SemaDeclCXX.cpp revision c7f8720d22f898d5885f872b060e270f9d464e16
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  ParmVarDecl *Param = (ParmVarDecl *)param;
111  ExprOwningPtr<Expr> DefaultArg(this, (Expr *)defarg.release());
112  QualType ParamType = Param->getType();
113
114  // Default arguments are only permitted in C++
115  if (!getLangOptions().CPlusPlus) {
116    Diag(EqualLoc, diag::err_param_default_argument)
117      << DefaultArg->getSourceRange();
118    Param->setInvalidDecl();
119    return;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  Expr *DefaultArgPtr = DefaultArg.get();
129  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
130                                                 EqualLoc,
131                                                 Param->getDeclName(),
132                                                 /*DirectInit=*/false);
133  if (DefaultArgPtr != DefaultArg.get()) {
134    DefaultArg.take();
135    DefaultArg.reset(DefaultArgPtr);
136  }
137  if (DefaultInitFailed) {
138    return;
139  }
140
141  // Check that the default argument is well-formed
142  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
143  if (DefaultArgChecker.Visit(DefaultArg.get())) {
144    Param->setInvalidDecl();
145    return;
146  }
147
148  // Okay: add the default argument to the parameter
149  Param->setDefaultArg(DefaultArg.take());
150}
151
152/// ActOnParamUnparsedDefaultArgument - We've seen a default
153/// argument for a function parameter, but we can't parse it yet
154/// because we're inside a class definition. Note that this default
155/// argument will be parsed later.
156void Sema::ActOnParamUnparsedDefaultArgument(DeclTy *param,
157                                             SourceLocation EqualLoc) {
158  ParmVarDecl *Param = (ParmVarDecl*)param;
159  if (Param)
160    Param->setUnparsedDefaultArg();
161}
162
163/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
164/// the default argument for the parameter param failed.
165void Sema::ActOnParamDefaultArgumentError(DeclTy *param) {
166  ((ParmVarDecl*)param)->setInvalidDecl();
167}
168
169/// CheckExtraCXXDefaultArguments - Check for any extra default
170/// arguments in the declarator, which is not a function declaration
171/// or definition and therefore is not permitted to have default
172/// arguments. This routine should be invoked for every declarator
173/// that is not a function declaration or definition.
174void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
175  // C++ [dcl.fct.default]p3
176  //   A default argument expression shall be specified only in the
177  //   parameter-declaration-clause of a function declaration or in a
178  //   template-parameter (14.1). It shall not be specified for a
179  //   parameter pack. If it is specified in a
180  //   parameter-declaration-clause, it shall not occur within a
181  //   declarator or abstract-declarator of a parameter-declaration.
182  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
183    DeclaratorChunk &chunk = D.getTypeObject(i);
184    if (chunk.Kind == DeclaratorChunk::Function) {
185      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
186        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
187        if (Param->hasUnparsedDefaultArg()) {
188          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
189          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
190            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
191          delete Toks;
192          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
193        } else if (Param->getDefaultArg()) {
194          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
195            << Param->getDefaultArg()->getSourceRange();
196          Param->setDefaultArg(0);
197        }
198      }
199    }
200  }
201}
202
203// MergeCXXFunctionDecl - Merge two declarations of the same C++
204// function, once we already know that they have the same
205// type. Subroutine of MergeFunctionDecl. Returns true if there was an
206// error, false otherwise.
207bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
208  bool Invalid = false;
209
210  // C++ [dcl.fct.default]p4:
211  //
212  //   For non-template functions, default arguments can be added in
213  //   later declarations of a function in the same
214  //   scope. Declarations in different scopes have completely
215  //   distinct sets of default arguments. That is, declarations in
216  //   inner scopes do not acquire default arguments from
217  //   declarations in outer scopes, and vice versa. In a given
218  //   function declaration, all parameters subsequent to a
219  //   parameter with a default argument shall have default
220  //   arguments supplied in this or previous declarations. A
221  //   default argument shall not be redefined by a later
222  //   declaration (not even to the same value).
223  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
224    ParmVarDecl *OldParam = Old->getParamDecl(p);
225    ParmVarDecl *NewParam = New->getParamDecl(p);
226
227    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
228      Diag(NewParam->getLocation(),
229           diag::err_param_default_argument_redefinition)
230        << NewParam->getDefaultArg()->getSourceRange();
231      Diag(OldParam->getLocation(), diag::note_previous_definition);
232      Invalid = true;
233    } else if (OldParam->getDefaultArg()) {
234      // Merge the old default argument into the new parameter
235      NewParam->setDefaultArg(OldParam->getDefaultArg());
236    }
237  }
238
239  return Invalid;
240}
241
242/// CheckCXXDefaultArguments - Verify that the default arguments for a
243/// function declaration are well-formed according to C++
244/// [dcl.fct.default].
245void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
246  unsigned NumParams = FD->getNumParams();
247  unsigned p;
248
249  // Find first parameter with a default argument
250  for (p = 0; p < NumParams; ++p) {
251    ParmVarDecl *Param = FD->getParamDecl(p);
252    if (Param->getDefaultArg())
253      break;
254  }
255
256  // C++ [dcl.fct.default]p4:
257  //   In a given function declaration, all parameters
258  //   subsequent to a parameter with a default argument shall
259  //   have default arguments supplied in this or previous
260  //   declarations. A default argument shall not be redefined
261  //   by a later declaration (not even to the same value).
262  unsigned LastMissingDefaultArg = 0;
263  for(; p < NumParams; ++p) {
264    ParmVarDecl *Param = FD->getParamDecl(p);
265    if (!Param->getDefaultArg()) {
266      if (Param->isInvalidDecl())
267        /* We already complained about this parameter. */;
268      else if (Param->getIdentifier())
269        Diag(Param->getLocation(),
270             diag::err_param_default_argument_missing_name)
271          << Param->getIdentifier();
272      else
273        Diag(Param->getLocation(),
274             diag::err_param_default_argument_missing);
275
276      LastMissingDefaultArg = p;
277    }
278  }
279
280  if (LastMissingDefaultArg > 0) {
281    // Some default arguments were missing. Clear out all of the
282    // default arguments up to (and including) the last missing
283    // default argument, so that we leave the function parameters
284    // in a semantically valid state.
285    for (p = 0; p <= LastMissingDefaultArg; ++p) {
286      ParmVarDecl *Param = FD->getParamDecl(p);
287      if (Param->getDefaultArg()) {
288        if (!Param->hasUnparsedDefaultArg())
289          Param->getDefaultArg()->Destroy(Context);
290        Param->setDefaultArg(0);
291      }
292    }
293  }
294}
295
296/// isCurrentClassName - Determine whether the identifier II is the
297/// name of the class type currently being defined. In the case of
298/// nested classes, this will only return true if II is the name of
299/// the innermost class.
300bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
301                              const CXXScopeSpec *SS) {
302  CXXRecordDecl *CurDecl;
303  if (SS && SS->isSet() && !SS->isInvalid()) {
304    DeclContext *DC = computeDeclContext(*SS);
305    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
306  } else
307    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
308
309  if (CurDecl)
310    return &II == CurDecl->getIdentifier();
311  else
312    return false;
313}
314
315/// \brief Check the validity of a C++ base class specifier.
316///
317/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
318/// and returns NULL otherwise.
319CXXBaseSpecifier *
320Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
321                         SourceRange SpecifierRange,
322                         bool Virtual, AccessSpecifier Access,
323                         QualType BaseType,
324                         SourceLocation BaseLoc) {
325  // C++ [class.union]p1:
326  //   A union shall not have base classes.
327  if (Class->isUnion()) {
328    Diag(Class->getLocation(), diag::err_base_clause_on_union)
329      << SpecifierRange;
330    return 0;
331  }
332
333  if (BaseType->isDependentType())
334    return new CXXBaseSpecifier(SpecifierRange, Virtual,
335                                Class->getTagKind() == RecordDecl::TK_class,
336                                Access, BaseType);
337
338  // Base specifiers must be record types.
339  if (!BaseType->isRecordType()) {
340    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
341    return 0;
342  }
343
344  // C++ [class.union]p1:
345  //   A union shall not be used as a base class.
346  if (BaseType->isUnionType()) {
347    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
348    return 0;
349  }
350
351  // C++ [class.derived]p2:
352  //   The class-name in a base-specifier shall not be an incompletely
353  //   defined class.
354  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
355                          SpecifierRange))
356    return 0;
357
358  // If the base class is polymorphic, the new one is, too.
359  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
360  assert(BaseDecl && "Record type has no declaration");
361  BaseDecl = BaseDecl->getDefinition(Context);
362  assert(BaseDecl && "Base type is not incomplete, but has no definition");
363  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
364    Class->setPolymorphic(true);
365
366  // C++ [dcl.init.aggr]p1:
367  //   An aggregate is [...] a class with [...] no base classes [...].
368  Class->setAggregate(false);
369  Class->setPOD(false);
370
371  // Create the base specifier.
372  // FIXME: Allocate via ASTContext?
373  return new CXXBaseSpecifier(SpecifierRange, Virtual,
374                              Class->getTagKind() == RecordDecl::TK_class,
375                              Access, BaseType);
376}
377
378/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
379/// one entry in the base class list of a class specifier, for
380/// example:
381///    class foo : public bar, virtual private baz {
382/// 'public bar' and 'virtual private baz' are each base-specifiers.
383Sema::BaseResult
384Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
385                         bool Virtual, AccessSpecifier Access,
386                         TypeTy *basetype, SourceLocation BaseLoc) {
387  AdjustDeclIfTemplate(classdecl);
388  CXXRecordDecl *Class = cast<CXXRecordDecl>((Decl*)classdecl);
389  QualType BaseType = QualType::getFromOpaquePtr(basetype);
390  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
391                                                      Virtual, Access,
392                                                      BaseType, BaseLoc))
393    return BaseSpec;
394
395  return true;
396}
397
398/// \brief Performs the actual work of attaching the given base class
399/// specifiers to a C++ class.
400bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
401                                unsigned NumBases) {
402 if (NumBases == 0)
403    return false;
404
405  // Used to keep track of which base types we have already seen, so
406  // that we can properly diagnose redundant direct base types. Note
407  // that the key is always the unqualified canonical type of the base
408  // class.
409  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
410
411  // Copy non-redundant base specifiers into permanent storage.
