SemaDeclCXX.cpp revision cbb67480094b3bcb5b715acd827cbad55e2a204c
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_iterator I = Node->child_begin(),
67         E = Node->child_end(); I != E; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                      MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateExprWithCleanups(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check for unexpanded parameter packs.
181  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
182    Param->setInvalidDecl();
183    return;
184  }
185
186  // Check that the default argument is well-formed
187  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
188  if (DefaultArgChecker.Visit(DefaultArg)) {
189    Param->setInvalidDecl();
190    return;
191  }
192
193  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
194}
195
196/// ActOnParamUnparsedDefaultArgument - We've seen a default
197/// argument for a function parameter, but we can't parse it yet
198/// because we're inside a class definition. Note that this default
199/// argument will be parsed later.
200void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
201                                             SourceLocation EqualLoc,
202                                             SourceLocation ArgLoc) {
203  if (!param)
204    return;
205
206  ParmVarDecl *Param = cast<ParmVarDecl>(param);
207  if (Param)
208    Param->setUnparsedDefaultArg();
209
210  UnparsedDefaultArgLocs[Param] = ArgLoc;
211}
212
213/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
214/// the default argument for the parameter param failed.
215void Sema::ActOnParamDefaultArgumentError(Decl *param) {
216  if (!param)
217    return;
218
219  ParmVarDecl *Param = cast<ParmVarDecl>(param);
220
221  Param->setInvalidDecl();
222
223  UnparsedDefaultArgLocs.erase(Param);
224}
225
226/// CheckExtraCXXDefaultArguments - Check for any extra default
227/// arguments in the declarator, which is not a function declaration
228/// or definition and therefore is not permitted to have default
229/// arguments. This routine should be invoked for every declarator
230/// that is not a function declaration or definition.
231void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
232  // C++ [dcl.fct.default]p3
233  //   A default argument expression shall be specified only in the
234  //   parameter-declaration-clause of a function declaration or in a
235  //   template-parameter (14.1). It shall not be specified for a
236  //   parameter pack. If it is specified in a
237  //   parameter-declaration-clause, it shall not occur within a
238  //   declarator or abstract-declarator of a parameter-declaration.
239  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
240    DeclaratorChunk &chunk = D.getTypeObject(i);
241    if (chunk.Kind == DeclaratorChunk::Function) {
242      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
243        ParmVarDecl *Param =
244          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
245        if (Param->hasUnparsedDefaultArg()) {
246          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
247          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
248            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
249          delete Toks;
250          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
251        } else if (Param->getDefaultArg()) {
252          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
253            << Param->getDefaultArg()->getSourceRange();
254          Param->setDefaultArg(0);
255        }
256      }
257    }
258  }
259}
260
261// MergeCXXFunctionDecl - Merge two declarations of the same C++
262// function, once we already know that they have the same
263// type. Subroutine of MergeFunctionDecl. Returns true if there was an
264// error, false otherwise.
265bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
266  bool Invalid = false;
267
268  // C++ [dcl.fct.default]p4:
269  //   For non-template functions, default arguments can be added in
270  //   later declarations of a function in the same
271  //   scope. Declarations in different scopes have completely
272  //   distinct sets of default arguments. That is, declarations in
273  //   inner scopes do not acquire default arguments from
274  //   declarations in outer scopes, and vice versa. In a given
275  //   function declaration, all parameters subsequent to a
276  //   parameter with a default argument shall have default
277  //   arguments supplied in this or previous declarations. A
278  //   default argument shall not be redefined by a later
279  //   declaration (not even to the same value).
280  //
281  // C++ [dcl.fct.default]p6:
282  //   Except for member functions of class templates, the default arguments
283  //   in a member function definition that appears outside of the class
284  //   definition are added to the set of default arguments provided by the
285  //   member function declaration in the class definition.
286  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
287    ParmVarDecl *OldParam = Old->getParamDecl(p);
288    ParmVarDecl *NewParam = New->getParamDecl(p);
289
290    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
291      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
292      // hint here. Alternatively, we could walk the type-source information
293      // for NewParam to find the last source location in the type... but it
294      // isn't worth the effort right now. This is the kind of test case that
295      // is hard to get right:
296
297      //   int f(int);
298      //   void g(int (*fp)(int) = f);
299      //   void g(int (*fp)(int) = &f);
300      Diag(NewParam->getLocation(),
301           diag::err_param_default_argument_redefinition)
302        << NewParam->getDefaultArgRange();
303
304      // Look for the function declaration where the default argument was
305      // actually written, which may be a declaration prior to Old.
306      for (FunctionDecl *Older = Old->getPreviousDeclaration();
307           Older; Older = Older->getPreviousDeclaration()) {
308        if (!Older->getParamDecl(p)->hasDefaultArg())
309          break;
310
311        OldParam = Older->getParamDecl(p);
312      }
313
314      Diag(OldParam->getLocation(), diag::note_previous_definition)
315        << OldParam->getDefaultArgRange();
316      Invalid = true;
317    } else if (OldParam->hasDefaultArg()) {
318      // Merge the old default argument into the new parameter.
319      // It's important to use getInit() here;  getDefaultArg()
320      // strips off any top-level ExprWithCleanups.
321      NewParam->setHasInheritedDefaultArg();
322      if (OldParam->hasUninstantiatedDefaultArg())
323        NewParam->setUninstantiatedDefaultArg(
324                                      OldParam->getUninstantiatedDefaultArg());
325      else
326        NewParam->setDefaultArg(OldParam->getInit());
327    } else if (NewParam->hasDefaultArg()) {
328      if (New->getDescribedFunctionTemplate()) {
329        // Paragraph 4, quoted above, only applies to non-template functions.
330        Diag(NewParam->getLocation(),
331             diag::err_param_default_argument_template_redecl)
332          << NewParam->getDefaultArgRange();
333        Diag(Old->getLocation(), diag::note_template_prev_declaration)
334          << false;
335      } else if (New->getTemplateSpecializationKind()
336                   != TSK_ImplicitInstantiation &&
337                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
338        // C++ [temp.expr.spec]p21:
339        //   Default function arguments shall not be specified in a declaration
340        //   or a definition for one of the following explicit specializations:
341        //     - the explicit specialization of a function template;
342        //     - the explicit specialization of a member function template;
343        //     - the explicit specialization of a member function of a class
344        //       template where the class template specialization to which the
345        //       member function specialization belongs is implicitly
346        //       instantiated.
347        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
348          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
349          << New->getDeclName()
350          << NewParam->getDefaultArgRange();
351      } else if (New->getDeclContext()->isDependentContext()) {
352        // C++ [dcl.fct.default]p6 (DR217):
353        //   Default arguments for a member function of a class template shall
354        //   be specified on the initial declaration of the member function
355        //   within the class template.
356        //
357        // Reading the tea leaves a bit in DR217 and its reference to DR205
358        // leads me to the conclusion that one cannot add default function
359        // arguments for an out-of-line definition of a member function of a
360        // dependent type.
361        int WhichKind = 2;
362        if (CXXRecordDecl *Record
363              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
364          if (Record->getDescribedClassTemplate())
365            WhichKind = 0;
366          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
367            WhichKind = 1;
368          else
369            WhichKind = 2;
370        }
371
372        Diag(NewParam->getLocation(),
373             diag::err_param_default_argument_member_template_redecl)
374          << WhichKind
375          << NewParam->getDefaultArgRange();
376      }
377    }
378  }
379
380  if (CheckEquivalentExceptionSpec(Old, New))
381    Invalid = true;
382
383  return Invalid;
384}
385
386/// CheckCXXDefaultArguments - Verify that the default arguments for a
387/// function declaration are well-formed according to C++
388/// [dcl.fct.default].
