SemaDeclCXX.cpp revision c07a494b376f75f33759cf09ad188b11ef3fa9d5
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Parse/Template.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Lex/Preprocessor.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/Compiler.h"
27#include <algorithm> // for std::equal
28#include <map>
29#include <set>
30
31using namespace clang;
32
33//===----------------------------------------------------------------------===//
34// CheckDefaultArgumentVisitor
35//===----------------------------------------------------------------------===//
36
37namespace {
38  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
39  /// the default argument of a parameter to determine whether it
40  /// contains any ill-formed subexpressions. For example, this will
41  /// diagnose the use of local variables or parameters within the
42  /// default argument expression.
43  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
44    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
45    Expr *DefaultArg;
46    Sema *S;
47
48  public:
49    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
50      : DefaultArg(defarg), S(s) {}
51
52    bool VisitExpr(Expr *Node);
53    bool VisitDeclRefExpr(DeclRefExpr *DRE);
54    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
55  };
56
57  /// VisitExpr - Visit all of the children of this expression.
58  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
59    bool IsInvalid = false;
60    for (Stmt::child_iterator I = Node->child_begin(),
61         E = Node->child_end(); I != E; ++I)
62      IsInvalid |= Visit(*I);
63    return IsInvalid;
64  }
65
66  /// VisitDeclRefExpr - Visit a reference to a declaration, to
67  /// determine whether this declaration can be used in the default
68  /// argument expression.
69  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
70    NamedDecl *Decl = DRE->getDecl();
71    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
72      // C++ [dcl.fct.default]p9
73      //   Default arguments are evaluated each time the function is
74      //   called. The order of evaluation of function arguments is
75      //   unspecified. Consequently, parameters of a function shall not
76      //   be used in default argument expressions, even if they are not
77      //   evaluated. Parameters of a function declared before a default
78      //   argument expression are in scope and can hide namespace and
79      //   class member names.
80      return S->Diag(DRE->getSourceRange().getBegin(),
81                     diag::err_param_default_argument_references_param)
82         << Param->getDeclName() << DefaultArg->getSourceRange();
83    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
84      // C++ [dcl.fct.default]p7
85      //   Local variables shall not be used in default argument
86      //   expressions.
87      if (VDecl->isBlockVarDecl())
88        return S->Diag(DRE->getSourceRange().getBegin(),
89                       diag::err_param_default_argument_references_local)
90          << VDecl->getDeclName() << DefaultArg->getSourceRange();
91    }
92
93    return false;
94  }
95
96  /// VisitCXXThisExpr - Visit a C++ "this" expression.
97  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
98    // C++ [dcl.fct.default]p8:
99    //   The keyword this shall not be used in a default argument of a
100    //   member function.
101    return S->Diag(ThisE->getSourceRange().getBegin(),
102                   diag::err_param_default_argument_references_this)
103               << ThisE->getSourceRange();
104  }
105}
106
107bool
108Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
109                              SourceLocation EqualLoc) {
110  QualType ParamType = Param->getType();
111
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
127                            Param->getDeclName(), /*DirectInit=*/false))
128    return true;
129
130  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
131
132  // Okay: add the default argument to the parameter
133  Param->setDefaultArg(Arg);
134
135  DefaultArg.release();
136
137  return false;
138}
139
140/// ActOnParamDefaultArgument - Check whether the default argument
141/// provided for a function parameter is well-formed. If so, attach it
142/// to the parameter declaration.
143void
144Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
145                                ExprArg defarg) {
146  if (!param || !defarg.get())
147    return;
148
149  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
150  UnparsedDefaultArgLocs.erase(Param);
151
152  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
153  QualType ParamType = Param->getType();
154
155  // Default arguments are only permitted in C++
156  if (!getLangOptions().CPlusPlus) {
157    Diag(EqualLoc, diag::err_param_default_argument)
158      << DefaultArg->getSourceRange();
159    Param->setInvalidDecl();
160    return;
161  }
162
163  // Check that the default argument is well-formed
164  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
165  if (DefaultArgChecker.Visit(DefaultArg.get())) {
166    Param->setInvalidDecl();
167    return;
168  }
169
170  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
171}
172
173/// ActOnParamUnparsedDefaultArgument - We've seen a default
174/// argument for a function parameter, but we can't parse it yet
175/// because we're inside a class definition. Note that this default
176/// argument will be parsed later.
177void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
178                                             SourceLocation EqualLoc,
179                                             SourceLocation ArgLoc) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184  if (Param)
185    Param->setUnparsedDefaultArg();
186
187  UnparsedDefaultArgLocs[Param] = ArgLoc;
188}
189
190/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
191/// the default argument for the parameter param failed.
192void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
193  if (!param)
194    return;
195
196  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
197
198  Param->setInvalidDecl();
199
200  UnparsedDefaultArgLocs.erase(Param);
201}
202
203/// CheckExtraCXXDefaultArguments - Check for any extra default
204/// arguments in the declarator, which is not a function declaration
205/// or definition and therefore is not permitted to have default
206/// arguments. This routine should be invoked for every declarator
207/// that is not a function declaration or definition.
208void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
209  // C++ [dcl.fct.default]p3
210  //   A default argument expression shall be specified only in the
211  //   parameter-declaration-clause of a function declaration or in a
212  //   template-parameter (14.1). It shall not be specified for a
213  //   parameter pack. If it is specified in a
214  //   parameter-declaration-clause, it shall not occur within a
215  //   declarator or abstract-declarator of a parameter-declaration.
216  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
217    DeclaratorChunk &chunk = D.getTypeObject(i);
218    if (chunk.Kind == DeclaratorChunk::Function) {
219      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
220        ParmVarDecl *Param =
221          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
222        if (Param->hasUnparsedDefaultArg()) {
223          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
224          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
225            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
226          delete Toks;
227          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
228        } else if (Param->getDefaultArg()) {
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << Param->getDefaultArg()->getSourceRange();
231          Param->setDefaultArg(0);
232        }
233      }
234    }
235  }
236}
237
238// MergeCXXFunctionDecl - Merge two declarations of the same C++
239// function, once we already know that they have the same
240// type. Subroutine of MergeFunctionDecl. Returns true if there was an
241// error, false otherwise.
242bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
243  bool Invalid = false;
244
245  // C++ [dcl.fct.default]p4:
246  //   For non-template functions, default arguments can be added in
247  //   later declarations of a function in the same
248  //   scope. Declarations in different scopes have completely
249  //   distinct sets of default arguments. That is, declarations in
250  //   inner scopes do not acquire default arguments from
251  //   declarations in outer scopes, and vice versa. In a given
252  //   function declaration, all parameters subsequent to a
253  //   parameter with a default argument shall have default
254  //   arguments supplied in this or previous declarations. A
255  //   default argument shall not be redefined by a later
256  //   declaration (not even to the same value).
257  //
258  // C++ [dcl.fct.default]p6:
259  //   Except for member functions of class templates, the default arguments
260  //   in a member function definition that appears outside of the class
261  //   definition are added to the set of default arguments provided by the
262  //   member function declaration in the class definition.
263  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
264    ParmVarDecl *OldParam = Old->getParamDecl(p);
265    ParmVarDecl *NewParam = New->getParamDecl(p);
266
267    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
268      // FIXME: If the parameter doesn't have an identifier then the location
269      // points to the '=' which means that the fixit hint won't remove any
270      // extra spaces between the type and the '='.
271      SourceLocation Begin = NewParam->getLocation();
272      if (NewParam->getIdentifier())
273        Begin = PP.getLocForEndOfToken(Begin);
274
275      Diag(NewParam->getLocation(),
276           diag::err_param_default_argument_redefinition)
277        << NewParam->getDefaultArgRange()
278        << CodeModificationHint::CreateRemoval(SourceRange(Begin,
279                                                        NewParam->getLocEnd()));
280
281      // Look for the function declaration where the default argument was
282      // actually written, which may be a declaration prior to Old.
283      for (FunctionDecl *Older = Old->getPreviousDeclaration();
284           Older; Older = Older->getPreviousDeclaration()) {
285        if (!Older->getParamDecl(p)->hasDefaultArg())
286          break;
287
288        OldParam = Older->getParamDecl(p);
289      }
290
291      Diag(OldParam->getLocation(), diag::note_previous_definition)
292        << OldParam->getDefaultArgRange();
293      Invalid = true;
294    } else if (OldParam->hasDefaultArg()) {
295      // Merge the old default argument into the new parameter
296      if (OldParam->hasUninstantiatedDefaultArg())
297        NewParam->setUninstantiatedDefaultArg(
298                                      OldParam->getUninstantiatedDefaultArg());
299      else
300        NewParam->setDefaultArg(OldParam->getDefaultArg());
301    } else if (NewParam->hasDefaultArg()) {
302      if (New->getDescribedFunctionTemplate()) {
303        // Paragraph 4, quoted above, only applies to non-template functions.
304        Diag(NewParam->getLocation(),
305             diag::err_param_default_argument_template_redecl)
306          << NewParam->getDefaultArgRange();
307        Diag(Old->getLocation(), diag::note_template_prev_declaration)
308          << false;
309      } else if (New->getTemplateSpecializationKind()
310                   != TSK_ImplicitInstantiation &&
311                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
312        // C++ [temp.expr.spec]p21:
313        //   Default function arguments shall not be specified in a declaration
314        //   or a definition for one of the following explicit specializations:
315        //     - the explicit specialization of a function template;
316        //     - the explicit specialization of a member function template;
317        //     - the explicit specialization of a member function of a class
318        //       template where the class template specialization to which the
319        //       member function specialization belongs is implicitly
320        //       instantiated.
321        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
322          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
323          << New->getDeclName()
324          << NewParam->getDefaultArgRange();
325      } else if (New->getDeclContext()->isDependentContext()) {
326        // C++ [dcl.fct.default]p6 (DR217):
327        //   Default arguments for a member function of a class template shall
328        //   be specified on the initial declaration of the member function
329        //   within the class template.
330        //
331        // Reading the tea leaves a bit in DR217 and its reference to DR205
332        // leads me to the conclusion that one cannot add default function
333        // arguments for an out-of-line definition of a member function of a
334        // dependent type.
335        int WhichKind = 2;
336        if (CXXRecordDecl *Record
337              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
338          if (Record->getDescribedClassTemplate())
339            WhichKind = 0;
340          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
341            WhichKind = 1;
342          else
343            WhichKind = 2;
344        }
345
346        Diag(NewParam->getLocation(),
347             diag::err_param_default_argument_member_template_redecl)
348          << WhichKind
349          << NewParam->getDefaultArgRange();
350      }
351    }
352  }
353
354  if (CheckEquivalentExceptionSpec(
355          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
356          New->getType()->getAs<FunctionProtoType>(), New->getLocation())) {
357    Invalid = true;
358  }
359
360  return Invalid;
361}
362
363/// CheckCXXDefaultArguments - Verify that the default arguments for a
364/// function declaration are well-formed according to C++
365/// [dcl.fct.default].
366void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
367  unsigned NumParams = FD->getNumParams();
368  unsigned p;
369
370  // Find first parameter with a default argument
371  for (p = 0; p < NumParams; ++p) {
372    ParmVarDecl *Param = FD->getParamDecl(p);
373    if (Param->hasDefaultArg())
374      break;
375  }
376
377  // C++ [dcl.fct.default]p4:
378  //   In a given function declaration, all parameters
379  //   subsequent to a parameter with a default argument shall
380  //   have default arguments supplied in this or previous
381  //   declarations. A default argument shall not be redefined
382  //   by a later declaration (not even to the same value).
383  unsigned LastMissingDefaultArg = 0;
384  for (; p < NumParams; ++p) {
385    ParmVarDecl *Param = FD->getParamDecl(p);
386    if (!Param->hasDefaultArg()) {
387      if (Param->isInvalidDecl())
388        /* We already complained about this parameter. */;
389      else if (Param->getIdentifier())
390        Diag(Param->getLocation(),
391             diag::err_param_default_argument_missing_name)
392          << Param->getIdentifier();
393      else
394        Diag(Param->getLocation(),
395             diag::err_param_default_argument_missing);
396
397      LastMissingDefaultArg = p;
398    }
399  }
400
401  if (LastMissingDefaultArg > 0) {
402    // Some default arguments were missing. Clear out all of the
403    // default arguments up to (and including) the last missing
404    // default argument, so that we leave the function parameters
405    // in a semantically valid state.
406    for (p = 0; p <= LastMissingDefaultArg; ++p) {
407      ParmVarDecl *Param = FD->getParamDecl(p);
408      if (Param->hasDefaultArg()) {
409        if (!Param->hasUnparsedDefaultArg())
410          Param->getDefaultArg()->Destroy(Context);
411        Param->setDefaultArg(0);
412      }
413    }
414  }
415}
416
417/// isCurrentClassName - Determine whether the identifier II is the
418/// name of the class type currently being defined. In the case of
419/// nested classes, this will only return true if II is the name of
420/// the innermost class.
421bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
422                              const CXXScopeSpec *SS) {
423  CXXRecordDecl *CurDecl;
424  if (SS && SS->isSet() && !SS->isInvalid()) {
425    DeclContext *DC = computeDeclContext(*SS, true);
426    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
427  } else
428    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
429
430  if (CurDecl)
431    return &II == CurDecl->getIdentifier();
432  else
433    return false;
434}
435
436/// \brief Check the validity of a C++ base class specifier.
437///
438/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
439/// and returns NULL otherwise.
440CXXBaseSpecifier *
441Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
442                         SourceRange SpecifierRange,
443                         bool Virtual, AccessSpecifier Access,
444                         QualType BaseType,
445                         SourceLocation BaseLoc) {
446  // C++ [class.union]p1:
447  //   A union shall not have base classes.
448  if (Class->isUnion()) {
449    Diag(Class->getLocation(), diag::err_base_clause_on_union)
450      << SpecifierRange;
451    return 0;
452  }
453
454  if (BaseType->isDependentType())
455    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
456                                Class->getTagKind() == RecordDecl::TK_class,
457                                Access, BaseType);
458
459  // Base specifiers must be record types.
460  if (!BaseType->isRecordType()) {
461    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
462    return 0;
463  }
464
465  // C++ [class.union]p1:
466  //   A union shall not be used as a base class.
467  if (BaseType->isUnionType()) {
468    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
469    return 0;
470  }
471
472  // C++ [class.derived]p2:
473  //   The class-name in a base-specifier shall not be an incompletely
474  //   defined class.
475  if (RequireCompleteType(BaseLoc, BaseType,
476                          PDiag(diag::err_incomplete_base_class)
477                            << SpecifierRange))
478    return 0;
479
480  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
481  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
482  assert(BaseDecl && "Record type has no declaration");
483  BaseDecl = BaseDecl->getDefinition(Context);
484  assert(BaseDecl && "Base type is not incomplete, but has no definition");
485  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
486  assert(CXXBaseDecl && "Base type is not a C++ type");
487  if (!CXXBaseDecl->isEmpty())
488    Class->setEmpty(false);
489  if (CXXBaseDecl->isPolymorphic())
490    Class->setPolymorphic(true);
491
492  // C++ [dcl.init.aggr]p1:
493  //   An aggregate is [...] a class with [...] no base classes [...].
494  Class->setAggregate(false);
495  Class->setPOD(false);
496
497  if (Virtual) {
498    // C++ [class.ctor]p5:
499    //   A constructor is trivial if its class has no virtual base classes.
500    Class->setHasTrivialConstructor(false);
501
502    // C++ [class.copy]p6:
503    //   A copy constructor is trivial if its class has no virtual base classes.
504    Class->setHasTrivialCopyConstructor(false);
505
506    // C++ [class.copy]p11:
507    //   A copy assignment operator is trivial if its class has no virtual
508    //   base classes.
509    Class->setHasTrivialCopyAssignment(false);
510
511    // C++0x [meta.unary.prop] is_empty:
512    //    T is a class type, but not a union type, with ... no virtual base
513    //    classes
514    Class->setEmpty(false);
515  } else {
516    // C++ [class.ctor]p5:
517    //   A constructor is trivial if all the direct base classes of its
518    //   class have trivial constructors.
519    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
520      Class->setHasTrivialConstructor(false);
521
522    // C++ [class.copy]p6:
523    //   A copy constructor is trivial if all the direct base classes of its
524    //   class have trivial copy constructors.
525    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
526      Class->setHasTrivialCopyConstructor(false);
527
528    // C++ [class.copy]p11:
529    //   A copy assignment operator is trivial if all the direct base classes
530    //   of its class have trivial copy assignment operators.
531    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
532      Class->setHasTrivialCopyAssignment(false);
533  }
534
535  // C++ [class.ctor]p3:
536  //   A destructor is trivial if all the direct base classes of its class
537  //   have trivial destructors.
538  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
539    Class->setHasTrivialDestructor(false);
540
541  // Create the base specifier.
542  // FIXME: Allocate via ASTContext?
543  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
544                              Class->getTagKind() == RecordDecl::TK_class,
545                              Access, BaseType);
546}
547
548/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
549/// one entry in the base class list of a class specifier, for
550/// example:
551///    class foo : public bar, virtual private baz {
552/// 'public bar' and 'virtual private baz' are each base-specifiers.
553Sema::BaseResult
554Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
555                         bool Virtual, AccessSpecifier Access,
556                         TypeTy *basetype, SourceLocation BaseLoc) {
557  if (!classdecl)
558    return true;
559
560  AdjustDeclIfTemplate(classdecl);
561  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
562  QualType BaseType = GetTypeFromParser(basetype);
563  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
564                                                      Virtual, Access,
565                                                      BaseType, BaseLoc))
566    return BaseSpec;
567
568  return true;
569}
570
571/// \brief Performs the actual work of attaching the given base class
572/// specifiers to a C++ class.
573bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
574                                unsigned NumBases) {
575 if (NumBases == 0)
576    return false;
577
578  // Used to keep track of which base types we have already seen, so
579  // that we can properly diagnose redundant direct base types. Note
580  // that the key is always the unqualified canonical type of the base
581  // class.
582  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
583
584  // Copy non-redundant base specifiers into permanent storage.
585  unsigned NumGoodBases = 0;
586  bool Invalid = false;
587  for (unsigned idx = 0; idx < NumBases; ++idx) {
588    QualType NewBaseType
589      = Context.getCanonicalType(Bases[idx]->getType());
590    NewBaseType = NewBaseType.getUnqualifiedType();
591
592    if (KnownBaseTypes[NewBaseType]) {
593      // C++ [class.mi]p3:
594      //   A class shall not be specified as a direct base class of a
595      //   derived class more than once.
596      Diag(Bases[idx]->getSourceRange().getBegin(),
597           diag::err_duplicate_base_class)
598        << KnownBaseTypes[NewBaseType]->getType()
599        << Bases[idx]->getSourceRange();
600
601      // Delete the duplicate base class specifier; we're going to
602      // overwrite its pointer later.
603      Context.Deallocate(Bases[idx]);
604
605      Invalid = true;
606    } else {
607      // Okay, add this new base class.
608      KnownBaseTypes[NewBaseType] = Bases[idx];
609      Bases[NumGoodBases++] = Bases[idx];
610    }
611  }
612
613  // Attach the remaining base class specifiers to the derived class.
614  Class->setBases(Context, Bases, NumGoodBases);
615
616  // Delete the remaining (good) base class specifiers, since their
617  // data has been copied into the CXXRecordDecl.
618  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
619    Context.Deallocate(Bases[idx]);
620
621  return Invalid;
622}
623
624/// ActOnBaseSpecifiers - Attach the given base specifiers to the
625/// class, after checking whether there are any duplicate base
626/// classes.
627void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
628                               unsigned NumBases) {
629  if (!ClassDecl || !Bases || !NumBases)
630    return;
631
632  AdjustDeclIfTemplate(ClassDecl);
633  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
634                       (CXXBaseSpecifier**)(Bases), NumBases);
635}
636
637/// \brief Determine whether the type \p Derived is a C++ class that is
638/// derived from the type \p Base.
639bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
640  if (!getLangOptions().CPlusPlus)
641    return false;
642
643  const RecordType *DerivedRT = Derived->getAs<RecordType>();
644  if (!DerivedRT)
645    return false;
646
647  const RecordType *BaseRT = Base->getAs<RecordType>();
648  if (!BaseRT)
649    return false;
650
651  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
652  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
653  return DerivedRD->isDerivedFrom(BaseRD);
654}
655
656/// \brief Determine whether the type \p Derived is a C++ class that is
657/// derived from the type \p Base.
658bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
659  if (!getLangOptions().CPlusPlus)
660    return false;
661
662  const RecordType *DerivedRT = Derived->getAs<RecordType>();
663  if (!DerivedRT)
664    return false;
665
666  const RecordType *BaseRT = Base->getAs<RecordType>();
667  if (!BaseRT)
668    return false;
669
670  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
671  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
672  return DerivedRD->isDerivedFrom(BaseRD, Paths);
673}
674
675/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
676/// conversion (where Derived and Base are class types) is
677/// well-formed, meaning that the conversion is unambiguous (and
678/// that all of the base classes are accessible). Returns true
679/// and emits a diagnostic if the code is ill-formed, returns false
680/// otherwise. Loc is the location where this routine should point to
681/// if there is an error, and Range is the source range to highlight
682/// if there is an error.
683bool
684Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
685                                   unsigned InaccessibleBaseID,
686                                   unsigned AmbigiousBaseConvID,
687                                   SourceLocation Loc, SourceRange Range,
688                                   DeclarationName Name) {
689  // First, determine whether the path from Derived to Base is
690  // ambiguous. This is slightly more expensive than checking whether
691  // the Derived to Base conversion exists, because here we need to
692  // explore multiple paths to determine if there is an ambiguity.
693  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
694                     /*DetectVirtual=*/false);
695  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
696  assert(DerivationOkay &&
697         "Can only be used with a derived-to-base conversion");
698  (void)DerivationOkay;
699
700  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
701    if (InaccessibleBaseID == 0)
702      return false;
703    // Check that the base class can be accessed.
704    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
705                                Name);
706  }
707
708  // We know that the derived-to-base conversion is ambiguous, and
709  // we're going to produce a diagnostic. Perform the derived-to-base
710  // search just one more time to compute all of the possible paths so
711  // that we can print them out. This is more expensive than any of
712  // the previous derived-to-base checks we've done, but at this point
713  // performance isn't as much of an issue.
714  Paths.clear();
715  Paths.setRecordingPaths(true);
716  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
717  assert(StillOkay && "Can only be used with a derived-to-base conversion");
718  (void)StillOkay;
719
720  // Build up a textual representation of the ambiguous paths, e.g.,
721  // D -> B -> A, that will be used to illustrate the ambiguous
722  // conversions in the diagnostic. We only print one of the paths
723  // to each base class subobject.
724  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
725
726  Diag(Loc, AmbigiousBaseConvID)
727  << Derived << Base << PathDisplayStr << Range << Name;
728  return true;
729}
730
731bool
732Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
733                                   SourceLocation Loc, SourceRange Range,
734                                   bool IgnoreAccess) {
735  return CheckDerivedToBaseConversion(Derived, Base,
736                                      IgnoreAccess ? 0 :
737                                        diag::err_conv_to_inaccessible_base,
738                                      diag::err_ambiguous_derived_to_base_conv,
739                                      Loc, Range, DeclarationName());
740}
741
742
743/// @brief Builds a string representing ambiguous paths from a
744/// specific derived class to different subobjects of the same base
745/// class.
746///
747/// This function builds a string that can be used in error messages
748/// to show the different paths that one can take through the
749/// inheritance hierarchy to go from the derived class to different
750/// subobjects of a base class. The result looks something like this:
751/// @code
752/// struct D -> struct B -> struct A
753/// struct D -> struct C -> struct A
754/// @endcode
755std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
756  std::string PathDisplayStr;
757  std::set<unsigned> DisplayedPaths;
758  for (CXXBasePaths::paths_iterator Path = Paths.begin();
759       Path != Paths.end(); ++Path) {
760    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
761      // We haven't displayed a path to this particular base
762      // class subobject yet.
763      PathDisplayStr += "\n    ";
764      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
765      for (CXXBasePath::const_iterator Element = Path->begin();
766           Element != Path->end(); ++Element)
767        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
768    }
769  }
770
771  return PathDisplayStr;
772}
773
774//===----------------------------------------------------------------------===//
775// C++ class member Handling
776//===----------------------------------------------------------------------===//
777
778/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
779/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
780/// bitfield width if there is one and 'InitExpr' specifies the initializer if
781/// any.
782Sema::DeclPtrTy
783Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
784                               MultiTemplateParamsArg TemplateParameterLists,
785                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
786  const DeclSpec &DS = D.getDeclSpec();
787  DeclarationName Name = GetNameForDeclarator(D);
788  Expr *BitWidth = static_cast<Expr*>(BW);
789  Expr *Init = static_cast<Expr*>(InitExpr);
790  SourceLocation Loc = D.getIdentifierLoc();
791
792  bool isFunc = D.isFunctionDeclarator();
793
794  assert(!DS.isFriendSpecified());
795
796  // C++ 9.2p6: A member shall not be declared to have automatic storage
797  // duration (auto, register) or with the extern storage-class-specifier.
798  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
799  // data members and cannot be applied to names declared const or static,
800  // and cannot be applied to reference members.
801  switch (DS.getStorageClassSpec()) {
802    case DeclSpec::SCS_unspecified:
803    case DeclSpec::SCS_typedef:
804    case DeclSpec::SCS_static:
805      // FALL THROUGH.
806      break;
807    case DeclSpec::SCS_mutable:
808      if (isFunc) {
809        if (DS.getStorageClassSpecLoc().isValid())
810          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
811        else
812          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
813
814        // FIXME: It would be nicer if the keyword was ignored only for this
815        // declarator. Otherwise we could get follow-up errors.
816        D.getMutableDeclSpec().ClearStorageClassSpecs();
817      } else {
818        QualType T = GetTypeForDeclarator(D, S);
819        diag::kind err = static_cast<diag::kind>(0);
820        if (T->isReferenceType())
821          err = diag::err_mutable_reference;
822        else if (T.isConstQualified())
823          err = diag::err_mutable_const;
824        if (err != 0) {
825          if (DS.getStorageClassSpecLoc().isValid())
826            Diag(DS.getStorageClassSpecLoc(), err);
827          else
828            Diag(DS.getThreadSpecLoc(), err);
829          // FIXME: It would be nicer if the keyword was ignored only for this
830          // declarator. Otherwise we could get follow-up errors.
831          D.getMutableDeclSpec().ClearStorageClassSpecs();
832        }
833      }
834      break;
835    default:
836      if (DS.getStorageClassSpecLoc().isValid())
837        Diag(DS.getStorageClassSpecLoc(),
838             diag::err_storageclass_invalid_for_member);
839      else
840        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
841      D.getMutableDeclSpec().ClearStorageClassSpecs();
842  }
843
844  if (!isFunc &&
845      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
846      D.getNumTypeObjects() == 0) {
847    // Check also for this case:
848    //
849    // typedef int f();
850    // f a;
851    //
852    QualType TDType = GetTypeFromParser(DS.getTypeRep());
853    isFunc = TDType->isFunctionType();
854  }
855
856  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
857                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
858                      !isFunc);
859
860  Decl *Member;
861  if (isInstField) {
862    // FIXME: Check for template parameters!
863    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
864                         AS);
865    assert(Member && "HandleField never returns null");
866  } else {
867    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
868               .getAs<Decl>();
869    if (!Member) {
870      if (BitWidth) DeleteExpr(BitWidth);
871      return DeclPtrTy();
872    }
873
874    // Non-instance-fields can't have a bitfield.
875    if (BitWidth) {
876      if (Member->isInvalidDecl()) {
877        // don't emit another diagnostic.
878      } else if (isa<VarDecl>(Member)) {
879        // C++ 9.6p3: A bit-field shall not be a static member.
880        // "static member 'A' cannot be a bit-field"
881        Diag(Loc, diag::err_static_not_bitfield)
882          << Name << BitWidth->getSourceRange();
883      } else if (isa<TypedefDecl>(Member)) {
884        // "typedef member 'x' cannot be a bit-field"
885        Diag(Loc, diag::err_typedef_not_bitfield)
886          << Name << BitWidth->getSourceRange();
887      } else {
888        // A function typedef ("typedef int f(); f a;").
889        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
890        Diag(Loc, diag::err_not_integral_type_bitfield)
891          << Name << cast<ValueDecl>(Member)->getType()
892          << BitWidth->getSourceRange();
893      }
894
895      DeleteExpr(BitWidth);
896      BitWidth = 0;
897      Member->setInvalidDecl();
898    }
899
900    Member->setAccess(AS);
901
902    // If we have declared a member function template, set the access of the
903    // templated declaration as well.
904    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
905      FunTmpl->getTemplatedDecl()->setAccess(AS);
906  }
907
908  assert((Name || isInstField) && "No identifier for non-field ?");
909
910  if (Init)
911    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
912  if (Deleted) // FIXME: Source location is not very good.
913    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
914
915  if (isInstField) {
916    FieldCollector->Add(cast<FieldDecl>(Member));
917    return DeclPtrTy();
918  }
919  return DeclPtrTy::make(Member);
920}
921
922/// ActOnMemInitializer - Handle a C++ member initializer.
923Sema::MemInitResult
924Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
925                          Scope *S,
926                          const CXXScopeSpec &SS,
927                          IdentifierInfo *MemberOrBase,
928                          TypeTy *TemplateTypeTy,
929                          SourceLocation IdLoc,
930                          SourceLocation LParenLoc,
931                          ExprTy **Args, unsigned NumArgs,
932                          SourceLocation *CommaLocs,
933                          SourceLocation RParenLoc) {
934  if (!ConstructorD)
935    return true;
936
937  AdjustDeclIfTemplate(ConstructorD);
938
939  CXXConstructorDecl *Constructor
940    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
941  if (!Constructor) {
942    // The user wrote a constructor initializer on a function that is
943    // not a C++ constructor. Ignore the error for now, because we may
944    // have more member initializers coming; we'll diagnose it just
945    // once in ActOnMemInitializers.
946    return true;
947  }
948
949  CXXRecordDecl *ClassDecl = Constructor->getParent();
950
951  // C++ [class.base.init]p2:
952  //   Names in a mem-initializer-id are looked up in the scope of the
953  //   constructor’s class and, if not found in that scope, are looked
954  //   up in the scope containing the constructor’s
955  //   definition. [Note: if the constructor’s class contains a member
956  //   with the same name as a direct or virtual base class of the
957  //   class, a mem-initializer-id naming the member or base class and
958  //   composed of a single identifier refers to the class member. A
959  //   mem-initializer-id for the hidden base class may be specified
960  //   using a qualified name. ]
961  if (!SS.getScopeRep() && !TemplateTypeTy) {
962    // Look for a member, first.
963    FieldDecl *Member = 0;
964    DeclContext::lookup_result Result
965      = ClassDecl->lookup(MemberOrBase);
966    if (Result.first != Result.second)
967      Member = dyn_cast<FieldDecl>(*Result.first);
968
969    // FIXME: Handle members of an anonymous union.
970
971    if (Member)
972      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
973                                    RParenLoc);
974  }
975  // It didn't name a member, so see if it names a class.
976  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
977                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
978  if (!BaseTy)
979    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
980      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
981
982  QualType BaseType = GetTypeFromParser(BaseTy);
983
984  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
985                              RParenLoc, ClassDecl);
986}
987
988/// Checks an initializer expression for use of uninitialized fields, such as
989/// containing the field that is being initialized. Returns true if there is an
990/// uninitialized field was used an updates the SourceLocation parameter; false
991/// otherwise.
992static bool InitExprContainsUninitializedFields(const Stmt* S,
993                                                const FieldDecl* LhsField,
994                                                SourceLocation* L) {
995  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
996  if (ME) {
997    const NamedDecl* RhsField = ME->getMemberDecl();
998    if (RhsField == LhsField) {
999      // Initializing a field with itself. Throw a warning.
1000      // But wait; there are exceptions!
1001      // Exception #1:  The field may not belong to this record.
1002      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1003      const Expr* base = ME->getBase();
1004      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1005        // Even though the field matches, it does not belong to this record.
1006        return false;
1007      }
1008      // None of the exceptions triggered; return true to indicate an
1009      // uninitialized field was used.
1010      *L = ME->getMemberLoc();
1011      return true;
1012    }
1013  }
1014  bool found = false;
1015  for (Stmt::const_child_iterator it = S->child_begin();
1016       it != S->child_end() && found == false;
1017       ++it) {
1018    if (isa<CallExpr>(S)) {
1019      // Do not descend into function calls or constructors, as the use
1020      // of an uninitialized field may be valid. One would have to inspect
1021      // the contents of the function/ctor to determine if it is safe or not.
1022      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1023      // may be safe, depending on what the function/ctor does.
1024      continue;
1025    }
1026    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1027  }
1028  return found;
1029}
1030
1031Sema::MemInitResult
1032Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1033                             unsigned NumArgs, SourceLocation IdLoc,
1034                             SourceLocation RParenLoc) {
1035  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1036  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1037  ExprTemporaries.clear();
1038
1039  // Diagnose value-uses of fields to initialize themselves, e.g.
1040  //   foo(foo)
1041  // where foo is not also a parameter to the constructor.
1042  // TODO: implement -Wuninitialized and fold this into that framework.
1043  for (unsigned i = 0; i < NumArgs; ++i) {
1044    SourceLocation L;
1045    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1046      // FIXME: Return true in the case when other fields are used before being
1047      // uninitialized. For example, let this field be the i'th field. When
1048      // initializing the i'th field, throw a warning if any of the >= i'th
1049      // fields are used, as they are not yet initialized.
1050      // Right now we are only handling the case where the i'th field uses
1051      // itself in its initializer.
1052      Diag(L, diag::warn_field_is_uninit);
1053    }
1054  }
1055
1056  bool HasDependentArg = false;
1057  for (unsigned i = 0; i < NumArgs; i++)
1058    HasDependentArg |= Args[i]->isTypeDependent();
1059
1060  CXXConstructorDecl *C = 0;
1061  QualType FieldType = Member->getType();
1062  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1063    FieldType = Array->getElementType();
1064  if (FieldType->isDependentType()) {
1065    // Can't check init for dependent type.
1066  } else if (FieldType->isRecordType()) {
1067    // Member is a record (struct/union/class), so pass the initializer
1068    // arguments down to the record's constructor.
1069    if (!HasDependentArg) {
1070      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1071
1072      C = PerformInitializationByConstructor(FieldType,
1073                                             MultiExprArg(*this,
1074                                                          (void**)Args,
1075                                                          NumArgs),
1076                                             IdLoc,
1077                                             SourceRange(IdLoc, RParenLoc),
1078                                             Member->getDeclName(), IK_Direct,
1079                                             ConstructorArgs);
1080
1081      if (C) {
1082        // Take over the constructor arguments as our own.
1083        NumArgs = ConstructorArgs.size();
1084        Args = (Expr **)ConstructorArgs.take();
1085      }
1086    }
1087  } else if (NumArgs != 1 && NumArgs != 0) {
1088    // The member type is not a record type (or an array of record
1089    // types), so it can be only be default- or copy-initialized.
1090    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1091                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1092  } else if (!HasDependentArg) {
1093    Expr *NewExp;
1094    if (NumArgs == 0) {
1095      if (FieldType->isReferenceType()) {
1096        Diag(IdLoc, diag::err_null_intialized_reference_member)
1097              << Member->getDeclName();
1098        return Diag(Member->getLocation(), diag::note_declared_at);
1099      }
1100      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1101      NumArgs = 1;
1102    }
1103    else
1104      NewExp = (Expr*)Args[0];
1105    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
1106      return true;
1107    Args[0] = NewExp;
1108  }
1109
1110  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1111  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1112  ExprTemporaries.clear();
1113
1114  // FIXME: Perform direct initialization of the member.
1115  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
1116                                                  NumArgs, C, IdLoc, RParenLoc);
1117}
1118
1119Sema::MemInitResult
1120Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
1121                           unsigned NumArgs, SourceLocation IdLoc,
1122                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
1123  bool HasDependentArg = false;
1124  for (unsigned i = 0; i < NumArgs; i++)
1125    HasDependentArg |= Args[i]->isTypeDependent();
1126
1127  if (!BaseType->isDependentType()) {
1128    if (!BaseType->isRecordType())
1129      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
1130        << BaseType << SourceRange(IdLoc, RParenLoc);
1131
1132    // C++ [class.base.init]p2:
1133    //   [...] Unless the mem-initializer-id names a nonstatic data
1134    //   member of the constructor’s class or a direct or virtual base
1135    //   of that class, the mem-initializer is ill-formed. A
1136    //   mem-initializer-list can initialize a base class using any
1137    //   name that denotes that base class type.
1138
1139    // First, check for a direct base class.
1140    const CXXBaseSpecifier *DirectBaseSpec = 0;
1141    for (CXXRecordDecl::base_class_const_iterator Base =
1142         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
1143      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
1144          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
1145        // We found a direct base of this type. That's what we're
1146        // initializing.
1147        DirectBaseSpec = &*Base;
1148        break;
1149      }
1150    }
1151
1152    // Check for a virtual base class.
1153    // FIXME: We might be able to short-circuit this if we know in advance that
1154    // there are no virtual bases.
1155    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1156    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1157      // We haven't found a base yet; search the class hierarchy for a
1158      // virtual base class.
1159      CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1160                         /*DetectVirtual=*/false);
1161      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
1162        for (CXXBasePaths::paths_iterator Path = Paths.begin();
1163             Path != Paths.end(); ++Path) {
1164          if (Path->back().Base->isVirtual()) {
1165            VirtualBaseSpec = Path->back().Base;
1166            break;
1167          }
1168        }
1169      }
1170    }
1171
1172    // C++ [base.class.init]p2:
1173    //   If a mem-initializer-id is ambiguous because it designates both
1174    //   a direct non-virtual base class and an inherited virtual base
1175    //   class, the mem-initializer is ill-formed.
1176    if (DirectBaseSpec && VirtualBaseSpec)
1177      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
1178        << BaseType << SourceRange(IdLoc, RParenLoc);
1179    // C++ [base.class.init]p2:
1180    // Unless the mem-initializer-id names a nonstatic data membeer of the
1181    // constructor's class ot a direst or virtual base of that class, the
1182    // mem-initializer is ill-formed.
1183    if (!DirectBaseSpec && !VirtualBaseSpec)
1184      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
1185      << BaseType << ClassDecl->getNameAsCString()
1186      << SourceRange(IdLoc, RParenLoc);
1187  }
1188
1189  CXXConstructorDecl *C = 0;
1190  if (!BaseType->isDependentType() && !HasDependentArg) {
1191    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1192                      Context.getCanonicalType(BaseType).getUnqualifiedType());
1193    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1194
1195    C = PerformInitializationByConstructor(BaseType,
1196                                           MultiExprArg(*this,
1197                                                        (void**)Args, NumArgs),
1198                                           IdLoc, SourceRange(IdLoc, RParenLoc),
1199                                           Name, IK_Direct,
1200                                           ConstructorArgs);
1201    if (C) {
1202      // Take over the constructor arguments as our own.
1203      NumArgs = ConstructorArgs.size();
1204      Args = (Expr **)ConstructorArgs.take();
1205    }
1206  }
1207
1208  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1209  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1210  ExprTemporaries.clear();
1211
1212  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
1213                                                  NumArgs, C, IdLoc, RParenLoc);
1214}
1215
1216bool
1217Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1218                              CXXBaseOrMemberInitializer **Initializers,
1219                              unsigned NumInitializers,
1220                              bool IsImplicitConstructor) {
1221  // We need to build the initializer AST according to order of construction
1222  // and not what user specified in the Initializers list.
1223  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1224  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1225  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1226  bool HasDependentBaseInit = false;
1227  bool HadError = false;
1228
1229  for (unsigned i = 0; i < NumInitializers; i++) {
1230    CXXBaseOrMemberInitializer *Member = Initializers[i];
1231    if (Member->isBaseInitializer()) {
1232      if (Member->getBaseClass()->isDependentType())
1233        HasDependentBaseInit = true;
1234      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1235    } else {
1236      AllBaseFields[Member->getMember()] = Member;
1237    }
1238  }
1239
1240  if (HasDependentBaseInit) {
1241    // FIXME. This does not preserve the ordering of the initializers.
