDeclContext(NamespcScope, Namespc);
1496  return Namespc;
1497}
1498
1499/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1500/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1501void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
1502  Decl *Dcl = static_cast<Decl *>(D);
1503  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1504  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1505  Namespc->setRBracLoc(RBrace);
1506  PopDeclContext();
1507}
1508
1509Sema::DeclTy *Sema::ActOnUsingDirective(Scope *S,
1510                                        SourceLocation UsingLoc,
1511                                        SourceLocation NamespcLoc,
1512                                        const CXXScopeSpec &SS,
1513                                        SourceLocation IdentLoc,
1514                                        IdentifierInfo *NamespcName,
1515                                        AttributeList *AttrList) {
1516  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1517  assert(NamespcName && "Invalid NamespcName.");
1518  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1519  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1520
1521  UsingDirectiveDecl *UDir = 0;
1522
1523  // Lookup namespace name.
1524  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1525                                    LookupNamespaceName, false);
1526  if (R.isAmbiguous()) {
1527    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1528    return 0;
1529  }
1530  if (NamedDecl *NS = R) {
1531    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1532    // C++ [namespace.udir]p1:
1533    //   A using-directive specifies that the names in the nominated
1534    //   namespace can be used in the scope in which the
1535    //   using-directive appears after the using-directive. During
1536    //   unqualified name lookup (3.4.1), the names appear as if they
1537    //   were declared in the nearest enclosing namespace which
1538    //   contains both the using-directive and the nominated
1539    //   namespace. [Note: in this context, “contains” means “contains
1540    //   directly or indirectly”. ]
1541
1542    // Find enclosing context containing both using-directive and
1543    // nominated namespace.
1544    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1545    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1546      CommonAncestor = CommonAncestor->getParent();
1547
1548    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc,
1549                                      NamespcLoc, IdentLoc,
1550                                      cast<NamespaceDecl>(NS),
1551                                      CommonAncestor);
1552    PushUsingDirective(S, UDir);
1553  } else {
1554    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1555  }
1556
1557  // FIXME: We ignore attributes for now.
1558  delete AttrList;
1559  return UDir;
1560}
1561
1562void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1563  // If scope has associated entity, then using directive is at namespace
1564  // or translation unit scope. We add UsingDirectiveDecls, into
1565  // it's lookup structure.
1566  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1567    Ctx->addDecl(UDir);
1568  else
1569    // Otherwise it is block-sope. using-directives will affect lookup
1570    // only to the end of scope.
1571    S->PushUsingDirective(UDir);
1572}
1573
1574/// AddCXXDirectInitializerToDecl - This action is called immediately after
1575/// ActOnDeclarator, when a C++ direct initializer is present.
1576/// e.g: "int x(1);"
1577void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
1578                                         MultiExprArg Exprs,
1579                                         SourceLocation *CommaLocs,
1580                                         SourceLocation RParenLoc) {
1581  unsigned NumExprs = Exprs.size();
1582  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
1583  Decl *RealDecl = static_cast<Decl *>(Dcl);
1584
1585  // If there is no declaration, there was an error parsing it.  Just ignore
1586  // the initializer.
1587  if (RealDecl == 0) {
1588    return;
1589  }
1590
1591  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1592  if (!VDecl) {
1593    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1594    RealDecl->setInvalidDecl();
1595    return;
1596  }
1597
1598  // We will treat direct-initialization as a copy-initialization:
1599  //    int x(1);  -as-> int x = 1;
1600  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1601  //
1602  // Clients that want to distinguish between the two forms, can check for
1603  // direct initializer using VarDecl::hasCXXDirectInitializer().
1604  // A major benefit is that clients that don't particularly care about which
1605  // exactly form was it (like the CodeGen) can handle both cases without
1606  // special case code.
1607
1608  // C++ 8.5p11:
1609  // The form of initialization (using parentheses or '=') is generally
1610  // insignificant, but does matter when the entity being initialized has a
1611  // class type.
