SemaDeclCXX.cpp revision c259eacc7de93cef9aca8f01403c8c9d1c387688
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
128  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
129                                                           EqualLoc);
130  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
131  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
132                                          MultiExprArg(*this, (void**)&Arg, 1));
133  if (Result.isInvalid())
134    return true;
135  Arg = Result.takeAs<Expr>();
136
137  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
138
139  // Okay: add the default argument to the parameter
140  Param->setDefaultArg(Arg);
141
142  DefaultArg.release();
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
152                                ExprArg defarg) {
153  if (!param || !defarg.get())
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
157  UnparsedDefaultArgLocs.erase(Param);
158
159  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
160
161  // Default arguments are only permitted in C++
162  if (!getLangOptions().CPlusPlus) {
163    Diag(EqualLoc, diag::err_param_default_argument)
164      << DefaultArg->getSourceRange();
165    Param->setInvalidDecl();
166    return;
167  }
168
169  // Check that the default argument is well-formed
170  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
171  if (DefaultArgChecker.Visit(DefaultArg.get())) {
172    Param->setInvalidDecl();
173    return;
174  }
175
176  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
177}
178
179/// ActOnParamUnparsedDefaultArgument - We've seen a default
180/// argument for a function parameter, but we can't parse it yet
181/// because we're inside a class definition. Note that this default
182/// argument will be parsed later.
183void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
184                                             SourceLocation EqualLoc,
185                                             SourceLocation ArgLoc) {
186  if (!param)
187    return;
188
189  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
190  if (Param)
191    Param->setUnparsedDefaultArg();
192
193  UnparsedDefaultArgLocs[Param] = ArgLoc;
194}
195
196/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
197/// the default argument for the parameter param failed.
198void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
199  if (!param)
200    return;
201
202  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
203
204  Param->setInvalidDecl();
205
206  UnparsedDefaultArgLocs.erase(Param);
207}
208
209/// CheckExtraCXXDefaultArguments - Check for any extra default
210/// arguments in the declarator, which is not a function declaration
211/// or definition and therefore is not permitted to have default
212/// arguments. This routine should be invoked for every declarator
213/// that is not a function declaration or definition.
214void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
215  // C++ [dcl.fct.default]p3
216  //   A default argument expression shall be specified only in the
217  //   parameter-declaration-clause of a function declaration or in a
218  //   template-parameter (14.1). It shall not be specified for a
219  //   parameter pack. If it is specified in a
220  //   parameter-declaration-clause, it shall not occur within a
221  //   declarator or abstract-declarator of a parameter-declaration.
222  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
223    DeclaratorChunk &chunk = D.getTypeObject(i);
224    if (chunk.Kind == DeclaratorChunk::Function) {
225      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
226        ParmVarDecl *Param =
227          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
228        if (Param->hasUnparsedDefaultArg()) {
229          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
232          delete Toks;
233          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
234        } else if (Param->getDefaultArg()) {
235          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
236            << Param->getDefaultArg()->getSourceRange();
237          Param->setDefaultArg(0);
238        }
239      }
240    }
241  }
242}
243
244// MergeCXXFunctionDecl - Merge two declarations of the same C++
245// function, once we already know that they have the same
246// type. Subroutine of MergeFunctionDecl. Returns true if there was an
247// error, false otherwise.
248bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
249  bool Invalid = false;
250
251  // C++ [dcl.fct.default]p4:
252  //   For non-template functions, default arguments can be added in
253  //   later declarations of a function in the same
254  //   scope. Declarations in different scopes have completely
255  //   distinct sets of default arguments. That is, declarations in
256  //   inner scopes do not acquire default arguments from
257  //   declarations in outer scopes, and vice versa. In a given
258  //   function declaration, all parameters subsequent to a
259  //   parameter with a default argument shall have default
260  //   arguments supplied in this or previous declarations. A
261  //   default argument shall not be redefined by a later
262  //   declaration (not even to the same value).
263  //
264  // C++ [dcl.fct.default]p6:
265  //   Except for member functions of class templates, the default arguments
266  //   in a member function definition that appears outside of the class
267  //   definition are added to the set of default arguments provided by the
268  //   member function declaration in the class definition.
269  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
270    ParmVarDecl *OldParam = Old->getParamDecl(p);
271    ParmVarDecl *NewParam = New->getParamDecl(p);
272
273    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
274      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
275      // hint here. Alternatively, we could walk the type-source information
276      // for NewParam to find the last source location in the type... but it
277      // isn't worth the effort right now. This is the kind of test case that
278      // is hard to get right:
279
280      //   int f(int);
281      //   void g(int (*fp)(int) = f);
282      //   void g(int (*fp)(int) = &f);
283      Diag(NewParam->getLocation(),
284           diag::err_param_default_argument_redefinition)
285        << NewParam->getDefaultArgRange();
286
287      // Look for the function declaration where the default argument was
288      // actually written, which may be a declaration prior to Old.
289      for (FunctionDecl *Older = Old->getPreviousDeclaration();
290           Older; Older = Older->getPreviousDeclaration()) {
291        if (!Older->getParamDecl(p)->hasDefaultArg())
292          break;
293
294        OldParam = Older->getParamDecl(p);
295      }
296
297      Diag(OldParam->getLocation(), diag::note_previous_definition)
298        << OldParam->getDefaultArgRange();
299      Invalid = true;
300    } else if (OldParam->hasDefaultArg()) {
301      // Merge the old default argument into the new parameter.
302      // It's important to use getInit() here;  getDefaultArg()
303      // strips off any top-level CXXExprWithTemporaries.
304      NewParam->setHasInheritedDefaultArg();
305      if (OldParam->hasUninstantiatedDefaultArg())
306        NewParam->setUninstantiatedDefaultArg(
307                                      OldParam->getUninstantiatedDefaultArg());
308      else
309        NewParam->setDefaultArg(OldParam->getInit());
310    } else if (NewParam->hasDefaultArg()) {
311      if (New->getDescribedFunctionTemplate()) {
312        // Paragraph 4, quoted above, only applies to non-template functions.
313        Diag(NewParam->getLocation(),
314             diag::err_param_default_argument_template_redecl)
315          << NewParam->getDefaultArgRange();
316        Diag(Old->getLocation(), diag::note_template_prev_declaration)
317          << false;
318      } else if (New->getTemplateSpecializationKind()
319                   != TSK_ImplicitInstantiation &&
320                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
321        // C++ [temp.expr.spec]p21:
322        //   Default function arguments shall not be specified in a declaration
323        //   or a definition for one of the following explicit specializations:
324        //     - the explicit specialization of a function template;
325        //     - the explicit specialization of a member function template;
326        //     - the explicit specialization of a member function of a class
327        //       template where the class template specialization to which the
328        //       member function specialization belongs is implicitly
329        //       instantiated.
330        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
331          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
332          << New->getDeclName()
333          << NewParam->getDefaultArgRange();
334      } else if (New->getDeclContext()->isDependentContext()) {
335        // C++ [dcl.fct.default]p6 (DR217):
336        //   Default arguments for a member function of a class template shall
337        //   be specified on the initial declaration of the member function
338        //   within the class template.
339        //
340        // Reading the tea leaves a bit in DR217 and its reference to DR205
341        // leads me to the conclusion that one cannot add default function
342        // arguments for an out-of-line definition of a member function of a
343        // dependent type.
344        int WhichKind = 2;
345        if (CXXRecordDecl *Record
346              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
347          if (Record->getDescribedClassTemplate())
348            WhichKind = 0;
349          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
350            WhichKind = 1;
351          else
352            WhichKind = 2;
353        }
354
355        Diag(NewParam->getLocation(),
356             diag::err_param_default_argument_member_template_redecl)
357          << WhichKind
358          << NewParam->getDefaultArgRange();
359      }
360    }
361  }
362
363  if (CheckEquivalentExceptionSpec(Old, New))
364    Invalid = true;
365
366  return Invalid;
367}
368
369/// CheckCXXDefaultArguments - Verify that the default arguments for a
370/// function declaration are well-formed according to C++
371/// [dcl.fct.default].
372void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
373  unsigned NumParams = FD->getNumParams();
374  unsigned p;
375
376  // Find first parameter with a default argument
377  for (p = 0; p < NumParams; ++p) {
378    ParmVarDecl *Param = FD->getParamDecl(p);
379    if (Param->hasDefaultArg())
380      break;
381  }
382
383  // C++ [dcl.fct.default]p4:
384  //   In a given function declaration, all parameters
385  //   subsequent to a parameter with a default argument shall
386  //   have default arguments supplied in this or previous
387  //   declarations. A default argument shall not be redefined
388  //   by a later declaration (not even to the same value).
389  unsigned LastMissingDefaultArg = 0;
390  for (; p < NumParams; ++p) {
391    ParmVarDecl *Param = FD->getParamDecl(p);
392    if (!Param->hasDefaultArg()) {
393      if (Param->isInvalidDecl())
394        /* We already complained about this parameter. */;
395      else if (Param->getIdentifier())
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing_name)
398          << Param->getIdentifier();
399      else
400        Diag(Param->getLocation(),
401             diag::err_param_default_argument_missing);
402
403      LastMissingDefaultArg = p;
404    }
405  }
406
407  if (LastMissingDefaultArg > 0) {
408    // Some default arguments were missing. Clear out all of the
409    // default arguments up to (and including) the last missing
410    // default argument, so that we leave the function parameters
411    // in a semantically valid state.
412    for (p = 0; p <= LastMissingDefaultArg; ++p) {
413      ParmVarDecl *Param = FD->getParamDecl(p);
414      if (Param->hasDefaultArg()) {
415        if (!Param->hasUnparsedDefaultArg())
416          Param->getDefaultArg()->Destroy(Context);
417        Param->setDefaultArg(0);
418      }
419    }
420  }
421}
422
423/// isCurrentClassName - Determine whether the identifier II is the
424/// name of the class type currently being defined. In the case of
425/// nested classes, this will only return true if II is the name of
426/// the innermost class.
427bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
428                              const CXXScopeSpec *SS) {
429  assert(getLangOptions().CPlusPlus && "No class names in C!");
430
431  CXXRecordDecl *CurDecl;
432  if (SS && SS->isSet() && !SS->isInvalid()) {
433    DeclContext *DC = computeDeclContext(*SS, true);
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
435  } else
436    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
437
438  if (CurDecl && CurDecl->getIdentifier())
439    return &II == CurDecl->getIdentifier();
440  else
441    return false;
442}
443
444/// \brief Check the validity of a C++ base class specifier.
445///
446/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
447/// and returns NULL otherwise.
448CXXBaseSpecifier *
449Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
450                         SourceRange SpecifierRange,
451                         bool Virtual, AccessSpecifier Access,
452                         QualType BaseType,
453                         SourceLocation BaseLoc) {
454  // C++ [class.union]p1:
455  //   A union shall not have base classes.
456  if (Class->isUnion()) {
457    Diag(Class->getLocation(), diag::err_base_clause_on_union)
458      << SpecifierRange;
459    return 0;
460  }
461
462  if (BaseType->isDependentType())
463    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
464                                Class->getTagKind() == TTK_Class,
465                                Access, BaseType);
466
467  // Base specifiers must be record types.
468  if (!BaseType->isRecordType()) {
469    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
470    return 0;
471  }
472
473  // C++ [class.union]p1:
474  //   A union shall not be used as a base class.
475  if (BaseType->isUnionType()) {
476    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
477    return 0;
478  }
479
480  // C++ [class.derived]p2:
481  //   The class-name in a base-specifier shall not be an incompletely
482  //   defined class.
483  if (RequireCompleteType(BaseLoc, BaseType,
484                          PDiag(diag::err_incomplete_base_class)
485                            << SpecifierRange))
486    return 0;
487
488  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
489  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
490  assert(BaseDecl && "Record type has no declaration");
491  BaseDecl = BaseDecl->getDefinition();
492  assert(BaseDecl && "Base type is not incomplete, but has no definition");
493  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
494  assert(CXXBaseDecl && "Base type is not a C++ type");
495
496  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
497  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
498    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
499    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
500      << BaseType;
501    return 0;
502  }
503
504  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
505
506  // Create the base specifier.
507  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
508                              Class->getTagKind() == TTK_Class,
509                              Access, BaseType);
510}
511
512void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
513                                          const CXXRecordDecl *BaseClass,
514                                          bool BaseIsVirtual) {
515  // A class with a non-empty base class is not empty.
516  // FIXME: Standard ref?
517  if (!BaseClass->isEmpty())
518    Class->setEmpty(false);
519
520  // C++ [class.virtual]p1:
521  //   A class that [...] inherits a virtual function is called a polymorphic
522  //   class.
523  if (BaseClass->isPolymorphic())
524    Class->setPolymorphic(true);
525
526  // C++ [dcl.init.aggr]p1:
527  //   An aggregate is [...] a class with [...] no base classes [...].
528  Class->setAggregate(false);
529
530  // C++ [class]p4:
531  //   A POD-struct is an aggregate class...
532  Class->setPOD(false);
533
534  if (BaseIsVirtual) {
535    // C++ [class.ctor]p5:
536    //   A constructor is trivial if its class has no virtual base classes.
537    Class->setHasTrivialConstructor(false);
538
539    // C++ [class.copy]p6:
540    //   A copy constructor is trivial if its class has no virtual base classes.
541    Class->setHasTrivialCopyConstructor(false);
542
543    // C++ [class.copy]p11:
544    //   A copy assignment operator is trivial if its class has no virtual
545    //   base classes.
546    Class->setHasTrivialCopyAssignment(false);
547
548    // C++0x [meta.unary.prop] is_empty:
549    //    T is a class type, but not a union type, with ... no virtual base
550    //    classes
551    Class->setEmpty(false);
552  } else {
553    // C++ [class.ctor]p5:
554    //   A constructor is trivial if all the direct base classes of its
555    //   class have trivial constructors.
556    if (!BaseClass->hasTrivialConstructor())
557      Class->setHasTrivialConstructor(false);
558
559    // C++ [class.copy]p6:
560    //   A copy constructor is trivial if all the direct base classes of its
561    //   class have trivial copy constructors.
562    if (!BaseClass->hasTrivialCopyConstructor())
563      Class->setHasTrivialCopyConstructor(false);
564
565    // C++ [class.copy]p11:
566    //   A copy assignment operator is trivial if all the direct base classes
567    //   of its class have trivial copy assignment operators.
568    if (!BaseClass->hasTrivialCopyAssignment())
569      Class->setHasTrivialCopyAssignment(false);
570  }
571
572  // C++ [class.ctor]p3:
573  //   A destructor is trivial if all the direct base classes of its class
574  //   have trivial destructors.
575  if (!BaseClass->hasTrivialDestructor())
576    Class->setHasTrivialDestructor(false);
577}
578
579/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
580/// one entry in the base class list of a class specifier, for
581/// example:
582///    class foo : public bar, virtual private baz {
583/// 'public bar' and 'virtual private baz' are each base-specifiers.
584Sema::BaseResult
585Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
586                         bool Virtual, AccessSpecifier Access,
587                         TypeTy *basetype, SourceLocation BaseLoc) {
588  if (!classdecl)
589    return true;
590
591  AdjustDeclIfTemplate(classdecl);
592  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
593  if (!Class)
594    return true;
595
596  QualType BaseType = GetTypeFromParser(basetype);
597  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
598                                                      Virtual, Access,
599                                                      BaseType, BaseLoc))
600    return BaseSpec;
601
602  return true;
603}
604
605/// \brief Performs the actual work of attaching the given base class
606/// specifiers to a C++ class.
607bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
608                                unsigned NumBases) {
609 if (NumBases == 0)
610    return false;
611
612  // Used to keep track of which base types we have already seen, so
613  // that we can properly diagnose redundant direct base types. Note
614  // that the key is always the unqualified canonical type of the base
615  // class.
616  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
617
618  // Copy non-redundant base specifiers into permanent storage.
619  unsigned NumGoodBases = 0;
620  bool Invalid = false;
621  for (unsigned idx = 0; idx < NumBases; ++idx) {
622    QualType NewBaseType
623      = Context.getCanonicalType(Bases[idx]->getType());
624    NewBaseType = NewBaseType.getLocalUnqualifiedType();
625    if (!Class->hasObjectMember()) {
626      if (const RecordType *FDTTy =
627            NewBaseType.getTypePtr()->getAs<RecordType>())
628        if (FDTTy->getDecl()->hasObjectMember())
629          Class->setHasObjectMember(true);
630    }
631
632    if (KnownBaseTypes[NewBaseType]) {
633      // C++ [class.mi]p3:
634      //   A class shall not be specified as a direct base class of a
635      //   derived class more than once.
636      Diag(Bases[idx]->getSourceRange().getBegin(),
637           diag::err_duplicate_base_class)
638        << KnownBaseTypes[NewBaseType]->getType()
639        << Bases[idx]->getSourceRange();
640
641      // Delete the duplicate base class specifier; we're going to
642      // overwrite its pointer later.
643      Context.Deallocate(Bases[idx]);
644
645      Invalid = true;
646    } else {
647      // Okay, add this new base class.
648      KnownBaseTypes[NewBaseType] = Bases[idx];
649      Bases[NumGoodBases++] = Bases[idx];
650    }
651  }
652
653  // Attach the remaining base class specifiers to the derived class.
654  Class->setBases(Bases, NumGoodBases);
655
656  // Delete the remaining (good) base class specifiers, since their
657  // data has been copied into the CXXRecordDecl.
658  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
659    Context.Deallocate(Bases[idx]);
660
661  return Invalid;
662}
663
664/// ActOnBaseSpecifiers - Attach the given base specifiers to the
665/// class, after checking whether there are any duplicate base
666/// classes.
667void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
668                               unsigned NumBases) {
669  if (!ClassDecl || !Bases || !NumBases)
670    return;
671
672  AdjustDeclIfTemplate(ClassDecl);
673  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
674                       (CXXBaseSpecifier**)(Bases), NumBases);
675}
676
677static CXXRecordDecl *GetClassForType(QualType T) {
678  if (const RecordType *RT = T->getAs<RecordType>())
679    return cast<CXXRecordDecl>(RT->getDecl());
680  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
681    return ICT->getDecl();
682  else
683    return 0;
684}
685
686/// \brief Determine whether the type \p Derived is a C++ class that is
687/// derived from the type \p Base.
688bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
689  if (!getLangOptions().CPlusPlus)
690    return false;
691
692  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
693  if (!DerivedRD)
694    return false;
695
696  CXXRecordDecl *BaseRD = GetClassForType(Base);
697  if (!BaseRD)
698    return false;
699
700  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
701  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
702}
703
704/// \brief Determine whether the type \p Derived is a C++ class that is
705/// derived from the type \p Base.
706bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
707  if (!getLangOptions().CPlusPlus)
708    return false;
709
710  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
711  if (!DerivedRD)
712    return false;
713
714  CXXRecordDecl *BaseRD = GetClassForType(Base);
715  if (!BaseRD)
716    return false;
717
718  return DerivedRD->isDerivedFrom(BaseRD, Paths);
719}
720
721void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
722                              CXXBaseSpecifierArray &BasePathArray) {
723  assert(BasePathArray.empty() && "Base path array must be empty!");
724  assert(Paths.isRecordingPaths() && "Must record paths!");
725
726  const CXXBasePath &Path = Paths.front();
727
728  // We first go backward and check if we have a virtual base.
729  // FIXME: It would be better if CXXBasePath had the base specifier for
730  // the nearest virtual base.
731  unsigned Start = 0;
732  for (unsigned I = Path.size(); I != 0; --I) {
733    if (Path[I - 1].Base->isVirtual()) {
734      Start = I - 1;
735      break;
736    }
737  }
738
739  // Now add all bases.
740  for (unsigned I = Start, E = Path.size(); I != E; ++I)
741    BasePathArray.push_back(Path[I].Base);
742}
743
744/// \brief Determine whether the given base path includes a virtual
745/// base class.
746bool Sema::BasePathInvolvesVirtualBase(const CXXBaseSpecifierArray &BasePath) {
747  for (CXXBaseSpecifierArray::iterator B = BasePath.begin(),
748                                    BEnd = BasePath.end();
749       B != BEnd; ++B)
750    if ((*B)->isVirtual())
751      return true;
752
753  return false;
754}
755
756/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
757/// conversion (where Derived and Base are class types) is
758/// well-formed, meaning that the conversion is unambiguous (and
759/// that all of the base classes are accessible). Returns true
760/// and emits a diagnostic if the code is ill-formed, returns false
761/// otherwise. Loc is the location where this routine should point to
762/// if there is an error, and Range is the source range to highlight
763/// if there is an error.
764bool
765Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
766                                   unsigned InaccessibleBaseID,
767                                   unsigned AmbigiousBaseConvID,
768                                   SourceLocation Loc, SourceRange Range,
769                                   DeclarationName Name,
770                                   CXXBaseSpecifierArray *BasePath) {
771  // First, determine whether the path from Derived to Base is
772  // ambiguous. This is slightly more expensive than checking whether
773  // the Derived to Base conversion exists, because here we need to
774  // explore multiple paths to determine if there is an ambiguity.
775  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
776                     /*DetectVirtual=*/false);
777  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
778  assert(DerivationOkay &&
779         "Can only be used with a derived-to-base conversion");
780  (void)DerivationOkay;
781
782  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
783    if (InaccessibleBaseID) {
784      // Check that the base class can be accessed.
785      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
786                                   InaccessibleBaseID)) {
787        case AR_inaccessible:
788          return true;
789        case AR_accessible:
790        case AR_dependent:
791        case AR_delayed:
792          break;
793      }
794    }
795
796    // Build a base path if necessary.
797    if (BasePath)
798      BuildBasePathArray(Paths, *BasePath);
799    return false;
800  }
801
802  // We know that the derived-to-base conversion is ambiguous, and
803  // we're going to produce a diagnostic. Perform the derived-to-base
804  // search just one more time to compute all of the possible paths so
805  // that we can print them out. This is more expensive than any of
806  // the previous derived-to-base checks we've done, but at this point
807  // performance isn't as much of an issue.
808  Paths.clear();
809  Paths.setRecordingPaths(true);
810  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
811  assert(StillOkay && "Can only be used with a derived-to-base conversion");
812  (void)StillOkay;
813
814  // Build up a textual representation of the ambiguous paths, e.g.,
815  // D -> B -> A, that will be used to illustrate the ambiguous
816  // conversions in the diagnostic. We only print one of the paths
817  // to each base class subobject.
818  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
819
820  Diag(Loc, AmbigiousBaseConvID)
821  << Derived << Base << PathDisplayStr << Range << Name;
822  return true;
823}
824
825bool
826Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
827                                   SourceLocation Loc, SourceRange Range,
828                                   CXXBaseSpecifierArray *BasePath,
829                                   bool IgnoreAccess) {
830  return CheckDerivedToBaseConversion(Derived, Base,
831                                      IgnoreAccess ? 0
832                                       : diag::err_upcast_to_inaccessible_base,
833                                      diag::err_ambiguous_derived_to_base_conv,
834                                      Loc, Range, DeclarationName(),
835                                      BasePath);
836}
837
838
839/// @brief Builds a string representing ambiguous paths from a
840/// specific derived class to different subobjects of the same base
841/// class.
842///
843/// This function builds a string that can be used in error messages
844/// to show the different paths that one can take through the
845/// inheritance hierarchy to go from the derived class to different
846/// subobjects of a base class. The result looks something like this:
847/// @code
848/// struct D -> struct B -> struct A
849/// struct D -> struct C -> struct A
850/// @endcode
851std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
852  std::string PathDisplayStr;
853  std::set<unsigned> DisplayedPaths;
854  for (CXXBasePaths::paths_iterator Path = Paths.begin();
855       Path != Paths.end(); ++Path) {
856    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
857      // We haven't displayed a path to this particular base
858      // class subobject yet.
859      PathDisplayStr += "\n    ";
860      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
861      for (CXXBasePath::const_iterator Element = Path->begin();
862           Element != Path->end(); ++Element)
863        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
864    }
865  }
866
867  return PathDisplayStr;
868}
869
870//===----------------------------------------------------------------------===//
871// C++ class member Handling
872//===----------------------------------------------------------------------===//
873
874/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
875Sema::DeclPtrTy
876Sema::ActOnAccessSpecifier(AccessSpecifier Access,
877                           SourceLocation ASLoc, SourceLocation ColonLoc) {
878  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
879  AccessSpecDecl* ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
880                                                  ASLoc, ColonLoc);
881  CurContext->addHiddenDecl(ASDecl);
882  return DeclPtrTy::make(ASDecl);
883}
884
885/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
886/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
887/// bitfield width if there is one and 'InitExpr' specifies the initializer if
888/// any.
889Sema::DeclPtrTy
890Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
891                               MultiTemplateParamsArg TemplateParameterLists,
892                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
893                               bool Deleted) {
894  const DeclSpec &DS = D.getDeclSpec();
895  DeclarationName Name = GetNameForDeclarator(D);
896  Expr *BitWidth = static_cast<Expr*>(BW);
897  Expr *Init = static_cast<Expr*>(InitExpr);
898  SourceLocation Loc = D.getIdentifierLoc();
899
900  assert(isa<CXXRecordDecl>(CurContext));
901  assert(!DS.isFriendSpecified());
902
903  bool isFunc = false;
904  if (D.isFunctionDeclarator())
905    isFunc = true;
906  else if (D.getNumTypeObjects() == 0 &&
907           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
908    QualType TDType = GetTypeFromParser(DS.getTypeRep());
909    isFunc = TDType->isFunctionType();
910  }
911
912  // C++ 9.2p6: A member shall not be declared to have automatic storage
913  // duration (auto, register) or with the extern storage-class-specifier.
914  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
915  // data members and cannot be applied to names declared const or static,
916  // and cannot be applied to reference members.
917  switch (DS.getStorageClassSpec()) {
918    case DeclSpec::SCS_unspecified:
919    case DeclSpec::SCS_typedef:
920    case DeclSpec::SCS_static:
921      // FALL THROUGH.
922      break;
923    case DeclSpec::SCS_mutable:
924      if (isFunc) {
925        if (DS.getStorageClassSpecLoc().isValid())
926          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
927        else
928          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
929
930        // FIXME: It would be nicer if the keyword was ignored only for this
931        // declarator. Otherwise we could get follow-up errors.
932        D.getMutableDeclSpec().ClearStorageClassSpecs();
933      }
934      break;
935    default:
936      if (DS.getStorageClassSpecLoc().isValid())
937        Diag(DS.getStorageClassSpecLoc(),
938             diag::err_storageclass_invalid_for_member);
939      else
940        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
941      D.getMutableDeclSpec().ClearStorageClassSpecs();
942  }
943
944  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
945                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
946                      !isFunc);
947
948  Decl *Member;
949  if (isInstField) {
950    // FIXME: Check for template parameters!