1242    // Try (with -Wreorder)
1243    // template<class X> struct A {};
1244    // template<class X> struct B : A<X> {
1245    //   B() : x1(10), A<X>() {}
1246    //   int x1;
1247    // };
1248    // B<int> x;
1249    // On seeing one dependent type, we should essentially exit this routine
1250    // while preserving user-declared initializer list. When this routine is
1251    // called during instantiatiation process, this routine will rebuild the
1252    // ordered initializer list correctly.
1253
1254    // If we have a dependent base initialization, we can't determine the
1255    // association between initializers and bases; just dump the known
1256    // initializers into the list, and don't try to deal with other bases.
1257    for (unsigned i = 0; i < NumInitializers; i++) {
1258      CXXBaseOrMemberInitializer *Member = Initializers[i];
1259      if (Member->isBaseInitializer())
1260        AllToInit.push_back(Member);
1261    }
1262  } else {
1263    // Push virtual bases before others.
1264    for (CXXRecordDecl::base_class_iterator VBase =
1265         ClassDecl->vbases_begin(),
1266         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1267      if (VBase->getType()->isDependentType())
1268        continue;
1269      if (CXXBaseOrMemberInitializer *Value
1270            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1271        AllToInit.push_back(Value);
1272      }
1273      else {
1274        CXXRecordDecl *VBaseDecl =
1275        cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1276        assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null");
1277        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1278        if (!Ctor) {
1279          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1280            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1281            << 0 << VBase->getType();
1282          Diag(VBaseDecl->getLocation(), diag::note_previous_class_decl)
1283            << Context.getTagDeclType(VBaseDecl);
1284          HadError = true;
1285          continue;
1286        }
1287
1288        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1289        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1290                                    Constructor->getLocation(), CtorArgs))
1291          continue;
1292
1293        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1294
1295        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1296        // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1297        ExprTemporaries.clear();
1298        CXXBaseOrMemberInitializer *Member =
1299          new (Context) CXXBaseOrMemberInitializer(VBase->getType(),
1300                                                   CtorArgs.takeAs<Expr>(),
1301                                                   CtorArgs.size(), Ctor,
1302                                                   SourceLocation(),
1303                                                   SourceLocation());
1304        AllToInit.push_back(Member);
1305      }
1306    }
1307
1308    for (CXXRecordDecl::base_class_iterator Base =
1309         ClassDecl->bases_begin(),
1310         E = ClassDecl->bases_end(); Base != E; ++Base) {
1311      // Virtuals are in the virtual base list and already constructed.
1312      if (Base->isVirtual())
1313        continue;
1314      // Skip dependent types.
1315      if (Base->getType()->isDependentType())
1316        continue;
1317      if (CXXBaseOrMemberInitializer *Value
1318            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1319        AllToInit.push_back(Value);
1320      }
1321      else {
1322        CXXRecordDecl *BaseDecl =
1323          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1324        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1325         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1326        if (!Ctor) {
1327          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1328            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1329            << 0 << Base->getType();
1330          Diag(BaseDecl->getLocation(), diag::note_previous_class_decl)
1331            << Context.getTagDeclType(BaseDecl);
1332          HadError = true;
1333          continue;
1334        }
1335
1336        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1337        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1338                                     Constructor->getLocation(), CtorArgs))
1339          continue;
1340
1341        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1342
1343        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1344        // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1345        ExprTemporaries.clear();
1346        CXXBaseOrMemberInitializer *Member =
1347          new (Context) CXXBaseOrMemberInitializer(Base->getType(),
1348                                                   CtorArgs.takeAs<Expr>(),
1349                                                   CtorArgs.size(), Ctor,
1350                                                   SourceLocation(),
1351                                                   SourceLocation());
1352        AllToInit.push_back(Member);
1353      }
1354    }
1355  }
1356
1357  // non-static data members.
1358  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1359       E = ClassDecl->field_end(); Field != E; ++Field) {
1360    if ((*Field)->isAnonymousStructOrUnion()) {
1361      if (const RecordType *FieldClassType =
1362          Field->getType()->getAs<RecordType>()) {
1363        CXXRecordDecl *FieldClassDecl
1364          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1365        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1366            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1367          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1368            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1369            // set to the anonymous union data member used in the initializer
1370            // list.
1371            Value->setMember(*Field);
1372            Value->setAnonUnionMember(*FA);
1373            AllToInit.push_back(Value);
1374            break;
1375          }
1376        }
1377      }
1378      continue;
1379    }
1380    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1381      AllToInit.push_back(Value);
1382      continue;
1383    }
1384
1385    if ((*Field)->getType()->isDependentType())
1386      continue;
1387
1388    QualType FT = Context.getBaseElementType((*Field)->getType());
1389    if (const RecordType* RT = FT->getAs<RecordType>()) {
1390      CXXConstructorDecl *Ctor =
1391        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1392      if (!Ctor) {
1393        Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1394          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1395          << 1 << (*Field)->getDeclName();
1396        Diag(Field->getLocation(), diag::note_field_decl);
1397        Diag(RT->getDecl()->getLocation(), diag::note_previous_class_decl)
1398          << Context.getTagDeclType(RT->getDecl());
1399        HadError = true;
1400        continue;
1401      }
1402
1403      ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1404      if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1405                                  Constructor->getLocation(), CtorArgs))
1406        continue;
1407
1408      // FIXME: CXXBaseOrMemberInitializer should only contain a single
1409      // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1410      ExprTemporaries.clear();
1411      CXXBaseOrMemberInitializer *Member =
1412        new (Context) CXXBaseOrMemberInitializer(*Field,CtorArgs.takeAs<Expr>(),
1413                                                 CtorArgs.size(), Ctor,
1414                                                 SourceLocation(),
1415                                                 SourceLocation());
1416
1417      AllToInit.push_back(Member);
1418      MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1419      if (FT.isConstQualified() && Ctor->isTrivial()) {
1420        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1421          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1422          << 1 << (*Field)->getDeclName();
1423        Diag((*Field)->getLocation(), diag::note_declared_at);
1424        HadError = true;
1425      }
1426    }
1427    else if (FT->isReferenceType()) {
1428      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1429        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1430        << 0 << (*Field)->getDeclName();
1431      Diag((*Field)->getLocation(), diag::note_declared_at);
1432      HadError = true;
1433    }
1434    else if (FT.isConstQualified()) {
1435      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1436        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1437        << 1 << (*Field)->getDeclName();
1438      Diag((*Field)->getLocation(), diag::note_declared_at);
1439      HadError = true;
1440    }
1441  }
1442
1443  NumInitializers = AllToInit.size();
1444  if (NumInitializers > 0) {
1445    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1446    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1447      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1448
1449    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1450    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1451      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1452  }
1453
1454  return HadError;
1455}
1456
1457static void *GetKeyForTopLevelField(FieldDecl *Field) {
1458  // For anonymous unions, use the class declaration as the key.
1459  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1460    if (RT->getDecl()->isAnonymousStructOrUnion())
1461      return static_cast<void *>(RT->getDecl());
1462  }
1463  return static_cast<void *>(Field);
1464}
1465
1466static void *GetKeyForBase(QualType BaseType) {
1467  if (const RecordType *RT = BaseType->getAs<RecordType>())
1468    return (void *)RT;
1469
1470  assert(0 && "Unexpected base type!");
1471  return 0;
1472}
1473
1474static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1475                             bool MemberMaybeAnon = false) {
1476  // For fields injected into the class via declaration of an anonymous union,
1477  // use its anonymous union class declaration as the unique key.
1478  if (Member->isMemberInitializer()) {
1479    FieldDecl *Field = Member->getMember();
1480
1481    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1482    // data member of the class. Data member used in the initializer list is
1483    // in AnonUnionMember field.
1484    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1485      Field = Member->getAnonUnionMember();
1486    if (Field->getDeclContext()->isRecord()) {
1487      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1488      if (RD->isAnonymousStructOrUnion())
1489        return static_cast<void *>(RD);
1490    }
1491    return static_cast<void *>(Field);
1492  }
1493
1494  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1495}
1496
1497/// ActOnMemInitializers - Handle the member initializers for a constructor.
1498void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1499                                SourceLocation ColonLoc,
1500                                MemInitTy **MemInits, unsigned NumMemInits) {
1501  if (!ConstructorDecl)
1502    return;
1503
1504  AdjustDeclIfTemplate(ConstructorDecl);
1505
1506  CXXConstructorDecl *Constructor
1507    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1508
1509  if (!Constructor) {
1510    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1511    return;
1512  }
1513
1514  if (!Constructor->isDependentContext()) {
1515    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1516    bool err = false;
1517    for (unsigned i = 0; i < NumMemInits; i++) {
1518      CXXBaseOrMemberInitializer *Member =
1519        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1520      void *KeyToMember = GetKeyForMember(Member);
1521      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1522      if (!PrevMember) {
1523        PrevMember = Member;
1524        continue;
1525      }
1526      if (FieldDecl *Field = Member->getMember())
1527        Diag(Member->getSourceLocation(),
1528             diag::error_multiple_mem_initialization)
1529        << Field->getNameAsString();
1530      else {
1531        Type *BaseClass = Member->getBaseClass();
1532        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1533        Diag(Member->getSourceLocation(),
1534             diag::error_multiple_base_initialization)
1535          << QualType(BaseClass, 0);
1536      }
1537      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1538        << 0;
1539      err = true;
1540    }
1541
1542    if (err)
1543      return;
1544  }
1545
1546  SetBaseOrMemberInitializers(Constructor,
1547                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1548                      NumMemInits, false);
1549
1550  if (Constructor->isDependentContext())
1551    return;
1552
1553  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1554      Diagnostic::Ignored &&
1555      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1556      Diagnostic::Ignored)
1557    return;
1558
1559  // Also issue warning if order of ctor-initializer list does not match order
1560  // of 1) base class declarations and 2) order of non-static data members.
1561  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1562
1563  CXXRecordDecl *ClassDecl
1564    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1565  // Push virtual bases before others.
1566  for (CXXRecordDecl::base_class_iterator VBase =
1567       ClassDecl->vbases_begin(),
1568       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1569    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1570
1571  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1572       E = ClassDecl->bases_end(); Base != E; ++Base) {
1573    // Virtuals are alread in the virtual base list and are constructed
1574    // first.
1575    if (Base->isVirtual())
1576      continue;
1577    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1578  }
1579
1580  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1581       E = ClassDecl->field_end(); Field != E; ++Field)
1582    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1583
1584  int Last = AllBaseOrMembers.size();
1585  int curIndex = 0;
1586  CXXBaseOrMemberInitializer *PrevMember = 0;
1587  for (unsigned i = 0; i < NumMemInits; i++) {
1588    CXXBaseOrMemberInitializer *Member =
1589      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1590    void *MemberInCtorList = GetKeyForMember(Member, true);
1591
1592    for (; curIndex < Last; curIndex++)
1593      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1594        break;
1595    if (curIndex == Last) {
1596      assert(PrevMember && "Member not in member list?!");
1597      // Initializer as specified in ctor-initializer list is out of order.
1598      // Issue a warning diagnostic.
1599      if (PrevMember->isBaseInitializer()) {
1600        // Diagnostics is for an initialized base class.
1601        Type *BaseClass = PrevMember->getBaseClass();
1602        Diag(PrevMember->getSourceLocation(),
1603             diag::warn_base_initialized)
1604          << QualType(BaseClass, 0);
1605      } else {
1606        FieldDecl *Field = PrevMember->getMember();
1607        Diag(PrevMember->getSourceLocation(),
1608             diag::warn_field_initialized)
1609          << Field->getNameAsString();
1610      }
1611      // Also the note!
1612      if (FieldDecl *Field = Member->getMember())
1613        Diag(Member->getSourceLocation(),
1614             diag::note_fieldorbase_initialized_here) << 0
1615          << Field->getNameAsString();
1616      else {
1617        Type *BaseClass = Member->getBaseClass();
1618        Diag(Member->getSourceLocation(),
1619             diag::note_fieldorbase_initialized_here) << 1
1620          << QualType(BaseClass, 0);
1621      }
1622      for (curIndex = 0; curIndex < Last; curIndex++)
1623        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1624          break;
1625    }
1626    PrevMember = Member;
1627  }
1628}
1629
1630void
1631Sema::computeBaseOrMembersToDestroy(CXXDestructorDecl *Destructor) {
1632  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Destructor->getDeclContext());
1633  llvm::SmallVector<uintptr_t, 32> AllToDestruct;
1634
1635  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1636       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1637    if (VBase->getType()->isDependentType())
1638      continue;
1639    // Skip over virtual bases which have trivial destructors.
1640    CXXRecordDecl *BaseClassDecl
1641      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1642    if (BaseClassDecl->hasTrivialDestructor())
1643      continue;
1644    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1645      MarkDeclarationReferenced(Destructor->getLocation(),
1646                                const_cast<CXXDestructorDecl*>(Dtor));
1647
1648    uintptr_t Member =
1649    reinterpret_cast<uintptr_t>(VBase->getType().getTypePtr())
1650      | CXXDestructorDecl::VBASE;
1651    AllToDestruct.push_back(Member);
1652  }
1653  for (CXXRecordDecl::base_class_iterator Base =
1654       ClassDecl->bases_begin(),
1655       E = ClassDecl->bases_end(); Base != E; ++Base) {
1656    if (Base->isVirtual())
1657      continue;
1658    if (Base->getType()->isDependentType())
1659      continue;
1660    // Skip over virtual bases which have trivial destructors.
1661    CXXRecordDecl *BaseClassDecl
1662    = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1663    if (BaseClassDecl->hasTrivialDestructor())
1664      continue;
1665    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1666      MarkDeclarationReferenced(Destructor->getLocation(),
1667                                const_cast<CXXDestructorDecl*>(Dtor));
1668    uintptr_t Member =
1669    reinterpret_cast<uintptr_t>(Base->getType().getTypePtr())
1670      | CXXDestructorDecl::DRCTNONVBASE;
1671    AllToDestruct.push_back(Member);
1672  }
1673
1674  // non-static data members.
1675  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1676       E = ClassDecl->field_end(); Field != E; ++Field) {
1677    QualType FieldType = Context.getBaseElementType((*Field)->getType());
1678
1679    if (const RecordType* RT = FieldType->getAs<RecordType>()) {
1680      // Skip over virtual bases which have trivial destructors.
1681      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1682      if (FieldClassDecl->hasTrivialDestructor())
1683        continue;
1684      if (const CXXDestructorDecl *Dtor =
1685            FieldClassDecl->getDestructor(Context))
1686        MarkDeclarationReferenced(Destructor->getLocation(),
1687                                  const_cast<CXXDestructorDecl*>(Dtor));
1688      uintptr_t Member = reinterpret_cast<uintptr_t>(*Field);
1689      AllToDestruct.push_back(Member);
1690    }
1691  }
1692
1693  unsigned NumDestructions = AllToDestruct.size();
1694  if (NumDestructions > 0) {
1695    Destructor->setNumBaseOrMemberDestructions(NumDestructions);
1696    uintptr_t *BaseOrMemberDestructions =
1697      new (Context) uintptr_t [NumDestructions];
1698    // Insert in reverse order.
1699    for (int Idx = NumDestructions-1, i=0 ; Idx >= 0; --Idx)
1700      BaseOrMemberDestructions[i++] = AllToDestruct[Idx];
1701    Destructor->setBaseOrMemberDestructions(BaseOrMemberDestructions);
1702  }
1703}
1704
1705void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1706  if (!CDtorDecl)
1707    return;
1708
1709  AdjustDeclIfTemplate(CDtorDecl);
1710
1711  if (CXXConstructorDecl *Constructor
1712      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1713    SetBaseOrMemberInitializers(Constructor, 0, 0, false);
1714}
1715
1716namespace {
1717  /// PureVirtualMethodCollector - traverses a class and its superclasses
1718  /// and determines if it has any pure virtual methods.
1719  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1720    ASTContext &Context;
1721
1722  public:
1723    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1724
1725  private:
1726    MethodList Methods;
1727
1728    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1729
1730  public:
1731    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1732      : Context(Ctx) {
1733
1734      MethodList List;
1735      Collect(RD, List);
1736
1737      // Copy the temporary list to methods, and make sure to ignore any
1738      // null entries.
1739      for (size_t i = 0, e = List.size(); i != e; ++i) {
1740        if (List[i])
1741          Methods.push_back(List[i]);
1742      }
1743    }
1744
1745    bool empty() const { return Methods.empty(); }
1746
1747    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1748    MethodList::const_iterator methods_end() { return Methods.end(); }
1749  };
1750
1751  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1752                                           MethodList& Methods) {
1753    // First, collect the pure virtual methods for the base classes.
1754    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1755         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1756      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1757        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1758        if (BaseDecl && BaseDecl->isAbstract())
1759          Collect(BaseDecl, Methods);
1760      }
1761    }
1762
1763    // Next, zero out any pure virtual methods that this class overrides.
1764    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1765
1766    MethodSetTy OverriddenMethods;
1767    size_t MethodsSize = Methods.size();
1768
1769    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1770         i != e; ++i) {
1771      // Traverse the record, looking for methods.
1772      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1773        // If the method is pure virtual, add it to the methods vector.
1774        if (MD->isPure())
1775          Methods.push_back(MD);
1776
1777        // Record all the overridden methods in our set.
1778        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1779             E = MD->end_overridden_methods(); I != E; ++I) {
1780          // Keep track of the overridden methods.
1781          OverriddenMethods.insert(*I);
1782        }
1783      }
1784    }
1785
1786    // Now go through the methods and zero out all the ones we know are
1787    // overridden.
1788    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1789      if (OverriddenMethods.count(Methods[i]))
1790        Methods[i] = 0;
1791    }
1792
1793  }
1794}
1795
1796
1797bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1798                                  unsigned DiagID, AbstractDiagSelID SelID,
1799                                  const CXXRecordDecl *CurrentRD) {
1800  if (SelID == -1)
1801    return RequireNonAbstractType(Loc, T,
1802                                  PDiag(DiagID), CurrentRD);
1803  else
1804    return RequireNonAbstractType(Loc, T,
1805                                  PDiag(DiagID) << SelID, CurrentRD);
1806}
1807
1808bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1809                                  const PartialDiagnostic &PD,
1810                                  const CXXRecordDecl *CurrentRD) {
1811  if (!getLangOptions().CPlusPlus)
1812    return false;
1813
1814  if (const ArrayType *AT = Context.getAsArrayType(T))
1815    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1816                                  CurrentRD);
1817
1818  if (const PointerType *PT = T->getAs<PointerType>()) {
1819    // Find the innermost pointer type.
1820    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1821      PT = T;
1822
1823    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1824      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1825  }
1826
1827  const RecordType *RT = T->getAs<RecordType>();
1828  if (!RT)
1829    return false;
1830
1831  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1832  if (!RD)
1833    return false;
1834
1835  if (CurrentRD && CurrentRD != RD)
1836    return false;
1837
1838  if (!RD->isAbstract())
1839    return false;
1840
1841  Diag(Loc, PD) << RD->getDeclName();
1842
1843  // Check if we've already emitted the list of pure virtual functions for this
1844  // class.
1845  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1846    return true;
1847
1848  PureVirtualMethodCollector Collector(Context, RD);
1849
1850  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1851       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1852    const CXXMethodDecl *MD = *I;
1853
1854    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1855      MD->getDeclName();
1856  }
1857
1858  if (!PureVirtualClassDiagSet)
1859    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1860  PureVirtualClassDiagSet->insert(RD);
1861
1862  return true;
1863}
1864
1865namespace {
1866  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1867    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1868    Sema &SemaRef;
1869    CXXRecordDecl *AbstractClass;
1870
1871    bool VisitDeclContext(const DeclContext *DC) {
1872      bool Invalid = false;
1873
1874      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1875           E = DC->decls_end(); I != E; ++I)
1876        Invalid |= Visit(*I);
1877
1878      return Invalid;
1879    }
1880
1881  public:
1882    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1883      : SemaRef(SemaRef), AbstractClass(ac) {
1884        Visit(SemaRef.Context.getTranslationUnitDecl());
1885    }
1886
1887    bool VisitFunctionDecl(const FunctionDecl *FD) {
1888      if (FD->isThisDeclarationADefinition()) {
1889        // No need to do the check if we're in a definition, because it requires
1890        // that the return/param types are complete.
1891        // because that requires
1892        return VisitDeclContext(FD);
1893      }
1894
1895      // Check the return type.
