SemaDeclCXX.cpp revision c3fc84de310ca8f412abda63234f04825fa0124c
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      NewParam->setHasInheritedDefaultArg();
302      if (OldParam->hasUninstantiatedDefaultArg())
303        NewParam->setUninstantiatedDefaultArg(
304                                      OldParam->getUninstantiatedDefaultArg());
305      else
306        NewParam->setDefaultArg(OldParam->getDefaultArg());
307    } else if (NewParam->hasDefaultArg()) {
308      if (New->getDescribedFunctionTemplate()) {
309        // Paragraph 4, quoted above, only applies to non-template functions.
310        Diag(NewParam->getLocation(),
311             diag::err_param_default_argument_template_redecl)
312          << NewParam->getDefaultArgRange();
313        Diag(Old->getLocation(), diag::note_template_prev_declaration)
314          << false;
315      } else if (New->getTemplateSpecializationKind()
316                   != TSK_ImplicitInstantiation &&
317                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
318        // C++ [temp.expr.spec]p21:
319        //   Default function arguments shall not be specified in a declaration
320        //   or a definition for one of the following explicit specializations:
321        //     - the explicit specialization of a function template;
322        //     - the explicit specialization of a member function template;
323        //     - the explicit specialization of a member function of a class
324        //       template where the class template specialization to which the
325        //       member function specialization belongs is implicitly
326        //       instantiated.
327        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
328          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
329          << New->getDeclName()
330          << NewParam->getDefaultArgRange();
331      } else if (New->getDeclContext()->isDependentContext()) {
332        // C++ [dcl.fct.default]p6 (DR217):
333        //   Default arguments for a member function of a class template shall
334        //   be specified on the initial declaration of the member function
335        //   within the class template.
336        //
337        // Reading the tea leaves a bit in DR217 and its reference to DR205
338        // leads me to the conclusion that one cannot add default function
339        // arguments for an out-of-line definition of a member function of a
340        // dependent type.
341        int WhichKind = 2;
342        if (CXXRecordDecl *Record
343              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
344          if (Record->getDescribedClassTemplate())
345            WhichKind = 0;
346          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
347            WhichKind = 1;
348          else
349            WhichKind = 2;
350        }
351
352        Diag(NewParam->getLocation(),
353             diag::err_param_default_argument_member_template_redecl)
354          << WhichKind
355          << NewParam->getDefaultArgRange();
356      }
357    }
358  }
359
360  if (CheckEquivalentExceptionSpec(Old, New))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        if (!Param->hasUnparsedDefaultArg())
413          Param->getDefaultArg()->Destroy(Context);
414        Param->setDefaultArg(0);
415      }
416    }
417  }
418}
419
420/// isCurrentClassName - Determine whether the identifier II is the
421/// name of the class type currently being defined. In the case of
422/// nested classes, this will only return true if II is the name of
423/// the innermost class.
424bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
425                              const CXXScopeSpec *SS) {
426  assert(getLangOptions().CPlusPlus && "No class names in C!");
427
428  CXXRecordDecl *CurDecl;
429  if (SS && SS->isSet() && !SS->isInvalid()) {
430    DeclContext *DC = computeDeclContext(*SS, true);
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
432  } else
433    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
434
435  if (CurDecl && CurDecl->getIdentifier())
436    return &II == CurDecl->getIdentifier();
437  else
438    return false;
439}
440
441/// \brief Check the validity of a C++ base class specifier.
442///
443/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
444/// and returns NULL otherwise.
445CXXBaseSpecifier *
446Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
447                         SourceRange SpecifierRange,
448                         bool Virtual, AccessSpecifier Access,
449                         QualType BaseType,
450                         SourceLocation BaseLoc) {
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                Class->getTagKind() == RecordDecl::TK_class,
462                                Access, BaseType);
463
464  // Base specifiers must be record types.
465  if (!BaseType->isRecordType()) {
466    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
467    return 0;
468  }
469
470  // C++ [class.union]p1:
471  //   A union shall not be used as a base class.
472  if (BaseType->isUnionType()) {
473    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
474    return 0;
475  }
476
477  // C++ [class.derived]p2:
478  //   The class-name in a base-specifier shall not be an incompletely
479  //   defined class.
480  if (RequireCompleteType(BaseLoc, BaseType,
481                          PDiag(diag::err_incomplete_base_class)
482                            << SpecifierRange))
483    return 0;
484
485  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
486  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
487  assert(BaseDecl && "Record type has no declaration");
488  BaseDecl = BaseDecl->getDefinition();
489  assert(BaseDecl && "Base type is not incomplete, but has no definition");
490  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
491  assert(CXXBaseDecl && "Base type is not a C++ type");
492
493  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
494  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
495    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
496    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
497      << BaseType;
498    return 0;
499  }
500
501  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
502
503  // Create the base specifier.
504  // FIXME: Allocate via ASTContext?
505  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
506                              Class->getTagKind() == RecordDecl::TK_class,
507                              Access, BaseType);
508}
509
510void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
511                                          const CXXRecordDecl *BaseClass,
512                                          bool BaseIsVirtual) {
513  // A class with a non-empty base class is not empty.
514  // FIXME: Standard ref?
515  if (!BaseClass->isEmpty())
516    Class->setEmpty(false);
517
518  // C++ [class.virtual]p1:
519  //   A class that [...] inherits a virtual function is called a polymorphic
520  //   class.
521  if (BaseClass->isPolymorphic())
522    Class->setPolymorphic(true);
523
524  // C++ [dcl.init.aggr]p1:
525  //   An aggregate is [...] a class with [...] no base classes [...].
526  Class->setAggregate(false);
527
528  // C++ [class]p4:
529  //   A POD-struct is an aggregate class...
530  Class->setPOD(false);
531
532  if (BaseIsVirtual) {
533    // C++ [class.ctor]p5:
534    //   A constructor is trivial if its class has no virtual base classes.
535    Class->setHasTrivialConstructor(false);
536
537    // C++ [class.copy]p6:
538    //   A copy constructor is trivial if its class has no virtual base classes.
539    Class->setHasTrivialCopyConstructor(false);
540
541    // C++ [class.copy]p11:
542    //   A copy assignment operator is trivial if its class has no virtual
543    //   base classes.
544    Class->setHasTrivialCopyAssignment(false);
545
546    // C++0x [meta.unary.prop] is_empty:
547    //    T is a class type, but not a union type, with ... no virtual base
548    //    classes
549    Class->setEmpty(false);
550  } else {
551    // C++ [class.ctor]p5:
552    //   A constructor is trivial if all the direct base classes of its
553    //   class have trivial constructors.
554    if (!BaseClass->hasTrivialConstructor())
555      Class->setHasTrivialConstructor(false);
556
557    // C++ [class.copy]p6:
558    //   A copy constructor is trivial if all the direct base classes of its
559    //   class have trivial copy constructors.
560    if (!BaseClass->hasTrivialCopyConstructor())
561      Class->setHasTrivialCopyConstructor(false);
562
563    // C++ [class.copy]p11:
564    //   A copy assignment operator is trivial if all the direct base classes
565    //   of its class have trivial copy assignment operators.
566    if (!BaseClass->hasTrivialCopyAssignment())
567      Class->setHasTrivialCopyAssignment(false);
568  }
569
570  // C++ [class.ctor]p3:
571  //   A destructor is trivial if all the direct base classes of its class
572  //   have trivial destructors.
573  if (!BaseClass->hasTrivialDestructor())
574    Class->setHasTrivialDestructor(false);
575}
576
577/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
578/// one entry in the base class list of a class specifier, for
579/// example:
580///    class foo : public bar, virtual private baz {
581/// 'public bar' and 'virtual private baz' are each base-specifiers.
582Sema::BaseResult
583Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
584                         bool Virtual, AccessSpecifier Access,
585                         TypeTy *basetype, SourceLocation BaseLoc) {
586  if (!classdecl)
587    return true;
588
589  AdjustDeclIfTemplate(classdecl);
590  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
591  if (!Class)
592    return true;
593
594  QualType BaseType = GetTypeFromParser(basetype);
595  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
596                                                      Virtual, Access,
597                                                      BaseType, BaseLoc))
598    return BaseSpec;
599
600  return true;
601}
602
603/// \brief Performs the actual work of attaching the given base class
604/// specifiers to a C++ class.
605bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
606                                unsigned NumBases) {
607 if (NumBases == 0)
608    return false;
609
610  // Used to keep track of which base types we have already seen, so
611  // that we can properly diagnose redundant direct base types. Note
612  // that the key is always the unqualified canonical type of the base
613  // class.
614  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
615
616  // Copy non-redundant base specifiers into permanent storage.
617  unsigned NumGoodBases = 0;
618  bool Invalid = false;
619  for (unsigned idx = 0; idx < NumBases; ++idx) {
620    QualType NewBaseType
621      = Context.getCanonicalType(Bases[idx]->getType());
622    NewBaseType = NewBaseType.getLocalUnqualifiedType();
623
624    if (KnownBaseTypes[NewBaseType]) {
625      // C++ [class.mi]p3:
626      //   A class shall not be specified as a direct base class of a
627      //   derived class more than once.
628      Diag(Bases[idx]->getSourceRange().getBegin(),
629           diag::err_duplicate_base_class)
630        << KnownBaseTypes[NewBaseType]->getType()
631        << Bases[idx]->getSourceRange();
632
633      // Delete the duplicate base class specifier; we're going to
634      // overwrite its pointer later.
635      Context.Deallocate(Bases[idx]);
636
637      Invalid = true;
638    } else {
639      // Okay, add this new base class.
640      KnownBaseTypes[NewBaseType] = Bases[idx];
641      Bases[NumGoodBases++] = Bases[idx];
642    }
643  }
644
645  // Attach the remaining base class specifiers to the derived class.
646  Class->setBases(Bases, NumGoodBases);
647
648  // Delete the remaining (good) base class specifiers, since their
649  // data has been copied into the CXXRecordDecl.
650  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
651    Context.Deallocate(Bases[idx]);
652
653  return Invalid;
654}
655
656/// ActOnBaseSpecifiers - Attach the given base specifiers to the
657/// class, after checking whether there are any duplicate base
658/// classes.
659void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
660                               unsigned NumBases) {
661  if (!ClassDecl || !Bases || !NumBases)
662    return;
663
664  AdjustDeclIfTemplate(ClassDecl);
665  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
666                       (CXXBaseSpecifier**)(Bases), NumBases);
667}
668
669static CXXRecordDecl *GetClassForType(QualType T) {
670  if (const RecordType *RT = T->getAs<RecordType>())
671    return cast<CXXRecordDecl>(RT->getDecl());
672  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
673    return ICT->getDecl();
674  else
675    return 0;
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
693  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
694}
695
696/// \brief Determine whether the type \p Derived is a C++ class that is
697/// derived from the type \p Base.
698bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
699  if (!getLangOptions().CPlusPlus)
700    return false;
701
702  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
703  if (!DerivedRD)
704    return false;
705
706  CXXRecordDecl *BaseRD = GetClassForType(Base);
707  if (!BaseRD)
708    return false;
709
710  return DerivedRD->isDerivedFrom(BaseRD, Paths);
711}
712
713/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
714/// conversion (where Derived and Base are class types) is
715/// well-formed, meaning that the conversion is unambiguous (and
716/// that all of the base classes are accessible). Returns true
717/// and emits a diagnostic if the code is ill-formed, returns false
718/// otherwise. Loc is the location where this routine should point to
719/// if there is an error, and Range is the source range to highlight
720/// if there is an error.
721bool
722Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
723                                   unsigned InaccessibleBaseID,
724                                   unsigned AmbigiousBaseConvID,
725                                   SourceLocation Loc, SourceRange Range,
726                                   DeclarationName Name) {
727  // First, determine whether the path from Derived to Base is
728  // ambiguous. This is slightly more expensive than checking whether
729  // the Derived to Base conversion exists, because here we need to
730  // explore multiple paths to determine if there is an ambiguity.
731  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
732                     /*DetectVirtual=*/false);
733  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
734  assert(DerivationOkay &&
735         "Can only be used with a derived-to-base conversion");
736  (void)DerivationOkay;
737
738  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
739    if (!InaccessibleBaseID)
740      return false;
741
742    // Check that the base class can be accessed.
743    switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
744                                 InaccessibleBaseID)) {
745    case AR_accessible: return false;
746    case AR_inaccessible: return true;
747    case AR_dependent: return false;
748    case AR_delayed: return false;
749    }
750  }
751
752  // We know that the derived-to-base conversion is ambiguous, and
753  // we're going to produce a diagnostic. Perform the derived-to-base
754  // search just one more time to compute all of the possible paths so
755  // that we can print them out. This is more expensive than any of
756  // the previous derived-to-base checks we've done, but at this point
757  // performance isn't as much of an issue.
758  Paths.clear();
759  Paths.setRecordingPaths(true);
760  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
761  assert(StillOkay && "Can only be used with a derived-to-base conversion");
762  (void)StillOkay;
763
764  // Build up a textual representation of the ambiguous paths, e.g.,
765  // D -> B -> A, that will be used to illustrate the ambiguous
766  // conversions in the diagnostic. We only print one of the paths
767  // to each base class subobject.
768  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
769
770  Diag(Loc, AmbigiousBaseConvID)
771  << Derived << Base << PathDisplayStr << Range << Name;
772  return true;
773}
774
775bool
776Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
777                                   SourceLocation Loc, SourceRange Range,
778                                   bool IgnoreAccess) {
779  return CheckDerivedToBaseConversion(Derived, Base,
780                                      IgnoreAccess ? 0
781                                       : diag::err_upcast_to_inaccessible_base,
782                                      diag::err_ambiguous_derived_to_base_conv,
783                                      Loc, Range, DeclarationName());
784}
785
786
787/// @brief Builds a string representing ambiguous paths from a
788/// specific derived class to different subobjects of the same base
789/// class.
790///
791/// This function builds a string that can be used in error messages
792/// to show the different paths that one can take through the
793/// inheritance hierarchy to go from the derived class to different
794/// subobjects of a base class. The result looks something like this:
795/// @code
796/// struct D -> struct B -> struct A
797/// struct D -> struct C -> struct A
798/// @endcode
799std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
800  std::string PathDisplayStr;
801  std::set<unsigned> DisplayedPaths;
802  for (CXXBasePaths::paths_iterator Path = Paths.begin();
803       Path != Paths.end(); ++Path) {
804    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
805      // We haven't displayed a path to this particular base
806      // class subobject yet.
807      PathDisplayStr += "\n    ";
808      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
809      for (CXXBasePath::const_iterator Element = Path->begin();
810           Element != Path->end(); ++Element)
811        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
812    }
813  }
814
815  return PathDisplayStr;
816}
817
818//===----------------------------------------------------------------------===//
819// C++ class member Handling
820//===----------------------------------------------------------------------===//
821
822/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
823/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
824/// bitfield width if there is one and 'InitExpr' specifies the initializer if
825/// any.
826Sema::DeclPtrTy
827Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
828                               MultiTemplateParamsArg TemplateParameterLists,
829                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
830                               bool Deleted) {
831  const DeclSpec &DS = D.getDeclSpec();
832  DeclarationName Name = GetNameForDeclarator(D);
833  Expr *BitWidth = static_cast<Expr*>(BW);
834  Expr *Init = static_cast<Expr*>(InitExpr);
835  SourceLocation Loc = D.getIdentifierLoc();
836
837  bool isFunc = D.isFunctionDeclarator();
838
839  assert(!DS.isFriendSpecified());
840
841  // C++ 9.2p6: A member shall not be declared to have automatic storage
842  // duration (auto, register) or with the extern storage-class-specifier.
843  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
844  // data members and cannot be applied to names declared const or static,
845  // and cannot be applied to reference members.
846  switch (DS.getStorageClassSpec()) {
847    case DeclSpec::SCS_unspecified:
848    case DeclSpec::SCS_typedef:
849    case DeclSpec::SCS_static:
850      // FALL THROUGH.
851      break;
852    case DeclSpec::SCS_mutable:
853      if (isFunc) {
854        if (DS.getStorageClassSpecLoc().isValid())
855          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
856        else
857          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
858
859        // FIXME: It would be nicer if the keyword was ignored only for this
860        // declarator. Otherwise we could get follow-up errors.
861        D.getMutableDeclSpec().ClearStorageClassSpecs();
862      } else {
863        QualType T = GetTypeForDeclarator(D, S);
864        diag::kind err = static_cast<diag::kind>(0);
865        if (T->isReferenceType())
866          err = diag::err_mutable_reference;
867        else if (T.isConstQualified())
868          err = diag::err_mutable_const;
869        if (err != 0) {
870          if (DS.getStorageClassSpecLoc().isValid())
871            Diag(DS.getStorageClassSpecLoc(), err);
872          else
873            Diag(DS.getThreadSpecLoc(), err);
874          // FIXME: It would be nicer if the keyword was ignored only for this
875          // declarator. Otherwise we could get follow-up errors.
876          D.getMutableDeclSpec().ClearStorageClassSpecs();
877        }
878      }
879      break;
880    default:
881      if (DS.getStorageClassSpecLoc().isValid())
882        Diag(DS.getStorageClassSpecLoc(),
883             diag::err_storageclass_invalid_for_member);
884      else
885        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
886      D.getMutableDeclSpec().ClearStorageClassSpecs();
887  }
888
889  if (!isFunc &&
890      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
891      D.getNumTypeObjects() == 0) {
892    // Check also for this case:
893    //
894    // typedef int f();
895    // f a;
896    //
897    QualType TDType = GetTypeFromParser(DS.getTypeRep());
898    isFunc = TDType->isFunctionType();
899  }
900
901  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
902                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
903                      !isFunc);
904
905  Decl *Member;
906  if (isInstField) {
907    // FIXME: Check for template parameters!
908    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
909                         AS);
910    assert(Member && "HandleField never returns null");
911  } else {
912    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
913               .getAs<Decl>();
914    if (!Member) {
915      if (BitWidth) DeleteExpr(BitWidth);
916      return DeclPtrTy();
917    }
918
919    // Non-instance-fields can't have a bitfield.
920    if (BitWidth) {
921      if (Member->isInvalidDecl()) {
922        // don't emit another diagnostic.
923      } else if (isa<VarDecl>(Member)) {
924        // C++ 9.6p3: A bit-field shall not be a static member.
925        // "static member 'A' cannot be a bit-field"
926        Diag(Loc, diag::err_static_not_bitfield)
927          << Name << BitWidth->getSourceRange();
928      } else if (isa<TypedefDecl>(Member)) {
929        // "typedef member 'x' cannot be a bit-field"
930        Diag(Loc, diag::err_typedef_not_bitfield)
931          << Name << BitWidth->getSourceRange();
932      } else {
933        // A function typedef ("typedef int f(); f a;").
934        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
935        Diag(Loc, diag::err_not_integral_type_bitfield)
936          << Name << cast<ValueDecl>(Member)->getType()
937          << BitWidth->getSourceRange();
938      }
939
940      DeleteExpr(BitWidth);
941      BitWidth = 0;
942      Member->setInvalidDecl();
943    }
944
945    Member->setAccess(AS);
946
947    // If we have declared a member function template, set the access of the
948    // templated declaration as well.
949    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
950      FunTmpl->getTemplatedDecl()->setAccess(AS);
951  }
952
953  assert((Name || isInstField) && "No identifier for non-field ?");
954
955  if (Init)
956    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
957  if (Deleted) // FIXME: Source location is not very good.
958    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
959
960  if (isInstField) {
961    FieldCollector->Add(cast<FieldDecl>(Member));
962    return DeclPtrTy();
963  }
964  return DeclPtrTy::make(Member);
965}
966
967/// \brief Find the direct and/or virtual base specifiers that
968/// correspond to the given base type, for use in base initialization
969/// within a constructor.
970static bool FindBaseInitializer(Sema &SemaRef,
971                                CXXRecordDecl *ClassDecl,
972                                QualType BaseType,
973                                const CXXBaseSpecifier *&DirectBaseSpec,
974                                const CXXBaseSpecifier *&VirtualBaseSpec) {
975  // First, check for a direct base class.
976  DirectBaseSpec = 0;
977  for (CXXRecordDecl::base_class_const_iterator Base
978         = ClassDecl->bases_begin();
979       Base != ClassDecl->bases_end(); ++Base) {
980    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
981      // We found a direct base of this type. That's what we're
982      // initializing.
983      DirectBaseSpec = &*Base;
984      break;
985    }
986  }
987
988  // Check for a virtual base class.
989  // FIXME: We might be able to short-circuit this if we know in advance that
990  // there are no virtual bases.
991  VirtualBaseSpec = 0;
992  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
993    // We haven't found a base yet; search the class hierarchy for a
994    // virtual base class.
995    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
996                       /*DetectVirtual=*/false);
997    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
998                              BaseType, Paths)) {
999      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1000           Path != Paths.end(); ++Path) {
1001        if (Path->back().Base->isVirtual()) {
1002          VirtualBaseSpec = Path->back().Base;
1003          break;
1004        }
1005      }
1006    }
1007  }
1008
1009  return DirectBaseSpec || VirtualBaseSpec;
1010}
1011
1012/// ActOnMemInitializer - Handle a C++ member initializer.
1013Sema::MemInitResult
1014Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1015                          Scope *S,
1016                          const CXXScopeSpec &SS,
1017                          IdentifierInfo *MemberOrBase,
1018                          TypeTy *TemplateTypeTy,
1019                          SourceLocation IdLoc,
1020                          SourceLocation LParenLoc,
1021                          ExprTy **Args, unsigned NumArgs,
1022                          SourceLocation *CommaLocs,
1023                          SourceLocation RParenLoc) {
1024  if (!ConstructorD)
1025    return true;
1026
1027  AdjustDeclIfTemplate(ConstructorD);
1028
1029  CXXConstructorDecl *Constructor
1030    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1031  if (!Constructor) {
1032    // The user wrote a constructor initializer on a function that is
1033    // not a C++ constructor. Ignore the error for now, because we may
1034    // have more member initializers coming; we'll diagnose it just
1035    // once in ActOnMemInitializers.
1036    return true;
1037  }
1038
1039  CXXRecordDecl *ClassDecl = Constructor->getParent();
1040
1041  // C++ [class.base.init]p2:
1042  //   Names in a mem-initializer-id are looked up in the scope of the
1043  //   constructor’s class and, if not found in that scope, are looked
1044  //   up in the scope containing the constructor’s
1045  //   definition. [Note: if the constructor’s class contains a member
1046  //   with the same name as a direct or virtual base class of the
1047  //   class, a mem-initializer-id naming the member or base class and
1048  //   composed of a single identifier refers to the class member. A
1049  //   mem-initializer-id for the hidden base class may be specified
1050  //   using a qualified name. ]
1051  if (!SS.getScopeRep() && !TemplateTypeTy) {
1052    // Look for a member, first.
1053    FieldDecl *Member = 0;
1054    DeclContext::lookup_result Result
1055      = ClassDecl->lookup(MemberOrBase);
1056    if (Result.first != Result.second)
1057      Member = dyn_cast<FieldDecl>(*Result.first);
1058
1059    // FIXME: Handle members of an anonymous union.
1060
1061    if (Member)
1062      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1063                                    LParenLoc, RParenLoc);
1064  }
1065  // It didn't name a member, so see if it names a class.