389void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
390  unsigned NumParams = FD->getNumParams();
391  unsigned p;
392
393  // Find first parameter with a default argument
394  for (p = 0; p < NumParams; ++p) {
395    ParmVarDecl *Param = FD->getParamDecl(p);
396    if (Param->hasDefaultArg())
397      break;
398  }
399
400  // C++ [dcl.fct.default]p4:
401  //   In a given function declaration, all parameters
402  //   subsequent to a parameter with a default argument shall
403  //   have default arguments supplied in this or previous
404  //   declarations. A default argument shall not be redefined
405  //   by a later declaration (not even to the same value).
406  unsigned LastMissingDefaultArg = 0;
407  for (; p < NumParams; ++p) {
408    ParmVarDecl *Param = FD->getParamDecl(p);
409    if (!Param->hasDefaultArg()) {
410      if (Param->isInvalidDecl())
411        /* We already complained about this parameter. */;
412      else if (Param->getIdentifier())
413        Diag(Param->getLocation(),
414             diag::err_param_default_argument_missing_name)
415          << Param->getIdentifier();
416      else
417        Diag(Param->getLocation(),
418             diag::err_param_default_argument_missing);
419
420      LastMissingDefaultArg = p;
421    }
422  }
423
424  if (LastMissingDefaultArg > 0) {
425    // Some default arguments were missing. Clear out all of the
426    // default arguments up to (and including) the last missing
427    // default argument, so that we leave the function parameters
428    // in a semantically valid state.
429    for (p = 0; p <= LastMissingDefaultArg; ++p) {
430      ParmVarDecl *Param = FD->getParamDecl(p);
431      if (Param->hasDefaultArg()) {
432        Param->setDefaultArg(0);
433      }
434    }
435  }
436}
437
438/// isCurrentClassName - Determine whether the identifier II is the
439/// name of the class type currently being defined. In the case of
440/// nested classes, this will only return true if II is the name of
441/// the innermost class.
442bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
443                              const CXXScopeSpec *SS) {
444  assert(getLangOptions().CPlusPlus && "No class names in C!");
445
446  CXXRecordDecl *CurDecl;
447  if (SS && SS->isSet() && !SS->isInvalid()) {
448    DeclContext *DC = computeDeclContext(*SS, true);
449    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
450  } else
451    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
452
453  if (CurDecl && CurDecl->getIdentifier())
454    return &II == CurDecl->getIdentifier();
455  else
456    return false;
457}
458
459/// \brief Check the validity of a C++ base class specifier.
460///
461/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
462/// and returns NULL otherwise.
463CXXBaseSpecifier *
464Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
465                         SourceRange SpecifierRange,
466                         bool Virtual, AccessSpecifier Access,
467                         TypeSourceInfo *TInfo,
468                         SourceLocation EllipsisLoc) {
469  QualType BaseType = TInfo->getType();
470
471  // C++ [class.union]p1:
472  //   A union shall not have base classes.
473  if (Class->isUnion()) {
474    Diag(Class->getLocation(), diag::err_base_clause_on_union)
475      << SpecifierRange;
476    return 0;
477  }
478
479  if (EllipsisLoc.isValid() &&
480      !TInfo->getType()->containsUnexpandedParameterPack()) {
481    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
482      << TInfo->getTypeLoc().getSourceRange();
483    EllipsisLoc = SourceLocation();
484  }
485
486  if (BaseType->isDependentType())
487    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
488                                          Class->getTagKind() == TTK_Class,
489                                          Access, TInfo, EllipsisLoc);
490
491  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
492
493  // Base specifiers must be record types.
494  if (!BaseType->isRecordType()) {
495    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
496    return 0;
497  }
498
499  // C++ [class.union]p1:
500  //   A union shall not be used as a base class.
501  if (BaseType->isUnionType()) {
502    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
503    return 0;
504  }
505
506  // C++ [class.derived]p2:
507  //   The class-name in a base-specifier shall not be an incompletely
508  //   defined class.
509  if (RequireCompleteType(BaseLoc, BaseType,
510                          PDiag(diag::err_incomplete_base_class)
511                            << SpecifierRange)) {
512    Class->setInvalidDecl();
513    return 0;
514  }
515
516  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
517  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
518  assert(BaseDecl && "Record type has no declaration");
519  BaseDecl = BaseDecl->getDefinition();
520  assert(BaseDecl && "Base type is not incomplete, but has no definition");
521  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
522  assert(CXXBaseDecl && "Base type is not a C++ type");
523
524  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
525  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
526    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
527    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
528      << BaseType;
529    return 0;
530  }
531
532  if (BaseDecl->isInvalidDecl())
533    Class->setInvalidDecl();
534
535  // Create the base specifier.
536  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
537                                        Class->getTagKind() == TTK_Class,
538                                        Access, TInfo, EllipsisLoc);
539}
540
541/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
542/// one entry in the base class list of a class specifier, for
543/// example:
544///    class foo : public bar, virtual private baz {
545/// 'public bar' and 'virtual private baz' are each base-specifiers.
546BaseResult
547Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
548                         bool Virtual, AccessSpecifier Access,
549                         ParsedType basetype, SourceLocation BaseLoc,
550                         SourceLocation EllipsisLoc) {
551  if (!classdecl)
552    return true;
553
554  AdjustDeclIfTemplate(classdecl);
555  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
556  if (!Class)
557    return true;
558
559  TypeSourceInfo *TInfo = 0;
560  GetTypeFromParser(basetype, &TInfo);
561
562  if (EllipsisLoc.isInvalid() &&
563      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
564                                      UPPC_BaseType))
565    return true;
566
567  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
568                                                      Virtual, Access, TInfo,
569                                                      EllipsisLoc))
570    return BaseSpec;
571
572  return true;
573}
574
575/// \brief Performs the actual work of attaching the given base class
576/// specifiers to a C++ class.
577bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
578                                unsigned NumBases) {
579 if (NumBases == 0)
580    return false;
581
582  // Used to keep track of which base types we have already seen, so
583  // that we can properly diagnose redundant direct base types. Note
584  // that the key is always the unqualified canonical type of the base
585  // class.
586  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
587
588  // Copy non-redundant base specifiers into permanent storage.
589  unsigned NumGoodBases = 0;
590  bool Invalid = false;
591  for (unsigned idx = 0; idx < NumBases; ++idx) {
592    QualType NewBaseType
593      = Context.getCanonicalType(Bases[idx]->getType());
594    NewBaseType = NewBaseType.getLocalUnqualifiedType();
595    if (!Class->hasObjectMember()) {
596      if (const RecordType *FDTTy =
597            NewBaseType.getTypePtr()->getAs<RecordType>())
598        if (FDTTy->getDecl()->hasObjectMember())
599          Class->setHasObjectMember(true);
600    }
601
602    if (KnownBaseTypes[NewBaseType]) {
603      // C++ [class.mi]p3:
604      //   A class shall not be specified as a direct base class of a
605      //   derived class more than once.
606      Diag(Bases[idx]->getSourceRange().getBegin(),
607           diag::err_duplicate_base_class)
608        << KnownBaseTypes[NewBaseType]->getType()
609        << Bases[idx]->getSourceRange();
610
611      // Delete the duplicate base class specifier; we're going to
612      // overwrite its pointer later.
613      Context.Deallocate(Bases[idx]);
614
615      Invalid = true;
616    } else {
617      // Okay, add this new base class.
618      KnownBaseTypes[NewBaseType] = Bases[idx];
619      Bases[NumGoodBases++] = Bases[idx];
620    }
621  }
622
623  // Attach the remaining base class specifiers to the derived class.
624  Class->setBases(Bases, NumGoodBases);
625
626  // Delete the remaining (good) base class specifiers, since their
627  // data has been copied into the CXXRecordDecl.
628  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
629    Context.Deallocate(Bases[idx]);
630
631  return Invalid;
632}
633
634/// ActOnBaseSpecifiers - Attach the given base specifiers to the
635/// class, after checking whether there are any duplicate base
636/// classes.