1612  QualType DeclInitType = VDecl->getType();
1613  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1614    DeclInitType = Array->getElementType();
1615
1616  if (VDecl->getType()->isRecordType()) {
1617    CXXConstructorDecl *Constructor
1618      = PerformInitializationByConstructor(DeclInitType,
1619                                           (Expr **)Exprs.get(), NumExprs,
1620                                           VDecl->getLocation(),
1621                                           SourceRange(VDecl->getLocation(),
1622                                                       RParenLoc),
1623                                           VDecl->getDeclName(),
1624                                           IK_Direct);
1625    if (!Constructor)
1626      RealDecl->setInvalidDecl();
1627    else
1628      Exprs.release();
1629
1630    // Let clients know that initialization was done with a direct
1631    // initializer.
1632    VDecl->setCXXDirectInitializer(true);
1633
1634    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1635    // the initializer.
1636    return;
1637  }
1638
1639  if (NumExprs > 1) {
1640    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1641      << SourceRange(VDecl->getLocation(), RParenLoc);
1642    RealDecl->setInvalidDecl();
1643    return;
1644  }
1645
1646  // Let clients know that initialization was done with a direct initializer.
1647  VDecl->setCXXDirectInitializer(true);
1648
1649  assert(NumExprs == 1 && "Expected 1 expression");
1650  // Set the init expression, handles conversions.
1651  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
1652                       /*DirectInit=*/true);
1653}
1654
1655/// PerformInitializationByConstructor - Perform initialization by
1656/// constructor (C++ [dcl.init]p14), which may occur as part of
1657/// direct-initialization or copy-initialization. We are initializing
1658/// an object of type @p ClassType with the given arguments @p
1659/// Args. @p Loc is the location in the source code where the
1660/// initializer occurs (e.g., a declaration, member initializer,
1661/// functional cast, etc.) while @p Range covers the whole
1662/// initialization. @p InitEntity is the entity being initialized,
1663/// which may by the name of a declaration or a type. @p Kind is the
1664/// kind of initialization we're performing, which affects whether
1665/// explicit constructors will be considered. When successful, returns
1666/// the constructor that will be used to perform the initialization;
1667/// when the initialization fails, emits a diagnostic and returns
1668/// null.
1669CXXConstructorDecl *
1670Sema::PerformInitializationByConstructor(QualType ClassType,
1671                                         Expr **Args, unsigned NumArgs,
1672                                         SourceLocation Loc, SourceRange Range,
1673                                         DeclarationName InitEntity,
1674                                         InitializationKind Kind) {
1675  const RecordType *ClassRec = ClassType->getAsRecordType();
1676  assert(ClassRec && "Can only initialize a class type here");
1677
1678  // C++ [dcl.init]p14:
1679  //
1680  //   If the initialization is direct-initialization, or if it is
1681  //   copy-initialization where the cv-unqualified version of the
1682  //   source type is the same class as, or a derived class of, the
1683  //   class of the destination, constructors are considered. The
1684  //   applicable constructors are enumerated (13.3.1.3), and the
1685  //   best one is chosen through overload resolution (13.3). The
1686  //   constructor so selected is called to initialize the object,
1687  //   with the initializer expression(s) as its argument(s). If no
1688  //   constructor applies, or the overload resolution is ambiguous,
1689  //   the initialization is ill-formed.
1690  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1691  OverloadCandidateSet CandidateSet;
1692
1693  // Add constructors to the overload set.
1694  DeclarationName ConstructorName
1695    = Context.DeclarationNames.getCXXConstructorName(
1696                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1697  DeclContext::lookup_const_iterator Con, ConEnd;
1698  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
1699       Con != ConEnd; ++Con) {
1700    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1701    if ((Kind == IK_Direct) ||
1702        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1703        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1704      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1705  }
1706
1707  // FIXME: When we decide not to synthesize the implicitly-declared
1708  // constructors, we'll need to make them appear here.
1709
1710  OverloadCandidateSet::iterator Best;
1711  switch (BestViableFunction(CandidateSet, Best)) {
1712  case OR_Success:
1713    // We found a constructor. Return it.