1066  QualType BaseType;
1067  TypeSourceInfo *TInfo = 0;
1068
1069  if (TemplateTypeTy) {
1070    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1071  } else {
1072    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1073    LookupParsedName(R, S, &SS);
1074
1075    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1076    if (!TyD) {
1077      if (R.isAmbiguous()) return true;
1078
1079      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1080        bool NotUnknownSpecialization = false;
1081        DeclContext *DC = computeDeclContext(SS, false);
1082        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1083          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1084
1085        if (!NotUnknownSpecialization) {
1086          // When the scope specifier can refer to a member of an unknown
1087          // specialization, we take it as a type name.
1088          BaseType = CheckTypenameType((NestedNameSpecifier *)SS.getScopeRep(),
1089                                       *MemberOrBase, SS.getRange());
1090          if (BaseType.isNull())
1091            return true;
1092
1093          R.clear();
1094        }
1095      }
1096
1097      // If no results were found, try to correct typos.
1098      if (R.empty() && BaseType.isNull() &&
1099          CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) {
1100        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1101          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1102            // We have found a non-static data member with a similar
1103            // name to what was typed; complain and initialize that
1104            // member.
1105            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1106              << MemberOrBase << true << R.getLookupName()
1107              << FixItHint::CreateReplacement(R.getNameLoc(),
1108                                              R.getLookupName().getAsString());
1109            Diag(Member->getLocation(), diag::note_previous_decl)
1110              << Member->getDeclName();
1111
1112            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1113                                          LParenLoc, RParenLoc);
1114          }
1115        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1116          const CXXBaseSpecifier *DirectBaseSpec;
1117          const CXXBaseSpecifier *VirtualBaseSpec;
1118          if (FindBaseInitializer(*this, ClassDecl,
1119                                  Context.getTypeDeclType(Type),
1120                                  DirectBaseSpec, VirtualBaseSpec)) {
1121            // We have found a direct or virtual base class with a
1122            // similar name to what was typed; complain and initialize
1123            // that base class.
1124            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1125              << MemberOrBase << false << R.getLookupName()
1126              << FixItHint::CreateReplacement(R.getNameLoc(),
1127                                              R.getLookupName().getAsString());
1128
1129            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1130                                                             : VirtualBaseSpec;
1131            Diag(BaseSpec->getSourceRange().getBegin(),
1132                 diag::note_base_class_specified_here)
1133              << BaseSpec->getType()
1134              << BaseSpec->getSourceRange();
1135
1136            TyD = Type;
1137          }
1138        }
1139      }
1140
1141      if (!TyD && BaseType.isNull()) {
1142        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1143          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1144        return true;
1145      }
1146    }
1147
1148    if (BaseType.isNull()) {
1149      BaseType = Context.getTypeDeclType(TyD);
1150      if (SS.isSet()) {
1151        NestedNameSpecifier *Qualifier =
1152          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1153
1154        // FIXME: preserve source range information
1155        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1156      }
1157    }
1158  }
1159
1160  if (!TInfo)
1161    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1162
1163  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1164                              LParenLoc, RParenLoc, ClassDecl);
1165}
1166
1167/// Checks an initializer expression for use of uninitialized fields, such as
1168/// containing the field that is being initialized. Returns true if there is an
1169/// uninitialized field was used an updates the SourceLocation parameter; false
1170/// otherwise.
1171static bool InitExprContainsUninitializedFields(const Stmt* S,
1172                                                const FieldDecl* LhsField,
1173                                                SourceLocation* L) {
1174  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1175  if (ME) {
1176    const NamedDecl* RhsField = ME->getMemberDecl();
1177    if (RhsField == LhsField) {
1178      // Initializing a field with itself. Throw a warning.
1179      // But wait; there are exceptions!
1180      // Exception #1:  The field may not belong to this record.
1181      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1182      const Expr* base = ME->getBase();
1183      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1184        // Even though the field matches, it does not belong to this record.
1185        return false;
1186      }
1187      // None of the exceptions triggered; return true to indicate an
1188      // uninitialized field was used.
1189      *L = ME->getMemberLoc();
1190      return true;
1191    }
1192  }
1193  bool found = false;
1194  for (Stmt::const_child_iterator it = S->child_begin();
1195       it != S->child_end() && found == false;
1196       ++it) {
1197    if (isa<CallExpr>(S)) {
1198      // Do not descend into function calls or constructors, as the use
1199      // of an uninitialized field may be valid. One would have to inspect
1200      // the contents of the function/ctor to determine if it is safe or not.
1201      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1202      // may be safe, depending on what the function/ctor does.
1203      continue;
1204    }
1205    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1206  }
1207  return found;
1208}
1209
1210Sema::MemInitResult
1211Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1212                             unsigned NumArgs, SourceLocation IdLoc,
1213                             SourceLocation LParenLoc,
1214                             SourceLocation RParenLoc) {
1215  // Diagnose value-uses of fields to initialize themselves, e.g.
1216  //   foo(foo)
1217  // where foo is not also a parameter to the constructor.
1218  // TODO: implement -Wuninitialized and fold this into that framework.
1219  for (unsigned i = 0; i < NumArgs; ++i) {
1220    SourceLocation L;
1221    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1222      // FIXME: Return true in the case when other fields are used before being
1223      // uninitialized. For example, let this field be the i'th field. When
1224      // initializing the i'th field, throw a warning if any of the >= i'th
1225      // fields are used, as they are not yet initialized.
1226      // Right now we are only handling the case where the i'th field uses
1227      // itself in its initializer.
1228      Diag(L, diag::warn_field_is_uninit);
1229    }
1230  }
1231
1232  bool HasDependentArg = false;
1233  for (unsigned i = 0; i < NumArgs; i++)
1234    HasDependentArg |= Args[i]->isTypeDependent();
1235
1236  QualType FieldType = Member->getType();
1237  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1238    FieldType = Array->getElementType();
1239  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1240  if (FieldType->isDependentType() || HasDependentArg) {
1241    // Can't check initialization for a member of dependent type or when
1242    // any of the arguments are type-dependent expressions.
1243    OwningExprResult Init
1244      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1245                                          RParenLoc));
1246
1247    // Erase any temporaries within this evaluation context; we're not
1248    // going to track them in the AST, since we'll be rebuilding the
1249    // ASTs during template instantiation.
1250    ExprTemporaries.erase(
1251              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1252                          ExprTemporaries.end());
1253
1254    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1255                                                    LParenLoc,
1256                                                    Init.takeAs<Expr>(),
1257                                                    RParenLoc);
1258
1259  }
1260
1261  if (Member->isInvalidDecl())
1262    return true;
1263
1264  // Initialize the member.
1265  InitializedEntity MemberEntity =
1266    InitializedEntity::InitializeMember(Member, 0);
1267  InitializationKind Kind =
1268    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1269
1270  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1271
1272  OwningExprResult MemberInit =
1273    InitSeq.Perform(*this, MemberEntity, Kind,
1274                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1275  if (MemberInit.isInvalid())
1276    return true;
1277
1278  // C++0x [class.base.init]p7:
1279  //   The initialization of each base and member constitutes a
1280  //   full-expression.
1281  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1282  if (MemberInit.isInvalid())
1283    return true;
1284
1285  // If we are in a dependent context, template instantiation will
1286  // perform this type-checking again. Just save the arguments that we
1287  // received in a ParenListExpr.
1288  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1289  // of the information that we have about the member
1290  // initializer. However, deconstructing the ASTs is a dicey process,
1291  // and this approach is far more likely to get the corner cases right.
1292  if (CurContext->isDependentContext()) {
1293    // Bump the reference count of all of the arguments.
1294    for (unsigned I = 0; I != NumArgs; ++I)
1295      Args[I]->Retain();
1296
1297    OwningExprResult Init
1298      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1299                                          RParenLoc));
1300    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1301                                                    LParenLoc,
1302                                                    Init.takeAs<Expr>(),
1303                                                    RParenLoc);
1304  }
1305
1306  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1307                                                  LParenLoc,
1308                                                  MemberInit.takeAs<Expr>(),
1309                                                  RParenLoc);
1310}
1311
1312Sema::MemInitResult
1313Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1314                           Expr **Args, unsigned NumArgs,
1315                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1316                           CXXRecordDecl *ClassDecl) {
1317  bool HasDependentArg = false;
1318  for (unsigned i = 0; i < NumArgs; i++)
1319    HasDependentArg |= Args[i]->isTypeDependent();
1320
1321  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1322  if (BaseType->isDependentType() || HasDependentArg) {
1323    // Can't check initialization for a base of dependent type or when
1324    // any of the arguments are type-dependent expressions.
1325    OwningExprResult BaseInit
1326      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1327                                          RParenLoc));
1328
1329    // Erase any temporaries within this evaluation context; we're not
1330    // going to track them in the AST, since we'll be rebuilding the
1331    // ASTs during template instantiation.
1332    ExprTemporaries.erase(
1333              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1334                          ExprTemporaries.end());
1335
1336    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1337                                                    LParenLoc,
1338                                                    BaseInit.takeAs<Expr>(),
1339                                                    RParenLoc);
1340  }
1341
1342  if (!BaseType->isRecordType())
1343    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1344             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1345
1346  // C++ [class.base.init]p2:
1347  //   [...] Unless the mem-initializer-id names a nonstatic data
1348  //   member of the constructor’s class or a direct or virtual base
1349  //   of that class, the mem-initializer is ill-formed. A
1350  //   mem-initializer-list can initialize a base class using any
1351  //   name that denotes that base class type.
1352
1353  // Check for direct and virtual base classes.
1354  const CXXBaseSpecifier *DirectBaseSpec = 0;
1355  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1356  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1357                      VirtualBaseSpec);
1358
1359  // C++ [base.class.init]p2:
1360  //   If a mem-initializer-id is ambiguous because it designates both
1361  //   a direct non-virtual base class and an inherited virtual base
1362  //   class, the mem-initializer is ill-formed.
1363  if (DirectBaseSpec && VirtualBaseSpec)
1364    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1365      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1366  // C++ [base.class.init]p2:
1367  // Unless the mem-initializer-id names a nonstatic data membeer of the
1368  // constructor's class ot a direst or virtual base of that class, the
1369  // mem-initializer is ill-formed.
1370  if (!DirectBaseSpec && !VirtualBaseSpec)
1371    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1372      << BaseType << ClassDecl->getNameAsCString()
1373      << BaseTInfo->getTypeLoc().getSourceRange();
1374
1375  CXXBaseSpecifier *BaseSpec
1376    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1377  if (!BaseSpec)
1378    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1379
1380  // Initialize the base.
1381  InitializedEntity BaseEntity =
1382    InitializedEntity::InitializeBase(Context, BaseSpec);
1383  InitializationKind Kind =
1384    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1385
1386  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1387
1388  OwningExprResult BaseInit =
1389    InitSeq.Perform(*this, BaseEntity, Kind,
1390                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1391  if (BaseInit.isInvalid())
1392    return true;
1393
1394  // C++0x [class.base.init]p7:
1395  //   The initialization of each base and member constitutes a
1396  //   full-expression.
1397  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1398  if (BaseInit.isInvalid())
1399    return true;
1400
1401  // If we are in a dependent context, template instantiation will
1402  // perform this type-checking again. Just save the arguments that we
1403  // received in a ParenListExpr.
1404  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1405  // of the information that we have about the base
1406  // initializer. However, deconstructing the ASTs is a dicey process,
1407  // and this approach is far more likely to get the corner cases right.
1408  if (CurContext->isDependentContext()) {
1409    // Bump the reference count of all of the arguments.
1410    for (unsigned I = 0; I != NumArgs; ++I)
1411      Args[I]->Retain();
1412
1413    OwningExprResult Init
1414      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1415                                          RParenLoc));
1416    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1417                                                    LParenLoc,
1418                                                    Init.takeAs<Expr>(),
1419                                                    RParenLoc);
1420  }
1421
1422  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1423                                                  LParenLoc,
1424                                                  BaseInit.takeAs<Expr>(),
1425                                                  RParenLoc);
1426}
1427
1428bool
1429Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1430                                  CXXBaseOrMemberInitializer **Initializers,
1431                                  unsigned NumInitializers,
1432                                  bool IsImplicitConstructor,
1433                                  bool AnyErrors) {
1434  assert((Constructor->isImplicit() == IsImplicitConstructor));
1435
1436  // We need to build the initializer AST according to order of construction
1437  // and not what user specified in the Initializers list.
1438  CXXRecordDecl *ClassDecl
1439    = cast<CXXRecordDecl>(Constructor->getDeclContext())->getDefinition();
1440  if (!ClassDecl)
1441    return true;
1442
1443  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1444  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1445  bool HasDependentBaseInit = false;
1446  bool HadError = false;
1447
1448  for (unsigned i = 0; i < NumInitializers; i++) {
1449    CXXBaseOrMemberInitializer *Member = Initializers[i];
1450    if (Member->isBaseInitializer()) {
1451      if (Member->getBaseClass()->isDependentType())
1452        HasDependentBaseInit = true;
1453      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1454    } else {
1455      AllBaseFields[Member->getMember()] = Member;
1456    }
1457  }
1458
1459  if (HasDependentBaseInit) {
1460    // FIXME. This does not preserve the ordering of the initializers.
1461    // Try (with -Wreorder)
1462    // template<class X> struct A {};
1463    // template<class X> struct B : A<X> {
1464    //   B() : x1(10), A<X>() {}
1465    //   int x1;
1466    // };
1467    // B<int> x;
1468    // On seeing one dependent type, we should essentially exit this routine
1469    // while preserving user-declared initializer list. When this routine is
1470    // called during instantiatiation process, this routine will rebuild the
1471    // ordered initializer list correctly.
1472
1473    // If we have a dependent base initialization, we can't determine the
1474    // association between initializers and bases; just dump the known
1475    // initializers into the list, and don't try to deal with other bases.
1476    for (unsigned i = 0; i < NumInitializers; i++) {
1477      CXXBaseOrMemberInitializer *Member = Initializers[i];
1478      if (Member->isBaseInitializer())
1479        AllToInit.push_back(Member);
1480    }
1481  } else {
1482    llvm::SmallVector<CXXBaseSpecifier *, 4> BasesToDefaultInit;
1483
1484    // Push virtual bases before others.
1485    for (CXXRecordDecl::base_class_iterator VBase =
1486         ClassDecl->vbases_begin(),
1487         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1488      if (VBase->getType()->isDependentType())
1489        continue;
1490      if (CXXBaseOrMemberInitializer *Value
1491            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1492        AllToInit.push_back(Value);
1493      } else if (!AnyErrors) {
1494        InitializedEntity InitEntity
1495          = InitializedEntity::InitializeBase(Context, VBase);
1496        InitializationKind InitKind
1497          = InitializationKind::CreateDefault(Constructor->getLocation());
1498        InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1499        OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1500                                                    MultiExprArg(*this, 0, 0));
1501        BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1502        if (BaseInit.isInvalid()) {
1503          HadError = true;
1504          continue;
1505        }
1506
1507        // Don't attach synthesized base initializers in a dependent
1508        // context; they'll be checked again at template instantiation
1509        // time.
1510        if (CurContext->isDependentContext())
1511          continue;
1512
1513        CXXBaseOrMemberInitializer *CXXBaseInit =
1514          new (Context) CXXBaseOrMemberInitializer(Context,
1515                             Context.getTrivialTypeSourceInfo(VBase->getType(),
1516                                                              SourceLocation()),
1517                                                   SourceLocation(),
1518                                                   BaseInit.takeAs<Expr>(),
1519                                                   SourceLocation());
1520        AllToInit.push_back(CXXBaseInit);
1521      }
1522    }
1523
1524    for (CXXRecordDecl::base_class_iterator Base =
1525         ClassDecl->bases_begin(),
1526         E = ClassDecl->bases_end(); Base != E; ++Base) {
1527      // Virtuals are in the virtual base list and already constructed.
1528      if (Base->isVirtual())
1529        continue;
1530      // Skip dependent types.
1531      if (Base->getType()->isDependentType())
1532        continue;
1533      if (CXXBaseOrMemberInitializer *Value
1534            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1535        AllToInit.push_back(Value);
1536      }
1537      else if (!AnyErrors) {
1538        InitializedEntity InitEntity
1539          = InitializedEntity::InitializeBase(Context, Base);
1540        InitializationKind InitKind
1541          = InitializationKind::CreateDefault(Constructor->getLocation());
1542        InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1543        OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1544                                                    MultiExprArg(*this, 0, 0));
1545        BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1546        if (BaseInit.isInvalid()) {
1547          HadError = true;
1548          continue;
1549        }
1550
1551        // Don't attach synthesized base initializers in a dependent
1552        // context; they'll be regenerated at template instantiation
1553        // time.
1554        if (CurContext->isDependentContext())
1555          continue;
1556
1557        CXXBaseOrMemberInitializer *CXXBaseInit =
1558          new (Context) CXXBaseOrMemberInitializer(Context,
1559                             Context.getTrivialTypeSourceInfo(Base->getType(),
1560                                                              SourceLocation()),
1561                                                   SourceLocation(),
1562                                                   BaseInit.takeAs<Expr>(),
1563                                                   SourceLocation());
1564        AllToInit.push_back(CXXBaseInit);
1565      }
1566    }
1567  }
1568
1569  // non-static data members.
1570  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1571       E = ClassDecl->field_end(); Field != E; ++Field) {
1572    if ((*Field)->isAnonymousStructOrUnion()) {
1573      if (const RecordType *FieldClassType =
1574          Field->getType()->getAs<RecordType>()) {
1575        CXXRecordDecl *FieldClassDecl
1576          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1577        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1578            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1579          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1580            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1581            // set to the anonymous union data member used in the initializer
1582            // list.
1583            Value->setMember(*Field);
1584            Value->setAnonUnionMember(*FA);
1585            AllToInit.push_back(Value);
1586            break;
1587          }
1588        }
1589      }
1590      continue;
1591    }
1592    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1593      AllToInit.push_back(Value);
1594      continue;
1595    }
1596
1597    if ((*Field)->getType()->isDependentType() || AnyErrors)
1598      continue;
1599
1600    QualType FT = Context.getBaseElementType((*Field)->getType());
1601    if (FT->getAs<RecordType>()) {
1602      InitializedEntity InitEntity
1603        = InitializedEntity::InitializeMember(*Field);
1604      InitializationKind InitKind
1605        = InitializationKind::CreateDefault(Constructor->getLocation());
1606
1607      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1608      OwningExprResult MemberInit = InitSeq.Perform(*this, InitEntity, InitKind,
1609                                                    MultiExprArg(*this, 0, 0));
1610      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1611      if (MemberInit.isInvalid()) {
1612        HadError = true;
1613        continue;
1614      }
1615
1616      // Don't attach synthesized member initializers in a dependent
1617      // context; they'll be regenerated a template instantiation
1618      // time.
1619      if (CurContext->isDependentContext())
1620        continue;
1621
1622      CXXBaseOrMemberInitializer *Member =
1623        new (Context) CXXBaseOrMemberInitializer(Context,
1624                                                 *Field, SourceLocation(),
1625                                                 SourceLocation(),
1626                                                 MemberInit.takeAs<Expr>(),
1627                                                 SourceLocation());
1628
1629      AllToInit.push_back(Member);
1630    }
1631    else if (FT->isReferenceType()) {
1632      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1633        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1634        << 0 << (*Field)->getDeclName();
1635      Diag((*Field)->getLocation(), diag::note_declared_at);
1636      HadError = true;
1637    }
1638    else if (FT.isConstQualified()) {
1639      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1640        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1641        << 1 << (*Field)->getDeclName();
1642      Diag((*Field)->getLocation(), diag::note_declared_at);
1643      HadError = true;
1644    }
1645  }
1646
1647  NumInitializers = AllToInit.size();
1648  if (NumInitializers > 0) {
1649    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1650    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1651      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1652    memcpy(baseOrMemberInitializers, AllToInit.data(),
1653           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1654    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1655
1656    // Constructors implicitly reference the base and member
1657    // destructors.
1658    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1659                                           Constructor->getParent());
1660  }
1661
1662  return HadError;
1663}
1664
1665static void *GetKeyForTopLevelField(FieldDecl *Field) {
1666  // For anonymous unions, use the class declaration as the key.
1667  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1668    if (RT->getDecl()->isAnonymousStructOrUnion())
1669      return static_cast<void *>(RT->getDecl());
1670  }
1671  return static_cast<void *>(Field);
1672}
1673
1674static void *GetKeyForBase(QualType BaseType) {
1675  if (const RecordType *RT = BaseType->getAs<RecordType>())
1676    return (void *)RT;
1677
1678  assert(0 && "Unexpected base type!");
1679  return 0;
1680}
1681
1682static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1683                             bool MemberMaybeAnon = false) {
1684  if (!Member->isMemberInitializer())
1685    return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1686
1687  // For fields injected into the class via declaration of an anonymous union,
1688  // use its anonymous union class declaration as the unique key.
1689  FieldDecl *Field = Member->getMember();
1690
1691  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1692  // data member of the class. Data member used in the initializer list is
1693  // in AnonUnionMember field.
1694  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1695    Field = Member->getAnonUnionMember();
1696
1697  // If the field is a member of an anonymous union, we use record decl of the
1698  // union as the key.
1699  RecordDecl *RD = Field->getParent();
1700  if (RD->isAnonymousStructOrUnion() && RD->isUnion())
1701    return static_cast<void *>(RD);
1702
1703  return static_cast<void *>(Field);
1704}
1705
1706static void
1707DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1708                                  const CXXConstructorDecl *Constructor,
1709                                  CXXBaseOrMemberInitializer **MemInits,
1710                                  unsigned NumMemInits) {
1711  if (Constructor->isDependentContext())
1712    return;
1713
1714  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1715      Diagnostic::Ignored &&
1716      SemaRef.Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1717      Diagnostic::Ignored)
1718    return;
1719
1720  // Also issue warning if order of ctor-initializer list does not match order
1721  // of 1) base class declarations and 2) order of non-static data members.
1722  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1723
1724  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1725
1726  // Push virtual bases before others.
1727  for (CXXRecordDecl::base_class_const_iterator VBase =
1728       ClassDecl->vbases_begin(),
1729       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1730    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1731
1732  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1733       E = ClassDecl->bases_end(); Base != E; ++Base) {
1734    // Virtuals are alread in the virtual base list and are constructed
1735    // first.
1736    if (Base->isVirtual())
1737      continue;
1738    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1739  }
1740
1741  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1742       E = ClassDecl->field_end(); Field != E; ++Field)
1743    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1744
1745  int Last = AllBaseOrMembers.size();
1746  int curIndex = 0;
1747  CXXBaseOrMemberInitializer *PrevMember = 0;
1748  for (unsigned i = 0; i < NumMemInits; i++) {
1749    CXXBaseOrMemberInitializer *Member = MemInits[i];
1750    void *MemberInCtorList = GetKeyForMember(Member, true);
1751
1752    for (; curIndex < Last; curIndex++)
1753      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1754        break;
1755    if (curIndex == Last) {
1756      assert(PrevMember && "Member not in member list?!");
1757      // Initializer as specified in ctor-initializer list is out of order.
1758      // Issue a warning diagnostic.
1759      if (PrevMember->isBaseInitializer()) {
1760        // Diagnostics is for an initialized base class.
1761        Type *BaseClass = PrevMember->getBaseClass();
1762        SemaRef.Diag(PrevMember->getSourceLocation(),
1763                     diag::warn_base_initialized)
1764          << QualType(BaseClass, 0);
1765      } else {
1766        FieldDecl *Field = PrevMember->getMember();
1767        SemaRef.Diag(PrevMember->getSourceLocation(),
1768                     diag::warn_field_initialized)
1769          << Field->getNameAsString();
1770      }
1771      // Also the note!