1896      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
1897      bool Invalid =
1898        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1899                                       diag::err_abstract_type_in_decl,
1900                                       Sema::AbstractReturnType,
1901                                       AbstractClass);
1902
1903      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1904           E = FD->param_end(); I != E; ++I) {
1905        const ParmVarDecl *VD = *I;
1906        Invalid |=
1907          SemaRef.RequireNonAbstractType(VD->getLocation(),
1908                                         VD->getOriginalType(),
1909                                         diag::err_abstract_type_in_decl,
1910                                         Sema::AbstractParamType,
1911                                         AbstractClass);
1912      }
1913
1914      return Invalid;
1915    }
1916
1917    bool VisitDecl(const Decl* D) {
1918      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1919        return VisitDeclContext(DC);
1920
1921      return false;
1922    }
1923  };
1924}
1925
1926void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1927                                             DeclPtrTy TagDecl,
1928                                             SourceLocation LBrac,
1929                                             SourceLocation RBrac) {
1930  if (!TagDecl)
1931    return;
1932
1933  AdjustDeclIfTemplate(TagDecl);
1934  ActOnFields(S, RLoc, TagDecl,
1935              (DeclPtrTy*)FieldCollector->getCurFields(),
1936              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1937
1938  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1939  if (!RD->isAbstract()) {
1940    // Collect all the pure virtual methods and see if this is an abstract
1941    // class after all.
1942    PureVirtualMethodCollector Collector(Context, RD);
1943    if (!Collector.empty())
1944      RD->setAbstract(true);
1945  }
1946
1947  if (RD->isAbstract())
1948    AbstractClassUsageDiagnoser(*this, RD);
1949
1950  if (!RD->isDependentType() && !RD->isInvalidDecl())
1951    AddImplicitlyDeclaredMembersToClass(RD);
1952}
1953
1954/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1955/// special functions, such as the default constructor, copy
1956/// constructor, or destructor, to the given C++ class (C++
1957/// [special]p1).  This routine can only be executed just before the
1958/// definition of the class is complete.
1959void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1960  CanQualType ClassType
1961    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1962
1963  // FIXME: Implicit declarations have exception specifications, which are
1964  // the union of the specifications of the implicitly called functions.
1965
1966  if (!ClassDecl->hasUserDeclaredConstructor()) {
1967    // C++ [class.ctor]p5:
1968    //   A default constructor for a class X is a constructor of class X
1969    //   that can be called without an argument. If there is no
1970    //   user-declared constructor for class X, a default constructor is
1971    //   implicitly declared. An implicitly-declared default constructor
1972    //   is an inline public member of its class.
1973    DeclarationName Name
1974      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1975    CXXConstructorDecl *DefaultCon =
1976      CXXConstructorDecl::Create(Context, ClassDecl,
1977                                 ClassDecl->getLocation(), Name,
1978                                 Context.getFunctionType(Context.VoidTy,
1979                                                         0, 0, false, 0),
1980                                 /*DInfo=*/0,
1981                                 /*isExplicit=*/false,
1982                                 /*isInline=*/true,
1983                                 /*isImplicitlyDeclared=*/true);
1984    DefaultCon->setAccess(AS_public);
1985    DefaultCon->setImplicit();
1986    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1987    ClassDecl->addDecl(DefaultCon);
1988  }
1989
1990  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1991    // C++ [class.copy]p4:
1992    //   If the class definition does not explicitly declare a copy
1993    //   constructor, one is declared implicitly.
1994
1995    // C++ [class.copy]p5:
1996    //   The implicitly-declared copy constructor for a class X will
1997    //   have the form
1998    //
1999    //       X::X(const X&)
2000    //
2001    //   if
2002    bool HasConstCopyConstructor = true;
2003
2004    //     -- each direct or virtual base class B of X has a copy
2005    //        constructor whose first parameter is of type const B& or
2006    //        const volatile B&, and
2007    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2008         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2009      const CXXRecordDecl *BaseClassDecl
2010        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2011      HasConstCopyConstructor
2012        = BaseClassDecl->hasConstCopyConstructor(Context);
2013    }
2014
2015    //     -- for all the nonstatic data members of X that are of a
2016    //        class type M (or array thereof), each such class type
2017    //        has a copy constructor whose first parameter is of type
2018    //        const M& or const volatile M&.
2019    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2020         HasConstCopyConstructor && Field != ClassDecl->field_end();
2021         ++Field) {
2022      QualType FieldType = (*Field)->getType();
2023      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2024        FieldType = Array->getElementType();
2025      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2026        const CXXRecordDecl *FieldClassDecl
2027          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2028        HasConstCopyConstructor
2029          = FieldClassDecl->hasConstCopyConstructor(Context);
2030      }
2031    }
2032
2033    //   Otherwise, the implicitly declared copy constructor will have
2034    //   the form
2035    //
2036    //       X::X(X&)
2037    QualType ArgType = ClassType;
2038    if (HasConstCopyConstructor)
2039      ArgType = ArgType.withConst();
2040    ArgType = Context.getLValueReferenceType(ArgType);
2041
2042    //   An implicitly-declared copy constructor is an inline public
2043    //   member of its class.
2044    DeclarationName Name
2045      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2046    CXXConstructorDecl *CopyConstructor
2047      = CXXConstructorDecl::Create(Context, ClassDecl,
2048                                   ClassDecl->getLocation(), Name,
2049                                   Context.getFunctionType(Context.VoidTy,
2050                                                           &ArgType, 1,
2051                                                           false, 0),
2052                                   /*DInfo=*/0,
2053                                   /*isExplicit=*/false,
2054                                   /*isInline=*/true,
2055                                   /*isImplicitlyDeclared=*/true);
2056    CopyConstructor->setAccess(AS_public);
2057    CopyConstructor->setImplicit();
2058    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2059
2060    // Add the parameter to the constructor.
2061    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2062                                                 ClassDecl->getLocation(),
2063                                                 /*IdentifierInfo=*/0,
2064                                                 ArgType, /*DInfo=*/0,
2065                                                 VarDecl::None, 0);
2066    CopyConstructor->setParams(Context, &FromParam, 1);
2067    ClassDecl->addDecl(CopyConstructor);
2068  }
2069
2070  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2071    // Note: The following rules are largely analoguous to the copy
2072    // constructor rules. Note that virtual bases are not taken into account
2073    // for determining the argument type of the operator. Note also that
2074    // operators taking an object instead of a reference are allowed.
2075    //
2076    // C++ [class.copy]p10:
2077    //   If the class definition does not explicitly declare a copy
2078    //   assignment operator, one is declared implicitly.
2079    //   The implicitly-defined copy assignment operator for a class X
2080    //   will have the form
2081    //
2082    //       X& X::operator=(const X&)
2083    //
2084    //   if
2085    bool HasConstCopyAssignment = true;
2086
2087    //       -- each direct base class B of X has a copy assignment operator
2088    //          whose parameter is of type const B&, const volatile B& or B,
2089    //          and
2090    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2091         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2092      assert(!Base->getType()->isDependentType() &&
2093            "Cannot generate implicit members for class with dependent bases.");
2094      const CXXRecordDecl *BaseClassDecl
2095        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2096      const CXXMethodDecl *MD = 0;
2097      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2098                                                                     MD);
2099    }
2100
2101    //       -- for all the nonstatic data members of X that are of a class
2102    //          type M (or array thereof), each such class type has a copy
2103    //          assignment operator whose parameter is of type const M&,
2104    //          const volatile M& or M.
2105    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2106         HasConstCopyAssignment && Field != ClassDecl->field_end();
2107         ++Field) {
2108      QualType FieldType = (*Field)->getType();
2109      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2110        FieldType = Array->getElementType();
2111      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2112        const CXXRecordDecl *FieldClassDecl
2113          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2114        const CXXMethodDecl *MD = 0;
2115        HasConstCopyAssignment
2116          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2117      }
2118    }
2119
2120    //   Otherwise, the implicitly declared copy assignment operator will
2121    //   have the form
2122    //
2123    //       X& X::operator=(X&)
2124    QualType ArgType = ClassType;
2125    QualType RetType = Context.getLValueReferenceType(ArgType);
2126    if (HasConstCopyAssignment)
2127      ArgType = ArgType.withConst();
2128    ArgType = Context.getLValueReferenceType(ArgType);
2129
2130    //   An implicitly-declared copy assignment operator is an inline public
2131    //   member of its class.
2132    DeclarationName Name =
2133      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2134    CXXMethodDecl *CopyAssignment =
2135      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2136                            Context.getFunctionType(RetType, &ArgType, 1,
2137                                                    false, 0),
2138                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2139    CopyAssignment->setAccess(AS_public);
2140    CopyAssignment->setImplicit();
2141    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2142    CopyAssignment->setCopyAssignment(true);
2143
2144    // Add the parameter to the operator.
2145    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2146                                                 ClassDecl->getLocation(),
2147                                                 /*IdentifierInfo=*/0,
2148                                                 ArgType, /*DInfo=*/0,
2149                                                 VarDecl::None, 0);
2150    CopyAssignment->setParams(Context, &FromParam, 1);
2151
2152    // Don't call addedAssignmentOperator. There is no way to distinguish an
2153    // implicit from an explicit assignment operator.
2154    ClassDecl->addDecl(CopyAssignment);
2155  }
2156
2157  if (!ClassDecl->hasUserDeclaredDestructor()) {
2158    // C++ [class.dtor]p2:
2159    //   If a class has no user-declared destructor, a destructor is
2160    //   declared implicitly. An implicitly-declared destructor is an
2161    //   inline public member of its class.
2162    DeclarationName Name
2163      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2164    CXXDestructorDecl *Destructor
2165      = CXXDestructorDecl::Create(Context, ClassDecl,
2166                                  ClassDecl->getLocation(), Name,
2167                                  Context.getFunctionType(Context.VoidTy,
2168                                                          0, 0, false, 0),
2169                                  /*isInline=*/true,
2170                                  /*isImplicitlyDeclared=*/true);
2171    Destructor->setAccess(AS_public);
2172    Destructor->setImplicit();
2173    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2174    ClassDecl->addDecl(Destructor);
2175  }
2176}
2177
2178void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2179  Decl *D = TemplateD.getAs<Decl>();
2180  if (!D)
2181    return;
2182
2183  TemplateParameterList *Params = 0;
2184  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2185    Params = Template->getTemplateParameters();
2186  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2187           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2188    Params = PartialSpec->getTemplateParameters();
2189  else
2190    return;
2191
2192  for (TemplateParameterList::iterator Param = Params->begin(),
2193                                    ParamEnd = Params->end();
2194       Param != ParamEnd; ++Param) {
2195    NamedDecl *Named = cast<NamedDecl>(*Param);
2196    if (Named->getDeclName()) {
2197      S->AddDecl(DeclPtrTy::make(Named));
2198      IdResolver.AddDecl(Named);
2199    }
2200  }
2201}
2202
2203/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2204/// parsing a top-level (non-nested) C++ class, and we are now
2205/// parsing those parts of the given Method declaration that could
2206/// not be parsed earlier (C++ [class.mem]p2), such as default
2207/// arguments. This action should enter the scope of the given
2208/// Method declaration as if we had just parsed the qualified method
2209/// name. However, it should not bring the parameters into scope;
2210/// that will be performed by ActOnDelayedCXXMethodParameter.
2211void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2212  if (!MethodD)
2213    return;
2214
2215  AdjustDeclIfTemplate(MethodD);
2216
2217  CXXScopeSpec SS;
2218  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2219  QualType ClassTy
2220    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2221  SS.setScopeRep(
2222    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2223  ActOnCXXEnterDeclaratorScope(S, SS);
2224}
2225
2226/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2227/// C++ method declaration. We're (re-)introducing the given
2228/// function parameter into scope for use in parsing later parts of
2229/// the method declaration. For example, we could see an
2230/// ActOnParamDefaultArgument event for this parameter.
2231void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2232  if (!ParamD)
2233    return;
2234
2235  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2236
2237  // If this parameter has an unparsed default argument, clear it out
2238  // to make way for the parsed default argument.
2239  if (Param->hasUnparsedDefaultArg())
2240    Param->setDefaultArg(0);
2241
2242  S->AddDecl(DeclPtrTy::make(Param));
2243  if (Param->getDeclName())
2244    IdResolver.AddDecl(Param);
2245}
2246
2247/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2248/// processing the delayed method declaration for Method. The method
2249/// declaration is now considered finished. There may be a separate
2250/// ActOnStartOfFunctionDef action later (not necessarily
2251/// immediately!) for this method, if it was also defined inside the
2252/// class body.
2253void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2254  if (!MethodD)
2255    return;
2256
2257  AdjustDeclIfTemplate(MethodD);
2258
2259  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2260  CXXScopeSpec SS;
2261  QualType ClassTy
2262    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2263  SS.setScopeRep(
2264    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2265  ActOnCXXExitDeclaratorScope(S, SS);
2266
2267  // Now that we have our default arguments, check the constructor
2268  // again. It could produce additional diagnostics or affect whether
2269  // the class has implicitly-declared destructors, among other
2270  // things.
2271  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2272    CheckConstructor(Constructor);
2273
2274  // Check the default arguments, which we may have added.
2275  if (!Method->isInvalidDecl())
2276    CheckCXXDefaultArguments(Method);
2277}
2278
2279/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2280/// the well-formedness of the constructor declarator @p D with type @p
2281/// R. If there are any errors in the declarator, this routine will
2282/// emit diagnostics and set the invalid bit to true.  In any case, the type
2283/// will be updated to reflect a well-formed type for the constructor and
2284/// returned.
2285QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2286                                          FunctionDecl::StorageClass &SC) {
2287  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2288
2289  // C++ [class.ctor]p3:
2290  //   A constructor shall not be virtual (10.3) or static (9.4). A
2291  //   constructor can be invoked for a const, volatile or const
2292  //   volatile object. A constructor shall not be declared const,
2293  //   volatile, or const volatile (9.3.2).
2294  if (isVirtual) {
2295    if (!D.isInvalidType())
2296      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2297        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2298        << SourceRange(D.getIdentifierLoc());
2299    D.setInvalidType();
2300  }
2301  if (SC == FunctionDecl::Static) {
2302    if (!D.isInvalidType())
2303      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2304        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2305        << SourceRange(D.getIdentifierLoc());
2306    D.setInvalidType();
2307    SC = FunctionDecl::None;
2308  }
2309
2310  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2311  if (FTI.TypeQuals != 0) {
2312    if (FTI.TypeQuals & Qualifiers::Const)
2313      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2314        << "const" << SourceRange(D.getIdentifierLoc());
2315    if (FTI.TypeQuals & Qualifiers::Volatile)
2316      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2317        << "volatile" << SourceRange(D.getIdentifierLoc());
2318    if (FTI.TypeQuals & Qualifiers::Restrict)
2319      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2320        << "restrict" << SourceRange(D.getIdentifierLoc());
2321  }
2322
2323  // Rebuild the function type "R" without any type qualifiers (in
2324  // case any of the errors above fired) and with "void" as the
2325  // return type, since constructors don't have return types. We
2326  // *always* have to do this, because GetTypeForDeclarator will
2327  // put in a result type of "int" when none was specified.
2328  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2329  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2330                                 Proto->getNumArgs(),
2331                                 Proto->isVariadic(), 0);
2332}
2333
2334/// CheckConstructor - Checks a fully-formed constructor for
2335/// well-formedness, issuing any diagnostics required. Returns true if
2336/// the constructor declarator is invalid.
2337void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2338  CXXRecordDecl *ClassDecl
2339    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2340  if (!ClassDecl)
2341    return Constructor->setInvalidDecl();
2342
2343  // C++ [class.copy]p3:
2344  //   A declaration of a constructor for a class X is ill-formed if
2345  //   its first parameter is of type (optionally cv-qualified) X and
2346  //   either there are no other parameters or else all other
2347  //   parameters have default arguments.
2348  if (!Constructor->isInvalidDecl() &&
2349      ((Constructor->getNumParams() == 1) ||
2350       (Constructor->getNumParams() > 1 &&
2351        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2352      Constructor->getTemplateSpecializationKind()
2353                                              != TSK_ImplicitInstantiation) {
2354    QualType ParamType = Constructor->getParamDecl(0)->getType();
2355    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2356    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2357      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2358      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2359        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2360
2361      // FIXME: Rather that making the constructor invalid, we should endeavor
2362      // to fix the type.
2363      Constructor->setInvalidDecl();
2364    }
2365  }
2366
2367  // Notify the class that we've added a constructor.
2368  ClassDecl->addedConstructor(Context, Constructor);
2369}
2370
2371static inline bool
2372FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2373  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2374          FTI.ArgInfo[0].Param &&
2375          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2376}
2377
2378/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2379/// the well-formednes of the destructor declarator @p D with type @p
2380/// R. If there are any errors in the declarator, this routine will
2381/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2382/// will be updated to reflect a well-formed type for the destructor and
2383/// returned.
2384QualType Sema::CheckDestructorDeclarator(Declarator &D,
2385                                         FunctionDecl::StorageClass& SC) {
2386  // C++ [class.dtor]p1:
2387  //   [...] A typedef-name that names a class is a class-name
2388  //   (7.1.3); however, a typedef-name that names a class shall not
2389  //   be used as the identifier in the declarator for a destructor
2390  //   declaration.
2391  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2392  if (isa<TypedefType>(DeclaratorType)) {
2393    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2394      << DeclaratorType;
2395    D.setInvalidType();
2396  }
2397
2398  // C++ [class.dtor]p2:
2399  //   A destructor is used to destroy objects of its class type. A
2400  //   destructor takes no parameters, and no return type can be
2401  //   specified for it (not even void). The address of a destructor
2402  //   shall not be taken. A destructor shall not be static. A
2403  //   destructor can be invoked for a const, volatile or const
2404  //   volatile object. A destructor shall not be declared const,
2405  //   volatile or const volatile (9.3.2).
2406  if (SC == FunctionDecl::Static) {
2407    if (!D.isInvalidType())
2408      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2409        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2410        << SourceRange(D.getIdentifierLoc());
2411    SC = FunctionDecl::None;
2412    D.setInvalidType();
2413  }
2414  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2415    // Destructors don't have return types, but the parser will
2416    // happily parse something like:
2417    //
2418    //   class X {
2419    //     float ~X();
2420    //   };
2421    //
2422    // The return type will be eliminated later.
2423    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2424      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2425      << SourceRange(D.getIdentifierLoc());
2426  }
2427
2428  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2429  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2430    if (FTI.TypeQuals & Qualifiers::Const)
2431      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2432        << "const" << SourceRange(D.getIdentifierLoc());
2433    if (FTI.TypeQuals & Qualifiers::Volatile)
2434      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2435        << "volatile" << SourceRange(D.getIdentifierLoc());
2436    if (FTI.TypeQuals & Qualifiers::Restrict)
2437      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2438        << "restrict" << SourceRange(D.getIdentifierLoc());
2439    D.setInvalidType();
2440  }
2441
2442  // Make sure we don't have any parameters.
2443  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2444    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2445
2446    // Delete the parameters.
2447    FTI.freeArgs();
2448    D.setInvalidType();
2449  }
2450
2451  // Make sure the destructor isn't variadic.
2452  if (FTI.isVariadic) {
2453    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2454    D.setInvalidType();
2455  }
2456
2457  // Rebuild the function type "R" without any type qualifiers or
2458  // parameters (in case any of the errors above fired) and with
2459  // "void" as the return type, since destructors don't have return
2460  // types. We *always* have to do this, because GetTypeForDeclarator
2461  // will put in a result type of "int" when none was specified.
2462  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2463}
2464
2465/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2466/// well-formednes of the conversion function declarator @p D with
2467/// type @p R. If there are any errors in the declarator, this routine
2468/// will emit diagnostics and return true. Otherwise, it will return
2469/// false. Either way, the type @p R will be updated to reflect a
2470/// well-formed type for the conversion operator.
2471void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2472                                     FunctionDecl::StorageClass& SC) {
2473  // C++ [class.conv.fct]p1:
2474  //   Neither parameter types nor return type can be specified. The
2475  //   type of a conversion function (8.3.5) is "function taking no
2476  //   parameter returning conversion-type-id."