951    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
952                         AS);
953    assert(Member && "HandleField never returns null");
954  } else {
955    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
956               .getAs<Decl>();
957    if (!Member) {
958      if (BitWidth) DeleteExpr(BitWidth);
959      return DeclPtrTy();
960    }
961
962    // Non-instance-fields can't have a bitfield.
963    if (BitWidth) {
964      if (Member->isInvalidDecl()) {
965        // don't emit another diagnostic.
966      } else if (isa<VarDecl>(Member)) {
967        // C++ 9.6p3: A bit-field shall not be a static member.
968        // "static member 'A' cannot be a bit-field"
969        Diag(Loc, diag::err_static_not_bitfield)
970          << Name << BitWidth->getSourceRange();
971      } else if (isa<TypedefDecl>(Member)) {
972        // "typedef member 'x' cannot be a bit-field"
973        Diag(Loc, diag::err_typedef_not_bitfield)
974          << Name << BitWidth->getSourceRange();
975      } else {
976        // A function typedef ("typedef int f(); f a;").
977        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
978        Diag(Loc, diag::err_not_integral_type_bitfield)
979          << Name << cast<ValueDecl>(Member)->getType()
980          << BitWidth->getSourceRange();
981      }
982
983      DeleteExpr(BitWidth);
984      BitWidth = 0;
985      Member->setInvalidDecl();
986    }
987
988    Member->setAccess(AS);
989
990    // If we have declared a member function template, set the access of the
991    // templated declaration as well.
992    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
993      FunTmpl->getTemplatedDecl()->setAccess(AS);
994  }
995
996  assert((Name || isInstField) && "No identifier for non-field ?");
997
998  if (Init)
999    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
1000  if (Deleted) // FIXME: Source location is not very good.
1001    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
1002
1003  if (isInstField) {
1004    FieldCollector->Add(cast<FieldDecl>(Member));
1005    return DeclPtrTy();
1006  }
1007  return DeclPtrTy::make(Member);
1008}
1009
1010/// \brief Find the direct and/or virtual base specifiers that
1011/// correspond to the given base type, for use in base initialization
1012/// within a constructor.
1013static bool FindBaseInitializer(Sema &SemaRef,
1014                                CXXRecordDecl *ClassDecl,
1015                                QualType BaseType,
1016                                const CXXBaseSpecifier *&DirectBaseSpec,
1017                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1018  // First, check for a direct base class.
1019  DirectBaseSpec = 0;
1020  for (CXXRecordDecl::base_class_const_iterator Base
1021         = ClassDecl->bases_begin();
1022       Base != ClassDecl->bases_end(); ++Base) {
1023    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1024      // We found a direct base of this type. That's what we're
1025      // initializing.
1026      DirectBaseSpec = &*Base;
1027      break;
1028    }
1029  }
1030
1031  // Check for a virtual base class.
1032  // FIXME: We might be able to short-circuit this if we know in advance that
1033  // there are no virtual bases.
1034  VirtualBaseSpec = 0;
1035  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1036    // We haven't found a base yet; search the class hierarchy for a
1037    // virtual base class.
1038    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1039                       /*DetectVirtual=*/false);
1040    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1041                              BaseType, Paths)) {
1042      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1043           Path != Paths.end(); ++Path) {
1044        if (Path->back().Base->isVirtual()) {
1045          VirtualBaseSpec = Path->back().Base;
1046          break;
1047        }
1048      }
1049    }
1050  }
1051
1052  return DirectBaseSpec || VirtualBaseSpec;
1053}
1054
1055/// ActOnMemInitializer - Handle a C++ member initializer.
1056Sema::MemInitResult
1057Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1058                          Scope *S,
1059                          CXXScopeSpec &SS,
1060                          IdentifierInfo *MemberOrBase,
1061                          TypeTy *TemplateTypeTy,
1062                          SourceLocation IdLoc,
1063                          SourceLocation LParenLoc,
1064                          ExprTy **Args, unsigned NumArgs,
1065                          SourceLocation *CommaLocs,
1066                          SourceLocation RParenLoc) {
1067  if (!ConstructorD)
1068    return true;
1069
1070  AdjustDeclIfTemplate(ConstructorD);
1071
1072  CXXConstructorDecl *Constructor
1073    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1074  if (!Constructor) {
1075    // The user wrote a constructor initializer on a function that is
1076    // not a C++ constructor. Ignore the error for now, because we may
1077    // have more member initializers coming; we'll diagnose it just
1078    // once in ActOnMemInitializers.
1079    return true;
1080  }
1081
1082  CXXRecordDecl *ClassDecl = Constructor->getParent();
1083
1084  // C++ [class.base.init]p2:
1085  //   Names in a mem-initializer-id are looked up in the scope of the
1086  //   constructor’s class and, if not found in that scope, are looked
1087  //   up in the scope containing the constructor’s
1088  //   definition. [Note: if the constructor’s class contains a member
1089  //   with the same name as a direct or virtual base class of the
1090  //   class, a mem-initializer-id naming the member or base class and
1091  //   composed of a single identifier refers to the class member. A
1092  //   mem-initializer-id for the hidden base class may be specified
1093  //   using a qualified name. ]
1094  if (!SS.getScopeRep() && !TemplateTypeTy) {
1095    // Look for a member, first.
1096    FieldDecl *Member = 0;
1097    DeclContext::lookup_result Result
1098      = ClassDecl->lookup(MemberOrBase);
1099    if (Result.first != Result.second)
1100      Member = dyn_cast<FieldDecl>(*Result.first);
1101
1102    // FIXME: Handle members of an anonymous union.
1103
1104    if (Member)
1105      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1106                                    LParenLoc, RParenLoc);
1107  }
1108  // It didn't name a member, so see if it names a class.
1109  QualType BaseType;
1110  TypeSourceInfo *TInfo = 0;
1111
1112  if (TemplateTypeTy) {
1113    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1114  } else {
1115    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1116    LookupParsedName(R, S, &SS);
1117
1118    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1119    if (!TyD) {
1120      if (R.isAmbiguous()) return true;
1121
1122      // We don't want access-control diagnostics here.
1123      R.suppressDiagnostics();
1124
1125      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1126        bool NotUnknownSpecialization = false;
1127        DeclContext *DC = computeDeclContext(SS, false);
1128        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1129          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1130
1131        if (!NotUnknownSpecialization) {
1132          // When the scope specifier can refer to a member of an unknown
1133          // specialization, we take it as a type name.
1134          BaseType = CheckTypenameType(ETK_None,
1135                                       (NestedNameSpecifier *)SS.getScopeRep(),
1136                                       *MemberOrBase, SourceLocation(),
1137                                       SS.getRange(), IdLoc);
1138          if (BaseType.isNull())
1139            return true;
1140
1141          R.clear();
1142          R.setLookupName(MemberOrBase);
1143        }
1144      }
1145
1146      // If no results were found, try to correct typos.
1147      if (R.empty() && BaseType.isNull() &&
1148          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1149          R.isSingleResult()) {
1150        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1151          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1152            // We have found a non-static data member with a similar
1153            // name to what was typed; complain and initialize that
1154            // member.
1155            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1156              << MemberOrBase << true << R.getLookupName()
1157              << FixItHint::CreateReplacement(R.getNameLoc(),
1158                                              R.getLookupName().getAsString());
1159            Diag(Member->getLocation(), diag::note_previous_decl)
1160              << Member->getDeclName();
1161
1162            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1163                                          LParenLoc, RParenLoc);
1164          }
1165        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1166          const CXXBaseSpecifier *DirectBaseSpec;
1167          const CXXBaseSpecifier *VirtualBaseSpec;
1168          if (FindBaseInitializer(*this, ClassDecl,
1169                                  Context.getTypeDeclType(Type),
1170                                  DirectBaseSpec, VirtualBaseSpec)) {
1171            // We have found a direct or virtual base class with a
1172            // similar name to what was typed; complain and initialize
1173            // that base class.
1174            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1175              << MemberOrBase << false << R.getLookupName()
1176              << FixItHint::CreateReplacement(R.getNameLoc(),
1177                                              R.getLookupName().getAsString());
1178
1179            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1180                                                             : VirtualBaseSpec;
1181            Diag(BaseSpec->getSourceRange().getBegin(),
1182                 diag::note_base_class_specified_here)
1183              << BaseSpec->getType()
1184              << BaseSpec->getSourceRange();
1185
1186            TyD = Type;
1187          }
1188        }
1189      }
1190
1191      if (!TyD && BaseType.isNull()) {
1192        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1193          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1194        return true;
1195      }
1196    }
1197
1198    if (BaseType.isNull()) {
1199      BaseType = Context.getTypeDeclType(TyD);
1200      if (SS.isSet()) {
1201        NestedNameSpecifier *Qualifier =
1202          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1203
1204        // FIXME: preserve source range information
1205        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1206      }
1207    }
1208  }
1209
1210  if (!TInfo)
1211    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1212
1213  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1214                              LParenLoc, RParenLoc, ClassDecl);
1215}
1216
1217/// Checks an initializer expression for use of uninitialized fields, such as
1218/// containing the field that is being initialized. Returns true if there is an
1219/// uninitialized field was used an updates the SourceLocation parameter; false
1220/// otherwise.
1221static bool InitExprContainsUninitializedFields(const Stmt *S,
1222                                                const FieldDecl *LhsField,
1223                                                SourceLocation *L) {
1224  if (isa<CallExpr>(S)) {
1225    // Do not descend into function calls or constructors, as the use
1226    // of an uninitialized field may be valid. One would have to inspect
1227    // the contents of the function/ctor to determine if it is safe or not.
1228    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1229    // may be safe, depending on what the function/ctor does.
1230    return false;
1231  }
1232  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1233    const NamedDecl *RhsField = ME->getMemberDecl();
1234    if (RhsField == LhsField) {
1235      // Initializing a field with itself. Throw a warning.
1236      // But wait; there are exceptions!
1237      // Exception #1:  The field may not belong to this record.
1238      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1239      const Expr *base = ME->getBase();
1240      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1241        // Even though the field matches, it does not belong to this record.
1242        return false;
1243      }
1244      // None of the exceptions triggered; return true to indicate an
1245      // uninitialized field was used.
1246      *L = ME->getMemberLoc();
1247      return true;
1248    }
1249  }
1250  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1251       it != e; ++it) {
1252    if (!*it) {
1253      // An expression such as 'member(arg ?: "")' may trigger this.
1254      continue;
1255    }
1256    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1257      return true;
1258  }
1259  return false;
1260}
1261
1262Sema::MemInitResult
1263Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1264                             unsigned NumArgs, SourceLocation IdLoc,
1265                             SourceLocation LParenLoc,
1266                             SourceLocation RParenLoc) {
1267  // Diagnose value-uses of fields to initialize themselves, e.g.
1268  //   foo(foo)
1269  // where foo is not also a parameter to the constructor.
1270  // TODO: implement -Wuninitialized and fold this into that framework.
1271  for (unsigned i = 0; i < NumArgs; ++i) {
1272    SourceLocation L;
1273    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1274      // FIXME: Return true in the case when other fields are used before being
1275      // uninitialized. For example, let this field be the i'th field. When
1276      // initializing the i'th field, throw a warning if any of the >= i'th
1277      // fields are used, as they are not yet initialized.
1278      // Right now we are only handling the case where the i'th field uses
1279      // itself in its initializer.
1280      Diag(L, diag::warn_field_is_uninit);
1281    }
1282  }
1283
1284  bool HasDependentArg = false;
1285  for (unsigned i = 0; i < NumArgs; i++)
1286    HasDependentArg |= Args[i]->isTypeDependent();
1287
1288  QualType FieldType = Member->getType();
1289  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1290    FieldType = Array->getElementType();
1291  if (FieldType->isDependentType() || HasDependentArg) {
1292    // Can't check initialization for a member of dependent type or when
1293    // any of the arguments are type-dependent expressions.
1294    OwningExprResult Init
1295      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1296                                          RParenLoc));
1297
1298    // Erase any temporaries within this evaluation context; we're not
1299    // going to track them in the AST, since we'll be rebuilding the
1300    // ASTs during template instantiation.
1301    ExprTemporaries.erase(
1302              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1303                          ExprTemporaries.end());
1304
1305    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1306                                                    LParenLoc,
1307                                                    Init.takeAs<Expr>(),
1308                                                    RParenLoc);
1309
1310  }
1311
1312  if (Member->isInvalidDecl())
1313    return true;
1314
1315  // Initialize the member.
1316  InitializedEntity MemberEntity =
1317    InitializedEntity::InitializeMember(Member, 0);
1318  InitializationKind Kind =
1319    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1320
1321  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1322
1323  OwningExprResult MemberInit =
1324    InitSeq.Perform(*this, MemberEntity, Kind,
1325                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1326  if (MemberInit.isInvalid())
1327    return true;
1328
1329  // C++0x [class.base.init]p7:
1330  //   The initialization of each base and member constitutes a
1331  //   full-expression.
1332  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1333  if (MemberInit.isInvalid())
1334    return true;
1335
1336  // If we are in a dependent context, template instantiation will
1337  // perform this type-checking again. Just save the arguments that we
1338  // received in a ParenListExpr.
1339  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1340  // of the information that we have about the member
1341  // initializer. However, deconstructing the ASTs is a dicey process,
1342  // and this approach is far more likely to get the corner cases right.
1343  if (CurContext->isDependentContext()) {
1344    // Bump the reference count of all of the arguments.
1345    for (unsigned I = 0; I != NumArgs; ++I)
1346      Args[I]->Retain();
1347
1348    OwningExprResult Init
1349      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1350                                          RParenLoc));
1351    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1352                                                    LParenLoc,
1353                                                    Init.takeAs<Expr>(),
1354                                                    RParenLoc);
1355  }
1356
1357  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1358                                                  LParenLoc,
1359                                                  MemberInit.takeAs<Expr>(),
1360                                                  RParenLoc);
1361}
1362
1363Sema::MemInitResult
1364Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1365                           Expr **Args, unsigned NumArgs,
1366                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1367                           CXXRecordDecl *ClassDecl) {
1368  bool HasDependentArg = false;
1369  for (unsigned i = 0; i < NumArgs; i++)
1370    HasDependentArg |= Args[i]->isTypeDependent();
1371
1372  SourceLocation BaseLoc
1373    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1374
1375  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1376    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1377             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1378
1379  // C++ [class.base.init]p2:
1380  //   [...] Unless the mem-initializer-id names a nonstatic data
1381  //   member of the constructor’s class or a direct or virtual base
1382  //   of that class, the mem-initializer is ill-formed. A
1383  //   mem-initializer-list can initialize a base class using any
1384  //   name that denotes that base class type.
1385  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1386
1387  // Check for direct and virtual base classes.
1388  const CXXBaseSpecifier *DirectBaseSpec = 0;
1389  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1390  if (!Dependent) {
1391    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1392                        VirtualBaseSpec);
1393
1394    // C++ [base.class.init]p2:
1395    // Unless the mem-initializer-id names a nonstatic data member of the
1396    // constructor's class or a direct or virtual base of that class, the
1397    // mem-initializer is ill-formed.
1398    if (!DirectBaseSpec && !VirtualBaseSpec) {
1399      // If the class has any dependent bases, then it's possible that
1400      // one of those types will resolve to the same type as
1401      // BaseType. Therefore, just treat this as a dependent base
1402      // class initialization.  FIXME: Should we try to check the
1403      // initialization anyway? It seems odd.
1404      if (ClassDecl->hasAnyDependentBases())
1405        Dependent = true;
1406      else
1407        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1408          << BaseType << Context.getTypeDeclType(ClassDecl)
1409          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1410    }
1411  }
1412
1413  if (Dependent) {
1414    // Can't check initialization for a base of dependent type or when
1415    // any of the arguments are type-dependent expressions.
1416    OwningExprResult BaseInit
1417      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1418                                          RParenLoc));
1419
1420    // Erase any temporaries within this evaluation context; we're not
1421    // going to track them in the AST, since we'll be rebuilding the
1422    // ASTs during template instantiation.
1423    ExprTemporaries.erase(
1424              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1425                          ExprTemporaries.end());
1426
1427    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1428                                                    /*IsVirtual=*/false,
1429                                                    LParenLoc,
1430                                                    BaseInit.takeAs<Expr>(),
1431                                                    RParenLoc);
1432  }
1433
1434  // C++ [base.class.init]p2:
1435  //   If a mem-initializer-id is ambiguous because it designates both
1436  //   a direct non-virtual base class and an inherited virtual base
1437  //   class, the mem-initializer is ill-formed.
1438  if (DirectBaseSpec && VirtualBaseSpec)
1439    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1440      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1441
1442  CXXBaseSpecifier *BaseSpec
1443    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1444  if (!BaseSpec)
1445    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1446
1447  // Initialize the base.
1448  InitializedEntity BaseEntity =
1449    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1450  InitializationKind Kind =
1451    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1452
1453  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1454
1455  OwningExprResult BaseInit =
1456    InitSeq.Perform(*this, BaseEntity, Kind,
1457                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1458  if (BaseInit.isInvalid())
1459    return true;
1460
1461  // C++0x [class.base.init]p7:
1462  //   The initialization of each base and member constitutes a
1463  //   full-expression.
1464  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1465  if (BaseInit.isInvalid())
1466    return true;
1467
1468  // If we are in a dependent context, template instantiation will
1469  // perform this type-checking again. Just save the arguments that we
1470  // received in a ParenListExpr.
1471  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1472  // of the information that we have about the base
1473  // initializer. However, deconstructing the ASTs is a dicey process,
1474  // and this approach is far more likely to get the corner cases right.
1475  if (CurContext->isDependentContext()) {
1476    // Bump the reference count of all of the arguments.
1477    for (unsigned I = 0; I != NumArgs; ++I)
1478      Args[I]->Retain();
1479
1480    OwningExprResult Init
1481      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1482                                          RParenLoc));
1483    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1484                                                    BaseSpec->isVirtual(),
1485                                                    LParenLoc,
1486                                                    Init.takeAs<Expr>(),
1487                                                    RParenLoc);
1488  }
1489
1490  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1491                                                  BaseSpec->isVirtual(),
1492                                                  LParenLoc,
1493                                                  BaseInit.takeAs<Expr>(),
1494                                                  RParenLoc);
1495}
1496
1497/// ImplicitInitializerKind - How an implicit base or member initializer should
1498/// initialize its base or member.
1499enum ImplicitInitializerKind {
1500  IIK_Default,
1501  IIK_Copy,
1502  IIK_Move
1503};
1504
1505static bool
1506BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1507                             ImplicitInitializerKind ImplicitInitKind,
1508                             CXXBaseSpecifier *BaseSpec,
1509                             bool IsInheritedVirtualBase,
1510                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1511  InitializedEntity InitEntity
1512    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1513                                        IsInheritedVirtualBase);
1514
1515  Sema::OwningExprResult BaseInit(SemaRef);
1516
1517  switch (ImplicitInitKind) {
1518  case IIK_Default: {
1519    InitializationKind InitKind
1520      = InitializationKind::CreateDefault(Constructor->getLocation());
1521    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1522    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1523                               Sema::MultiExprArg(SemaRef, 0, 0));
1524    break;
1525  }
1526
1527  case IIK_Copy: {
1528    ParmVarDecl *Param = Constructor->getParamDecl(0);
1529    QualType ParamType = Param->getType().getNonReferenceType();
1530
1531    Expr *CopyCtorArg =
1532      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1533                          Constructor->getLocation(), ParamType, 0);
1534
1535    // Cast to the base class to avoid ambiguities.
1536    QualType ArgTy =
1537      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1538                                       ParamType.getQualifiers());
1539    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1540                              CastExpr::CK_UncheckedDerivedToBase,
1541                              /*isLvalue=*/true,
1542                              CXXBaseSpecifierArray(BaseSpec));
1543
1544    InitializationKind InitKind
1545      = InitializationKind::CreateDirect(Constructor->getLocation(),
1546                                         SourceLocation(), SourceLocation());
1547    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1548                                   &CopyCtorArg, 1);
1549    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1550                               Sema::MultiExprArg(SemaRef,
1551                                                  (void**)&CopyCtorArg, 1));
1552    break;
1553  }
1554
1555  case IIK_Move:
1556    assert(false && "Unhandled initializer kind!");
1557  }
1558
1559  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1560  if (BaseInit.isInvalid())
1561    return true;
1562
1563  CXXBaseInit =
1564    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1565               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1566                                                        SourceLocation()),
1567                                             BaseSpec->isVirtual(),
1568                                             SourceLocation(),
1569                                             BaseInit.takeAs<Expr>(),
1570                                             SourceLocation());
1571
1572  return false;
1573}
1574
1575static bool
1576BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1577                               ImplicitInitializerKind ImplicitInitKind,
1578                               FieldDecl *Field,
1579                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1580  if (Field->isInvalidDecl())
1581    return true;
1582
1583  SourceLocation Loc = Constructor->getLocation();
1584
1585  if (ImplicitInitKind == IIK_Copy) {
1586    ParmVarDecl *Param = Constructor->getParamDecl(0);
1587    QualType ParamType = Param->getType().getNonReferenceType();
1588
1589    Expr *MemberExprBase =
1590      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1591                          Loc, ParamType, 0);
1592
1593    // Build a reference to this field within the parameter.
1594    CXXScopeSpec SS;
1595    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1596                              Sema::LookupMemberName);
1597    MemberLookup.addDecl(Field, AS_public);
1598    MemberLookup.resolveKind();
1599    Sema::OwningExprResult CopyCtorArg
1600      = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
1601                                         ParamType, Loc,
1602                                         /*IsArrow=*/false,
1603                                         SS,
1604                                         /*FirstQualifierInScope=*/0,
1605                                         MemberLookup,
1606                                         /*TemplateArgs=*/0);
1607    if (CopyCtorArg.isInvalid())
1608      return true;
1609
1610    // When the field we are copying is an array, create index variables for
1611    // each dimension of the array. We use these index variables to subscript
1612    // the source array, and other clients (e.g., CodeGen) will perform the
1613    // necessary iteration with these index variables.
1614    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1615    QualType BaseType = Field->getType();
1616    QualType SizeType = SemaRef.Context.getSizeType();
1617    while (const ConstantArrayType *Array
1618                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1619      // Create the iteration variable for this array index.
1620      IdentifierInfo *IterationVarName = 0;
1621      {
1622        llvm::SmallString<8> Str;
1623        llvm::raw_svector_ostream OS(Str);
1624        OS << "__i" << IndexVariables.size();
1625        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1626      }
1627      VarDecl *IterationVar
1628        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1629                          IterationVarName, SizeType,
1630                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1631                          VarDecl::None, VarDecl::None);
1632      IndexVariables.push_back(IterationVar);
1633
1634      // Create a reference to the iteration variable.
1635      Sema::OwningExprResult IterationVarRef
1636        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1637      assert(!IterationVarRef.isInvalid() &&
1638             "Reference to invented variable cannot fail!");
1639
1640      // Subscript the array with this iteration variable.
1641      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
1642                                                            Loc,
1643                                                          move(IterationVarRef),
1644                                                            Loc);
1645      if (CopyCtorArg.isInvalid())
1646        return true;
1647
1648      BaseType = Array->getElementType();
1649    }
1650
1651    // Construct the entity that we will be initializing. For an array, this
1652    // will be first element in the array, which may require several levels
1653    // of array-subscript entities.
1654    llvm::SmallVector<InitializedEntity, 4> Entities;
1655    Entities.reserve(1 + IndexVariables.size());
1656    Entities.push_back(InitializedEntity::InitializeMember(Field));
1657    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1658      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1659                                                              0,
1660                                                              Entities.back()));
1661
1662    // Direct-initialize to use the copy constructor.
1663    InitializationKind InitKind =
1664      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1665
1666    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1667    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1668                                   &CopyCtorArgE, 1);
1669
1670    Sema::OwningExprResult MemberInit
1671      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1672                        Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
1673    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1674    if (MemberInit.isInvalid())
1675      return true;
1676
1677    CXXMemberInit
1678      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1679                                           MemberInit.takeAs<Expr>(), Loc,
1680                                           IndexVariables.data(),
1681                                           IndexVariables.size());
1682    return false;
1683  }
1684
1685  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1686
1687  QualType FieldBaseElementType =
1688    SemaRef.Context.getBaseElementType(Field->getType());
1689
1690  if (FieldBaseElementType->isRecordType()) {
1691    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1692    InitializationKind InitKind =
1693      InitializationKind::CreateDefault(Loc);
1694
1695    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1696    Sema::OwningExprResult MemberInit =
1697      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1698                      Sema::MultiExprArg(SemaRef, 0, 0));
1699    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1700    if (MemberInit.isInvalid())
1701      return true;
1702
1703    CXXMemberInit =
1704      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1705                                                       Field, Loc, Loc,
1706                                                      MemberInit.takeAs<Expr>(),
1707                                                       Loc);
1708    return false;
1709  }
1710
1711  if (FieldBaseElementType->isReferenceType()) {
1712    SemaRef.Diag(Constructor->getLocation(),
1713                 diag::err_uninitialized_member_in_ctor)
1714    << (int)Constructor->isImplicit()
1715    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1716    << 0 << Field->getDeclName();
1717    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1718    return true;
1719  }
1720
1721  if (FieldBaseElementType.isConstQualified()) {
1722    SemaRef.Diag(Constructor->getLocation(),
1723                 diag::err_uninitialized_member_in_ctor)
1724    << (int)Constructor->isImplicit()
1725    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1726    << 1 << Field->getDeclName();
1727    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1728    return true;
1729  }
1730
1731  // Nothing to initialize.
1732  CXXMemberInit = 0;
1733  return false;
1734}
1735
1736namespace {
1737struct BaseAndFieldInfo {
1738  Sema &S;
1739  CXXConstructorDecl *Ctor;
1740  bool AnyErrorsInInits;
1741  ImplicitInitializerKind IIK;
1742  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1743  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1744
1745  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1746    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1747    // FIXME: Handle implicit move constructors.
1748    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1749      IIK = IIK_Copy;
1750    else
1751      IIK = IIK_Default;
1752  }
1753};
1754}
1755
1756static void RecordFieldInitializer(BaseAndFieldInfo &Info,
1757                                   FieldDecl *Top, FieldDecl *Field,
1758                                   CXXBaseOrMemberInitializer *Init) {
1759  // If the member doesn't need to be initialized, Init will still be null.
1760  if (!Init)
1761    return;
1762
1763  Info.AllToInit.push_back(Init);
1764  if (Field != Top) {
1765    Init->setMember(Top);
1766    Init->setAnonUnionMember(Field);
1767  }
1768}
1769
1770static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1771                                    FieldDecl *Top, FieldDecl *Field) {
1772
1773  // Overwhelmingly common case: we have a direct initializer for this field.