1714    return cast<CXXConstructorDecl>(Best->Function);
1715
1716  case OR_No_Viable_Function:
1717    if (InitEntity)
1718      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1719        << InitEntity << Range;
1720    else
1721      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1722        << ClassType << Range;
1723    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1724    return 0;
1725
1726  case OR_Ambiguous:
1727    if (InitEntity)
1728      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1729    else
1730      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1731    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1732    return 0;
1733
1734  case OR_Deleted:
1735    if (InitEntity)
1736      Diag(Loc, diag::err_ovl_deleted_init)
1737        << Best->Function->isDeleted()
1738        << InitEntity << Range;
1739    else
1740      Diag(Loc, diag::err_ovl_deleted_init)
1741        << Best->Function->isDeleted()
1742        << InitEntity << Range;
1743    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1744    return 0;
1745  }
1746
1747  return 0;
1748}
1749
1750/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1751/// determine whether they are reference-related,
1752/// reference-compatible, reference-compatible with added
1753/// qualification, or incompatible, for use in C++ initialization by
1754/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1755/// type, and the first type (T1) is the pointee type of the reference
1756/// type being initialized.
1757Sema::ReferenceCompareResult
1758Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1759                                   bool& DerivedToBase) {
1760  assert(!T1->isReferenceType() &&
1761    "T1 must be the pointee type of the reference type");
1762  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1763
1764  T1 = Context.getCanonicalType(T1);
1765  T2 = Context.getCanonicalType(T2);
1766  QualType UnqualT1 = T1.getUnqualifiedType();
1767  QualType UnqualT2 = T2.getUnqualifiedType();
1768
1769  // C++ [dcl.init.ref]p4:
1770  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1771  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1772  //   T1 is a base class of T2.
1773  if (UnqualT1 == UnqualT2)
1774    DerivedToBase = false;
1775  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1776    DerivedToBase = true;
1777  else
1778    return Ref_Incompatible;
1779
1780  // At this point, we know that T1 and T2 are reference-related (at
1781  // least).
1782
1783  // C++ [dcl.init.ref]p4:
1784  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1785  //   reference-related to T2 and cv1 is the same cv-qualification
1786  //   as, or greater cv-qualification than, cv2. For purposes of
1787  //   overload resolution, cases for which cv1 is greater
1788  //   cv-qualification than cv2 are identified as
1789  //   reference-compatible with added qualification (see 13.3.3.2).
1790  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1791    return Ref_Compatible;
1792  else if (T1.isMoreQualifiedThan(T2))
1793    return Ref_Compatible_With_Added_Qualification;
1794  else
1795    return Ref_Related;
1796}
1797
1798/// CheckReferenceInit - Check the initialization of a reference
1799/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1800/// the initializer (either a simple initializer or an initializer
1801/// list), and DeclType is the type of the declaration. When ICS is
1802/// non-null, this routine will compute the implicit conversion
1803/// sequence according to C++ [over.ics.ref] and will not produce any
1804/// diagnostics; when ICS is null, it will emit diagnostics when any
1805/// errors are found. Either way, a return value of true indicates
1806/// that there was a failure, a return value of false indicates that
1807/// the reference initialization succeeded.
1808///
1809/// When @p SuppressUserConversions, user-defined conversions are
1810/// suppressed.
1811/// When @p AllowExplicit, we also permit explicit user-defined
1812/// conversion functions.
1813bool
1814Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1815                         ImplicitConversionSequence *ICS,
1816                         bool SuppressUserConversions,
1817                         bool AllowExplicit) {
1818  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1819
1820  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1821  QualType T2 = Init->getType();
1822
1823  // If the initializer is the address of an overloaded function, try
1824  // to resolve the overloaded function. If all goes well, T2 is the
1825  // type of the resulting function.
1826  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
1827    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
1828                                                          ICS != 0);
1829    if (Fn) {
1830      // Since we're performing this reference-initialization for
1831      // real, update the initializer with the resulting function.
1832      if (!ICS) {
1833        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
1834          return true;
1835
1836        FixOverloadedFunctionReference(Init, Fn);
1837      }
1838
1839      T2 = Fn->getType();
1840    }
1841  }
1842
1843  // Compute some basic properties of the types and the initializer.
1844  bool isRValRef = DeclType->isRValueReferenceType();
1845  bool DerivedToBase = false;
1846  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1847  ReferenceCompareResult RefRelationship
1848    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1849
1850  // Most paths end in a failed conversion.