2477  if (SC == FunctionDecl::Static) {
2478    if (!D.isInvalidType())
2479      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2480        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2481        << SourceRange(D.getIdentifierLoc());
2482    D.setInvalidType();
2483    SC = FunctionDecl::None;
2484  }
2485  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2486    // Conversion functions don't have return types, but the parser will
2487    // happily parse something like:
2488    //
2489    //   class X {
2490    //     float operator bool();
2491    //   };
2492    //
2493    // The return type will be changed later anyway.
2494    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2495      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2496      << SourceRange(D.getIdentifierLoc());
2497  }
2498
2499  // Make sure we don't have any parameters.
2500  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2501    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2502
2503    // Delete the parameters.
2504    D.getTypeObject(0).Fun.freeArgs();
2505    D.setInvalidType();
2506  }
2507
2508  // Make sure the conversion function isn't variadic.
2509  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2510    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2511    D.setInvalidType();
2512  }
2513
2514  // C++ [class.conv.fct]p4:
2515  //   The conversion-type-id shall not represent a function type nor
2516  //   an array type.
2517  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2518  if (ConvType->isArrayType()) {
2519    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2520    ConvType = Context.getPointerType(ConvType);
2521    D.setInvalidType();
2522  } else if (ConvType->isFunctionType()) {
2523    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2524    ConvType = Context.getPointerType(ConvType);
2525    D.setInvalidType();
2526  }
2527
2528  // Rebuild the function type "R" without any parameters (in case any
2529  // of the errors above fired) and with the conversion type as the
2530  // return type.
2531  R = Context.getFunctionType(ConvType, 0, 0, false,
2532                              R->getAs<FunctionProtoType>()->getTypeQuals());
2533
2534  // C++0x explicit conversion operators.
2535  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2536    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2537         diag::warn_explicit_conversion_functions)
2538      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2539}
2540
2541/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2542/// the declaration of the given C++ conversion function. This routine
2543/// is responsible for recording the conversion function in the C++
2544/// class, if possible.
2545Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2546  assert(Conversion && "Expected to receive a conversion function declaration");
2547
2548  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2549
2550  // Make sure we aren't redeclaring the conversion function.
2551  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2552
2553  // C++ [class.conv.fct]p1:
2554  //   [...] A conversion function is never used to convert a
2555  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2556  //   same object type (or a reference to it), to a (possibly
2557  //   cv-qualified) base class of that type (or a reference to it),
2558  //   or to (possibly cv-qualified) void.
2559  // FIXME: Suppress this warning if the conversion function ends up being a
2560  // virtual function that overrides a virtual function in a base class.
2561  QualType ClassType
2562    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2563  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2564    ConvType = ConvTypeRef->getPointeeType();
2565  if (ConvType->isRecordType()) {
2566    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2567    if (ConvType == ClassType)
2568      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2569        << ClassType;
2570    else if (IsDerivedFrom(ClassType, ConvType))
2571      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2572        <<  ClassType << ConvType;
2573  } else if (ConvType->isVoidType()) {
2574    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2575      << ClassType << ConvType;
2576  }
2577
2578  if (Conversion->getPreviousDeclaration()) {
2579    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2580    if (FunctionTemplateDecl *ConversionTemplate
2581          = Conversion->getDescribedFunctionTemplate())
2582      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2583    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
2584    for (OverloadedFunctionDecl::function_iterator
2585           Conv = Conversions->function_begin(),
2586           ConvEnd = Conversions->function_end();
2587         Conv != ConvEnd; ++Conv) {
2588      if (*Conv == ExpectedPrevDecl) {
2589        *Conv = Conversion;
2590        return DeclPtrTy::make(Conversion);
2591      }
2592    }
2593    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2594  } else if (FunctionTemplateDecl *ConversionTemplate
2595               = Conversion->getDescribedFunctionTemplate())
2596    ClassDecl->addConversionFunction(ConversionTemplate);
2597  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2598    ClassDecl->addConversionFunction(Conversion);
2599
2600  return DeclPtrTy::make(Conversion);
2601}
2602
2603//===----------------------------------------------------------------------===//
2604// Namespace Handling
2605//===----------------------------------------------------------------------===//
2606
2607/// ActOnStartNamespaceDef - This is called at the start of a namespace
2608/// definition.
2609Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2610                                             SourceLocation IdentLoc,
2611                                             IdentifierInfo *II,
2612                                             SourceLocation LBrace) {
2613  NamespaceDecl *Namespc =
2614      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2615  Namespc->setLBracLoc(LBrace);
2616
2617  Scope *DeclRegionScope = NamespcScope->getParent();
2618
2619  if (II) {
2620    // C++ [namespace.def]p2:
2621    // The identifier in an original-namespace-definition shall not have been
2622    // previously defined in the declarative region in which the
2623    // original-namespace-definition appears. The identifier in an
2624    // original-namespace-definition is the name of the namespace. Subsequently
2625    // in that declarative region, it is treated as an original-namespace-name.
2626
2627    NamedDecl *PrevDecl
2628      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName, true);
2629
2630    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2631      // This is an extended namespace definition.
2632      // Attach this namespace decl to the chain of extended namespace
2633      // definitions.
2634      OrigNS->setNextNamespace(Namespc);
2635      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2636
2637      // Remove the previous declaration from the scope.
2638      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2639        IdResolver.RemoveDecl(OrigNS);
2640        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2641      }
2642    } else if (PrevDecl) {
2643      // This is an invalid name redefinition.
2644      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2645       << Namespc->getDeclName();
2646      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2647      Namespc->setInvalidDecl();
2648      // Continue on to push Namespc as current DeclContext and return it.
2649    } else if (II->isStr("std") &&
2650               CurContext->getLookupContext()->isTranslationUnit()) {
2651      // This is the first "real" definition of the namespace "std", so update
2652      // our cache of the "std" namespace to point at this definition.
2653      if (StdNamespace) {
2654        // We had already defined a dummy namespace "std". Link this new
2655        // namespace definition to the dummy namespace "std".
2656        StdNamespace->setNextNamespace(Namespc);
2657        StdNamespace->setLocation(IdentLoc);
2658        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2659      }
2660
2661      // Make our StdNamespace cache point at the first real definition of the
2662      // "std" namespace.
2663      StdNamespace = Namespc;
2664    }
2665
2666    PushOnScopeChains(Namespc, DeclRegionScope);
2667  } else {
2668    // Anonymous namespaces.
2669
2670    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2671    //   behaves as if it were replaced by
2672    //     namespace unique { /* empty body */ }
2673    //     using namespace unique;
2674    //     namespace unique { namespace-body }
2675    //   where all occurrences of 'unique' in a translation unit are
2676    //   replaced by the same identifier and this identifier differs
2677    //   from all other identifiers in the entire program.
2678
2679    // We just create the namespace with an empty name and then add an
2680    // implicit using declaration, just like the standard suggests.
2681    //
2682    // CodeGen enforces the "universally unique" aspect by giving all
2683    // declarations semantically contained within an anonymous
2684    // namespace internal linkage.
2685
2686    assert(Namespc->isAnonymousNamespace());
2687    CurContext->addDecl(Namespc);
2688
2689    UsingDirectiveDecl* UD
2690      = UsingDirectiveDecl::Create(Context, CurContext,
2691                                   /* 'using' */ LBrace,
2692                                   /* 'namespace' */ SourceLocation(),
2693                                   /* qualifier */ SourceRange(),
2694                                   /* NNS */ NULL,
2695                                   /* identifier */ SourceLocation(),
2696                                   Namespc,
2697                                   /* Ancestor */ CurContext);
2698    UD->setImplicit();
2699    CurContext->addDecl(UD);
2700  }
2701
2702  // Although we could have an invalid decl (i.e. the namespace name is a
2703  // redefinition), push it as current DeclContext and try to continue parsing.
2704  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2705  // for the namespace has the declarations that showed up in that particular
2706  // namespace definition.
2707  PushDeclContext(NamespcScope, Namespc);
2708  return DeclPtrTy::make(Namespc);
2709}
2710
2711/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2712/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2713void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2714  Decl *Dcl = D.getAs<Decl>();
2715  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2716  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2717  Namespc->setRBracLoc(RBrace);
2718  PopDeclContext();
2719}
2720
2721Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2722                                          SourceLocation UsingLoc,
2723                                          SourceLocation NamespcLoc,
2724                                          const CXXScopeSpec &SS,
2725                                          SourceLocation IdentLoc,
2726                                          IdentifierInfo *NamespcName,
2727                                          AttributeList *AttrList) {
2728  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2729  assert(NamespcName && "Invalid NamespcName.");
2730  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2731  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2732
2733  UsingDirectiveDecl *UDir = 0;
2734
2735  // Lookup namespace name.
2736  LookupResult R;
2737  LookupParsedName(R, S, &SS, NamespcName, LookupNamespaceName, false);
2738  if (R.isAmbiguous()) {
2739    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
2740    return DeclPtrTy();
2741  }
2742  if (!R.empty()) {
2743    NamedDecl *NS = R.getFoundDecl();
2744    // FIXME: Namespace aliases!
2745    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2746    // C++ [namespace.udir]p1:
2747    //   A using-directive specifies that the names in the nominated
2748    //   namespace can be used in the scope in which the
2749    //   using-directive appears after the using-directive. During
2750    //   unqualified name lookup (3.4.1), the names appear as if they
2751    //   were declared in the nearest enclosing namespace which
2752    //   contains both the using-directive and the nominated
2753    //   namespace. [Note: in this context, "contains" means "contains
2754    //   directly or indirectly". ]
2755
2756    // Find enclosing context containing both using-directive and
2757    // nominated namespace.
2758    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2759    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2760      CommonAncestor = CommonAncestor->getParent();
2761
2762    UDir = UsingDirectiveDecl::Create(Context,
2763                                      CurContext, UsingLoc,
2764                                      NamespcLoc,
2765                                      SS.getRange(),
2766                                      (NestedNameSpecifier *)SS.getScopeRep(),
2767                                      IdentLoc,
2768                                      cast<NamespaceDecl>(NS),
2769                                      CommonAncestor);
2770    PushUsingDirective(S, UDir);
2771  } else {
2772    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2773  }
2774
2775  // FIXME: We ignore attributes for now.
2776  delete AttrList;
2777  return DeclPtrTy::make(UDir);
2778}
2779
2780void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2781  // If scope has associated entity, then using directive is at namespace
2782  // or translation unit scope. We add UsingDirectiveDecls, into
2783  // it's lookup structure.
2784  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2785    Ctx->addDecl(UDir);
2786  else
2787    // Otherwise it is block-sope. using-directives will affect lookup
2788    // only to the end of scope.
2789    S->PushUsingDirective(DeclPtrTy::make(UDir));
2790}
2791
2792
2793Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2794                                            AccessSpecifier AS,
2795                                            SourceLocation UsingLoc,
2796                                            const CXXScopeSpec &SS,
2797                                            UnqualifiedId &Name,
2798                                            AttributeList *AttrList,
2799                                            bool IsTypeName) {
2800  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2801
2802  switch (Name.getKind()) {
2803  case UnqualifiedId::IK_Identifier:
2804  case UnqualifiedId::IK_OperatorFunctionId:
2805  case UnqualifiedId::IK_ConversionFunctionId:
2806    break;
2807
2808  case UnqualifiedId::IK_ConstructorName:
2809    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
2810      << SS.getRange();
2811    return DeclPtrTy();
2812
2813  case UnqualifiedId::IK_DestructorName:
2814    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
2815      << SS.getRange();
2816    return DeclPtrTy();
2817
2818  case UnqualifiedId::IK_TemplateId:
2819    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
2820      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
2821    return DeclPtrTy();
2822  }
2823
2824  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
2825  NamedDecl *UD = BuildUsingDeclaration(UsingLoc, SS,
2826                                        Name.getSourceRange().getBegin(),
2827                                        TargetName, AttrList, IsTypeName);
2828  if (UD) {
2829    PushOnScopeChains(UD, S);
2830    UD->setAccess(AS);
2831  }
2832
2833  return DeclPtrTy::make(UD);
2834}
2835
2836NamedDecl *Sema::BuildUsingDeclaration(SourceLocation UsingLoc,
2837                                       const CXXScopeSpec &SS,
2838                                       SourceLocation IdentLoc,
2839                                       DeclarationName Name,
2840                                       AttributeList *AttrList,
2841                                       bool IsTypeName) {
2842  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2843  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2844
2845  // FIXME: We ignore attributes for now.
2846  delete AttrList;
2847
2848  if (SS.isEmpty()) {
2849    Diag(IdentLoc, diag::err_using_requires_qualname);
2850    return 0;
2851  }
2852
2853  NestedNameSpecifier *NNS =
2854    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2855
2856  DeclContext *LookupContext = computeDeclContext(SS);
2857  if (!LookupContext) {
2858    return UnresolvedUsingDecl::Create(Context, CurContext, UsingLoc,
2859                                       SS.getRange(), NNS,
2860                                       IdentLoc, Name, IsTypeName);
2861  }
2862
2863  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2864    // C++0x N2914 [namespace.udecl]p3:
2865    // A using-declaration used as a member-declaration shall refer to a member
2866    // of a base class of the class being defined, shall refer to a member of an
2867    // anonymous union that is a member of a base class of the class being
2868    // defined, or shall refer to an enumerator for an enumeration type that is
2869    // a member of a base class of the class being defined.
2870
2871    CXXRecordDecl *LookupRD = dyn_cast<CXXRecordDecl>(LookupContext);
2872    if (!LookupRD || !RD->isDerivedFrom(LookupRD)) {
2873      Diag(SS.getRange().getBegin(),
2874           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2875        << NNS << RD->getDeclName();
2876      return 0;
2877    }
2878  } else {
2879    // C++0x N2914 [namespace.udecl]p8:
2880    // A using-declaration for a class member shall be a member-declaration.
2881    if (isa<CXXRecordDecl>(LookupContext)) {
2882      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2883        << SS.getRange();
2884      return 0;
2885    }
2886  }
2887
2888  // Lookup target name.
2889  LookupResult R;
2890  LookupQualifiedName(R, LookupContext, Name, LookupOrdinaryName);
2891
2892  if (R.empty()) {
2893    Diag(IdentLoc, diag::err_no_member)
2894      << Name << LookupContext << SS.getRange();
2895    return 0;
2896  }
2897
2898  // FIXME: handle ambiguity?
2899  NamedDecl *ND = R.getAsSingleDecl(Context);
2900
2901  if (IsTypeName && !isa<TypeDecl>(ND)) {
2902    Diag(IdentLoc, diag::err_using_typename_non_type);
2903    return 0;
2904  }
2905
2906  // C++0x N2914 [namespace.udecl]p6:
2907  // A using-declaration shall not name a namespace.
2908  if (isa<NamespaceDecl>(ND)) {
2909    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
2910      << SS.getRange();
2911    return 0;
2912  }
2913
2914  return UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2915                           ND->getLocation(), UsingLoc, ND, NNS, IsTypeName);
2916}
2917
2918/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2919/// is a namespace alias, returns the namespace it points to.
2920static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2921  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2922    return AD->getNamespace();
2923  return dyn_cast_or_null<NamespaceDecl>(D);
2924}
2925
2926Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2927                                             SourceLocation NamespaceLoc,
2928                                             SourceLocation AliasLoc,
2929                                             IdentifierInfo *Alias,
2930                                             const CXXScopeSpec &SS,
2931                                             SourceLocation IdentLoc,
2932                                             IdentifierInfo *Ident) {
2933
2934  // Lookup the namespace name.
2935  LookupResult R;
2936  LookupParsedName(R, S, &SS, Ident, LookupNamespaceName, false);
2937
2938  // Check if we have a previous declaration with the same name.
2939  if (NamedDecl *PrevDecl
2940        = LookupSingleName(S, Alias, LookupOrdinaryName, true)) {
2941    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2942      // We already have an alias with the same name that points to the same
2943      // namespace, so don't create a new one.
2944      if (!R.isAmbiguous() && !R.empty() &&
2945          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
2946        return DeclPtrTy();
2947    }
2948
2949    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2950      diag::err_redefinition_different_kind;
2951    Diag(AliasLoc, DiagID) << Alias;
2952    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2953    return DeclPtrTy();
2954  }
2955
2956  if (R.isAmbiguous()) {
2957    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2958    return DeclPtrTy();
2959  }
2960
2961  if (R.empty()) {
2962    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2963    return DeclPtrTy();
2964  }
2965
2966  NamespaceAliasDecl *AliasDecl =
2967    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2968                               Alias, SS.getRange(),
2969                               (NestedNameSpecifier *)SS.getScopeRep(),
2970                               IdentLoc, R.getFoundDecl());
2971
2972  CurContext->addDecl(AliasDecl);
2973  return DeclPtrTy::make(AliasDecl);
2974}
2975
2976void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2977                                            CXXConstructorDecl *Constructor) {
2978  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2979          !Constructor->isUsed()) &&
2980    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2981
2982  CXXRecordDecl *ClassDecl
2983    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2984  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2985
2986  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) {
2987    Diag(CurrentLocation, diag::note_ctor_synthesized_at)
2988      << Context.getTagDeclType(ClassDecl);
2989    Constructor->setInvalidDecl();
2990  } else {
2991    Constructor->setUsed();
2992  }
2993  return;
2994}
2995
2996void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2997                                    CXXDestructorDecl *Destructor) {
2998  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2999         "DefineImplicitDestructor - call it for implicit default dtor");
3000
3001  CXXRecordDecl *ClassDecl
3002  = cast<CXXRecordDecl>(Destructor->getDeclContext());
3003  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3004  // C++ [class.dtor] p5
3005  // Before the implicitly-declared default destructor for a class is
3006  // implicitly defined, all the implicitly-declared default destructors
3007  // for its base class and its non-static data members shall have been
3008  // implicitly defined.
3009  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3010       E = ClassDecl->bases_end(); Base != E; ++Base) {
3011    CXXRecordDecl *BaseClassDecl
3012      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3013    if (!BaseClassDecl->hasTrivialDestructor()) {
3014      if (CXXDestructorDecl *BaseDtor =
3015          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3016        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3017      else
3018        assert(false &&
3019               "DefineImplicitDestructor - missing dtor in a base class");
3020    }
3021  }
3022
3023  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3024       E = ClassDecl->field_end(); Field != E; ++Field) {
3025    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3026    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3027      FieldType = Array->getElementType();
3028    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3029      CXXRecordDecl *FieldClassDecl
3030        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3031      if (!FieldClassDecl->hasTrivialDestructor()) {
3032        if (CXXDestructorDecl *FieldDtor =
3033            const_cast<CXXDestructorDecl*>(
3034                                        FieldClassDecl->getDestructor(Context)))
3035          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3036        else
3037          assert(false &&
3038          "DefineImplicitDestructor - missing dtor in class of a data member");
3039      }
3040    }
3041  }
3042  Destructor->setUsed();
3043}
3044
3045void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3046                                          CXXMethodDecl *MethodDecl) {
3047  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3048          MethodDecl->getOverloadedOperator() == OO_Equal &&
3049          !MethodDecl->isUsed()) &&
3050         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3051
3052  CXXRecordDecl *ClassDecl
3053    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3054
3055  // C++[class.copy] p12
3056  // Before the implicitly-declared copy assignment operator for a class is
3057  // implicitly defined, all implicitly-declared copy assignment operators
3058  // for its direct base classes and its nonstatic data members shall have
3059  // been implicitly defined.
3060  bool err = false;
3061  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3062       E = ClassDecl->bases_end(); Base != E; ++Base) {
3063    CXXRecordDecl *BaseClassDecl
3064      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3065    if (CXXMethodDecl *BaseAssignOpMethod =
3066          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
3067      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3068  }
3069  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3070       E = ClassDecl->field_end(); Field != E; ++Field) {
3071    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3072    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3073      FieldType = Array->getElementType();
3074    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3075      CXXRecordDecl *FieldClassDecl
3076        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3077      if (CXXMethodDecl *FieldAssignOpMethod =
3078          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
3079        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3080    } else if (FieldType->isReferenceType()) {
3081      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3082      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3083      Diag(Field->getLocation(), diag::note_declared_at);
3084      Diag(CurrentLocation, diag::note_first_required_here);
3085      err = true;
3086    } else if (FieldType.isConstQualified()) {
3087      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3088      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3089      Diag(Field->getLocation(), diag::note_declared_at);
3090      Diag(CurrentLocation, diag::note_first_required_here);
3091      err = true;
3092    }
3093  }
3094  if (!err)
3095    MethodDecl->setUsed();
3096}
3097
3098CXXMethodDecl *
3099Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
3100                              CXXRecordDecl *ClassDecl) {
3101  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3102  QualType RHSType(LHSType);
3103  // If class's assignment operator argument is const/volatile qualified,
3104  // look for operator = (const/volatile B&). Otherwise, look for
3105  // operator = (B&).