1774  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1775    RecordFieldInitializer(Info, Top, Field, Init);
1776    return false;
1777  }
1778
1779  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1780    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1781    assert(FieldClassType && "anonymous struct/union without record type");
1782    CXXRecordDecl *FieldClassDecl
1783      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1784
1785    // Even though union members never have non-trivial default
1786    // constructions in C++03, we still build member initializers for aggregate
1787    // record types which can be union members, and C++0x allows non-trivial
1788    // default constructors for union members, so we ensure that only one
1789    // member is initialized for these.
1790    if (FieldClassDecl->isUnion()) {
1791      // First check for an explicit initializer for one field.
1792      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1793           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1794        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1795          RecordFieldInitializer(Info, Top, *FA, Init);
1796
1797          // Once we've initialized a field of an anonymous union, the union
1798          // field in the class is also initialized, so exit immediately.
1799          return false;
1800        }
1801      }
1802
1803      // Fallthrough and construct a default initializer for the union as
1804      // a whole, which can call its default constructor if such a thing exists
1805      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1806      // behavior going forward with C++0x, when anonymous unions there are
1807      // finalized, we should revisit this.
1808    } else {
1809      // For structs, we simply descend through to initialize all members where
1810      // necessary.
1811      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1812           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1813        if (CollectFieldInitializer(Info, Top, *FA))
1814          return true;
1815      }
1816    }
1817  }
1818
1819  // Don't try to build an implicit initializer if there were semantic
1820  // errors in any of the initializers (and therefore we might be
1821  // missing some that the user actually wrote).
1822  if (Info.AnyErrorsInInits)
1823    return false;
1824
1825  CXXBaseOrMemberInitializer *Init = 0;
1826  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1827    return true;
1828
1829  RecordFieldInitializer(Info, Top, Field, Init);
1830  return false;
1831}
1832
1833bool
1834Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1835                                  CXXBaseOrMemberInitializer **Initializers,
1836                                  unsigned NumInitializers,
1837                                  bool AnyErrors) {
1838  if (Constructor->getDeclContext()->isDependentContext()) {
1839    // Just store the initializers as written, they will be checked during
1840    // instantiation.
1841    if (NumInitializers > 0) {
1842      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1843      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1844        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1845      memcpy(baseOrMemberInitializers, Initializers,
1846             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1847      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1848    }
1849
1850    return false;
1851  }
1852
1853  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1854
1855  // We need to build the initializer AST according to order of construction
1856  // and not what user specified in the Initializers list.
1857  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1858  if (!ClassDecl)
1859    return true;
1860
1861  bool HadError = false;
1862
1863  for (unsigned i = 0; i < NumInitializers; i++) {
1864    CXXBaseOrMemberInitializer *Member = Initializers[i];
1865
1866    if (Member->isBaseInitializer())
1867      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1868    else
1869      Info.AllBaseFields[Member->getMember()] = Member;
1870  }
1871
1872  // Keep track of the direct virtual bases.
1873  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1874  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1875       E = ClassDecl->bases_end(); I != E; ++I) {
1876    if (I->isVirtual())
1877      DirectVBases.insert(I);
1878  }
1879
1880  // Push virtual bases before others.
1881  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1882       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1883
1884    if (CXXBaseOrMemberInitializer *Value
1885        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1886      Info.AllToInit.push_back(Value);
1887    } else if (!AnyErrors) {
1888      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1889      CXXBaseOrMemberInitializer *CXXBaseInit;
1890      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1891                                       VBase, IsInheritedVirtualBase,
1892                                       CXXBaseInit)) {
1893        HadError = true;
1894        continue;
1895      }
1896
1897      Info.AllToInit.push_back(CXXBaseInit);
1898    }
1899  }
1900
1901  // Non-virtual bases.
1902  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1903       E = ClassDecl->bases_end(); Base != E; ++Base) {
1904    // Virtuals are in the virtual base list and already constructed.
1905    if (Base->isVirtual())
1906      continue;
1907
1908    if (CXXBaseOrMemberInitializer *Value
1909          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1910      Info.AllToInit.push_back(Value);
1911    } else if (!AnyErrors) {
1912      CXXBaseOrMemberInitializer *CXXBaseInit;
1913      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1914                                       Base, /*IsInheritedVirtualBase=*/false,
1915                                       CXXBaseInit)) {
1916        HadError = true;
1917        continue;
1918      }
1919
1920      Info.AllToInit.push_back(CXXBaseInit);
1921    }
1922  }
1923
1924  // Fields.
1925  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1926       E = ClassDecl->field_end(); Field != E; ++Field) {
1927    if ((*Field)->getType()->isIncompleteArrayType()) {
1928      assert(ClassDecl->hasFlexibleArrayMember() &&
1929             "Incomplete array type is not valid");
1930      continue;
1931    }
1932    if (CollectFieldInitializer(Info, *Field, *Field))
1933      HadError = true;
1934  }
1935
1936  NumInitializers = Info.AllToInit.size();
1937  if (NumInitializers > 0) {
1938    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1939    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1940      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1941    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1942           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1943    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1944
1945    // Constructors implicitly reference the base and member
1946    // destructors.
1947    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1948                                           Constructor->getParent());
1949  }
1950
1951  return HadError;
1952}
1953
1954static void *GetKeyForTopLevelField(FieldDecl *Field) {
1955  // For anonymous unions, use the class declaration as the key.
1956  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1957    if (RT->getDecl()->isAnonymousStructOrUnion())
1958      return static_cast<void *>(RT->getDecl());
1959  }
1960  return static_cast<void *>(Field);
1961}
1962
1963static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1964  return Context.getCanonicalType(BaseType).getTypePtr();
1965}
1966
1967static void *GetKeyForMember(ASTContext &Context,
1968                             CXXBaseOrMemberInitializer *Member,
1969                             bool MemberMaybeAnon = false) {
1970  if (!Member->isMemberInitializer())
1971    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1972
1973  // For fields injected into the class via declaration of an anonymous union,
1974  // use its anonymous union class declaration as the unique key.
1975  FieldDecl *Field = Member->getMember();
1976
1977  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1978  // data member of the class. Data member used in the initializer list is
1979  // in AnonUnionMember field.
1980  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1981    Field = Member->getAnonUnionMember();
1982
1983  // If the field is a member of an anonymous struct or union, our key
1984  // is the anonymous record decl that's a direct child of the class.
1985  RecordDecl *RD = Field->getParent();
1986  if (RD->isAnonymousStructOrUnion()) {
1987    while (true) {
1988      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1989      if (Parent->isAnonymousStructOrUnion())
1990        RD = Parent;
1991      else
1992        break;
1993    }
1994
1995    return static_cast<void *>(RD);
1996  }
1997
1998  return static_cast<void *>(Field);
1999}
2000
2001static void
2002DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2003                                  const CXXConstructorDecl *Constructor,
2004                                  CXXBaseOrMemberInitializer **Inits,
2005                                  unsigned NumInits) {
2006  if (Constructor->getDeclContext()->isDependentContext())
2007    return;
2008
2009  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
2010        == Diagnostic::Ignored)
2011    return;
2012
2013  // Build the list of bases and members in the order that they'll
2014  // actually be initialized.  The explicit initializers should be in
2015  // this same order but may be missing things.
2016  llvm::SmallVector<const void*, 32> IdealInitKeys;
2017
2018  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2019
2020  // 1. Virtual bases.
2021  for (CXXRecordDecl::base_class_const_iterator VBase =
2022       ClassDecl->vbases_begin(),
2023       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2024    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2025
2026  // 2. Non-virtual bases.
2027  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2028       E = ClassDecl->bases_end(); Base != E; ++Base) {
2029    if (Base->isVirtual())
2030      continue;
2031    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2032  }
2033
2034  // 3. Direct fields.
2035  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2036       E = ClassDecl->field_end(); Field != E; ++Field)
2037    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2038
2039  unsigned NumIdealInits = IdealInitKeys.size();
2040  unsigned IdealIndex = 0;
2041
2042  CXXBaseOrMemberInitializer *PrevInit = 0;
2043  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2044    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2045    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2046
2047    // Scan forward to try to find this initializer in the idealized
2048    // initializers list.
2049    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2050      if (InitKey == IdealInitKeys[IdealIndex])
2051        break;
2052
2053    // If we didn't find this initializer, it must be because we
2054    // scanned past it on a previous iteration.  That can only
2055    // happen if we're out of order;  emit a warning.
2056    if (IdealIndex == NumIdealInits && PrevInit) {
2057      Sema::SemaDiagnosticBuilder D =
2058        SemaRef.Diag(PrevInit->getSourceLocation(),
2059                     diag::warn_initializer_out_of_order);
2060
2061      if (PrevInit->isMemberInitializer())
2062        D << 0 << PrevInit->getMember()->getDeclName();
2063      else
2064        D << 1 << PrevInit->getBaseClassInfo()->getType();
2065
2066      if (Init->isMemberInitializer())
2067        D << 0 << Init->getMember()->getDeclName();
2068      else
2069        D << 1 << Init->getBaseClassInfo()->getType();
2070
2071      // Move back to the initializer's location in the ideal list.
2072      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2073        if (InitKey == IdealInitKeys[IdealIndex])
2074          break;
2075
2076      assert(IdealIndex != NumIdealInits &&
2077             "initializer not found in initializer list");
2078    }
2079
2080    PrevInit = Init;
2081  }
2082}
2083
2084namespace {
2085bool CheckRedundantInit(Sema &S,
2086                        CXXBaseOrMemberInitializer *Init,
2087                        CXXBaseOrMemberInitializer *&PrevInit) {
2088  if (!PrevInit) {
2089    PrevInit = Init;
2090    return false;
2091  }
2092
2093  if (FieldDecl *Field = Init->getMember())
2094    S.Diag(Init->getSourceLocation(),
2095           diag::err_multiple_mem_initialization)
2096      << Field->getDeclName()
2097      << Init->getSourceRange();
2098  else {
2099    Type *BaseClass = Init->getBaseClass();
2100    assert(BaseClass && "neither field nor base");
2101    S.Diag(Init->getSourceLocation(),
2102           diag::err_multiple_base_initialization)
2103      << QualType(BaseClass, 0)
2104      << Init->getSourceRange();
2105  }
2106  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2107    << 0 << PrevInit->getSourceRange();
2108
2109  return true;
2110}
2111
2112typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2113typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2114
2115bool CheckRedundantUnionInit(Sema &S,
2116                             CXXBaseOrMemberInitializer *Init,
2117                             RedundantUnionMap &Unions) {
2118  FieldDecl *Field = Init->getMember();
2119  RecordDecl *Parent = Field->getParent();
2120  if (!Parent->isAnonymousStructOrUnion())
2121    return false;
2122
2123  NamedDecl *Child = Field;
2124  do {
2125    if (Parent->isUnion()) {
2126      UnionEntry &En = Unions[Parent];
2127      if (En.first && En.first != Child) {
2128        S.Diag(Init->getSourceLocation(),
2129               diag::err_multiple_mem_union_initialization)
2130          << Field->getDeclName()
2131          << Init->getSourceRange();
2132        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2133          << 0 << En.second->getSourceRange();
2134        return true;
2135      } else if (!En.first) {
2136        En.first = Child;
2137        En.second = Init;
2138      }
2139    }
2140
2141    Child = Parent;
2142    Parent = cast<RecordDecl>(Parent->getDeclContext());
2143  } while (Parent->isAnonymousStructOrUnion());
2144
2145  return false;
2146}
2147}
2148
2149/// ActOnMemInitializers - Handle the member initializers for a constructor.
2150void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
2151                                SourceLocation ColonLoc,
2152                                MemInitTy **meminits, unsigned NumMemInits,
2153                                bool AnyErrors) {
2154  if (!ConstructorDecl)
2155    return;
2156
2157  AdjustDeclIfTemplate(ConstructorDecl);
2158
2159  CXXConstructorDecl *Constructor
2160    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
2161
2162  if (!Constructor) {
2163    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2164    return;
2165  }
2166
2167  CXXBaseOrMemberInitializer **MemInits =
2168    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2169
2170  // Mapping for the duplicate initializers check.
2171  // For member initializers, this is keyed with a FieldDecl*.
2172  // For base initializers, this is keyed with a Type*.
2173  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2174
2175  // Mapping for the inconsistent anonymous-union initializers check.
2176  RedundantUnionMap MemberUnions;
2177
2178  bool HadError = false;
2179  for (unsigned i = 0; i < NumMemInits; i++) {
2180    CXXBaseOrMemberInitializer *Init = MemInits[i];
2181
2182    // Set the source order index.
2183    Init->setSourceOrder(i);
2184
2185    if (Init->isMemberInitializer()) {
2186      FieldDecl *Field = Init->getMember();
2187      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2188          CheckRedundantUnionInit(*this, Init, MemberUnions))
2189        HadError = true;
2190    } else {
2191      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2192      if (CheckRedundantInit(*this, Init, Members[Key]))
2193        HadError = true;
2194    }
2195  }
2196
2197  if (HadError)
2198    return;
2199
2200  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2201
2202  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2203}
2204
2205void
2206Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2207                                             CXXRecordDecl *ClassDecl) {
2208  // Ignore dependent contexts.
2209  if (ClassDecl->isDependentContext())
2210    return;
2211
2212  // FIXME: all the access-control diagnostics are positioned on the
2213  // field/base declaration.  That's probably good; that said, the
2214  // user might reasonably want to know why the destructor is being
2215  // emitted, and we currently don't say.
2216
2217  // Non-static data members.
2218  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2219       E = ClassDecl->field_end(); I != E; ++I) {
2220    FieldDecl *Field = *I;
2221    if (Field->isInvalidDecl())
2222      continue;
2223    QualType FieldType = Context.getBaseElementType(Field->getType());
2224
2225    const RecordType* RT = FieldType->getAs<RecordType>();
2226    if (!RT)
2227      continue;
2228
2229    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2230    if (FieldClassDecl->hasTrivialDestructor())
2231      continue;
2232
2233    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2234    CheckDestructorAccess(Field->getLocation(), Dtor,
2235                          PDiag(diag::err_access_dtor_field)
2236                            << Field->getDeclName()
2237                            << FieldType);
2238
2239    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2240  }
2241
2242  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2243
2244  // Bases.
2245  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2246       E = ClassDecl->bases_end(); Base != E; ++Base) {
2247    // Bases are always records in a well-formed non-dependent class.
2248    const RecordType *RT = Base->getType()->getAs<RecordType>();
2249
2250    // Remember direct virtual bases.
2251    if (Base->isVirtual())
2252      DirectVirtualBases.insert(RT);
2253
2254    // Ignore trivial destructors.
2255    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2256    if (BaseClassDecl->hasTrivialDestructor())
2257      continue;
2258
2259    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2260
2261    // FIXME: caret should be on the start of the class name
2262    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2263                          PDiag(diag::err_access_dtor_base)
2264                            << Base->getType()
2265                            << Base->getSourceRange());
2266
2267    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2268  }
2269
2270  // Virtual bases.
2271  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2272       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2273
2274    // Bases are always records in a well-formed non-dependent class.
2275    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2276
2277    // Ignore direct virtual bases.
2278    if (DirectVirtualBases.count(RT))
2279      continue;
2280
2281    // Ignore trivial destructors.
2282    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2283    if (BaseClassDecl->hasTrivialDestructor())
2284      continue;
2285
2286    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2287    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2288                          PDiag(diag::err_access_dtor_vbase)
2289                            << VBase->getType());
2290
2291    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2292  }
2293}
2294
2295void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2296  if (!CDtorDecl)
2297    return;
2298
2299  if (CXXConstructorDecl *Constructor
2300      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2301    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2302}
2303
2304bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2305                                  unsigned DiagID, AbstractDiagSelID SelID,
2306                                  const CXXRecordDecl *CurrentRD) {
2307  if (SelID == -1)
2308    return RequireNonAbstractType(Loc, T,
2309                                  PDiag(DiagID), CurrentRD);
2310  else
2311    return RequireNonAbstractType(Loc, T,
2312                                  PDiag(DiagID) << SelID, CurrentRD);
2313}
2314
2315bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2316                                  const PartialDiagnostic &PD,
2317                                  const CXXRecordDecl *CurrentRD) {
2318  if (!getLangOptions().CPlusPlus)
2319    return false;
2320
2321  if (const ArrayType *AT = Context.getAsArrayType(T))
2322    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2323                                  CurrentRD);
2324
2325  if (const PointerType *PT = T->getAs<PointerType>()) {
2326    // Find the innermost pointer type.
2327    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2328      PT = T;
2329
2330    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2331      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2332  }
2333
2334  const RecordType *RT = T->getAs<RecordType>();
2335  if (!RT)
2336    return false;
2337
2338  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2339
2340  if (CurrentRD && CurrentRD != RD)
2341    return false;
2342
2343  // FIXME: is this reasonable?  It matches current behavior, but....
2344  if (!RD->getDefinition())
2345    return false;
2346
2347  if (!RD->isAbstract())
2348    return false;
2349
2350  Diag(Loc, PD) << RD->getDeclName();
2351
2352  // Check if we've already emitted the list of pure virtual functions for this
2353  // class.
2354  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2355    return true;
2356
2357  CXXFinalOverriderMap FinalOverriders;
2358  RD->getFinalOverriders(FinalOverriders);
2359
2360  // Keep a set of seen pure methods so we won't diagnose the same method
2361  // more than once.
2362  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2363
2364  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2365                                   MEnd = FinalOverriders.end();
2366       M != MEnd;
2367       ++M) {
2368    for (OverridingMethods::iterator SO = M->second.begin(),
2369                                  SOEnd = M->second.end();
2370         SO != SOEnd; ++SO) {
2371      // C++ [class.abstract]p4:
2372      //   A class is abstract if it contains or inherits at least one
2373      //   pure virtual function for which the final overrider is pure
2374      //   virtual.
2375
2376      //
2377      if (SO->second.size() != 1)
2378        continue;
2379
2380      if (!SO->second.front().Method->isPure())
2381        continue;
2382
2383      if (!SeenPureMethods.insert(SO->second.front().Method))
2384        continue;
2385
2386      Diag(SO->second.front().Method->getLocation(),
2387           diag::note_pure_virtual_function)
2388        << SO->second.front().Method->getDeclName();
2389    }
2390  }
2391
2392  if (!PureVirtualClassDiagSet)
2393    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2394  PureVirtualClassDiagSet->insert(RD);
2395
2396  return true;
2397}
2398
2399namespace {
2400  class AbstractClassUsageDiagnoser
2401    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2402    Sema &SemaRef;
2403    CXXRecordDecl *AbstractClass;
2404
2405    bool VisitDeclContext(const DeclContext *DC) {
2406      bool Invalid = false;
2407
2408      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2409           E = DC->decls_end(); I != E; ++I)
2410        Invalid |= Visit(*I);
2411
2412      return Invalid;
2413    }
2414
2415  public:
2416    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2417      : SemaRef(SemaRef), AbstractClass(ac) {
2418        Visit(SemaRef.Context.getTranslationUnitDecl());
2419    }
2420
2421    bool VisitFunctionDecl(const FunctionDecl *FD) {
2422      if (FD->isThisDeclarationADefinition()) {
2423        // No need to do the check if we're in a definition, because it requires
2424        // that the return/param types are complete.
2425        // because that requires
2426        return VisitDeclContext(FD);
2427      }
2428
2429      // Check the return type.
2430      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2431      bool Invalid =
2432        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2433                                       diag::err_abstract_type_in_decl,
2434                                       Sema::AbstractReturnType,
2435                                       AbstractClass);
2436
2437      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2438           E = FD->param_end(); I != E; ++I) {
2439        const ParmVarDecl *VD = *I;
2440        Invalid |=
2441          SemaRef.RequireNonAbstractType(VD->getLocation(),
2442                                         VD->getOriginalType(),
2443                                         diag::err_abstract_type_in_decl,
2444                                         Sema::AbstractParamType,
2445                                         AbstractClass);
2446      }
2447
2448      return Invalid;
2449    }
2450
2451    bool VisitDecl(const Decl* D) {
2452      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2453        return VisitDeclContext(DC);
2454
2455      return false;
2456    }
2457  };
2458}
2459
2460/// \brief Perform semantic checks on a class definition that has been
2461/// completing, introducing implicitly-declared members, checking for
2462/// abstract types, etc.
2463void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2464  if (!Record || Record->isInvalidDecl())
2465    return;
2466
2467  if (!Record->isDependentType())
2468    AddImplicitlyDeclaredMembersToClass(S, Record);
2469
2470  if (Record->isInvalidDecl())
2471    return;
2472
2473  // Set access bits correctly on the directly-declared conversions.
2474  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2475  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2476    Convs->setAccess(I, (*I)->getAccess());
2477
2478  // Determine whether we need to check for final overriders. We do
2479  // this either when there are virtual base classes (in which case we
2480  // may end up finding multiple final overriders for a given virtual
2481  // function) or any of the base classes is abstract (in which case
2482  // we might detect that this class is abstract).
2483  bool CheckFinalOverriders = false;
2484  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2485      !Record->isDependentType()) {
2486    if (Record->getNumVBases())
2487      CheckFinalOverriders = true;
2488    else if (!Record->isAbstract()) {
2489      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2490                                                 BEnd = Record->bases_end();
2491           B != BEnd; ++B) {
2492        CXXRecordDecl *BaseDecl
2493          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2494        if (BaseDecl->isAbstract()) {
2495          CheckFinalOverriders = true;
2496          break;
2497        }
2498      }
2499    }
2500  }
2501
2502  if (CheckFinalOverriders) {
2503    CXXFinalOverriderMap FinalOverriders;
2504    Record->getFinalOverriders(FinalOverriders);
2505
2506    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2507                                     MEnd = FinalOverriders.end();
2508         M != MEnd; ++M) {
2509      for (OverridingMethods::iterator SO = M->second.begin(),
2510                                    SOEnd = M->second.end();
2511           SO != SOEnd; ++SO) {
2512        assert(SO->second.size() > 0 &&
2513               "All virtual functions have overridding virtual functions");
2514        if (SO->second.size() == 1) {
2515          // C++ [class.abstract]p4:
2516          //   A class is abstract if it contains or inherits at least one
2517          //   pure virtual function for which the final overrider is pure
2518          //   virtual.
2519          if (SO->second.front().Method->isPure())
2520            Record->setAbstract(true);
2521          continue;
2522        }
2523
2524        // C++ [class.virtual]p2:
2525        //   In a derived class, if a virtual member function of a base
2526        //   class subobject has more than one final overrider the
2527        //   program is ill-formed.
2528        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2529          << (NamedDecl *)M->first << Record;
2530        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2531        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2532                                                 OMEnd = SO->second.end();
2533             OM != OMEnd; ++OM)
2534          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2535            << (NamedDecl *)M->first << OM->Method->getParent();
2536
2537        Record->setInvalidDecl();
2538      }
2539    }
2540  }
2541
2542  if (Record->isAbstract() && !Record->isInvalidDecl())
2543    (void)AbstractClassUsageDiagnoser(*this, Record);
2544
2545  // If this is not an aggregate type and has no user-declared constructor,
2546  // complain about any non-static data members of reference or const scalar
2547  // type, since they will never get initializers.
2548  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2549      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2550    bool Complained = false;
2551    for (RecordDecl::field_iterator F = Record->field_begin(),
2552                                 FEnd = Record->field_end();
2553         F != FEnd; ++F) {
2554      if (F->getType()->isReferenceType() ||
2555          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2556        if (!Complained) {
2557          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2558            << Record->getTagKind() << Record;
2559          Complained = true;
2560        }
2561
2562        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2563          << F->getType()->isReferenceType()
2564          << F->getDeclName();
2565      }
2566    }
2567  }
2568
2569  if (Record->isDynamicClass())
2570    DynamicClasses.push_back(Record);
2571}
2572
2573void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2574                                             DeclPtrTy TagDecl,
2575                                             SourceLocation LBrac,
2576                                             SourceLocation RBrac,
2577                                             AttributeList *AttrList) {
2578  if (!TagDecl)
2579    return;
2580
2581  AdjustDeclIfTemplate(TagDecl);
2582
2583  ActOnFields(S, RLoc, TagDecl,
2584              (DeclPtrTy*)FieldCollector->getCurFields(),
2585              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2586
2587  CheckCompletedCXXClass(S,
2588                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2589}
2590
2591namespace {
2592  /// \brief Helper class that collects exception specifications for
2593  /// implicitly-declared special member functions.
2594  class ImplicitExceptionSpecification {
2595    ASTContext &Context;
2596    bool AllowsAllExceptions;
2597    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2598    llvm::SmallVector<QualType, 4> Exceptions;
2599
2600  public:
2601    explicit ImplicitExceptionSpecification(ASTContext &Context)
2602      : Context(Context), AllowsAllExceptions(false) { }
2603
2604    /// \brief Whether the special member function should have any
2605    /// exception specification at all.
2606    bool hasExceptionSpecification() const {
2607      return !AllowsAllExceptions;
2608    }
2609
2610    /// \brief Whether the special member function should have a
2611    /// throw(...) exception specification (a Microsoft extension).
2612    bool hasAnyExceptionSpecification() const {
2613      return false;
2614    }
2615
2616    /// \brief The number of exceptions in the exception specification.
2617    unsigned size() const { return Exceptions.size(); }
2618
2619    /// \brief The set of exceptions in the exception specification.
2620    const QualType *data() const { return Exceptions.data(); }
2621
2622    /// \brief Note that
2623    void CalledDecl(CXXMethodDecl *Method) {
2624      // If we already know that we allow all exceptions, do nothing.
2625      if (AllowsAllExceptions || !Method)
2626        return;
2627
2628      const FunctionProtoType *Proto
2629        = Method->getType()->getAs<FunctionProtoType>();
2630
2631      // If this function can throw any exceptions, make a note of that.
2632      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2633        AllowsAllExceptions = true;
2634        ExceptionsSeen.clear();
2635        Exceptions.clear();
2636        return;
2637      }
2638
2639      // Record the exceptions in this function's exception specification.
2640      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2641                                              EEnd = Proto->exception_end();
2642           E != EEnd; ++E)
2643        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2644          Exceptions.push_back(*E);
2645    }
2646  };
2647}
2648
2649
2650/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2651/// special functions, such as the default constructor, copy
2652/// constructor, or destructor, to the given C++ class (C++
2653/// [special]p1).  This routine can only be executed just before the
2654/// definition of the class is complete.
2655///
2656/// The scope, if provided, is the class scope.