1772      if (FieldDecl *Field = Member->getMember())
1773        SemaRef.Diag(Member->getSourceLocation(),
1774                     diag::note_fieldorbase_initialized_here) << 0
1775          << Field->getNameAsString();
1776      else {
1777        Type *BaseClass = Member->getBaseClass();
1778        SemaRef.Diag(Member->getSourceLocation(),
1779             diag::note_fieldorbase_initialized_here) << 1
1780          << QualType(BaseClass, 0);
1781      }
1782      for (curIndex = 0; curIndex < Last; curIndex++)
1783        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1784          break;
1785    }
1786    PrevMember = Member;
1787  }
1788}
1789
1790/// ActOnMemInitializers - Handle the member initializers for a constructor.
1791void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1792                                SourceLocation ColonLoc,
1793                                MemInitTy **meminits, unsigned NumMemInits,
1794                                bool AnyErrors) {
1795  if (!ConstructorDecl)
1796    return;
1797
1798  AdjustDeclIfTemplate(ConstructorDecl);
1799
1800  CXXConstructorDecl *Constructor
1801    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1802
1803  if (!Constructor) {
1804    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1805    return;
1806  }
1807
1808  CXXBaseOrMemberInitializer **MemInits =
1809    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
1810
1811  if (!Constructor->isDependentContext()) {
1812    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
1813    bool err = false;
1814    for (unsigned i = 0; i < NumMemInits; i++) {
1815      CXXBaseOrMemberInitializer *Member = MemInits[i];
1816
1817      void *KeyToMember = GetKeyForMember(Member);
1818      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1819      if (!PrevMember) {
1820        PrevMember = Member;
1821        continue;
1822      }
1823      if (FieldDecl *Field = Member->getMember())
1824        Diag(Member->getSourceLocation(),
1825             diag::error_multiple_mem_initialization)
1826          << Field->getNameAsString()
1827          << Member->getSourceRange();
1828      else {
1829        Type *BaseClass = Member->getBaseClass();
1830        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1831        Diag(Member->getSourceLocation(),
1832             diag::error_multiple_base_initialization)
1833          << QualType(BaseClass, 0)
1834          << Member->getSourceRange();
1835      }
1836      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1837        << 0;
1838      err = true;
1839    }
1840
1841    if (err)
1842      return;
1843  }
1844
1845  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits,
1846                              /*IsImplicitConstructor=*/false, AnyErrors);
1847
1848  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
1849}
1850
1851void
1852Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
1853                                             CXXRecordDecl *ClassDecl) {
1854  // Ignore dependent contexts.
1855  if (ClassDecl->isDependentContext())
1856    return;
1857
1858  // FIXME: all the access-control diagnostics are positioned on the
1859  // field/base declaration.  That's probably good; that said, the
1860  // user might reasonably want to know why the destructor is being
1861  // emitted, and we currently don't say.
1862
1863  // Non-static data members.
1864  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1865       E = ClassDecl->field_end(); I != E; ++I) {
1866    FieldDecl *Field = *I;
1867
1868    QualType FieldType = Context.getBaseElementType(Field->getType());
1869
1870    const RecordType* RT = FieldType->getAs<RecordType>();
1871    if (!RT)
1872      continue;
1873
1874    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1875    if (FieldClassDecl->hasTrivialDestructor())
1876      continue;
1877
1878    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1879    CheckDestructorAccess(Field->getLocation(), Dtor,
1880                          PDiag(diag::err_access_dtor_field)
1881                            << Field->getDeclName()
1882                            << FieldType);
1883
1884    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1885  }
1886
1887  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
1888
1889  // Bases.
1890  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1891       E = ClassDecl->bases_end(); Base != E; ++Base) {
1892    // Bases are always records in a well-formed non-dependent class.
1893    const RecordType *RT = Base->getType()->getAs<RecordType>();
1894
1895    // Remember direct virtual bases.
1896    if (Base->isVirtual())
1897      DirectVirtualBases.insert(RT);
1898
1899    // Ignore trivial destructors.
1900    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1901    if (BaseClassDecl->hasTrivialDestructor())
1902      continue;
1903
1904    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1905
1906    // FIXME: caret should be on the start of the class name
1907    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
1908                          PDiag(diag::err_access_dtor_base)
1909                            << Base->getType()
1910                            << Base->getSourceRange());
1911
1912    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1913  }
1914
1915  // Virtual bases.
1916  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1917       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1918
1919    // Bases are always records in a well-formed non-dependent class.
1920    const RecordType *RT = VBase->getType()->getAs<RecordType>();
1921
1922    // Ignore direct virtual bases.
1923    if (DirectVirtualBases.count(RT))
1924      continue;
1925
1926    // Ignore trivial destructors.
1927    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1928    if (BaseClassDecl->hasTrivialDestructor())
1929      continue;
1930
1931    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1932    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
1933                          PDiag(diag::err_access_dtor_vbase)
1934                            << VBase->getType());
1935
1936    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1937  }
1938}
1939
1940void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1941  if (!CDtorDecl)
1942    return;
1943
1944  if (CXXConstructorDecl *Constructor
1945      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1946    SetBaseOrMemberInitializers(Constructor, 0, 0,
1947                                /*IsImplicitConstructor=*/false,
1948                                /*AnyErrors=*/false);
1949}
1950
1951bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1952                                  unsigned DiagID, AbstractDiagSelID SelID,
1953                                  const CXXRecordDecl *CurrentRD) {
1954  if (SelID == -1)
1955    return RequireNonAbstractType(Loc, T,
1956                                  PDiag(DiagID), CurrentRD);
1957  else
1958    return RequireNonAbstractType(Loc, T,
1959                                  PDiag(DiagID) << SelID, CurrentRD);
1960}
1961
1962bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1963                                  const PartialDiagnostic &PD,
1964                                  const CXXRecordDecl *CurrentRD) {
1965  if (!getLangOptions().CPlusPlus)
1966    return false;
1967
1968  if (const ArrayType *AT = Context.getAsArrayType(T))
1969    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1970                                  CurrentRD);
1971
1972  if (const PointerType *PT = T->getAs<PointerType>()) {
1973    // Find the innermost pointer type.
1974    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1975      PT = T;
1976
1977    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1978      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1979  }
1980
1981  const RecordType *RT = T->getAs<RecordType>();
1982  if (!RT)
1983    return false;
1984
1985  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1986
1987  if (CurrentRD && CurrentRD != RD)
1988    return false;
1989
1990  // FIXME: is this reasonable?  It matches current behavior, but....
1991  if (!RD->getDefinition())
1992    return false;
1993
1994  if (!RD->isAbstract())
1995    return false;
1996
1997  Diag(Loc, PD) << RD->getDeclName();
1998
1999  // Check if we've already emitted the list of pure virtual functions for this
2000  // class.
2001  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2002    return true;
2003
2004  CXXFinalOverriderMap FinalOverriders;
2005  RD->getFinalOverriders(FinalOverriders);
2006
2007  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2008                                   MEnd = FinalOverriders.end();
2009       M != MEnd;
2010       ++M) {
2011    for (OverridingMethods::iterator SO = M->second.begin(),
2012                                  SOEnd = M->second.end();
2013         SO != SOEnd; ++SO) {
2014      // C++ [class.abstract]p4:
2015      //   A class is abstract if it contains or inherits at least one
2016      //   pure virtual function for which the final overrider is pure
2017      //   virtual.
2018
2019      //
2020      if (SO->second.size() != 1)
2021        continue;
2022
2023      if (!SO->second.front().Method->isPure())
2024        continue;
2025
2026      Diag(SO->second.front().Method->getLocation(),
2027           diag::note_pure_virtual_function)
2028        << SO->second.front().Method->getDeclName();
2029    }
2030  }
2031
2032  if (!PureVirtualClassDiagSet)
2033    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2034  PureVirtualClassDiagSet->insert(RD);
2035
2036  return true;
2037}
2038
2039namespace {
2040  class AbstractClassUsageDiagnoser
2041    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2042    Sema &SemaRef;
2043    CXXRecordDecl *AbstractClass;
2044
2045    bool VisitDeclContext(const DeclContext *DC) {
2046      bool Invalid = false;
2047
2048      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2049           E = DC->decls_end(); I != E; ++I)
2050        Invalid |= Visit(*I);
2051
2052      return Invalid;
2053    }
2054
2055  public:
2056    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2057      : SemaRef(SemaRef), AbstractClass(ac) {
2058        Visit(SemaRef.Context.getTranslationUnitDecl());
2059    }
2060
2061    bool VisitFunctionDecl(const FunctionDecl *FD) {
2062      if (FD->isThisDeclarationADefinition()) {
2063        // No need to do the check if we're in a definition, because it requires
2064        // that the return/param types are complete.
2065        // because that requires
2066        return VisitDeclContext(FD);
2067      }
2068
2069      // Check the return type.
2070      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2071      bool Invalid =
2072        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2073                                       diag::err_abstract_type_in_decl,
2074                                       Sema::AbstractReturnType,
2075                                       AbstractClass);
2076
2077      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2078           E = FD->param_end(); I != E; ++I) {
2079        const ParmVarDecl *VD = *I;
2080        Invalid |=
2081          SemaRef.RequireNonAbstractType(VD->getLocation(),
2082                                         VD->getOriginalType(),
2083                                         diag::err_abstract_type_in_decl,
2084                                         Sema::AbstractParamType,
2085                                         AbstractClass);
2086      }
2087
2088      return Invalid;
2089    }
2090
2091    bool VisitDecl(const Decl* D) {
2092      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2093        return VisitDeclContext(DC);
2094
2095      return false;
2096    }
2097  };
2098}
2099
2100/// \brief Perform semantic checks on a class definition that has been
2101/// completing, introducing implicitly-declared members, checking for
2102/// abstract types, etc.
2103void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2104  if (!Record || Record->isInvalidDecl())
2105    return;
2106
2107  if (!Record->isDependentType())
2108    AddImplicitlyDeclaredMembersToClass(Record);
2109
2110  if (Record->isInvalidDecl())
2111    return;
2112
2113  // Set access bits correctly on the directly-declared conversions.
2114  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2115  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2116    Convs->setAccess(I, (*I)->getAccess());
2117
2118  // Determine whether we need to check for final overriders. We do
2119  // this either when there are virtual base classes (in which case we
2120  // may end up finding multiple final overriders for a given virtual
2121  // function) or any of the base classes is abstract (in which case
2122  // we might detect that this class is abstract).
2123  bool CheckFinalOverriders = false;
2124  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2125      !Record->isDependentType()) {
2126    if (Record->getNumVBases())
2127      CheckFinalOverriders = true;
2128    else if (!Record->isAbstract()) {
2129      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2130                                                 BEnd = Record->bases_end();
2131           B != BEnd; ++B) {
2132        CXXRecordDecl *BaseDecl
2133          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2134        if (BaseDecl->isAbstract()) {
2135          CheckFinalOverriders = true;
2136          break;
2137        }
2138      }
2139    }
2140  }
2141
2142  if (CheckFinalOverriders) {
2143    CXXFinalOverriderMap FinalOverriders;
2144    Record->getFinalOverriders(FinalOverriders);
2145
2146    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2147                                     MEnd = FinalOverriders.end();
2148         M != MEnd; ++M) {
2149      for (OverridingMethods::iterator SO = M->second.begin(),
2150                                    SOEnd = M->second.end();
2151           SO != SOEnd; ++SO) {
2152        assert(SO->second.size() > 0 &&
2153               "All virtual functions have overridding virtual functions");
2154        if (SO->second.size() == 1) {
2155          // C++ [class.abstract]p4:
2156          //   A class is abstract if it contains or inherits at least one
2157          //   pure virtual function for which the final overrider is pure
2158          //   virtual.
2159          if (SO->second.front().Method->isPure())
2160            Record->setAbstract(true);
2161          continue;
2162        }
2163
2164        // C++ [class.virtual]p2:
2165        //   In a derived class, if a virtual member function of a base
2166        //   class subobject has more than one final overrider the
2167        //   program is ill-formed.
2168        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2169          << (NamedDecl *)M->first << Record;
2170        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2171        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2172                                                 OMEnd = SO->second.end();
2173             OM != OMEnd; ++OM)
2174          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2175            << (NamedDecl *)M->first << OM->Method->getParent();
2176
2177        Record->setInvalidDecl();
2178      }
2179    }
2180  }
2181
2182  if (Record->isAbstract() && !Record->isInvalidDecl())
2183    (void)AbstractClassUsageDiagnoser(*this, Record);
2184}
2185
2186void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2187                                             DeclPtrTy TagDecl,
2188                                             SourceLocation LBrac,
2189                                             SourceLocation RBrac,
2190                                             AttributeList *AttrList) {
2191  if (!TagDecl)
2192    return;
2193
2194  AdjustDeclIfTemplate(TagDecl);
2195
2196  ActOnFields(S, RLoc, TagDecl,
2197              (DeclPtrTy*)FieldCollector->getCurFields(),
2198              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2199
2200  CheckCompletedCXXClass(
2201                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2202}
2203
2204/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2205/// special functions, such as the default constructor, copy
2206/// constructor, or destructor, to the given C++ class (C++
2207/// [special]p1).  This routine can only be executed just before the
2208/// definition of the class is complete.
2209void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2210  CanQualType ClassType
2211    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2212
2213  // FIXME: Implicit declarations have exception specifications, which are
2214  // the union of the specifications of the implicitly called functions.
2215
2216  if (!ClassDecl->hasUserDeclaredConstructor()) {
2217    // C++ [class.ctor]p5:
2218    //   A default constructor for a class X is a constructor of class X
2219    //   that can be called without an argument. If there is no
2220    //   user-declared constructor for class X, a default constructor is
2221    //   implicitly declared. An implicitly-declared default constructor
2222    //   is an inline public member of its class.
2223    DeclarationName Name
2224      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2225    CXXConstructorDecl *DefaultCon =
2226      CXXConstructorDecl::Create(Context, ClassDecl,
2227                                 ClassDecl->getLocation(), Name,
2228                                 Context.getFunctionType(Context.VoidTy,
2229                                                         0, 0, false, 0,
2230                                                         /*FIXME*/false, false,
2231                                                         0, 0,
2232                                                       FunctionType::ExtInfo()),
2233                                 /*TInfo=*/0,
2234                                 /*isExplicit=*/false,
2235                                 /*isInline=*/true,
2236                                 /*isImplicitlyDeclared=*/true);
2237    DefaultCon->setAccess(AS_public);
2238    DefaultCon->setImplicit();
2239    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2240    ClassDecl->addDecl(DefaultCon);
2241  }
2242
2243  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2244    // C++ [class.copy]p4:
2245    //   If the class definition does not explicitly declare a copy
2246    //   constructor, one is declared implicitly.
2247
2248    // C++ [class.copy]p5:
2249    //   The implicitly-declared copy constructor for a class X will
2250    //   have the form
2251    //
2252    //       X::X(const X&)
2253    //
2254    //   if
2255    bool HasConstCopyConstructor = true;
2256
2257    //     -- each direct or virtual base class B of X has a copy
2258    //        constructor whose first parameter is of type const B& or
2259    //        const volatile B&, and
2260    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2261         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2262      const CXXRecordDecl *BaseClassDecl
2263        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2264      HasConstCopyConstructor
2265        = BaseClassDecl->hasConstCopyConstructor(Context);
2266    }
2267
2268    //     -- for all the nonstatic data members of X that are of a
2269    //        class type M (or array thereof), each such class type
2270    //        has a copy constructor whose first parameter is of type
2271    //        const M& or const volatile M&.
2272    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2273         HasConstCopyConstructor && Field != ClassDecl->field_end();
2274         ++Field) {
2275      QualType FieldType = (*Field)->getType();
2276      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2277        FieldType = Array->getElementType();
2278      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2279        const CXXRecordDecl *FieldClassDecl
2280          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2281        HasConstCopyConstructor
2282          = FieldClassDecl->hasConstCopyConstructor(Context);
2283      }
2284    }
2285
2286    //   Otherwise, the implicitly declared copy constructor will have
2287    //   the form
2288    //
2289    //       X::X(X&)
2290    QualType ArgType = ClassType;
2291    if (HasConstCopyConstructor)
2292      ArgType = ArgType.withConst();
2293    ArgType = Context.getLValueReferenceType(ArgType);
2294
2295    //   An implicitly-declared copy constructor is an inline public
2296    //   member of its class.
2297    DeclarationName Name
2298      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2299    CXXConstructorDecl *CopyConstructor
2300      = CXXConstructorDecl::Create(Context, ClassDecl,
2301                                   ClassDecl->getLocation(), Name,
2302                                   Context.getFunctionType(Context.VoidTy,
2303                                                           &ArgType, 1,
2304                                                           false, 0,
2305                                                           /*FIXME:*/false,
2306                                                           false, 0, 0,
2307                                                       FunctionType::ExtInfo()),
2308                                   /*TInfo=*/0,
2309                                   /*isExplicit=*/false,
2310                                   /*isInline=*/true,
2311                                   /*isImplicitlyDeclared=*/true);
2312    CopyConstructor->setAccess(AS_public);
2313    CopyConstructor->setImplicit();
2314    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2315
2316    // Add the parameter to the constructor.
2317    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2318                                                 ClassDecl->getLocation(),
2319                                                 /*IdentifierInfo=*/0,
2320                                                 ArgType, /*TInfo=*/0,
2321                                                 VarDecl::None, 0);
2322    CopyConstructor->setParams(&FromParam, 1);
2323    ClassDecl->addDecl(CopyConstructor);
2324  }
2325
2326  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2327    // Note: The following rules are largely analoguous to the copy
2328    // constructor rules. Note that virtual bases are not taken into account
2329    // for determining the argument type of the operator. Note also that
2330    // operators taking an object instead of a reference are allowed.
2331    //
2332    // C++ [class.copy]p10:
2333    //   If the class definition does not explicitly declare a copy
2334    //   assignment operator, one is declared implicitly.
2335    //   The implicitly-defined copy assignment operator for a class X
2336    //   will have the form
2337    //
2338    //       X& X::operator=(const X&)
2339    //
2340    //   if
2341    bool HasConstCopyAssignment = true;
2342
2343    //       -- each direct base class B of X has a copy assignment operator
2344    //          whose parameter is of type const B&, const volatile B& or B,
2345    //          and
2346    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2347         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2348      assert(!Base->getType()->isDependentType() &&
2349            "Cannot generate implicit members for class with dependent bases.");
2350      const CXXRecordDecl *BaseClassDecl
2351        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2352      const CXXMethodDecl *MD = 0;
2353      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2354                                                                     MD);
2355    }
2356
2357    //       -- for all the nonstatic data members of X that are of a class
2358    //          type M (or array thereof), each such class type has a copy
2359    //          assignment operator whose parameter is of type const M&,
2360    //          const volatile M& or M.
2361    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2362         HasConstCopyAssignment && Field != ClassDecl->field_end();
2363         ++Field) {
2364      QualType FieldType = (*Field)->getType();
2365      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2366        FieldType = Array->getElementType();
2367      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2368        const CXXRecordDecl *FieldClassDecl
2369          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2370        const CXXMethodDecl *MD = 0;
2371        HasConstCopyAssignment
2372          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2373      }
2374    }
2375
2376    //   Otherwise, the implicitly declared copy assignment operator will
2377    //   have the form
2378    //
2379    //       X& X::operator=(X&)
2380    QualType ArgType = ClassType;
2381    QualType RetType = Context.getLValueReferenceType(ArgType);
2382    if (HasConstCopyAssignment)
2383      ArgType = ArgType.withConst();
2384    ArgType = Context.getLValueReferenceType(ArgType);
2385
2386    //   An implicitly-declared copy assignment operator is an inline public
2387    //   member of its class.
2388    DeclarationName Name =
2389      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2390    CXXMethodDecl *CopyAssignment =
2391      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2392                            Context.getFunctionType(RetType, &ArgType, 1,
2393                                                    false, 0,
2394                                                    /*FIXME:*/false,
2395                                                    false, 0, 0,
2396                                                    FunctionType::ExtInfo()),
2397                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2398    CopyAssignment->setAccess(AS_public);
2399    CopyAssignment->setImplicit();
2400    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2401    CopyAssignment->setCopyAssignment(true);
2402
2403    // Add the parameter to the operator.
2404    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2405                                                 ClassDecl->getLocation(),
2406                                                 /*IdentifierInfo=*/0,
2407                                                 ArgType, /*TInfo=*/0,
2408                                                 VarDecl::None, 0);
2409    CopyAssignment->setParams(&FromParam, 1);
2410
2411    // Don't call addedAssignmentOperator. There is no way to distinguish an
2412    // implicit from an explicit assignment operator.
2413    ClassDecl->addDecl(CopyAssignment);
2414    AddOverriddenMethods(ClassDecl, CopyAssignment);
2415  }
2416
2417  if (!ClassDecl->hasUserDeclaredDestructor()) {
2418    // C++ [class.dtor]p2:
2419    //   If a class has no user-declared destructor, a destructor is
2420    //   declared implicitly. An implicitly-declared destructor is an
2421    //   inline public member of its class.
2422    QualType Ty = Context.getFunctionType(Context.VoidTy,
2423                                          0, 0, false, 0,
2424                                          /*FIXME:*/false,
2425                                          false, 0, 0, FunctionType::ExtInfo());
2426
2427    DeclarationName Name
2428      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2429    CXXDestructorDecl *Destructor
2430      = CXXDestructorDecl::Create(Context, ClassDecl,
2431                                  ClassDecl->getLocation(), Name, Ty,
2432                                  /*isInline=*/true,
2433                                  /*isImplicitlyDeclared=*/true);
2434    Destructor->setAccess(AS_public);
2435    Destructor->setImplicit();
2436    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2437    ClassDecl->addDecl(Destructor);
2438
2439    // This could be uniqued if it ever proves significant.
2440    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2441
2442    AddOverriddenMethods(ClassDecl, Destructor);
2443  }
2444}
2445
2446void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2447  Decl *D = TemplateD.getAs<Decl>();
2448  if (!D)
2449    return;
2450
2451  TemplateParameterList *Params = 0;
2452  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2453    Params = Template->getTemplateParameters();
2454  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2455           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2456    Params = PartialSpec->getTemplateParameters();
2457  else
2458    return;
2459
2460  for (TemplateParameterList::iterator Param = Params->begin(),
2461                                    ParamEnd = Params->end();
2462       Param != ParamEnd; ++Param) {
2463    NamedDecl *Named = cast<NamedDecl>(*Param);
2464    if (Named->getDeclName()) {
2465      S->AddDecl(DeclPtrTy::make(Named));
2466      IdResolver.AddDecl(Named);
2467    }
2468  }
2469}
2470
2471void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2472  if (!RecordD) return;
2473  AdjustDeclIfTemplate(RecordD);
2474  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2475  PushDeclContext(S, Record);
2476}
2477
2478void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2479  if (!RecordD) return;
2480  PopDeclContext();
2481}
2482
2483/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2484/// parsing a top-level (non-nested) C++ class, and we are now
2485/// parsing those parts of the given Method declaration that could
2486/// not be parsed earlier (C++ [class.mem]p2), such as default
2487/// arguments. This action should enter the scope of the given
2488/// Method declaration as if we had just parsed the qualified method
2489/// name. However, it should not bring the parameters into scope;
2490/// that will be performed by ActOnDelayedCXXMethodParameter.
2491void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2492}
2493
2494/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2495/// C++ method declaration. We're (re-)introducing the given
2496/// function parameter into scope for use in parsing later parts of
2497/// the method declaration. For example, we could see an
2498/// ActOnParamDefaultArgument event for this parameter.