3106  RHSType = Context.getCVRQualifiedType(RHSType,
3107                                     ParmDecl->getType().getCVRQualifiers());
3108  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3109                                                          LHSType,
3110                                                          SourceLocation()));
3111  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3112                                                          RHSType,
3113                                                          SourceLocation()));
3114  Expr *Args[2] = { &*LHS, &*RHS };
3115  OverloadCandidateSet CandidateSet;
3116  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3117                              CandidateSet);
3118  OverloadCandidateSet::iterator Best;
3119  if (BestViableFunction(CandidateSet,
3120                         ClassDecl->getLocation(), Best) == OR_Success)
3121    return cast<CXXMethodDecl>(Best->Function);
3122  assert(false &&
3123         "getAssignOperatorMethod - copy assignment operator method not found");
3124  return 0;
3125}
3126
3127void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3128                                   CXXConstructorDecl *CopyConstructor,
3129                                   unsigned TypeQuals) {
3130  assert((CopyConstructor->isImplicit() &&
3131          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
3132          !CopyConstructor->isUsed()) &&
3133         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3134
3135  CXXRecordDecl *ClassDecl
3136    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3137  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3138  // C++ [class.copy] p209
3139  // Before the implicitly-declared copy constructor for a class is
3140  // implicitly defined, all the implicitly-declared copy constructors
3141  // for its base class and its non-static data members shall have been
3142  // implicitly defined.
3143  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3144       Base != ClassDecl->bases_end(); ++Base) {
3145    CXXRecordDecl *BaseClassDecl
3146      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3147    if (CXXConstructorDecl *BaseCopyCtor =
3148        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3149      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3150  }
3151  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3152                                  FieldEnd = ClassDecl->field_end();
3153       Field != FieldEnd; ++Field) {
3154    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3155    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3156      FieldType = Array->getElementType();
3157    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3158      CXXRecordDecl *FieldClassDecl
3159        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3160      if (CXXConstructorDecl *FieldCopyCtor =
3161          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3162        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3163    }
3164  }
3165  CopyConstructor->setUsed();
3166}
3167
3168Sema::OwningExprResult
3169Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3170                            CXXConstructorDecl *Constructor,
3171                            MultiExprArg ExprArgs) {
3172  bool Elidable = false;
3173
3174  // C++ [class.copy]p15:
3175  //   Whenever a temporary class object is copied using a copy constructor, and
3176  //   this object and the copy have the same cv-unqualified type, an
3177  //   implementation is permitted to treat the original and the copy as two
3178  //   different ways of referring to the same object and not perform a copy at
3179  //   all, even if the class copy constructor or destructor have side effects.
3180
3181  // FIXME: Is this enough?
3182  if (Constructor->isCopyConstructor(Context)) {
3183    Expr *E = ((Expr **)ExprArgs.get())[0];
3184    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3185      E = BE->getSubExpr();
3186    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3187      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3188        E = ICE->getSubExpr();
3189
3190    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
3191      Elidable = true;
3192  }
3193
3194  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3195                               Elidable, move(ExprArgs));
3196}
3197
3198/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3199/// including handling of its default argument expressions.
3200Sema::OwningExprResult
3201Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3202                            CXXConstructorDecl *Constructor, bool Elidable,
3203                            MultiExprArg ExprArgs) {
3204  unsigned NumExprs = ExprArgs.size();
3205  Expr **Exprs = (Expr **)ExprArgs.release();
3206
3207  return Owned(CXXConstructExpr::Create(Context, DeclInitType, Constructor,
3208                                        Elidable, Exprs, NumExprs));
3209}
3210
3211Sema::OwningExprResult
3212Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3213                                  QualType Ty,
3214                                  SourceLocation TyBeginLoc,
3215                                  MultiExprArg Args,
3216                                  SourceLocation RParenLoc) {
3217  unsigned NumExprs = Args.size();
3218  Expr **Exprs = (Expr **)Args.release();
3219
3220  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3221                                                    TyBeginLoc, Exprs,
3222                                                    NumExprs, RParenLoc));
3223}
3224
3225
3226bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3227                                        CXXConstructorDecl *Constructor,
3228                                        MultiExprArg Exprs) {
3229  OwningExprResult TempResult =
3230    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3231                          move(Exprs));
3232  if (TempResult.isInvalid())
3233    return true;
3234
3235  Expr *Temp = TempResult.takeAs<Expr>();
3236  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3237  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
3238  VD->setInit(Context, Temp);
3239
3240  return false;
3241}
3242
3243void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3244  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3245                                  DeclInitType->getAs<RecordType>()->getDecl());
3246  if (!ClassDecl->hasTrivialDestructor())
3247    if (CXXDestructorDecl *Destructor =
3248        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3249      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3250}
3251
3252/// AddCXXDirectInitializerToDecl - This action is called immediately after
3253/// ActOnDeclarator, when a C++ direct initializer is present.
3254/// e.g: "int x(1);"
3255void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3256                                         SourceLocation LParenLoc,
3257                                         MultiExprArg Exprs,
3258                                         SourceLocation *CommaLocs,
3259                                         SourceLocation RParenLoc) {
3260  unsigned NumExprs = Exprs.size();
3261  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
3262  Decl *RealDecl = Dcl.getAs<Decl>();
3263
3264  // If there is no declaration, there was an error parsing it.  Just ignore
3265  // the initializer.
3266  if (RealDecl == 0)
3267    return;
3268
3269  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3270  if (!VDecl) {
3271    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3272    RealDecl->setInvalidDecl();
3273    return;
3274  }
3275
3276  // We will represent direct-initialization similarly to copy-initialization:
3277  //    int x(1);  -as-> int x = 1;
3278  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3279  //
3280  // Clients that want to distinguish between the two forms, can check for
3281  // direct initializer using VarDecl::hasCXXDirectInitializer().
3282  // A major benefit is that clients that don't particularly care about which
3283  // exactly form was it (like the CodeGen) can handle both cases without
3284  // special case code.
3285
3286  // If either the declaration has a dependent type or if any of the expressions
3287  // is type-dependent, we represent the initialization via a ParenListExpr for
3288  // later use during template instantiation.
3289  if (VDecl->getType()->isDependentType() ||
3290      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3291    // Let clients know that initialization was done with a direct initializer.
3292    VDecl->setCXXDirectInitializer(true);
3293
3294    // Store the initialization expressions as a ParenListExpr.
3295    unsigned NumExprs = Exprs.size();
3296    VDecl->setInit(Context,
3297                   new (Context) ParenListExpr(Context, LParenLoc,
3298                                               (Expr **)Exprs.release(),
3299                                               NumExprs, RParenLoc));
3300    return;
3301  }
3302
3303
3304  // C++ 8.5p11:
3305  // The form of initialization (using parentheses or '=') is generally
3306  // insignificant, but does matter when the entity being initialized has a
3307  // class type.
3308  QualType DeclInitType = VDecl->getType();
3309  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3310    DeclInitType = Context.getBaseElementType(Array);
3311
3312  // FIXME: This isn't the right place to complete the type.
3313  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3314                          diag::err_typecheck_decl_incomplete_type)) {
3315    VDecl->setInvalidDecl();
3316    return;
3317  }
3318
3319  if (VDecl->getType()->isRecordType()) {
3320    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3321
3322    CXXConstructorDecl *Constructor
3323      = PerformInitializationByConstructor(DeclInitType,
3324                                           move(Exprs),
3325                                           VDecl->getLocation(),
3326                                           SourceRange(VDecl->getLocation(),
3327                                                       RParenLoc),
3328                                           VDecl->getDeclName(),
3329                                           IK_Direct,
3330                                           ConstructorArgs);
3331    if (!Constructor)
3332      RealDecl->setInvalidDecl();
3333    else {
3334      VDecl->setCXXDirectInitializer(true);
3335      if (InitializeVarWithConstructor(VDecl, Constructor,
3336                                       move_arg(ConstructorArgs)))
3337        RealDecl->setInvalidDecl();
3338      FinalizeVarWithDestructor(VDecl, DeclInitType);
3339    }
3340    return;
3341  }
3342
3343  if (NumExprs > 1) {
3344    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
3345      << SourceRange(VDecl->getLocation(), RParenLoc);
3346    RealDecl->setInvalidDecl();
3347    return;
3348  }
3349
3350  // Let clients know that initialization was done with a direct initializer.
3351  VDecl->setCXXDirectInitializer(true);
3352
3353  assert(NumExprs == 1 && "Expected 1 expression");
3354  // Set the init expression, handles conversions.
3355  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
3356                       /*DirectInit=*/true);
3357}
3358
3359/// \brief Add the applicable constructor candidates for an initialization
3360/// by constructor.
3361static void AddConstructorInitializationCandidates(Sema &SemaRef,
3362                                                   QualType ClassType,
3363                                                   Expr **Args,
3364                                                   unsigned NumArgs,
3365                                                  Sema::InitializationKind Kind,
3366                                           OverloadCandidateSet &CandidateSet) {
3367  // C++ [dcl.init]p14:
3368  //   If the initialization is direct-initialization, or if it is
3369  //   copy-initialization where the cv-unqualified version of the
3370  //   source type is the same class as, or a derived class of, the
3371  //   class of the destination, constructors are considered. The
3372  //   applicable constructors are enumerated (13.3.1.3), and the
3373  //   best one is chosen through overload resolution (13.3). The
3374  //   constructor so selected is called to initialize the object,
3375  //   with the initializer expression(s) as its argument(s). If no
3376  //   constructor applies, or the overload resolution is ambiguous,
3377  //   the initialization is ill-formed.
3378  const RecordType *ClassRec = ClassType->getAs<RecordType>();
3379  assert(ClassRec && "Can only initialize a class type here");
3380
3381  // FIXME: When we decide not to synthesize the implicitly-declared
3382  // constructors, we'll need to make them appear here.
3383
3384  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
3385  DeclarationName ConstructorName
3386    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
3387              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
3388  DeclContext::lookup_const_iterator Con, ConEnd;
3389  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
3390       Con != ConEnd; ++Con) {
3391    // Find the constructor (which may be a template).
3392    CXXConstructorDecl *Constructor = 0;
3393    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
3394    if (ConstructorTmpl)
3395      Constructor
3396      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3397    else
3398      Constructor = cast<CXXConstructorDecl>(*Con);
3399
3400    if ((Kind == Sema::IK_Direct) ||
3401        (Kind == Sema::IK_Copy &&
3402         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
3403        (Kind == Sema::IK_Default && Constructor->isDefaultConstructor())) {
3404      if (ConstructorTmpl)
3405        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0,
3406                                             Args, NumArgs, CandidateSet);
3407      else
3408        SemaRef.AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
3409    }
3410  }
3411}
3412
3413/// \brief Attempt to perform initialization by constructor
3414/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
3415/// copy-initialization.
3416///
3417/// This routine determines whether initialization by constructor is possible,
3418/// but it does not emit any diagnostics in the case where the initialization
3419/// is ill-formed.
3420///
3421/// \param ClassType the type of the object being initialized, which must have
3422/// class type.
3423///
3424/// \param Args the arguments provided to initialize the object
3425///
3426/// \param NumArgs the number of arguments provided to initialize the object
3427///
3428/// \param Kind the type of initialization being performed
3429///
3430/// \returns the constructor used to initialize the object, if successful.
3431/// Otherwise, emits a diagnostic and returns NULL.
3432CXXConstructorDecl *
3433Sema::TryInitializationByConstructor(QualType ClassType,
3434                                     Expr **Args, unsigned NumArgs,
3435                                     SourceLocation Loc,
3436                                     InitializationKind Kind) {
3437  // Build the overload candidate set
3438  OverloadCandidateSet CandidateSet;
3439  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
3440                                         CandidateSet);
3441
3442  // Determine whether we found a constructor we can use.
3443  OverloadCandidateSet::iterator Best;
3444  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3445    case OR_Success:
3446    case OR_Deleted:
3447      // We found a constructor. Return it.
3448      return cast<CXXConstructorDecl>(Best->Function);
3449
3450    case OR_No_Viable_Function:
3451    case OR_Ambiguous:
3452      // Overload resolution failed. Return nothing.
3453      return 0;
3454  }
3455
3456  // Silence GCC warning
3457  return 0;
3458}
3459
3460/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
3461/// may occur as part of direct-initialization or copy-initialization.
3462///
3463/// \param ClassType the type of the object being initialized, which must have
3464/// class type.
3465///
3466/// \param ArgsPtr the arguments provided to initialize the object
3467///
3468/// \param Loc the source location where the initialization occurs
3469///
3470/// \param Range the source range that covers the entire initialization
3471///
3472/// \param InitEntity the name of the entity being initialized, if known
3473///
3474/// \param Kind the type of initialization being performed
3475///
3476/// \param ConvertedArgs a vector that will be filled in with the
3477/// appropriately-converted arguments to the constructor (if initialization
3478/// succeeded).
3479///
3480/// \returns the constructor used to initialize the object, if successful.
3481/// Otherwise, emits a diagnostic and returns NULL.
3482CXXConstructorDecl *
3483Sema::PerformInitializationByConstructor(QualType ClassType,
3484                                         MultiExprArg ArgsPtr,
3485                                         SourceLocation Loc, SourceRange Range,
3486                                         DeclarationName InitEntity,
3487                                         InitializationKind Kind,
3488                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3489
3490  // Build the overload candidate set
3491  Expr **Args = (Expr **)ArgsPtr.get();
3492  unsigned NumArgs = ArgsPtr.size();
3493  OverloadCandidateSet CandidateSet;
3494  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
3495                                         CandidateSet);
3496
3497  OverloadCandidateSet::iterator Best;
3498  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3499  case OR_Success:
3500    // We found a constructor. Break out so that we can convert the arguments
3501    // appropriately.
3502    break;
3503
3504  case OR_No_Viable_Function:
3505    if (InitEntity)
3506      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3507        << InitEntity << Range;
3508    else
3509      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3510        << ClassType << Range;
3511    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3512    return 0;
3513
3514  case OR_Ambiguous:
3515    if (InitEntity)
3516      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
3517    else
3518      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
3519    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3520    return 0;
3521
3522  case OR_Deleted:
3523    if (InitEntity)
3524      Diag(Loc, diag::err_ovl_deleted_init)
3525        << Best->Function->isDeleted()
3526        << InitEntity << Range;
3527    else
3528      Diag(Loc, diag::err_ovl_deleted_init)
3529        << Best->Function->isDeleted()
3530        << InitEntity << Range;
3531    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3532    return 0;
3533  }
3534
3535  // Convert the arguments, fill in default arguments, etc.
3536  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3537  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
3538    return 0;
3539
3540  return Constructor;
3541}
3542
3543/// \brief Given a constructor and the set of arguments provided for the
3544/// constructor, convert the arguments and add any required default arguments
3545/// to form a proper call to this constructor.
3546///
3547/// \returns true if an error occurred, false otherwise.
3548bool
3549Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
3550                              MultiExprArg ArgsPtr,
3551                              SourceLocation Loc,
3552                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3553  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
3554  unsigned NumArgs = ArgsPtr.size();
3555  Expr **Args = (Expr **)ArgsPtr.get();
3556
3557  const FunctionProtoType *Proto
3558    = Constructor->getType()->getAs<FunctionProtoType>();
3559  assert(Proto && "Constructor without a prototype?");
3560  unsigned NumArgsInProto = Proto->getNumArgs();
3561  unsigned NumArgsToCheck = NumArgs;
3562
3563  // If too few arguments are available, we'll fill in the rest with defaults.
3564  if (NumArgs < NumArgsInProto) {
3565    NumArgsToCheck = NumArgsInProto;
3566    ConvertedArgs.reserve(NumArgsInProto);
3567  } else {
3568    ConvertedArgs.reserve(NumArgs);
3569    if (NumArgs > NumArgsInProto)
3570      NumArgsToCheck = NumArgsInProto;
3571  }
3572
3573  // Convert arguments
3574  for (unsigned i = 0; i != NumArgsToCheck; i++) {
3575    QualType ProtoArgType = Proto->getArgType(i);
3576
3577    Expr *Arg;
3578    if (i < NumArgs) {
3579      Arg = Args[i];
3580
3581      // Pass the argument.
3582      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3583        return true;
3584
3585      Args[i] = 0;
3586    } else {
3587      ParmVarDecl *Param = Constructor->getParamDecl(i);
3588
3589      OwningExprResult DefArg = BuildCXXDefaultArgExpr(Loc, Constructor, Param);
3590      if (DefArg.isInvalid())
3591        return true;
3592
3593      Arg = DefArg.takeAs<Expr>();
3594    }
3595
3596    ConvertedArgs.push_back(Arg);
3597  }
3598
3599  // If this is a variadic call, handle args passed through "...".
3600  if (Proto->isVariadic()) {
3601    // Promote the arguments (C99 6.5.2.2p7).
3602    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3603      Expr *Arg = Args[i];
3604      if (DefaultVariadicArgumentPromotion(Arg, VariadicConstructor))
3605        return true;
3606
3607      ConvertedArgs.push_back(Arg);
3608      Args[i] = 0;
3609    }
3610  }
3611
3612  return false;
3613}
3614
3615/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3616/// determine whether they are reference-related,
3617/// reference-compatible, reference-compatible with added
3618/// qualification, or incompatible, for use in C++ initialization by
3619/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3620/// type, and the first type (T1) is the pointee type of the reference
3621/// type being initialized.
3622Sema::ReferenceCompareResult
3623Sema::CompareReferenceRelationship(SourceLocation Loc,
3624                                   QualType OrigT1, QualType OrigT2,
3625                                   bool& DerivedToBase) {
3626  assert(!OrigT1->isReferenceType() &&
3627    "T1 must be the pointee type of the reference type");
3628  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3629
3630  QualType T1 = Context.getCanonicalType(OrigT1);
3631  QualType T2 = Context.getCanonicalType(OrigT2);
3632  QualType UnqualT1 = T1.getUnqualifiedType();
3633  QualType UnqualT2 = T2.getUnqualifiedType();
3634
3635  // C++ [dcl.init.ref]p4:
3636  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3637  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3638  //   T1 is a base class of T2.
3639  if (UnqualT1 == UnqualT2)
3640    DerivedToBase = false;
3641  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
3642           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
3643           IsDerivedFrom(UnqualT2, UnqualT1))
3644    DerivedToBase = true;
3645  else
3646    return Ref_Incompatible;
3647
3648  // At this point, we know that T1 and T2 are reference-related (at
3649  // least).
3650
3651  // C++ [dcl.init.ref]p4:
3652  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3653  //   reference-related to T2 and cv1 is the same cv-qualification
3654  //   as, or greater cv-qualification than, cv2. For purposes of
3655  //   overload resolution, cases for which cv1 is greater
3656  //   cv-qualification than cv2 are identified as
3657  //   reference-compatible with added qualification (see 13.3.3.2).
3658  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3659    return Ref_Compatible;
3660  else if (T1.isMoreQualifiedThan(T2))
3661    return Ref_Compatible_With_Added_Qualification;
3662  else
3663    return Ref_Related;
3664}
3665
3666/// CheckReferenceInit - Check the initialization of a reference
3667/// variable with the given initializer (C++ [dcl.init.ref]). Init is
3668/// the initializer (either a simple initializer or an initializer
3669/// list), and DeclType is the type of the declaration. When ICS is
3670/// non-null, this routine will compute the implicit conversion
3671/// sequence according to C++ [over.ics.ref] and will not produce any
3672/// diagnostics; when ICS is null, it will emit diagnostics when any
3673/// errors are found. Either way, a return value of true indicates
3674/// that there was a failure, a return value of false indicates that
3675/// the reference initialization succeeded.
3676///
3677/// When @p SuppressUserConversions, user-defined conversions are
3678/// suppressed.
3679/// When @p AllowExplicit, we also permit explicit user-defined
3680/// conversion functions.
3681/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
3682/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
3683/// This is used when this is called from a C-style cast.