2657void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2658                                               CXXRecordDecl *ClassDecl) {
2659  if (!ClassDecl->hasUserDeclaredConstructor())
2660    DeclareImplicitDefaultConstructor(S, ClassDecl);
2661
2662  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2663    DeclareImplicitCopyConstructor(S, ClassDecl);
2664
2665  if (!ClassDecl->hasUserDeclaredCopyAssignment())
2666    DeclareImplicitCopyAssignment(S, ClassDecl);
2667
2668  if (!ClassDecl->hasUserDeclaredDestructor())
2669    DeclareImplicitDestructor(S, ClassDecl);
2670}
2671
2672void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2673  Decl *D = TemplateD.getAs<Decl>();
2674  if (!D)
2675    return;
2676
2677  TemplateParameterList *Params = 0;
2678  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2679    Params = Template->getTemplateParameters();
2680  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2681           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2682    Params = PartialSpec->getTemplateParameters();
2683  else
2684    return;
2685
2686  for (TemplateParameterList::iterator Param = Params->begin(),
2687                                    ParamEnd = Params->end();
2688       Param != ParamEnd; ++Param) {
2689    NamedDecl *Named = cast<NamedDecl>(*Param);
2690    if (Named->getDeclName()) {
2691      S->AddDecl(DeclPtrTy::make(Named));
2692      IdResolver.AddDecl(Named);
2693    }
2694  }
2695}
2696
2697void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2698  if (!RecordD) return;
2699  AdjustDeclIfTemplate(RecordD);
2700  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2701  PushDeclContext(S, Record);
2702}
2703
2704void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2705  if (!RecordD) return;
2706  PopDeclContext();
2707}
2708
2709/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2710/// parsing a top-level (non-nested) C++ class, and we are now
2711/// parsing those parts of the given Method declaration that could
2712/// not be parsed earlier (C++ [class.mem]p2), such as default
2713/// arguments. This action should enter the scope of the given
2714/// Method declaration as if we had just parsed the qualified method
2715/// name. However, it should not bring the parameters into scope;
2716/// that will be performed by ActOnDelayedCXXMethodParameter.
2717void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2718}
2719
2720/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2721/// C++ method declaration. We're (re-)introducing the given
2722/// function parameter into scope for use in parsing later parts of
2723/// the method declaration. For example, we could see an
2724/// ActOnParamDefaultArgument event for this parameter.
2725void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2726  if (!ParamD)
2727    return;
2728
2729  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2730
2731  // If this parameter has an unparsed default argument, clear it out
2732  // to make way for the parsed default argument.
2733  if (Param->hasUnparsedDefaultArg())
2734    Param->setDefaultArg(0);
2735
2736  S->AddDecl(DeclPtrTy::make(Param));
2737  if (Param->getDeclName())
2738    IdResolver.AddDecl(Param);
2739}
2740
2741/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2742/// processing the delayed method declaration for Method. The method
2743/// declaration is now considered finished. There may be a separate
2744/// ActOnStartOfFunctionDef action later (not necessarily
2745/// immediately!) for this method, if it was also defined inside the
2746/// class body.
2747void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2748  if (!MethodD)
2749    return;
2750
2751  AdjustDeclIfTemplate(MethodD);
2752
2753  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2754
2755  // Now that we have our default arguments, check the constructor
2756  // again. It could produce additional diagnostics or affect whether
2757  // the class has implicitly-declared destructors, among other
2758  // things.
2759  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2760    CheckConstructor(Constructor);
2761
2762  // Check the default arguments, which we may have added.
2763  if (!Method->isInvalidDecl())
2764    CheckCXXDefaultArguments(Method);
2765}
2766
2767/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2768/// the well-formedness of the constructor declarator @p D with type @p
2769/// R. If there are any errors in the declarator, this routine will
2770/// emit diagnostics and set the invalid bit to true.  In any case, the type
2771/// will be updated to reflect a well-formed type for the constructor and
2772/// returned.
2773QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2774                                          FunctionDecl::StorageClass &SC) {
2775  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2776
2777  // C++ [class.ctor]p3:
2778  //   A constructor shall not be virtual (10.3) or static (9.4). A
2779  //   constructor can be invoked for a const, volatile or const
2780  //   volatile object. A constructor shall not be declared const,
2781  //   volatile, or const volatile (9.3.2).
2782  if (isVirtual) {
2783    if (!D.isInvalidType())
2784      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2785        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2786        << SourceRange(D.getIdentifierLoc());
2787    D.setInvalidType();
2788  }
2789  if (SC == FunctionDecl::Static) {
2790    if (!D.isInvalidType())
2791      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2792        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2793        << SourceRange(D.getIdentifierLoc());
2794    D.setInvalidType();
2795    SC = FunctionDecl::None;
2796  }
2797
2798  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2799  if (FTI.TypeQuals != 0) {
2800    if (FTI.TypeQuals & Qualifiers::Const)
2801      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2802        << "const" << SourceRange(D.getIdentifierLoc());
2803    if (FTI.TypeQuals & Qualifiers::Volatile)
2804      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2805        << "volatile" << SourceRange(D.getIdentifierLoc());
2806    if (FTI.TypeQuals & Qualifiers::Restrict)
2807      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2808        << "restrict" << SourceRange(D.getIdentifierLoc());
2809  }
2810
2811  // Rebuild the function type "R" without any type qualifiers (in
2812  // case any of the errors above fired) and with "void" as the
2813  // return type, since constructors don't have return types.
2814  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2815  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2816                                 Proto->getNumArgs(),
2817                                 Proto->isVariadic(), 0,
2818                                 Proto->hasExceptionSpec(),
2819                                 Proto->hasAnyExceptionSpec(),
2820                                 Proto->getNumExceptions(),
2821                                 Proto->exception_begin(),
2822                                 Proto->getExtInfo());
2823}
2824
2825/// CheckConstructor - Checks a fully-formed constructor for
2826/// well-formedness, issuing any diagnostics required. Returns true if
2827/// the constructor declarator is invalid.
2828void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2829  CXXRecordDecl *ClassDecl
2830    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2831  if (!ClassDecl)
2832    return Constructor->setInvalidDecl();
2833
2834  // C++ [class.copy]p3:
2835  //   A declaration of a constructor for a class X is ill-formed if
2836  //   its first parameter is of type (optionally cv-qualified) X and
2837  //   either there are no other parameters or else all other
2838  //   parameters have default arguments.
2839  if (!Constructor->isInvalidDecl() &&
2840      ((Constructor->getNumParams() == 1) ||
2841       (Constructor->getNumParams() > 1 &&
2842        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2843      Constructor->getTemplateSpecializationKind()
2844                                              != TSK_ImplicitInstantiation) {
2845    QualType ParamType = Constructor->getParamDecl(0)->getType();
2846    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2847    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2848      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2849      const char *ConstRef
2850        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2851                                                        : " const &";
2852      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2853        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2854
2855      // FIXME: Rather that making the constructor invalid, we should endeavor
2856      // to fix the type.
2857      Constructor->setInvalidDecl();
2858    }
2859  }
2860
2861  // Notify the class that we've added a constructor.  In principle we
2862  // don't need to do this for out-of-line declarations; in practice
2863  // we only instantiate the most recent declaration of a method, so
2864  // we have to call this for everything but friends.
2865  if (!Constructor->getFriendObjectKind())
2866    ClassDecl->addedConstructor(Context, Constructor);
2867}
2868
2869/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2870/// issuing any diagnostics required. Returns true on error.
2871bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2872  CXXRecordDecl *RD = Destructor->getParent();
2873
2874  if (Destructor->isVirtual()) {
2875    SourceLocation Loc;
2876
2877    if (!Destructor->isImplicit())
2878      Loc = Destructor->getLocation();
2879    else
2880      Loc = RD->getLocation();
2881
2882    // If we have a virtual destructor, look up the deallocation function
2883    FunctionDecl *OperatorDelete = 0;
2884    DeclarationName Name =
2885    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2886    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2887      return true;
2888
2889    Destructor->setOperatorDelete(OperatorDelete);
2890  }
2891
2892  return false;
2893}
2894
2895static inline bool
2896FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2897  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2898          FTI.ArgInfo[0].Param &&
2899          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2900}
2901
2902/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2903/// the well-formednes of the destructor declarator @p D with type @p
2904/// R. If there are any errors in the declarator, this routine will
2905/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2906/// will be updated to reflect a well-formed type for the destructor and
2907/// returned.
2908QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
2909                                         FunctionDecl::StorageClass& SC) {
2910  // C++ [class.dtor]p1:
2911  //   [...] A typedef-name that names a class is a class-name
2912  //   (7.1.3); however, a typedef-name that names a class shall not
2913  //   be used as the identifier in the declarator for a destructor
2914  //   declaration.
2915  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2916  if (isa<TypedefType>(DeclaratorType))
2917    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2918      << DeclaratorType;
2919
2920  // C++ [class.dtor]p2:
2921  //   A destructor is used to destroy objects of its class type. A
2922  //   destructor takes no parameters, and no return type can be
2923  //   specified for it (not even void). The address of a destructor
2924  //   shall not be taken. A destructor shall not be static. A
2925  //   destructor can be invoked for a const, volatile or const
2926  //   volatile object. A destructor shall not be declared const,
2927  //   volatile or const volatile (9.3.2).
2928  if (SC == FunctionDecl::Static) {
2929    if (!D.isInvalidType())
2930      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2931        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2932        << SourceRange(D.getIdentifierLoc())
2933        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2934
2935    SC = FunctionDecl::None;
2936  }
2937  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2938    // Destructors don't have return types, but the parser will
2939    // happily parse something like:
2940    //
2941    //   class X {
2942    //     float ~X();
2943    //   };
2944    //
2945    // The return type will be eliminated later.
2946    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2947      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2948      << SourceRange(D.getIdentifierLoc());
2949  }
2950
2951  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2952  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2953    if (FTI.TypeQuals & Qualifiers::Const)
2954      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2955        << "const" << SourceRange(D.getIdentifierLoc());
2956    if (FTI.TypeQuals & Qualifiers::Volatile)
2957      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2958        << "volatile" << SourceRange(D.getIdentifierLoc());
2959    if (FTI.TypeQuals & Qualifiers::Restrict)
2960      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2961        << "restrict" << SourceRange(D.getIdentifierLoc());
2962    D.setInvalidType();
2963  }
2964
2965  // Make sure we don't have any parameters.
2966  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2967    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2968
2969    // Delete the parameters.
2970    FTI.freeArgs();
2971    D.setInvalidType();
2972  }
2973
2974  // Make sure the destructor isn't variadic.
2975  if (FTI.isVariadic) {
2976    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2977    D.setInvalidType();
2978  }
2979
2980  // Rebuild the function type "R" without any type qualifiers or
2981  // parameters (in case any of the errors above fired) and with
2982  // "void" as the return type, since destructors don't have return
2983  // types.
2984  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2985  if (!Proto)
2986    return QualType();
2987
2988  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2989                                 Proto->hasExceptionSpec(),
2990                                 Proto->hasAnyExceptionSpec(),
2991                                 Proto->getNumExceptions(),
2992                                 Proto->exception_begin(),
2993                                 Proto->getExtInfo());
2994}
2995
2996/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2997/// well-formednes of the conversion function declarator @p D with
2998/// type @p R. If there are any errors in the declarator, this routine
2999/// will emit diagnostics and return true. Otherwise, it will return
3000/// false. Either way, the type @p R will be updated to reflect a
3001/// well-formed type for the conversion operator.
3002void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3003                                     FunctionDecl::StorageClass& SC) {
3004  // C++ [class.conv.fct]p1:
3005  //   Neither parameter types nor return type can be specified. The
3006  //   type of a conversion function (8.3.5) is "function taking no
3007  //   parameter returning conversion-type-id."
3008  if (SC == FunctionDecl::Static) {
3009    if (!D.isInvalidType())
3010      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3011        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3012        << SourceRange(D.getIdentifierLoc());
3013    D.setInvalidType();
3014    SC = FunctionDecl::None;
3015  }
3016
3017  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3018
3019  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3020    // Conversion functions don't have return types, but the parser will
3021    // happily parse something like:
3022    //
3023    //   class X {
3024    //     float operator bool();
3025    //   };
3026    //
3027    // The return type will be changed later anyway.
3028    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3029      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3030      << SourceRange(D.getIdentifierLoc());
3031    D.setInvalidType();
3032  }
3033
3034  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3035
3036  // Make sure we don't have any parameters.
3037  if (Proto->getNumArgs() > 0) {
3038    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3039
3040    // Delete the parameters.
3041    D.getTypeObject(0).Fun.freeArgs();
3042    D.setInvalidType();
3043  } else if (Proto->isVariadic()) {
3044    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3045    D.setInvalidType();
3046  }
3047
3048  // Diagnose "&operator bool()" and other such nonsense.  This
3049  // is actually a gcc extension which we don't support.
3050  if (Proto->getResultType() != ConvType) {
3051    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3052      << Proto->getResultType();
3053    D.setInvalidType();
3054    ConvType = Proto->getResultType();
3055  }
3056
3057  // C++ [class.conv.fct]p4:
3058  //   The conversion-type-id shall not represent a function type nor
3059  //   an array type.
3060  if (ConvType->isArrayType()) {
3061    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3062    ConvType = Context.getPointerType(ConvType);
3063    D.setInvalidType();
3064  } else if (ConvType->isFunctionType()) {
3065    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3066    ConvType = Context.getPointerType(ConvType);
3067    D.setInvalidType();
3068  }
3069
3070  // Rebuild the function type "R" without any parameters (in case any
3071  // of the errors above fired) and with the conversion type as the
3072  // return type.
3073  if (D.isInvalidType()) {
3074    R = Context.getFunctionType(ConvType, 0, 0, false,
3075                                Proto->getTypeQuals(),
3076                                Proto->hasExceptionSpec(),
3077                                Proto->hasAnyExceptionSpec(),
3078                                Proto->getNumExceptions(),
3079                                Proto->exception_begin(),
3080                                Proto->getExtInfo());
3081  }
3082
3083  // C++0x explicit conversion operators.
3084  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3085    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3086         diag::warn_explicit_conversion_functions)
3087      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3088}
3089
3090/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3091/// the declaration of the given C++ conversion function. This routine
3092/// is responsible for recording the conversion function in the C++
3093/// class, if possible.
3094Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3095  assert(Conversion && "Expected to receive a conversion function declaration");
3096
3097  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3098
3099  // Make sure we aren't redeclaring the conversion function.
3100  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3101
3102  // C++ [class.conv.fct]p1:
3103  //   [...] A conversion function is never used to convert a
3104  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3105  //   same object type (or a reference to it), to a (possibly
3106  //   cv-qualified) base class of that type (or a reference to it),
3107  //   or to (possibly cv-qualified) void.
3108  // FIXME: Suppress this warning if the conversion function ends up being a
3109  // virtual function that overrides a virtual function in a base class.
3110  QualType ClassType
3111    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3112  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3113    ConvType = ConvTypeRef->getPointeeType();
3114  if (ConvType->isRecordType()) {
3115    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3116    if (ConvType == ClassType)
3117      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3118        << ClassType;
3119    else if (IsDerivedFrom(ClassType, ConvType))
3120      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3121        <<  ClassType << ConvType;
3122  } else if (ConvType->isVoidType()) {
3123    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3124      << ClassType << ConvType;
3125  }
3126
3127  if (Conversion->getPrimaryTemplate()) {
3128    // ignore specializations
3129  } else if (Conversion->getPreviousDeclaration()) {
3130    if (FunctionTemplateDecl *ConversionTemplate
3131                                  = Conversion->getDescribedFunctionTemplate()) {
3132      if (ClassDecl->replaceConversion(
3133                                   ConversionTemplate->getPreviousDeclaration(),
3134                                       ConversionTemplate))
3135        return DeclPtrTy::make(ConversionTemplate);
3136    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3137                                            Conversion))
3138      return DeclPtrTy::make(Conversion);
3139    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3140  } else if (FunctionTemplateDecl *ConversionTemplate
3141               = Conversion->getDescribedFunctionTemplate())
3142    ClassDecl->addConversionFunction(ConversionTemplate);
3143  else
3144    ClassDecl->addConversionFunction(Conversion);
3145
3146  return DeclPtrTy::make(Conversion);
3147}
3148
3149//===----------------------------------------------------------------------===//
3150// Namespace Handling
3151//===----------------------------------------------------------------------===//
3152
3153/// ActOnStartNamespaceDef - This is called at the start of a namespace
3154/// definition.
3155Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3156                                             SourceLocation IdentLoc,
3157                                             IdentifierInfo *II,
3158                                             SourceLocation LBrace,
3159                                             AttributeList *AttrList) {
3160  NamespaceDecl *Namespc =
3161      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3162  Namespc->setLBracLoc(LBrace);
3163
3164  Scope *DeclRegionScope = NamespcScope->getParent();
3165
3166  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3167
3168  if (II) {
3169    // C++ [namespace.def]p2:
3170    // The identifier in an original-namespace-definition shall not have been
3171    // previously defined in the declarative region in which the
3172    // original-namespace-definition appears. The identifier in an
3173    // original-namespace-definition is the name of the namespace. Subsequently
3174    // in that declarative region, it is treated as an original-namespace-name.
3175
3176    NamedDecl *PrevDecl
3177      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3178                         ForRedeclaration);
3179
3180    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3181      // This is an extended namespace definition.
3182      // Attach this namespace decl to the chain of extended namespace
3183      // definitions.
3184      OrigNS->setNextNamespace(Namespc);
3185      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3186
3187      // Remove the previous declaration from the scope.
3188      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3189        IdResolver.RemoveDecl(OrigNS);
3190        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3191      }
3192    } else if (PrevDecl) {
3193      // This is an invalid name redefinition.
3194      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3195       << Namespc->getDeclName();
3196      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3197      Namespc->setInvalidDecl();
3198      // Continue on to push Namespc as current DeclContext and return it.
3199    } else if (II->isStr("std") &&
3200               CurContext->getLookupContext()->isTranslationUnit()) {
3201      // This is the first "real" definition of the namespace "std", so update
3202      // our cache of the "std" namespace to point at this definition.
3203      if (StdNamespace) {
3204        // We had already defined a dummy namespace "std". Link this new
3205        // namespace definition to the dummy namespace "std".
3206        StdNamespace->setNextNamespace(Namespc);
3207        StdNamespace->setLocation(IdentLoc);
3208        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3209      }
3210
3211      // Make our StdNamespace cache point at the first real definition of the
3212      // "std" namespace.
3213      StdNamespace = Namespc;
3214    }
3215
3216    PushOnScopeChains(Namespc, DeclRegionScope);
3217  } else {
3218    // Anonymous namespaces.
3219    assert(Namespc->isAnonymousNamespace());
3220
3221    // Link the anonymous namespace into its parent.
3222    NamespaceDecl *PrevDecl;
3223    DeclContext *Parent = CurContext->getLookupContext();
3224    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3225      PrevDecl = TU->getAnonymousNamespace();
3226      TU->setAnonymousNamespace(Namespc);
3227    } else {
3228      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3229      PrevDecl = ND->getAnonymousNamespace();
3230      ND->setAnonymousNamespace(Namespc);
3231    }
3232
3233    // Link the anonymous namespace with its previous declaration.
3234    if (PrevDecl) {
3235      assert(PrevDecl->isAnonymousNamespace());
3236      assert(!PrevDecl->getNextNamespace());
3237      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3238      PrevDecl->setNextNamespace(Namespc);
3239    }
3240
3241    CurContext->addDecl(Namespc);
3242
3243    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3244    //   behaves as if it were replaced by
3245    //     namespace unique { /* empty body */ }
3246    //     using namespace unique;
3247    //     namespace unique { namespace-body }
3248    //   where all occurrences of 'unique' in a translation unit are
3249    //   replaced by the same identifier and this identifier differs
3250    //   from all other identifiers in the entire program.
3251
3252    // We just create the namespace with an empty name and then add an
3253    // implicit using declaration, just like the standard suggests.
3254    //
3255    // CodeGen enforces the "universally unique" aspect by giving all
3256    // declarations semantically contained within an anonymous
3257    // namespace internal linkage.
3258
3259    if (!PrevDecl) {
3260      UsingDirectiveDecl* UD
3261        = UsingDirectiveDecl::Create(Context, CurContext,
3262                                     /* 'using' */ LBrace,
3263                                     /* 'namespace' */ SourceLocation(),
3264                                     /* qualifier */ SourceRange(),
3265                                     /* NNS */ NULL,
3266                                     /* identifier */ SourceLocation(),
3267                                     Namespc,
3268                                     /* Ancestor */ CurContext);
3269      UD->setImplicit();
3270      CurContext->addDecl(UD);
3271    }
3272  }
3273
3274  // Although we could have an invalid decl (i.e. the namespace name is a
3275  // redefinition), push it as current DeclContext and try to continue parsing.
3276  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3277  // for the namespace has the declarations that showed up in that particular
3278  // namespace definition.
3279  PushDeclContext(NamespcScope, Namespc);
3280  return DeclPtrTy::make(Namespc);
3281}
3282
3283/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3284/// is a namespace alias, returns the namespace it points to.
3285static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3286  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3287    return AD->getNamespace();
3288  return dyn_cast_or_null<NamespaceDecl>(D);
3289}
3290
3291/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3292/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3293void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3294  Decl *Dcl = D.getAs<Decl>();
3295  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3296  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3297  Namespc->setRBracLoc(RBrace);
3298  PopDeclContext();
3299}
3300
3301/// \brief Retrieve the special "std" namespace, which may require us to
3302/// implicitly define the namespace.
3303NamespaceDecl *Sema::getStdNamespace() {
3304  if (!StdNamespace) {
3305    // The "std" namespace has not yet been defined, so build one implicitly.
3306    StdNamespace = NamespaceDecl::Create(Context,
3307                                         Context.getTranslationUnitDecl(),
3308                                         SourceLocation(),
3309                                         &PP.getIdentifierTable().get("std"));
3310    StdNamespace->setImplicit(true);
3311  }
3312
3313  return StdNamespace;
3314}
3315
3316Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3317                                          SourceLocation UsingLoc,
3318                                          SourceLocation NamespcLoc,
3319                                          CXXScopeSpec &SS,
3320                                          SourceLocation IdentLoc,
3321                                          IdentifierInfo *NamespcName,
3322                                          AttributeList *AttrList) {
3323  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3324  assert(NamespcName && "Invalid NamespcName.");
3325  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3326  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3327
3328  UsingDirectiveDecl *UDir = 0;
3329  NestedNameSpecifier *Qualifier = 0;
3330  if (SS.isSet())
3331    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3332
3333  // Lookup namespace name.
3334  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3335  LookupParsedName(R, S, &SS);
3336  if (R.isAmbiguous())
3337    return DeclPtrTy();
3338
3339  if (R.empty()) {
3340    // Allow "using namespace std;" or "using namespace ::std;" even if
3341    // "std" hasn't been defined yet, for GCC compatibility.
3342    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3343        NamespcName->isStr("std")) {
3344      Diag(IdentLoc, diag::ext_using_undefined_std);
3345      R.addDecl(getStdNamespace());
3346      R.resolveKind();
3347    }
3348    // Otherwise, attempt typo correction.
3349    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3350                                                       CTC_NoKeywords, 0)) {
3351      if (R.getAsSingle<NamespaceDecl>() ||
3352          R.getAsSingle<NamespaceAliasDecl>()) {
3353        if (DeclContext *DC = computeDeclContext(SS, false))
3354          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3355            << NamespcName << DC << Corrected << SS.getRange()
3356            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3357        else
3358          Diag(IdentLoc, diag::err_using_directive_suggest)
3359            << NamespcName << Corrected
3360            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3361        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3362          << Corrected;
3363
3364        NamespcName = Corrected.getAsIdentifierInfo();
3365      } else {
3366        R.clear();
3367        R.setLookupName(NamespcName);
3368      }
3369    }
3370  }
3371
3372  if (!R.empty()) {
3373    NamedDecl *Named = R.getFoundDecl();
3374    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3375        && "expected namespace decl");
3376    // C++ [namespace.udir]p1:
3377    //   A using-directive specifies that the names in the nominated
3378    //   namespace can be used in the scope in which the
3379    //   using-directive appears after the using-directive. During
3380    //   unqualified name lookup (3.4.1), the names appear as if they
3381    //   were declared in the nearest enclosing namespace which
3382    //   contains both the using-directive and the nominated
3383    //   namespace. [Note: in this context, "contains" means "contains
3384    //   directly or indirectly". ]
3385
3386    // Find enclosing context containing both using-directive and
3387    // nominated namespace.
3388    NamespaceDecl *NS = getNamespaceDecl(Named);
3389    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3390    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3391      CommonAncestor = CommonAncestor->getParent();
3392
3393    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3394                                      SS.getRange(),
3395                                      (NestedNameSpecifier *)SS.getScopeRep(),
3396                                      IdentLoc, Named, CommonAncestor);
3397    PushUsingDirective(S, UDir);
3398  } else {
3399    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3400  }
3401
3402  // FIXME: We ignore attributes for now.
3403  delete AttrList;
3404  return DeclPtrTy::make(UDir);
3405}
3406
3407void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3408  // If scope has associated entity, then using directive is at namespace
3409  // or translation unit scope. We add UsingDirectiveDecls, into
3410  // it's lookup structure.
3411  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3412    Ctx->addDecl(UDir);
3413  else
3414    // Otherwise it is block-sope. using-directives will affect lookup
3415    // only to the end of scope.
3416    S->PushUsingDirective(DeclPtrTy::make(UDir));
3417}
3418
3419
3420Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3421                                            AccessSpecifier AS,
3422                                            bool HasUsingKeyword,
3423                                            SourceLocation UsingLoc,
3424                                            CXXScopeSpec &SS,
3425                                            UnqualifiedId &Name,
3426                                            AttributeList *AttrList,
3427                                            bool IsTypeName,
3428                                            SourceLocation TypenameLoc) {
3429  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3430
3431  switch (Name.getKind()) {
3432  case UnqualifiedId::IK_Identifier:
3433  case UnqualifiedId::IK_OperatorFunctionId:
3434  case UnqualifiedId::IK_LiteralOperatorId:
3435  case UnqualifiedId::IK_ConversionFunctionId:
3436    break;
3437
3438  case UnqualifiedId::IK_ConstructorName:
3439  case UnqualifiedId::IK_ConstructorTemplateId:
3440    // C++0x inherited constructors.
3441    if (getLangOptions().CPlusPlus0x) break;
3442
3443    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3444      << SS.getRange();
3445    return DeclPtrTy();
3446
3447  case UnqualifiedId::IK_DestructorName:
3448    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3449      << SS.getRange();
3450    return DeclPtrTy();
3451
3452  case UnqualifiedId::IK_TemplateId:
3453    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3454      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3455    return DeclPtrTy();
3456  }
3457
3458  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3459  if (!TargetName)
3460    return DeclPtrTy();
3461
3462  // Warn about using declarations.
3463  // TODO: store that the declaration was written without 'using' and
3464  // talk about access decls instead of using decls in the
3465  // diagnostics.