2499void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2500  if (!ParamD)
2501    return;
2502
2503  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2504
2505  // If this parameter has an unparsed default argument, clear it out
2506  // to make way for the parsed default argument.
2507  if (Param->hasUnparsedDefaultArg())
2508    Param->setDefaultArg(0);
2509
2510  S->AddDecl(DeclPtrTy::make(Param));
2511  if (Param->getDeclName())
2512    IdResolver.AddDecl(Param);
2513}
2514
2515/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2516/// processing the delayed method declaration for Method. The method
2517/// declaration is now considered finished. There may be a separate
2518/// ActOnStartOfFunctionDef action later (not necessarily
2519/// immediately!) for this method, if it was also defined inside the
2520/// class body.
2521void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2522  if (!MethodD)
2523    return;
2524
2525  AdjustDeclIfTemplate(MethodD);
2526
2527  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2528
2529  // Now that we have our default arguments, check the constructor
2530  // again. It could produce additional diagnostics or affect whether
2531  // the class has implicitly-declared destructors, among other
2532  // things.
2533  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2534    CheckConstructor(Constructor);
2535
2536  // Check the default arguments, which we may have added.
2537  if (!Method->isInvalidDecl())
2538    CheckCXXDefaultArguments(Method);
2539}
2540
2541/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2542/// the well-formedness of the constructor declarator @p D with type @p
2543/// R. If there are any errors in the declarator, this routine will
2544/// emit diagnostics and set the invalid bit to true.  In any case, the type
2545/// will be updated to reflect a well-formed type for the constructor and
2546/// returned.
2547QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2548                                          FunctionDecl::StorageClass &SC) {
2549  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2550
2551  // C++ [class.ctor]p3:
2552  //   A constructor shall not be virtual (10.3) or static (9.4). A
2553  //   constructor can be invoked for a const, volatile or const
2554  //   volatile object. A constructor shall not be declared const,
2555  //   volatile, or const volatile (9.3.2).
2556  if (isVirtual) {
2557    if (!D.isInvalidType())
2558      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2559        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2560        << SourceRange(D.getIdentifierLoc());
2561    D.setInvalidType();
2562  }
2563  if (SC == FunctionDecl::Static) {
2564    if (!D.isInvalidType())
2565      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2566        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2567        << SourceRange(D.getIdentifierLoc());
2568    D.setInvalidType();
2569    SC = FunctionDecl::None;
2570  }
2571
2572  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2573  if (FTI.TypeQuals != 0) {
2574    if (FTI.TypeQuals & Qualifiers::Const)
2575      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2576        << "const" << SourceRange(D.getIdentifierLoc());
2577    if (FTI.TypeQuals & Qualifiers::Volatile)
2578      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2579        << "volatile" << SourceRange(D.getIdentifierLoc());
2580    if (FTI.TypeQuals & Qualifiers::Restrict)
2581      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2582        << "restrict" << SourceRange(D.getIdentifierLoc());
2583  }
2584
2585  // Rebuild the function type "R" without any type qualifiers (in
2586  // case any of the errors above fired) and with "void" as the
2587  // return type, since constructors don't have return types. We
2588  // *always* have to do this, because GetTypeForDeclarator will
2589  // put in a result type of "int" when none was specified.
2590  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2591  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2592                                 Proto->getNumArgs(),
2593                                 Proto->isVariadic(), 0,
2594                                 Proto->hasExceptionSpec(),
2595                                 Proto->hasAnyExceptionSpec(),
2596                                 Proto->getNumExceptions(),
2597                                 Proto->exception_begin(),
2598                                 Proto->getExtInfo());
2599}
2600
2601/// CheckConstructor - Checks a fully-formed constructor for
2602/// well-formedness, issuing any diagnostics required. Returns true if
2603/// the constructor declarator is invalid.
2604void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2605  CXXRecordDecl *ClassDecl
2606    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2607  if (!ClassDecl)
2608    return Constructor->setInvalidDecl();
2609
2610  // C++ [class.copy]p3:
2611  //   A declaration of a constructor for a class X is ill-formed if
2612  //   its first parameter is of type (optionally cv-qualified) X and
2613  //   either there are no other parameters or else all other
2614  //   parameters have default arguments.
2615  if (!Constructor->isInvalidDecl() &&
2616      ((Constructor->getNumParams() == 1) ||
2617       (Constructor->getNumParams() > 1 &&
2618        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2619      Constructor->getTemplateSpecializationKind()
2620                                              != TSK_ImplicitInstantiation) {
2621    QualType ParamType = Constructor->getParamDecl(0)->getType();
2622    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2623    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2624      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2625      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2626        << FixItHint::CreateInsertion(ParamLoc, " const &");
2627
2628      // FIXME: Rather that making the constructor invalid, we should endeavor
2629      // to fix the type.
2630      Constructor->setInvalidDecl();
2631    }
2632  }
2633
2634  // Notify the class that we've added a constructor.
2635  ClassDecl->addedConstructor(Context, Constructor);
2636}
2637
2638/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2639/// issuing any diagnostics required. Returns true on error.
2640bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2641  CXXRecordDecl *RD = Destructor->getParent();
2642
2643  if (Destructor->isVirtual()) {
2644    SourceLocation Loc;
2645
2646    if (!Destructor->isImplicit())
2647      Loc = Destructor->getLocation();
2648    else
2649      Loc = RD->getLocation();
2650
2651    // If we have a virtual destructor, look up the deallocation function
2652    FunctionDecl *OperatorDelete = 0;
2653    DeclarationName Name =
2654    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2655    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2656      return true;
2657
2658    Destructor->setOperatorDelete(OperatorDelete);
2659  }
2660
2661  return false;
2662}
2663
2664static inline bool
2665FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2666  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2667          FTI.ArgInfo[0].Param &&
2668          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2669}
2670
2671/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2672/// the well-formednes of the destructor declarator @p D with type @p
2673/// R. If there are any errors in the declarator, this routine will
2674/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2675/// will be updated to reflect a well-formed type for the destructor and
2676/// returned.
2677QualType Sema::CheckDestructorDeclarator(Declarator &D,
2678                                         FunctionDecl::StorageClass& SC) {
2679  // C++ [class.dtor]p1:
2680  //   [...] A typedef-name that names a class is a class-name
2681  //   (7.1.3); however, a typedef-name that names a class shall not
2682  //   be used as the identifier in the declarator for a destructor
2683  //   declaration.
2684  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2685  if (isa<TypedefType>(DeclaratorType)) {
2686    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2687      << DeclaratorType;
2688    D.setInvalidType();
2689  }
2690
2691  // C++ [class.dtor]p2:
2692  //   A destructor is used to destroy objects of its class type. A
2693  //   destructor takes no parameters, and no return type can be
2694  //   specified for it (not even void). The address of a destructor
2695  //   shall not be taken. A destructor shall not be static. A
2696  //   destructor can be invoked for a const, volatile or const
2697  //   volatile object. A destructor shall not be declared const,
2698  //   volatile or const volatile (9.3.2).
2699  if (SC == FunctionDecl::Static) {
2700    if (!D.isInvalidType())
2701      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2702        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2703        << SourceRange(D.getIdentifierLoc());
2704    SC = FunctionDecl::None;
2705    D.setInvalidType();
2706  }
2707  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2708    // Destructors don't have return types, but the parser will
2709    // happily parse something like:
2710    //
2711    //   class X {
2712    //     float ~X();
2713    //   };
2714    //
2715    // The return type will be eliminated later.
2716    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2717      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2718      << SourceRange(D.getIdentifierLoc());
2719  }
2720
2721  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2722  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2723    if (FTI.TypeQuals & Qualifiers::Const)
2724      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2725        << "const" << SourceRange(D.getIdentifierLoc());
2726    if (FTI.TypeQuals & Qualifiers::Volatile)
2727      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2728        << "volatile" << SourceRange(D.getIdentifierLoc());
2729    if (FTI.TypeQuals & Qualifiers::Restrict)
2730      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2731        << "restrict" << SourceRange(D.getIdentifierLoc());
2732    D.setInvalidType();
2733  }
2734
2735  // Make sure we don't have any parameters.
2736  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2737    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2738
2739    // Delete the parameters.
2740    FTI.freeArgs();
2741    D.setInvalidType();
2742  }
2743
2744  // Make sure the destructor isn't variadic.
2745  if (FTI.isVariadic) {
2746    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2747    D.setInvalidType();
2748  }
2749
2750  // Rebuild the function type "R" without any type qualifiers or
2751  // parameters (in case any of the errors above fired) and with
2752  // "void" as the return type, since destructors don't have return
2753  // types. We *always* have to do this, because GetTypeForDeclarator
2754  // will put in a result type of "int" when none was specified.
2755  // FIXME: Exceptions!
2756  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2757                                 false, false, 0, 0, FunctionType::ExtInfo());
2758}
2759
2760/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2761/// well-formednes of the conversion function declarator @p D with
2762/// type @p R. If there are any errors in the declarator, this routine
2763/// will emit diagnostics and return true. Otherwise, it will return
2764/// false. Either way, the type @p R will be updated to reflect a
2765/// well-formed type for the conversion operator.
2766void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2767                                     FunctionDecl::StorageClass& SC) {
2768  // C++ [class.conv.fct]p1:
2769  //   Neither parameter types nor return type can be specified. The
2770  //   type of a conversion function (8.3.5) is "function taking no
2771  //   parameter returning conversion-type-id."
2772  if (SC == FunctionDecl::Static) {
2773    if (!D.isInvalidType())
2774      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2775        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2776        << SourceRange(D.getIdentifierLoc());
2777    D.setInvalidType();
2778    SC = FunctionDecl::None;
2779  }
2780  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2781    // Conversion functions don't have return types, but the parser will
2782    // happily parse something like:
2783    //
2784    //   class X {
2785    //     float operator bool();
2786    //   };
2787    //
2788    // The return type will be changed later anyway.
2789    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2790      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2791      << SourceRange(D.getIdentifierLoc());
2792  }
2793
2794  // Make sure we don't have any parameters.
2795  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2796    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2797
2798    // Delete the parameters.
2799    D.getTypeObject(0).Fun.freeArgs();
2800    D.setInvalidType();
2801  }
2802
2803  // Make sure the conversion function isn't variadic.
2804  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2805    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2806    D.setInvalidType();
2807  }
2808
2809  // C++ [class.conv.fct]p4:
2810  //   The conversion-type-id shall not represent a function type nor
2811  //   an array type.
2812  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2813  if (ConvType->isArrayType()) {
2814    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2815    ConvType = Context.getPointerType(ConvType);
2816    D.setInvalidType();
2817  } else if (ConvType->isFunctionType()) {
2818    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2819    ConvType = Context.getPointerType(ConvType);
2820    D.setInvalidType();
2821  }
2822
2823  // Rebuild the function type "R" without any parameters (in case any
2824  // of the errors above fired) and with the conversion type as the
2825  // return type.
2826  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2827  R = Context.getFunctionType(ConvType, 0, 0, false,
2828                              Proto->getTypeQuals(),
2829                              Proto->hasExceptionSpec(),
2830                              Proto->hasAnyExceptionSpec(),
2831                              Proto->getNumExceptions(),
2832                              Proto->exception_begin(),
2833                              Proto->getExtInfo());
2834
2835  // C++0x explicit conversion operators.
2836  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2837    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2838         diag::warn_explicit_conversion_functions)
2839      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2840}
2841
2842/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2843/// the declaration of the given C++ conversion function. This routine
2844/// is responsible for recording the conversion function in the C++
2845/// class, if possible.
2846Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2847  assert(Conversion && "Expected to receive a conversion function declaration");
2848
2849  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2850
2851  // Make sure we aren't redeclaring the conversion function.
2852  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2853
2854  // C++ [class.conv.fct]p1:
2855  //   [...] A conversion function is never used to convert a
2856  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2857  //   same object type (or a reference to it), to a (possibly
2858  //   cv-qualified) base class of that type (or a reference to it),
2859  //   or to (possibly cv-qualified) void.
2860  // FIXME: Suppress this warning if the conversion function ends up being a
2861  // virtual function that overrides a virtual function in a base class.
2862  QualType ClassType
2863    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2864  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2865    ConvType = ConvTypeRef->getPointeeType();
2866  if (ConvType->isRecordType()) {
2867    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2868    if (ConvType == ClassType)
2869      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2870        << ClassType;
2871    else if (IsDerivedFrom(ClassType, ConvType))
2872      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2873        <<  ClassType << ConvType;
2874  } else if (ConvType->isVoidType()) {
2875    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2876      << ClassType << ConvType;
2877  }
2878
2879  if (Conversion->getPrimaryTemplate()) {
2880    // ignore specializations
2881  } else if (Conversion->getPreviousDeclaration()) {
2882    if (FunctionTemplateDecl *ConversionTemplate
2883                                  = Conversion->getDescribedFunctionTemplate()) {
2884      if (ClassDecl->replaceConversion(
2885                                   ConversionTemplate->getPreviousDeclaration(),
2886                                       ConversionTemplate))
2887        return DeclPtrTy::make(ConversionTemplate);
2888    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
2889                                            Conversion))
2890      return DeclPtrTy::make(Conversion);
2891    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2892  } else if (FunctionTemplateDecl *ConversionTemplate
2893               = Conversion->getDescribedFunctionTemplate())
2894    ClassDecl->addConversionFunction(ConversionTemplate);
2895  else
2896    ClassDecl->addConversionFunction(Conversion);
2897
2898  return DeclPtrTy::make(Conversion);
2899}
2900
2901//===----------------------------------------------------------------------===//
2902// Namespace Handling
2903//===----------------------------------------------------------------------===//
2904
2905/// ActOnStartNamespaceDef - This is called at the start of a namespace
2906/// definition.
2907Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2908                                             SourceLocation IdentLoc,
2909                                             IdentifierInfo *II,
2910                                             SourceLocation LBrace,
2911                                             AttributeList *AttrList) {
2912  NamespaceDecl *Namespc =
2913      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2914  Namespc->setLBracLoc(LBrace);
2915
2916  Scope *DeclRegionScope = NamespcScope->getParent();
2917
2918  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
2919
2920  if (II) {
2921    // C++ [namespace.def]p2:
2922    // The identifier in an original-namespace-definition shall not have been
2923    // previously defined in the declarative region in which the
2924    // original-namespace-definition appears. The identifier in an
2925    // original-namespace-definition is the name of the namespace. Subsequently
2926    // in that declarative region, it is treated as an original-namespace-name.
2927
2928    NamedDecl *PrevDecl
2929      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2930                         ForRedeclaration);
2931
2932    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2933      // This is an extended namespace definition.
2934      // Attach this namespace decl to the chain of extended namespace
2935      // definitions.
2936      OrigNS->setNextNamespace(Namespc);
2937      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2938
2939      // Remove the previous declaration from the scope.
2940      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2941        IdResolver.RemoveDecl(OrigNS);
2942        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2943      }
2944    } else if (PrevDecl) {
2945      // This is an invalid name redefinition.
2946      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2947       << Namespc->getDeclName();
2948      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2949      Namespc->setInvalidDecl();
2950      // Continue on to push Namespc as current DeclContext and return it.
2951    } else if (II->isStr("std") &&
2952               CurContext->getLookupContext()->isTranslationUnit()) {
2953      // This is the first "real" definition of the namespace "std", so update
2954      // our cache of the "std" namespace to point at this definition.
2955      if (StdNamespace) {
2956        // We had already defined a dummy namespace "std". Link this new
2957        // namespace definition to the dummy namespace "std".
2958        StdNamespace->setNextNamespace(Namespc);
2959        StdNamespace->setLocation(IdentLoc);
2960        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2961      }
2962
2963      // Make our StdNamespace cache point at the first real definition of the
2964      // "std" namespace.
2965      StdNamespace = Namespc;
2966    }
2967
2968    PushOnScopeChains(Namespc, DeclRegionScope);
2969  } else {
2970    // Anonymous namespaces.
2971    assert(Namespc->isAnonymousNamespace());
2972
2973    // Link the anonymous namespace into its parent.
2974    NamespaceDecl *PrevDecl;
2975    DeclContext *Parent = CurContext->getLookupContext();
2976    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
2977      PrevDecl = TU->getAnonymousNamespace();
2978      TU->setAnonymousNamespace(Namespc);
2979    } else {
2980      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
2981      PrevDecl = ND->getAnonymousNamespace();
2982      ND->setAnonymousNamespace(Namespc);
2983    }
2984
2985    // Link the anonymous namespace with its previous declaration.
2986    if (PrevDecl) {
2987      assert(PrevDecl->isAnonymousNamespace());
2988      assert(!PrevDecl->getNextNamespace());
2989      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
2990      PrevDecl->setNextNamespace(Namespc);
2991    }
2992
2993    CurContext->addDecl(Namespc);
2994
2995    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2996    //   behaves as if it were replaced by
2997    //     namespace unique { /* empty body */ }
2998    //     using namespace unique;
2999    //     namespace unique { namespace-body }
3000    //   where all occurrences of 'unique' in a translation unit are
3001    //   replaced by the same identifier and this identifier differs
3002    //   from all other identifiers in the entire program.
3003
3004    // We just create the namespace with an empty name and then add an
3005    // implicit using declaration, just like the standard suggests.
3006    //
3007    // CodeGen enforces the "universally unique" aspect by giving all
3008    // declarations semantically contained within an anonymous
3009    // namespace internal linkage.
3010
3011    if (!PrevDecl) {
3012      UsingDirectiveDecl* UD
3013        = UsingDirectiveDecl::Create(Context, CurContext,
3014                                     /* 'using' */ LBrace,
3015                                     /* 'namespace' */ SourceLocation(),
3016                                     /* qualifier */ SourceRange(),
3017                                     /* NNS */ NULL,
3018                                     /* identifier */ SourceLocation(),
3019                                     Namespc,
3020                                     /* Ancestor */ CurContext);
3021      UD->setImplicit();
3022      CurContext->addDecl(UD);
3023    }
3024  }
3025
3026  // Although we could have an invalid decl (i.e. the namespace name is a
3027  // redefinition), push it as current DeclContext and try to continue parsing.
3028  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3029  // for the namespace has the declarations that showed up in that particular
3030  // namespace definition.
3031  PushDeclContext(NamespcScope, Namespc);
3032  return DeclPtrTy::make(Namespc);
3033}
3034
3035/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3036/// is a namespace alias, returns the namespace it points to.
3037static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3038  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3039    return AD->getNamespace();
3040  return dyn_cast_or_null<NamespaceDecl>(D);
3041}
3042
3043/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3044/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3045void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3046  Decl *Dcl = D.getAs<Decl>();
3047  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3048  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3049  Namespc->setRBracLoc(RBrace);
3050  PopDeclContext();
3051}
3052
3053Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3054                                          SourceLocation UsingLoc,
3055                                          SourceLocation NamespcLoc,
3056                                          const CXXScopeSpec &SS,
3057                                          SourceLocation IdentLoc,
3058                                          IdentifierInfo *NamespcName,
3059                                          AttributeList *AttrList) {
3060  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3061  assert(NamespcName && "Invalid NamespcName.");
3062  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3063  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3064
3065  UsingDirectiveDecl *UDir = 0;
3066
3067  // Lookup namespace name.
3068  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3069  LookupParsedName(R, S, &SS);
3070  if (R.isAmbiguous())
3071    return DeclPtrTy();
3072
3073  if (!R.empty()) {
3074    NamedDecl *Named = R.getFoundDecl();
3075    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3076        && "expected namespace decl");
3077    // C++ [namespace.udir]p1:
3078    //   A using-directive specifies that the names in the nominated
3079    //   namespace can be used in the scope in which the
3080    //   using-directive appears after the using-directive. During
3081    //   unqualified name lookup (3.4.1), the names appear as if they
3082    //   were declared in the nearest enclosing namespace which
3083    //   contains both the using-directive and the nominated
3084    //   namespace. [Note: in this context, "contains" means "contains
3085    //   directly or indirectly". ]
3086
3087    // Find enclosing context containing both using-directive and
3088    // nominated namespace.
3089    NamespaceDecl *NS = getNamespaceDecl(Named);
3090    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3091    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3092      CommonAncestor = CommonAncestor->getParent();
3093
3094    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3095                                      SS.getRange(),
3096                                      (NestedNameSpecifier *)SS.getScopeRep(),
3097                                      IdentLoc, Named, CommonAncestor);
3098    PushUsingDirective(S, UDir);
3099  } else {
3100    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3101  }
3102
3103  // FIXME: We ignore attributes for now.
3104  delete AttrList;
3105  return DeclPtrTy::make(UDir);
3106}
3107
3108void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3109  // If scope has associated entity, then using directive is at namespace
3110  // or translation unit scope. We add UsingDirectiveDecls, into
3111  // it's lookup structure.
3112  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3113    Ctx->addDecl(UDir);
3114  else
3115    // Otherwise it is block-sope. using-directives will affect lookup
3116    // only to the end of scope.
3117    S->PushUsingDirective(DeclPtrTy::make(UDir));
3118}
3119
3120
3121Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3122                                            AccessSpecifier AS,
3123                                            bool HasUsingKeyword,
3124                                            SourceLocation UsingLoc,
3125                                            const CXXScopeSpec &SS,
3126                                            UnqualifiedId &Name,
3127                                            AttributeList *AttrList,
3128                                            bool IsTypeName,
3129                                            SourceLocation TypenameLoc) {
3130  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3131
3132  switch (Name.getKind()) {
3133  case UnqualifiedId::IK_Identifier:
3134  case UnqualifiedId::IK_OperatorFunctionId:
3135  case UnqualifiedId::IK_LiteralOperatorId:
3136  case UnqualifiedId::IK_ConversionFunctionId:
3137    break;
3138
3139  case UnqualifiedId::IK_ConstructorName:
3140  case UnqualifiedId::IK_ConstructorTemplateId:
3141    // C++0x inherited constructors.
3142    if (getLangOptions().CPlusPlus0x) break;
3143
3144    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3145      << SS.getRange();
3146    return DeclPtrTy();
3147
3148  case UnqualifiedId::IK_DestructorName:
3149    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3150      << SS.getRange();
3151    return DeclPtrTy();
3152
3153  case UnqualifiedId::IK_TemplateId:
3154    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3155      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3156    return DeclPtrTy();
3157  }
3158
3159  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3160  if (!TargetName)
3161    return DeclPtrTy();
3162
3163  // Warn about using declarations.
3164  // TODO: store that the declaration was written without 'using' and
3165  // talk about access decls instead of using decls in the
3166  // diagnostics.
3167  if (!HasUsingKeyword) {
3168    UsingLoc = Name.getSourceRange().getBegin();
3169
3170    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3171      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3172  }
3173
3174  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3175                                        Name.getSourceRange().getBegin(),
3176                                        TargetName, AttrList,
3177                                        /* IsInstantiation */ false,
3178                                        IsTypeName, TypenameLoc);
3179  if (UD)
3180    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3181
3182  return DeclPtrTy::make(UD);
3183}
3184
3185/// Determines whether to create a using shadow decl for a particular
3186/// decl, given the set of decls existing prior to this using lookup.
3187bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3188                                const LookupResult &Previous) {
3189  // Diagnose finding a decl which is not from a base class of the
3190  // current class.  We do this now because there are cases where this
3191  // function will silently decide not to build a shadow decl, which
3192  // will pre-empt further diagnostics.
3193  //
3194  // We don't need to do this in C++0x because we do the check once on
3195  // the qualifier.