1851  if (ICS)
1852    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1853
1854  // C++ [dcl.init.ref]p5:
1855  //   A reference to type “cv1 T1” is initialized by an expression
1856  //   of type “cv2 T2” as follows:
1857
1858  //     -- If the initializer expression
1859
1860  bool BindsDirectly = false;
1861  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1862  //          reference-compatible with “cv2 T2,” or
1863  //
1864  // Note that the bit-field check is skipped if we are just computing
1865  // the implicit conversion sequence (C++ [over.best.ics]p2).
1866  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1867      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1868    BindsDirectly = true;
1869
1870    // Rvalue references cannot bind to lvalues (N2812).
1871    if (isRValRef) {
1872      if (!ICS)
1873        Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
1874          << Init->getSourceRange();
1875      return true;
1876    }
1877
1878    if (ICS) {
1879      // C++ [over.ics.ref]p1:
1880      //   When a parameter of reference type binds directly (8.5.3)
1881      //   to an argument expression, the implicit conversion sequence
1882      //   is the identity conversion, unless the argument expression
1883      //   has a type that is a derived class of the parameter type,
1884      //   in which case the implicit conversion sequence is a
1885      //   derived-to-base Conversion (13.3.3.1).
1886      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1887      ICS->Standard.First = ICK_Identity;
1888      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1889      ICS->Standard.Third = ICK_Identity;
1890      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1891      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1892      ICS->Standard.ReferenceBinding = true;
1893      ICS->Standard.DirectBinding = true;
1894
1895      // Nothing more to do: the inaccessibility/ambiguity check for
1896      // derived-to-base conversions is suppressed when we're
1897      // computing the implicit conversion sequence (C++
1898      // [over.best.ics]p2).
1899      return false;
1900    } else {
1901      // Perform the conversion.
1902      // FIXME: Binding to a subobject of the lvalue is going to require
1903      // more AST annotation than this.
1904      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1905    }
1906  }
1907
1908  //       -- has a class type (i.e., T2 is a class type) and can be
1909  //          implicitly converted to an lvalue of type “cv3 T3,”
1910  //          where “cv1 T1” is reference-compatible with “cv3 T3”
1911  //          92) (this conversion is selected by enumerating the
1912  //          applicable conversion functions (13.3.1.6) and choosing
1913  //          the best one through overload resolution (13.3)),
1914  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
1915    // FIXME: Look for conversions in base classes!
1916    CXXRecordDecl *T2RecordDecl
1917      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
1918
1919    OverloadCandidateSet CandidateSet;
1920    OverloadedFunctionDecl *Conversions
1921      = T2RecordDecl->getConversionFunctions();
1922    for (OverloadedFunctionDecl::function_iterator Func
1923           = Conversions->function_begin();
1924         Func != Conversions->function_end(); ++Func) {
1925      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1926
1927      // If the conversion function doesn't return a reference type,
1928      // it can't be considered for this conversion.
1929      if (Conv->getConversionType()->isLValueReferenceType() &&
1930          (AllowExplicit || !Conv->isExplicit()))
1931        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
1932    }
1933
1934    OverloadCandidateSet::iterator Best;
1935    switch (BestViableFunction(CandidateSet, Best)) {
1936    case OR_Success:
1937      // This is a direct binding.
1938      BindsDirectly = true;
1939
1940      if (ICS) {
1941        // C++ [over.ics.ref]p1:
1942        //
1943        //   [...] If the parameter binds directly to the result of
1944        //   applying a conversion function to the argument
1945        //   expression, the implicit conversion sequence is a
1946        //   user-defined conversion sequence (13.3.3.1.2), with the
1947        //   second standard conversion sequence either an identity
1948        //   conversion or, if the conversion function returns an
1949        //   entity of a type that is a derived class of the parameter
1950        //   type, a derived-to-base Conversion.
1951        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
1952        ICS->UserDefined.Before = Best->Conversions[0].Standard;
1953        ICS->UserDefined.After = Best->FinalConversion;
1954        ICS->UserDefined.ConversionFunction = Best->Function;
1955        assert(ICS->UserDefined.After.ReferenceBinding &&
1956               ICS->UserDefined.After.DirectBinding &&
1957               "Expected a direct reference binding!");
1958        return false;
1959      } else {
1960        // Perform the conversion.