3466  if (!HasUsingKeyword) {
3467    UsingLoc = Name.getSourceRange().getBegin();
3468
3469    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3470      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3471  }
3472
3473  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3474                                        Name.getSourceRange().getBegin(),
3475                                        TargetName, AttrList,
3476                                        /* IsInstantiation */ false,
3477                                        IsTypeName, TypenameLoc);
3478  if (UD)
3479    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3480
3481  return DeclPtrTy::make(UD);
3482}
3483
3484/// Determines whether to create a using shadow decl for a particular
3485/// decl, given the set of decls existing prior to this using lookup.
3486bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3487                                const LookupResult &Previous) {
3488  // Diagnose finding a decl which is not from a base class of the
3489  // current class.  We do this now because there are cases where this
3490  // function will silently decide not to build a shadow decl, which
3491  // will pre-empt further diagnostics.
3492  //
3493  // We don't need to do this in C++0x because we do the check once on
3494  // the qualifier.
3495  //
3496  // FIXME: diagnose the following if we care enough:
3497  //   struct A { int foo; };
3498  //   struct B : A { using A::foo; };
3499  //   template <class T> struct C : A {};
3500  //   template <class T> struct D : C<T> { using B::foo; } // <---
3501  // This is invalid (during instantiation) in C++03 because B::foo
3502  // resolves to the using decl in B, which is not a base class of D<T>.
3503  // We can't diagnose it immediately because C<T> is an unknown
3504  // specialization.  The UsingShadowDecl in D<T> then points directly
3505  // to A::foo, which will look well-formed when we instantiate.
3506  // The right solution is to not collapse the shadow-decl chain.
3507  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3508    DeclContext *OrigDC = Orig->getDeclContext();
3509
3510    // Handle enums and anonymous structs.
3511    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3512    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3513    while (OrigRec->isAnonymousStructOrUnion())
3514      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3515
3516    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3517      if (OrigDC == CurContext) {
3518        Diag(Using->getLocation(),
3519             diag::err_using_decl_nested_name_specifier_is_current_class)
3520          << Using->getNestedNameRange();
3521        Diag(Orig->getLocation(), diag::note_using_decl_target);
3522        return true;
3523      }
3524
3525      Diag(Using->getNestedNameRange().getBegin(),
3526           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3527        << Using->getTargetNestedNameDecl()
3528        << cast<CXXRecordDecl>(CurContext)
3529        << Using->getNestedNameRange();
3530      Diag(Orig->getLocation(), diag::note_using_decl_target);
3531      return true;
3532    }
3533  }
3534
3535  if (Previous.empty()) return false;
3536
3537  NamedDecl *Target = Orig;
3538  if (isa<UsingShadowDecl>(Target))
3539    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3540
3541  // If the target happens to be one of the previous declarations, we
3542  // don't have a conflict.
3543  //
3544  // FIXME: but we might be increasing its access, in which case we
3545  // should redeclare it.
3546  NamedDecl *NonTag = 0, *Tag = 0;
3547  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3548         I != E; ++I) {
3549    NamedDecl *D = (*I)->getUnderlyingDecl();
3550    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3551      return false;
3552
3553    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3554  }
3555
3556  if (Target->isFunctionOrFunctionTemplate()) {
3557    FunctionDecl *FD;
3558    if (isa<FunctionTemplateDecl>(Target))
3559      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3560    else
3561      FD = cast<FunctionDecl>(Target);
3562
3563    NamedDecl *OldDecl = 0;
3564    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3565    case Ovl_Overload:
3566      return false;
3567
3568    case Ovl_NonFunction:
3569      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3570      break;
3571
3572    // We found a decl with the exact signature.
3573    case Ovl_Match:
3574      // If we're in a record, we want to hide the target, so we
3575      // return true (without a diagnostic) to tell the caller not to
3576      // build a shadow decl.
3577      if (CurContext->isRecord())
3578        return true;
3579
3580      // If we're not in a record, this is an error.
3581      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3582      break;
3583    }
3584
3585    Diag(Target->getLocation(), diag::note_using_decl_target);
3586    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3587    return true;
3588  }
3589
3590  // Target is not a function.
3591
3592  if (isa<TagDecl>(Target)) {
3593    // No conflict between a tag and a non-tag.
3594    if (!Tag) return false;
3595
3596    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3597    Diag(Target->getLocation(), diag::note_using_decl_target);
3598    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3599    return true;
3600  }
3601
3602  // No conflict between a tag and a non-tag.
3603  if (!NonTag) return false;
3604
3605  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3606  Diag(Target->getLocation(), diag::note_using_decl_target);
3607  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3608  return true;
3609}
3610
3611/// Builds a shadow declaration corresponding to a 'using' declaration.
3612UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3613                                            UsingDecl *UD,
3614                                            NamedDecl *Orig) {
3615
3616  // If we resolved to another shadow declaration, just coalesce them.
3617  NamedDecl *Target = Orig;
3618  if (isa<UsingShadowDecl>(Target)) {
3619    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3620    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3621  }
3622
3623  UsingShadowDecl *Shadow
3624    = UsingShadowDecl::Create(Context, CurContext,
3625                              UD->getLocation(), UD, Target);
3626  UD->addShadowDecl(Shadow);
3627
3628  if (S)
3629    PushOnScopeChains(Shadow, S);
3630  else
3631    CurContext->addDecl(Shadow);
3632  Shadow->setAccess(UD->getAccess());
3633
3634  // Register it as a conversion if appropriate.
3635  if (Shadow->getDeclName().getNameKind()
3636        == DeclarationName::CXXConversionFunctionName)
3637    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3638
3639  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3640    Shadow->setInvalidDecl();
3641
3642  return Shadow;
3643}
3644
3645/// Hides a using shadow declaration.  This is required by the current
3646/// using-decl implementation when a resolvable using declaration in a
3647/// class is followed by a declaration which would hide or override
3648/// one or more of the using decl's targets; for example:
3649///
3650///   struct Base { void foo(int); };
3651///   struct Derived : Base {
3652///     using Base::foo;
3653///     void foo(int);
3654///   };
3655///
3656/// The governing language is C++03 [namespace.udecl]p12:
3657///
3658///   When a using-declaration brings names from a base class into a
3659///   derived class scope, member functions in the derived class
3660///   override and/or hide member functions with the same name and
3661///   parameter types in a base class (rather than conflicting).
3662///
3663/// There are two ways to implement this:
3664///   (1) optimistically create shadow decls when they're not hidden
3665///       by existing declarations, or
3666///   (2) don't create any shadow decls (or at least don't make them
3667///       visible) until we've fully parsed/instantiated the class.
3668/// The problem with (1) is that we might have to retroactively remove
3669/// a shadow decl, which requires several O(n) operations because the
3670/// decl structures are (very reasonably) not designed for removal.
3671/// (2) avoids this but is very fiddly and phase-dependent.
3672void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3673  if (Shadow->getDeclName().getNameKind() ==
3674        DeclarationName::CXXConversionFunctionName)
3675    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3676
3677  // Remove it from the DeclContext...
3678  Shadow->getDeclContext()->removeDecl(Shadow);
3679
3680  // ...and the scope, if applicable...
3681  if (S) {
3682    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3683    IdResolver.RemoveDecl(Shadow);
3684  }
3685
3686  // ...and the using decl.
3687  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3688
3689  // TODO: complain somehow if Shadow was used.  It shouldn't
3690  // be possible for this to happen, because...?
3691}
3692
3693/// Builds a using declaration.
3694///
3695/// \param IsInstantiation - Whether this call arises from an
3696///   instantiation of an unresolved using declaration.  We treat
3697///   the lookup differently for these declarations.
3698NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3699                                       SourceLocation UsingLoc,
3700                                       CXXScopeSpec &SS,
3701                                       SourceLocation IdentLoc,
3702                                       DeclarationName Name,
3703                                       AttributeList *AttrList,
3704                                       bool IsInstantiation,
3705                                       bool IsTypeName,
3706                                       SourceLocation TypenameLoc) {
3707  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3708  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3709
3710  // FIXME: We ignore attributes for now.
3711  delete AttrList;
3712
3713  if (SS.isEmpty()) {
3714    Diag(IdentLoc, diag::err_using_requires_qualname);
3715    return 0;
3716  }
3717
3718  // Do the redeclaration lookup in the current scope.
3719  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3720                        ForRedeclaration);
3721  Previous.setHideTags(false);
3722  if (S) {
3723    LookupName(Previous, S);
3724
3725    // It is really dumb that we have to do this.
3726    LookupResult::Filter F = Previous.makeFilter();
3727    while (F.hasNext()) {
3728      NamedDecl *D = F.next();
3729      if (!isDeclInScope(D, CurContext, S))
3730        F.erase();
3731    }
3732    F.done();
3733  } else {
3734    assert(IsInstantiation && "no scope in non-instantiation");
3735    assert(CurContext->isRecord() && "scope not record in instantiation");
3736    LookupQualifiedName(Previous, CurContext);
3737  }
3738
3739  NestedNameSpecifier *NNS =
3740    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3741
3742  // Check for invalid redeclarations.
3743  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3744    return 0;
3745
3746  // Check for bad qualifiers.
3747  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3748    return 0;
3749
3750  DeclContext *LookupContext = computeDeclContext(SS);
3751  NamedDecl *D;
3752  if (!LookupContext) {
3753    if (IsTypeName) {
3754      // FIXME: not all declaration name kinds are legal here
3755      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3756                                              UsingLoc, TypenameLoc,
3757                                              SS.getRange(), NNS,
3758                                              IdentLoc, Name);
3759    } else {
3760      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3761                                           UsingLoc, SS.getRange(), NNS,
3762                                           IdentLoc, Name);
3763    }
3764  } else {
3765    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3766                          SS.getRange(), UsingLoc, NNS, Name,
3767                          IsTypeName);
3768  }
3769  D->setAccess(AS);
3770  CurContext->addDecl(D);
3771
3772  if (!LookupContext) return D;
3773  UsingDecl *UD = cast<UsingDecl>(D);
3774
3775  if (RequireCompleteDeclContext(SS, LookupContext)) {
3776    UD->setInvalidDecl();
3777    return UD;
3778  }
3779
3780  // Look up the target name.
3781
3782  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3783
3784  // Unlike most lookups, we don't always want to hide tag
3785  // declarations: tag names are visible through the using declaration
3786  // even if hidden by ordinary names, *except* in a dependent context
3787  // where it's important for the sanity of two-phase lookup.
3788  if (!IsInstantiation)
3789    R.setHideTags(false);
3790
3791  LookupQualifiedName(R, LookupContext);
3792
3793  if (R.empty()) {
3794    Diag(IdentLoc, diag::err_no_member)
3795      << Name << LookupContext << SS.getRange();
3796    UD->setInvalidDecl();
3797    return UD;
3798  }
3799
3800  if (R.isAmbiguous()) {
3801    UD->setInvalidDecl();
3802    return UD;
3803  }
3804
3805  if (IsTypeName) {
3806    // If we asked for a typename and got a non-type decl, error out.
3807    if (!R.getAsSingle<TypeDecl>()) {
3808      Diag(IdentLoc, diag::err_using_typename_non_type);
3809      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3810        Diag((*I)->getUnderlyingDecl()->getLocation(),
3811             diag::note_using_decl_target);
3812      UD->setInvalidDecl();
3813      return UD;
3814    }
3815  } else {
3816    // If we asked for a non-typename and we got a type, error out,
3817    // but only if this is an instantiation of an unresolved using
3818    // decl.  Otherwise just silently find the type name.
3819    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3820      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3821      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3822      UD->setInvalidDecl();
3823      return UD;
3824    }
3825  }
3826
3827  // C++0x N2914 [namespace.udecl]p6:
3828  // A using-declaration shall not name a namespace.
3829  if (R.getAsSingle<NamespaceDecl>()) {
3830    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3831      << SS.getRange();
3832    UD->setInvalidDecl();
3833    return UD;
3834  }
3835
3836  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3837    if (!CheckUsingShadowDecl(UD, *I, Previous))
3838      BuildUsingShadowDecl(S, UD, *I);
3839  }
3840
3841  return UD;
3842}
3843
3844/// Checks that the given using declaration is not an invalid
3845/// redeclaration.  Note that this is checking only for the using decl
3846/// itself, not for any ill-formedness among the UsingShadowDecls.
3847bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3848                                       bool isTypeName,
3849                                       const CXXScopeSpec &SS,
3850                                       SourceLocation NameLoc,
3851                                       const LookupResult &Prev) {
3852  // C++03 [namespace.udecl]p8:
3853  // C++0x [namespace.udecl]p10:
3854  //   A using-declaration is a declaration and can therefore be used
3855  //   repeatedly where (and only where) multiple declarations are
3856  //   allowed.
3857  //
3858  // That's in non-member contexts.
3859  if (!CurContext->getLookupContext()->isRecord())
3860    return false;
3861
3862  NestedNameSpecifier *Qual
3863    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3864
3865  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3866    NamedDecl *D = *I;
3867
3868    bool DTypename;
3869    NestedNameSpecifier *DQual;
3870    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3871      DTypename = UD->isTypeName();
3872      DQual = UD->getTargetNestedNameDecl();
3873    } else if (UnresolvedUsingValueDecl *UD
3874                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3875      DTypename = false;
3876      DQual = UD->getTargetNestedNameSpecifier();
3877    } else if (UnresolvedUsingTypenameDecl *UD
3878                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3879      DTypename = true;
3880      DQual = UD->getTargetNestedNameSpecifier();
3881    } else continue;
3882
3883    // using decls differ if one says 'typename' and the other doesn't.
3884    // FIXME: non-dependent using decls?
3885    if (isTypeName != DTypename) continue;
3886
3887    // using decls differ if they name different scopes (but note that
3888    // template instantiation can cause this check to trigger when it
3889    // didn't before instantiation).
3890    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3891        Context.getCanonicalNestedNameSpecifier(DQual))
3892      continue;
3893
3894    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3895    Diag(D->getLocation(), diag::note_using_decl) << 1;
3896    return true;
3897  }
3898
3899  return false;
3900}
3901
3902
3903/// Checks that the given nested-name qualifier used in a using decl
3904/// in the current context is appropriately related to the current
3905/// scope.  If an error is found, diagnoses it and returns true.
3906bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3907                                   const CXXScopeSpec &SS,
3908                                   SourceLocation NameLoc) {
3909  DeclContext *NamedContext = computeDeclContext(SS);
3910
3911  if (!CurContext->isRecord()) {
3912    // C++03 [namespace.udecl]p3:
3913    // C++0x [namespace.udecl]p8:
3914    //   A using-declaration for a class member shall be a member-declaration.
3915
3916    // If we weren't able to compute a valid scope, it must be a
3917    // dependent class scope.
3918    if (!NamedContext || NamedContext->isRecord()) {
3919      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3920        << SS.getRange();
3921      return true;
3922    }
3923
3924    // Otherwise, everything is known to be fine.
3925    return false;
3926  }
3927
3928  // The current scope is a record.
3929
3930  // If the named context is dependent, we can't decide much.
3931  if (!NamedContext) {
3932    // FIXME: in C++0x, we can diagnose if we can prove that the
3933    // nested-name-specifier does not refer to a base class, which is
3934    // still possible in some cases.
3935
3936    // Otherwise we have to conservatively report that things might be
3937    // okay.
3938    return false;
3939  }
3940
3941  if (!NamedContext->isRecord()) {
3942    // Ideally this would point at the last name in the specifier,
3943    // but we don't have that level of source info.
3944    Diag(SS.getRange().getBegin(),
3945         diag::err_using_decl_nested_name_specifier_is_not_class)
3946      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3947    return true;
3948  }
3949
3950  if (getLangOptions().CPlusPlus0x) {
3951    // C++0x [namespace.udecl]p3:
3952    //   In a using-declaration used as a member-declaration, the
3953    //   nested-name-specifier shall name a base class of the class
3954    //   being defined.
3955
3956    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3957                                 cast<CXXRecordDecl>(NamedContext))) {
3958      if (CurContext == NamedContext) {
3959        Diag(NameLoc,
3960             diag::err_using_decl_nested_name_specifier_is_current_class)
3961          << SS.getRange();
3962        return true;
3963      }
3964
3965      Diag(SS.getRange().getBegin(),
3966           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3967        << (NestedNameSpecifier*) SS.getScopeRep()
3968        << cast<CXXRecordDecl>(CurContext)
3969        << SS.getRange();
3970      return true;
3971    }
3972
3973    return false;
3974  }
3975
3976  // C++03 [namespace.udecl]p4:
3977  //   A using-declaration used as a member-declaration shall refer
3978  //   to a member of a base class of the class being defined [etc.].
3979
3980  // Salient point: SS doesn't have to name a base class as long as
3981  // lookup only finds members from base classes.  Therefore we can
3982  // diagnose here only if we can prove that that can't happen,
3983  // i.e. if the class hierarchies provably don't intersect.
3984
3985  // TODO: it would be nice if "definitely valid" results were cached
3986  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3987  // need to be repeated.
3988
3989  struct UserData {
3990    llvm::DenseSet<const CXXRecordDecl*> Bases;
3991
3992    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3993      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3994      Data->Bases.insert(Base);
3995      return true;
3996    }
3997
3998    bool hasDependentBases(const CXXRecordDecl *Class) {
3999      return !Class->forallBases(collect, this);
4000    }
4001
4002    /// Returns true if the base is dependent or is one of the
4003    /// accumulated base classes.
4004    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4005      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4006      return !Data->Bases.count(Base);
4007    }
4008
4009    bool mightShareBases(const CXXRecordDecl *Class) {
4010      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4011    }
4012  };
4013
4014  UserData Data;
4015
4016  // Returns false if we find a dependent base.
4017  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4018    return false;
4019
4020  // Returns false if the class has a dependent base or if it or one
4021  // of its bases is present in the base set of the current context.
4022  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4023    return false;
4024
4025  Diag(SS.getRange().getBegin(),
4026       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4027    << (NestedNameSpecifier*) SS.getScopeRep()
4028    << cast<CXXRecordDecl>(CurContext)
4029    << SS.getRange();
4030
4031  return true;
4032}
4033
4034Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
4035                                             SourceLocation NamespaceLoc,
4036                                             SourceLocation AliasLoc,
4037                                             IdentifierInfo *Alias,
4038                                             CXXScopeSpec &SS,
4039                                             SourceLocation IdentLoc,
4040                                             IdentifierInfo *Ident) {
4041
4042  // Lookup the namespace name.
4043  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4044  LookupParsedName(R, S, &SS);
4045
4046  // Check if we have a previous declaration with the same name.
4047  NamedDecl *PrevDecl
4048    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4049                       ForRedeclaration);
4050  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4051    PrevDecl = 0;
4052
4053  if (PrevDecl) {
4054    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4055      // We already have an alias with the same name that points to the same
4056      // namespace, so don't create a new one.
4057      // FIXME: At some point, we'll want to create the (redundant)
4058      // declaration to maintain better source information.
4059      if (!R.isAmbiguous() && !R.empty() &&
4060          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4061        return DeclPtrTy();
4062    }
4063
4064    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4065      diag::err_redefinition_different_kind;
4066    Diag(AliasLoc, DiagID) << Alias;
4067    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4068    return DeclPtrTy();
4069  }
4070
4071  if (R.isAmbiguous())
4072    return DeclPtrTy();
4073
4074  if (R.empty()) {
4075    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4076                                                CTC_NoKeywords, 0)) {
4077      if (R.getAsSingle<NamespaceDecl>() ||
4078          R.getAsSingle<NamespaceAliasDecl>()) {
4079        if (DeclContext *DC = computeDeclContext(SS, false))
4080          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4081            << Ident << DC << Corrected << SS.getRange()
4082            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4083        else
4084          Diag(IdentLoc, diag::err_using_directive_suggest)
4085            << Ident << Corrected
4086            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4087
4088        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4089          << Corrected;
4090
4091        Ident = Corrected.getAsIdentifierInfo();
4092      } else {
4093        R.clear();
4094        R.setLookupName(Ident);
4095      }
4096    }
4097
4098    if (R.empty()) {
4099      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4100      return DeclPtrTy();
4101    }
4102  }
4103
4104  NamespaceAliasDecl *AliasDecl =
4105    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4106                               Alias, SS.getRange(),
4107                               (NestedNameSpecifier *)SS.getScopeRep(),
4108                               IdentLoc, R.getFoundDecl());
4109
4110  PushOnScopeChains(AliasDecl, S);
4111  return DeclPtrTy::make(AliasDecl);
4112}
4113
4114namespace {
4115  /// \brief Scoped object used to handle the state changes required in Sema
4116  /// to implicitly define the body of a C++ member function;
4117  class ImplicitlyDefinedFunctionScope {
4118    Sema &S;
4119    DeclContext *PreviousContext;
4120
4121  public:
4122    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4123      : S(S), PreviousContext(S.CurContext)
4124    {
4125      S.CurContext = Method;
4126      S.PushFunctionScope();
4127      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4128    }
4129
4130    ~ImplicitlyDefinedFunctionScope() {
4131      S.PopExpressionEvaluationContext();
4132      S.PopFunctionOrBlockScope();
4133      S.CurContext = PreviousContext;
4134    }
4135  };
4136}
4137
4138CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(Scope *S,
4139                                                    CXXRecordDecl *ClassDecl) {
4140  // C++ [class.ctor]p5:
4141  //   A default constructor for a class X is a constructor of class X
4142  //   that can be called without an argument. If there is no
4143  //   user-declared constructor for class X, a default constructor is
4144  //   implicitly declared. An implicitly-declared default constructor
4145  //   is an inline public member of its class.
4146
4147  // C++ [except.spec]p14:
4148  //   An implicitly declared special member function (Clause 12) shall have an
4149  //   exception-specification. [...]
4150  ImplicitExceptionSpecification ExceptSpec(Context);
4151
4152  // Direct base-class destructors.
4153  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4154                                       BEnd = ClassDecl->bases_end();
4155       B != BEnd; ++B) {
4156    if (B->isVirtual()) // Handled below.
4157      continue;
4158
4159    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4160      if (CXXConstructorDecl *Constructor
4161            = cast<CXXRecordDecl>(BaseType->getDecl())->getDefaultConstructor())
4162        ExceptSpec.CalledDecl(Constructor);
4163  }
4164
4165  // Virtual base-class destructors.
4166  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4167                                       BEnd = ClassDecl->vbases_end();
4168       B != BEnd; ++B) {
4169    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4170      if (CXXConstructorDecl *Constructor
4171            = cast<CXXRecordDecl>(BaseType->getDecl())->getDefaultConstructor())
4172        ExceptSpec.CalledDecl(Constructor);
4173  }
4174
4175  // Field destructors.
4176  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4177                               FEnd = ClassDecl->field_end();
4178       F != FEnd; ++F) {
4179    if (const RecordType *RecordTy
4180                = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4181      if (CXXConstructorDecl *Constructor
4182            = cast<CXXRecordDecl>(RecordTy->getDecl())->getDefaultConstructor())
4183        ExceptSpec.CalledDecl(Constructor);
4184  }
4185
4186
4187  // Create the actual constructor declaration.
4188  CanQualType ClassType
4189    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4190  DeclarationName Name
4191    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4192  CXXConstructorDecl *DefaultCon
4193    = CXXConstructorDecl::Create(Context, ClassDecl,
4194                                 ClassDecl->getLocation(), Name,
4195                                 Context.getFunctionType(Context.VoidTy,
4196                                                         0, 0, false, 0,
4197                                       ExceptSpec.hasExceptionSpecification(),
4198                                     ExceptSpec.hasAnyExceptionSpecification(),
4199                                                         ExceptSpec.size(),
4200                                                         ExceptSpec.data(),
4201                                                       FunctionType::ExtInfo()),
4202                                 /*TInfo=*/0,
4203                                 /*isExplicit=*/false,
4204                                 /*isInline=*/true,
4205                                 /*isImplicitlyDeclared=*/true);
4206  DefaultCon->setAccess(AS_public);
4207  DefaultCon->setImplicit();
4208  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4209  if (S)
4210    PushOnScopeChains(DefaultCon, S, true);
4211  else
4212    ClassDecl->addDecl(DefaultCon);
4213  return DefaultCon;
4214}
4215
4216void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4217                                            CXXConstructorDecl *Constructor) {
4218  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4219          !Constructor->isUsed(false)) &&
4220    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4221
4222  CXXRecordDecl *ClassDecl = Constructor->getParent();
4223  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4224
4225  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4226  ErrorTrap Trap(*this);
4227  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4228      Trap.hasErrorOccurred()) {
4229    Diag(CurrentLocation, diag::note_member_synthesized_at)
4230      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4231    Constructor->setInvalidDecl();
4232  } else {
4233    Constructor->setUsed();
4234    MarkVTableUsed(CurrentLocation, ClassDecl);
4235  }
4236}
4237
4238CXXDestructorDecl *Sema::DeclareImplicitDestructor(Scope *S,
4239                                                   CXXRecordDecl *ClassDecl) {
4240  // C++ [class.dtor]p2:
4241  //   If a class has no user-declared destructor, a destructor is
4242  //   declared implicitly. An implicitly-declared destructor is an
4243  //   inline public member of its class.
4244
4245  // C++ [except.spec]p14:
4246  //   An implicitly declared special member function (Clause 12) shall have
4247  //   an exception-specification.
4248  ImplicitExceptionSpecification ExceptSpec(Context);
4249
4250  // Direct base-class destructors.
4251  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4252                                       BEnd = ClassDecl->bases_end();
4253       B != BEnd; ++B) {
4254    if (B->isVirtual()) // Handled below.
4255      continue;
4256
4257    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4258      ExceptSpec.CalledDecl(
4259                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4260  }
4261
4262  // Virtual base-class destructors.
4263  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4264                                       BEnd = ClassDecl->vbases_end();
4265       B != BEnd; ++B) {
4266    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4267      ExceptSpec.CalledDecl(
4268                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4269  }
4270
4271  // Field destructors.
4272  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4273                               FEnd = ClassDecl->field_end();
4274       F != FEnd; ++F) {
4275    if (const RecordType *RecordTy
4276        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4277      ExceptSpec.CalledDecl(
4278                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4279  }
4280
4281  QualType Ty = Context.getFunctionType(Context.VoidTy,
4282                                        0, 0, false, 0,
4283                                        ExceptSpec.hasExceptionSpecification(),
4284                                    ExceptSpec.hasAnyExceptionSpecification(),
4285                                        ExceptSpec.size(),
4286                                        ExceptSpec.data(),
4287                                        FunctionType::ExtInfo());
4288
4289  CanQualType ClassType
4290    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4291  DeclarationName Name
4292    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4293  CXXDestructorDecl *Destructor
4294    = CXXDestructorDecl::Create(Context, ClassDecl,
4295                                ClassDecl->getLocation(), Name, Ty,
4296                                /*isInline=*/true,
4297                                /*isImplicitlyDeclared=*/true);
4298  Destructor->setAccess(AS_public);
4299  Destructor->setImplicit();
4300  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4301  if (S)
4302    PushOnScopeChains(Destructor, S, true);
4303  else
4304    ClassDecl->addDecl(Destructor);
4305
4306  // This could be uniqued if it ever proves significant.