637void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
638                               unsigned NumBases) {
639  if (!ClassDecl || !Bases || !NumBases)
640    return;
641
642  AdjustDeclIfTemplate(ClassDecl);
643  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
644                       (CXXBaseSpecifier**)(Bases), NumBases);
645}
646
647static CXXRecordDecl *GetClassForType(QualType T) {
648  if (const RecordType *RT = T->getAs<RecordType>())
649    return cast<CXXRecordDecl>(RT->getDecl());
650  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
651    return ICT->getDecl();
652  else
653    return 0;
654}
655
656/// \brief Determine whether the type \p Derived is a C++ class that is
657/// derived from the type \p Base.
658bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
659  if (!getLangOptions().CPlusPlus)
660    return false;
661
662  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
663  if (!DerivedRD)
664    return false;
665
666  CXXRecordDecl *BaseRD = GetClassForType(Base);
667  if (!BaseRD)
668    return false;
669
670  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
671  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
672}
673
674/// \brief Determine whether the type \p Derived is a C++ class that is
675/// derived from the type \p Base.
676bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
677  if (!getLangOptions().CPlusPlus)
678    return false;
679
680  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
681  if (!DerivedRD)
682    return false;
683
684  CXXRecordDecl *BaseRD = GetClassForType(Base);
685  if (!BaseRD)
686    return false;
687
688  return DerivedRD->isDerivedFrom(BaseRD, Paths);
689}
690
691void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
692                              CXXCastPath &BasePathArray) {
693  assert(BasePathArray.empty() && "Base path array must be empty!");
694  assert(Paths.isRecordingPaths() && "Must record paths!");
695
696  const CXXBasePath &Path = Paths.front();
697
698  // We first go backward and check if we have a virtual base.
699  // FIXME: It would be better if CXXBasePath had the base specifier for
700  // the nearest virtual base.
701  unsigned Start = 0;
702  for (unsigned I = Path.size(); I != 0; --I) {
703    if (Path[I - 1].Base->isVirtual()) {
704      Start = I - 1;
705      break;
706    }
707  }
708
709  // Now add all bases.
710  for (unsigned I = Start, E = Path.size(); I != E; ++I)
711    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
712}
713
714/// \brief Determine whether the given base path includes a virtual
715/// base class.
716bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
717  for (CXXCastPath::const_iterator B = BasePath.begin(),
718                                BEnd = BasePath.end();
719       B != BEnd; ++B)
720    if ((*B)->isVirtual())
721      return true;
722
723  return false;
724}
725
726/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
727/// conversion (where Derived and Base are class types) is
728/// well-formed, meaning that the conversion is unambiguous (and
729/// that all of the base classes are accessible). Returns true
730/// and emits a diagnostic if the code is ill-formed, returns false
731/// otherwise. Loc is the location where this routine should point to
732/// if there is an error, and Range is the source range to highlight
733/// if there is an error.
734bool
735Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
736                                   unsigned InaccessibleBaseID,
737                                   unsigned AmbigiousBaseConvID,
738                                   SourceLocation Loc, SourceRange Range,
739                                   DeclarationName Name,
740                                   CXXCastPath *BasePath) {
741  // First, determine whether the path from Derived to Base is
742  // ambiguous. This is slightly more expensive than checking whether
743  // the Derived to Base conversion exists, because here we need to
744  // explore multiple paths to determine if there is an ambiguity.
745  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
746                     /*DetectVirtual=*/false);
747  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
748  assert(DerivationOkay &&
749         "Can only be used with a derived-to-base conversion");
750  (void)DerivationOkay;
751
752  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
753    if (InaccessibleBaseID) {
754      // Check that the base class can be accessed.
755      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
756                                   InaccessibleBaseID)) {
757        case AR_inaccessible:
758          return true;
759        case AR_accessible:
760        case AR_dependent:
761        case AR_delayed:
762          break;
763      }
764    }
765
766    // Build a base path if necessary.
767    if (BasePath)
768      BuildBasePathArray(Paths, *BasePath);
769    return false;
770  }
771
772  // We know that the derived-to-base conversion is ambiguous, and
773  // we're going to produce a diagnostic. Perform the derived-to-base
774  // search just one more time to compute all of the possible paths so
775  // that we can print them out. This is more expensive than any of
776  // the previous derived-to-base checks we've done, but at this point
777  // performance isn't as much of an issue.
778  Paths.clear();
779  Paths.setRecordingPaths(true);
780  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
781  assert(StillOkay && "Can only be used with a derived-to-base conversion");
782  (void)StillOkay;
783
784  // Build up a textual representation of the ambiguous paths, e.g.,
785  // D -> B -> A, that will be used to illustrate the ambiguous
786  // conversions in the diagnostic. We only print one of the paths
787  // to each base class subobject.
788  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
789
790  Diag(Loc, AmbigiousBaseConvID)
791  << Derived << Base << PathDisplayStr << Range << Name;
792  return true;
793}
794
795bool
796Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
797                                   SourceLocation Loc, SourceRange Range,
798                                   CXXCastPath *BasePath,
799                                   bool IgnoreAccess) {
800  return CheckDerivedToBaseConversion(Derived, Base,
801                                      IgnoreAccess ? 0
802                                       : diag::err_upcast_to_inaccessible_base,
803                                      diag::err_ambiguous_derived_to_base_conv,
804                                      Loc, Range, DeclarationName(),
805                                      BasePath);
806}
807
808
809/// @brief Builds a string representing ambiguous paths from a
810/// specific derived class to different subobjects of the same base
811/// class.
812///
813/// This function builds a string that can be used in error messages
814/// to show the different paths that one can take through the
815/// inheritance hierarchy to go from the derived class to different
816/// subobjects of a base class. The result looks something like this:
817/// @code
818/// struct D -> struct B -> struct A
819/// struct D -> struct C -> struct A
820/// @endcode
821std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
822  std::string PathDisplayStr;
823  std::set<unsigned> DisplayedPaths;
824  for (CXXBasePaths::paths_iterator Path = Paths.begin();
825       Path != Paths.end(); ++Path) {
826    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
827      // We haven't displayed a path to this particular base
828      // class subobject yet.
829      PathDisplayStr += "\n    ";
830      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
831      for (CXXBasePath::const_iterator Element = Path->begin();
832           Element != Path->end(); ++Element)
833        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
834    }
835  }
836
837  return PathDisplayStr;
838}
839
840//===----------------------------------------------------------------------===//
841// C++ class member Handling
842//===----------------------------------------------------------------------===//
843
844/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
845Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
846                                 SourceLocation ASLoc,
847                                 SourceLocation ColonLoc) {
848  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
849  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
850                                                  ASLoc, ColonLoc);
851  CurContext->addHiddenDecl(ASDecl);
852  return ASDecl;
853}
854
855/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
856/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
857/// bitfield width if there is one and 'InitExpr' specifies the initializer if
858/// any.
859Decl *
860Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
861                               MultiTemplateParamsArg TemplateParameterLists,
862                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
863                               bool Deleted) {
864  const DeclSpec &DS = D.getDeclSpec();
865  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
866  DeclarationName Name = NameInfo.getName();
867  SourceLocation Loc = NameInfo.getLoc();
868
869  // For anonymous bitfields, the location should point to the type.
870  if (Loc.isInvalid())
871    Loc = D.getSourceRange().getBegin();
872
873  Expr *BitWidth = static_cast<Expr*>(BW);
874  Expr *Init = static_cast<Expr*>(InitExpr);
875
876  assert(isa<CXXRecordDecl>(CurContext));
877  assert(!DS.isFriendSpecified());
878
879  bool isFunc = false;
880  if (D.isFunctionDeclarator())
881    isFunc = true;
882  else if (D.getNumTypeObjects() == 0 &&
883           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
884    QualType TDType = GetTypeFromParser(DS.getRepAsType());
885    isFunc = TDType->isFunctionType();
886  }
887
888  // C++ 9.2p6: A member shall not be declared to have automatic storage
889  // duration (auto, register) or with the extern storage-class-specifier.
890  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
891  // data members and cannot be applied to names declared const or static,
892  // and cannot be applied to reference members.