3684bool
3685Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
3686                         SourceLocation DeclLoc,
3687                         bool SuppressUserConversions,
3688                         bool AllowExplicit, bool ForceRValue,
3689                         ImplicitConversionSequence *ICS,
3690                         bool IgnoreBaseAccess) {
3691  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3692
3693  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3694  QualType T2 = Init->getType();
3695
3696  // If the initializer is the address of an overloaded function, try
3697  // to resolve the overloaded function. If all goes well, T2 is the
3698  // type of the resulting function.
3699  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
3700    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
3701                                                          ICS != 0);
3702    if (Fn) {
3703      // Since we're performing this reference-initialization for
3704      // real, update the initializer with the resulting function.
3705      if (!ICS) {
3706        if (DiagnoseUseOfDecl(Fn, DeclLoc))
3707          return true;
3708
3709        Init = FixOverloadedFunctionReference(Init, Fn);
3710      }
3711
3712      T2 = Fn->getType();
3713    }
3714  }
3715
3716  // Compute some basic properties of the types and the initializer.
3717  bool isRValRef = DeclType->isRValueReferenceType();
3718  bool DerivedToBase = false;
3719  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
3720                                                  Init->isLvalue(Context);
3721  ReferenceCompareResult RefRelationship
3722    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
3723
3724  // Most paths end in a failed conversion.
3725  if (ICS)
3726    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
3727
3728  // C++ [dcl.init.ref]p5:
3729  //   A reference to type "cv1 T1" is initialized by an expression
3730  //   of type "cv2 T2" as follows:
3731
3732  //     -- If the initializer expression
3733
3734  // Rvalue references cannot bind to lvalues (N2812).
3735  // There is absolutely no situation where they can. In particular, note that
3736  // this is ill-formed, even if B has a user-defined conversion to A&&:
3737  //   B b;
3738  //   A&& r = b;
3739  if (isRValRef && InitLvalue == Expr::LV_Valid) {
3740    if (!ICS)
3741      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3742        << Init->getSourceRange();
3743    return true;
3744  }
3745
3746  bool BindsDirectly = false;
3747  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3748  //          reference-compatible with "cv2 T2," or
3749  //
3750  // Note that the bit-field check is skipped if we are just computing
3751  // the implicit conversion sequence (C++ [over.best.ics]p2).
3752  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
3753      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3754    BindsDirectly = true;
3755
3756    if (ICS) {
3757      // C++ [over.ics.ref]p1:
3758      //   When a parameter of reference type binds directly (8.5.3)
3759      //   to an argument expression, the implicit conversion sequence
3760      //   is the identity conversion, unless the argument expression
3761      //   has a type that is a derived class of the parameter type,
3762      //   in which case the implicit conversion sequence is a
3763      //   derived-to-base Conversion (13.3.3.1).
3764      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3765      ICS->Standard.First = ICK_Identity;
3766      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3767      ICS->Standard.Third = ICK_Identity;
3768      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3769      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3770      ICS->Standard.ReferenceBinding = true;
3771      ICS->Standard.DirectBinding = true;
3772      ICS->Standard.RRefBinding = false;
3773      ICS->Standard.CopyConstructor = 0;
3774
3775      // Nothing more to do: the inaccessibility/ambiguity check for
3776      // derived-to-base conversions is suppressed when we're
3777      // computing the implicit conversion sequence (C++
3778      // [over.best.ics]p2).
3779      return false;
3780    } else {
3781      // Perform the conversion.
3782      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3783      if (DerivedToBase)
3784        CK = CastExpr::CK_DerivedToBase;
3785      else if(CheckExceptionSpecCompatibility(Init, T1))
3786        return true;
3787      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
3788    }
3789  }
3790
3791  //       -- has a class type (i.e., T2 is a class type) and can be
3792  //          implicitly converted to an lvalue of type "cv3 T3,"
3793  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3794  //          92) (this conversion is selected by enumerating the
3795  //          applicable conversion functions (13.3.1.6) and choosing
3796  //          the best one through overload resolution (13.3)),
3797  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3798      !RequireCompleteType(DeclLoc, T2, 0)) {
3799    CXXRecordDecl *T2RecordDecl
3800      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3801
3802    OverloadCandidateSet CandidateSet;
3803    OverloadedFunctionDecl *Conversions
3804      = T2RecordDecl->getVisibleConversionFunctions();
3805    for (OverloadedFunctionDecl::function_iterator Func
3806           = Conversions->function_begin();
3807         Func != Conversions->function_end(); ++Func) {
3808      FunctionTemplateDecl *ConvTemplate
3809        = dyn_cast<FunctionTemplateDecl>(*Func);
3810      CXXConversionDecl *Conv;
3811      if (ConvTemplate)
3812        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3813      else
3814        Conv = cast<CXXConversionDecl>(*Func);
3815
3816      // If the conversion function doesn't return a reference type,
3817      // it can't be considered for this conversion.
3818      if (Conv->getConversionType()->isLValueReferenceType() &&
3819          (AllowExplicit || !Conv->isExplicit())) {
3820        if (ConvTemplate)
3821          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3822                                         CandidateSet);
3823        else
3824          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3825      }
3826    }
3827
3828    OverloadCandidateSet::iterator Best;
3829    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
3830    case OR_Success:
3831      // This is a direct binding.
3832      BindsDirectly = true;
3833
3834      if (ICS) {
3835        // C++ [over.ics.ref]p1:
3836        //
3837        //   [...] If the parameter binds directly to the result of
3838        //   applying a conversion function to the argument
3839        //   expression, the implicit conversion sequence is a
3840        //   user-defined conversion sequence (13.3.3.1.2), with the
3841        //   second standard conversion sequence either an identity
3842        //   conversion or, if the conversion function returns an
3843        //   entity of a type that is a derived class of the parameter
3844        //   type, a derived-to-base Conversion.
3845        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3846        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3847        ICS->UserDefined.After = Best->FinalConversion;
3848        ICS->UserDefined.ConversionFunction = Best->Function;
3849        ICS->UserDefined.EllipsisConversion = false;
3850        assert(ICS->UserDefined.After.ReferenceBinding &&
3851               ICS->UserDefined.After.DirectBinding &&
3852               "Expected a direct reference binding!");
3853        return false;
3854      } else {
3855        OwningExprResult InitConversion =
3856          BuildCXXCastArgument(DeclLoc, QualType(),
3857                               CastExpr::CK_UserDefinedConversion,
3858                               cast<CXXMethodDecl>(Best->Function),
3859                               Owned(Init));
3860        Init = InitConversion.takeAs<Expr>();
3861
3862        if (CheckExceptionSpecCompatibility(Init, T1))
3863          return true;
3864        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
3865                          /*isLvalue=*/true);
3866      }
3867      break;
3868
3869    case OR_Ambiguous:
3870      if (ICS) {
3871        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3872             Cand != CandidateSet.end(); ++Cand)
3873          if (Cand->Viable)
3874            ICS->ConversionFunctionSet.push_back(Cand->Function);
3875        break;
3876      }
3877      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
3878            << Init->getSourceRange();
3879      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3880      return true;
3881
3882    case OR_No_Viable_Function:
3883    case OR_Deleted:
3884      // There was no suitable conversion, or we found a deleted
3885      // conversion; continue with other checks.
3886      break;
3887    }
3888  }
3889
3890  if (BindsDirectly) {
3891    // C++ [dcl.init.ref]p4:
3892    //   [...] In all cases where the reference-related or
3893    //   reference-compatible relationship of two types is used to
3894    //   establish the validity of a reference binding, and T1 is a
3895    //   base class of T2, a program that necessitates such a binding
3896    //   is ill-formed if T1 is an inaccessible (clause 11) or
3897    //   ambiguous (10.2) base class of T2.
3898    //
3899    // Note that we only check this condition when we're allowed to
3900    // complain about errors, because we should not be checking for
3901    // ambiguity (or inaccessibility) unless the reference binding
3902    // actually happens.
3903    if (DerivedToBase)
3904      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
3905                                          Init->getSourceRange(),
3906                                          IgnoreBaseAccess);
3907    else
3908      return false;
3909  }
3910
3911  //     -- Otherwise, the reference shall be to a non-volatile const
3912  //        type (i.e., cv1 shall be const), or the reference shall be an
3913  //        rvalue reference and the initializer expression shall be an rvalue.
3914  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
3915    if (!ICS)
3916      Diag(DeclLoc, diag::err_not_reference_to_const_init)
3917        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3918        << T2 << Init->getSourceRange();
3919    return true;
3920  }
3921
3922  //       -- If the initializer expression is an rvalue, with T2 a
3923  //          class type, and "cv1 T1" is reference-compatible with
3924  //          "cv2 T2," the reference is bound in one of the
3925  //          following ways (the choice is implementation-defined):
3926  //
3927  //          -- The reference is bound to the object represented by
3928  //             the rvalue (see 3.10) or to a sub-object within that
3929  //             object.
3930  //
3931  //          -- A temporary of type "cv1 T2" [sic] is created, and
3932  //             a constructor is called to copy the entire rvalue
3933  //             object into the temporary. The reference is bound to
3934  //             the temporary or to a sub-object within the
3935  //             temporary.
3936  //
3937  //          The constructor that would be used to make the copy
3938  //          shall be callable whether or not the copy is actually
3939  //          done.
3940  //
3941  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
3942  // freedom, so we will always take the first option and never build
3943  // a temporary in this case. FIXME: We will, however, have to check
3944  // for the presence of a copy constructor in C++98/03 mode.
3945  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
3946      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3947    if (ICS) {
3948      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3949      ICS->Standard.First = ICK_Identity;
3950      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3951      ICS->Standard.Third = ICK_Identity;
3952      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3953      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3954      ICS->Standard.ReferenceBinding = true;
3955      ICS->Standard.DirectBinding = false;
3956      ICS->Standard.RRefBinding = isRValRef;
3957      ICS->Standard.CopyConstructor = 0;
3958    } else {
3959      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3960      if (DerivedToBase)
3961        CK = CastExpr::CK_DerivedToBase;
3962      else if(CheckExceptionSpecCompatibility(Init, T1))
3963        return true;
3964      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
3965    }
3966    return false;
3967  }
3968
3969  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3970  //          initialized from the initializer expression using the
3971  //          rules for a non-reference copy initialization (8.5). The
3972  //          reference is then bound to the temporary. If T1 is
3973  //          reference-related to T2, cv1 must be the same
3974  //          cv-qualification as, or greater cv-qualification than,
3975  //          cv2; otherwise, the program is ill-formed.
3976  if (RefRelationship == Ref_Related) {
3977    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3978    // we would be reference-compatible or reference-compatible with
3979    // added qualification. But that wasn't the case, so the reference
3980    // initialization fails.
3981    if (!ICS)
3982      Diag(DeclLoc, diag::err_reference_init_drops_quals)
3983        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3984        << T2 << Init->getSourceRange();
3985    return true;
3986  }
3987
3988  // If at least one of the types is a class type, the types are not
3989  // related, and we aren't allowed any user conversions, the
3990  // reference binding fails. This case is important for breaking
3991  // recursion, since TryImplicitConversion below will attempt to
3992  // create a temporary through the use of a copy constructor.
3993  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
3994      (T1->isRecordType() || T2->isRecordType())) {
3995    if (!ICS)
3996      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
3997        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
3998    return true;
3999  }
4000
4001  // Actually try to convert the initializer to T1.
4002  if (ICS) {
4003    // C++ [over.ics.ref]p2:
4004    //
4005    //   When a parameter of reference type is not bound directly to
4006    //   an argument expression, the conversion sequence is the one
4007    //   required to convert the argument expression to the
4008    //   underlying type of the reference according to
4009    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4010    //   to copy-initializing a temporary of the underlying type with
4011    //   the argument expression. Any difference in top-level
4012    //   cv-qualification is subsumed by the initialization itself
4013    //   and does not constitute a conversion.
4014    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4015                                 /*AllowExplicit=*/false,
4016                                 /*ForceRValue=*/false,
4017                                 /*InOverloadResolution=*/false);
4018
4019    // Of course, that's still a reference binding.
4020    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
4021      ICS->Standard.ReferenceBinding = true;
4022      ICS->Standard.RRefBinding = isRValRef;
4023    } else if (ICS->ConversionKind ==
4024              ImplicitConversionSequence::UserDefinedConversion) {
4025      ICS->UserDefined.After.ReferenceBinding = true;
4026      ICS->UserDefined.After.RRefBinding = isRValRef;
4027    }
4028    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
4029  } else {
4030    ImplicitConversionSequence Conversions;
4031    bool badConversion = PerformImplicitConversion(Init, T1, "initializing",
4032                                                   false, false,
4033                                                   Conversions);
4034    if (badConversion) {
4035      if ((Conversions.ConversionKind  ==
4036            ImplicitConversionSequence::BadConversion)
4037          && !Conversions.ConversionFunctionSet.empty()) {
4038        Diag(DeclLoc,
4039             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4040        for (int j = Conversions.ConversionFunctionSet.size()-1;
4041             j >= 0; j--) {
4042          FunctionDecl *Func = Conversions.ConversionFunctionSet[j];
4043          Diag(Func->getLocation(), diag::err_ovl_candidate);
4044        }
4045      }
4046      else {
4047        if (isRValRef)
4048          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4049            << Init->getSourceRange();
4050        else
4051          Diag(DeclLoc, diag::err_invalid_initialization)
4052            << DeclType << Init->getType() << Init->getSourceRange();
4053      }
4054    }
4055    return badConversion;
4056  }
4057}
4058
4059/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4060/// of this overloaded operator is well-formed. If so, returns false;
4061/// otherwise, emits appropriate diagnostics and returns true.
4062bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4063  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4064         "Expected an overloaded operator declaration");
4065
4066  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4067
4068  // C++ [over.oper]p5:
4069  //   The allocation and deallocation functions, operator new,
4070  //   operator new[], operator delete and operator delete[], are
4071  //   described completely in 3.7.3. The attributes and restrictions
4072  //   found in the rest of this subclause do not apply to them unless
4073  //   explicitly stated in 3.7.3.
4074  // FIXME: Write a separate routine for checking this. For now, just allow it.
4075  if (Op == OO_Delete || Op == OO_Array_Delete)
4076    return false;
4077
4078  if (Op == OO_New || Op == OO_Array_New) {
4079    bool ret = false;
4080    if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
4081      QualType SizeTy = Context.getCanonicalType(Context.getSizeType());
4082      QualType T = Context.getCanonicalType((*Param)->getType());
4083      if (!T->isDependentType() && SizeTy != T) {
4084        Diag(FnDecl->getLocation(),
4085             diag::err_operator_new_param_type) << FnDecl->getDeclName()
4086              << SizeTy;
4087        ret = true;
4088      }
4089    }
4090    QualType ResultTy = Context.getCanonicalType(FnDecl->getResultType());
4091    if (!ResultTy->isDependentType() && ResultTy != Context.VoidPtrTy)
4092      return Diag(FnDecl->getLocation(),
4093                  diag::err_operator_new_result_type) << FnDecl->getDeclName()
4094                  << static_cast<QualType>(Context.VoidPtrTy);
4095    return ret;
4096  }
4097
4098  // C++ [over.oper]p6:
4099  //   An operator function shall either be a non-static member
4100  //   function or be a non-member function and have at least one
4101  //   parameter whose type is a class, a reference to a class, an
4102  //   enumeration, or a reference to an enumeration.
4103  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4104    if (MethodDecl->isStatic())
4105      return Diag(FnDecl->getLocation(),
4106                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4107  } else {
4108    bool ClassOrEnumParam = false;
4109    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4110                                   ParamEnd = FnDecl->param_end();
4111         Param != ParamEnd; ++Param) {
4112      QualType ParamType = (*Param)->getType().getNonReferenceType();
4113      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4114          ParamType->isEnumeralType()) {
4115        ClassOrEnumParam = true;
4116        break;
4117      }
4118    }
4119
4120    if (!ClassOrEnumParam)
4121      return Diag(FnDecl->getLocation(),
4122                  diag::err_operator_overload_needs_class_or_enum)
4123        << FnDecl->getDeclName();
4124  }
4125
4126  // C++ [over.oper]p8:
4127  //   An operator function cannot have default arguments (8.3.6),
4128  //   except where explicitly stated below.
4129  //
4130  // Only the function-call operator allows default arguments
4131  // (C++ [over.call]p1).
4132  if (Op != OO_Call) {
4133    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4134         Param != FnDecl->param_end(); ++Param) {
4135      if ((*Param)->hasUnparsedDefaultArg())
4136        return Diag((*Param)->getLocation(),
4137                    diag::err_operator_overload_default_arg)
4138          << FnDecl->getDeclName();
4139      else if (Expr *DefArg = (*Param)->getDefaultArg())
4140        return Diag((*Param)->getLocation(),
4141                    diag::err_operator_overload_default_arg)
4142          << FnDecl->getDeclName() << DefArg->getSourceRange();
4143    }
4144  }
4145
4146  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4147    { false, false, false }
4148#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4149    , { Unary, Binary, MemberOnly }
4150#include "clang/Basic/OperatorKinds.def"
4151  };
4152
4153  bool CanBeUnaryOperator = OperatorUses[Op][0];
4154  bool CanBeBinaryOperator = OperatorUses[Op][1];
4155  bool MustBeMemberOperator = OperatorUses[Op][2];
4156
4157  // C++ [over.oper]p8:
4158  //   [...] Operator functions cannot have more or fewer parameters
4159  //   than the number required for the corresponding operator, as
4160  //   described in the rest of this subclause.
4161  unsigned NumParams = FnDecl->getNumParams()
4162                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4163  if (Op != OO_Call &&
4164      ((NumParams == 1 && !CanBeUnaryOperator) ||
4165       (NumParams == 2 && !CanBeBinaryOperator) ||
4166       (NumParams < 1) || (NumParams > 2))) {
4167    // We have the wrong number of parameters.
4168    unsigned ErrorKind;
4169    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4170      ErrorKind = 2;  // 2 -> unary or binary.
4171    } else if (CanBeUnaryOperator) {
4172      ErrorKind = 0;  // 0 -> unary
4173    } else {
4174      assert(CanBeBinaryOperator &&
4175             "All non-call overloaded operators are unary or binary!");
4176      ErrorKind = 1;  // 1 -> binary
4177    }
4178
4179    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4180      << FnDecl->getDeclName() << NumParams << ErrorKind;
4181  }
4182
4183  // Overloaded operators other than operator() cannot be variadic.
4184  if (Op != OO_Call &&
4185      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4186    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4187      << FnDecl->getDeclName();
4188  }
4189
4190  // Some operators must be non-static member functions.
4191  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4192    return Diag(FnDecl->getLocation(),
4193                diag::err_operator_overload_must_be_member)
4194      << FnDecl->getDeclName();
4195  }
4196
4197  // C++ [over.inc]p1:
4198  //   The user-defined function called operator++ implements the
4199  //   prefix and postfix ++ operator. If this function is a member
4200  //   function with no parameters, or a non-member function with one
4201  //   parameter of class or enumeration type, it defines the prefix
4202  //   increment operator ++ for objects of that type. If the function
4203  //   is a member function with one parameter (which shall be of type
4204  //   int) or a non-member function with two parameters (the second
4205  //   of which shall be of type int), it defines the postfix
4206  //   increment operator ++ for objects of that type.
4207  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4208    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4209    bool ParamIsInt = false;
4210    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4211      ParamIsInt = BT->getKind() == BuiltinType::Int;
4212
4213    if (!ParamIsInt)
4214      return Diag(LastParam->getLocation(),
4215                  diag::err_operator_overload_post_incdec_must_be_int)
4216        << LastParam->getType() << (Op == OO_MinusMinus);
4217  }
4218
4219  // Notify the class if it got an assignment operator.
4220  if (Op == OO_Equal) {
4221    // Would have returned earlier otherwise.
4222    assert(isa<CXXMethodDecl>(FnDecl) &&
4223      "Overloaded = not member, but not filtered.");
4224    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4225    Method->getParent()->addedAssignmentOperator(Context, Method);
4226  }
4227
4228  return false;
4229}
4230
4231/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4232/// linkage specification, including the language and (if present)
4233/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4234/// the location of the language string literal, which is provided
4235/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4236/// the '{' brace. Otherwise, this linkage specification does not
4237/// have any braces.