4307  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4308
4309  AddOverriddenMethods(ClassDecl, Destructor);
4310  return Destructor;
4311}
4312
4313void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4314                                    CXXDestructorDecl *Destructor) {
4315  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4316         "DefineImplicitDestructor - call it for implicit default dtor");
4317  CXXRecordDecl *ClassDecl = Destructor->getParent();
4318  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4319
4320  if (Destructor->isInvalidDecl())
4321    return;
4322
4323  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4324
4325  ErrorTrap Trap(*this);
4326  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4327                                         Destructor->getParent());
4328
4329  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4330    Diag(CurrentLocation, diag::note_member_synthesized_at)
4331      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4332
4333    Destructor->setInvalidDecl();
4334    return;
4335  }
4336
4337  Destructor->setUsed();
4338  MarkVTableUsed(CurrentLocation, ClassDecl);
4339}
4340
4341/// \brief Builds a statement that copies the given entity from \p From to
4342/// \c To.
4343///
4344/// This routine is used to copy the members of a class with an
4345/// implicitly-declared copy assignment operator. When the entities being
4346/// copied are arrays, this routine builds for loops to copy them.
4347///
4348/// \param S The Sema object used for type-checking.
4349///
4350/// \param Loc The location where the implicit copy is being generated.
4351///
4352/// \param T The type of the expressions being copied. Both expressions must
4353/// have this type.
4354///
4355/// \param To The expression we are copying to.
4356///
4357/// \param From The expression we are copying from.
4358///
4359/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4360/// Otherwise, it's a non-static member subobject.
4361///
4362/// \param Depth Internal parameter recording the depth of the recursion.
4363///
4364/// \returns A statement or a loop that copies the expressions.
4365static Sema::OwningStmtResult
4366BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4367                      Sema::OwningExprResult To, Sema::OwningExprResult From,
4368                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4369  typedef Sema::OwningStmtResult OwningStmtResult;
4370  typedef Sema::OwningExprResult OwningExprResult;
4371
4372  // C++0x [class.copy]p30:
4373  //   Each subobject is assigned in the manner appropriate to its type:
4374  //
4375  //     - if the subobject is of class type, the copy assignment operator
4376  //       for the class is used (as if by explicit qualification; that is,
4377  //       ignoring any possible virtual overriding functions in more derived
4378  //       classes);
4379  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4380    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4381
4382    // Look for operator=.
4383    DeclarationName Name
4384      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4385    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4386    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4387
4388    // Filter out any result that isn't a copy-assignment operator.
4389    LookupResult::Filter F = OpLookup.makeFilter();
4390    while (F.hasNext()) {
4391      NamedDecl *D = F.next();
4392      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4393        if (Method->isCopyAssignmentOperator())
4394          continue;
4395
4396      F.erase();
4397    }
4398    F.done();
4399
4400    // Suppress the protected check (C++ [class.protected]) for each of the
4401    // assignment operators we found. This strange dance is required when
4402    // we're assigning via a base classes's copy-assignment operator. To
4403    // ensure that we're getting the right base class subobject (without
4404    // ambiguities), we need to cast "this" to that subobject type; to
4405    // ensure that we don't go through the virtual call mechanism, we need
4406    // to qualify the operator= name with the base class (see below). However,
4407    // this means that if the base class has a protected copy assignment
4408    // operator, the protected member access check will fail. So, we
4409    // rewrite "protected" access to "public" access in this case, since we
4410    // know by construction that we're calling from a derived class.
4411    if (CopyingBaseSubobject) {
4412      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4413           L != LEnd; ++L) {
4414        if (L.getAccess() == AS_protected)
4415          L.setAccess(AS_public);
4416      }
4417    }
4418
4419    // Create the nested-name-specifier that will be used to qualify the
4420    // reference to operator=; this is required to suppress the virtual
4421    // call mechanism.
4422    CXXScopeSpec SS;
4423    SS.setRange(Loc);
4424    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4425                                               T.getTypePtr()));
4426
4427    // Create the reference to operator=.
4428    OwningExprResult OpEqualRef
4429      = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
4430                                   /*FirstQualifierInScope=*/0, OpLookup,
4431                                   /*TemplateArgs=*/0,
4432                                   /*SuppressQualifierCheck=*/true);
4433    if (OpEqualRef.isInvalid())
4434      return S.StmtError();
4435
4436    // Build the call to the assignment operator.
4437    Expr *FromE = From.takeAs<Expr>();
4438    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4439                                                      OpEqualRef.takeAs<Expr>(),
4440                                                        Loc, &FromE, 1, 0, Loc);
4441    if (Call.isInvalid())
4442      return S.StmtError();
4443
4444    return S.Owned(Call.takeAs<Stmt>());
4445  }
4446
4447  //     - if the subobject is of scalar type, the built-in assignment
4448  //       operator is used.
4449  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4450  if (!ArrayTy) {
4451    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4452                                                       BinaryOperator::Assign,
4453                                                       To.takeAs<Expr>(),
4454                                                       From.takeAs<Expr>());
4455    if (Assignment.isInvalid())
4456      return S.StmtError();
4457
4458    return S.Owned(Assignment.takeAs<Stmt>());
4459  }
4460
4461  //     - if the subobject is an array, each element is assigned, in the
4462  //       manner appropriate to the element type;
4463
4464  // Construct a loop over the array bounds, e.g.,
4465  //
4466  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4467  //
4468  // that will copy each of the array elements.
4469  QualType SizeType = S.Context.getSizeType();
4470
4471  // Create the iteration variable.
4472  IdentifierInfo *IterationVarName = 0;
4473  {
4474    llvm::SmallString<8> Str;
4475    llvm::raw_svector_ostream OS(Str);
4476    OS << "__i" << Depth;
4477    IterationVarName = &S.Context.Idents.get(OS.str());
4478  }
4479  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4480                                          IterationVarName, SizeType,
4481                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4482                                          VarDecl::None, VarDecl::None);
4483
4484  // Initialize the iteration variable to zero.
4485  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4486  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4487
4488  // Create a reference to the iteration variable; we'll use this several
4489  // times throughout.
4490  Expr *IterationVarRef
4491    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4492  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4493
4494  // Create the DeclStmt that holds the iteration variable.
4495  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4496
4497  // Create the comparison against the array bound.
4498  llvm::APInt Upper = ArrayTy->getSize();
4499  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4500  OwningExprResult Comparison
4501    = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4502                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4503                                    BinaryOperator::NE, S.Context.BoolTy, Loc));
4504
4505  // Create the pre-increment of the iteration variable.
4506  OwningExprResult Increment
4507    = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4508                                            UnaryOperator::PreInc,
4509                                            SizeType, Loc));
4510
4511  // Subscript the "from" and "to" expressions with the iteration variable.
4512  From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
4513                                           S.Owned(IterationVarRef->Retain()),
4514                                           Loc);
4515  To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
4516                                         S.Owned(IterationVarRef->Retain()),
4517                                         Loc);
4518  assert(!From.isInvalid() && "Builtin subscripting can't fail!");
4519  assert(!To.isInvalid() && "Builtin subscripting can't fail!");
4520
4521  // Build the copy for an individual element of the array.
4522  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4523                                                ArrayTy->getElementType(),
4524                                                move(To), move(From),
4525                                                CopyingBaseSubobject, Depth+1);
4526  if (Copy.isInvalid()) {
4527    InitStmt->Destroy(S.Context);
4528    return S.StmtError();
4529  }
4530
4531  // Construct the loop that copies all elements of this array.
4532  return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
4533                        S.MakeFullExpr(Comparison),
4534                        Sema::DeclPtrTy(),
4535                        S.MakeFullExpr(Increment),
4536                        Loc, move(Copy));
4537}
4538
4539CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(Scope *S,
4540                                                   CXXRecordDecl *ClassDecl) {
4541  // Note: The following rules are largely analoguous to the copy
4542  // constructor rules. Note that virtual bases are not taken into account
4543  // for determining the argument type of the operator. Note also that
4544  // operators taking an object instead of a reference are allowed.
4545  //
4546  // C++ [class.copy]p10:
4547  //   If the class definition does not explicitly declare a copy
4548  //   assignment operator, one is declared implicitly.
4549  //   The implicitly-defined copy assignment operator for a class X
4550  //   will have the form
4551  //
4552  //       X& X::operator=(const X&)
4553  //
4554  //   if
4555  bool HasConstCopyAssignment = true;
4556
4557  //       -- each direct base class B of X has a copy assignment operator
4558  //          whose parameter is of type const B&, const volatile B& or B,
4559  //          and
4560  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4561                                       BaseEnd = ClassDecl->bases_end();
4562       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4563    assert(!Base->getType()->isDependentType() &&
4564           "Cannot generate implicit members for class with dependent bases.");
4565    const CXXRecordDecl *BaseClassDecl
4566      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4567    const CXXMethodDecl *MD = 0;
4568    HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
4569                                                                   MD);
4570  }
4571
4572  //       -- for all the nonstatic data members of X that are of a class
4573  //          type M (or array thereof), each such class type has a copy
4574  //          assignment operator whose parameter is of type const M&,
4575  //          const volatile M& or M.
4576  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4577                                  FieldEnd = ClassDecl->field_end();
4578       HasConstCopyAssignment && Field != FieldEnd;
4579       ++Field) {
4580    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4581    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4582      const CXXRecordDecl *FieldClassDecl
4583        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4584      const CXXMethodDecl *MD = 0;
4585      HasConstCopyAssignment
4586        = FieldClassDecl->hasConstCopyAssignment(Context, MD);
4587    }
4588  }
4589
4590  //   Otherwise, the implicitly declared copy assignment operator will
4591  //   have the form
4592  //
4593  //       X& X::operator=(X&)
4594  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4595  QualType RetType = Context.getLValueReferenceType(ArgType);
4596  if (HasConstCopyAssignment)
4597    ArgType = ArgType.withConst();
4598  ArgType = Context.getLValueReferenceType(ArgType);
4599
4600  // C++ [except.spec]p14:
4601  //   An implicitly declared special member function (Clause 12) shall have an
4602  //   exception-specification. [...]
4603  ImplicitExceptionSpecification ExceptSpec(Context);
4604  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4605                                       BaseEnd = ClassDecl->bases_end();
4606       Base != BaseEnd; ++Base) {
4607    const CXXRecordDecl *BaseClassDecl
4608      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4609    if (CXXMethodDecl *CopyAssign
4610           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4611      ExceptSpec.CalledDecl(CopyAssign);
4612  }
4613  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4614                                  FieldEnd = ClassDecl->field_end();
4615       Field != FieldEnd;
4616       ++Field) {
4617    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4618    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4619      const CXXRecordDecl *FieldClassDecl
4620        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4621      if (CXXMethodDecl *CopyAssign
4622            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4623        ExceptSpec.CalledDecl(CopyAssign);
4624    }
4625  }
4626
4627  //   An implicitly-declared copy assignment operator is an inline public
4628  //   member of its class.
4629  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4630  CXXMethodDecl *CopyAssignment
4631    = CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
4632                            Context.getFunctionType(RetType, &ArgType, 1,
4633                                                    false, 0,
4634                                         ExceptSpec.hasExceptionSpecification(),
4635                                      ExceptSpec.hasAnyExceptionSpecification(),
4636                                                    ExceptSpec.size(),
4637                                                    ExceptSpec.data(),
4638                                                    FunctionType::ExtInfo()),
4639                            /*TInfo=*/0, /*isStatic=*/false,
4640                            /*StorageClassAsWritten=*/FunctionDecl::None,
4641                            /*isInline=*/true);
4642  CopyAssignment->setAccess(AS_public);
4643  CopyAssignment->setImplicit();
4644  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4645  CopyAssignment->setCopyAssignment(true);
4646
4647  // Add the parameter to the operator.
4648  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4649                                               ClassDecl->getLocation(),
4650                                               /*Id=*/0,
4651                                               ArgType, /*TInfo=*/0,
4652                                               VarDecl::None,
4653                                               VarDecl::None, 0);
4654  CopyAssignment->setParams(&FromParam, 1);
4655
4656  // Don't call addedAssignmentOperator. The class does not need to know about
4657  // the implicitly-declared copy assignment operator.
4658  if (S)
4659    PushOnScopeChains(CopyAssignment, S, true);
4660  else
4661    ClassDecl->addDecl(CopyAssignment);
4662
4663  AddOverriddenMethods(ClassDecl, CopyAssignment);
4664  return CopyAssignment;
4665}
4666
4667void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4668                                        CXXMethodDecl *CopyAssignOperator) {
4669  assert((CopyAssignOperator->isImplicit() &&
4670          CopyAssignOperator->isOverloadedOperator() &&
4671          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4672          !CopyAssignOperator->isUsed(false)) &&
4673         "DefineImplicitCopyAssignment called for wrong function");
4674
4675  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4676
4677  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4678    CopyAssignOperator->setInvalidDecl();
4679    return;
4680  }
4681
4682  CopyAssignOperator->setUsed();
4683
4684  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4685  ErrorTrap Trap(*this);
4686
4687  // C++0x [class.copy]p30:
4688  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4689  //   for a non-union class X performs memberwise copy assignment of its
4690  //   subobjects. The direct base classes of X are assigned first, in the
4691  //   order of their declaration in the base-specifier-list, and then the
4692  //   immediate non-static data members of X are assigned, in the order in
4693  //   which they were declared in the class definition.
4694
4695  // The statements that form the synthesized function body.
4696  ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
4697
4698  // The parameter for the "other" object, which we are copying from.
4699  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4700  Qualifiers OtherQuals = Other->getType().getQualifiers();
4701  QualType OtherRefType = Other->getType();
4702  if (const LValueReferenceType *OtherRef
4703                                = OtherRefType->getAs<LValueReferenceType>()) {
4704    OtherRefType = OtherRef->getPointeeType();
4705    OtherQuals = OtherRefType.getQualifiers();
4706  }
4707
4708  // Our location for everything implicitly-generated.
4709  SourceLocation Loc = CopyAssignOperator->getLocation();
4710
4711  // Construct a reference to the "other" object. We'll be using this
4712  // throughout the generated ASTs.
4713  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4714  assert(OtherRef && "Reference to parameter cannot fail!");
4715
4716  // Construct the "this" pointer. We'll be using this throughout the generated
4717  // ASTs.
4718  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4719  assert(This && "Reference to this cannot fail!");
4720
4721  // Assign base classes.
4722  bool Invalid = false;
4723  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4724       E = ClassDecl->bases_end(); Base != E; ++Base) {
4725    // Form the assignment:
4726    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4727    QualType BaseType = Base->getType().getUnqualifiedType();
4728    CXXRecordDecl *BaseClassDecl = 0;
4729    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4730      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4731    else {
4732      Invalid = true;
4733      continue;
4734    }
4735
4736    // Construct the "from" expression, which is an implicit cast to the
4737    // appropriately-qualified base type.
4738    Expr *From = OtherRef->Retain();
4739    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4740                      CastExpr::CK_UncheckedDerivedToBase, /*isLvalue=*/true,
4741                      CXXBaseSpecifierArray(Base));
4742
4743    // Dereference "this".
4744    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4745                                               Owned(This->Retain()));
4746
4747    // Implicitly cast "this" to the appropriately-qualified base type.
4748    Expr *ToE = To.takeAs<Expr>();
4749    ImpCastExprToType(ToE,
4750                      Context.getCVRQualifiedType(BaseType,
4751                                      CopyAssignOperator->getTypeQualifiers()),
4752                      CastExpr::CK_UncheckedDerivedToBase,
4753                      /*isLvalue=*/true, CXXBaseSpecifierArray(Base));
4754    To = Owned(ToE);
4755
4756    // Build the copy.
4757    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4758                                                  move(To), Owned(From),
4759                                                /*CopyingBaseSubobject=*/true);
4760    if (Copy.isInvalid()) {
4761      Diag(CurrentLocation, diag::note_member_synthesized_at)
4762        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4763      CopyAssignOperator->setInvalidDecl();
4764      return;
4765    }
4766
4767    // Success! Record the copy.
4768    Statements.push_back(Copy.takeAs<Expr>());
4769  }
4770
4771  // \brief Reference to the __builtin_memcpy function.
4772  Expr *BuiltinMemCpyRef = 0;
4773  // \brief Reference to the __builtin_objc_memmove_collectable function.
4774  Expr *CollectableMemCpyRef = 0;
4775
4776  // Assign non-static members.
4777  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4778                                  FieldEnd = ClassDecl->field_end();
4779       Field != FieldEnd; ++Field) {
4780    // Check for members of reference type; we can't copy those.
4781    if (Field->getType()->isReferenceType()) {
4782      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4783        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4784      Diag(Field->getLocation(), diag::note_declared_at);
4785      Diag(CurrentLocation, diag::note_member_synthesized_at)
4786        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4787      Invalid = true;
4788      continue;
4789    }
4790
4791    // Check for members of const-qualified, non-class type.
4792    QualType BaseType = Context.getBaseElementType(Field->getType());
4793    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4794      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4795        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4796      Diag(Field->getLocation(), diag::note_declared_at);
4797      Diag(CurrentLocation, diag::note_member_synthesized_at)
4798        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4799      Invalid = true;
4800      continue;
4801    }
4802
4803    QualType FieldType = Field->getType().getNonReferenceType();
4804    if (FieldType->isIncompleteArrayType()) {
4805      assert(ClassDecl->hasFlexibleArrayMember() &&
4806             "Incomplete array type is not valid");
4807      continue;
4808    }
4809
4810    // Build references to the field in the object we're copying from and to.
4811    CXXScopeSpec SS; // Intentionally empty
4812    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4813                              LookupMemberName);
4814    MemberLookup.addDecl(*Field);
4815    MemberLookup.resolveKind();
4816    OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
4817                                                     OtherRefType,
4818                                                     Loc, /*IsArrow=*/false,
4819                                                     SS, 0, MemberLookup, 0);
4820    OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
4821                                                   This->getType(),
4822                                                   Loc, /*IsArrow=*/true,
4823                                                   SS, 0, MemberLookup, 0);
4824    assert(!From.isInvalid() && "Implicit field reference cannot fail");
4825    assert(!To.isInvalid() && "Implicit field reference cannot fail");
4826
4827    // If the field should be copied with __builtin_memcpy rather than via
4828    // explicit assignments, do so. This optimization only applies for arrays
4829    // of scalars and arrays of class type with trivial copy-assignment
4830    // operators.
4831    if (FieldType->isArrayType() &&
4832        (!BaseType->isRecordType() ||
4833         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
4834           ->hasTrivialCopyAssignment())) {
4835      // Compute the size of the memory buffer to be copied.
4836      QualType SizeType = Context.getSizeType();
4837      llvm::APInt Size(Context.getTypeSize(SizeType),
4838                       Context.getTypeSizeInChars(BaseType).getQuantity());
4839      for (const ConstantArrayType *Array
4840              = Context.getAsConstantArrayType(FieldType);
4841           Array;
4842           Array = Context.getAsConstantArrayType(Array->getElementType())) {
4843        llvm::APInt ArraySize = Array->getSize();
4844        ArraySize.zextOrTrunc(Size.getBitWidth());
4845        Size *= ArraySize;
4846      }
4847
4848      // Take the address of the field references for "from" and "to".
4849      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
4850      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
4851
4852      bool NeedsCollectableMemCpy =
4853          (BaseType->isRecordType() &&
4854           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
4855
4856      if (NeedsCollectableMemCpy) {
4857        if (!CollectableMemCpyRef) {
4858          // Create a reference to the __builtin_objc_memmove_collectable function.
4859          LookupResult R(*this,
4860                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
4861                         Loc, LookupOrdinaryName);
4862          LookupName(R, TUScope, true);
4863
4864          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
4865          if (!CollectableMemCpy) {
4866            // Something went horribly wrong earlier, and we will have
4867            // complained about it.
4868            Invalid = true;
4869            continue;
4870          }
4871
4872          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
4873                                                  CollectableMemCpy->getType(),
4874                                                  Loc, 0).takeAs<Expr>();
4875          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
4876        }
4877      }
4878      // Create a reference to the __builtin_memcpy builtin function.
4879      else if (!BuiltinMemCpyRef) {
4880        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
4881                       LookupOrdinaryName);
4882        LookupName(R, TUScope, true);
4883
4884        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
4885        if (!BuiltinMemCpy) {
4886          // Something went horribly wrong earlier, and we will have complained
4887          // about it.
4888          Invalid = true;
4889          continue;
4890        }
4891
4892        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
4893                                            BuiltinMemCpy->getType(),
4894                                            Loc, 0).takeAs<Expr>();
4895        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
4896      }
4897
4898      ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
4899      CallArgs.push_back(To.takeAs<Expr>());
4900      CallArgs.push_back(From.takeAs<Expr>());
4901      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
4902      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
4903      Commas.push_back(Loc);
4904      Commas.push_back(Loc);
4905      OwningExprResult Call = ExprError();
4906      if (NeedsCollectableMemCpy)
4907        Call = ActOnCallExpr(/*Scope=*/0,
4908                             Owned(CollectableMemCpyRef->Retain()),
4909                             Loc, move_arg(CallArgs),
4910                             Commas.data(), Loc);
4911      else
4912        Call = ActOnCallExpr(/*Scope=*/0,
4913                             Owned(BuiltinMemCpyRef->Retain()),
4914                             Loc, move_arg(CallArgs),
4915                             Commas.data(), Loc);
4916
4917      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
4918      Statements.push_back(Call.takeAs<Expr>());
4919      continue;
4920    }
4921
4922    // Build the copy of this field.
4923    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
4924                                                  move(To), move(From),
4925                                              /*CopyingBaseSubobject=*/false);
4926    if (Copy.isInvalid()) {
4927      Diag(CurrentLocation, diag::note_member_synthesized_at)
4928        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4929      CopyAssignOperator->setInvalidDecl();
4930      return;
4931    }
4932
4933    // Success! Record the copy.
4934    Statements.push_back(Copy.takeAs<Stmt>());
4935  }
4936
4937  if (!Invalid) {
4938    // Add a "return *this;"
4939    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4940                                                    Owned(This->Retain()));
4941
4942    OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
4943    if (Return.isInvalid())
4944      Invalid = true;
4945    else {
4946      Statements.push_back(Return.takeAs<Stmt>());
4947
4948      if (Trap.hasErrorOccurred()) {
4949        Diag(CurrentLocation, diag::note_member_synthesized_at)
4950          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4951        Invalid = true;
4952      }
4953    }
4954  }
4955
4956  if (Invalid) {
4957    CopyAssignOperator->setInvalidDecl();
4958    return;
4959  }
4960
4961  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
4962                                            /*isStmtExpr=*/false);
4963  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
4964  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
4965}
4966
4967CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(Scope *S,
4968                                                     CXXRecordDecl *ClassDecl) {
4969  // C++ [class.copy]p4:
4970  //   If the class definition does not explicitly declare a copy
4971  //   constructor, one is declared implicitly.
4972
4973  // C++ [class.copy]p5:
4974  //   The implicitly-declared copy constructor for a class X will
4975  //   have the form
4976  //
4977  //       X::X(const X&)
4978  //
4979  //   if
4980  bool HasConstCopyConstructor = true;
4981
4982  //     -- each direct or virtual base class B of X has a copy
4983  //        constructor whose first parameter is of type const B& or
4984  //        const volatile B&, and
4985  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4986                                       BaseEnd = ClassDecl->bases_end();
4987       HasConstCopyConstructor && Base != BaseEnd;
4988       ++Base) {
4989    // Virtual bases are handled below.
4990    if (Base->isVirtual())
4991      continue;
4992
4993    const CXXRecordDecl *BaseClassDecl
4994      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4995    HasConstCopyConstructor
4996      = BaseClassDecl->hasConstCopyConstructor(Context);
4997  }
4998
4999  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5000                                       BaseEnd = ClassDecl->vbases_end();
5001       HasConstCopyConstructor && Base != BaseEnd;
5002       ++Base) {
5003    const CXXRecordDecl *BaseClassDecl
5004      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5005    HasConstCopyConstructor
5006      = BaseClassDecl->hasConstCopyConstructor(Context);
5007  }
5008
5009  //     -- for all the nonstatic data members of X that are of a
5010  //        class type M (or array thereof), each such class type
5011  //        has a copy constructor whose first parameter is of type
5012  //        const M& or const volatile M&.
5013  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5014                                  FieldEnd = ClassDecl->field_end();
5015       HasConstCopyConstructor && Field != FieldEnd;
5016       ++Field) {
5017    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5018    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5019      const CXXRecordDecl *FieldClassDecl
5020        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5021      HasConstCopyConstructor
5022        = FieldClassDecl->hasConstCopyConstructor(Context);
5023    }
5024  }
5025
5026  //   Otherwise, the implicitly declared copy constructor will have
5027  //   the form
5028  //
5029  //       X::X(X&)
5030  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5031  QualType ArgType = ClassType;
5032  if (HasConstCopyConstructor)
5033    ArgType = ArgType.withConst();
5034  ArgType = Context.getLValueReferenceType(ArgType);
5035
5036  // C++ [except.spec]p14:
5037  //   An implicitly declared special member function (Clause 12) shall have an
5038  //   exception-specification. [...]
5039  ImplicitExceptionSpecification ExceptSpec(Context);
5040  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5041  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5042                                       BaseEnd = ClassDecl->bases_end();
5043       Base != BaseEnd;
5044       ++Base) {
5045    // Virtual bases are handled below.
5046    if (Base->isVirtual())
5047      continue;
5048
5049    const CXXRecordDecl *BaseClassDecl
5050      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5051    if (CXXConstructorDecl *CopyConstructor
5052                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5053      ExceptSpec.CalledDecl(CopyConstructor);
5054  }
5055  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5056                                       BaseEnd = ClassDecl->vbases_end();
5057       Base != BaseEnd;
5058       ++Base) {
5059    const CXXRecordDecl *BaseClassDecl
5060      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5061    if (CXXConstructorDecl *CopyConstructor
5062                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5063      ExceptSpec.CalledDecl(CopyConstructor);
5064  }
5065  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5066                                  FieldEnd = ClassDecl->field_end();
5067       Field != FieldEnd;
5068       ++Field) {
5069    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5070    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5071      const CXXRecordDecl *FieldClassDecl
5072        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5073      if (CXXConstructorDecl *CopyConstructor
5074                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5075        ExceptSpec.CalledDecl(CopyConstructor);
5076    }
5077  }
5078
5079  //   An implicitly-declared copy constructor is an inline public
5080  //   member of its class.