893  switch (DS.getStorageClassSpec()) {
894    case DeclSpec::SCS_unspecified:
895    case DeclSpec::SCS_typedef:
896    case DeclSpec::SCS_static:
897      // FALL THROUGH.
898      break;
899    case DeclSpec::SCS_mutable:
900      if (isFunc) {
901        if (DS.getStorageClassSpecLoc().isValid())
902          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
903        else
904          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
905
906        // FIXME: It would be nicer if the keyword was ignored only for this
907        // declarator. Otherwise we could get follow-up errors.
908        D.getMutableDeclSpec().ClearStorageClassSpecs();
909      }
910      break;
911    default:
912      if (DS.getStorageClassSpecLoc().isValid())
913        Diag(DS.getStorageClassSpecLoc(),
914             diag::err_storageclass_invalid_for_member);
915      else
916        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
917      D.getMutableDeclSpec().ClearStorageClassSpecs();
918  }
919
920  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
921                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
922                      !isFunc);
923
924  Decl *Member;
925  if (isInstField) {
926    CXXScopeSpec &SS = D.getCXXScopeSpec();
927
928
929    if (SS.isSet() && !SS.isInvalid()) {
930      // The user provided a superfluous scope specifier inside a class
931      // definition:
932      //
933      // class X {
934      //   int X::member;
935      // };
936      DeclContext *DC = 0;
937      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
938        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
939        << Name << FixItHint::CreateRemoval(SS.getRange());
940      else
941        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
942          << Name << SS.getRange();
943
944      SS.clear();
945    }
946
947    // FIXME: Check for template parameters!
948    // FIXME: Check that the name is an identifier!
949    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
950                         AS);
951    assert(Member && "HandleField never returns null");
952  } else {
953    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
954    if (!Member) {
955      return 0;
956    }
957
958    // Non-instance-fields can't have a bitfield.
959    if (BitWidth) {
960      if (Member->isInvalidDecl()) {
961        // don't emit another diagnostic.
962      } else if (isa<VarDecl>(Member)) {
963        // C++ 9.6p3: A bit-field shall not be a static member.
964        // "static member 'A' cannot be a bit-field"
965        Diag(Loc, diag::err_static_not_bitfield)
966          << Name << BitWidth->getSourceRange();
967      } else if (isa<TypedefDecl>(Member)) {
968        // "typedef member 'x' cannot be a bit-field"
969        Diag(Loc, diag::err_typedef_not_bitfield)
970          << Name << BitWidth->getSourceRange();
971      } else {
972        // A function typedef ("typedef int f(); f a;").
973        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
974        Diag(Loc, diag::err_not_integral_type_bitfield)
975          << Name << cast<ValueDecl>(Member)->getType()
976          << BitWidth->getSourceRange();
977      }
978
979      BitWidth = 0;
980      Member->setInvalidDecl();
981    }
982
983    Member->setAccess(AS);
984
985    // If we have declared a member function template, set the access of the
986    // templated declaration as well.
987    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
988      FunTmpl->getTemplatedDecl()->setAccess(AS);
989  }
990
991  assert((Name || isInstField) && "No identifier for non-field ?");
992
993  if (Init)
994    AddInitializerToDecl(Member, Init, false);
995  if (Deleted) // FIXME: Source location is not very good.
996    SetDeclDeleted(Member, D.getSourceRange().getBegin());
997
998  if (isInstField) {
999    FieldCollector->Add(cast<FieldDecl>(Member));
1000    return 0;
1001  }
1002  return Member;
1003}
1004
1005/// \brief Find the direct and/or virtual base specifiers that
1006/// correspond to the given base type, for use in base initialization
1007/// within a constructor.
1008static bool FindBaseInitializer(Sema &SemaRef,
1009                                CXXRecordDecl *ClassDecl,
1010                                QualType BaseType,
1011                                const CXXBaseSpecifier *&DirectBaseSpec,
1012                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1013  // First, check for a direct base class.
1014  DirectBaseSpec = 0;
1015  for (CXXRecordDecl::base_class_const_iterator Base
1016         = ClassDecl->bases_begin();
1017       Base != ClassDecl->bases_end(); ++Base) {
1018    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1019      // We found a direct base of this type. That's what we're
1020      // initializing.
1021      DirectBaseSpec = &*Base;
1022      break;
1023    }
1024  }
1025
1026  // Check for a virtual base class.
1027  // FIXME: We might be able to short-circuit this if we know in advance that
1028  // there are no virtual bases.
1029  VirtualBaseSpec = 0;
1030  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1031    // We haven't found a base yet; search the class hierarchy for a
1032    // virtual base class.
1033    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1034                       /*DetectVirtual=*/false);
1035    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1036                              BaseType, Paths)) {
1037      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1038           Path != Paths.end(); ++Path) {
1039        if (Path->back().Base->isVirtual()) {
1040          VirtualBaseSpec = Path->back().Base;
1041          break;
1042        }
1043      }
1044    }
1045  }
1046
1047  return DirectBaseSpec || VirtualBaseSpec;
1048}
1049
1050/// ActOnMemInitializer - Handle a C++ member initializer.
1051MemInitResult
1052Sema::ActOnMemInitializer(Decl *ConstructorD,
1053                          Scope *S,
1054                          CXXScopeSpec &SS,
1055                          IdentifierInfo *MemberOrBase,
1056                          ParsedType TemplateTypeTy,
1057                          SourceLocation IdLoc,
1058                          SourceLocation LParenLoc,
1059                          ExprTy **Args, unsigned NumArgs,
1060                          SourceLocation RParenLoc,
1061                          SourceLocation EllipsisLoc) {
1062  if (!ConstructorD)
1063    return true;
1064
1065  AdjustDeclIfTemplate(ConstructorD);
1066
1067  CXXConstructorDecl *Constructor
1068    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1069  if (!Constructor) {
1070    // The user wrote a constructor initializer on a function that is
1071    // not a C++ constructor. Ignore the error for now, because we may
1072    // have more member initializers coming; we'll diagnose it just
1073    // once in ActOnMemInitializers.
1074    return true;
1075  }
1076
1077  CXXRecordDecl *ClassDecl = Constructor->getParent();
1078
1079  // C++ [class.base.init]p2:
1080  //   Names in a mem-initializer-id are looked up in the scope of the
1081  //   constructor's class and, if not found in that scope, are looked
1082  //   up in the scope containing the constructor's definition.
1083  //   [Note: if the constructor's class contains a member with the
1084  //   same name as a direct or virtual base class of the class, a
1085  //   mem-initializer-id naming the member or base class and composed
1086  //   of a single identifier refers to the class member. A
1087  //   mem-initializer-id for the hidden base class may be specified
1088  //   using a qualified name. ]
1089  if (!SS.getScopeRep() && !TemplateTypeTy) {
1090    // Look for a member, first.
1091    FieldDecl *Member = 0;
1092    DeclContext::lookup_result Result
1093      = ClassDecl->lookup(MemberOrBase);
1094    if (Result.first != Result.second) {
1095      Member = dyn_cast<FieldDecl>(*Result.first);
1096
1097      if (Member) {
1098        if (EllipsisLoc.isValid())
1099          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1100            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1101
1102        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1103                                    LParenLoc, RParenLoc);
1104      }
1105
1106      // Handle anonymous union case.
1107      if (IndirectFieldDecl* IndirectField
1108            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1109        if (EllipsisLoc.isValid())
1110          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1111            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1112
1113         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1114                                       NumArgs, IdLoc,
1115                                       LParenLoc, RParenLoc);
1116      }
1117    }
1118  }
1119  // It didn't name a member, so see if it names a class.
1120  QualType BaseType;
1121  TypeSourceInfo *TInfo = 0;
1122
1123  if (TemplateTypeTy) {
1124    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1125  } else {
1126    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1127    LookupParsedName(R, S, &SS);
1128
1129    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1130    if (!TyD) {
1131      if (R.isAmbiguous()) return true;
1132
1133      // We don't want access-control diagnostics here.