412  unsigned NumGoodBases = 0;
413  bool Invalid = false;
414  for (unsigned idx = 0; idx < NumBases; ++idx) {
415    QualType NewBaseType
416      = Context.getCanonicalType(Bases[idx]->getType());
417    NewBaseType = NewBaseType.getUnqualifiedType();
418
419    if (KnownBaseTypes[NewBaseType]) {
420      // C++ [class.mi]p3:
421      //   A class shall not be specified as a direct base class of a
422      //   derived class more than once.
423      Diag(Bases[idx]->getSourceRange().getBegin(),
424           diag::err_duplicate_base_class)
425        << KnownBaseTypes[NewBaseType]->getType()
426        << Bases[idx]->getSourceRange();
427
428      // Delete the duplicate base class specifier; we're going to
429      // overwrite its pointer later.
430      delete Bases[idx];
431
432      Invalid = true;
433    } else {
434      // Okay, add this new base class.
435      KnownBaseTypes[NewBaseType] = Bases[idx];
436      Bases[NumGoodBases++] = Bases[idx];
437    }
438  }
439
440  // Attach the remaining base class specifiers to the derived class.
441  Class->setBases(Bases, NumGoodBases);
442
443  // Delete the remaining (good) base class specifiers, since their
444  // data has been copied into the CXXRecordDecl.
445  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
446    delete Bases[idx];
447
448  return Invalid;
449}
450
451/// ActOnBaseSpecifiers - Attach the given base specifiers to the
452/// class, after checking whether there are any duplicate base
453/// classes.
454void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
455                               unsigned NumBases) {
456  if (!ClassDecl || !Bases || !NumBases)
457    return;
458
459  AdjustDeclIfTemplate(ClassDecl);
460  AttachBaseSpecifiers(cast<CXXRecordDecl>((Decl*)ClassDecl),
461                       (CXXBaseSpecifier**)(Bases), NumBases);
462}
463
464//===----------------------------------------------------------------------===//
465// C++ class member Handling
466//===----------------------------------------------------------------------===//
467
468/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
469/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
470/// bitfield width if there is one and 'InitExpr' specifies the initializer if
471/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
472/// declarators on it.
473Sema::DeclTy *
474Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
475                               ExprTy *BW, ExprTy *InitExpr,
476                               DeclTy *LastInGroup) {
477  const DeclSpec &DS = D.getDeclSpec();
478  DeclarationName Name = GetNameForDeclarator(D);
479  Expr *BitWidth = static_cast<Expr*>(BW);
480  Expr *Init = static_cast<Expr*>(InitExpr);
481  SourceLocation Loc = D.getIdentifierLoc();
482
483  bool isFunc = D.isFunctionDeclarator();
484
485  // C++ 9.2p6: A member shall not be declared to have automatic storage
486  // duration (auto, register) or with the extern storage-class-specifier.
487  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
488  // data members and cannot be applied to names declared const or static,
489  // and cannot be applied to reference members.
490  switch (DS.getStorageClassSpec()) {
491    case DeclSpec::SCS_unspecified:
492    case DeclSpec::SCS_typedef:
493    case DeclSpec::SCS_static:
494      // FALL THROUGH.
495      break;
496    case DeclSpec::SCS_mutable:
497      if (isFunc) {
498        if (DS.getStorageClassSpecLoc().isValid())
499          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
500        else
501          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
502
503        // FIXME: It would be nicer if the keyword was ignored only for this
504        // declarator. Otherwise we could get follow-up errors.
505        D.getMutableDeclSpec().ClearStorageClassSpecs();
506      } else {
507        QualType T = GetTypeForDeclarator(D, S);
508        diag::kind err = static_cast<diag::kind>(0);
509        if (T->isReferenceType())
510          err = diag::err_mutable_reference;
511        else if (T.isConstQualified())
512          err = diag::err_mutable_const;
513        if (err != 0) {
514          if (DS.getStorageClassSpecLoc().isValid())
515            Diag(DS.getStorageClassSpecLoc(), err);
516          else
517            Diag(DS.getThreadSpecLoc(), err);
518          // FIXME: It would be nicer if the keyword was ignored only for this
519          // declarator. Otherwise we could get follow-up errors.
520          D.getMutableDeclSpec().ClearStorageClassSpecs();
521        }
522      }
523      break;
524    default:
525      if (DS.getStorageClassSpecLoc().isValid())
526        Diag(DS.getStorageClassSpecLoc(),
527             diag::err_storageclass_invalid_for_member);
528      else
529        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
530      D.getMutableDeclSpec().ClearStorageClassSpecs();
531  }
532
533  if (!isFunc &&
534      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
535      D.getNumTypeObjects() == 0) {
536    // Check also for this case:
537    //
538    // typedef int f();
539    // f a;
540    //
541    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
542    isFunc = TDType->isFunctionType();
543  }
544
545  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
546                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
547                      !isFunc);
548
549  Decl *Member;
550  if (isInstField) {
551    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
552                         AS);
553    assert(Member && "HandleField never returns null");
554  } else {
555    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
556    if (!Member) {
557      if (BitWidth) DeleteExpr(BitWidth);
558      return LastInGroup;
559    }
560
561    // Non-instance-fields can't have a bitfield.
562    if (BitWidth) {
563      if (Member->isInvalidDecl()) {
564        // don't emit another diagnostic.
565      } else if (isa<VarDecl>(Member)) {
566        // C++ 9.6p3: A bit-field shall not be a static member.
567        // "static member 'A' cannot be a bit-field"
568        Diag(Loc, diag::err_static_not_bitfield)
569          << Name << BitWidth->getSourceRange();
570      } else if (isa<TypedefDecl>(Member)) {
571        // "typedef member 'x' cannot be a bit-field"
572        Diag(Loc, diag::err_typedef_not_bitfield)
573          << Name << BitWidth->getSourceRange();
574      } else {
575        // A function typedef ("typedef int f(); f a;").
576        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
577        Diag(Loc, diag::err_not_integral_type_bitfield)
578          << Name << cast<ValueDecl>(Member)->getType()
579          << BitWidth->getSourceRange();
580      }
581
582      DeleteExpr(BitWidth);
583      BitWidth = 0;
584      Member->setInvalidDecl();
585    }
586
587    Member->setAccess(AS);
588  }
589
590  assert((Name || isInstField) && "No identifier for non-field ?");
591
592  if (Init)
593    AddInitializerToDecl(Member, ExprArg(*this, Init), false);
594
595  if (isInstField) {
596    FieldCollector->Add(cast<FieldDecl>(Member));
597    return LastInGroup;
598  }
599  return Member;
600}
601
602/// ActOnMemInitializer - Handle a C++ member initializer.
603Sema::MemInitResult
604Sema::ActOnMemInitializer(DeclTy *ConstructorD,
605                          Scope *S,
606                          IdentifierInfo *MemberOrBase,
607                          SourceLocation IdLoc,
608                          SourceLocation LParenLoc,
609                          ExprTy **Args, unsigned NumArgs,
610                          SourceLocation *CommaLocs,
611                          SourceLocation RParenLoc) {
612  CXXConstructorDecl *Constructor
613    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
614  if (!Constructor) {
615    // The user wrote a constructor initializer on a function that is
616    // not a C++ constructor. Ignore the error for now, because we may
617    // have more member initializers coming; we'll diagnose it just
618    // once in ActOnMemInitializers.
619    return true;
620  }
621
622  CXXRecordDecl *ClassDecl = Constructor->getParent();
623
624  // C++ [class.base.init]p2:
625  //   Names in a mem-initializer-id are looked up in the scope of the
626  //   constructor’s class and, if not found in that scope, are looked
627  //   up in the scope containing the constructor’s
628  //   definition. [Note: if the constructor’s class contains a member
629  //   with the same name as a direct or virtual base class of the
630  //   class, a mem-initializer-id naming the member or base class and
631  //   composed of a single identifier refers to the class member. A
632  //   mem-initializer-id for the hidden base class may be specified
633  //   using a qualified name. ]
634  // Look for a member, first.
635  FieldDecl *Member = 0;
636  DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
637  if (Result.first != Result.second)
638    Member = dyn_cast<FieldDecl>(*Result.first);
639
640  // FIXME: Handle members of an anonymous union.
641
642  if (Member) {
643    // FIXME: Perform direct initialization of the member.
644    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
645  }
646
647  // It didn't name a member, so see if it names a class.
648  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
649  if (!BaseTy)
650    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
651      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
652
653  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
654  if (!BaseType->isRecordType())
655    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
656      << BaseType << SourceRange(IdLoc, RParenLoc);
657
658  // C++ [class.base.init]p2:
659  //   [...] Unless the mem-initializer-id names a nonstatic data
660  //   member of the constructor’s class or a direct or virtual base
661  //   of that class, the mem-initializer is ill-formed. A
662  //   mem-initializer-list can initialize a base class using any
663  //   name that denotes that base class type.
664
665  // First, check for a direct base class.
666  const CXXBaseSpecifier *DirectBaseSpec = 0;
667  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
668       Base != ClassDecl->bases_end(); ++Base) {
669    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
670        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
671      // We found a direct base of this type. That's what we're
672      // initializing.
673      DirectBaseSpec = &*Base;
674      break;
675    }
676  }
677
678  // Check for a virtual base class.
679  // FIXME: We might be able to short-circuit this if we know in
680  // advance that there are no virtual bases.
681  const CXXBaseSpecifier *VirtualBaseSpec = 0;
682  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
683    // We haven't found a base yet; search the class hierarchy for a
684    // virtual base class.
685    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
686                    /*DetectVirtual=*/false);
687    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
688      for (BasePaths::paths_iterator Path = Paths.begin();
689           Path != Paths.end(); ++Path) {
690        if (Path->back().Base->isVirtual()) {
691          VirtualBaseSpec = Path->back().Base;
692          break;
693        }
694      }
695    }
696  }
697
698  // C++ [base.class.init]p2:
699  //   If a mem-initializer-id is ambiguous because it designates both
700  //   a direct non-virtual base class and an inherited virtual base
701  //   class, the mem-initializer is ill-formed.
702  if (DirectBaseSpec && VirtualBaseSpec)
703    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
704      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
705
706  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
707}
708
709void Sema::ActOnMemInitializers(DeclTy *ConstructorDecl,
710                                SourceLocation ColonLoc,
711                                MemInitTy **MemInits, unsigned NumMemInits) {
712  CXXConstructorDecl *Constructor =
713  dyn_cast<CXXConstructorDecl>((Decl *)ConstructorDecl);
714
715  if (!Constructor) {
716    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
717    return;
718  }
719}
720
721namespace {
722  /// PureVirtualMethodCollector - traverses a class and its superclasses
723  /// and determines if it has any pure virtual methods.