5081  DeclarationName Name
5082    = Context.DeclarationNames.getCXXConstructorName(
5083                                           Context.getCanonicalType(ClassType));
5084  CXXConstructorDecl *CopyConstructor
5085    = CXXConstructorDecl::Create(Context, ClassDecl,
5086                                 ClassDecl->getLocation(), Name,
5087                                 Context.getFunctionType(Context.VoidTy,
5088                                                         &ArgType, 1,
5089                                                         false, 0,
5090                                         ExceptSpec.hasExceptionSpecification(),
5091                                      ExceptSpec.hasAnyExceptionSpecification(),
5092                                                         ExceptSpec.size(),
5093                                                         ExceptSpec.data(),
5094                                                       FunctionType::ExtInfo()),
5095                                 /*TInfo=*/0,
5096                                 /*isExplicit=*/false,
5097                                 /*isInline=*/true,
5098                                 /*isImplicitlyDeclared=*/true);
5099  CopyConstructor->setAccess(AS_public);
5100  CopyConstructor->setImplicit();
5101  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5102
5103  // Add the parameter to the constructor.
5104  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5105                                               ClassDecl->getLocation(),
5106                                               /*IdentifierInfo=*/0,
5107                                               ArgType, /*TInfo=*/0,
5108                                               VarDecl::None,
5109                                               VarDecl::None, 0);
5110  CopyConstructor->setParams(&FromParam, 1);
5111  if (S)
5112    PushOnScopeChains(CopyConstructor, S, true);
5113  else
5114    ClassDecl->addDecl(CopyConstructor);
5115
5116  return CopyConstructor;
5117}
5118
5119void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5120                                   CXXConstructorDecl *CopyConstructor,
5121                                   unsigned TypeQuals) {
5122  assert((CopyConstructor->isImplicit() &&
5123          CopyConstructor->isCopyConstructor(TypeQuals) &&
5124          !CopyConstructor->isUsed(false)) &&
5125         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5126
5127  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5128  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5129
5130  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5131  ErrorTrap Trap(*this);
5132
5133  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5134      Trap.hasErrorOccurred()) {
5135    Diag(CurrentLocation, diag::note_member_synthesized_at)
5136      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5137    CopyConstructor->setInvalidDecl();
5138  }  else {
5139    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5140                                               CopyConstructor->getLocation(),
5141                                               MultiStmtArg(*this, 0, 0),
5142                                               /*isStmtExpr=*/false)
5143                                                              .takeAs<Stmt>());
5144  }
5145
5146  CopyConstructor->setUsed();
5147}
5148
5149Sema::OwningExprResult
5150Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5151                            CXXConstructorDecl *Constructor,
5152                            MultiExprArg ExprArgs,
5153                            bool RequiresZeroInit,
5154                            CXXConstructExpr::ConstructionKind ConstructKind) {
5155  bool Elidable = false;
5156
5157  // C++0x [class.copy]p34:
5158  //   When certain criteria are met, an implementation is allowed to
5159  //   omit the copy/move construction of a class object, even if the
5160  //   copy/move constructor and/or destructor for the object have
5161  //   side effects. [...]
5162  //     - when a temporary class object that has not been bound to a
5163  //       reference (12.2) would be copied/moved to a class object
5164  //       with the same cv-unqualified type, the copy/move operation
5165  //       can be omitted by constructing the temporary object
5166  //       directly into the target of the omitted copy/move
5167  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5168    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5169    Elidable = SubExpr->isTemporaryObject() &&
5170      Context.hasSameUnqualifiedType(SubExpr->getType(),
5171                           Context.getTypeDeclType(Constructor->getParent()));
5172  }
5173
5174  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5175                               Elidable, move(ExprArgs), RequiresZeroInit,
5176                               ConstructKind);
5177}
5178
5179/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5180/// including handling of its default argument expressions.
5181Sema::OwningExprResult
5182Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5183                            CXXConstructorDecl *Constructor, bool Elidable,
5184                            MultiExprArg ExprArgs,
5185                            bool RequiresZeroInit,
5186                            CXXConstructExpr::ConstructionKind ConstructKind) {
5187  unsigned NumExprs = ExprArgs.size();
5188  Expr **Exprs = (Expr **)ExprArgs.release();
5189
5190  MarkDeclarationReferenced(ConstructLoc, Constructor);
5191  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5192                                        Constructor, Elidable, Exprs, NumExprs,
5193                                        RequiresZeroInit, ConstructKind));
5194}
5195
5196bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5197                                        CXXConstructorDecl *Constructor,
5198                                        MultiExprArg Exprs) {
5199  OwningExprResult TempResult =
5200    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5201                          move(Exprs));
5202  if (TempResult.isInvalid())
5203    return true;
5204
5205  Expr *Temp = TempResult.takeAs<Expr>();
5206  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5207  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
5208  VD->setInit(Temp);
5209
5210  return false;
5211}
5212
5213void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5214  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5215  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5216      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5217    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5218    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5219    CheckDestructorAccess(VD->getLocation(), Destructor,
5220                          PDiag(diag::err_access_dtor_var)
5221                            << VD->getDeclName()
5222                            << VD->getType());
5223  }
5224}
5225
5226/// AddCXXDirectInitializerToDecl - This action is called immediately after
5227/// ActOnDeclarator, when a C++ direct initializer is present.
5228/// e.g: "int x(1);"
5229void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
5230                                         SourceLocation LParenLoc,
5231                                         MultiExprArg Exprs,
5232                                         SourceLocation *CommaLocs,
5233                                         SourceLocation RParenLoc) {
5234  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5235  Decl *RealDecl = Dcl.getAs<Decl>();
5236
5237  // If there is no declaration, there was an error parsing it.  Just ignore
5238  // the initializer.
5239  if (RealDecl == 0)
5240    return;
5241
5242  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5243  if (!VDecl) {
5244    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5245    RealDecl->setInvalidDecl();
5246    return;
5247  }
5248
5249  // We will represent direct-initialization similarly to copy-initialization:
5250  //    int x(1);  -as-> int x = 1;
5251  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5252  //
5253  // Clients that want to distinguish between the two forms, can check for
5254  // direct initializer using VarDecl::hasCXXDirectInitializer().
5255  // A major benefit is that clients that don't particularly care about which
5256  // exactly form was it (like the CodeGen) can handle both cases without
5257  // special case code.
5258
5259  // C++ 8.5p11:
5260  // The form of initialization (using parentheses or '=') is generally
5261  // insignificant, but does matter when the entity being initialized has a
5262  // class type.
5263  QualType DeclInitType = VDecl->getType();
5264  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
5265    DeclInitType = Context.getBaseElementType(Array);
5266
5267  if (!VDecl->getType()->isDependentType() &&
5268      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5269                          diag::err_typecheck_decl_incomplete_type)) {
5270    VDecl->setInvalidDecl();
5271    return;
5272  }
5273
5274  // The variable can not have an abstract class type.
5275  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5276                             diag::err_abstract_type_in_decl,
5277                             AbstractVariableType))
5278    VDecl->setInvalidDecl();
5279
5280  const VarDecl *Def;
5281  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5282    Diag(VDecl->getLocation(), diag::err_redefinition)
5283    << VDecl->getDeclName();
5284    Diag(Def->getLocation(), diag::note_previous_definition);
5285    VDecl->setInvalidDecl();
5286    return;
5287  }
5288
5289  // If either the declaration has a dependent type or if any of the
5290  // expressions is type-dependent, we represent the initialization
5291  // via a ParenListExpr for later use during template instantiation.
5292  if (VDecl->getType()->isDependentType() ||
5293      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5294    // Let clients know that initialization was done with a direct initializer.
5295    VDecl->setCXXDirectInitializer(true);
5296
5297    // Store the initialization expressions as a ParenListExpr.
5298    unsigned NumExprs = Exprs.size();
5299    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5300                                               (Expr **)Exprs.release(),
5301                                               NumExprs, RParenLoc));
5302    return;
5303  }
5304
5305  // Capture the variable that is being initialized and the style of
5306  // initialization.
5307  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5308
5309  // FIXME: Poor source location information.
5310  InitializationKind Kind
5311    = InitializationKind::CreateDirect(VDecl->getLocation(),
5312                                       LParenLoc, RParenLoc);
5313
5314  InitializationSequence InitSeq(*this, Entity, Kind,
5315                                 (Expr**)Exprs.get(), Exprs.size());
5316  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5317  if (Result.isInvalid()) {
5318    VDecl->setInvalidDecl();
5319    return;
5320  }
5321
5322  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
5323  VDecl->setInit(Result.takeAs<Expr>());
5324  VDecl->setCXXDirectInitializer(true);
5325
5326  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5327    FinalizeVarWithDestructor(VDecl, Record);
5328}
5329
5330/// \brief Given a constructor and the set of arguments provided for the
5331/// constructor, convert the arguments and add any required default arguments
5332/// to form a proper call to this constructor.
5333///
5334/// \returns true if an error occurred, false otherwise.
5335bool
5336Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5337                              MultiExprArg ArgsPtr,
5338                              SourceLocation Loc,
5339                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
5340  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5341  unsigned NumArgs = ArgsPtr.size();
5342  Expr **Args = (Expr **)ArgsPtr.get();
5343
5344  const FunctionProtoType *Proto
5345    = Constructor->getType()->getAs<FunctionProtoType>();
5346  assert(Proto && "Constructor without a prototype?");
5347  unsigned NumArgsInProto = Proto->getNumArgs();
5348
5349  // If too few arguments are available, we'll fill in the rest with defaults.
5350  if (NumArgs < NumArgsInProto)
5351    ConvertedArgs.reserve(NumArgsInProto);
5352  else
5353    ConvertedArgs.reserve(NumArgs);
5354
5355  VariadicCallType CallType =
5356    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5357  llvm::SmallVector<Expr *, 8> AllArgs;
5358  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5359                                        Proto, 0, Args, NumArgs, AllArgs,
5360                                        CallType);
5361  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5362    ConvertedArgs.push_back(AllArgs[i]);
5363  return Invalid;
5364}
5365
5366static inline bool
5367CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5368                                       const FunctionDecl *FnDecl) {
5369  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
5370  if (isa<NamespaceDecl>(DC)) {
5371    return SemaRef.Diag(FnDecl->getLocation(),
5372                        diag::err_operator_new_delete_declared_in_namespace)
5373      << FnDecl->getDeclName();
5374  }
5375
5376  if (isa<TranslationUnitDecl>(DC) &&
5377      FnDecl->getStorageClass() == FunctionDecl::Static) {
5378    return SemaRef.Diag(FnDecl->getLocation(),
5379                        diag::err_operator_new_delete_declared_static)
5380      << FnDecl->getDeclName();
5381  }
5382
5383  return false;
5384}
5385
5386static inline bool
5387CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5388                            CanQualType ExpectedResultType,
5389                            CanQualType ExpectedFirstParamType,
5390                            unsigned DependentParamTypeDiag,
5391                            unsigned InvalidParamTypeDiag) {
5392  QualType ResultType =
5393    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5394
5395  // Check that the result type is not dependent.
5396  if (ResultType->isDependentType())
5397    return SemaRef.Diag(FnDecl->getLocation(),
5398                        diag::err_operator_new_delete_dependent_result_type)
5399    << FnDecl->getDeclName() << ExpectedResultType;
5400
5401  // Check that the result type is what we expect.
5402  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5403    return SemaRef.Diag(FnDecl->getLocation(),
5404                        diag::err_operator_new_delete_invalid_result_type)
5405    << FnDecl->getDeclName() << ExpectedResultType;
5406
5407  // A function template must have at least 2 parameters.
5408  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5409    return SemaRef.Diag(FnDecl->getLocation(),
5410                      diag::err_operator_new_delete_template_too_few_parameters)
5411        << FnDecl->getDeclName();
5412
5413  // The function decl must have at least 1 parameter.
5414  if (FnDecl->getNumParams() == 0)
5415    return SemaRef.Diag(FnDecl->getLocation(),
5416                        diag::err_operator_new_delete_too_few_parameters)
5417      << FnDecl->getDeclName();
5418
5419  // Check the the first parameter type is not dependent.
5420  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5421  if (FirstParamType->isDependentType())
5422    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5423      << FnDecl->getDeclName() << ExpectedFirstParamType;
5424
5425  // Check that the first parameter type is what we expect.
5426  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5427      ExpectedFirstParamType)
5428    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5429    << FnDecl->getDeclName() << ExpectedFirstParamType;
5430
5431  return false;
5432}
5433
5434static bool
5435CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5436  // C++ [basic.stc.dynamic.allocation]p1:
5437  //   A program is ill-formed if an allocation function is declared in a
5438  //   namespace scope other than global scope or declared static in global
5439  //   scope.
5440  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5441    return true;
5442
5443  CanQualType SizeTy =
5444    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5445
5446  // C++ [basic.stc.dynamic.allocation]p1:
5447  //  The return type shall be void*. The first parameter shall have type
5448  //  std::size_t.
5449  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5450                                  SizeTy,
5451                                  diag::err_operator_new_dependent_param_type,
5452                                  diag::err_operator_new_param_type))
5453    return true;
5454
5455  // C++ [basic.stc.dynamic.allocation]p1:
5456  //  The first parameter shall not have an associated default argument.
5457  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5458    return SemaRef.Diag(FnDecl->getLocation(),
5459                        diag::err_operator_new_default_arg)
5460      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5461
5462  return false;
5463}
5464
5465static bool
5466CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5467  // C++ [basic.stc.dynamic.deallocation]p1:
5468  //   A program is ill-formed if deallocation functions are declared in a
5469  //   namespace scope other than global scope or declared static in global
5470  //   scope.
5471  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5472    return true;
5473
5474  // C++ [basic.stc.dynamic.deallocation]p2:
5475  //   Each deallocation function shall return void and its first parameter
5476  //   shall be void*.
5477  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5478                                  SemaRef.Context.VoidPtrTy,
5479                                 diag::err_operator_delete_dependent_param_type,
5480                                 diag::err_operator_delete_param_type))
5481    return true;
5482
5483  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5484  if (FirstParamType->isDependentType())
5485    return SemaRef.Diag(FnDecl->getLocation(),
5486                        diag::err_operator_delete_dependent_param_type)
5487    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5488
5489  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
5490      SemaRef.Context.VoidPtrTy)
5491    return SemaRef.Diag(FnDecl->getLocation(),
5492                        diag::err_operator_delete_param_type)
5493      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5494
5495  return false;
5496}
5497
5498/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5499/// of this overloaded operator is well-formed. If so, returns false;
5500/// otherwise, emits appropriate diagnostics and returns true.
5501bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5502  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5503         "Expected an overloaded operator declaration");
5504
5505  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5506
5507  // C++ [over.oper]p5:
5508  //   The allocation and deallocation functions, operator new,
5509  //   operator new[], operator delete and operator delete[], are
5510  //   described completely in 3.7.3. The attributes and restrictions
5511  //   found in the rest of this subclause do not apply to them unless
5512  //   explicitly stated in 3.7.3.
5513  if (Op == OO_Delete || Op == OO_Array_Delete)
5514    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5515
5516  if (Op == OO_New || Op == OO_Array_New)
5517    return CheckOperatorNewDeclaration(*this, FnDecl);
5518
5519  // C++ [over.oper]p6:
5520  //   An operator function shall either be a non-static member
5521  //   function or be a non-member function and have at least one
5522  //   parameter whose type is a class, a reference to a class, an
5523  //   enumeration, or a reference to an enumeration.
5524  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5525    if (MethodDecl->isStatic())
5526      return Diag(FnDecl->getLocation(),
5527                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5528  } else {
5529    bool ClassOrEnumParam = false;
5530    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5531                                   ParamEnd = FnDecl->param_end();
5532         Param != ParamEnd; ++Param) {
5533      QualType ParamType = (*Param)->getType().getNonReferenceType();
5534      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5535          ParamType->isEnumeralType()) {
5536        ClassOrEnumParam = true;
5537        break;
5538      }
5539    }
5540
5541    if (!ClassOrEnumParam)
5542      return Diag(FnDecl->getLocation(),
5543                  diag::err_operator_overload_needs_class_or_enum)
5544        << FnDecl->getDeclName();
5545  }
5546
5547  // C++ [over.oper]p8:
5548  //   An operator function cannot have default arguments (8.3.6),
5549  //   except where explicitly stated below.
5550  //
5551  // Only the function-call operator allows default arguments
5552  // (C++ [over.call]p1).
5553  if (Op != OO_Call) {
5554    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5555         Param != FnDecl->param_end(); ++Param) {
5556      if ((*Param)->hasDefaultArg())
5557        return Diag((*Param)->getLocation(),
5558                    diag::err_operator_overload_default_arg)
5559          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5560    }
5561  }
5562
5563  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5564    { false, false, false }
5565#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5566    , { Unary, Binary, MemberOnly }
5567#include "clang/Basic/OperatorKinds.def"
5568  };
5569
5570  bool CanBeUnaryOperator = OperatorUses[Op][0];
5571  bool CanBeBinaryOperator = OperatorUses[Op][1];
5572  bool MustBeMemberOperator = OperatorUses[Op][2];
5573
5574  // C++ [over.oper]p8:
5575  //   [...] Operator functions cannot have more or fewer parameters
5576  //   than the number required for the corresponding operator, as
5577  //   described in the rest of this subclause.
5578  unsigned NumParams = FnDecl->getNumParams()
5579                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5580  if (Op != OO_Call &&
5581      ((NumParams == 1 && !CanBeUnaryOperator) ||
5582       (NumParams == 2 && !CanBeBinaryOperator) ||
5583       (NumParams < 1) || (NumParams > 2))) {
5584    // We have the wrong number of parameters.
5585    unsigned ErrorKind;
5586    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5587      ErrorKind = 2;  // 2 -> unary or binary.
5588    } else if (CanBeUnaryOperator) {
5589      ErrorKind = 0;  // 0 -> unary
5590    } else {
5591      assert(CanBeBinaryOperator &&
5592             "All non-call overloaded operators are unary or binary!");
5593      ErrorKind = 1;  // 1 -> binary
5594    }
5595
5596    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5597      << FnDecl->getDeclName() << NumParams << ErrorKind;
5598  }
5599
5600  // Overloaded operators other than operator() cannot be variadic.
5601  if (Op != OO_Call &&
5602      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5603    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5604      << FnDecl->getDeclName();
5605  }
5606
5607  // Some operators must be non-static member functions.
5608  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5609    return Diag(FnDecl->getLocation(),
5610                diag::err_operator_overload_must_be_member)
5611      << FnDecl->getDeclName();
5612  }
5613
5614  // C++ [over.inc]p1:
5615  //   The user-defined function called operator++ implements the
5616  //   prefix and postfix ++ operator. If this function is a member
5617  //   function with no parameters, or a non-member function with one
5618  //   parameter of class or enumeration type, it defines the prefix
5619  //   increment operator ++ for objects of that type. If the function
5620  //   is a member function with one parameter (which shall be of type
5621  //   int) or a non-member function with two parameters (the second
5622  //   of which shall be of type int), it defines the postfix
5623  //   increment operator ++ for objects of that type.
5624  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5625    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5626    bool ParamIsInt = false;
5627    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5628      ParamIsInt = BT->getKind() == BuiltinType::Int;
5629
5630    if (!ParamIsInt)
5631      return Diag(LastParam->getLocation(),
5632                  diag::err_operator_overload_post_incdec_must_be_int)
5633        << LastParam->getType() << (Op == OO_MinusMinus);
5634  }
5635
5636  // Notify the class if it got an assignment operator.
5637  if (Op == OO_Equal) {
5638    // Would have returned earlier otherwise.
5639    assert(isa<CXXMethodDecl>(FnDecl) &&
5640      "Overloaded = not member, but not filtered.");
5641    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5642    Method->getParent()->addedAssignmentOperator(Context, Method);
5643  }
5644
5645  return false;
5646}
5647
5648/// CheckLiteralOperatorDeclaration - Check whether the declaration
5649/// of this literal operator function is well-formed. If so, returns
5650/// false; otherwise, emits appropriate diagnostics and returns true.
5651bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5652  DeclContext *DC = FnDecl->getDeclContext();
5653  Decl::Kind Kind = DC->getDeclKind();
5654  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5655      Kind != Decl::LinkageSpec) {
5656    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5657      << FnDecl->getDeclName();
5658    return true;
5659  }
5660
5661  bool Valid = false;
5662
5663  // template <char...> type operator "" name() is the only valid template
5664  // signature, and the only valid signature with no parameters.
5665  if (FnDecl->param_size() == 0) {
5666    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5667      // Must have only one template parameter
5668      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5669      if (Params->size() == 1) {
5670        NonTypeTemplateParmDecl *PmDecl =
5671          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5672
5673        // The template parameter must be a char parameter pack.
5674        // FIXME: This test will always fail because non-type parameter packs
5675        //   have not been implemented.
5676        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5677            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5678          Valid = true;
5679      }
5680    }
5681  } else {
5682    // Check the first parameter
5683    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5684
5685    QualType T = (*Param)->getType();
5686
5687    // unsigned long long int, long double, and any character type are allowed
5688    // as the only parameters.
5689    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5690        Context.hasSameType(T, Context.LongDoubleTy) ||
5691        Context.hasSameType(T, Context.CharTy) ||
5692        Context.hasSameType(T, Context.WCharTy) ||
5693        Context.hasSameType(T, Context.Char16Ty) ||
5694        Context.hasSameType(T, Context.Char32Ty)) {
5695      if (++Param == FnDecl->param_end())
5696        Valid = true;
5697      goto FinishedParams;
5698    }
5699
5700    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5701    const PointerType *PT = T->getAs<PointerType>();
5702    if (!PT)
5703      goto FinishedParams;
5704    T = PT->getPointeeType();
5705    if (!T.isConstQualified())
5706      goto FinishedParams;
5707    T = T.getUnqualifiedType();
5708
5709    // Move on to the second parameter;
5710    ++Param;
5711
5712    // If there is no second parameter, the first must be a const char *
5713    if (Param == FnDecl->param_end()) {
5714      if (Context.hasSameType(T, Context.CharTy))
5715        Valid = true;
5716      goto FinishedParams;
5717    }
5718
5719    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5720    // are allowed as the first parameter to a two-parameter function
5721    if (!(Context.hasSameType(T, Context.CharTy) ||
5722          Context.hasSameType(T, Context.WCharTy) ||
5723          Context.hasSameType(T, Context.Char16Ty) ||
5724          Context.hasSameType(T, Context.Char32Ty)))
5725      goto FinishedParams;
5726
5727    // The second and final parameter must be an std::size_t
5728    T = (*Param)->getType().getUnqualifiedType();
5729    if (Context.hasSameType(T, Context.getSizeType()) &&
5730        ++Param == FnDecl->param_end())
5731      Valid = true;
5732  }
5733
5734  // FIXME: This diagnostic is absolutely terrible.
5735FinishedParams:
5736  if (!Valid) {
5737    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5738      << FnDecl->getDeclName();
5739    return true;
5740  }
5741
5742  return false;
5743}
5744
5745/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5746/// linkage specification, including the language and (if present)
5747/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5748/// the location of the language string literal, which is provided
5749/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5750/// the '{' brace. Otherwise, this linkage specification does not
5751/// have any braces.
5752Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5753                                                     SourceLocation ExternLoc,
5754                                                     SourceLocation LangLoc,
5755                                                     llvm::StringRef Lang,
5756                                                     SourceLocation LBraceLoc) {
5757  LinkageSpecDecl::LanguageIDs Language;
5758  if (Lang == "\"C\"")
5759    Language = LinkageSpecDecl::lang_c;
5760  else if (Lang == "\"C++\"")
5761    Language = LinkageSpecDecl::lang_cxx;
5762  else {
5763    Diag(LangLoc, diag::err_bad_language);
5764    return DeclPtrTy();
5765  }
5766
5767  // FIXME: Add all the various semantics of linkage specifications
5768
5769  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5770                                               LangLoc, Language,
5771                                               LBraceLoc.isValid());
5772  CurContext->addDecl(D);
5773  PushDeclContext(S, D);
5774  return DeclPtrTy::make(D);
5775}
5776
5777/// ActOnFinishLinkageSpecification - Completely the definition of
5778/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5779/// valid, it's the position of the closing '}' brace in a linkage
5780/// specification that uses braces.
5781Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5782                                                      DeclPtrTy LinkageSpec,
5783                                                      SourceLocation RBraceLoc) {
5784  if (LinkageSpec)
5785    PopDeclContext();
5786  return LinkageSpec;
5787}
5788
5789/// \brief Perform semantic analysis for the variable declaration that
5790/// occurs within a C++ catch clause, returning the newly-created
5791/// variable.
5792VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5793                                         TypeSourceInfo *TInfo,
5794                                         IdentifierInfo *Name,
5795                                         SourceLocation Loc,
5796                                         SourceRange Range) {
5797  bool Invalid = false;
5798
5799  // Arrays and functions decay.
5800  if (ExDeclType->isArrayType())
5801    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5802  else if (ExDeclType->isFunctionType())
5803    ExDeclType = Context.getPointerType(ExDeclType);
5804
5805  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5806  // The exception-declaration shall not denote a pointer or reference to an
5807  // incomplete type, other than [cv] void*.
5808  // N2844 forbids rvalue references.
5809  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5810    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5811    Invalid = true;
5812  }
5813
5814  // GCC allows catching pointers and references to incomplete types
5815  // as an extension; so do we, but we warn by default.
5816
5817  QualType BaseType = ExDeclType;
5818  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5819  unsigned DK = diag::err_catch_incomplete;
5820  bool IncompleteCatchIsInvalid = true;
5821  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5822    BaseType = Ptr->getPointeeType();
5823    Mode = 1;
5824    DK = diag::ext_catch_incomplete_ptr;
5825    IncompleteCatchIsInvalid = false;
5826  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5827    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5828    BaseType = Ref->getPointeeType();
5829    Mode = 2;
5830    DK = diag::ext_catch_incomplete_ref;
5831    IncompleteCatchIsInvalid = false;
5832  }
5833  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5834      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5835      IncompleteCatchIsInvalid)
5836    Invalid = true;
5837
5838  if (!Invalid && !ExDeclType->isDependentType() &&
5839      RequireNonAbstractType(Loc, ExDeclType,
5840                             diag::err_abstract_type_in_decl,
5841                             AbstractVariableType))
5842    Invalid = true;
5843
5844  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5845                                    Name, ExDeclType, TInfo, VarDecl::None,
5846                                    VarDecl::None);
5847  ExDecl->setExceptionVariable(true);
5848
5849  if (!Invalid) {
5850    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5851      // C++ [except.handle]p16:
5852      //   The object declared in an exception-declaration or, if the
5853      //   exception-declaration does not specify a name, a temporary (12.2) is
5854      //   copy-initialized (8.5) from the exception object. [...]
5855      //   The object is destroyed when the handler exits, after the destruction
5856      //   of any automatic objects initialized within the handler.
5857      //
5858      // We just pretend to initialize the object with itself, then make sure
5859      // it can be destroyed later.