3196  //
3197  // FIXME: diagnose the following if we care enough:
3198  //   struct A { int foo; };
3199  //   struct B : A { using A::foo; };
3200  //   template <class T> struct C : A {};
3201  //   template <class T> struct D : C<T> { using B::foo; } // <---
3202  // This is invalid (during instantiation) in C++03 because B::foo
3203  // resolves to the using decl in B, which is not a base class of D<T>.
3204  // We can't diagnose it immediately because C<T> is an unknown
3205  // specialization.  The UsingShadowDecl in D<T> then points directly
3206  // to A::foo, which will look well-formed when we instantiate.
3207  // The right solution is to not collapse the shadow-decl chain.
3208  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3209    DeclContext *OrigDC = Orig->getDeclContext();
3210
3211    // Handle enums and anonymous structs.
3212    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3213    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3214    while (OrigRec->isAnonymousStructOrUnion())
3215      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3216
3217    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3218      if (OrigDC == CurContext) {
3219        Diag(Using->getLocation(),
3220             diag::err_using_decl_nested_name_specifier_is_current_class)
3221          << Using->getNestedNameRange();
3222        Diag(Orig->getLocation(), diag::note_using_decl_target);
3223        return true;
3224      }
3225
3226      Diag(Using->getNestedNameRange().getBegin(),
3227           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3228        << Using->getTargetNestedNameDecl()
3229        << cast<CXXRecordDecl>(CurContext)
3230        << Using->getNestedNameRange();
3231      Diag(Orig->getLocation(), diag::note_using_decl_target);
3232      return true;
3233    }
3234  }
3235
3236  if (Previous.empty()) return false;
3237
3238  NamedDecl *Target = Orig;
3239  if (isa<UsingShadowDecl>(Target))
3240    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3241
3242  // If the target happens to be one of the previous declarations, we
3243  // don't have a conflict.
3244  //
3245  // FIXME: but we might be increasing its access, in which case we
3246  // should redeclare it.
3247  NamedDecl *NonTag = 0, *Tag = 0;
3248  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3249         I != E; ++I) {
3250    NamedDecl *D = (*I)->getUnderlyingDecl();
3251    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3252      return false;
3253
3254    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3255  }
3256
3257  if (Target->isFunctionOrFunctionTemplate()) {
3258    FunctionDecl *FD;
3259    if (isa<FunctionTemplateDecl>(Target))
3260      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3261    else
3262      FD = cast<FunctionDecl>(Target);
3263
3264    NamedDecl *OldDecl = 0;
3265    switch (CheckOverload(FD, Previous, OldDecl)) {
3266    case Ovl_Overload:
3267      return false;
3268
3269    case Ovl_NonFunction:
3270      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3271      break;
3272
3273    // We found a decl with the exact signature.
3274    case Ovl_Match:
3275      if (isa<UsingShadowDecl>(OldDecl)) {
3276        // Silently ignore the possible conflict.
3277        return false;
3278      }
3279
3280      // If we're in a record, we want to hide the target, so we
3281      // return true (without a diagnostic) to tell the caller not to
3282      // build a shadow decl.
3283      if (CurContext->isRecord())
3284        return true;
3285
3286      // If we're not in a record, this is an error.
3287      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3288      break;
3289    }
3290
3291    Diag(Target->getLocation(), diag::note_using_decl_target);
3292    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3293    return true;
3294  }
3295
3296  // Target is not a function.
3297
3298  if (isa<TagDecl>(Target)) {
3299    // No conflict between a tag and a non-tag.
3300    if (!Tag) return false;
3301
3302    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3303    Diag(Target->getLocation(), diag::note_using_decl_target);
3304    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3305    return true;
3306  }
3307
3308  // No conflict between a tag and a non-tag.
3309  if (!NonTag) return false;
3310
3311  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3312  Diag(Target->getLocation(), diag::note_using_decl_target);
3313  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3314  return true;
3315}
3316
3317/// Builds a shadow declaration corresponding to a 'using' declaration.
3318UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3319                                            UsingDecl *UD,
3320                                            NamedDecl *Orig) {
3321
3322  // If we resolved to another shadow declaration, just coalesce them.
3323  NamedDecl *Target = Orig;
3324  if (isa<UsingShadowDecl>(Target)) {
3325    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3326    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3327  }
3328
3329  UsingShadowDecl *Shadow
3330    = UsingShadowDecl::Create(Context, CurContext,
3331                              UD->getLocation(), UD, Target);
3332  UD->addShadowDecl(Shadow);
3333
3334  if (S)
3335    PushOnScopeChains(Shadow, S);
3336  else
3337    CurContext->addDecl(Shadow);
3338  Shadow->setAccess(UD->getAccess());
3339
3340  // Register it as a conversion if appropriate.
3341  if (Shadow->getDeclName().getNameKind()
3342        == DeclarationName::CXXConversionFunctionName)
3343    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3344
3345  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3346    Shadow->setInvalidDecl();
3347
3348  return Shadow;
3349}
3350
3351/// Hides a using shadow declaration.  This is required by the current
3352/// using-decl implementation when a resolvable using declaration in a
3353/// class is followed by a declaration which would hide or override
3354/// one or more of the using decl's targets; for example:
3355///
3356///   struct Base { void foo(int); };
3357///   struct Derived : Base {
3358///     using Base::foo;
3359///     void foo(int);
3360///   };
3361///
3362/// The governing language is C++03 [namespace.udecl]p12:
3363///
3364///   When a using-declaration brings names from a base class into a
3365///   derived class scope, member functions in the derived class
3366///   override and/or hide member functions with the same name and
3367///   parameter types in a base class (rather than conflicting).
3368///
3369/// There are two ways to implement this:
3370///   (1) optimistically create shadow decls when they're not hidden
3371///       by existing declarations, or
3372///   (2) don't create any shadow decls (or at least don't make them
3373///       visible) until we've fully parsed/instantiated the class.
3374/// The problem with (1) is that we might have to retroactively remove
3375/// a shadow decl, which requires several O(n) operations because the
3376/// decl structures are (very reasonably) not designed for removal.
3377/// (2) avoids this but is very fiddly and phase-dependent.
3378void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3379  if (Shadow->getDeclName().getNameKind() ==
3380        DeclarationName::CXXConversionFunctionName)
3381    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3382
3383  // Remove it from the DeclContext...
3384  Shadow->getDeclContext()->removeDecl(Shadow);
3385
3386  // ...and the scope, if applicable...
3387  if (S) {
3388    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3389    IdResolver.RemoveDecl(Shadow);
3390  }
3391
3392  // ...and the using decl.
3393  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3394
3395  // TODO: complain somehow if Shadow was used.  It shouldn't
3396  // be possible for this to happen, because...?
3397}
3398
3399/// Builds a using declaration.
3400///
3401/// \param IsInstantiation - Whether this call arises from an
3402///   instantiation of an unresolved using declaration.  We treat
3403///   the lookup differently for these declarations.
3404NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3405                                       SourceLocation UsingLoc,
3406                                       const CXXScopeSpec &SS,
3407                                       SourceLocation IdentLoc,
3408                                       DeclarationName Name,
3409                                       AttributeList *AttrList,
3410                                       bool IsInstantiation,
3411                                       bool IsTypeName,
3412                                       SourceLocation TypenameLoc) {
3413  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3414  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3415
3416  // FIXME: We ignore attributes for now.
3417  delete AttrList;
3418
3419  if (SS.isEmpty()) {
3420    Diag(IdentLoc, diag::err_using_requires_qualname);
3421    return 0;
3422  }
3423
3424  // Do the redeclaration lookup in the current scope.
3425  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3426                        ForRedeclaration);
3427  Previous.setHideTags(false);
3428  if (S) {
3429    LookupName(Previous, S);
3430
3431    // It is really dumb that we have to do this.
3432    LookupResult::Filter F = Previous.makeFilter();
3433    while (F.hasNext()) {
3434      NamedDecl *D = F.next();
3435      if (!isDeclInScope(D, CurContext, S))
3436        F.erase();
3437    }
3438    F.done();
3439  } else {
3440    assert(IsInstantiation && "no scope in non-instantiation");
3441    assert(CurContext->isRecord() && "scope not record in instantiation");
3442    LookupQualifiedName(Previous, CurContext);
3443  }
3444
3445  NestedNameSpecifier *NNS =
3446    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3447
3448  // Check for invalid redeclarations.
3449  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3450    return 0;
3451
3452  // Check for bad qualifiers.
3453  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3454    return 0;
3455
3456  DeclContext *LookupContext = computeDeclContext(SS);
3457  NamedDecl *D;
3458  if (!LookupContext) {
3459    if (IsTypeName) {
3460      // FIXME: not all declaration name kinds are legal here
3461      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3462                                              UsingLoc, TypenameLoc,
3463                                              SS.getRange(), NNS,
3464                                              IdentLoc, Name);
3465    } else {
3466      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3467                                           UsingLoc, SS.getRange(), NNS,
3468                                           IdentLoc, Name);
3469    }
3470  } else {
3471    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3472                          SS.getRange(), UsingLoc, NNS, Name,
3473                          IsTypeName);
3474  }
3475  D->setAccess(AS);
3476  CurContext->addDecl(D);
3477
3478  if (!LookupContext) return D;
3479  UsingDecl *UD = cast<UsingDecl>(D);
3480
3481  if (RequireCompleteDeclContext(SS)) {
3482    UD->setInvalidDecl();
3483    return UD;
3484  }
3485
3486  // Look up the target name.
3487
3488  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3489
3490  // Unlike most lookups, we don't always want to hide tag
3491  // declarations: tag names are visible through the using declaration
3492  // even if hidden by ordinary names, *except* in a dependent context
3493  // where it's important for the sanity of two-phase lookup.
3494  if (!IsInstantiation)
3495    R.setHideTags(false);
3496
3497  LookupQualifiedName(R, LookupContext);
3498
3499  if (R.empty()) {
3500    Diag(IdentLoc, diag::err_no_member)
3501      << Name << LookupContext << SS.getRange();
3502    UD->setInvalidDecl();
3503    return UD;
3504  }
3505
3506  if (R.isAmbiguous()) {
3507    UD->setInvalidDecl();
3508    return UD;
3509  }
3510
3511  if (IsTypeName) {
3512    // If we asked for a typename and got a non-type decl, error out.
3513    if (!R.getAsSingle<TypeDecl>()) {
3514      Diag(IdentLoc, diag::err_using_typename_non_type);
3515      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3516        Diag((*I)->getUnderlyingDecl()->getLocation(),
3517             diag::note_using_decl_target);
3518      UD->setInvalidDecl();
3519      return UD;
3520    }
3521  } else {
3522    // If we asked for a non-typename and we got a type, error out,
3523    // but only if this is an instantiation of an unresolved using
3524    // decl.  Otherwise just silently find the type name.
3525    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3526      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3527      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3528      UD->setInvalidDecl();
3529      return UD;
3530    }
3531  }
3532
3533  // C++0x N2914 [namespace.udecl]p6:
3534  // A using-declaration shall not name a namespace.
3535  if (R.getAsSingle<NamespaceDecl>()) {
3536    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3537      << SS.getRange();
3538    UD->setInvalidDecl();
3539    return UD;
3540  }
3541
3542  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3543    if (!CheckUsingShadowDecl(UD, *I, Previous))
3544      BuildUsingShadowDecl(S, UD, *I);
3545  }
3546
3547  return UD;
3548}
3549
3550/// Checks that the given using declaration is not an invalid
3551/// redeclaration.  Note that this is checking only for the using decl
3552/// itself, not for any ill-formedness among the UsingShadowDecls.
3553bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3554                                       bool isTypeName,
3555                                       const CXXScopeSpec &SS,
3556                                       SourceLocation NameLoc,
3557                                       const LookupResult &Prev) {
3558  // C++03 [namespace.udecl]p8:
3559  // C++0x [namespace.udecl]p10:
3560  //   A using-declaration is a declaration and can therefore be used
3561  //   repeatedly where (and only where) multiple declarations are
3562  //   allowed.
3563  // That's only in file contexts.
3564  if (CurContext->getLookupContext()->isFileContext())
3565    return false;
3566
3567  NestedNameSpecifier *Qual
3568    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3569
3570  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3571    NamedDecl *D = *I;
3572
3573    bool DTypename;
3574    NestedNameSpecifier *DQual;
3575    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3576      DTypename = UD->isTypeName();
3577      DQual = UD->getTargetNestedNameDecl();
3578    } else if (UnresolvedUsingValueDecl *UD
3579                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3580      DTypename = false;
3581      DQual = UD->getTargetNestedNameSpecifier();
3582    } else if (UnresolvedUsingTypenameDecl *UD
3583                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3584      DTypename = true;
3585      DQual = UD->getTargetNestedNameSpecifier();
3586    } else continue;
3587
3588    // using decls differ if one says 'typename' and the other doesn't.
3589    // FIXME: non-dependent using decls?
3590    if (isTypeName != DTypename) continue;
3591
3592    // using decls differ if they name different scopes (but note that
3593    // template instantiation can cause this check to trigger when it
3594    // didn't before instantiation).
3595    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3596        Context.getCanonicalNestedNameSpecifier(DQual))
3597      continue;
3598
3599    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3600    Diag(D->getLocation(), diag::note_using_decl) << 1;
3601    return true;
3602  }
3603
3604  return false;
3605}
3606
3607
3608/// Checks that the given nested-name qualifier used in a using decl
3609/// in the current context is appropriately related to the current
3610/// scope.  If an error is found, diagnoses it and returns true.
3611bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3612                                   const CXXScopeSpec &SS,
3613                                   SourceLocation NameLoc) {
3614  DeclContext *NamedContext = computeDeclContext(SS);
3615
3616  if (!CurContext->isRecord()) {
3617    // C++03 [namespace.udecl]p3:
3618    // C++0x [namespace.udecl]p8:
3619    //   A using-declaration for a class member shall be a member-declaration.
3620
3621    // If we weren't able to compute a valid scope, it must be a
3622    // dependent class scope.
3623    if (!NamedContext || NamedContext->isRecord()) {
3624      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3625        << SS.getRange();
3626      return true;
3627    }
3628
3629    // Otherwise, everything is known to be fine.
3630    return false;
3631  }
3632
3633  // The current scope is a record.
3634
3635  // If the named context is dependent, we can't decide much.
3636  if (!NamedContext) {
3637    // FIXME: in C++0x, we can diagnose if we can prove that the
3638    // nested-name-specifier does not refer to a base class, which is
3639    // still possible in some cases.
3640
3641    // Otherwise we have to conservatively report that things might be
3642    // okay.
3643    return false;
3644  }
3645
3646  if (!NamedContext->isRecord()) {
3647    // Ideally this would point at the last name in the specifier,
3648    // but we don't have that level of source info.
3649    Diag(SS.getRange().getBegin(),
3650         diag::err_using_decl_nested_name_specifier_is_not_class)
3651      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3652    return true;
3653  }
3654
3655  if (getLangOptions().CPlusPlus0x) {
3656    // C++0x [namespace.udecl]p3:
3657    //   In a using-declaration used as a member-declaration, the
3658    //   nested-name-specifier shall name a base class of the class
3659    //   being defined.
3660
3661    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3662                                 cast<CXXRecordDecl>(NamedContext))) {
3663      if (CurContext == NamedContext) {
3664        Diag(NameLoc,
3665             diag::err_using_decl_nested_name_specifier_is_current_class)
3666          << SS.getRange();
3667        return true;
3668      }
3669
3670      Diag(SS.getRange().getBegin(),
3671           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3672        << (NestedNameSpecifier*) SS.getScopeRep()
3673        << cast<CXXRecordDecl>(CurContext)
3674        << SS.getRange();
3675      return true;
3676    }
3677
3678    return false;
3679  }
3680
3681  // C++03 [namespace.udecl]p4:
3682  //   A using-declaration used as a member-declaration shall refer
3683  //   to a member of a base class of the class being defined [etc.].
3684
3685  // Salient point: SS doesn't have to name a base class as long as
3686  // lookup only finds members from base classes.  Therefore we can
3687  // diagnose here only if we can prove that that can't happen,
3688  // i.e. if the class hierarchies provably don't intersect.
3689
3690  // TODO: it would be nice if "definitely valid" results were cached
3691  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3692  // need to be repeated.
3693
3694  struct UserData {
3695    llvm::DenseSet<const CXXRecordDecl*> Bases;
3696
3697    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3698      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3699      Data->Bases.insert(Base);
3700      return true;
3701    }
3702
3703    bool hasDependentBases(const CXXRecordDecl *Class) {
3704      return !Class->forallBases(collect, this);
3705    }
3706
3707    /// Returns true if the base is dependent or is one of the
3708    /// accumulated base classes.
3709    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3710      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3711      return !Data->Bases.count(Base);
3712    }
3713
3714    bool mightShareBases(const CXXRecordDecl *Class) {
3715      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3716    }
3717  };
3718
3719  UserData Data;
3720
3721  // Returns false if we find a dependent base.
3722  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3723    return false;
3724
3725  // Returns false if the class has a dependent base or if it or one
3726  // of its bases is present in the base set of the current context.
3727  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3728    return false;
3729
3730  Diag(SS.getRange().getBegin(),
3731       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3732    << (NestedNameSpecifier*) SS.getScopeRep()
3733    << cast<CXXRecordDecl>(CurContext)
3734    << SS.getRange();
3735
3736  return true;
3737}
3738
3739Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3740                                             SourceLocation NamespaceLoc,
3741                                             SourceLocation AliasLoc,
3742                                             IdentifierInfo *Alias,
3743                                             const CXXScopeSpec &SS,
3744                                             SourceLocation IdentLoc,
3745                                             IdentifierInfo *Ident) {
3746
3747  // Lookup the namespace name.
3748  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3749  LookupParsedName(R, S, &SS);
3750
3751  // Check if we have a previous declaration with the same name.
3752  if (NamedDecl *PrevDecl
3753        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3754    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3755      // We already have an alias with the same name that points to the same
3756      // namespace, so don't create a new one.
3757      // FIXME: At some point, we'll want to create the (redundant)
3758      // declaration to maintain better source information.
3759      if (!R.isAmbiguous() && !R.empty() &&
3760          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
3761        return DeclPtrTy();
3762    }
3763
3764    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3765      diag::err_redefinition_different_kind;
3766    Diag(AliasLoc, DiagID) << Alias;
3767    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3768    return DeclPtrTy();
3769  }
3770
3771  if (R.isAmbiguous())
3772    return DeclPtrTy();
3773
3774  if (R.empty()) {
3775    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3776    return DeclPtrTy();
3777  }
3778
3779  NamespaceAliasDecl *AliasDecl =
3780    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3781                               Alias, SS.getRange(),
3782                               (NestedNameSpecifier *)SS.getScopeRep(),
3783                               IdentLoc, R.getFoundDecl());
3784
3785  PushOnScopeChains(AliasDecl, S);
3786  return DeclPtrTy::make(AliasDecl);
3787}
3788
3789void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3790                                            CXXConstructorDecl *Constructor) {
3791  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3792          !Constructor->isUsed()) &&
3793    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3794
3795  CXXRecordDecl *ClassDecl
3796    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3797  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3798
3799  DeclContext *PreviousContext = CurContext;
3800  CurContext = Constructor;
3801  if (SetBaseOrMemberInitializers(Constructor, 0, 0,
3802                                  /*IsImplicitConstructor=*/true,
3803                                  /*AnyErrors=*/false)) {
3804    Diag(CurrentLocation, diag::note_member_synthesized_at)
3805      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3806    Constructor->setInvalidDecl();
3807  } else {
3808    Constructor->setUsed();
3809  }
3810  CurContext = PreviousContext;
3811}
3812
3813void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3814                                    CXXDestructorDecl *Destructor) {
3815  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3816         "DefineImplicitDestructor - call it for implicit default dtor");
3817  CXXRecordDecl *ClassDecl = Destructor->getParent();
3818  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3819
3820  DeclContext *PreviousContext = CurContext;
3821  CurContext = Destructor;
3822
3823  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
3824                                         Destructor->getParent());
3825
3826  // FIXME: If CheckDestructor fails, we should emit a note about where the
3827  // implicit destructor was needed.
3828  if (CheckDestructor(Destructor)) {
3829    Diag(CurrentLocation, diag::note_member_synthesized_at)
3830      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3831
3832    Destructor->setInvalidDecl();
3833    CurContext = PreviousContext;
3834
3835    return;
3836  }
3837  CurContext = PreviousContext;
3838
3839  Destructor->setUsed();
3840}
3841
3842void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3843                                          CXXMethodDecl *MethodDecl) {
3844  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3845          MethodDecl->getOverloadedOperator() == OO_Equal &&
3846          !MethodDecl->isUsed()) &&
3847         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3848
3849  CXXRecordDecl *ClassDecl
3850    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3851
3852  DeclContext *PreviousContext = CurContext;
3853  CurContext = MethodDecl;
3854
3855  // C++[class.copy] p12
3856  // Before the implicitly-declared copy assignment operator for a class is
3857  // implicitly defined, all implicitly-declared copy assignment operators
3858  // for its direct base classes and its nonstatic data members shall have
3859  // been implicitly defined.
3860  bool err = false;
3861  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3862       E = ClassDecl->bases_end(); Base != E; ++Base) {
3863    CXXRecordDecl *BaseClassDecl
3864      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3865    if (CXXMethodDecl *BaseAssignOpMethod =
3866          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3867                                  BaseClassDecl)) {
3868      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3869                              BaseAssignOpMethod,
3870                              PDiag(diag::err_access_assign_base)
3871                                << Base->getType());
3872
3873      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3874    }
3875  }
3876  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3877       E = ClassDecl->field_end(); Field != E; ++Field) {
3878    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3879    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3880      FieldType = Array->getElementType();
3881    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3882      CXXRecordDecl *FieldClassDecl
3883        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3884      if (CXXMethodDecl *FieldAssignOpMethod =
3885          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3886                                  FieldClassDecl)) {
3887        CheckDirectMemberAccess(Field->getLocation(),
3888                                FieldAssignOpMethod,
3889                                PDiag(diag::err_access_assign_field)
3890                                  << Field->getDeclName() << Field->getType());
3891
3892        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3893      }
3894    } else if (FieldType->isReferenceType()) {
3895      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3896      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3897      Diag(Field->getLocation(), diag::note_declared_at);
3898      Diag(CurrentLocation, diag::note_first_required_here);
3899      err = true;
3900    } else if (FieldType.isConstQualified()) {
3901      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3902      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3903      Diag(Field->getLocation(), diag::note_declared_at);
3904      Diag(CurrentLocation, diag::note_first_required_here);
3905      err = true;
3906    }
3907  }
3908  if (!err)
3909    MethodDecl->setUsed();
3910
3911  CurContext = PreviousContext;
3912}
3913
3914CXXMethodDecl *
3915Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3916                              ParmVarDecl *ParmDecl,
3917                              CXXRecordDecl *ClassDecl) {
3918  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3919  QualType RHSType(LHSType);
3920  // If class's assignment operator argument is const/volatile qualified,
3921  // look for operator = (const/volatile B&). Otherwise, look for
3922  // operator = (B&).