1134      R.suppressDiagnostics();
1135
1136      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1137        bool NotUnknownSpecialization = false;
1138        DeclContext *DC = computeDeclContext(SS, false);
1139        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1140          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1141
1142        if (!NotUnknownSpecialization) {
1143          // When the scope specifier can refer to a member of an unknown
1144          // specialization, we take it as a type name.
1145          BaseType = CheckTypenameType(ETK_None,
1146                                       (NestedNameSpecifier *)SS.getScopeRep(),
1147                                       *MemberOrBase, SourceLocation(),
1148                                       SS.getRange(), IdLoc);
1149          if (BaseType.isNull())
1150            return true;
1151
1152          R.clear();
1153          R.setLookupName(MemberOrBase);
1154        }
1155      }
1156
1157      // If no results were found, try to correct typos.
1158      if (R.empty() && BaseType.isNull() &&
1159          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1160          R.isSingleResult()) {
1161        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1162          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1163            // We have found a non-static data member with a similar
1164            // name to what was typed; complain and initialize that
1165            // member.
1166            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1167              << MemberOrBase << true << R.getLookupName()
1168              << FixItHint::CreateReplacement(R.getNameLoc(),
1169                                              R.getLookupName().getAsString());
1170            Diag(Member->getLocation(), diag::note_previous_decl)
1171              << Member->getDeclName();
1172
1173            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1174                                          LParenLoc, RParenLoc);
1175          }
1176        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1177          const CXXBaseSpecifier *DirectBaseSpec;
1178          const CXXBaseSpecifier *VirtualBaseSpec;
1179          if (FindBaseInitializer(*this, ClassDecl,
1180                                  Context.getTypeDeclType(Type),
1181                                  DirectBaseSpec, VirtualBaseSpec)) {
1182            // We have found a direct or virtual base class with a
1183            // similar name to what was typed; complain and initialize
1184            // that base class.
1185            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1186              << MemberOrBase << false << R.getLookupName()
1187              << FixItHint::CreateReplacement(R.getNameLoc(),
1188                                              R.getLookupName().getAsString());
1189
1190            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1191                                                             : VirtualBaseSpec;
1192            Diag(BaseSpec->getSourceRange().getBegin(),
1193                 diag::note_base_class_specified_here)
1194              << BaseSpec->getType()
1195              << BaseSpec->getSourceRange();
1196
1197            TyD = Type;
1198          }
1199        }
1200      }
1201
1202      if (!TyD && BaseType.isNull()) {
1203        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1204          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1205        return true;
1206      }
1207    }
1208
1209    if (BaseType.isNull()) {
1210      BaseType = Context.getTypeDeclType(TyD);
1211      if (SS.isSet()) {
1212        NestedNameSpecifier *Qualifier =
1213          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1214
1215        // FIXME: preserve source range information
1216        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1217      }
1218    }
1219  }
1220
1221  if (!TInfo)
1222    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1223
1224  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1225                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1226}
1227
1228/// Checks an initializer expression for use of uninitialized fields, such as
1229/// containing the field that is being initialized. Returns true if there is an
1230/// uninitialized field was used an updates the SourceLocation parameter; false
1231/// otherwise.
1232static bool InitExprContainsUninitializedFields(const Stmt *S,
1233                                                const ValueDecl *LhsField,
1234                                                SourceLocation *L) {
1235  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1236
1237  if (isa<CallExpr>(S)) {
1238    // Do not descend into function calls or constructors, as the use
1239    // of an uninitialized field may be valid. One would have to inspect
1240    // the contents of the function/ctor to determine if it is safe or not.
1241    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1242    // may be safe, depending on what the function/ctor does.
1243    return false;
1244  }
1245  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1246    const NamedDecl *RhsField = ME->getMemberDecl();
1247
1248    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1249      // The member expression points to a static data member.
1250      assert(VD->isStaticDataMember() &&
1251             "Member points to non-static data member!");
1252      (void)VD;
1253      return false;
1254    }
1255
1256    if (isa<EnumConstantDecl>(RhsField)) {
1257      // The member expression points to an enum.
1258      return false;
1259    }
1260
1261    if (RhsField == LhsField) {
1262      // Initializing a field with itself. Throw a warning.
1263      // But wait; there are exceptions!
1264      // Exception #1:  The field may not belong to this record.
1265      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1266      const Expr *base = ME->getBase();
1267      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1268        // Even though the field matches, it does not belong to this record.
1269        return false;
1270      }
1271      // None of the exceptions triggered; return true to indicate an
1272      // uninitialized field was used.
1273      *L = ME->getMemberLoc();
1274      return true;
1275    }
1276  } else if (isa<SizeOfAlignOfExpr>(S)) {
1277    // sizeof/alignof doesn't reference contents, do not warn.
1278    return false;
1279  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1280    // address-of doesn't reference contents (the pointer may be dereferenced
1281    // in the same expression but it would be rare; and weird).
1282    if (UOE->getOpcode() == UO_AddrOf)
1283      return false;
1284  }
1285  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1286       it != e; ++it) {
1287    if (!*it) {
1288      // An expression such as 'member(arg ?: "")' may trigger this.
1289      continue;
1290    }
1291    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1292      return true;
1293  }
1294  return false;
1295}
1296
1297MemInitResult
1298Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1299                             unsigned NumArgs, SourceLocation IdLoc,
1300                             SourceLocation LParenLoc,
1301                             SourceLocation RParenLoc) {
1302  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1303  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1304  assert((DirectMember || IndirectMember) &&
1305         "Member must be a FieldDecl or IndirectFieldDecl");
1306
1307  if (Member->isInvalidDecl())
1308    return true;
1309
1310  // Diagnose value-uses of fields to initialize themselves, e.g.
1311  //   foo(foo)
1312  // where foo is not also a parameter to the constructor.
1313  // TODO: implement -Wuninitialized and fold this into that framework.
1314  for (unsigned i = 0; i < NumArgs; ++i) {
1315    SourceLocation L;
1316    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1317      // FIXME: Return true in the case when other fields are used before being
1318      // uninitialized. For example, let this field be the i'th field. When
1319      // initializing the i'th field, throw a warning if any of the >= i'th
1320      // fields are used, as they are not yet initialized.
1321      // Right now we are only handling the case where the i'th field uses
1322      // itself in its initializer.
1323      Diag(L, diag::warn_field_is_uninit);
1324    }
1325  }
1326
1327  bool HasDependentArg = false;
1328  for (unsigned i = 0; i < NumArgs; i++)
1329    HasDependentArg |= Args[i]->isTypeDependent();
1330
1331  Expr *Init;
1332  if (Member->getType()->isDependentType() || HasDependentArg) {
1333    // Can't check initialization for a member of dependent type or when
1334    // any of the arguments are type-dependent expressions.
1335    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1336                                       RParenLoc);
1337
1338    // Erase any temporaries within this evaluation context; we're not
1339    // going to track them in the AST, since we'll be rebuilding the
1340    // ASTs during template instantiation.
1341    ExprTemporaries.erase(
1342              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1343                          ExprTemporaries.end());
1344  } else {
1345    // Initialize the member.
1346    InitializedEntity MemberEntity =
1347      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1348                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1349    InitializationKind Kind =
1350      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1351
1352    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1353
1354    ExprResult MemberInit =
1355      InitSeq.Perform(*this, MemberEntity, Kind,
1356                      MultiExprArg(*this, Args, NumArgs), 0);
1357    if (MemberInit.isInvalid())
1358      return true;
1359
1360    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1361
1362    // C++0x [class.base.init]p7:
1363    //   The initialization of each base and member constitutes a
1364    //   full-expression.
1365    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1366    if (MemberInit.isInvalid())
1367      return true;
1368
1369    // If we are in a dependent context, template instantiation will
1370    // perform this type-checking again. Just save the arguments that we
1371    // received in a ParenListExpr.
1372    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1373    // of the information that we have about the member
1374    // initializer. However, deconstructing the ASTs is a dicey process,
1375    // and this approach is far more likely to get the corner cases right.