724  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
725    ASTContext &Context;
726
727  public:
728    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
729
730  private:
731    MethodList Methods;
732
733    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
734
735  public:
736    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
737      : Context(Ctx) {
738
739      MethodList List;
740      Collect(RD, List);
741
742      // Copy the temporary list to methods, and make sure to ignore any
743      // null entries.
744      for (size_t i = 0, e = List.size(); i != e; ++i) {
745        if (List[i])
746          Methods.push_back(List[i]);
747      }
748    }
749
750    bool empty() const { return Methods.empty(); }
751
752    MethodList::const_iterator methods_begin() { return Methods.begin(); }
753    MethodList::const_iterator methods_end() { return Methods.end(); }
754  };
755
756  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
757                                           MethodList& Methods) {
758    // First, collect the pure virtual methods for the base classes.
759    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
760         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
761      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
762        const CXXRecordDecl *BaseDecl
763          = cast<CXXRecordDecl>(RT->getDecl());
764        if (BaseDecl && BaseDecl->isAbstract())
765          Collect(BaseDecl, Methods);
766      }
767    }
768
769    // Next, zero out any pure virtual methods that this class overrides.
770    for (size_t i = 0, e = Methods.size(); i != e; ++i) {
771      const CXXMethodDecl *VMD = dyn_cast_or_null<CXXMethodDecl>(Methods[i]);
772      if (!VMD)
773        continue;
774
775      DeclContext::lookup_const_iterator I, E;
776      for (llvm::tie(I, E) = RD->lookup(VMD->getDeclName()); I != E; ++I) {
777        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I)) {
778          if (Context.getCanonicalType(MD->getType()) ==
779              Context.getCanonicalType(VMD->getType())) {
780            // We did find a matching method, which means that this is not a
781            // pure virtual method in the current class. Zero it out.
782            Methods[i] = 0;
783          }
784        }
785      }
786    }
787
788    // Finally, add pure virtual methods from this class.
789    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
790         i != e; ++i) {
791      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
792        if (MD->isPure())
793          Methods.push_back(MD);
794      }
795    }
796  }
797}
798
799bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
800                                  unsigned DiagID, AbstractDiagSelID SelID,
801                                  const CXXRecordDecl *CurrentRD) {
802
803  if (!getLangOptions().CPlusPlus)
804    return false;
805
806  if (const ArrayType *AT = Context.getAsArrayType(T))
807    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
808                                  CurrentRD);
809
810  if (const PointerType *PT = T->getAsPointerType()) {
811    // Find the innermost pointer type.
812    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
813      PT = T;
814
815    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
816      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
817                                    CurrentRD);
818  }
819
820  const RecordType *RT = T->getAsRecordType();
821  if (!RT)
822    return false;
823
824  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
825  if (!RD)
826    return false;
827
828  if (CurrentRD && CurrentRD != RD)
829    return false;
830
831  if (!RD->isAbstract())
832    return false;
833
834  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
835
836  // Check if we've already emitted the list of pure virtual functions for this
837  // class.
838  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
839    return true;
840
841  PureVirtualMethodCollector Collector(Context, RD);
842
843  for (PureVirtualMethodCollector::MethodList::const_iterator I =
844       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
845    const CXXMethodDecl *MD = *I;
846
847    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
848      MD->getDeclName();
849  }
850
851  if (!PureVirtualClassDiagSet)
852    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
853  PureVirtualClassDiagSet->insert(RD);
854
855  return true;
856}
857
858namespace {
859  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
860    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
861    Sema &SemaRef;
862    CXXRecordDecl *AbstractClass;
863
864    bool VisitDeclContext(const DeclContext *DC) {
865      bool Invalid = false;
866
867      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
868           E = DC->decls_end(); I != E; ++I)
869        Invalid |= Visit(*I);
870
871      return Invalid;
872    }
873
874  public:
875    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
876      : SemaRef(SemaRef), AbstractClass(ac) {
877        Visit(SemaRef.Context.getTranslationUnitDecl());
878    }
879
880    bool VisitFunctionDecl(const FunctionDecl *FD) {
881      if (FD->isThisDeclarationADefinition()) {
882        // No need to do the check if we're in a definition, because it requires
883        // that the return/param types are complete.
884        // because that requires
885        return VisitDeclContext(FD);
886      }
887
888      // Check the return type.
889      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
890      bool Invalid =
891        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
892                                       diag::err_abstract_type_in_decl,
893                                       Sema::AbstractReturnType,
894                                       AbstractClass);
895
896      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
897           E = FD->param_end(); I != E; ++I) {
898        const ParmVarDecl *VD = *I;
899        Invalid |=
900          SemaRef.RequireNonAbstractType(VD->getLocation(),
901                                         VD->getOriginalType(),
902                                         diag::err_abstract_type_in_decl,
903                                         Sema::AbstractParamType,
904                                         AbstractClass);
905      }
906
907      return Invalid;
908    }
909
910    bool VisitDecl(const Decl* D) {
911      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
912        return VisitDeclContext(DC);
913
914      return false;
915    }
916  };
917}
918
919void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
920                                             DeclTy *TagDecl,
921                                             SourceLocation LBrac,
922                                             SourceLocation RBrac) {
923  TemplateDecl *Template = AdjustDeclIfTemplate(TagDecl);
924  ActOnFields(S, RLoc, TagDecl,
925              (DeclTy**)FieldCollector->getCurFields(),
926              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
927
928  CXXRecordDecl *RD = cast<CXXRecordDecl>((Decl*)TagDecl);
929  if (!RD->isAbstract()) {
930    // Collect all the pure virtual methods and see if this is an abstract
931    // class after all.
932    PureVirtualMethodCollector Collector(Context, RD);
933    if (!Collector.empty())
934      RD->setAbstract(true);
935  }
936
937  if (RD->isAbstract())
938    AbstractClassUsageDiagnoser(*this, RD);
939
940  if (!Template)
941    AddImplicitlyDeclaredMembersToClass(RD);
942}
943
944/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
945/// special functions, such as the default constructor, copy
946/// constructor, or destructor, to the given C++ class (C++
947/// [special]p1).  This routine can only be executed just before the
948/// definition of the class is complete.
949void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
950  QualType ClassType = Context.getTypeDeclType(ClassDecl);
951  ClassType = Context.getCanonicalType(ClassType);
952
953  if (!ClassDecl->hasUserDeclaredConstructor()) {
954    // C++ [class.ctor]p5:
955    //   A default constructor for a class X is a constructor of class X
956    //   that can be called without an argument. If there is no
957    //   user-declared constructor for class X, a default constructor is
958    //   implicitly declared. An implicitly-declared default constructor
959    //   is an inline public member of its class.
960    DeclarationName Name
961      = Context.DeclarationNames.getCXXConstructorName(ClassType);
962    CXXConstructorDecl *DefaultCon =
963      CXXConstructorDecl::Create(Context, ClassDecl,
964                                 ClassDecl->getLocation(), Name,
965                                 Context.getFunctionType(Context.VoidTy,
966                                                         0, 0, false, 0),
967                                 /*isExplicit=*/false,
968                                 /*isInline=*/true,
969                                 /*isImplicitlyDeclared=*/true);
970    DefaultCon->setAccess(AS_public);
971    DefaultCon->setImplicit();
972    ClassDecl->addDecl(DefaultCon);
973
974    // Notify the class that we've added a constructor.
975    ClassDecl->addedConstructor(Context, DefaultCon);
976  }
977
978  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
979    // C++ [class.copy]p4:
980    //   If the class definition does not explicitly declare a copy
981    //   constructor, one is declared implicitly.
982
983    // C++ [class.copy]p5:
984    //   The implicitly-declared copy constructor for a class X will
985    //   have the form
986    //
987    //       X::X(const X&)
988    //
989    //   if
990    bool HasConstCopyConstructor = true;
991
992    //     -- each direct or virtual base class B of X has a copy
993    //        constructor whose first parameter is of type const B& or
994    //        const volatile B&, and
995    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
996         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
997      const CXXRecordDecl *BaseClassDecl
998        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
999      HasConstCopyConstructor
1000        = BaseClassDecl->hasConstCopyConstructor(Context);
1001    }
1002
1003    //     -- for all the nonstatic data members of X that are of a
1004    //        class type M (or array thereof), each such class type
1005    //        has a copy constructor whose first parameter is of type
1006    //        const M& or const volatile M&.
1007    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1008         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
1009      QualType FieldType = (*Field)->getType();
1010      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1011        FieldType = Array->getElementType();
1012      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1013        const CXXRecordDecl *FieldClassDecl
1014          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1015        HasConstCopyConstructor
1016          = FieldClassDecl->hasConstCopyConstructor(Context);
1017      }
1018    }
1019
1020    //   Otherwise, the implicitly declared copy constructor will have
1021    //   the form
1022    //
1023    //       X::X(X&)
1024    QualType ArgType = ClassType;
1025    if (HasConstCopyConstructor)
1026      ArgType = ArgType.withConst();
1027    ArgType = Context.getLValueReferenceType(ArgType);
1028
1029    //   An implicitly-declared copy constructor is an inline public
1030    //   member of its class.
1031    DeclarationName Name
1032      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1033    CXXConstructorDecl *CopyConstructor
1034      = CXXConstructorDecl::Create(Context, ClassDecl,
1035                                   ClassDecl->getLocation(), Name,
1036                                   Context.getFunctionType(Context.VoidTy,
1037                                                           &ArgType, 1,
1038                                                           false, 0),
1039                                   /*isExplicit=*/false,
1040                                   /*isInline=*/true,
1041                                   /*isImplicitlyDeclared=*/true);
1042    CopyConstructor->setAccess(AS_public);
1043    CopyConstructor->setImplicit();
1044
1045    // Add the parameter to the constructor.
1046    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1047                                                 ClassDecl->getLocation(),
1048                                                 /*IdentifierInfo=*/0,
1049                                                 ArgType, VarDecl::None, 0);
1050    CopyConstructor->setParams(Context, &FromParam, 1);
1051
1052    ClassDecl->addedConstructor(Context, CopyConstructor);
1053    ClassDecl->addDecl(CopyConstructor);
1054  }
1055
1056  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1057    // Note: The following rules are largely analoguous to the copy
1058    // constructor rules. Note that virtual bases are not taken into account
1059    // for determining the argument type of the operator. Note also that
1060    // operators taking an object instead of a reference are allowed.