3923  RHSType = Context.getCVRQualifiedType(RHSType,
3924                                     ParmDecl->getType().getCVRQualifiers());
3925  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3926                                                           LHSType,
3927                                                           SourceLocation()));
3928  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3929                                                           RHSType,
3930                                                           CurrentLocation));
3931  Expr *Args[2] = { &*LHS, &*RHS };
3932  OverloadCandidateSet CandidateSet(CurrentLocation);
3933  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3934                              CandidateSet);
3935  OverloadCandidateSet::iterator Best;
3936  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3937    return cast<CXXMethodDecl>(Best->Function);
3938  assert(false &&
3939         "getAssignOperatorMethod - copy assignment operator method not found");
3940  return 0;
3941}
3942
3943void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3944                                   CXXConstructorDecl *CopyConstructor,
3945                                   unsigned TypeQuals) {
3946  assert((CopyConstructor->isImplicit() &&
3947          CopyConstructor->isCopyConstructor(TypeQuals) &&
3948          !CopyConstructor->isUsed()) &&
3949         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3950
3951  CXXRecordDecl *ClassDecl
3952    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3953  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3954
3955  DeclContext *PreviousContext = CurContext;
3956  CurContext = CopyConstructor;
3957
3958  // C++ [class.copy] p209
3959  // Before the implicitly-declared copy constructor for a class is
3960  // implicitly defined, all the implicitly-declared copy constructors
3961  // for its base class and its non-static data members shall have been
3962  // implicitly defined.
3963  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3964       Base != ClassDecl->bases_end(); ++Base) {
3965    CXXRecordDecl *BaseClassDecl
3966      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3967    if (CXXConstructorDecl *BaseCopyCtor =
3968        BaseClassDecl->getCopyConstructor(Context, TypeQuals)) {
3969      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3970                              BaseCopyCtor,
3971                              PDiag(diag::err_access_copy_base)
3972                                << Base->getType());
3973
3974      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3975    }
3976  }
3977  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3978                                  FieldEnd = ClassDecl->field_end();
3979       Field != FieldEnd; ++Field) {
3980    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3981    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3982      FieldType = Array->getElementType();
3983    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3984      CXXRecordDecl *FieldClassDecl
3985        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3986      if (CXXConstructorDecl *FieldCopyCtor =
3987          FieldClassDecl->getCopyConstructor(Context, TypeQuals)) {
3988        CheckDirectMemberAccess(Field->getLocation(),
3989                                FieldCopyCtor,
3990                                PDiag(diag::err_access_copy_field)
3991                                  << Field->getDeclName() << Field->getType());
3992
3993        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3994      }
3995    }
3996  }
3997  CopyConstructor->setUsed();
3998
3999  CurContext = PreviousContext;
4000}
4001
4002Sema::OwningExprResult
4003Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4004                            CXXConstructorDecl *Constructor,
4005                            MultiExprArg ExprArgs,
4006                            bool RequiresZeroInit,
4007                            bool BaseInitialization) {
4008  bool Elidable = false;
4009
4010  // C++ [class.copy]p15:
4011  //   Whenever a temporary class object is copied using a copy constructor, and
4012  //   this object and the copy have the same cv-unqualified type, an
4013  //   implementation is permitted to treat the original and the copy as two
4014  //   different ways of referring to the same object and not perform a copy at
4015  //   all, even if the class copy constructor or destructor have side effects.
4016
4017  // FIXME: Is this enough?
4018  if (Constructor->isCopyConstructor()) {
4019    Expr *E = ((Expr **)ExprArgs.get())[0];
4020    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4021      if (ICE->getCastKind() == CastExpr::CK_NoOp)
4022        E = ICE->getSubExpr();
4023    if (CXXFunctionalCastExpr *FCE = dyn_cast<CXXFunctionalCastExpr>(E))
4024      E = FCE->getSubExpr();
4025    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
4026      E = BE->getSubExpr();
4027    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
4028      if (ICE->getCastKind() == CastExpr::CK_NoOp)
4029        E = ICE->getSubExpr();
4030
4031    if (CallExpr *CE = dyn_cast<CallExpr>(E))
4032      Elidable = !CE->getCallReturnType()->isReferenceType();
4033    else if (isa<CXXTemporaryObjectExpr>(E))
4034      Elidable = true;
4035    else if (isa<CXXConstructExpr>(E))
4036      Elidable = true;
4037  }
4038
4039  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4040                               Elidable, move(ExprArgs), RequiresZeroInit,
4041                               BaseInitialization);
4042}
4043
4044/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4045/// including handling of its default argument expressions.
4046Sema::OwningExprResult
4047Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4048                            CXXConstructorDecl *Constructor, bool Elidable,
4049                            MultiExprArg ExprArgs,
4050                            bool RequiresZeroInit,
4051                            bool BaseInitialization) {
4052  unsigned NumExprs = ExprArgs.size();
4053  Expr **Exprs = (Expr **)ExprArgs.release();
4054
4055  MarkDeclarationReferenced(ConstructLoc, Constructor);
4056  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4057                                        Constructor, Elidable, Exprs, NumExprs,
4058                                        RequiresZeroInit, BaseInitialization));
4059}
4060
4061bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4062                                        CXXConstructorDecl *Constructor,
4063                                        MultiExprArg Exprs) {
4064  OwningExprResult TempResult =
4065    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4066                          move(Exprs));
4067  if (TempResult.isInvalid())
4068    return true;
4069
4070  Expr *Temp = TempResult.takeAs<Expr>();
4071  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4072  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4073  VD->setInit(Temp);
4074
4075  return false;
4076}
4077
4078void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4079  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4080  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4081      !ClassDecl->hasTrivialDestructor()) {
4082    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4083    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4084    CheckDestructorAccess(VD->getLocation(), Destructor,
4085                          PDiag(diag::err_access_dtor_var)
4086                            << VD->getDeclName()
4087                            << VD->getType());
4088  }
4089}
4090
4091/// AddCXXDirectInitializerToDecl - This action is called immediately after
4092/// ActOnDeclarator, when a C++ direct initializer is present.
4093/// e.g: "int x(1);"
4094void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4095                                         SourceLocation LParenLoc,
4096                                         MultiExprArg Exprs,
4097                                         SourceLocation *CommaLocs,
4098                                         SourceLocation RParenLoc) {
4099  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4100  Decl *RealDecl = Dcl.getAs<Decl>();
4101
4102  // If there is no declaration, there was an error parsing it.  Just ignore
4103  // the initializer.
4104  if (RealDecl == 0)
4105    return;
4106
4107  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4108  if (!VDecl) {
4109    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4110    RealDecl->setInvalidDecl();
4111    return;
4112  }
4113
4114  // We will represent direct-initialization similarly to copy-initialization:
4115  //    int x(1);  -as-> int x = 1;
4116  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4117  //
4118  // Clients that want to distinguish between the two forms, can check for
4119  // direct initializer using VarDecl::hasCXXDirectInitializer().
4120  // A major benefit is that clients that don't particularly care about which
4121  // exactly form was it (like the CodeGen) can handle both cases without
4122  // special case code.
4123
4124  // C++ 8.5p11:
4125  // The form of initialization (using parentheses or '=') is generally
4126  // insignificant, but does matter when the entity being initialized has a
4127  // class type.
4128  QualType DeclInitType = VDecl->getType();
4129  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4130    DeclInitType = Context.getBaseElementType(Array);
4131
4132  if (!VDecl->getType()->isDependentType() &&
4133      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4134                          diag::err_typecheck_decl_incomplete_type)) {
4135    VDecl->setInvalidDecl();
4136    return;
4137  }
4138
4139  // The variable can not have an abstract class type.
4140  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4141                             diag::err_abstract_type_in_decl,
4142                             AbstractVariableType))
4143    VDecl->setInvalidDecl();
4144
4145  const VarDecl *Def;
4146  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4147    Diag(VDecl->getLocation(), diag::err_redefinition)
4148    << VDecl->getDeclName();
4149    Diag(Def->getLocation(), diag::note_previous_definition);
4150    VDecl->setInvalidDecl();
4151    return;
4152  }
4153
4154  // If either the declaration has a dependent type or if any of the
4155  // expressions is type-dependent, we represent the initialization
4156  // via a ParenListExpr for later use during template instantiation.
4157  if (VDecl->getType()->isDependentType() ||
4158      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4159    // Let clients know that initialization was done with a direct initializer.
4160    VDecl->setCXXDirectInitializer(true);
4161
4162    // Store the initialization expressions as a ParenListExpr.
4163    unsigned NumExprs = Exprs.size();
4164    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4165                                               (Expr **)Exprs.release(),
4166                                               NumExprs, RParenLoc));
4167    return;
4168  }
4169
4170  // Capture the variable that is being initialized and the style of
4171  // initialization.
4172  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4173
4174  // FIXME: Poor source location information.
4175  InitializationKind Kind
4176    = InitializationKind::CreateDirect(VDecl->getLocation(),
4177                                       LParenLoc, RParenLoc);
4178
4179  InitializationSequence InitSeq(*this, Entity, Kind,
4180                                 (Expr**)Exprs.get(), Exprs.size());
4181  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4182  if (Result.isInvalid()) {
4183    VDecl->setInvalidDecl();
4184    return;
4185  }
4186
4187  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4188  VDecl->setInit(Result.takeAs<Expr>());
4189  VDecl->setCXXDirectInitializer(true);
4190
4191  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4192    FinalizeVarWithDestructor(VDecl, Record);
4193}
4194
4195/// \brief Add the applicable constructor candidates for an initialization
4196/// by constructor.
4197static void AddConstructorInitializationCandidates(Sema &SemaRef,
4198                                                   QualType ClassType,
4199                                                   Expr **Args,
4200                                                   unsigned NumArgs,
4201                                                   InitializationKind Kind,
4202                                           OverloadCandidateSet &CandidateSet) {
4203  // C++ [dcl.init]p14:
4204  //   If the initialization is direct-initialization, or if it is
4205  //   copy-initialization where the cv-unqualified version of the
4206  //   source type is the same class as, or a derived class of, the
4207  //   class of the destination, constructors are considered. The
4208  //   applicable constructors are enumerated (13.3.1.3), and the
4209  //   best one is chosen through overload resolution (13.3). The
4210  //   constructor so selected is called to initialize the object,
4211  //   with the initializer expression(s) as its argument(s). If no
4212  //   constructor applies, or the overload resolution is ambiguous,
4213  //   the initialization is ill-formed.
4214  const RecordType *ClassRec = ClassType->getAs<RecordType>();
4215  assert(ClassRec && "Can only initialize a class type here");
4216
4217  // FIXME: When we decide not to synthesize the implicitly-declared
4218  // constructors, we'll need to make them appear here.
4219
4220  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
4221  DeclarationName ConstructorName
4222    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
4223              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
4224  DeclContext::lookup_const_iterator Con, ConEnd;
4225  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
4226       Con != ConEnd; ++Con) {
4227    DeclAccessPair FoundDecl = DeclAccessPair::make(*Con, (*Con)->getAccess());
4228
4229    // Find the constructor (which may be a template).
4230    CXXConstructorDecl *Constructor = 0;
4231    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4232    if (ConstructorTmpl)
4233      Constructor
4234      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4235    else
4236      Constructor = cast<CXXConstructorDecl>(*Con);
4237
4238    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4239        (Kind.getKind() == InitializationKind::IK_Value) ||
4240        (Kind.getKind() == InitializationKind::IK_Copy &&
4241         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4242        ((Kind.getKind() == InitializationKind::IK_Default) &&
4243         Constructor->isDefaultConstructor())) {
4244      if (ConstructorTmpl)
4245        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4246                                             /*ExplicitArgs*/ 0,
4247                                             Args, NumArgs, CandidateSet);
4248      else
4249        SemaRef.AddOverloadCandidate(Constructor, FoundDecl,
4250                                     Args, NumArgs, CandidateSet);
4251    }
4252  }
4253}
4254
4255/// \brief Attempt to perform initialization by constructor
4256/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4257/// copy-initialization.
4258///
4259/// This routine determines whether initialization by constructor is possible,
4260/// but it does not emit any diagnostics in the case where the initialization
4261/// is ill-formed.
4262///
4263/// \param ClassType the type of the object being initialized, which must have
4264/// class type.
4265///
4266/// \param Args the arguments provided to initialize the object
4267///
4268/// \param NumArgs the number of arguments provided to initialize the object
4269///
4270/// \param Kind the type of initialization being performed
4271///
4272/// \returns the constructor used to initialize the object, if successful.
4273/// Otherwise, emits a diagnostic and returns NULL.
4274CXXConstructorDecl *
4275Sema::TryInitializationByConstructor(QualType ClassType,
4276                                     Expr **Args, unsigned NumArgs,
4277                                     SourceLocation Loc,
4278                                     InitializationKind Kind) {
4279  // Build the overload candidate set
4280  OverloadCandidateSet CandidateSet(Loc);
4281  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4282                                         CandidateSet);
4283
4284  // Determine whether we found a constructor we can use.
4285  OverloadCandidateSet::iterator Best;
4286  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4287    case OR_Success:
4288    case OR_Deleted:
4289      // We found a constructor. Return it.
4290      return cast<CXXConstructorDecl>(Best->Function);
4291
4292    case OR_No_Viable_Function:
4293    case OR_Ambiguous:
4294      // Overload resolution failed. Return nothing.
4295      return 0;
4296  }
4297
4298  // Silence GCC warning
4299  return 0;
4300}
4301
4302/// \brief Given a constructor and the set of arguments provided for the
4303/// constructor, convert the arguments and add any required default arguments
4304/// to form a proper call to this constructor.
4305///
4306/// \returns true if an error occurred, false otherwise.
4307bool
4308Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4309                              MultiExprArg ArgsPtr,
4310                              SourceLocation Loc,
4311                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4312  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4313  unsigned NumArgs = ArgsPtr.size();
4314  Expr **Args = (Expr **)ArgsPtr.get();
4315
4316  const FunctionProtoType *Proto
4317    = Constructor->getType()->getAs<FunctionProtoType>();
4318  assert(Proto && "Constructor without a prototype?");
4319  unsigned NumArgsInProto = Proto->getNumArgs();
4320
4321  // If too few arguments are available, we'll fill in the rest with defaults.
4322  if (NumArgs < NumArgsInProto)
4323    ConvertedArgs.reserve(NumArgsInProto);
4324  else
4325    ConvertedArgs.reserve(NumArgs);
4326
4327  VariadicCallType CallType =
4328    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4329  llvm::SmallVector<Expr *, 8> AllArgs;
4330  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4331                                        Proto, 0, Args, NumArgs, AllArgs,
4332                                        CallType);
4333  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4334    ConvertedArgs.push_back(AllArgs[i]);
4335  return Invalid;
4336}
4337
4338/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4339/// determine whether they are reference-related,
4340/// reference-compatible, reference-compatible with added
4341/// qualification, or incompatible, for use in C++ initialization by
4342/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4343/// type, and the first type (T1) is the pointee type of the reference
4344/// type being initialized.
4345Sema::ReferenceCompareResult
4346Sema::CompareReferenceRelationship(SourceLocation Loc,
4347                                   QualType OrigT1, QualType OrigT2,
4348                                   bool& DerivedToBase) {
4349  assert(!OrigT1->isReferenceType() &&
4350    "T1 must be the pointee type of the reference type");
4351  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4352
4353  QualType T1 = Context.getCanonicalType(OrigT1);
4354  QualType T2 = Context.getCanonicalType(OrigT2);
4355  Qualifiers T1Quals, T2Quals;
4356  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4357  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4358
4359  // C++ [dcl.init.ref]p4:
4360  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4361  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4362  //   T1 is a base class of T2.
4363  if (UnqualT1 == UnqualT2)
4364    DerivedToBase = false;
4365  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4366           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4367           IsDerivedFrom(UnqualT2, UnqualT1))
4368    DerivedToBase = true;
4369  else
4370    return Ref_Incompatible;
4371
4372  // At this point, we know that T1 and T2 are reference-related (at
4373  // least).
4374
4375  // If the type is an array type, promote the element qualifiers to the type
4376  // for comparison.
4377  if (isa<ArrayType>(T1) && T1Quals)
4378    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4379  if (isa<ArrayType>(T2) && T2Quals)
4380    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4381
4382  // C++ [dcl.init.ref]p4:
4383  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4384  //   reference-related to T2 and cv1 is the same cv-qualification
4385  //   as, or greater cv-qualification than, cv2. For purposes of
4386  //   overload resolution, cases for which cv1 is greater
4387  //   cv-qualification than cv2 are identified as
4388  //   reference-compatible with added qualification (see 13.3.3.2).
4389  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
4390    return Ref_Compatible;
4391  else if (T1.isMoreQualifiedThan(T2))
4392    return Ref_Compatible_With_Added_Qualification;
4393  else
4394    return Ref_Related;
4395}
4396
4397/// CheckReferenceInit - Check the initialization of a reference
4398/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4399/// the initializer (either a simple initializer or an initializer
4400/// list), and DeclType is the type of the declaration. When ICS is
4401/// non-null, this routine will compute the implicit conversion
4402/// sequence according to C++ [over.ics.ref] and will not produce any
4403/// diagnostics; when ICS is null, it will emit diagnostics when any
4404/// errors are found. Either way, a return value of true indicates
4405/// that there was a failure, a return value of false indicates that
4406/// the reference initialization succeeded.
4407///
4408/// When @p SuppressUserConversions, user-defined conversions are
4409/// suppressed.
4410/// When @p AllowExplicit, we also permit explicit user-defined
4411/// conversion functions.
4412/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4413/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4414/// This is used when this is called from a C-style cast.
4415bool
4416Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4417                         SourceLocation DeclLoc,
4418                         bool SuppressUserConversions,
4419                         bool AllowExplicit, bool ForceRValue,
4420                         ImplicitConversionSequence *ICS,
4421                         bool IgnoreBaseAccess) {
4422  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4423
4424  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4425  QualType T2 = Init->getType();
4426
4427  // If the initializer is the address of an overloaded function, try
4428  // to resolve the overloaded function. If all goes well, T2 is the
4429  // type of the resulting function.
4430  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4431    DeclAccessPair Found;
4432    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4433                                                          ICS != 0, Found);
4434    if (Fn) {
4435      // Since we're performing this reference-initialization for
4436      // real, update the initializer with the resulting function.
4437      if (!ICS) {
4438        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4439          return true;
4440
4441        CheckAddressOfMemberAccess(Init, Found);
4442        Init = FixOverloadedFunctionReference(Init, Found, Fn);
4443      }
4444
4445      T2 = Fn->getType();
4446    }
4447  }
4448
4449  // Compute some basic properties of the types and the initializer.
4450  bool isRValRef = DeclType->isRValueReferenceType();
4451  bool DerivedToBase = false;
4452  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4453                                                  Init->isLvalue(Context);
4454  ReferenceCompareResult RefRelationship
4455    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4456
4457  // Most paths end in a failed conversion.
4458  if (ICS) {
4459    ICS->setBad(BadConversionSequence::no_conversion, Init, DeclType);
4460  }
4461
4462  // C++ [dcl.init.ref]p5:
4463  //   A reference to type "cv1 T1" is initialized by an expression
4464  //   of type "cv2 T2" as follows:
4465
4466  //     -- If the initializer expression
4467
4468  // Rvalue references cannot bind to lvalues (N2812).
4469  // There is absolutely no situation where they can. In particular, note that
4470  // this is ill-formed, even if B has a user-defined conversion to A&&:
4471  //   B b;
4472  //   A&& r = b;
4473  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4474    if (!ICS)
4475      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4476        << Init->getSourceRange();
4477    return true;
4478  }
4479
4480  bool BindsDirectly = false;
4481  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4482  //          reference-compatible with "cv2 T2," or
4483  //
4484  // Note that the bit-field check is skipped if we are just computing
4485  // the implicit conversion sequence (C++ [over.best.ics]p2).
4486  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4487      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4488    BindsDirectly = true;
4489
4490    if (ICS) {
4491      // C++ [over.ics.ref]p1:
4492      //   When a parameter of reference type binds directly (8.5.3)
4493      //   to an argument expression, the implicit conversion sequence
4494      //   is the identity conversion, unless the argument expression
4495      //   has a type that is a derived class of the parameter type,
4496      //   in which case the implicit conversion sequence is a
4497      //   derived-to-base Conversion (13.3.3.1).
4498      ICS->setStandard();
4499      ICS->Standard.First = ICK_Identity;
4500      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4501      ICS->Standard.Third = ICK_Identity;
4502      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4503      ICS->Standard.setToType(0, T2);
4504      ICS->Standard.setToType(1, T1);
4505      ICS->Standard.setToType(2, T1);
4506      ICS->Standard.ReferenceBinding = true;
4507      ICS->Standard.DirectBinding = true;
4508      ICS->Standard.RRefBinding = false;
4509      ICS->Standard.CopyConstructor = 0;
4510
4511      // Nothing more to do: the inaccessibility/ambiguity check for
4512      // derived-to-base conversions is suppressed when we're
4513      // computing the implicit conversion sequence (C++
4514      // [over.best.ics]p2).
4515      return false;
4516    } else {
4517      // Perform the conversion.
4518      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4519      if (DerivedToBase)
4520        CK = CastExpr::CK_DerivedToBase;
4521      else if(CheckExceptionSpecCompatibility(Init, T1))
4522        return true;
4523      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4524    }
4525  }
4526
4527  //       -- has a class type (i.e., T2 is a class type) and can be
4528  //          implicitly converted to an lvalue of type "cv3 T3,"
4529  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4530  //          92) (this conversion is selected by enumerating the
4531  //          applicable conversion functions (13.3.1.6) and choosing
4532  //          the best one through overload resolution (13.3)),
4533  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4534      !RequireCompleteType(DeclLoc, T2, 0)) {
4535    CXXRecordDecl *T2RecordDecl
4536      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4537
4538    OverloadCandidateSet CandidateSet(DeclLoc);
4539    const UnresolvedSetImpl *Conversions
4540      = T2RecordDecl->getVisibleConversionFunctions();
4541    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4542           E = Conversions->end(); I != E; ++I) {
4543      NamedDecl *D = *I;
4544      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4545      if (isa<UsingShadowDecl>(D))
4546        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4547
4548      FunctionTemplateDecl *ConvTemplate
4549        = dyn_cast<FunctionTemplateDecl>(D);
4550      CXXConversionDecl *Conv;
4551      if (ConvTemplate)
4552        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4553      else
4554        Conv = cast<CXXConversionDecl>(D);
4555
4556      // If the conversion function doesn't return a reference type,
4557      // it can't be considered for this conversion.
4558      if (Conv->getConversionType()->isLValueReferenceType() &&
4559          (AllowExplicit || !Conv->isExplicit())) {
4560        if (ConvTemplate)
4561          AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4562                                         Init, DeclType, CandidateSet);
4563        else
4564          AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4565                                 DeclType, CandidateSet);
4566      }
4567    }
4568
4569    OverloadCandidateSet::iterator Best;
4570    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4571    case OR_Success:
4572      // C++ [over.ics.ref]p1:
4573      //
4574      //   [...] If the parameter binds directly to the result of
4575      //   applying a conversion function to the argument
4576      //   expression, the implicit conversion sequence is a
4577      //   user-defined conversion sequence (13.3.3.1.2), with the
4578      //   second standard conversion sequence either an identity
4579      //   conversion or, if the conversion function returns an
4580      //   entity of a type that is a derived class of the parameter
4581      //   type, a derived-to-base Conversion.
4582      if (!Best->FinalConversion.DirectBinding)
4583        break;
4584
4585      // This is a direct binding.