5860      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5861      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5862                                            Loc, ExDeclType, 0);
5863      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5864                                                               SourceLocation());
5865      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5866      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5867                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5868      if (Result.isInvalid())
5869        Invalid = true;
5870      else
5871        FinalizeVarWithDestructor(ExDecl, RecordTy);
5872    }
5873  }
5874
5875  if (Invalid)
5876    ExDecl->setInvalidDecl();
5877
5878  return ExDecl;
5879}
5880
5881/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5882/// handler.
5883Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5884  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5885  QualType ExDeclType = TInfo->getType();
5886
5887  bool Invalid = D.isInvalidType();
5888  IdentifierInfo *II = D.getIdentifier();
5889  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
5890                                             LookupOrdinaryName,
5891                                             ForRedeclaration)) {
5892    // The scope should be freshly made just for us. There is just no way
5893    // it contains any previous declaration.
5894    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5895    if (PrevDecl->isTemplateParameter()) {
5896      // Maybe we will complain about the shadowed template parameter.
5897      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5898    }
5899  }
5900
5901  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5902    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5903      << D.getCXXScopeSpec().getRange();
5904    Invalid = true;
5905  }
5906
5907  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5908                                              D.getIdentifier(),
5909                                              D.getIdentifierLoc(),
5910                                            D.getDeclSpec().getSourceRange());
5911
5912  if (Invalid)
5913    ExDecl->setInvalidDecl();
5914
5915  // Add the exception declaration into this scope.
5916  if (II)
5917    PushOnScopeChains(ExDecl, S);
5918  else
5919    CurContext->addDecl(ExDecl);
5920
5921  ProcessDeclAttributes(S, ExDecl, D);
5922  return DeclPtrTy::make(ExDecl);
5923}
5924
5925Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5926                                                   ExprArg assertexpr,
5927                                                   ExprArg assertmessageexpr) {
5928  Expr *AssertExpr = (Expr *)assertexpr.get();
5929  StringLiteral *AssertMessage =
5930    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5931
5932  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5933    llvm::APSInt Value(32);
5934    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5935      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5936        AssertExpr->getSourceRange();
5937      return DeclPtrTy();
5938    }
5939
5940    if (Value == 0) {
5941      Diag(AssertLoc, diag::err_static_assert_failed)
5942        << AssertMessage->getString() << AssertExpr->getSourceRange();
5943    }
5944  }
5945
5946  assertexpr.release();
5947  assertmessageexpr.release();
5948  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5949                                        AssertExpr, AssertMessage);
5950
5951  CurContext->addDecl(Decl);
5952  return DeclPtrTy::make(Decl);
5953}
5954
5955/// \brief Perform semantic analysis of the given friend type declaration.
5956///
5957/// \returns A friend declaration that.
5958FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5959                                      TypeSourceInfo *TSInfo) {
5960  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5961
5962  QualType T = TSInfo->getType();
5963  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
5964
5965  if (!getLangOptions().CPlusPlus0x) {
5966    // C++03 [class.friend]p2:
5967    //   An elaborated-type-specifier shall be used in a friend declaration
5968    //   for a class.*
5969    //
5970    //   * The class-key of the elaborated-type-specifier is required.
5971    if (!ActiveTemplateInstantiations.empty()) {
5972      // Do not complain about the form of friend template types during
5973      // template instantiation; we will already have complained when the
5974      // template was declared.
5975    } else if (!T->isElaboratedTypeSpecifier()) {
5976      // If we evaluated the type to a record type, suggest putting
5977      // a tag in front.
5978      if (const RecordType *RT = T->getAs<RecordType>()) {
5979        RecordDecl *RD = RT->getDecl();
5980
5981        std::string InsertionText = std::string(" ") + RD->getKindName();
5982
5983        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5984          << (unsigned) RD->getTagKind()
5985          << T
5986          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5987                                        InsertionText);
5988      } else {
5989        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5990          << T
5991          << SourceRange(FriendLoc, TypeRange.getEnd());
5992      }
5993    } else if (T->getAs<EnumType>()) {
5994      Diag(FriendLoc, diag::ext_enum_friend)
5995        << T
5996        << SourceRange(FriendLoc, TypeRange.getEnd());
5997    }
5998  }
5999
6000  // C++0x [class.friend]p3:
6001  //   If the type specifier in a friend declaration designates a (possibly
6002  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6003  //   the friend declaration is ignored.
6004
6005  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6006  // in [class.friend]p3 that we do not implement.
6007
6008  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6009}
6010
6011/// Handle a friend type declaration.  This works in tandem with
6012/// ActOnTag.
6013///
6014/// Notes on friend class templates:
6015///
6016/// We generally treat friend class declarations as if they were
6017/// declaring a class.  So, for example, the elaborated type specifier
6018/// in a friend declaration is required to obey the restrictions of a
6019/// class-head (i.e. no typedefs in the scope chain), template
6020/// parameters are required to match up with simple template-ids, &c.
6021/// However, unlike when declaring a template specialization, it's
6022/// okay to refer to a template specialization without an empty
6023/// template parameter declaration, e.g.
6024///   friend class A<T>::B<unsigned>;
6025/// We permit this as a special case; if there are any template
6026/// parameters present at all, require proper matching, i.e.
6027///   template <> template <class T> friend class A<int>::B;
6028Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6029                                          MultiTemplateParamsArg TempParams) {
6030  SourceLocation Loc = DS.getSourceRange().getBegin();
6031
6032  assert(DS.isFriendSpecified());
6033  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6034
6035  // Try to convert the decl specifier to a type.  This works for
6036  // friend templates because ActOnTag never produces a ClassTemplateDecl
6037  // for a TUK_Friend.
6038  Declarator TheDeclarator(DS, Declarator::MemberContext);
6039  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6040  QualType T = TSI->getType();
6041  if (TheDeclarator.isInvalidType())
6042    return DeclPtrTy();
6043
6044  // This is definitely an error in C++98.  It's probably meant to
6045  // be forbidden in C++0x, too, but the specification is just
6046  // poorly written.
6047  //
6048  // The problem is with declarations like the following:
6049  //   template <T> friend A<T>::foo;
6050  // where deciding whether a class C is a friend or not now hinges
6051  // on whether there exists an instantiation of A that causes
6052  // 'foo' to equal C.  There are restrictions on class-heads
6053  // (which we declare (by fiat) elaborated friend declarations to
6054  // be) that makes this tractable.
6055  //
6056  // FIXME: handle "template <> friend class A<T>;", which
6057  // is possibly well-formed?  Who even knows?
6058  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6059    Diag(Loc, diag::err_tagless_friend_type_template)
6060      << DS.getSourceRange();
6061    return DeclPtrTy();
6062  }
6063
6064  // C++98 [class.friend]p1: A friend of a class is a function
6065  //   or class that is not a member of the class . . .
6066  // This is fixed in DR77, which just barely didn't make the C++03
6067  // deadline.  It's also a very silly restriction that seriously
6068  // affects inner classes and which nobody else seems to implement;
6069  // thus we never diagnose it, not even in -pedantic.
6070  //
6071  // But note that we could warn about it: it's always useless to
6072  // friend one of your own members (it's not, however, worthless to
6073  // friend a member of an arbitrary specialization of your template).
6074
6075  Decl *D;
6076  if (unsigned NumTempParamLists = TempParams.size())
6077    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6078                                   NumTempParamLists,
6079                                 (TemplateParameterList**) TempParams.release(),
6080                                   TSI,
6081                                   DS.getFriendSpecLoc());
6082  else
6083    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6084
6085  if (!D)
6086    return DeclPtrTy();
6087
6088  D->setAccess(AS_public);
6089  CurContext->addDecl(D);
6090
6091  return DeclPtrTy::make(D);
6092}
6093
6094Sema::DeclPtrTy
6095Sema::ActOnFriendFunctionDecl(Scope *S,
6096                              Declarator &D,
6097                              bool IsDefinition,
6098                              MultiTemplateParamsArg TemplateParams) {
6099  const DeclSpec &DS = D.getDeclSpec();
6100
6101  assert(DS.isFriendSpecified());
6102  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6103
6104  SourceLocation Loc = D.getIdentifierLoc();
6105  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6106  QualType T = TInfo->getType();
6107
6108  // C++ [class.friend]p1
6109  //   A friend of a class is a function or class....
6110  // Note that this sees through typedefs, which is intended.
6111  // It *doesn't* see through dependent types, which is correct
6112  // according to [temp.arg.type]p3:
6113  //   If a declaration acquires a function type through a
6114  //   type dependent on a template-parameter and this causes
6115  //   a declaration that does not use the syntactic form of a
6116  //   function declarator to have a function type, the program
6117  //   is ill-formed.
6118  if (!T->isFunctionType()) {
6119    Diag(Loc, diag::err_unexpected_friend);
6120
6121    // It might be worthwhile to try to recover by creating an
6122    // appropriate declaration.
6123    return DeclPtrTy();
6124  }
6125
6126  // C++ [namespace.memdef]p3
6127  //  - If a friend declaration in a non-local class first declares a
6128  //    class or function, the friend class or function is a member
6129  //    of the innermost enclosing namespace.
6130  //  - The name of the friend is not found by simple name lookup
6131  //    until a matching declaration is provided in that namespace
6132  //    scope (either before or after the class declaration granting
6133  //    friendship).
6134  //  - If a friend function is called, its name may be found by the
6135  //    name lookup that considers functions from namespaces and
6136  //    classes associated with the types of the function arguments.
6137  //  - When looking for a prior declaration of a class or a function
6138  //    declared as a friend, scopes outside the innermost enclosing
6139  //    namespace scope are not considered.
6140
6141  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
6142  DeclarationName Name = GetNameForDeclarator(D);
6143  assert(Name);
6144
6145  // The context we found the declaration in, or in which we should
6146  // create the declaration.
6147  DeclContext *DC;
6148
6149  // FIXME: handle local classes
6150
6151  // Recover from invalid scope qualifiers as if they just weren't there.
6152  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
6153                        ForRedeclaration);
6154  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
6155    DC = computeDeclContext(ScopeQual);
6156
6157    // FIXME: handle dependent contexts
6158    if (!DC) return DeclPtrTy();
6159    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
6160
6161    LookupQualifiedName(Previous, DC);
6162
6163    // Ignore things found implicitly in the wrong scope.
6164    // TODO: better diagnostics for this case.  Suggesting the right
6165    // qualified scope would be nice...
6166    LookupResult::Filter F = Previous.makeFilter();
6167    while (F.hasNext()) {
6168      NamedDecl *D = F.next();
6169      if (!D->getDeclContext()->getLookupContext()->Equals(DC))
6170        F.erase();
6171    }
6172    F.done();
6173
6174    if (Previous.empty()) {
6175      D.setInvalidType();
6176      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6177      return DeclPtrTy();
6178    }
6179
6180    // C++ [class.friend]p1: A friend of a class is a function or
6181    //   class that is not a member of the class . . .
6182    if (DC->Equals(CurContext))
6183      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6184
6185  // Otherwise walk out to the nearest namespace scope looking for matches.
6186  } else {
6187    // TODO: handle local class contexts.
6188
6189    DC = CurContext;
6190    while (true) {
6191      // Skip class contexts.  If someone can cite chapter and verse
6192      // for this behavior, that would be nice --- it's what GCC and
6193      // EDG do, and it seems like a reasonable intent, but the spec
6194      // really only says that checks for unqualified existing
6195      // declarations should stop at the nearest enclosing namespace,
6196      // not that they should only consider the nearest enclosing
6197      // namespace.
6198      while (DC->isRecord())
6199        DC = DC->getParent();
6200
6201      LookupQualifiedName(Previous, DC);
6202
6203      // TODO: decide what we think about using declarations.
6204      if (!Previous.empty())
6205        break;
6206
6207      if (DC->isFileContext()) break;
6208      DC = DC->getParent();
6209    }
6210
6211    // C++ [class.friend]p1: A friend of a class is a function or
6212    //   class that is not a member of the class . . .
6213    // C++0x changes this for both friend types and functions.
6214    // Most C++ 98 compilers do seem to give an error here, so
6215    // we do, too.
6216    if (!Previous.empty() && DC->Equals(CurContext)
6217        && !getLangOptions().CPlusPlus0x)
6218      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6219  }
6220
6221  if (DC->isFileContext()) {
6222    // This implies that it has to be an operator or function.
6223    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6224        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6225        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6226      Diag(Loc, diag::err_introducing_special_friend) <<
6227        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6228         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6229      return DeclPtrTy();
6230    }
6231  }
6232
6233  bool Redeclaration = false;
6234  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
6235                                          move(TemplateParams),
6236                                          IsDefinition,
6237                                          Redeclaration);
6238  if (!ND) return DeclPtrTy();
6239
6240  assert(ND->getDeclContext() == DC);
6241  assert(ND->getLexicalDeclContext() == CurContext);
6242
6243  // Add the function declaration to the appropriate lookup tables,
6244  // adjusting the redeclarations list as necessary.  We don't
6245  // want to do this yet if the friending class is dependent.
6246  //
6247  // Also update the scope-based lookup if the target context's
6248  // lookup context is in lexical scope.
6249  if (!CurContext->isDependentContext()) {
6250    DC = DC->getLookupContext();
6251    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6252    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6253      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6254  }
6255
6256  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6257                                       D.getIdentifierLoc(), ND,
6258                                       DS.getFriendSpecLoc());
6259  FrD->setAccess(AS_public);
6260  CurContext->addDecl(FrD);
6261
6262  return DeclPtrTy::make(ND);
6263}
6264
6265void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
6266  AdjustDeclIfTemplate(dcl);
6267
6268  Decl *Dcl = dcl.getAs<Decl>();
6269  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6270  if (!Fn) {
6271    Diag(DelLoc, diag::err_deleted_non_function);
6272    return;
6273  }
6274  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6275    Diag(DelLoc, diag::err_deleted_decl_not_first);
6276    Diag(Prev->getLocation(), diag::note_previous_declaration);
6277    // If the declaration wasn't the first, we delete the function anyway for
6278    // recovery.
6279  }
6280  Fn->setDeleted();
6281}
6282
6283static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6284  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6285       ++CI) {
6286    Stmt *SubStmt = *CI;
6287    if (!SubStmt)
6288      continue;
6289    if (isa<ReturnStmt>(SubStmt))
6290      Self.Diag(SubStmt->getSourceRange().getBegin(),
6291           diag::err_return_in_constructor_handler);
6292    if (!isa<Expr>(SubStmt))
6293      SearchForReturnInStmt(Self, SubStmt);
6294  }
6295}
6296
6297void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6298  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6299    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6300    SearchForReturnInStmt(*this, Handler);
6301  }
6302}
6303
6304bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6305                                             const CXXMethodDecl *Old) {
6306  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6307  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6308
6309  if (Context.hasSameType(NewTy, OldTy) ||
6310      NewTy->isDependentType() || OldTy->isDependentType())
6311    return false;
6312
6313  // Check if the return types are covariant
6314  QualType NewClassTy, OldClassTy;
6315
6316  /// Both types must be pointers or references to classes.
6317  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6318    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6319      NewClassTy = NewPT->getPointeeType();
6320      OldClassTy = OldPT->getPointeeType();
6321    }
6322  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6323    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6324      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6325        NewClassTy = NewRT->getPointeeType();
6326        OldClassTy = OldRT->getPointeeType();
6327      }
6328    }
6329  }
6330
6331  // The return types aren't either both pointers or references to a class type.
6332  if (NewClassTy.isNull()) {
6333    Diag(New->getLocation(),
6334         diag::err_different_return_type_for_overriding_virtual_function)
6335      << New->getDeclName() << NewTy << OldTy;
6336    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6337
6338    return true;
6339  }
6340
6341  // C++ [class.virtual]p6:
6342  //   If the return type of D::f differs from the return type of B::f, the
6343  //   class type in the return type of D::f shall be complete at the point of
6344  //   declaration of D::f or shall be the class type D.
6345  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6346    if (!RT->isBeingDefined() &&
6347        RequireCompleteType(New->getLocation(), NewClassTy,
6348                            PDiag(diag::err_covariant_return_incomplete)
6349                              << New->getDeclName()))
6350    return true;
6351  }
6352
6353  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6354    // Check if the new class derives from the old class.
6355    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6356      Diag(New->getLocation(),
6357           diag::err_covariant_return_not_derived)
6358      << New->getDeclName() << NewTy << OldTy;
6359      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6360      return true;
6361    }
6362
6363    // Check if we the conversion from derived to base is valid.
6364    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6365                    diag::err_covariant_return_inaccessible_base,
6366                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6367                    // FIXME: Should this point to the return type?
6368                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6369      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6370      return true;
6371    }
6372  }
6373
6374  // The qualifiers of the return types must be the same.
6375  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6376    Diag(New->getLocation(),
6377         diag::err_covariant_return_type_different_qualifications)
6378    << New->getDeclName() << NewTy << OldTy;
6379    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6380    return true;
6381  };
6382
6383
6384  // The new class type must have the same or less qualifiers as the old type.
6385  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6386    Diag(New->getLocation(),
6387         diag::err_covariant_return_type_class_type_more_qualified)
6388    << New->getDeclName() << NewTy << OldTy;
6389    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6390    return true;
6391  };
6392
6393  return false;
6394}
6395
6396bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6397                                             const CXXMethodDecl *Old)
6398{
6399  if (Old->hasAttr<FinalAttr>()) {
6400    Diag(New->getLocation(), diag::err_final_function_overridden)
6401      << New->getDeclName();
6402    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6403    return true;
6404  }
6405
6406  return false;
6407}
6408
6409/// \brief Mark the given method pure.
6410///
6411/// \param Method the method to be marked pure.
6412///
6413/// \param InitRange the source range that covers the "0" initializer.
6414bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6415  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6416    Method->setPure();
6417
6418    // A class is abstract if at least one function is pure virtual.
6419    Method->getParent()->setAbstract(true);
6420    return false;
6421  }
6422
6423  if (!Method->isInvalidDecl())
6424    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6425      << Method->getDeclName() << InitRange;
6426  return true;
6427}
6428
6429/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6430/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6431/// is a fresh scope pushed for just this purpose.
6432///
6433/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6434/// static data member of class X, names should be looked up in the scope of
6435/// class X.
6436void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6437  // If there is no declaration, there was an error parsing it.
6438  Decl *D = Dcl.getAs<Decl>();
6439  if (D == 0) return;
6440
6441  // We should only get called for declarations with scope specifiers, like:
6442  //   int foo::bar;
6443  assert(D->isOutOfLine());
6444  EnterDeclaratorContext(S, D->getDeclContext());
6445}
6446
6447/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6448/// initializer for the out-of-line declaration 'Dcl'.
6449void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6450  // If there is no declaration, there was an error parsing it.
6451  Decl *D = Dcl.getAs<Decl>();
6452  if (D == 0) return;
6453
6454  assert(D->isOutOfLine());
6455  ExitDeclaratorContext(S);
6456}
6457
6458/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6459/// C++ if/switch/while/for statement.
6460/// e.g: "if (int x = f()) {...}"
6461Action::DeclResult
6462Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6463  // C++ 6.4p2:
6464  // The declarator shall not specify a function or an array.
6465  // The type-specifier-seq shall not contain typedef and shall not declare a
6466  // new class or enumeration.
6467  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6468         "Parser allowed 'typedef' as storage class of condition decl.");
6469
6470  TagDecl *OwnedTag = 0;
6471  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6472  QualType Ty = TInfo->getType();
6473
6474  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6475                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6476                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6477    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6478      << D.getSourceRange();
6479    return DeclResult();
6480  } else if (OwnedTag && OwnedTag->isDefinition()) {
6481    // The type-specifier-seq shall not declare a new class or enumeration.
6482    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6483  }
6484
6485  DeclPtrTy Dcl = ActOnDeclarator(S, D);
6486  if (!Dcl)
6487    return DeclResult();
6488
6489  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
6490  VD->setDeclaredInCondition(true);
6491  return Dcl;
6492}
6493
6494void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6495                          bool DefinitionRequired) {
6496  // Ignore any vtable uses in unevaluated operands or for classes that do
6497  // not have a vtable.
6498  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6499      CurContext->isDependentContext() ||
6500      ExprEvalContexts.back().Context == Unevaluated)
6501    return;
6502
6503  // Try to insert this class into the map.
6504  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6505  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6506    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6507  if (!Pos.second) {
6508    // If we already had an entry, check to see if we are promoting this vtable
6509    // to required a definition. If so, we need to reappend to the VTableUses
6510    // list, since we may have already processed the first entry.
6511    if (DefinitionRequired && !Pos.first->second) {
6512      Pos.first->second = true;
6513    } else {
6514      // Otherwise, we can early exit.
6515      return;
6516    }
6517  }
6518
6519  // Local classes need to have their virtual members marked
6520  // immediately. For all other classes, we mark their virtual members
6521  // at the end of the translation unit.
6522  if (Class->isLocalClass())
6523    MarkVirtualMembersReferenced(Loc, Class);
6524  else
6525    VTableUses.push_back(std::make_pair(Class, Loc));
6526}
6527
6528bool Sema::DefineUsedVTables() {
6529  // If any dynamic classes have their key function defined within
6530  // this translation unit, then those vtables are considered "used" and must
6531  // be emitted.
6532  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6533    if (const CXXMethodDecl *KeyFunction
6534                             = Context.getKeyFunction(DynamicClasses[I])) {
6535      const FunctionDecl *Definition = 0;
6536      if (KeyFunction->getBody(Definition))
6537        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6538    }
6539  }
6540
6541  if (VTableUses.empty())
6542    return false;
6543
6544  // Note: The VTableUses vector could grow as a result of marking
6545  // the members of a class as "used", so we check the size each
6546  // time through the loop and prefer indices (with are stable) to
6547  // iterators (which are not).
6548  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6549    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6550    if (!Class)
6551      continue;
6552
6553    SourceLocation Loc = VTableUses[I].second;
6554
6555    // If this class has a key function, but that key function is
6556    // defined in another translation unit, we don't need to emit the
6557    // vtable even though we're using it.
6558    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6559    if (KeyFunction && !KeyFunction->getBody()) {
6560      switch (KeyFunction->getTemplateSpecializationKind()) {
6561      case TSK_Undeclared:
6562      case TSK_ExplicitSpecialization:
6563      case TSK_ExplicitInstantiationDeclaration:
6564        // The key function is in another translation unit.
6565        continue;
6566
6567      case TSK_ExplicitInstantiationDefinition:
6568      case TSK_ImplicitInstantiation:
6569        // We will be instantiating the key function.
6570        break;
6571      }
6572    } else if (!KeyFunction) {
6573      // If we have a class with no key function that is the subject
6574      // of an explicit instantiation declaration, suppress the
6575      // vtable; it will live with the explicit instantiation
6576      // definition.
6577      bool IsExplicitInstantiationDeclaration
6578        = Class->getTemplateSpecializationKind()
6579                                      == TSK_ExplicitInstantiationDeclaration;
6580      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6581                                 REnd = Class->redecls_end();
6582           R != REnd; ++R) {
6583        TemplateSpecializationKind TSK
6584          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6585        if (TSK == TSK_ExplicitInstantiationDeclaration)
6586          IsExplicitInstantiationDeclaration = true;
6587        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6588          IsExplicitInstantiationDeclaration = false;
6589          break;
6590        }
6591      }
6592
6593      if (IsExplicitInstantiationDeclaration)
6594        continue;
6595    }
6596
6597    // Mark all of the virtual members of this class as referenced, so
6598    // that we can build a vtable. Then, tell the AST consumer that a
6599    // vtable for this class is required.
6600    MarkVirtualMembersReferenced(Loc, Class);
6601    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6602    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6603
6604    // Optionally warn if we're emitting a weak vtable.
6605    if (Class->getLinkage() == ExternalLinkage &&
6606        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6607      if (!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
6608        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6609    }
6610  }
6611  VTableUses.clear();
6612
6613  return true;
6614}
6615
6616void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6617                                        const CXXRecordDecl *RD) {
6618  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6619       e = RD->method_end(); i != e; ++i) {
6620    CXXMethodDecl *MD = *i;
6621
6622    // C++ [basic.def.odr]p2:
6623    //   [...] A virtual member function is used if it is not pure. [...]
6624    if (MD->isVirtual() && !MD->isPure())
6625      MarkDeclarationReferenced(Loc, MD);
6626  }
6627
6628  // Only classes that have virtual bases need a VTT.
6629  if (RD->getNumVBases() == 0)
6630    return;
6631
6632  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6633           e = RD->bases_end(); i != e; ++i) {
6634    const CXXRecordDecl *Base =
6635        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6636    if (i->isVirtual())
6637      continue;
6638    if (Base->getNumVBases() == 0)
6639      continue;
6640    MarkVirtualMembersReferenced(Loc, Base);
6641  }
6642}
6643
6644/// SetIvarInitializers - This routine builds initialization ASTs for the
6645/// Objective-C implementation whose ivars need be initialized.
6646void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6647  if (!getLangOptions().CPlusPlus)
6648    return;
6649  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6650    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6651    CollectIvarsToConstructOrDestruct(OID, ivars);
6652    if (ivars.empty())
6653      return;
6654    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6655    for (unsigned i = 0; i < ivars.size(); i++) {
6656      FieldDecl *Field = ivars[i];
6657      if (Field->isInvalidDecl())
6658        continue;
6659
6660      CXXBaseOrMemberInitializer *Member;
6661      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6662      InitializationKind InitKind =
6663        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6664
6665      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6666      Sema::OwningExprResult MemberInit =
6667        InitSeq.Perform(*this, InitEntity, InitKind,
6668                        Sema::MultiExprArg(*this, 0, 0));
6669      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
6670      // Note, MemberInit could actually come back empty if no initialization
6671      // is required (e.g., because it would call a trivial default constructor)
6672      if (!MemberInit.get() || MemberInit.isInvalid())
6673        continue;
6674
6675      Member =
6676        new (Context) CXXBaseOrMemberInitializer(Context,
6677                                                 Field, SourceLocation(),
6678                                                 SourceLocation(),
6679                                                 MemberInit.takeAs<Expr>(),
6680                                                 SourceLocation());
6681      AllToInit.push_back(Member);
6682
6683      // Be sure that the destructor is accessible and is marked as referenced.
6684      if (const RecordType *RecordTy
6685                  = Context.getBaseElementType(Field->getType())
6686                                                        ->getAs<RecordType>()) {
6687                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6688        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
6689          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6690          CheckDestructorAccess(Field->getLocation(), Destructor,
6691                            PDiag(diag::err_access_dtor_ivar)
6692                              << Context.getBaseElementType(Field->getType()));
6693        }
6694      }
6695    }
6696    ObjCImplementation->setIvarInitializers(Context,
6697                                            AllToInit.data(), AllToInit.size());
6698  }
6699}
6700