1376    if (CurContext->isDependentContext())
1377      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1378                                               RParenLoc);
1379    else
1380      Init = MemberInit.get();
1381  }
1382
1383  if (DirectMember) {
1384    return new (Context) CXXCtorInitializer(Context, DirectMember,
1385                                                    IdLoc, LParenLoc, Init,
1386                                                    RParenLoc);
1387  } else {
1388    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1389                                                    IdLoc, LParenLoc, Init,
1390                                                    RParenLoc);
1391  }
1392}
1393
1394MemInitResult
1395Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1396                                 Expr **Args, unsigned NumArgs,
1397                                 SourceLocation LParenLoc,
1398                                 SourceLocation RParenLoc,
1399                                 CXXRecordDecl *ClassDecl,
1400                                 SourceLocation EllipsisLoc) {
1401  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1402  if (!LangOpts.CPlusPlus0x)
1403    return Diag(Loc, diag::err_delegation_0x_only)
1404      << TInfo->getTypeLoc().getLocalSourceRange();
1405
1406  return Diag(Loc, diag::err_delegation_unimplemented)
1407    << TInfo->getTypeLoc().getLocalSourceRange();
1408}
1409
1410MemInitResult
1411Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1412                           Expr **Args, unsigned NumArgs,
1413                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1414                           CXXRecordDecl *ClassDecl,
1415                           SourceLocation EllipsisLoc) {
1416  bool HasDependentArg = false;
1417  for (unsigned i = 0; i < NumArgs; i++)
1418    HasDependentArg |= Args[i]->isTypeDependent();
1419
1420  SourceLocation BaseLoc
1421    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1422
1423  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1424    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1425             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1426
1427  // C++ [class.base.init]p2:
1428  //   [...] Unless the mem-initializer-id names a nonstatic data
1429  //   member of the constructor's class or a direct or virtual base
1430  //   of that class, the mem-initializer is ill-formed. A
1431  //   mem-initializer-list can initialize a base class using any
1432  //   name that denotes that base class type.
1433  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1434
1435  if (EllipsisLoc.isValid()) {
1436    // This is a pack expansion.
1437    if (!BaseType->containsUnexpandedParameterPack())  {
1438      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1439        << SourceRange(BaseLoc, RParenLoc);
1440
1441      EllipsisLoc = SourceLocation();
1442    }
1443  } else {
1444    // Check for any unexpanded parameter packs.
1445    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1446      return true;
1447
1448    for (unsigned I = 0; I != NumArgs; ++I)
1449      if (DiagnoseUnexpandedParameterPack(Args[I]))
1450        return true;
1451  }
1452
1453  // Check for direct and virtual base classes.
1454  const CXXBaseSpecifier *DirectBaseSpec = 0;
1455  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1456  if (!Dependent) {
1457    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1458                                       BaseType))
1459      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs,
1460                                        LParenLoc, RParenLoc, ClassDecl,
1461                                        EllipsisLoc);
1462
1463    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1464                        VirtualBaseSpec);
1465
1466    // C++ [base.class.init]p2:
1467    // Unless the mem-initializer-id names a nonstatic data member of the
1468    // constructor's class or a direct or virtual base of that class, the
1469    // mem-initializer is ill-formed.
1470    if (!DirectBaseSpec && !VirtualBaseSpec) {
1471      // If the class has any dependent bases, then it's possible that
1472      // one of those types will resolve to the same type as
1473      // BaseType. Therefore, just treat this as a dependent base
1474      // class initialization.  FIXME: Should we try to check the
1475      // initialization anyway? It seems odd.
1476      if (ClassDecl->hasAnyDependentBases())
1477        Dependent = true;
1478      else
1479        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1480          << BaseType << Context.getTypeDeclType(ClassDecl)
1481          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1482    }
1483  }
1484
1485  if (Dependent) {
1486    // Can't check initialization for a base of dependent type or when
1487    // any of the arguments are type-dependent expressions.
1488    ExprResult BaseInit
1489      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1490                                          RParenLoc));
1491
1492    // Erase any temporaries within this evaluation context; we're not
1493    // going to track them in the AST, since we'll be rebuilding the
1494    // ASTs during template instantiation.
1495    ExprTemporaries.erase(
1496              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1497                          ExprTemporaries.end());
1498
1499    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1500                                                    /*IsVirtual=*/false,
1501                                                    LParenLoc,
1502                                                    BaseInit.takeAs<Expr>(),
1503                                                    RParenLoc,
1504                                                    EllipsisLoc);
1505  }
1506
1507  // C++ [base.class.init]p2:
1508  //   If a mem-initializer-id is ambiguous because it designates both
1509  //   a direct non-virtual base class and an inherited virtual base
1510  //   class, the mem-initializer is ill-formed.
1511  if (DirectBaseSpec && VirtualBaseSpec)
1512    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1513      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1514
1515  CXXBaseSpecifier *BaseSpec
1516    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1517  if (!BaseSpec)
1518    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1519
1520  // Initialize the base.
1521  InitializedEntity BaseEntity =
1522    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1523  InitializationKind Kind =
1524    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1525
1526  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1527
1528  ExprResult BaseInit =
1529    InitSeq.Perform(*this, BaseEntity, Kind,
1530                    MultiExprArg(*this, Args, NumArgs), 0);
1531  if (BaseInit.isInvalid())
1532    return true;
1533
1534  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1535
1536  // C++0x [class.base.init]p7:
1537  //   The initialization of each base and member constitutes a
1538  //   full-expression.
1539  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1540  if (BaseInit.isInvalid())
1541    return true;
1542
1543  // If we are in a dependent context, template instantiation will
1544  // perform this type-checking again. Just save the arguments that we
1545  // received in a ParenListExpr.
1546  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1547  // of the information that we have about the base
1548  // initializer. However, deconstructing the ASTs is a dicey process,
1549  // and this approach is far more likely to get the corner cases right.
1550  if (CurContext->isDependentContext()) {
1551    ExprResult Init
1552      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1553                                          RParenLoc));
1554    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1555                                                    BaseSpec->isVirtual(),
1556                                                    LParenLoc,
1557                                                    Init.takeAs<Expr>(),
1558                                                    RParenLoc,
1559                                                    EllipsisLoc);
1560  }
1561
1562  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1563                                                  BaseSpec->isVirtual(),
1564                                                  LParenLoc,
1565                                                  BaseInit.takeAs<Expr>(),
1566                                                  RParenLoc,
1567                                                  EllipsisLoc);
1568}
1569
1570/// ImplicitInitializerKind - How an implicit base or member initializer should
1571/// initialize its base or member.
1572enum ImplicitInitializerKind {
1573  IIK_Default,
1574  IIK_Copy,
1575  IIK_Move
1576};
1577
1578static bool
1579BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1580                             ImplicitInitializerKind ImplicitInitKind,
1581                             CXXBaseSpecifier *BaseSpec,
1582                             bool IsInheritedVirtualBase,
1583                             CXXCtorInitializer *&CXXBaseInit) {
1584  InitializedEntity InitEntity
1585    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1586                                        IsInheritedVirtualBase);
1587
1588  ExprResult BaseInit;
1589
1590  switch (ImplicitInitKind) {
1591  case IIK_Default: {
1592    InitializationKind InitKind
1593      = InitializationKind::CreateDefault(Constructor->getLocation());
1594    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1595    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1596                               MultiExprArg(SemaRef, 0, 0));
1597    break;
1598  }
1599
1600  case IIK_Copy: {
1601    ParmVarDecl *Param = Constructor->getParamDecl(0);
1602    QualType ParamType = Param->getType().getNonReferenceType();
1603
1604    Expr *CopyCtorArg =
1605      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1606                          Constructor->getLocation(), ParamType,
1607                          VK_LValue, 0);
1608
1609    // Cast to the base class to avoid ambiguities.