4586      BindsDirectly = true;
4587
4588      if (ICS) {
4589        ICS->setUserDefined();
4590        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4591        ICS->UserDefined.After = Best->FinalConversion;
4592        ICS->UserDefined.ConversionFunction = Best->Function;
4593        ICS->UserDefined.EllipsisConversion = false;
4594        assert(ICS->UserDefined.After.ReferenceBinding &&
4595               ICS->UserDefined.After.DirectBinding &&
4596               "Expected a direct reference binding!");
4597        return false;
4598      } else {
4599        OwningExprResult InitConversion =
4600          BuildCXXCastArgument(DeclLoc, QualType(),
4601                               CastExpr::CK_UserDefinedConversion,
4602                               cast<CXXMethodDecl>(Best->Function),
4603                               Owned(Init));
4604        Init = InitConversion.takeAs<Expr>();
4605
4606        if (CheckExceptionSpecCompatibility(Init, T1))
4607          return true;
4608        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4609                          /*isLvalue=*/true);
4610      }
4611      break;
4612
4613    case OR_Ambiguous:
4614      if (ICS) {
4615        ICS->setAmbiguous();
4616        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4617             Cand != CandidateSet.end(); ++Cand)
4618          if (Cand->Viable)
4619            ICS->Ambiguous.addConversion(Cand->Function);
4620        break;
4621      }
4622      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4623            << Init->getSourceRange();
4624      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Init, 1);
4625      return true;
4626
4627    case OR_No_Viable_Function:
4628    case OR_Deleted:
4629      // There was no suitable conversion, or we found a deleted
4630      // conversion; continue with other checks.
4631      break;
4632    }
4633  }
4634
4635  if (BindsDirectly) {
4636    // C++ [dcl.init.ref]p4:
4637    //   [...] In all cases where the reference-related or
4638    //   reference-compatible relationship of two types is used to
4639    //   establish the validity of a reference binding, and T1 is a
4640    //   base class of T2, a program that necessitates such a binding
4641    //   is ill-formed if T1 is an inaccessible (clause 11) or
4642    //   ambiguous (10.2) base class of T2.
4643    //
4644    // Note that we only check this condition when we're allowed to
4645    // complain about errors, because we should not be checking for
4646    // ambiguity (or inaccessibility) unless the reference binding
4647    // actually happens.
4648    if (DerivedToBase)
4649      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4650                                          Init->getSourceRange(),
4651                                          IgnoreBaseAccess);
4652    else
4653      return false;
4654  }
4655
4656  //     -- Otherwise, the reference shall be to a non-volatile const
4657  //        type (i.e., cv1 shall be const), or the reference shall be an
4658  //        rvalue reference and the initializer expression shall be an rvalue.
4659  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4660    if (!ICS)
4661      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4662        << T1.isVolatileQualified()
4663        << T1 << int(InitLvalue != Expr::LV_Valid)
4664        << T2 << Init->getSourceRange();
4665    return true;
4666  }
4667
4668  //       -- If the initializer expression is an rvalue, with T2 a
4669  //          class type, and "cv1 T1" is reference-compatible with
4670  //          "cv2 T2," the reference is bound in one of the
4671  //          following ways (the choice is implementation-defined):
4672  //
4673  //          -- The reference is bound to the object represented by
4674  //             the rvalue (see 3.10) or to a sub-object within that
4675  //             object.
4676  //
4677  //          -- A temporary of type "cv1 T2" [sic] is created, and
4678  //             a constructor is called to copy the entire rvalue
4679  //             object into the temporary. The reference is bound to
4680  //             the temporary or to a sub-object within the
4681  //             temporary.
4682  //
4683  //          The constructor that would be used to make the copy
4684  //          shall be callable whether or not the copy is actually
4685  //          done.
4686  //
4687  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4688  // freedom, so we will always take the first option and never build
4689  // a temporary in this case. FIXME: We will, however, have to check
4690  // for the presence of a copy constructor in C++98/03 mode.
4691  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4692      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4693    if (ICS) {
4694      ICS->setStandard();
4695      ICS->Standard.First = ICK_Identity;
4696      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4697      ICS->Standard.Third = ICK_Identity;
4698      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4699      ICS->Standard.setToType(0, T2);
4700      ICS->Standard.setToType(1, T1);
4701      ICS->Standard.setToType(2, T1);
4702      ICS->Standard.ReferenceBinding = true;
4703      ICS->Standard.DirectBinding = false;
4704      ICS->Standard.RRefBinding = isRValRef;
4705      ICS->Standard.CopyConstructor = 0;
4706    } else {
4707      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4708      if (DerivedToBase)
4709        CK = CastExpr::CK_DerivedToBase;
4710      else if(CheckExceptionSpecCompatibility(Init, T1))
4711        return true;
4712      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4713    }
4714    return false;
4715  }
4716
4717  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4718  //          initialized from the initializer expression using the
4719  //          rules for a non-reference copy initialization (8.5). The
4720  //          reference is then bound to the temporary. If T1 is
4721  //          reference-related to T2, cv1 must be the same
4722  //          cv-qualification as, or greater cv-qualification than,
4723  //          cv2; otherwise, the program is ill-formed.
4724  if (RefRelationship == Ref_Related) {
4725    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4726    // we would be reference-compatible or reference-compatible with
4727    // added qualification. But that wasn't the case, so the reference
4728    // initialization fails.
4729    if (!ICS)
4730      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4731        << T1 << int(InitLvalue != Expr::LV_Valid)
4732        << T2 << Init->getSourceRange();
4733    return true;
4734  }
4735
4736  // If at least one of the types is a class type, the types are not
4737  // related, and we aren't allowed any user conversions, the
4738  // reference binding fails. This case is important for breaking
4739  // recursion, since TryImplicitConversion below will attempt to
4740  // create a temporary through the use of a copy constructor.
4741  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4742      (T1->isRecordType() || T2->isRecordType())) {
4743    if (!ICS)
4744      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4745        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4746    return true;
4747  }
4748
4749  // Actually try to convert the initializer to T1.
4750  if (ICS) {
4751    // C++ [over.ics.ref]p2:
4752    //
4753    //   When a parameter of reference type is not bound directly to
4754    //   an argument expression, the conversion sequence is the one
4755    //   required to convert the argument expression to the
4756    //   underlying type of the reference according to
4757    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4758    //   to copy-initializing a temporary of the underlying type with
4759    //   the argument expression. Any difference in top-level
4760    //   cv-qualification is subsumed by the initialization itself
4761    //   and does not constitute a conversion.
4762    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4763                                 /*AllowExplicit=*/false,
4764                                 /*ForceRValue=*/false,
4765                                 /*InOverloadResolution=*/false);
4766
4767    // Of course, that's still a reference binding.
4768    if (ICS->isStandard()) {
4769      ICS->Standard.ReferenceBinding = true;
4770      ICS->Standard.RRefBinding = isRValRef;
4771    } else if (ICS->isUserDefined()) {
4772      ICS->UserDefined.After.ReferenceBinding = true;
4773      ICS->UserDefined.After.RRefBinding = isRValRef;
4774    }
4775    return ICS->isBad();
4776  } else {
4777    ImplicitConversionSequence Conversions;
4778    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4779                                                   false, false,
4780                                                   Conversions);
4781    if (badConversion) {
4782      if (Conversions.isAmbiguous()) {
4783        Diag(DeclLoc,
4784             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4785        for (int j = Conversions.Ambiguous.conversions().size()-1;
4786             j >= 0; j--) {
4787          FunctionDecl *Func = Conversions.Ambiguous.conversions()[j];
4788          NoteOverloadCandidate(Func);
4789        }
4790      }
4791      else {
4792        if (isRValRef)
4793          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4794            << Init->getSourceRange();
4795        else
4796          Diag(DeclLoc, diag::err_invalid_initialization)
4797            << DeclType << Init->getType() << Init->getSourceRange();
4798      }
4799    }
4800    return badConversion;
4801  }
4802}
4803
4804static inline bool
4805CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4806                                       const FunctionDecl *FnDecl) {
4807  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4808  if (isa<NamespaceDecl>(DC)) {
4809    return SemaRef.Diag(FnDecl->getLocation(),
4810                        diag::err_operator_new_delete_declared_in_namespace)
4811      << FnDecl->getDeclName();
4812  }
4813
4814  if (isa<TranslationUnitDecl>(DC) &&
4815      FnDecl->getStorageClass() == FunctionDecl::Static) {
4816    return SemaRef.Diag(FnDecl->getLocation(),
4817                        diag::err_operator_new_delete_declared_static)
4818      << FnDecl->getDeclName();
4819  }
4820
4821  return false;
4822}
4823
4824static inline bool
4825CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4826                            CanQualType ExpectedResultType,
4827                            CanQualType ExpectedFirstParamType,
4828                            unsigned DependentParamTypeDiag,
4829                            unsigned InvalidParamTypeDiag) {
4830  QualType ResultType =
4831    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4832
4833  // Check that the result type is not dependent.
4834  if (ResultType->isDependentType())
4835    return SemaRef.Diag(FnDecl->getLocation(),
4836                        diag::err_operator_new_delete_dependent_result_type)
4837    << FnDecl->getDeclName() << ExpectedResultType;
4838
4839  // Check that the result type is what we expect.
4840  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4841    return SemaRef.Diag(FnDecl->getLocation(),
4842                        diag::err_operator_new_delete_invalid_result_type)
4843    << FnDecl->getDeclName() << ExpectedResultType;
4844
4845  // A function template must have at least 2 parameters.
4846  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4847    return SemaRef.Diag(FnDecl->getLocation(),
4848                      diag::err_operator_new_delete_template_too_few_parameters)
4849        << FnDecl->getDeclName();
4850
4851  // The function decl must have at least 1 parameter.
4852  if (FnDecl->getNumParams() == 0)
4853    return SemaRef.Diag(FnDecl->getLocation(),
4854                        diag::err_operator_new_delete_too_few_parameters)
4855      << FnDecl->getDeclName();
4856
4857  // Check the the first parameter type is not dependent.
4858  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4859  if (FirstParamType->isDependentType())
4860    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4861      << FnDecl->getDeclName() << ExpectedFirstParamType;
4862
4863  // Check that the first parameter type is what we expect.
4864  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4865      ExpectedFirstParamType)
4866    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4867    << FnDecl->getDeclName() << ExpectedFirstParamType;
4868
4869  return false;
4870}
4871
4872static bool
4873CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4874  // C++ [basic.stc.dynamic.allocation]p1:
4875  //   A program is ill-formed if an allocation function is declared in a
4876  //   namespace scope other than global scope or declared static in global
4877  //   scope.
4878  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4879    return true;
4880
4881  CanQualType SizeTy =
4882    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4883
4884  // C++ [basic.stc.dynamic.allocation]p1:
4885  //  The return type shall be void*. The first parameter shall have type
4886  //  std::size_t.
4887  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4888                                  SizeTy,
4889                                  diag::err_operator_new_dependent_param_type,
4890                                  diag::err_operator_new_param_type))
4891    return true;
4892
4893  // C++ [basic.stc.dynamic.allocation]p1:
4894  //  The first parameter shall not have an associated default argument.
4895  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4896    return SemaRef.Diag(FnDecl->getLocation(),
4897                        diag::err_operator_new_default_arg)
4898      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4899
4900  return false;
4901}
4902
4903static bool
4904CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4905  // C++ [basic.stc.dynamic.deallocation]p1:
4906  //   A program is ill-formed if deallocation functions are declared in a
4907  //   namespace scope other than global scope or declared static in global
4908  //   scope.
4909  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4910    return true;
4911
4912  // C++ [basic.stc.dynamic.deallocation]p2:
4913  //   Each deallocation function shall return void and its first parameter
4914  //   shall be void*.
4915  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4916                                  SemaRef.Context.VoidPtrTy,
4917                                 diag::err_operator_delete_dependent_param_type,
4918                                 diag::err_operator_delete_param_type))
4919    return true;
4920
4921  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4922  if (FirstParamType->isDependentType())
4923    return SemaRef.Diag(FnDecl->getLocation(),
4924                        diag::err_operator_delete_dependent_param_type)
4925    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4926
4927  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4928      SemaRef.Context.VoidPtrTy)
4929    return SemaRef.Diag(FnDecl->getLocation(),
4930                        diag::err_operator_delete_param_type)
4931      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4932
4933  return false;
4934}
4935
4936/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4937/// of this overloaded operator is well-formed. If so, returns false;
4938/// otherwise, emits appropriate diagnostics and returns true.
4939bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4940  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4941         "Expected an overloaded operator declaration");
4942
4943  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4944
4945  // C++ [over.oper]p5:
4946  //   The allocation and deallocation functions, operator new,
4947  //   operator new[], operator delete and operator delete[], are
4948  //   described completely in 3.7.3. The attributes and restrictions
4949  //   found in the rest of this subclause do not apply to them unless
4950  //   explicitly stated in 3.7.3.
4951  if (Op == OO_Delete || Op == OO_Array_Delete)
4952    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4953
4954  if (Op == OO_New || Op == OO_Array_New)
4955    return CheckOperatorNewDeclaration(*this, FnDecl);
4956
4957  // C++ [over.oper]p6:
4958  //   An operator function shall either be a non-static member
4959  //   function or be a non-member function and have at least one
4960  //   parameter whose type is a class, a reference to a class, an
4961  //   enumeration, or a reference to an enumeration.
4962  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4963    if (MethodDecl->isStatic())
4964      return Diag(FnDecl->getLocation(),
4965                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4966  } else {
4967    bool ClassOrEnumParam = false;
4968    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4969                                   ParamEnd = FnDecl->param_end();
4970         Param != ParamEnd; ++Param) {
4971      QualType ParamType = (*Param)->getType().getNonReferenceType();
4972      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4973          ParamType->isEnumeralType()) {
4974        ClassOrEnumParam = true;
4975        break;
4976      }
4977    }
4978
4979    if (!ClassOrEnumParam)
4980      return Diag(FnDecl->getLocation(),
4981                  diag::err_operator_overload_needs_class_or_enum)
4982        << FnDecl->getDeclName();
4983  }
4984
4985  // C++ [over.oper]p8:
4986  //   An operator function cannot have default arguments (8.3.6),
4987  //   except where explicitly stated below.
4988  //
4989  // Only the function-call operator allows default arguments
4990  // (C++ [over.call]p1).
4991  if (Op != OO_Call) {
4992    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4993         Param != FnDecl->param_end(); ++Param) {
4994      if ((*Param)->hasDefaultArg())
4995        return Diag((*Param)->getLocation(),
4996                    diag::err_operator_overload_default_arg)
4997          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4998    }
4999  }
5000
5001  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5002    { false, false, false }
5003#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5004    , { Unary, Binary, MemberOnly }
5005#include "clang/Basic/OperatorKinds.def"
5006  };
5007
5008  bool CanBeUnaryOperator = OperatorUses[Op][0];
5009  bool CanBeBinaryOperator = OperatorUses[Op][1];
5010  bool MustBeMemberOperator = OperatorUses[Op][2];
5011
5012  // C++ [over.oper]p8:
5013  //   [...] Operator functions cannot have more or fewer parameters
5014  //   than the number required for the corresponding operator, as
5015  //   described in the rest of this subclause.
5016  unsigned NumParams = FnDecl->getNumParams()
5017                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5018  if (Op != OO_Call &&
5019      ((NumParams == 1 && !CanBeUnaryOperator) ||
5020       (NumParams == 2 && !CanBeBinaryOperator) ||
5021       (NumParams < 1) || (NumParams > 2))) {
5022    // We have the wrong number of parameters.
5023    unsigned ErrorKind;
5024    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5025      ErrorKind = 2;  // 2 -> unary or binary.
5026    } else if (CanBeUnaryOperator) {
5027      ErrorKind = 0;  // 0 -> unary
5028    } else {
5029      assert(CanBeBinaryOperator &&
5030             "All non-call overloaded operators are unary or binary!");
5031      ErrorKind = 1;  // 1 -> binary
5032    }
5033
5034    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5035      << FnDecl->getDeclName() << NumParams << ErrorKind;
5036  }
5037
5038  // Overloaded operators other than operator() cannot be variadic.
5039  if (Op != OO_Call &&
5040      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5041    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5042      << FnDecl->getDeclName();
5043  }
5044
5045  // Some operators must be non-static member functions.
5046  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5047    return Diag(FnDecl->getLocation(),
5048                diag::err_operator_overload_must_be_member)
5049      << FnDecl->getDeclName();
5050  }
5051
5052  // C++ [over.inc]p1:
5053  //   The user-defined function called operator++ implements the
5054  //   prefix and postfix ++ operator. If this function is a member
5055  //   function with no parameters, or a non-member function with one
5056  //   parameter of class or enumeration type, it defines the prefix
5057  //   increment operator ++ for objects of that type. If the function
5058  //   is a member function with one parameter (which shall be of type
5059  //   int) or a non-member function with two parameters (the second
5060  //   of which shall be of type int), it defines the postfix
5061  //   increment operator ++ for objects of that type.
5062  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5063    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5064    bool ParamIsInt = false;
5065    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5066      ParamIsInt = BT->getKind() == BuiltinType::Int;
5067
5068    if (!ParamIsInt)
5069      return Diag(LastParam->getLocation(),
5070                  diag::err_operator_overload_post_incdec_must_be_int)
5071        << LastParam->getType() << (Op == OO_MinusMinus);
5072  }
5073
5074  // Notify the class if it got an assignment operator.
5075  if (Op == OO_Equal) {
5076    // Would have returned earlier otherwise.
5077    assert(isa<CXXMethodDecl>(FnDecl) &&
5078      "Overloaded = not member, but not filtered.");
5079    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5080    Method->getParent()->addedAssignmentOperator(Context, Method);
5081  }
5082
5083  return false;
5084}
5085
5086/// CheckLiteralOperatorDeclaration - Check whether the declaration
5087/// of this literal operator function is well-formed. If so, returns
5088/// false; otherwise, emits appropriate diagnostics and returns true.
5089bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5090  DeclContext *DC = FnDecl->getDeclContext();
5091  Decl::Kind Kind = DC->getDeclKind();
5092  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5093      Kind != Decl::LinkageSpec) {
5094    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5095      << FnDecl->getDeclName();
5096    return true;
5097  }
5098
5099  bool Valid = false;
5100
5101  // FIXME: Check for the one valid template signature
5102  // template <char...> type operator "" name();
5103
5104  if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
5105    // Check the first parameter
5106    QualType T = (*Param)->getType();
5107
5108    // unsigned long long int and long double are allowed, but only
5109    // alone.
5110    // We also allow any character type; their omission seems to be a bug
5111    // in n3000
5112    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5113        Context.hasSameType(T, Context.LongDoubleTy) ||
5114        Context.hasSameType(T, Context.CharTy) ||
5115        Context.hasSameType(T, Context.WCharTy) ||
5116        Context.hasSameType(T, Context.Char16Ty) ||
5117        Context.hasSameType(T, Context.Char32Ty)) {
5118      if (++Param == FnDecl->param_end())
5119        Valid = true;
5120      goto FinishedParams;
5121    }
5122
5123    // Otherwise it must be a pointer to const; let's strip those.
5124    const PointerType *PT = T->getAs<PointerType>();
5125    if (!PT)
5126      goto FinishedParams;
5127    T = PT->getPointeeType();
5128    if (!T.isConstQualified())
5129      goto FinishedParams;
5130    T = T.getUnqualifiedType();
5131
5132    // Move on to the second parameter;
5133    ++Param;
5134
5135    // If there is no second parameter, the first must be a const char *
5136    if (Param == FnDecl->param_end()) {
5137      if (Context.hasSameType(T, Context.CharTy))
5138        Valid = true;
5139      goto FinishedParams;
5140    }
5141
5142    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5143    // are allowed as the first parameter to a two-parameter function
5144    if (!(Context.hasSameType(T, Context.CharTy) ||
5145          Context.hasSameType(T, Context.WCharTy) ||
5146          Context.hasSameType(T, Context.Char16Ty) ||
5147          Context.hasSameType(T, Context.Char32Ty)))
5148      goto FinishedParams;
5149
5150    // The second and final parameter must be an std::size_t
5151    T = (*Param)->getType().getUnqualifiedType();
5152    if (Context.hasSameType(T, Context.getSizeType()) &&
5153        ++Param == FnDecl->param_end())
5154      Valid = true;
5155  }
5156
5157  // FIXME: This diagnostic is absolutely terrible.
5158FinishedParams:
5159  if (!Valid) {
5160    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5161      << FnDecl->getDeclName();
5162    return true;
5163  }
5164
5165  return false;
5166}
5167
5168/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5169/// linkage specification, including the language and (if present)
5170/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5171/// the location of the language string literal, which is provided
5172/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5173/// the '{' brace. Otherwise, this linkage specification does not
5174/// have any braces.
5175Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5176                                                     SourceLocation ExternLoc,
5177                                                     SourceLocation LangLoc,
5178                                                     const char *Lang,
5179                                                     unsigned StrSize,
5180                                                     SourceLocation LBraceLoc) {
5181  LinkageSpecDecl::LanguageIDs Language;
5182  if (strncmp(Lang, "\"C\"", StrSize) == 0)
5183    Language = LinkageSpecDecl::lang_c;
5184  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
5185    Language = LinkageSpecDecl::lang_cxx;
5186  else {
5187    Diag(LangLoc, diag::err_bad_language);
5188    return DeclPtrTy();
5189  }
5190
5191  // FIXME: Add all the various semantics of linkage specifications
5192
5193  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5194                                               LangLoc, Language,
5195                                               LBraceLoc.isValid());
5196  CurContext->addDecl(D);
5197  PushDeclContext(S, D);
5198  return DeclPtrTy::make(D);
5199}
5200
5201/// ActOnFinishLinkageSpecification - Completely the definition of
5202/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5203/// valid, it's the position of the closing '}' brace in a linkage
5204/// specification that uses braces.
5205Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5206                                                      DeclPtrTy LinkageSpec,
5207                                                      SourceLocation RBraceLoc) {
5208  if (LinkageSpec)
5209    PopDeclContext();
5210  return LinkageSpec;
5211}
5212
5213/// \brief Perform semantic analysis for the variable declaration that
5214/// occurs within a C++ catch clause, returning the newly-created
5215/// variable.
5216VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5217                                         TypeSourceInfo *TInfo,
5218                                         IdentifierInfo *Name,
5219                                         SourceLocation Loc,
5220                                         SourceRange Range) {
5221  bool Invalid = false;
5222
5223  // Arrays and functions decay.
5224  if (ExDeclType->isArrayType())
5225    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5226  else if (ExDeclType->isFunctionType())
5227    ExDeclType = Context.getPointerType(ExDeclType);
5228
5229  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5230  // The exception-declaration shall not denote a pointer or reference to an
5231  // incomplete type, other than [cv] void*.
5232  // N2844 forbids rvalue references.
5233  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5234    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5235    Invalid = true;
5236  }
5237
5238  // GCC allows catching pointers and references to incomplete types
5239  // as an extension; so do we, but we warn by default.
5240
5241  QualType BaseType = ExDeclType;
5242  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5243  unsigned DK = diag::err_catch_incomplete;
5244  bool IncompleteCatchIsInvalid = true;
5245  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5246    BaseType = Ptr->getPointeeType();
5247    Mode = 1;
5248    DK = diag::ext_catch_incomplete_ptr;
5249    IncompleteCatchIsInvalid = false;
5250  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5251    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5252    BaseType = Ref->getPointeeType();
5253    Mode = 2;
5254    DK = diag::ext_catch_incomplete_ref;
5255    IncompleteCatchIsInvalid = false;
5256  }
5257  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5258      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5259      IncompleteCatchIsInvalid)
5260    Invalid = true;
5261
5262  if (!Invalid && !ExDeclType->isDependentType() &&
5263      RequireNonAbstractType(Loc, ExDeclType,
5264                             diag::err_abstract_type_in_decl,
5265                             AbstractVariableType))
5266    Invalid = true;
5267
5268  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5269                                    Name, ExDeclType, TInfo, VarDecl::None);
5270
5271  if (!Invalid) {
5272    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5273      // C++ [except.handle]p16:
5274      //   The object declared in an exception-declaration or, if the
5275      //   exception-declaration does not specify a name, a temporary (12.2) is
5276      //   copy-initialized (8.5) from the exception object. [...]