1961        // FIXME: Binding to a subobject of the lvalue is going to require
1962        // more AST annotation than this.
1963        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1964      }
1965      break;
1966
1967    case OR_Ambiguous:
1968      assert(false && "Ambiguous reference binding conversions not implemented.");
1969      return true;
1970
1971    case OR_No_Viable_Function:
1972    case OR_Deleted:
1973      // There was no suitable conversion, or we found a deleted
1974      // conversion; continue with other checks.
1975      break;
1976    }
1977  }
1978
1979  if (BindsDirectly) {
1980    // C++ [dcl.init.ref]p4:
1981    //   [...] In all cases where the reference-related or
1982    //   reference-compatible relationship of two types is used to
1983    //   establish the validity of a reference binding, and T1 is a
1984    //   base class of T2, a program that necessitates such a binding
1985    //   is ill-formed if T1 is an inaccessible (clause 11) or
1986    //   ambiguous (10.2) base class of T2.
1987    //
1988    // Note that we only check this condition when we're allowed to
1989    // complain about errors, because we should not be checking for
1990    // ambiguity (or inaccessibility) unless the reference binding
1991    // actually happens.
1992    if (DerivedToBase)
1993      return CheckDerivedToBaseConversion(T2, T1,
1994                                          Init->getSourceRange().getBegin(),
1995                                          Init->getSourceRange());
1996    else
1997      return false;
1998  }
1999
2000  //     -- Otherwise, the reference shall be to a non-volatile const
2001  //        type (i.e., cv1 shall be const), or shall be an rvalue reference.
2002  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2003    if (!ICS)
2004      Diag(Init->getSourceRange().getBegin(),
2005           diag::err_not_reference_to_const_init)
2006        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2007        << T2 << Init->getSourceRange();
2008    return true;
2009  }
2010
2011  //       -- If the initializer expression is an rvalue, with T2 a
2012  //          class type, and “cv1 T1” is reference-compatible with
2013  //          “cv2 T2,” the reference is bound in one of the
2014  //          following ways (the choice is implementation-defined):
2015  //
2016  //          -- The reference is bound to the object represented by
2017  //             the rvalue (see 3.10) or to a sub-object within that
2018  //             object.
2019  //
2020  //          -- A temporary of type “cv1 T2” [sic] is created, and
2021  //             a constructor is called to copy the entire rvalue
2022  //             object into the temporary. The reference is bound to
2023  //             the temporary or to a sub-object within the
2024  //             temporary.
2025  //
2026  //          The constructor that would be used to make the copy
2027  //          shall be callable whether or not the copy is actually
2028  //          done.
2029  //
2030  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
2031  // freedom, so we will always take the first option and never build
2032  // a temporary in this case. FIXME: We will, however, have to check
2033  // for the presence of a copy constructor in C++98/03 mode.
2034  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2035      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2036    if (ICS) {
2037      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2038      ICS->Standard.First = ICK_Identity;
2039      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2040      ICS->Standard.Third = ICK_Identity;
2041      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2042      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2043      ICS->Standard.ReferenceBinding = true;
2044      ICS->Standard.DirectBinding = false;
2045    } else {
2046      // FIXME: Binding to a subobject of the rvalue is going to require
2047      // more AST annotation than this.
2048      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2049    }
2050    return false;
2051  }
2052
2053  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2054  //          initialized from the initializer expression using the
2055  //          rules for a non-reference copy initialization (8.5). The
2056  //          reference is then bound to the temporary. If T1 is
2057  //          reference-related to T2, cv1 must be the same
2058  //          cv-qualification as, or greater cv-qualification than,
2059  //          cv2; otherwise, the program is ill-formed.
2060  if (RefRelationship == Ref_Related) {
2061    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2062    // we would be reference-compatible or reference-compatible with
2063    // added qualification. But that wasn't the case, so the reference
2064    // initialization fails.