1061    //
1062    // C++ [class.copy]p10:
1063    //   If the class definition does not explicitly declare a copy
1064    //   assignment operator, one is declared implicitly.
1065    //   The implicitly-defined copy assignment operator for a class X
1066    //   will have the form
1067    //
1068    //       X& X::operator=(const X&)
1069    //
1070    //   if
1071    bool HasConstCopyAssignment = true;
1072
1073    //       -- each direct base class B of X has a copy assignment operator
1074    //          whose parameter is of type const B&, const volatile B& or B,
1075    //          and
1076    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1077         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1078      const CXXRecordDecl *BaseClassDecl
1079        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1080      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1081    }
1082
1083    //       -- for all the nonstatic data members of X that are of a class
1084    //          type M (or array thereof), each such class type has a copy
1085    //          assignment operator whose parameter is of type const M&,
1086    //          const volatile M& or M.
1087    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1088         HasConstCopyAssignment && Field != ClassDecl->field_end(); ++Field) {
1089      QualType FieldType = (*Field)->getType();
1090      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1091        FieldType = Array->getElementType();
1092      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1093        const CXXRecordDecl *FieldClassDecl
1094          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1095        HasConstCopyAssignment
1096          = FieldClassDecl->hasConstCopyAssignment(Context);
1097      }
1098    }
1099
1100    //   Otherwise, the implicitly declared copy assignment operator will
1101    //   have the form
1102    //
1103    //       X& X::operator=(X&)
1104    QualType ArgType = ClassType;
1105    QualType RetType = Context.getLValueReferenceType(ArgType);
1106    if (HasConstCopyAssignment)
1107      ArgType = ArgType.withConst();
1108    ArgType = Context.getLValueReferenceType(ArgType);
1109
1110    //   An implicitly-declared copy assignment operator is an inline public
1111    //   member of its class.
1112    DeclarationName Name =
1113      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1114    CXXMethodDecl *CopyAssignment =
1115      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1116                            Context.getFunctionType(RetType, &ArgType, 1,
1117                                                    false, 0),
1118                            /*isStatic=*/false, /*isInline=*/true);
1119    CopyAssignment->setAccess(AS_public);
1120    CopyAssignment->setImplicit();
1121
1122    // Add the parameter to the operator.
1123    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1124                                                 ClassDecl->getLocation(),
1125                                                 /*IdentifierInfo=*/0,
1126                                                 ArgType, VarDecl::None, 0);
1127    CopyAssignment->setParams(Context, &FromParam, 1);
1128
1129    // Don't call addedAssignmentOperator. There is no way to distinguish an
1130    // implicit from an explicit assignment operator.
1131    ClassDecl->addDecl(CopyAssignment);
1132  }
1133
1134  if (!ClassDecl->hasUserDeclaredDestructor()) {
1135    // C++ [class.dtor]p2:
1136    //   If a class has no user-declared destructor, a destructor is
1137    //   declared implicitly. An implicitly-declared destructor is an
1138    //   inline public member of its class.
1139    DeclarationName Name
1140      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1141    CXXDestructorDecl *Destructor
1142      = CXXDestructorDecl::Create(Context, ClassDecl,
1143                                  ClassDecl->getLocation(), Name,
1144                                  Context.getFunctionType(Context.VoidTy,
1145                                                          0, 0, false, 0),
1146                                  /*isInline=*/true,
1147                                  /*isImplicitlyDeclared=*/true);
1148    Destructor->setAccess(AS_public);
1149    Destructor->setImplicit();
1150    ClassDecl->addDecl(Destructor);
1151  }
1152}
1153
1154/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1155/// parsing a top-level (non-nested) C++ class, and we are now
1156/// parsing those parts of the given Method declaration that could
1157/// not be parsed earlier (C++ [class.mem]p2), such as default
1158/// arguments. This action should enter the scope of the given
1159/// Method declaration as if we had just parsed the qualified method
1160/// name. However, it should not bring the parameters into scope;
1161/// that will be performed by ActOnDelayedCXXMethodParameter.
1162void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclTy *Method) {
1163  CXXScopeSpec SS;
1164  SS.setScopeRep(((FunctionDecl*)Method)->getDeclContext());
1165  ActOnCXXEnterDeclaratorScope(S, SS);
1166}
1167
1168/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1169/// C++ method declaration. We're (re-)introducing the given
1170/// function parameter into scope for use in parsing later parts of
1171/// the method declaration. For example, we could see an
1172/// ActOnParamDefaultArgument event for this parameter.
1173void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclTy *ParamD) {
1174  ParmVarDecl *Param = (ParmVarDecl*)ParamD;
1175
1176  // If this parameter has an unparsed default argument, clear it out
1177  // to make way for the parsed default argument.
1178  if (Param->hasUnparsedDefaultArg())
1179    Param->setDefaultArg(0);
1180
1181  S->AddDecl(Param);
1182  if (Param->getDeclName())
1183    IdResolver.AddDecl(Param);
1184}
1185
1186/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1187/// processing the delayed method declaration for Method. The method
1188/// declaration is now considered finished. There may be a separate
1189/// ActOnStartOfFunctionDef action later (not necessarily
1190/// immediately!) for this method, if it was also defined inside the
1191/// class body.
1192void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclTy *MethodD) {
1193  FunctionDecl *Method = (FunctionDecl*)MethodD;
1194  CXXScopeSpec SS;
1195  SS.setScopeRep(Method->getDeclContext());
1196  ActOnCXXExitDeclaratorScope(S, SS);
1197
1198  // Now that we have our default arguments, check the constructor
1199  // again. It could produce additional diagnostics or affect whether
1200  // the class has implicitly-declared destructors, among other
1201  // things.
1202  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
1203    if (CheckConstructor(Constructor))
1204      Constructor->setInvalidDecl();
1205  }
1206
1207  // Check the default arguments, which we may have added.
1208  if (!Method->isInvalidDecl())
1209    CheckCXXDefaultArguments(Method);
1210}
1211
1212/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1213/// the well-formedness of the constructor declarator @p D with type @p
1214/// R. If there are any errors in the declarator, this routine will
1215/// emit diagnostics and return true. Otherwise, it will return
1216/// false. Either way, the type @p R will be updated to reflect a
1217/// well-formed type for the constructor.
1218bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
1219                                      FunctionDecl::StorageClass& SC) {
1220  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1221  bool isInvalid = false;
1222
1223  // C++ [class.ctor]p3:
1224  //   A constructor shall not be virtual (10.3) or static (9.4). A
1225  //   constructor can be invoked for a const, volatile or const
1226  //   volatile object. A constructor shall not be declared const,
1227  //   volatile, or const volatile (9.3.2).
1228  if (isVirtual) {
1229    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1230      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1231      << SourceRange(D.getIdentifierLoc());
1232    isInvalid = true;
1233  }
1234  if (SC == FunctionDecl::Static) {
1235    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1236      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1237      << SourceRange(D.getIdentifierLoc());
1238    isInvalid = true;
1239    SC = FunctionDecl::None;
1240  }
1241  if (D.getDeclSpec().hasTypeSpecifier()) {
1242    // Constructors don't have return types, but the parser will
1243    // happily parse something like:
1244    //
1245    //   class X {
1246    //     float X(float);
1247    //   };
1248    //
1249    // The return type will be eliminated later.
1250    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
1251      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1252      << SourceRange(D.getIdentifierLoc());
1253  }
1254  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1255    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1256    if (FTI.TypeQuals & QualType::Const)
1257      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1258        << "const" << SourceRange(D.getIdentifierLoc());
1259    if (FTI.TypeQuals & QualType::Volatile)
1260      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1261        << "volatile" << SourceRange(D.getIdentifierLoc());
1262    if (FTI.TypeQuals & QualType::Restrict)
1263      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1264        << "restrict" << SourceRange(D.getIdentifierLoc());
1265  }
1266
1267  // Rebuild the function type "R" without any type qualifiers (in
1268  // case any of the errors above fired) and with "void" as the
1269  // return type, since constructors don't have return types. We
1270  // *always* have to do this, because GetTypeForDeclarator will
1271  // put in a result type of "int" when none was specified.
1272  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1273  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1274                              Proto->getNumArgs(),
1275                              Proto->isVariadic(),
1276                              0);
1277
1278  return isInvalid;
1279}
1280
1281/// CheckConstructor - Checks a fully-formed constructor for
1282/// well-formedness, issuing any diagnostics required. Returns true if
1283/// the constructor declarator is invalid.
1284bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1285  if (Constructor->isInvalidDecl())
1286    return true;
1287
1288  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1289  bool Invalid = false;
1290
1291  // C++ [class.copy]p3:
1292  //   A declaration of a constructor for a class X is ill-formed if
1293  //   its first parameter is of type (optionally cv-qualified) X and
1294  //   either there are no other parameters or else all other
1295  //   parameters have default arguments.
1296  if ((Constructor->getNumParams() == 1) ||
1297      (Constructor->getNumParams() > 1 &&
1298       Constructor->getParamDecl(1)->getDefaultArg() != 0)) {
1299    QualType ParamType = Constructor->getParamDecl(0)->getType();
1300    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1301    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1302      Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg)
1303        << SourceRange(Constructor->getParamDecl(0)->getLocation());
1304      Invalid = true;
1305    }
1306  }
1307
1308  // Notify the class that we've added a constructor.
1309  ClassDecl->addedConstructor(Context, Constructor);
1310
1311  return Invalid;
1312}
1313
1314/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1315/// the well-formednes of the destructor declarator @p D with type @p
1316/// R. If there are any errors in the declarator, this routine will
1317/// emit diagnostics and return true. Otherwise, it will return
1318/// false. Either way, the type @p R will be updated to reflect a
1319/// well-formed type for the destructor.
1320bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1321                                     FunctionDecl::StorageClass& SC) {
1322  bool isInvalid = false;
1323
1324  // C++ [class.dtor]p1:
1325  //   [...] A typedef-name that names a class is a class-name
1326  //   (7.1.3); however, a typedef-name that names a class shall not
1327  //   be used as the identifier in the declarator for a destructor
1328  //   declaration.
1329  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1330  if (DeclaratorType->getAsTypedefType()) {
1331    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1332      << DeclaratorType;
1333    isInvalid = true;
1334  }
1335
1336  // C++ [class.dtor]p2:
1337  //   A destructor is used to destroy objects of its class type. A
1338  //   destructor takes no parameters, and no return type can be
1339  //   specified for it (not even void). The address of a destructor
1340  //   shall not be taken. A destructor shall not be static. A
1341  //   destructor can be invoked for a const, volatile or const
1342  //   volatile object. A destructor shall not be declared const,
1343  //   volatile or const volatile (9.3.2).