1610    QualType ArgTy =
1611      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1612                                       ParamType.getQualifiers());
1613
1614    CXXCastPath BasePath;
1615    BasePath.push_back(BaseSpec);
1616    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1617                              CK_UncheckedDerivedToBase,
1618                              VK_LValue, &BasePath);
1619
1620    InitializationKind InitKind
1621      = InitializationKind::CreateDirect(Constructor->getLocation(),
1622                                         SourceLocation(), SourceLocation());
1623    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1624                                   &CopyCtorArg, 1);
1625    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1626                               MultiExprArg(&CopyCtorArg, 1));
1627    break;
1628  }
1629
1630  case IIK_Move:
1631    assert(false && "Unhandled initializer kind!");
1632  }
1633
1634  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1635  if (BaseInit.isInvalid())
1636    return true;
1637
1638  CXXBaseInit =
1639    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1640               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1641                                                        SourceLocation()),
1642                                             BaseSpec->isVirtual(),
1643                                             SourceLocation(),
1644                                             BaseInit.takeAs<Expr>(),
1645                                             SourceLocation(),
1646                                             SourceLocation());
1647
1648  return false;
1649}
1650
1651static bool
1652BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1653                               ImplicitInitializerKind ImplicitInitKind,
1654                               FieldDecl *Field,
1655                               CXXCtorInitializer *&CXXMemberInit) {
1656  if (Field->isInvalidDecl())
1657    return true;
1658
1659  SourceLocation Loc = Constructor->getLocation();
1660
1661  if (ImplicitInitKind == IIK_Copy) {
1662    ParmVarDecl *Param = Constructor->getParamDecl(0);
1663    QualType ParamType = Param->getType().getNonReferenceType();
1664
1665    Expr *MemberExprBase =
1666      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1667                          Loc, ParamType, VK_LValue, 0);
1668
1669    // Build a reference to this field within the parameter.
1670    CXXScopeSpec SS;
1671    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1672                              Sema::LookupMemberName);
1673    MemberLookup.addDecl(Field, AS_public);
1674    MemberLookup.resolveKind();
1675    ExprResult CopyCtorArg
1676      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1677                                         ParamType, Loc,
1678                                         /*IsArrow=*/false,
1679                                         SS,
1680                                         /*FirstQualifierInScope=*/0,
1681                                         MemberLookup,
1682                                         /*TemplateArgs=*/0);
1683    if (CopyCtorArg.isInvalid())
1684      return true;
1685
1686    // When the field we are copying is an array, create index variables for
1687    // each dimension of the array. We use these index variables to subscript
1688    // the source array, and other clients (e.g., CodeGen) will perform the
1689    // necessary iteration with these index variables.
1690    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1691    QualType BaseType = Field->getType();
1692    QualType SizeType = SemaRef.Context.getSizeType();
1693    while (const ConstantArrayType *Array
1694                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1695      // Create the iteration variable for this array index.
1696      IdentifierInfo *IterationVarName = 0;
1697      {
1698        llvm::SmallString<8> Str;
1699        llvm::raw_svector_ostream OS(Str);
1700        OS << "__i" << IndexVariables.size();
1701        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1702      }
1703      VarDecl *IterationVar
1704        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1705                          IterationVarName, SizeType,
1706                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1707                          SC_None, SC_None);
1708      IndexVariables.push_back(IterationVar);
1709
1710      // Create a reference to the iteration variable.
1711      ExprResult IterationVarRef
1712        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1713      assert(!IterationVarRef.isInvalid() &&
1714             "Reference to invented variable cannot fail!");
1715
1716      // Subscript the array with this iteration variable.
1717      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1718                                                            Loc,
1719                                                        IterationVarRef.take(),
1720                                                            Loc);
1721      if (CopyCtorArg.isInvalid())
1722        return true;
1723
1724      BaseType = Array->getElementType();
1725    }
1726
1727    // Construct the entity that we will be initializing. For an array, this
1728    // will be first element in the array, which may require several levels
1729    // of array-subscript entities.
1730    llvm::SmallVector<InitializedEntity, 4> Entities;
1731    Entities.reserve(1 + IndexVariables.size());
1732    Entities.push_back(InitializedEntity::InitializeMember(Field));
1733    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1734      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1735                                                              0,
1736                                                              Entities.back()));
1737
1738    // Direct-initialize to use the copy constructor.
1739    InitializationKind InitKind =
1740      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1741
1742    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1743    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1744                                   &CopyCtorArgE, 1);
1745
1746    ExprResult MemberInit
1747      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1748                        MultiExprArg(&CopyCtorArgE, 1));
1749    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1750    if (MemberInit.isInvalid())
1751      return true;
1752
1753    CXXMemberInit
1754      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1755                                           MemberInit.takeAs<Expr>(), Loc,
1756                                           IndexVariables.data(),
1757                                           IndexVariables.size());
1758    return false;
1759  }
1760
1761  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1762
1763  QualType FieldBaseElementType =
1764    SemaRef.Context.getBaseElementType(Field->getType());
1765
1766  if (FieldBaseElementType->isRecordType()) {
1767    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1768    InitializationKind InitKind =
1769      InitializationKind::CreateDefault(Loc);
1770
1771    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1772    ExprResult MemberInit =
1773      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1774
1775    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1776    if (MemberInit.isInvalid())
1777      return true;
1778
1779    CXXMemberInit =
1780      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1781                                                       Field, Loc, Loc,
1782                                                       MemberInit.get(),
1783                                                       Loc);
1784    return false;
1785  }
1786
1787  if (FieldBaseElementType->isReferenceType()) {
1788    SemaRef.Diag(Constructor->getLocation(),
1789                 diag::err_uninitialized_member_in_ctor)
1790    << (int)Constructor->isImplicit()
1791    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1792    << 0 << Field->getDeclName();
1793    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1794    return true;
1795  }
1796
1797  if (FieldBaseElementType.isConstQualified()) {
1798    SemaRef.Diag(Constructor->getLocation(),
1799                 diag::err_uninitialized_member_in_ctor)
1800    << (int)Constructor->isImplicit()
1801    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1802    << 1 << Field->getDeclName();
1803    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1804    return true;
1805  }
1806
1807  // Nothing to initialize.
1808  CXXMemberInit = 0;
1809  return false;
1810}
1811
1812namespace {
1813struct BaseAndFieldInfo {
1814  Sema &S;
1815  CXXConstructorDecl *Ctor;
1816  bool AnyErrorsInInits;
1817  ImplicitInitializerKind IIK;
1818  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
1819  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
1820
1821  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1822    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1823    // FIXME: Handle implicit move constructors.
1824    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1825      IIK = IIK_Copy;
1826    else
1827      IIK = IIK_Default;
1828  }
1829};
1830}
1831
1832static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1833                                    FieldDecl *Top, FieldDecl *Field) {
1834
1835  // Overwhelmingly common case: we have a direct initializer for this field.
1836  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1837    Info.AllToInit.push_back(Init);
1838    return false;
1839  }
1840
1841  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1842    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1843    assert(FieldClassType && "anonymous struct/union without record type");
1844    CXXRecordDecl *FieldClassDecl
1845      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1846
1847    // Even though union members never have non-trivial default
1848    // constructions in C++03, we still build member initializers for aggregate
1849    // record types which can be union members, and C++0x allows non-trivial
1850    // default constructors for union members, so we ensure that only one
1851    // member is initialized for these.
1852    if (FieldClassDecl->isUnion()) {
1853      // First check for an explicit initializer for one field.
1854      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1855           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1856        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1857          Info.AllToInit.push_back(Init);
1858
1859          // Once we've initialized a field of an anonymous union, the union
1860          // field in the class is also initialized, so exit immediately.
1861          return false;
1862        } else if ((*FA)->isAnonymousStructOrUnion()) {
1863          if (CollectFieldInitializer(Info, Top, *FA))
1864            return true;
1865        }
1866      }
1867
1868      // Fallthrough and construct a default initializer for the union as
1869      // a whole, which can call its default constructor if such a thing exists
1870      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1871      // behavior going forward with C++0x, when anonymous unions there are
1872      // finalized, we should revisit this.