2065    if (!ICS)
2066      Diag(Init->getSourceRange().getBegin(),
2067           diag::err_reference_init_drops_quals)
2068        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2069        << T2 << Init->getSourceRange();
2070    return true;
2071  }
2072
2073  // If at least one of the types is a class type, the types are not
2074  // related, and we aren't allowed any user conversions, the
2075  // reference binding fails. This case is important for breaking
2076  // recursion, since TryImplicitConversion below will attempt to
2077  // create a temporary through the use of a copy constructor.
2078  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2079      (T1->isRecordType() || T2->isRecordType())) {
2080    if (!ICS)
2081      Diag(Init->getSourceRange().getBegin(),
2082           diag::err_typecheck_convert_incompatible)
2083        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2084    return true;
2085  }
2086
2087  // Actually try to convert the initializer to T1.
2088  if (ICS) {
2089    /// C++ [over.ics.ref]p2:
2090    ///
2091    ///   When a parameter of reference type is not bound directly to
2092    ///   an argument expression, the conversion sequence is the one
2093    ///   required to convert the argument expression to the
2094    ///   underlying type of the reference according to
2095    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
2096    ///   to copy-initializing a temporary of the underlying type with
2097    ///   the argument expression. Any difference in top-level
2098    ///   cv-qualification is subsumed by the initialization itself
2099    ///   and does not constitute a conversion.
2100    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2101    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2102  } else {
2103    return PerformImplicitConversion(Init, T1, "initializing");
2104  }
2105}
2106
2107/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2108/// of this overloaded operator is well-formed. If so, returns false;
2109/// otherwise, emits appropriate diagnostics and returns true.
2110bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2111  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2112         "Expected an overloaded operator declaration");
2113
2114  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2115
2116  // C++ [over.oper]p5:
2117  //   The allocation and deallocation functions, operator new,
2118  //   operator new[], operator delete and operator delete[], are
2119  //   described completely in 3.7.3. The attributes and restrictions
2120  //   found in the rest of this subclause do not apply to them unless
2121  //   explicitly stated in 3.7.3.
2122  // FIXME: Write a separate routine for checking this. For now, just
2123  // allow it.
2124  if (Op == OO_New || Op == OO_Array_New ||
2125      Op == OO_Delete || Op == OO_Array_Delete)
2126    return false;
2127
2128  // C++ [over.oper]p6:
2129  //   An operator function shall either be a non-static member
2130  //   function or be a non-member function and have at least one
2131  //   parameter whose type is a class, a reference to a class, an
2132  //   enumeration, or a reference to an enumeration.
2133  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2134    if (MethodDecl->isStatic())
2135      return Diag(FnDecl->getLocation(),
2136                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2137  } else {
2138    bool ClassOrEnumParam = false;
2139    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2140                                   ParamEnd = FnDecl->param_end();
2141         Param != ParamEnd; ++Param) {
2142      QualType ParamType = (*Param)->getType().getNonReferenceType();
2143      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2144        ClassOrEnumParam = true;
2145        break;
2146      }
2147    }
2148
2149    if (!ClassOrEnumParam)
2150      return Diag(FnDecl->getLocation(),
2151                  diag::err_operator_overload_needs_class_or_enum)
2152        << FnDecl->getDeclName();
2153  }
2154
2155  // C++ [over.oper]p8:
2156  //   An operator function cannot have default arguments (8.3.6),
2157  //   except where explicitly stated below.
2158  //
2159  // Only the function-call operator allows default arguments
2160  // (C++ [over.call]p1).
2161  if (Op != OO_Call) {
2162    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2163         Param != FnDecl->param_end(); ++Param) {
2164      if ((*Param)->hasUnparsedDefaultArg())
2165        return Diag((*Param)->getLocation(),
2166                    diag::err_operator_overload_default_arg)
2167          << FnDecl->getDeclName();
2168      else if (Expr *DefArg = (*Param)->getDefaultArg())
2169        return Diag((*Param)->getLocation(),
2170                    diag::err_operator_overload_default_arg)
2171          << FnDecl->getDeclName() << DefArg->getSourceRange();
2172    }
2173  }
2174
2175  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2176    { false, false, false }
2177#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2178    , { Unary, Binary, MemberOnly }
2179#include "clang/Basic/OperatorKinds.def"
2180  };
2181
2182  bool CanBeUnaryOperator = OperatorUses[Op][0];
2183  bool CanBeBinaryOperator = OperatorUses[Op][1];
2184  bool MustBeMemberOperator = OperatorUses[Op][2];
2185
2186  // C++ [over.oper]p8:
2187  //   [...] Operator functions cannot have more or fewer parameters
2188  //   than the number required for the corresponding operator, as
2189  //   described in the rest of this subclause.