1344  if (SC == FunctionDecl::Static) {
1345    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1346      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1347      << SourceRange(D.getIdentifierLoc());
1348    isInvalid = true;
1349    SC = FunctionDecl::None;
1350  }
1351  if (D.getDeclSpec().hasTypeSpecifier()) {
1352    // Destructors don't have return types, but the parser will
1353    // happily parse something like:
1354    //
1355    //   class X {
1356    //     float ~X();
1357    //   };
1358    //
1359    // The return type will be eliminated later.
1360    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1361      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1362      << SourceRange(D.getIdentifierLoc());
1363  }
1364  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1365    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1366    if (FTI.TypeQuals & QualType::Const)
1367      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1368        << "const" << SourceRange(D.getIdentifierLoc());
1369    if (FTI.TypeQuals & QualType::Volatile)
1370      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1371        << "volatile" << SourceRange(D.getIdentifierLoc());
1372    if (FTI.TypeQuals & QualType::Restrict)
1373      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1374        << "restrict" << SourceRange(D.getIdentifierLoc());
1375  }
1376
1377  // Make sure we don't have any parameters.
1378  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1379    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1380
1381    // Delete the parameters.
1382    D.getTypeObject(0).Fun.freeArgs();
1383  }
1384
1385  // Make sure the destructor isn't variadic.
1386  if (R->getAsFunctionProtoType()->isVariadic())
1387    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1388
1389  // Rebuild the function type "R" without any type qualifiers or
1390  // parameters (in case any of the errors above fired) and with
1391  // "void" as the return type, since destructors don't have return
1392  // types. We *always* have to do this, because GetTypeForDeclarator
1393  // will put in a result type of "int" when none was specified.
1394  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1395
1396  return isInvalid;
1397}
1398
1399/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1400/// well-formednes of the conversion function declarator @p D with
1401/// type @p R. If there are any errors in the declarator, this routine
1402/// will emit diagnostics and return true. Otherwise, it will return
1403/// false. Either way, the type @p R will be updated to reflect a
1404/// well-formed type for the conversion operator.
1405bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1406                                     FunctionDecl::StorageClass& SC) {
1407  bool isInvalid = false;
1408
1409  // C++ [class.conv.fct]p1:
1410  //   Neither parameter types nor return type can be specified. The
1411  //   type of a conversion function (8.3.5) is “function taking no
1412  //   parameter returning conversion-type-id.”
1413  if (SC == FunctionDecl::Static) {
1414    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1415      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1416      << SourceRange(D.getIdentifierLoc());
1417    isInvalid = true;
1418    SC = FunctionDecl::None;
1419  }
1420  if (D.getDeclSpec().hasTypeSpecifier()) {
1421    // Conversion functions don't have return types, but the parser will
1422    // happily parse something like:
1423    //
1424    //   class X {
1425    //     float operator bool();
1426    //   };
1427    //
1428    // The return type will be changed later anyway.
1429    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1430      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1431      << SourceRange(D.getIdentifierLoc());
1432  }
1433
1434  // Make sure we don't have any parameters.
1435  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1436    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1437
1438    // Delete the parameters.
1439    D.getTypeObject(0).Fun.freeArgs();
1440  }
1441
1442  // Make sure the conversion function isn't variadic.
1443  if (R->getAsFunctionProtoType()->isVariadic())
1444    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1445
1446  // C++ [class.conv.fct]p4:
1447  //   The conversion-type-id shall not represent a function type nor
1448  //   an array type.
1449  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1450  if (ConvType->isArrayType()) {
1451    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1452    ConvType = Context.getPointerType(ConvType);
1453  } else if (ConvType->isFunctionType()) {
1454    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1455    ConvType = Context.getPointerType(ConvType);
1456  }
1457
1458  // Rebuild the function type "R" without any parameters (in case any
1459  // of the errors above fired) and with the conversion type as the
1460  // return type.
1461  R = Context.getFunctionType(ConvType, 0, 0, false,
1462                              R->getAsFunctionProtoType()->getTypeQuals());
1463
1464  // C++0x explicit conversion operators.
1465  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1466    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1467         diag::warn_explicit_conversion_functions)
1468      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1469
1470  return isInvalid;
1471}
1472
1473/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1474/// the declaration of the given C++ conversion function. This routine
1475/// is responsible for recording the conversion function in the C++
1476/// class, if possible.
1477Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1478  assert(Conversion && "Expected to receive a conversion function declaration");
1479
1480  // Set the lexical context of this conversion function
1481  Conversion->setLexicalDeclContext(CurContext);
1482
1483  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1484
1485  // Make sure we aren't redeclaring the conversion function.
1486  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1487
1488  // C++ [class.conv.fct]p1:
1489  //   [...] A conversion function is never used to convert a
1490  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1491  //   same object type (or a reference to it), to a (possibly
1492  //   cv-qualified) base class of that type (or a reference to it),
1493  //   or to (possibly cv-qualified) void.
1494  // FIXME: Suppress this warning if the conversion function ends up
1495  // being a virtual function that overrides a virtual function in a
1496  // base class.
1497  QualType ClassType
1498    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1499  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1500    ConvType = ConvTypeRef->getPointeeType();
1501  if (ConvType->isRecordType()) {
1502    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1503    if (ConvType == ClassType)
1504      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1505        << ClassType;
1506    else if (IsDerivedFrom(ClassType, ConvType))
1507      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1508        <<  ClassType << ConvType;
1509  } else if (ConvType->isVoidType()) {
1510    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1511      << ClassType << ConvType;
1512  }
1513
1514  if (Conversion->getPreviousDeclaration()) {
1515    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1516    for (OverloadedFunctionDecl::function_iterator
1517           Conv = Conversions->function_begin(),
1518           ConvEnd = Conversions->function_end();
1519         Conv != ConvEnd; ++Conv) {
1520      if (*Conv == Conversion->getPreviousDeclaration()) {
1521        *Conv = Conversion;
1522        return (DeclTy *)Conversion;
1523      }
1524    }
1525    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1526  } else
1527    ClassDecl->addConversionFunction(Context, Conversion);
1528
1529  return (DeclTy *)Conversion;
1530}
1531
1532//===----------------------------------------------------------------------===//
1533// Namespace Handling
1534//===----------------------------------------------------------------------===//
1535
1536/// ActOnStartNamespaceDef - This is called at the start of a namespace
1537/// definition.
1538Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1539                                           SourceLocation IdentLoc,
1540                                           IdentifierInfo *II,
1541                                           SourceLocation LBrace) {
1542  NamespaceDecl *Namespc =
1543      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1544  Namespc->setLBracLoc(LBrace);
1545
1546  Scope *DeclRegionScope = NamespcScope->getParent();
1547
1548  if (II) {
1549    // C++ [namespace.def]p2:
1550    // The identifier in an original-namespace-definition shall not have been
1551    // previously defined in the declarative region in which the
1552    // original-namespace-definition appears. The identifier in an
1553    // original-namespace-definition is the name of the namespace. Subsequently
1554    // in that declarative region, it is treated as an original-namespace-name.
1555
1556    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1557                                     true);
1558
1559    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1560      // This is an extended namespace definition.
1561      // Attach this namespace decl to the chain of extended namespace
1562      // definitions.
1563      OrigNS->setNextNamespace(Namespc);
1564      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1565
1566      // Remove the previous declaration from the scope.
1567      if (DeclRegionScope->isDeclScope(OrigNS)) {
1568        IdResolver.RemoveDecl(OrigNS);
1569        DeclRegionScope->RemoveDecl(OrigNS);
1570      }
1571    } else if (PrevDecl) {
1572      // This is an invalid name redefinition.
1573      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1574       << Namespc->getDeclName();
1575      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1576      Namespc->setInvalidDecl();
1577      // Continue on to push Namespc as current DeclContext and return it.
1578    }
1579
1580    PushOnScopeChains(Namespc, DeclRegionScope);
1581  } else {
1582    // FIXME: Handle anonymous namespaces
1583  }
1584
1585  // Although we could have an invalid decl (i.e. the namespace name is a
1586  // redefinition), push it as current DeclContext and try to continue parsing.
1587  // FIXME: We should be able to push Namespc here, so that the
1588  // each DeclContext for the namespace has the declarations
1589  // that showed up in that particular namespace definition.
1590  PushDeclContext(NamespcScope, Namespc);
1591  return Namespc;
1592}
1593
1594/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1595/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1596void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
1597  Decl *Dcl = static_cast<Decl *>(D);
1598  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1599  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1600  Namespc->setRBracLoc(RBrace);
1601  PopDeclContext();
1602}
1603
1604Sema::DeclTy *Sema::ActOnUsingDirective(Scope *S,
1605                                        SourceLocation UsingLoc,
1606                                        SourceLocation NamespcLoc,
1607                                        const CXXScopeSpec &SS,
1608                                        SourceLocation IdentLoc,
1609                                        IdentifierInfo *NamespcName,
1610                                        AttributeList *AttrList) {
1611  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1612  assert(NamespcName && "Invalid NamespcName.");
1613  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1614  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1615
1616  UsingDirectiveDecl *UDir = 0;
1617
1618  // Lookup namespace name.
1619  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1620                                    LookupNamespaceName, false);
1621  if (R.isAmbiguous()) {
1622    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1623    return 0;
1624  }
1625  if (NamedDecl *NS = R) {
1626    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1627    // C++ [namespace.udir]p1:
1628    //   A using-directive specifies that the names in the nominated
1629    //   namespace can be used in the scope in which the
1630    //   using-directive appears after the using-directive. During
1631    //   unqualified name lookup (3.4.1), the names appear as if they
1632    //   were declared in the nearest enclosing namespace which
1633    //   contains both the using-directive and the nominated
1634    //   namespace. [Note: in this context, “contains” means “contains
1635    //   directly or indirectly”. ]
1636
1637    // Find enclosing context containing both using-directive and
1638    // nominated namespace.
1639    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1640    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1641      CommonAncestor = CommonAncestor->getParent();
1642
1643    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc,
1644                                      NamespcLoc, IdentLoc,
1645                                      cast<NamespaceDecl>(NS),
1646                                      CommonAncestor);
1647    PushUsingDirective(S, UDir);
1648  } else {
1649    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1650  }
1651
1652  // FIXME: We ignore attributes for now.