5277      //   The object is destroyed when the handler exits, after the destruction
5278      //   of any automatic objects initialized within the handler.
5279      //
5280      // We just pretend to initialize the object with itself, then make sure
5281      // it can be destroyed later.
5282      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5283      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5284                                            Loc, ExDeclType, 0);
5285      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5286                                                               SourceLocation());
5287      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5288      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5289                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5290      if (Result.isInvalid())
5291        Invalid = true;
5292      else
5293        FinalizeVarWithDestructor(ExDecl, RecordTy);
5294    }
5295  }
5296
5297  if (Invalid)
5298    ExDecl->setInvalidDecl();
5299
5300  return ExDecl;
5301}
5302
5303/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5304/// handler.
5305Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5306  TypeSourceInfo *TInfo = 0;
5307  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5308
5309  bool Invalid = D.isInvalidType();
5310  IdentifierInfo *II = D.getIdentifier();
5311  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5312    // The scope should be freshly made just for us. There is just no way
5313    // it contains any previous declaration.
5314    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5315    if (PrevDecl->isTemplateParameter()) {
5316      // Maybe we will complain about the shadowed template parameter.
5317      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5318    }
5319  }
5320
5321  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5322    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5323      << D.getCXXScopeSpec().getRange();
5324    Invalid = true;
5325  }
5326
5327  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5328                                              D.getIdentifier(),
5329                                              D.getIdentifierLoc(),
5330                                            D.getDeclSpec().getSourceRange());
5331
5332  if (Invalid)
5333    ExDecl->setInvalidDecl();
5334
5335  // Add the exception declaration into this scope.
5336  if (II)
5337    PushOnScopeChains(ExDecl, S);
5338  else
5339    CurContext->addDecl(ExDecl);
5340
5341  ProcessDeclAttributes(S, ExDecl, D);
5342  return DeclPtrTy::make(ExDecl);
5343}
5344
5345Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5346                                                   ExprArg assertexpr,
5347                                                   ExprArg assertmessageexpr) {
5348  Expr *AssertExpr = (Expr *)assertexpr.get();
5349  StringLiteral *AssertMessage =
5350    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5351
5352  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5353    llvm::APSInt Value(32);
5354    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5355      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5356        AssertExpr->getSourceRange();
5357      return DeclPtrTy();
5358    }
5359
5360    if (Value == 0) {
5361      Diag(AssertLoc, diag::err_static_assert_failed)
5362        << AssertMessage->getString() << AssertExpr->getSourceRange();
5363    }
5364  }
5365
5366  assertexpr.release();
5367  assertmessageexpr.release();
5368  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5369                                        AssertExpr, AssertMessage);
5370
5371  CurContext->addDecl(Decl);
5372  return DeclPtrTy::make(Decl);
5373}
5374
5375/// Handle a friend type declaration.  This works in tandem with
5376/// ActOnTag.
5377///
5378/// Notes on friend class templates:
5379///
5380/// We generally treat friend class declarations as if they were
5381/// declaring a class.  So, for example, the elaborated type specifier
5382/// in a friend declaration is required to obey the restrictions of a
5383/// class-head (i.e. no typedefs in the scope chain), template
5384/// parameters are required to match up with simple template-ids, &c.
5385/// However, unlike when declaring a template specialization, it's
5386/// okay to refer to a template specialization without an empty
5387/// template parameter declaration, e.g.
5388///   friend class A<T>::B<unsigned>;
5389/// We permit this as a special case; if there are any template
5390/// parameters present at all, require proper matching, i.e.
5391///   template <> template <class T> friend class A<int>::B;
5392Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5393                                          MultiTemplateParamsArg TempParams) {
5394  SourceLocation Loc = DS.getSourceRange().getBegin();
5395
5396  assert(DS.isFriendSpecified());
5397  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5398
5399  // Try to convert the decl specifier to a type.  This works for
5400  // friend templates because ActOnTag never produces a ClassTemplateDecl
5401  // for a TUK_Friend.
5402  Declarator TheDeclarator(DS, Declarator::MemberContext);
5403  TypeSourceInfo *TSI;
5404  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
5405  if (TheDeclarator.isInvalidType())
5406    return DeclPtrTy();
5407
5408  // This is definitely an error in C++98.  It's probably meant to
5409  // be forbidden in C++0x, too, but the specification is just
5410  // poorly written.
5411  //
5412  // The problem is with declarations like the following:
5413  //   template <T> friend A<T>::foo;
5414  // where deciding whether a class C is a friend or not now hinges
5415  // on whether there exists an instantiation of A that causes
5416  // 'foo' to equal C.  There are restrictions on class-heads
5417  // (which we declare (by fiat) elaborated friend declarations to
5418  // be) that makes this tractable.
5419  //
5420  // FIXME: handle "template <> friend class A<T>;", which
5421  // is possibly well-formed?  Who even knows?
5422  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5423    Diag(Loc, diag::err_tagless_friend_type_template)
5424      << DS.getSourceRange();
5425    return DeclPtrTy();
5426  }
5427
5428  // C++ [class.friend]p2:
5429  //   An elaborated-type-specifier shall be used in a friend declaration
5430  //   for a class.*
5431  //   * The class-key of the elaborated-type-specifier is required.
5432  // This is one of the rare places in Clang where it's legitimate to
5433  // ask about the "spelling" of the type.
5434  if (!getLangOptions().CPlusPlus0x && !T->isElaboratedTypeSpecifier()) {
5435    // If we evaluated the type to a record type, suggest putting
5436    // a tag in front.
5437    if (const RecordType *RT = T->getAs<RecordType>()) {
5438      RecordDecl *RD = RT->getDecl();
5439
5440      std::string InsertionText = std::string(" ") + RD->getKindName();
5441
5442      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
5443        << (unsigned) RD->getTagKind()
5444        << T
5445        << SourceRange(DS.getFriendSpecLoc())
5446        << FixItHint::CreateInsertion(DS.getTypeSpecTypeLoc(), InsertionText);
5447      return DeclPtrTy();
5448    }else {
5449      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
5450          << DS.getSourceRange();
5451      return DeclPtrTy();
5452    }
5453  }
5454
5455  // Enum types cannot be friends.
5456  if (T->getAs<EnumType>()) {
5457    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
5458      << SourceRange(DS.getFriendSpecLoc());
5459    return DeclPtrTy();
5460  }
5461
5462  // C++98 [class.friend]p1: A friend of a class is a function
5463  //   or class that is not a member of the class . . .
5464  // This is fixed in DR77, which just barely didn't make the C++03
5465  // deadline.  It's also a very silly restriction that seriously
5466  // affects inner classes and which nobody else seems to implement;
5467  // thus we never diagnose it, not even in -pedantic.
5468  //
5469  // But note that we could warn about it: it's always useless to
5470  // friend one of your own members (it's not, however, worthless to
5471  // friend a member of an arbitrary specialization of your template).
5472
5473  Decl *D;
5474  if (TempParams.size())
5475    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5476                                   TempParams.size(),
5477                                 (TemplateParameterList**) TempParams.release(),
5478                                   TSI,
5479                                   DS.getFriendSpecLoc());
5480  else
5481    D = FriendDecl::Create(Context, CurContext, Loc, TSI,
5482                           DS.getFriendSpecLoc());
5483  D->setAccess(AS_public);
5484  CurContext->addDecl(D);
5485
5486  return DeclPtrTy::make(D);
5487}
5488
5489Sema::DeclPtrTy
5490Sema::ActOnFriendFunctionDecl(Scope *S,
5491                              Declarator &D,
5492                              bool IsDefinition,
5493                              MultiTemplateParamsArg TemplateParams) {
5494  const DeclSpec &DS = D.getDeclSpec();
5495
5496  assert(DS.isFriendSpecified());
5497  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5498
5499  SourceLocation Loc = D.getIdentifierLoc();
5500  TypeSourceInfo *TInfo = 0;
5501  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5502
5503  // C++ [class.friend]p1
5504  //   A friend of a class is a function or class....
5505  // Note that this sees through typedefs, which is intended.
5506  // It *doesn't* see through dependent types, which is correct
5507  // according to [temp.arg.type]p3:
5508  //   If a declaration acquires a function type through a
5509  //   type dependent on a template-parameter and this causes
5510  //   a declaration that does not use the syntactic form of a
5511  //   function declarator to have a function type, the program
5512  //   is ill-formed.
5513  if (!T->isFunctionType()) {
5514    Diag(Loc, diag::err_unexpected_friend);
5515
5516    // It might be worthwhile to try to recover by creating an
5517    // appropriate declaration.
5518    return DeclPtrTy();
5519  }
5520
5521  // C++ [namespace.memdef]p3
5522  //  - If a friend declaration in a non-local class first declares a
5523  //    class or function, the friend class or function is a member
5524  //    of the innermost enclosing namespace.
5525  //  - The name of the friend is not found by simple name lookup
5526  //    until a matching declaration is provided in that namespace
5527  //    scope (either before or after the class declaration granting
5528  //    friendship).
5529  //  - If a friend function is called, its name may be found by the
5530  //    name lookup that considers functions from namespaces and
5531  //    classes associated with the types of the function arguments.
5532  //  - When looking for a prior declaration of a class or a function
5533  //    declared as a friend, scopes outside the innermost enclosing
5534  //    namespace scope are not considered.
5535
5536  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5537  DeclarationName Name = GetNameForDeclarator(D);
5538  assert(Name);
5539
5540  // The context we found the declaration in, or in which we should
5541  // create the declaration.
5542  DeclContext *DC;
5543
5544  // FIXME: handle local classes
5545
5546  // Recover from invalid scope qualifiers as if they just weren't there.
5547  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5548                        ForRedeclaration);
5549  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5550    // FIXME: RequireCompleteDeclContext
5551    DC = computeDeclContext(ScopeQual);
5552
5553    // FIXME: handle dependent contexts
5554    if (!DC) return DeclPtrTy();
5555
5556    LookupQualifiedName(Previous, DC);
5557
5558    // If searching in that context implicitly found a declaration in
5559    // a different context, treat it like it wasn't found at all.
5560    // TODO: better diagnostics for this case.  Suggesting the right
5561    // qualified scope would be nice...
5562    // FIXME: getRepresentativeDecl() is not right here at all
5563    if (Previous.empty() ||
5564        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5565      D.setInvalidType();
5566      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5567      return DeclPtrTy();
5568    }
5569
5570    // C++ [class.friend]p1: A friend of a class is a function or
5571    //   class that is not a member of the class . . .
5572    if (DC->Equals(CurContext))
5573      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5574
5575  // Otherwise walk out to the nearest namespace scope looking for matches.
5576  } else {
5577    // TODO: handle local class contexts.
5578
5579    DC = CurContext;
5580    while (true) {
5581      // Skip class contexts.  If someone can cite chapter and verse
5582      // for this behavior, that would be nice --- it's what GCC and
5583      // EDG do, and it seems like a reasonable intent, but the spec
5584      // really only says that checks for unqualified existing
5585      // declarations should stop at the nearest enclosing namespace,
5586      // not that they should only consider the nearest enclosing
5587      // namespace.
5588      while (DC->isRecord())
5589        DC = DC->getParent();
5590
5591      LookupQualifiedName(Previous, DC);
5592
5593      // TODO: decide what we think about using declarations.
5594      if (!Previous.empty())
5595        break;
5596
5597      if (DC->isFileContext()) break;
5598      DC = DC->getParent();
5599    }
5600
5601    // C++ [class.friend]p1: A friend of a class is a function or
5602    //   class that is not a member of the class . . .
5603    // C++0x changes this for both friend types and functions.
5604    // Most C++ 98 compilers do seem to give an error here, so
5605    // we do, too.
5606    if (!Previous.empty() && DC->Equals(CurContext)
5607        && !getLangOptions().CPlusPlus0x)
5608      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5609  }
5610
5611  if (DC->isFileContext()) {
5612    // This implies that it has to be an operator or function.
5613    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5614        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5615        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5616      Diag(Loc, diag::err_introducing_special_friend) <<
5617        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5618         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5619      return DeclPtrTy();
5620    }
5621  }
5622
5623  bool Redeclaration = false;
5624  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5625                                          move(TemplateParams),
5626                                          IsDefinition,
5627                                          Redeclaration);
5628  if (!ND) return DeclPtrTy();
5629
5630  assert(ND->getDeclContext() == DC);
5631  assert(ND->getLexicalDeclContext() == CurContext);
5632
5633  // Add the function declaration to the appropriate lookup tables,
5634  // adjusting the redeclarations list as necessary.  We don't
5635  // want to do this yet if the friending class is dependent.
5636  //
5637  // Also update the scope-based lookup if the target context's
5638  // lookup context is in lexical scope.
5639  if (!CurContext->isDependentContext()) {
5640    DC = DC->getLookupContext();
5641    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5642    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5643      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5644  }
5645
5646  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5647                                       D.getIdentifierLoc(), ND,
5648                                       DS.getFriendSpecLoc());
5649  FrD->setAccess(AS_public);
5650  CurContext->addDecl(FrD);
5651
5652  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId)
5653    FrD->setSpecialization(true);
5654
5655  return DeclPtrTy::make(ND);
5656}
5657
5658void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5659  AdjustDeclIfTemplate(dcl);
5660
5661  Decl *Dcl = dcl.getAs<Decl>();
5662  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5663  if (!Fn) {
5664    Diag(DelLoc, diag::err_deleted_non_function);
5665    return;
5666  }
5667  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5668    Diag(DelLoc, diag::err_deleted_decl_not_first);
5669    Diag(Prev->getLocation(), diag::note_previous_declaration);
5670    // If the declaration wasn't the first, we delete the function anyway for
5671    // recovery.
5672  }
5673  Fn->setDeleted();
5674}
5675
5676static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5677  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5678       ++CI) {
5679    Stmt *SubStmt = *CI;
5680    if (!SubStmt)
5681      continue;
5682    if (isa<ReturnStmt>(SubStmt))
5683      Self.Diag(SubStmt->getSourceRange().getBegin(),
5684           diag::err_return_in_constructor_handler);
5685    if (!isa<Expr>(SubStmt))
5686      SearchForReturnInStmt(Self, SubStmt);
5687  }
5688}
5689
5690void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5691  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5692    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5693    SearchForReturnInStmt(*this, Handler);
5694  }
5695}
5696
5697bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5698                                             const CXXMethodDecl *Old) {
5699  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5700  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5701
5702  if (Context.hasSameType(NewTy, OldTy) ||
5703      NewTy->isDependentType() || OldTy->isDependentType())
5704    return false;
5705
5706  // Check if the return types are covariant
5707  QualType NewClassTy, OldClassTy;
5708
5709  /// Both types must be pointers or references to classes.
5710  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5711    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5712      NewClassTy = NewPT->getPointeeType();
5713      OldClassTy = OldPT->getPointeeType();
5714    }
5715  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5716    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5717      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5718        NewClassTy = NewRT->getPointeeType();
5719        OldClassTy = OldRT->getPointeeType();
5720      }
5721    }
5722  }
5723
5724  // The return types aren't either both pointers or references to a class type.
5725  if (NewClassTy.isNull()) {
5726    Diag(New->getLocation(),
5727         diag::err_different_return_type_for_overriding_virtual_function)
5728      << New->getDeclName() << NewTy << OldTy;
5729    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5730
5731    return true;
5732  }
5733
5734  // C++ [class.virtual]p6:
5735  //   If the return type of D::f differs from the return type of B::f, the
5736  //   class type in the return type of D::f shall be complete at the point of
5737  //   declaration of D::f or shall be the class type D.
5738  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5739    if (!RT->isBeingDefined() &&
5740        RequireCompleteType(New->getLocation(), NewClassTy,
5741                            PDiag(diag::err_covariant_return_incomplete)
5742                              << New->getDeclName()))
5743    return true;
5744  }
5745
5746  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5747    // Check if the new class derives from the old class.
5748    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5749      Diag(New->getLocation(),
5750           diag::err_covariant_return_not_derived)
5751      << New->getDeclName() << NewTy << OldTy;
5752      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5753      return true;
5754    }
5755
5756    // Check if we the conversion from derived to base is valid.
5757    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5758                      diag::err_covariant_return_inaccessible_base,
5759                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5760                      // FIXME: Should this point to the return type?
5761                      New->getLocation(), SourceRange(), New->getDeclName())) {
5762      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5763      return true;
5764    }
5765  }
5766
5767  // The qualifiers of the return types must be the same.
5768  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5769    Diag(New->getLocation(),
5770         diag::err_covariant_return_type_different_qualifications)
5771    << New->getDeclName() << NewTy << OldTy;
5772    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5773    return true;
5774  };
5775
5776
5777  // The new class type must have the same or less qualifiers as the old type.
5778  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5779    Diag(New->getLocation(),
5780         diag::err_covariant_return_type_class_type_more_qualified)
5781    << New->getDeclName() << NewTy << OldTy;
5782    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5783    return true;
5784  };
5785
5786  return false;
5787}
5788
5789bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5790                                             const CXXMethodDecl *Old)
5791{
5792  if (Old->hasAttr<FinalAttr>()) {
5793    Diag(New->getLocation(), diag::err_final_function_overridden)
5794      << New->getDeclName();
5795    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5796    return true;
5797  }
5798
5799  return false;
5800}
5801
5802/// \brief Mark the given method pure.
5803///
5804/// \param Method the method to be marked pure.
5805///
5806/// \param InitRange the source range that covers the "0" initializer.
5807bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5808  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5809    Method->setPure();
5810
5811    // A class is abstract if at least one function is pure virtual.
5812    Method->getParent()->setAbstract(true);
5813    return false;
5814  }
5815
5816  if (!Method->isInvalidDecl())
5817    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5818      << Method->getDeclName() << InitRange;
5819  return true;
5820}
5821
5822/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5823/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5824/// is a fresh scope pushed for just this purpose.
5825///
5826/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5827/// static data member of class X, names should be looked up in the scope of
5828/// class X.
5829void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5830  // If there is no declaration, there was an error parsing it.
5831  Decl *D = Dcl.getAs<Decl>();
5832  if (D == 0) return;
5833
5834  // We should only get called for declarations with scope specifiers, like:
5835  //   int foo::bar;
5836  assert(D->isOutOfLine());
5837  EnterDeclaratorContext(S, D->getDeclContext());
5838}
5839
5840/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5841/// initializer for the out-of-line declaration 'Dcl'.
5842void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5843  // If there is no declaration, there was an error parsing it.
5844  Decl *D = Dcl.getAs<Decl>();
5845  if (D == 0) return;
5846
5847  assert(D->isOutOfLine());
5848  ExitDeclaratorContext(S);
5849}
5850
5851/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5852/// C++ if/switch/while/for statement.
5853/// e.g: "if (int x = f()) {...}"
5854Action::DeclResult
5855Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5856  // C++ 6.4p2:
5857  // The declarator shall not specify a function or an array.
5858  // The type-specifier-seq shall not contain typedef and shall not declare a
5859  // new class or enumeration.
5860  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5861         "Parser allowed 'typedef' as storage class of condition decl.");
5862
5863  TypeSourceInfo *TInfo = 0;
5864  TagDecl *OwnedTag = 0;
5865  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5866
5867  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5868                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5869                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5870    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5871      << D.getSourceRange();
5872    return DeclResult();
5873  } else if (OwnedTag && OwnedTag->isDefinition()) {
5874    // The type-specifier-seq shall not declare a new class or enumeration.
5875    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5876  }
5877
5878  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5879  if (!Dcl)
5880    return DeclResult();
5881
5882  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5883  VD->setDeclaredInCondition(true);
5884  return Dcl;
5885}
5886
5887static bool needsVtable(CXXMethodDecl *MD, ASTContext &Context) {
5888  // Ignore dependent types.
5889  if (MD->isDependentContext())
5890    return false;
5891
5892  // Ignore declarations that are not definitions.
5893  if (!MD->isThisDeclarationADefinition())
5894    return false;
5895
5896  CXXRecordDecl *RD = MD->getParent();
5897
5898  // Ignore classes without a vtable.
5899  if (!RD->isDynamicClass())
5900    return false;
5901
5902  switch (MD->getParent()->getTemplateSpecializationKind()) {
5903  case TSK_Undeclared:
5904  case TSK_ExplicitSpecialization:
5905    // Classes that aren't instantiations of templates don't need their
5906    // virtual methods marked until we see the definition of the key
5907    // function.
5908    break;
5909
5910  case TSK_ImplicitInstantiation:
5911    // This is a constructor of a class template; mark all of the virtual
5912    // members as referenced to ensure that they get instantiatied.
5913    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
5914      return true;
5915    break;
5916
5917  case TSK_ExplicitInstantiationDeclaration:
5918    return false;
5919
5920  case TSK_ExplicitInstantiationDefinition:
5921    // This is method of a explicit instantiation; mark all of the virtual
5922    // members as referenced to ensure that they get instantiatied.
5923    return true;
5924  }
5925
5926  // Consider only out-of-line definitions of member functions. When we see
5927  // an inline definition, it's too early to compute the key function.
5928  if (!MD->isOutOfLine())
5929    return false;
5930
5931  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5932
5933  // If there is no key function, we will need a copy of the vtable.
5934  if (!KeyFunction)
5935    return true;
5936
5937  // If this is the key function, we need to mark virtual members.
5938  if (KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
5939    return true;
5940
5941  return false;
5942}
5943
5944void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5945                                             CXXMethodDecl *MD) {
5946  CXXRecordDecl *RD = MD->getParent();
5947
5948  // We will need to mark all of the virtual members as referenced to build the
5949  // vtable.
5950  if (!needsVtable(MD, Context))
5951    return;
5952
5953  TemplateSpecializationKind kind = RD->getTemplateSpecializationKind();
5954  if (kind == TSK_ImplicitInstantiation)
5955    ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5956  else
5957    MarkVirtualMembersReferenced(Loc, RD);
5958}
5959
5960bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5961  if (ClassesWithUnmarkedVirtualMembers.empty())
5962    return false;
5963
5964  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5965    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5966    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5967    ClassesWithUnmarkedVirtualMembers.pop_back();
5968    MarkVirtualMembersReferenced(Loc, RD);
5969  }
5970
5971  return true;
5972}
5973
5974void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
5975                                        const CXXRecordDecl *RD) {
5976  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5977       e = RD->method_end(); i != e; ++i) {
5978    CXXMethodDecl *MD = *i;
5979
5980    // C++ [basic.def.odr]p2:
5981    //   [...] A virtual member function is used if it is not pure. [...]
5982    if (MD->isVirtual() && !MD->isPure())
5983      MarkDeclarationReferenced(Loc, MD);
5984  }
5985
5986  // Only classes that have virtual bases need a VTT.
5987  if (RD->getNumVBases() == 0)
5988    return;
5989
5990  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
5991           e = RD->bases_end(); i != e; ++i) {
5992    const CXXRecordDecl *Base =
5993        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
5994    if (i->isVirtual())
5995      continue;
5996    if (Base->getNumVBases() == 0)
5997      continue;
5998    MarkVirtualMembersReferenced(Loc, Base);
5999  }
6000}
6001