2190  unsigned NumParams = FnDecl->getNumParams()
2191                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2192  if (Op != OO_Call &&
2193      ((NumParams == 1 && !CanBeUnaryOperator) ||
2194       (NumParams == 2 && !CanBeBinaryOperator) ||
2195       (NumParams < 1) || (NumParams > 2))) {
2196    // We have the wrong number of parameters.
2197    unsigned ErrorKind;
2198    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2199      ErrorKind = 2;  // 2 -> unary or binary.
2200    } else if (CanBeUnaryOperator) {
2201      ErrorKind = 0;  // 0 -> unary
2202    } else {
2203      assert(CanBeBinaryOperator &&
2204             "All non-call overloaded operators are unary or binary!");
2205      ErrorKind = 1;  // 1 -> binary
2206    }
2207
2208    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2209      << FnDecl->getDeclName() << NumParams << ErrorKind;
2210  }
2211
2212  // Overloaded operators other than operator() cannot be variadic.
2213  if (Op != OO_Call &&
2214      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2215    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2216      << FnDecl->getDeclName();
2217  }
2218
2219  // Some operators must be non-static member functions.
2220  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2221    return Diag(FnDecl->getLocation(),
2222                diag::err_operator_overload_must_be_member)
2223      << FnDecl->getDeclName();
2224  }
2225
2226  // C++ [over.inc]p1:
2227  //   The user-defined function called operator++ implements the
2228  //   prefix and postfix ++ operator. If this function is a member
2229  //   function with no parameters, or a non-member function with one
2230  //   parameter of class or enumeration type, it defines the prefix
2231  //   increment operator ++ for objects of that type. If the function
2232  //   is a member function with one parameter (which shall be of type
2233  //   int) or a non-member function with two parameters (the second
2234  //   of which shall be of type int), it defines the postfix
2235  //   increment operator ++ for objects of that type.
2236  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2237    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2238    bool ParamIsInt = false;
2239    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2240      ParamIsInt = BT->getKind() == BuiltinType::Int;
2241
2242    if (!ParamIsInt)
2243      return Diag(LastParam->getLocation(),
2244                  diag::err_operator_overload_post_incdec_must_be_int)
2245        << LastParam->getType() << (Op == OO_MinusMinus);
2246  }
2247
2248  // Notify the class if it got an assignment operator.
2249  if (Op == OO_Equal) {
2250    // Would have returned earlier otherwise.
2251    assert(isa<CXXMethodDecl>(FnDecl) &&
2252      "Overloaded = not member, but not filtered.");
2253    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2254    Method->getParent()->addedAssignmentOperator(Context, Method);
2255  }
2256
2257  return false;
2258}
2259
2260/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2261/// linkage specification, including the language and (if present)
2262/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2263/// the location of the language string literal, which is provided
2264/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2265/// the '{' brace. Otherwise, this linkage specification does not
2266/// have any braces.
2267Sema::DeclTy *Sema::ActOnStartLinkageSpecification(Scope *S,
2268                                                   SourceLocation ExternLoc,
2269                                                   SourceLocation LangLoc,
2270                                                   const char *Lang,
2271                                                   unsigned StrSize,
2272                                                   SourceLocation LBraceLoc) {
2273  LinkageSpecDecl::LanguageIDs Language;
2274  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2275    Language = LinkageSpecDecl::lang_c;
2276  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2277    Language = LinkageSpecDecl::lang_cxx;
2278  else {
2279    Diag(LangLoc, diag::err_bad_language);
2280    return 0;
2281  }
2282
2283  // FIXME: Add all the various semantics of linkage specifications
2284
2285  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2286                                               LangLoc, Language,
2287                                               LBraceLoc.isValid());
2288  CurContext->addDecl(D);
2289  PushDeclContext(S, D);
2290  return D;
2291}
2292
2293/// ActOnFinishLinkageSpecification - Completely the definition of
2294/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2295/// valid, it's the position of the closing '}' brace in a linkage
2296/// specification that uses braces.