1653  delete AttrList;
1654  return UDir;
1655}
1656
1657void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1658  // If scope has associated entity, then using directive is at namespace
1659  // or translation unit scope. We add UsingDirectiveDecls, into
1660  // it's lookup structure.
1661  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1662    Ctx->addDecl(UDir);
1663  else
1664    // Otherwise it is block-sope. using-directives will affect lookup
1665    // only to the end of scope.
1666    S->PushUsingDirective(UDir);
1667}
1668
1669/// AddCXXDirectInitializerToDecl - This action is called immediately after
1670/// ActOnDeclarator, when a C++ direct initializer is present.
1671/// e.g: "int x(1);"
1672void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
1673                                         MultiExprArg Exprs,
1674                                         SourceLocation *CommaLocs,
1675                                         SourceLocation RParenLoc) {
1676  unsigned NumExprs = Exprs.size();
1677  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
1678  Decl *RealDecl = static_cast<Decl *>(Dcl);
1679
1680  // If there is no declaration, there was an error parsing it.  Just ignore
1681  // the initializer.
1682  if (RealDecl == 0) {
1683    return;
1684  }
1685
1686  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1687  if (!VDecl) {
1688    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1689    RealDecl->setInvalidDecl();
1690    return;
1691  }
1692
1693  // FIXME: Need to handle dependent types and expressions here.
1694
1695  // We will treat direct-initialization as a copy-initialization:
1696  //    int x(1);  -as-> int x = 1;
1697  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1698  //
1699  // Clients that want to distinguish between the two forms, can check for
1700  // direct initializer using VarDecl::hasCXXDirectInitializer().
1701  // A major benefit is that clients that don't particularly care about which
1702  // exactly form was it (like the CodeGen) can handle both cases without
1703  // special case code.
1704
1705  // C++ 8.5p11:
1706  // The form of initialization (using parentheses or '=') is generally
1707  // insignificant, but does matter when the entity being initialized has a
1708  // class type.
1709  QualType DeclInitType = VDecl->getType();
1710  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1711    DeclInitType = Array->getElementType();
1712
1713  // FIXME: This isn't the right place to complete the type.
1714  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
1715                          diag::err_typecheck_decl_incomplete_type)) {
1716    VDecl->setInvalidDecl();
1717    return;
1718  }
1719
1720  if (VDecl->getType()->isRecordType()) {
1721    CXXConstructorDecl *Constructor
1722      = PerformInitializationByConstructor(DeclInitType,
1723                                           (Expr **)Exprs.get(), NumExprs,
1724                                           VDecl->getLocation(),
1725                                           SourceRange(VDecl->getLocation(),
1726                                                       RParenLoc),
1727                                           VDecl->getDeclName(),
1728                                           IK_Direct);
1729    if (!Constructor)
1730      RealDecl->setInvalidDecl();
1731    else
1732      Exprs.release();
1733
1734    // Let clients know that initialization was done with a direct
1735    // initializer.
1736    VDecl->setCXXDirectInitializer(true);
1737
1738    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1739    // the initializer.
1740    return;
1741  }
1742
1743  if (NumExprs > 1) {
1744    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1745      << SourceRange(VDecl->getLocation(), RParenLoc);
1746    RealDecl->setInvalidDecl();
1747    return;
1748  }
1749
1750  // Let clients know that initialization was done with a direct initializer.
1751  VDecl->setCXXDirectInitializer(true);
1752
1753  assert(NumExprs == 1 && "Expected 1 expression");
1754  // Set the init expression, handles conversions.
1755  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
1756                       /*DirectInit=*/true);
1757}
1758
1759/// PerformInitializationByConstructor - Perform initialization by
1760/// constructor (C++ [dcl.init]p14), which may occur as part of
1761/// direct-initialization or copy-initialization. We are initializing
1762/// an object of type @p ClassType with the given arguments @p
1763/// Args. @p Loc is the location in the source code where the
1764/// initializer occurs (e.g., a declaration, member initializer,
1765/// functional cast, etc.) while @p Range covers the whole
1766/// initialization. @p InitEntity is the entity being initialized,
1767/// which may by the name of a declaration or a type. @p Kind is the
1768/// kind of initialization we're performing, which affects whether
1769/// explicit constructors will be considered. When successful, returns
1770/// the constructor that will be used to perform the initialization;
1771/// when the initialization fails, emits a diagnostic and returns
1772/// null.
1773CXXConstructorDecl *
1774Sema::PerformInitializationByConstructor(QualType ClassType,
1775                                         Expr **Args, unsigned NumArgs,
1776                                         SourceLocation Loc, SourceRange Range,
1777                                         DeclarationName InitEntity,
1778                                         InitializationKind Kind) {
1779  const RecordType *ClassRec = ClassType->getAsRecordType();
1780  assert(ClassRec && "Can only initialize a class type here");
1781
1782  // C++ [dcl.init]p14:
1783  //
1784  //   If the initialization is direct-initialization, or if it is
1785  //   copy-initialization where the cv-unqualified version of the
1786  //   source type is the same class as, or a derived class of, the
1787  //   class of the destination, constructors are considered. The
1788  //   applicable constructors are enumerated (13.3.1.3), and the
1789  //   best one is chosen through overload resolution (13.3). The
1790  //   constructor so selected is called to initialize the object,
1791  //   with the initializer expression(s) as its argument(s). If no
1792  //   constructor applies, or the overload resolution is ambiguous,
1793  //   the initialization is ill-formed.
1794  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1795  OverloadCandidateSet CandidateSet;
1796
1797  // Add constructors to the overload set.
1798  DeclarationName ConstructorName
1799    = Context.DeclarationNames.getCXXConstructorName(
1800                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1801  DeclContext::lookup_const_iterator Con, ConEnd;
1802  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
1803       Con != ConEnd; ++Con) {
1804    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1805    if ((Kind == IK_Direct) ||
1806        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1807        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1808      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1809  }
1810
1811  // FIXME: When we decide not to synthesize the implicitly-declared
1812  // constructors, we'll need to make them appear here.
1813
1814  OverloadCandidateSet::iterator Best;
1815  switch (BestViableFunction(CandidateSet, Best)) {
1816  case OR_Success:
1817    // We found a constructor. Return it.
1818    return cast<CXXConstructorDecl>(Best->Function);
1819
1820  case OR_No_Viable_Function:
1821    if (InitEntity)
1822      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1823        << InitEntity << Range;
1824    else
1825      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1826        << ClassType << Range;
1827    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1828    return 0;
1829
1830  case OR_Ambiguous:
1831    if (InitEntity)
1832      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1833    else
1834      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1835    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1836    return 0;
1837
1838  case OR_Deleted:
1839    if (InitEntity)
1840      Diag(Loc, diag::err_ovl_deleted_init)
1841        << Best->Function->isDeleted()
1842        << InitEntity << Range;
1843    else
1844      Diag(Loc, diag::err_ovl_deleted_init)
1845        << Best->Function->isDeleted()
1846        << InitEntity << Range;
1847    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1848    return 0;
1849  }
1850
1851  return 0;
1852}
1853
1854/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1855/// determine whether they are reference-related,
1856/// reference-compatible, reference-compatible with added
1857/// qualification, or incompatible, for use in C++ initialization by
1858/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1859/// type, and the first type (T1) is the pointee type of the reference
1860/// type being initialized.
1861Sema::ReferenceCompareResult
1862Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1863                                   bool& DerivedToBase) {
1864  assert(!T1->isReferenceType() &&
1865    "T1 must be the pointee type of the reference type");
1866  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1867
1868  T1 = Context.getCanonicalType(T1);
1869  T2 = Context.getCanonicalType(T2);
1870  QualType UnqualT1 = T1.getUnqualifiedType();
1871  QualType UnqualT2 = T2.getUnqualifiedType();
1872
1873  // C++ [dcl.init.ref]p4:
1874  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1875  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1876  //   T1 is a base class of T2.
1877  if (UnqualT1 == UnqualT2)
1878    DerivedToBase = false;
1879  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1880    DerivedToBase = true;
1881  else
1882    return Ref_Incompatible;
1883
1884  // At this point, we know that T1 and T2 are reference-related (at
1885  // least).
1886
1887  // C++ [dcl.init.ref]p4:
1888  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1889  //   reference-related to T2 and cv1 is the same cv-qualification
1890  //   as, or greater cv-qualification than, cv2. For purposes of
1891  //   overload resolution, cases for which cv1 is greater
1892  //   cv-qualification than cv2 are identified as
1893  //   reference-compatible with added qualification (see 13.3.3.2).
1894  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1895    return Ref_Compatible;
1896  else if (T1.isMoreQualifiedThan(T2))
1897    return Ref_Compatible_With_Added_Qualification;
1898  else
1899    return Ref_Related;
1900}
1901
1902/// CheckReferenceInit - Check the initialization of a reference
1903/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1904/// the initializer (either a simple initializer or an initializer
1905/// list), and DeclType is the type of the declaration. When ICS is
1906/// non-null, this routine will compute the implicit conversion
1907/// sequence according to C++ [over.ics.ref] and will not produce any
1908/// diagnostics; when ICS is null, it will emit diagnostics when any
1909/// errors are found. Either way, a return value of true indicates
1910/// that there was a failure, a return value of false indicates that
1911/// the reference initialization succeeded.
1912///
1913/// When @p SuppressUserConversions, user-defined conversions are
1914/// suppressed.
1915/// When @p AllowExplicit, we also permit explicit user-defined
1916/// conversion functions.
1917bool
1918Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1919                         ImplicitConversionSequence *ICS,
1920                         bool SuppressUserConversions,
1921                         bool AllowExplicit) {
1922  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1923
1924  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1925  QualType T2 = Init->getType();
1926
1927  // If the initializer is the address of an overloaded function, try
1928  // to resolve the overloaded function. If all goes well, T2 is the
1929  // type of the resulting function.
1930  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
1931    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
1932                                                          ICS != 0);
1933    if (Fn) {
1934      // Since we're performing this reference-initialization for
1935      // real, update the initializer with the resulting function.
1936      if (!ICS) {
1937        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
1938          return true;
1939
1940        FixOverloadedFunctionReference(Init, Fn);
1941      }
1942
1943      T2 = Fn->getType();
1944    }
1945  }
1946
1947  // Compute some basic properties of the types and the initializer.
1948  bool isRValRef = DeclType->isRValueReferenceType();
1949  bool DerivedToBase = false;
1950  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1951  ReferenceCompareResult RefRelationship
1952    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1953
1954  // Most paths end in a failed conversion.