4238Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4239                                                     SourceLocation ExternLoc,
4240                                                     SourceLocation LangLoc,
4241                                                     const char *Lang,
4242                                                     unsigned StrSize,
4243                                                     SourceLocation LBraceLoc) {
4244  LinkageSpecDecl::LanguageIDs Language;
4245  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4246    Language = LinkageSpecDecl::lang_c;
4247  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4248    Language = LinkageSpecDecl::lang_cxx;
4249  else {
4250    Diag(LangLoc, diag::err_bad_language);
4251    return DeclPtrTy();
4252  }
4253
4254  // FIXME: Add all the various semantics of linkage specifications
4255
4256  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4257                                               LangLoc, Language,
4258                                               LBraceLoc.isValid());
4259  CurContext->addDecl(D);
4260  PushDeclContext(S, D);
4261  return DeclPtrTy::make(D);
4262}
4263
4264/// ActOnFinishLinkageSpecification - Completely the definition of
4265/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4266/// valid, it's the position of the closing '}' brace in a linkage
4267/// specification that uses braces.
4268Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4269                                                      DeclPtrTy LinkageSpec,
4270                                                      SourceLocation RBraceLoc) {
4271  if (LinkageSpec)
4272    PopDeclContext();
4273  return LinkageSpec;
4274}
4275
4276/// \brief Perform semantic analysis for the variable declaration that
4277/// occurs within a C++ catch clause, returning the newly-created
4278/// variable.
4279VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4280                                         DeclaratorInfo *DInfo,
4281                                         IdentifierInfo *Name,
4282                                         SourceLocation Loc,
4283                                         SourceRange Range) {
4284  bool Invalid = false;
4285
4286  // Arrays and functions decay.
4287  if (ExDeclType->isArrayType())
4288    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4289  else if (ExDeclType->isFunctionType())
4290    ExDeclType = Context.getPointerType(ExDeclType);
4291
4292  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4293  // The exception-declaration shall not denote a pointer or reference to an
4294  // incomplete type, other than [cv] void*.
4295  // N2844 forbids rvalue references.
4296  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4297    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4298    Invalid = true;
4299  }
4300
4301  QualType BaseType = ExDeclType;
4302  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4303  unsigned DK = diag::err_catch_incomplete;
4304  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4305    BaseType = Ptr->getPointeeType();
4306    Mode = 1;
4307    DK = diag::err_catch_incomplete_ptr;
4308  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4309    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4310    BaseType = Ref->getPointeeType();
4311    Mode = 2;
4312    DK = diag::err_catch_incomplete_ref;
4313  }
4314  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4315      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
4316    Invalid = true;
4317
4318  if (!Invalid && !ExDeclType->isDependentType() &&
4319      RequireNonAbstractType(Loc, ExDeclType,
4320                             diag::err_abstract_type_in_decl,
4321                             AbstractVariableType))
4322    Invalid = true;
4323
4324  // FIXME: Need to test for ability to copy-construct and destroy the
4325  // exception variable.
4326
4327  // FIXME: Need to check for abstract classes.
4328
4329  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4330                                    Name, ExDeclType, DInfo, VarDecl::None);
4331
4332  if (Invalid)
4333    ExDecl->setInvalidDecl();
4334
4335  return ExDecl;
4336}
4337
4338/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4339/// handler.
4340Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4341  DeclaratorInfo *DInfo = 0;
4342  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
4343
4344  bool Invalid = D.isInvalidType();
4345  IdentifierInfo *II = D.getIdentifier();
4346  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4347    // The scope should be freshly made just for us. There is just no way
4348    // it contains any previous declaration.
4349    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4350    if (PrevDecl->isTemplateParameter()) {
4351      // Maybe we will complain about the shadowed template parameter.
4352      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4353    }
4354  }
4355
4356  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4357    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4358      << D.getCXXScopeSpec().getRange();
4359    Invalid = true;
4360  }
4361
4362  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
4363                                              D.getIdentifier(),
4364                                              D.getIdentifierLoc(),
4365                                            D.getDeclSpec().getSourceRange());
4366
4367  if (Invalid)
4368    ExDecl->setInvalidDecl();
4369
4370  // Add the exception declaration into this scope.
4371  if (II)
4372    PushOnScopeChains(ExDecl, S);
4373  else
4374    CurContext->addDecl(ExDecl);
4375
4376  ProcessDeclAttributes(S, ExDecl, D);
4377  return DeclPtrTy::make(ExDecl);
4378}
4379
4380Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
4381                                                   ExprArg assertexpr,
4382                                                   ExprArg assertmessageexpr) {
4383  Expr *AssertExpr = (Expr *)assertexpr.get();
4384  StringLiteral *AssertMessage =
4385    cast<StringLiteral>((Expr *)assertmessageexpr.get());
4386
4387  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
4388    llvm::APSInt Value(32);
4389    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
4390      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
4391        AssertExpr->getSourceRange();
4392      return DeclPtrTy();
4393    }
4394
4395    if (Value == 0) {
4396      std::string str(AssertMessage->getStrData(),
4397                      AssertMessage->getByteLength());
4398      Diag(AssertLoc, diag::err_static_assert_failed)
4399        << str << AssertExpr->getSourceRange();
4400    }
4401  }
4402
4403  assertexpr.release();
4404  assertmessageexpr.release();
4405  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
4406                                        AssertExpr, AssertMessage);
4407
4408  CurContext->addDecl(Decl);
4409  return DeclPtrTy::make(Decl);
4410}
4411
4412/// Handle a friend type declaration.  This works in tandem with
4413/// ActOnTag.
4414///
4415/// Notes on friend class templates:
4416///
4417/// We generally treat friend class declarations as if they were
4418/// declaring a class.  So, for example, the elaborated type specifier
4419/// in a friend declaration is required to obey the restrictions of a
4420/// class-head (i.e. no typedefs in the scope chain), template
4421/// parameters are required to match up with simple template-ids, &c.
4422/// However, unlike when declaring a template specialization, it's
4423/// okay to refer to a template specialization without an empty
4424/// template parameter declaration, e.g.
4425///   friend class A<T>::B<unsigned>;
4426/// We permit this as a special case; if there are any template
4427/// parameters present at all, require proper matching, i.e.
4428///   template <> template <class T> friend class A<int>::B;
4429Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
4430                                          MultiTemplateParamsArg TempParams) {
4431  SourceLocation Loc = DS.getSourceRange().getBegin();
4432
4433  assert(DS.isFriendSpecified());
4434  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4435
4436  // Try to convert the decl specifier to a type.  This works for
4437  // friend templates because ActOnTag never produces a ClassTemplateDecl
4438  // for a TUK_Friend.
4439  Declarator TheDeclarator(DS, Declarator::MemberContext);
4440  QualType T = GetTypeForDeclarator(TheDeclarator, S);
4441  if (TheDeclarator.isInvalidType())
4442    return DeclPtrTy();
4443
4444  // This is definitely an error in C++98.  It's probably meant to
4445  // be forbidden in C++0x, too, but the specification is just
4446  // poorly written.
4447  //
4448  // The problem is with declarations like the following:
4449  //   template <T> friend A<T>::foo;
4450  // where deciding whether a class C is a friend or not now hinges
4451  // on whether there exists an instantiation of A that causes
4452  // 'foo' to equal C.  There are restrictions on class-heads
4453  // (which we declare (by fiat) elaborated friend declarations to
4454  // be) that makes this tractable.
4455  //
4456  // FIXME: handle "template <> friend class A<T>;", which
4457  // is possibly well-formed?  Who even knows?
4458  if (TempParams.size() && !isa<ElaboratedType>(T)) {
4459    Diag(Loc, diag::err_tagless_friend_type_template)
4460      << DS.getSourceRange();
4461    return DeclPtrTy();
4462  }
4463
4464  // C++ [class.friend]p2:
4465  //   An elaborated-type-specifier shall be used in a friend declaration
4466  //   for a class.*
4467  //   * The class-key of the elaborated-type-specifier is required.
4468  // This is one of the rare places in Clang where it's legitimate to
4469  // ask about the "spelling" of the type.
4470  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
4471    // If we evaluated the type to a record type, suggest putting
4472    // a tag in front.
4473    if (const RecordType *RT = T->getAs<RecordType>()) {
4474      RecordDecl *RD = RT->getDecl();
4475
4476      std::string InsertionText = std::string(" ") + RD->getKindName();
4477
4478      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
4479        << (unsigned) RD->getTagKind()
4480        << T
4481        << SourceRange(DS.getFriendSpecLoc())
4482        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
4483                                                 InsertionText);
4484      return DeclPtrTy();
4485    }else {
4486      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
4487          << DS.getSourceRange();
4488      return DeclPtrTy();
4489    }
4490  }
4491
4492  // Enum types cannot be friends.
4493  if (T->getAs<EnumType>()) {
4494    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
4495      << SourceRange(DS.getFriendSpecLoc());
4496    return DeclPtrTy();
4497  }
4498
4499  // C++98 [class.friend]p1: A friend of a class is a function
4500  //   or class that is not a member of the class . . .
4501  // But that's a silly restriction which nobody implements for
4502  // inner classes, and C++0x removes it anyway, so we only report
4503  // this (as a warning) if we're being pedantic.
4504  if (!getLangOptions().CPlusPlus0x)
4505    if (const RecordType *RT = T->getAs<RecordType>())
4506      if (RT->getDecl()->getDeclContext() == CurContext)
4507        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
4508
4509  Decl *D;
4510  if (TempParams.size())
4511    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
4512                                   TempParams.size(),
4513                                 (TemplateParameterList**) TempParams.release(),
4514                                   T.getTypePtr(),
4515                                   DS.getFriendSpecLoc());
4516  else
4517    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
4518                           DS.getFriendSpecLoc());
4519  D->setAccess(AS_public);
4520  CurContext->addDecl(D);
4521
4522  return DeclPtrTy::make(D);
4523}
4524
4525Sema::DeclPtrTy
4526Sema::ActOnFriendFunctionDecl(Scope *S,
4527                              Declarator &D,
4528                              bool IsDefinition,
4529                              MultiTemplateParamsArg TemplateParams) {
4530  const DeclSpec &DS = D.getDeclSpec();
4531
4532  assert(DS.isFriendSpecified());
4533  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4534
4535  SourceLocation Loc = D.getIdentifierLoc();
4536  DeclaratorInfo *DInfo = 0;
4537  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4538
4539  // C++ [class.friend]p1
4540  //   A friend of a class is a function or class....
4541  // Note that this sees through typedefs, which is intended.
4542  // It *doesn't* see through dependent types, which is correct
4543  // according to [temp.arg.type]p3:
4544  //   If a declaration acquires a function type through a
4545  //   type dependent on a template-parameter and this causes
4546  //   a declaration that does not use the syntactic form of a
4547  //   function declarator to have a function type, the program
4548  //   is ill-formed.
4549  if (!T->isFunctionType()) {
4550    Diag(Loc, diag::err_unexpected_friend);
4551
4552    // It might be worthwhile to try to recover by creating an
4553    // appropriate declaration.
4554    return DeclPtrTy();
4555  }
4556
4557  // C++ [namespace.memdef]p3
4558  //  - If a friend declaration in a non-local class first declares a
4559  //    class or function, the friend class or function is a member
4560  //    of the innermost enclosing namespace.
4561  //  - The name of the friend is not found by simple name lookup
4562  //    until a matching declaration is provided in that namespace
4563  //    scope (either before or after the class declaration granting
4564  //    friendship).
4565  //  - If a friend function is called, its name may be found by the
4566  //    name lookup that considers functions from namespaces and
4567  //    classes associated with the types of the function arguments.
4568  //  - When looking for a prior declaration of a class or a function
4569  //    declared as a friend, scopes outside the innermost enclosing
4570  //    namespace scope are not considered.
4571
4572  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
4573  DeclarationName Name = GetNameForDeclarator(D);
4574  assert(Name);
4575
4576  // The context we found the declaration in, or in which we should
4577  // create the declaration.
4578  DeclContext *DC;
4579
4580  // FIXME: handle local classes
4581
4582  // Recover from invalid scope qualifiers as if they just weren't there.
4583  NamedDecl *PrevDecl = 0;
4584  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
4585    // FIXME: RequireCompleteDeclContext
4586    DC = computeDeclContext(ScopeQual);
4587
4588    // FIXME: handle dependent contexts
4589    if (!DC) return DeclPtrTy();
4590
4591    LookupResult R;
4592    LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4593    PrevDecl = R.getAsSingleDecl(Context);
4594
4595    // If searching in that context implicitly found a declaration in
4596    // a different context, treat it like it wasn't found at all.
4597    // TODO: better diagnostics for this case.  Suggesting the right
4598    // qualified scope would be nice...
4599    if (!PrevDecl || !PrevDecl->getDeclContext()->Equals(DC)) {
4600      D.setInvalidType();
4601      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
4602      return DeclPtrTy();
4603    }
4604
4605    // C++ [class.friend]p1: A friend of a class is a function or
4606    //   class that is not a member of the class . . .
4607    if (DC->Equals(CurContext))
4608      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4609
4610  // Otherwise walk out to the nearest namespace scope looking for matches.
4611  } else {
4612    // TODO: handle local class contexts.
4613
4614    DC = CurContext;
4615    while (true) {
4616      // Skip class contexts.  If someone can cite chapter and verse
4617      // for this behavior, that would be nice --- it's what GCC and
4618      // EDG do, and it seems like a reasonable intent, but the spec
4619      // really only says that checks for unqualified existing
4620      // declarations should stop at the nearest enclosing namespace,
4621      // not that they should only consider the nearest enclosing
4622      // namespace.
4623      while (DC->isRecord())
4624        DC = DC->getParent();
4625
4626      LookupResult R;
4627      LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4628      PrevDecl = R.getAsSingleDecl(Context);
4629
4630      // TODO: decide what we think about using declarations.
4631      if (PrevDecl)
4632        break;
4633
4634      if (DC->isFileContext()) break;
4635      DC = DC->getParent();
4636    }
4637
4638    // C++ [class.friend]p1: A friend of a class is a function or
4639    //   class that is not a member of the class . . .
4640    // C++0x changes this for both friend types and functions.
4641    // Most C++ 98 compilers do seem to give an error here, so
4642    // we do, too.
4643    if (PrevDecl && DC->Equals(CurContext) && !getLangOptions().CPlusPlus0x)
4644      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4645  }
4646
4647  if (DC->isFileContext()) {
4648    // This implies that it has to be an operator or function.
4649    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
4650        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
4651        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
4652      Diag(Loc, diag::err_introducing_special_friend) <<
4653        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
4654         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
4655      return DeclPtrTy();
4656    }
4657  }
4658
4659  bool Redeclaration = false;
4660  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo, PrevDecl,
4661                                          move(TemplateParams),
4662                                          IsDefinition,
4663                                          Redeclaration);
4664  if (!ND) return DeclPtrTy();
4665
4666  assert(ND->getDeclContext() == DC);
4667  assert(ND->getLexicalDeclContext() == CurContext);
4668
4669  // Add the function declaration to the appropriate lookup tables,
4670  // adjusting the redeclarations list as necessary.  We don't
4671  // want to do this yet if the friending class is dependent.
4672  //
4673  // Also update the scope-based lookup if the target context's
4674  // lookup context is in lexical scope.
4675  if (!CurContext->isDependentContext()) {
4676    DC = DC->getLookupContext();
4677    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
4678    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4679      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
4680  }
4681
4682  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
4683                                       D.getIdentifierLoc(), ND,
4684                                       DS.getFriendSpecLoc());
4685  FrD->setAccess(AS_public);
4686  CurContext->addDecl(FrD);
4687
4688  return DeclPtrTy::make(ND);
4689}
4690
4691void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
4692  AdjustDeclIfTemplate(dcl);
4693
4694  Decl *Dcl = dcl.getAs<Decl>();
4695  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
4696  if (!Fn) {
4697    Diag(DelLoc, diag::err_deleted_non_function);
4698    return;
4699  }
4700  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
4701    Diag(DelLoc, diag::err_deleted_decl_not_first);
4702    Diag(Prev->getLocation(), diag::note_previous_declaration);
4703    // If the declaration wasn't the first, we delete the function anyway for
4704    // recovery.
4705  }
4706  Fn->setDeleted();
4707}
4708
4709static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
4710  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
4711       ++CI) {
4712    Stmt *SubStmt = *CI;
4713    if (!SubStmt)
4714      continue;
4715    if (isa<ReturnStmt>(SubStmt))
4716      Self.Diag(SubStmt->getSourceRange().getBegin(),
4717           diag::err_return_in_constructor_handler);
4718    if (!isa<Expr>(SubStmt))
4719      SearchForReturnInStmt(Self, SubStmt);
4720  }
4721}
4722
4723void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
4724  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
4725    CXXCatchStmt *Handler = TryBlock->getHandler(I);
4726    SearchForReturnInStmt(*this, Handler);
4727  }
4728}
4729
4730bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
4731                                             const CXXMethodDecl *Old) {
4732  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
4733  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
4734
4735  QualType CNewTy = Context.getCanonicalType(NewTy);
4736  QualType COldTy = Context.getCanonicalType(OldTy);
4737
4738  if (CNewTy == COldTy &&
4739      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
4740    return false;
4741
4742  // Check if the return types are covariant
4743  QualType NewClassTy, OldClassTy;
4744
4745  /// Both types must be pointers or references to classes.
4746  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
4747    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
4748      NewClassTy = NewPT->getPointeeType();
4749      OldClassTy = OldPT->getPointeeType();
4750    }
4751  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
4752    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
4753      NewClassTy = NewRT->getPointeeType();
4754      OldClassTy = OldRT->getPointeeType();
4755    }
4756  }
4757
4758  // The return types aren't either both pointers or references to a class type.
4759  if (NewClassTy.isNull()) {
4760    Diag(New->getLocation(),
4761         diag::err_different_return_type_for_overriding_virtual_function)
4762      << New->getDeclName() << NewTy << OldTy;
4763    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4764
4765    return true;
4766  }
4767
4768  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
4769    // Check if the new class derives from the old class.
4770    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
4771      Diag(New->getLocation(),
4772           diag::err_covariant_return_not_derived)
4773      << New->getDeclName() << NewTy << OldTy;
4774      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4775      return true;
4776    }
4777
4778    // Check if we the conversion from derived to base is valid.
4779    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
4780                      diag::err_covariant_return_inaccessible_base,
4781                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
4782                      // FIXME: Should this point to the return type?
4783                      New->getLocation(), SourceRange(), New->getDeclName())) {
4784      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4785      return true;
4786    }
4787  }
4788
4789  // The qualifiers of the return types must be the same.
4790  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
4791    Diag(New->getLocation(),
4792         diag::err_covariant_return_type_different_qualifications)
4793    << New->getDeclName() << NewTy << OldTy;
4794    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4795    return true;
4796  };
4797
4798
4799  // The new class type must have the same or less qualifiers as the old type.
4800  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
4801    Diag(New->getLocation(),
4802         diag::err_covariant_return_type_class_type_more_qualified)
4803    << New->getDeclName() << NewTy << OldTy;
4804    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4805    return true;
4806  };
4807
4808  return false;
4809}
4810
4811/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
4812/// initializer for the declaration 'Dcl'.
4813/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
4814/// static data member of class X, names should be looked up in the scope of
4815/// class X.
4816void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4817  AdjustDeclIfTemplate(Dcl);
4818
4819  Decl *D = Dcl.getAs<Decl>();
4820  // If there is no declaration, there was an error parsing it.
4821  if (D == 0)
4822    return;
4823
4824  // Check whether it is a declaration with a nested name specifier like
4825  // int foo::bar;
4826  if (!D->isOutOfLine())
4827    return;
4828
4829  // C++ [basic.lookup.unqual]p13
4830  //
4831  // A name used in the definition of a static data member of class X
4832  // (after the qualified-id of the static member) is looked up as if the name
4833  // was used in a member function of X.
4834
4835  // Change current context into the context of the initializing declaration.
4836  EnterDeclaratorContext(S, D->getDeclContext());
4837}
4838
4839/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4840/// initializer for the declaration 'Dcl'.
4841void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4842  AdjustDeclIfTemplate(Dcl);
4843
4844  Decl *D = Dcl.getAs<Decl>();
4845  // If there is no declaration, there was an error parsing it.
4846  if (D == 0)
4847    return;
4848
4849  // Check whether it is a declaration with a nested name specifier like
4850  // int foo::bar;
4851  if (!D->isOutOfLine())
4852    return;
4853
4854  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4855  ExitDeclaratorContext(S);
4856}
4857