2297Sema::DeclTy *Sema::ActOnFinishLinkageSpecification(Scope *S,
2298                                                    DeclTy *LinkageSpec,
2299                                                    SourceLocation RBraceLoc) {
2300  if (LinkageSpec)
2301    PopDeclContext();
2302  return LinkageSpec;
2303}
2304
2305/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2306/// handler.
2307Sema::DeclTy *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D)
2308{
2309  QualType ExDeclType = GetTypeForDeclarator(D, S);
2310  SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin();
2311
2312  bool Invalid = false;
2313
2314  // Arrays and functions decay.
2315  if (ExDeclType->isArrayType())
2316    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2317  else if (ExDeclType->isFunctionType())
2318    ExDeclType = Context.getPointerType(ExDeclType);
2319
2320  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2321  // The exception-declaration shall not denote a pointer or reference to an
2322  // incomplete type, other than [cv] void*.
2323  // N2844 forbids rvalue references.
2324  if(ExDeclType->isRValueReferenceType()) {
2325    Diag(Begin, diag::err_catch_rvalue_ref) << D.getSourceRange();
2326    Invalid = true;
2327  }
2328  QualType BaseType = ExDeclType;
2329  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2330  unsigned DK = diag::err_catch_incomplete;
2331  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2332    BaseType = Ptr->getPointeeType();
2333    Mode = 1;
2334    DK = diag::err_catch_incomplete_ptr;
2335  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2336    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2337    BaseType = Ref->getPointeeType();
2338    Mode = 2;
2339    DK = diag::err_catch_incomplete_ref;
2340  }
2341  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2342      RequireCompleteType(Begin, BaseType, DK))
2343    Invalid = true;
2344
2345  // FIXME: Need to test for ability to copy-construct and destroy the
2346  // exception variable.
2347  // FIXME: Need to check for abstract classes.
2348
2349  IdentifierInfo *II = D.getIdentifier();
2350  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2351    // The scope should be freshly made just for us. There is just no way
2352    // it contains any previous declaration.
2353    assert(!S->isDeclScope(PrevDecl));
2354    if (PrevDecl->isTemplateParameter()) {
2355      // Maybe we will complain about the shadowed template parameter.
2356      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2357
2358    }
2359  }
2360
2361  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
2362                                    II, ExDeclType, VarDecl::None, Begin);
2363  if (D.getInvalidType() || Invalid)
2364    ExDecl->setInvalidDecl();
2365
2366  if (D.getCXXScopeSpec().isSet()) {
2367    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2368      << D.getCXXScopeSpec().getRange();
2369    ExDecl->setInvalidDecl();
2370  }
2371
2372  // Add the exception declaration into this scope.
2373  S->AddDecl(ExDecl);
2374  if (II)
2375    IdResolver.AddDecl(ExDecl);
2376
2377  ProcessDeclAttributes(ExDecl, D);
2378  return ExDecl;
2379}
2380
2381Sema::DeclTy *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
2382                                                 ExprArg assertexpr,
2383                                                 ExprArg assertmessageexpr) {
2384  Expr *AssertExpr = (Expr *)assertexpr.get();
2385  StringLiteral *AssertMessage =
2386    cast<StringLiteral>((Expr *)assertmessageexpr.get());
2387
2388  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
2389    llvm::APSInt Value(32);
2390    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
2391      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
2392        AssertExpr->getSourceRange();
2393      return 0;
2394    }
2395
2396    if (Value == 0) {
2397      std::string str(AssertMessage->getStrData(),
2398                      AssertMessage->getByteLength());
2399      Diag(AssertLoc, diag::err_static_assert_failed)
2400        << str << AssertExpr->getSourceRange();
2401    }
2402  }
2403
2404  assertexpr.release();
2405  assertmessageexpr.release();
2406  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
2407                                        AssertExpr, AssertMessage);
2408
2409  CurContext->addDecl(Decl);
2410  return Decl;
2411}
2412