1955  if (ICS)
1956    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1957
1958  // C++ [dcl.init.ref]p5:
1959  //   A reference to type “cv1 T1” is initialized by an expression
1960  //   of type “cv2 T2” as follows:
1961
1962  //     -- If the initializer expression
1963
1964  bool BindsDirectly = false;
1965  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1966  //          reference-compatible with “cv2 T2,” or
1967  //
1968  // Note that the bit-field check is skipped if we are just computing
1969  // the implicit conversion sequence (C++ [over.best.ics]p2).
1970  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1971      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1972    BindsDirectly = true;
1973
1974    // Rvalue references cannot bind to lvalues (N2812).
1975    if (isRValRef) {
1976      if (!ICS)
1977        Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
1978          << Init->getSourceRange();
1979      return true;
1980    }
1981
1982    if (ICS) {
1983      // C++ [over.ics.ref]p1:
1984      //   When a parameter of reference type binds directly (8.5.3)
1985      //   to an argument expression, the implicit conversion sequence
1986      //   is the identity conversion, unless the argument expression
1987      //   has a type that is a derived class of the parameter type,
1988      //   in which case the implicit conversion sequence is a
1989      //   derived-to-base Conversion (13.3.3.1).
1990      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1991      ICS->Standard.First = ICK_Identity;
1992      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1993      ICS->Standard.Third = ICK_Identity;
1994      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1995      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1996      ICS->Standard.ReferenceBinding = true;
1997      ICS->Standard.DirectBinding = true;
1998
1999      // Nothing more to do: the inaccessibility/ambiguity check for
2000      // derived-to-base conversions is suppressed when we're
2001      // computing the implicit conversion sequence (C++
2002      // [over.best.ics]p2).
2003      return false;
2004    } else {
2005      // Perform the conversion.
2006      // FIXME: Binding to a subobject of the lvalue is going to require
2007      // more AST annotation than this.
2008      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2009    }
2010  }
2011
2012  //       -- has a class type (i.e., T2 is a class type) and can be
2013  //          implicitly converted to an lvalue of type “cv3 T3,”
2014  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2015  //          92) (this conversion is selected by enumerating the
2016  //          applicable conversion functions (13.3.1.6) and choosing
2017  //          the best one through overload resolution (13.3)),
2018  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2019    // FIXME: Look for conversions in base classes!
2020    CXXRecordDecl *T2RecordDecl
2021      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2022
2023    OverloadCandidateSet CandidateSet;
2024    OverloadedFunctionDecl *Conversions
2025      = T2RecordDecl->getConversionFunctions();
2026    for (OverloadedFunctionDecl::function_iterator Func
2027           = Conversions->function_begin();
2028         Func != Conversions->function_end(); ++Func) {
2029      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2030
2031      // If the conversion function doesn't return a reference type,
2032      // it can't be considered for this conversion.
2033      if (Conv->getConversionType()->isLValueReferenceType() &&
2034          (AllowExplicit || !Conv->isExplicit()))
2035        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2036    }
2037
2038    OverloadCandidateSet::iterator Best;
2039    switch (BestViableFunction(CandidateSet, Best)) {
2040    case OR_Success:
2041      // This is a direct binding.
2042      BindsDirectly = true;
2043
2044      if (ICS) {
2045        // C++ [over.ics.ref]p1:
2046        //
2047        //   [...] If the parameter binds directly to the result of
2048        //   applying a conversion function to the argument
2049        //   expression, the implicit conversion sequence is a
2050        //   user-defined conversion sequence (13.3.3.1.2), with the
2051        //   second standard conversion sequence either an identity
2052        //   conversion or, if the conversion function returns an
2053        //   entity of a type that is a derived class of the parameter
2054        //   type, a derived-to-base Conversion.
2055        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2056        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2057        ICS->UserDefined.After = Best->FinalConversion;
2058        ICS->UserDefined.ConversionFunction = Best->Function;
2059        assert(ICS->UserDefined.After.ReferenceBinding &&
2060               ICS->UserDefined.After.DirectBinding &&
2061               "Expected a direct reference binding!");
2062        return false;
2063      } else {
2064        // Perform the conversion.
2065        // FIXME: Binding to a subobject of the lvalue is going to require
2066        // more AST annotation than this.
2067        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2068      }
2069      break;
2070
2071    case OR_Ambiguous:
2072      assert(false && "Ambiguous reference binding conversions not implemented.");
2073      return true;
2074
2075    case OR_No_Viable_Function:
2076    case OR_Deleted:
2077      // There was no suitable conversion, or we found a deleted
2078      // conversion; continue with other checks.
2079      break;
2080    }
2081  }
2082
2083  if (BindsDirectly) {
2084    // C++ [dcl.init.ref]p4:
2085    //   [...] In all cases where the reference-related or
2086    //   reference-compatible relationship of two types is used to
2087    //   establish the validity of a reference binding, and T1 is a
2088    //   base class of T2, a program that necessitates such a binding
2089    //   is ill-formed if T1 is an inaccessible (clause 11) or
2090    //   ambiguous (10.2) base class of T2.
2091    //
2092    // Note that we only check this condition when we're allowed to
2093    // complain about errors, because we should not be checking for
2094    // ambiguity (or inaccessibility) unless the reference binding
2095    // actually happens.
2096    if (DerivedToBase)
2097      return CheckDerivedToBaseConversion(T2, T1,
2098                                          Init->getSourceRange().getBegin(),
2099                                          Init->getSourceRange());
2100    else
2101      return false;
2102  }
2103
2104  //     -- Otherwise, the reference shall be to a non-volatile const
2105  //        type (i.e., cv1 shall be const), or shall be an rvalue reference.
2106  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2107    if (!ICS)
2108      Diag(Init->getSourceRange().getBegin(),
2109           diag::err_not_reference_to_const_init)
2110        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2111        << T2 << Init->getSourceRange();
2112    return true;
2113  }
2114
2115  //       -- If the initializer expression is an rvalue, with T2 a
2116  //          class type, and “cv1 T1” is reference-compatible with
2117  //          “cv2 T2,” the reference is bound in one of the
2118  //          following ways (the choice is implementation-defined):
2119  //
2120  //          -- The reference is bound to the object represented by
2121  //             the rvalue (see 3.10) or to a sub-object within that
2122  //             object.
2123  //
2124  //          -- A temporary of type “cv1 T2” [sic] is created, and
2125  //             a constructor is called to copy the entire rvalue
2126  //             object into the temporary. The reference is bound to
2127  //             the temporary or to a sub-object within the
2128  //             temporary.
2129  //
2130  //          The constructor that would be used to make the copy
2131  //          shall be callable whether or not the copy is actually
2132  //          done.
2133  //
2134  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
2135  // freedom, so we will always take the first option and never build
2136  // a temporary in this case. FIXME: We will, however, have to check
2137  // for the presence of a copy constructor in C++98/03 mode.
2138  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2139      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2140    if (ICS) {
2141      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2142      ICS->Standard.First = ICK_Identity;
2143      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2144      ICS->Standard.Third = ICK_Identity;
2145      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2146      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2147      ICS->Standard.ReferenceBinding = true;
2148      ICS->Standard.DirectBinding = false;
2149    } else {
2150      // FIXME: Binding to a subobject of the rvalue is going to require
2151      // more AST annotation than this.
2152      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2153    }
2154    return false;
2155  }
2156
2157  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2158  //          initialized from the initializer expression using the
2159  //          rules for a non-reference copy initialization (8.5). The
2160  //          reference is then bound to the temporary. If T1 is
2161  //          reference-related to T2, cv1 must be the same
2162  //          cv-qualification as, or greater cv-qualification than,
2163  //          cv2; otherwise, the program is ill-formed.
2164  if (RefRelationship == Ref_Related) {
2165    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2166    // we would be reference-compatible or reference-compatible with
2167    // added qualification. But that wasn't the case, so the reference
2168    // initialization fails.
2169    if (!ICS)
2170      Diag(Init->getSourceRange().getBegin(),
2171           diag::err_reference_init_drops_quals)
2172        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2173        << T2 << Init->getSourceRange();
2174    return true;
2175  }
2176
2177  // If at least one of the types is a class type, the types are not
2178  // related, and we aren't allowed any user conversions, the
2179  // reference binding fails. This case is important for breaking
2180  // recursion, since TryImplicitConversion below will attempt to
2181  // create a temporary through the use of a copy constructor.
2182  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2183      (T1->isRecordType() || T2->isRecordType())) {
2184    if (!ICS)
2185      Diag(Init->getSourceRange().getBegin(),
2186           diag::err_typecheck_convert_incompatible)
2187        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2188    return true;
2189  }
2190
2191  // Actually try to convert the initializer to T1.
2192  if (ICS) {
2193    /// C++ [over.ics.ref]p2:
2194    ///
2195    ///   When a parameter of reference type is not bound directly to
2196    ///   an argument expression, the conversion sequence is the one
2197    ///   required to convert the argument expression to the
2198    ///   underlying type of the reference according to
2199    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
2200    ///   to copy-initializing a temporary of the underlying type with
2201    ///   the argument expression. Any difference in top-level
2202    ///   cv-qualification is subsumed by the initialization itself
2203    ///   and does not constitute a conversion.
2204    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2205    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2206  } else {
2207    return PerformImplicitConversion(Init, T1, "initializing");
2208  }
2209}
2210
2211/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2212/// of this overloaded operator is well-formed. If so, returns false;
2213/// otherwise, emits appropriate diagnostics and returns true.
2214bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2215  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2216         "Expected an overloaded operator declaration");
2217
2218  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2219
2220  // C++ [over.oper]p5:
2221  //   The allocation and deallocation functions, operator new,
2222  //   operator new[], operator delete and operator delete[], are
2223  //   described completely in 3.7.3. The attributes and restrictions
2224  //   found in the rest of this subclause do not apply to them unless
2225  //   explicitly stated in 3.7.3.
2226  // FIXME: Write a separate routine for checking this. For now, just
2227  // allow it.
2228  if (Op == OO_New || Op == OO_Array_New ||
2229      Op == OO_Delete || Op == OO_Array_Delete)
2230    return false;
2231
2232  // C++ [over.oper]p6:
2233  //   An operator function shall either be a non-static member
2234  //   function or be a non-member function and have at least one
2235  //   parameter whose type is a class, a reference to a class, an
2236  //   enumeration, or a reference to an enumeration.
2237  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2238    if (MethodDecl->isStatic())
2239      return Diag(FnDecl->getLocation(),
2240                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2241  } else {
2242    bool ClassOrEnumParam = false;
2243    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2244                                   ParamEnd = FnDecl->param_end();
2245         Param != ParamEnd; ++Param) {
2246      QualType ParamType = (*Param)->getType().getNonReferenceType();
2247      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2248        ClassOrEnumParam = true;
2249        break;
2250      }
2251    }
2252
2253    if (!ClassOrEnumParam)
2254      return Diag(FnDecl->getLocation(),
2255                  diag::err_operator_overload_needs_class_or_enum)
2256        << FnDecl->getDeclName();
2257  }
2258
2259  // C++ [over.oper]p8:
2260  //   An operator function cannot have default arguments (8.3.6),
2261  //   except where explicitly stated below.
2262  //
2263  // Only the function-call operator allows default arguments
2264  // (C++ [over.call]p1).
2265  if (Op != OO_Call) {
2266    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2267         Param != FnDecl->param_end(); ++Param) {
2268      if ((*Param)->hasUnparsedDefaultArg())
2269        return Diag((*Param)->getLocation(),
2270                    diag::err_operator_overload_default_arg)
2271          << FnDecl->getDeclName();
2272      else if (Expr *DefArg = (*Param)->getDefaultArg())
2273        return Diag((*Param)->getLocation(),
2274                    diag::err_operator_overload_default_arg)
2275          << FnDecl->getDeclName() << DefArg->getSourceRange();
2276    }
2277  }
2278
2279  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2280    { false, false, false }
2281#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2282    , { Unary, Binary, MemberOnly }
2283#include "clang/Basic/OperatorKinds.def"
2284  };
2285
2286  bool CanBeUnaryOperator = OperatorUses[Op][0];
2287  bool CanBeBinaryOperator = OperatorUses[Op][1];
2288  bool MustBeMemberOperator = OperatorUses[Op][2];
2289
2290  // C++ [over.oper]p8:
2291  //   [...] Operator functions cannot have more or fewer parameters
2292  //   than the number required for the corresponding operator, as
2293  //   described in the rest of this subclause.
2294  unsigned NumParams = FnDecl->getNumParams()
2295                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2296  if (Op != OO_Call &&
2297      ((NumParams == 1 && !CanBeUnaryOperator) ||
2298       (NumParams == 2 && !CanBeBinaryOperator) ||
2299       (NumParams < 1) || (NumParams > 2))) {
2300    // We have the wrong number of parameters.
2301    unsigned ErrorKind;
2302    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2303      ErrorKind = 2;  // 2 -> unary or binary.
2304    } else if (CanBeUnaryOperator) {
2305      ErrorKind = 0;  // 0 -> unary
2306    } else {
2307      assert(CanBeBinaryOperator &&
2308             "All non-call overloaded operators are unary or binary!");
2309      ErrorKind = 1;  // 1 -> binary
2310    }
2311
2312    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2313      << FnDecl->getDeclName() << NumParams << ErrorKind;
2314  }
2315
2316  // Overloaded operators other than operator() cannot be variadic.
2317  if (Op != OO_Call &&
2318      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2319    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2320      << FnDecl->getDeclName();
2321  }
2322
2323  // Some operators must be non-static member functions.
2324  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2325    return Diag(FnDecl->getLocation(),
2326                diag::err_operator_overload_must_be_member)
2327      << FnDecl->getDeclName();
2328  }
2329
2330  // C++ [over.inc]p1:
2331  //   The user-defined function called operator++ implements the
2332  //   prefix and postfix ++ operator. If this function is a member
2333  //   function with no parameters, or a non-member function with one
2334  //   parameter of class or enumeration type, it defines the prefix
2335  //   increment operator ++ for objects of that type. If the function
2336  //   is a member function with one parameter (which shall be of type
2337  //   int) or a non-member function with two parameters (the second
2338  //   of which shall be of type int), it defines the postfix
2339  //   increment operator ++ for objects of that type.
2340  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2341    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2342    bool ParamIsInt = false;
2343    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2344      ParamIsInt = BT->getKind() == BuiltinType::Int;
2345
2346    if (!ParamIsInt)
2347      return Diag(LastParam->getLocation(),
2348                  diag::err_operator_overload_post_incdec_must_be_int)
2349        << LastParam->getType() << (Op == OO_MinusMinus);
2350  }
2351
2352  // Notify the class if it got an assignment operator.
2353  if (Op == OO_Equal) {
2354    // Would have returned earlier otherwise.
2355    assert(isa<CXXMethodDecl>(FnDecl) &&
2356      "Overloaded = not member, but not filtered.");
2357    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2358    Method->getParent()->addedAssignmentOperator(Context, Method);
2359  }
2360
2361  return false;
2362}
2363
2364/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2365/// linkage specification, including the language and (if present)
2366/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2367/// the location of the language string literal, which is provided
2368/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2369/// the '{' brace. Otherwise, this linkage specification does not
2370/// have any braces.
2371Sema::DeclTy *Sema::ActOnStartLinkageSpecification(Scope *S,
2372                                                   SourceLocation ExternLoc,
2373                                                   SourceLocation LangLoc,
2374                                                   const char *Lang,
2375                                                   unsigned StrSize,
2376                                                   SourceLocation LBraceLoc) {
2377  LinkageSpecDecl::LanguageIDs Language;
2378  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2379    Language = LinkageSpecDecl::lang_c;
2380  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2381    Language = LinkageSpecDecl::lang_cxx;
2382  else {
2383    Diag(LangLoc, diag::err_bad_language);
2384    return 0;
2385  }
2386
2387  // FIXME: Add all the various semantics of linkage specifications
2388
2389  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2390                                               LangLoc, Language,
2391                                               LBraceLoc.isValid());
2392  CurContext->addDecl(D);
2393  PushDeclContext(S, D);
2394  return D;
2395}
2396
2397/// ActOnFinishLinkageSpecification - Completely the definition of
2398/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2399/// valid, it's the position of the closing '}' brace in a linkage
2400/// specification that uses braces.
2401Sema::DeclTy *Sema::ActOnFinishLinkageSpecification(Scope *S,
2402                                                    DeclTy *LinkageSpec,
2403                                                    SourceLocation RBraceLoc) {
2404  if (LinkageSpec)
2405    PopDeclContext();
2406  return LinkageSpec;
2407}
2408
2409/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2410/// handler.
2411Sema::DeclTy *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D)
2412{
2413  QualType ExDeclType = GetTypeForDeclarator(D, S);
2414  SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin();
2415
2416  bool Invalid = false;
2417
2418  // Arrays and functions decay.
2419  if (ExDeclType->isArrayType())
2420    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2421  else if (ExDeclType->isFunctionType())
2422    ExDeclType = Context.getPointerType(ExDeclType);
2423
2424  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2425  // The exception-declaration shall not denote a pointer or reference to an
2426  // incomplete type, other than [cv] void*.
2427  // N2844 forbids rvalue references.
2428  if(ExDeclType->isRValueReferenceType()) {
2429    Diag(Begin, diag::err_catch_rvalue_ref) << D.getSourceRange();
2430    Invalid = true;
2431  }
2432  QualType BaseType = ExDeclType;
2433  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2434  unsigned DK = diag::err_catch_incomplete;
2435  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2436    BaseType = Ptr->getPointeeType();
2437    Mode = 1;
2438    DK = diag::err_catch_incomplete_ptr;
2439  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2440    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2441    BaseType = Ref->getPointeeType();
2442    Mode = 2;
2443    DK = diag::err_catch_incomplete_ref;
2444  }
2445  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2446      RequireCompleteType(Begin, BaseType, DK))
2447    Invalid = true;
2448
2449  // FIXME: Need to test for ability to copy-construct and destroy the
2450  // exception variable.
2451  // FIXME: Need to check for abstract classes.
2452
2453  IdentifierInfo *II = D.getIdentifier();
2454  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2455    // The scope should be freshly made just for us. There is just no way
2456    // it contains any previous declaration.
2457    assert(!S->isDeclScope(PrevDecl));
2458    if (PrevDecl->isTemplateParameter()) {
2459      // Maybe we will complain about the shadowed template parameter.
2460      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2461
2462    }
2463  }
2464
2465  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
2466                                    II, ExDeclType, VarDecl::None, Begin);
2467  if (D.getInvalidType() || Invalid)
2468    ExDecl->setInvalidDecl();
2469
2470  if (D.getCXXScopeSpec().isSet()) {
2471    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2472      << D.getCXXScopeSpec().getRange();
2473    ExDecl->setInvalidDecl();
2474  }
2475
2476  // Add the exception declaration into this scope.
2477  S->AddDecl(ExDecl);
2478  if (II)
2479    IdResolver.AddDecl(ExDecl);
2480
2481  ProcessDeclAttributes(ExDecl, D);
2482  return ExDecl;
2483}
2484
2485Sema::DeclTy *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
2486                                                 ExprArg assertexpr,
2487                                                 ExprArg assertmessageexpr) {
2488  Expr *AssertExpr = (Expr *)assertexpr.get();
2489  StringLiteral *AssertMessage =
2490    cast<StringLiteral>((Expr *)assertmessageexpr.get());
2491
2492  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
2493    llvm::APSInt Value(32);
2494    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
2495      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
2496        AssertExpr->getSourceRange();
2497      return 0;
2498    }
2499
2500    if (Value == 0) {
2501      std::string str(AssertMessage->getStrData(),
2502                      AssertMessage->getByteLength());
2503      Diag(AssertLoc, diag::err_static_assert_failed)
2504        << str << AssertExpr->getSourceRange();
2505    }
2506  }
2507
2508  assertexpr.release();
2509  assertmessageexpr.release();
2510  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
2511                                        AssertExpr, AssertMessage);
2512
2513  CurContext->addDecl(Decl);
2514  return Decl;
2515}
2516
2517void Sema::SetDeclDeleted(DeclTy *dcl, SourceLocation DelLoc) {
2518  Decl *Dcl = static_cast<Decl*>(dcl);
2519  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
2520  if (!Fn) {
2521    Diag(DelLoc, diag::err_deleted_non_function);
2522    return;
2523  }
2524  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
2525    Diag(DelLoc, diag::err_deleted_decl_not_first);
2526    Diag(Prev->getLocation(), diag::note_previous_declaration);
2527    // If the declaration wasn't the first, we delete the function anyway for
2528    // recovery.
2529  }
2530  Fn->setDeleted();
2531}
2532