1873    } else {
1874      // For structs, we simply descend through to initialize all members where
1875      // necessary.
1876      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1877           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1878        if (CollectFieldInitializer(Info, Top, *FA))
1879          return true;
1880      }
1881    }
1882  }
1883
1884  // Don't try to build an implicit initializer if there were semantic
1885  // errors in any of the initializers (and therefore we might be
1886  // missing some that the user actually wrote).
1887  if (Info.AnyErrorsInInits)
1888    return false;
1889
1890  CXXCtorInitializer *Init = 0;
1891  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1892    return true;
1893
1894  if (Init)
1895    Info.AllToInit.push_back(Init);
1896
1897  return false;
1898}
1899
1900bool
1901Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
1902                                  CXXCtorInitializer **Initializers,
1903                                  unsigned NumInitializers,
1904                                  bool AnyErrors) {
1905  if (Constructor->getDeclContext()->isDependentContext()) {
1906    // Just store the initializers as written, they will be checked during
1907    // instantiation.
1908    if (NumInitializers > 0) {
1909      Constructor->setNumCtorInitializers(NumInitializers);
1910      CXXCtorInitializer **baseOrMemberInitializers =
1911        new (Context) CXXCtorInitializer*[NumInitializers];
1912      memcpy(baseOrMemberInitializers, Initializers,
1913             NumInitializers * sizeof(CXXCtorInitializer*));
1914      Constructor->setCtorInitializers(baseOrMemberInitializers);
1915    }
1916
1917    return false;
1918  }
1919
1920  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1921
1922  // We need to build the initializer AST according to order of construction
1923  // and not what user specified in the Initializers list.
1924  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1925  if (!ClassDecl)
1926    return true;
1927
1928  bool HadError = false;
1929
1930  for (unsigned i = 0; i < NumInitializers; i++) {
1931    CXXCtorInitializer *Member = Initializers[i];
1932
1933    if (Member->isBaseInitializer())
1934      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1935    else
1936      Info.AllBaseFields[Member->getAnyMember()] = Member;
1937  }
1938
1939  // Keep track of the direct virtual bases.
1940  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1941  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1942       E = ClassDecl->bases_end(); I != E; ++I) {
1943    if (I->isVirtual())
1944      DirectVBases.insert(I);
1945  }
1946
1947  // Push virtual bases before others.
1948  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1949       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1950
1951    if (CXXCtorInitializer *Value
1952        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1953      Info.AllToInit.push_back(Value);
1954    } else if (!AnyErrors) {
1955      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1956      CXXCtorInitializer *CXXBaseInit;
1957      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1958                                       VBase, IsInheritedVirtualBase,
1959                                       CXXBaseInit)) {
1960        HadError = true;
1961        continue;
1962      }
1963
1964      Info.AllToInit.push_back(CXXBaseInit);
1965    }
1966  }
1967
1968  // Non-virtual bases.
1969  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1970       E = ClassDecl->bases_end(); Base != E; ++Base) {
1971    // Virtuals are in the virtual base list and already constructed.
1972    if (Base->isVirtual())
1973      continue;
1974
1975    if (CXXCtorInitializer *Value
1976          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1977      Info.AllToInit.push_back(Value);
1978    } else if (!AnyErrors) {
1979      CXXCtorInitializer *CXXBaseInit;
1980      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1981                                       Base, /*IsInheritedVirtualBase=*/false,
1982                                       CXXBaseInit)) {
1983        HadError = true;
1984        continue;
1985      }
1986
1987      Info.AllToInit.push_back(CXXBaseInit);
1988    }
1989  }
1990
1991  // Fields.
1992  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1993       E = ClassDecl->field_end(); Field != E; ++Field) {
1994    if ((*Field)->getType()->isIncompleteArrayType()) {
1995      assert(ClassDecl->hasFlexibleArrayMember() &&
1996             "Incomplete array type is not valid");
1997      continue;
1998    }
1999    if (CollectFieldInitializer(Info, *Field, *Field))
2000      HadError = true;
2001  }
2002
2003  NumInitializers = Info.AllToInit.size();
2004  if (NumInitializers > 0) {
2005    Constructor->setNumCtorInitializers(NumInitializers);
2006    CXXCtorInitializer **baseOrMemberInitializers =
2007      new (Context) CXXCtorInitializer*[NumInitializers];
2008    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2009           NumInitializers * sizeof(CXXCtorInitializer*));
2010    Constructor->setCtorInitializers(baseOrMemberInitializers);
2011
2012    // Constructors implicitly reference the base and member
2013    // destructors.
2014    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2015                                           Constructor->getParent());
2016  }
2017
2018  return HadError;
2019}
2020
2021static void *GetKeyForTopLevelField(FieldDecl *Field) {
2022  // For anonymous unions, use the class declaration as the key.
2023  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2024    if (RT->getDecl()->isAnonymousStructOrUnion())
2025      return static_cast<void *>(RT->getDecl());
2026  }
2027  return static_cast<void *>(Field);
2028}
2029
2030static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2031  return Context.getCanonicalType(BaseType).getTypePtr();
2032}
2033
2034static void *GetKeyForMember(ASTContext &Context,
2035                             CXXCtorInitializer *Member) {
2036  if (!Member->isAnyMemberInitializer())
2037    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2038
2039  // For fields injected into the class via declaration of an anonymous union,
2040  // use its anonymous union class declaration as the unique key.
2041  FieldDecl *Field = Member->getAnyMember();
2042
2043  // If the field is a member of an anonymous struct or union, our key
2044  // is the anonymous record decl that's a direct child of the class.
2045  RecordDecl *RD = Field->getParent();
2046  if (RD->isAnonymousStructOrUnion()) {
2047    while (true) {
2048      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2049      if (Parent->isAnonymousStructOrUnion())
2050        RD = Parent;
2051      else
2052        break;
2053    }
2054
2055    return static_cast<void *>(RD);
2056  }
2057
2058  return static_cast<void *>(Field);
2059}
2060
2061static void
2062DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2063                                  const CXXConstructorDecl *Constructor,
2064                                  CXXCtorInitializer **Inits,
2065                                  unsigned NumInits) {
2066  if (Constructor->getDeclContext()->isDependentContext())
2067    return;
2068
2069  // Don't check initializers order unless the warning is enabled at the
2070  // location of at least one initializer.
2071  bool ShouldCheckOrder = false;
2072  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2073    CXXCtorInitializer *Init = Inits[InitIndex];
2074    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2075                                         Init->getSourceLocation())
2076          != Diagnostic::Ignored) {
2077      ShouldCheckOrder = true;
2078      break;
2079    }
2080  }
2081  if (!ShouldCheckOrder)
2082    return;
2083
2084  // Build the list of bases and members in the order that they'll
2085  // actually be initialized.  The explicit initializers should be in
2086  // this same order but may be missing things.
2087  llvm::SmallVector<const void*, 32> IdealInitKeys;
2088
2089  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2090
2091  // 1. Virtual bases.
2092  for (CXXRecordDecl::base_class_const_iterator VBase =
2093       ClassDecl->vbases_begin(),
2094       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2095    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2096
2097  // 2. Non-virtual bases.
2098  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2099       E = ClassDecl->bases_end(); Base != E; ++Base) {
2100    if (Base->isVirtual())
2101      continue;
2102    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2103  }
2104
2105  // 3. Direct fields.
2106  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2107       E = ClassDecl->field_end(); Field != E; ++Field)
2108    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2109
2110  unsigned NumIdealInits = IdealInitKeys.size();
2111  unsigned IdealIndex = 0;
2112
2113  CXXCtorInitializer *PrevInit = 0;
2114  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2115    CXXCtorInitializer *Init = Inits[InitIndex];
2116    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2117
2118    // Scan forward to try to find this initializer in the idealized
2119    // initializers list.
2120    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2121      if (InitKey == IdealInitKeys[IdealIndex])
2122        break;
2123
2124    // If we didn't find this initializer, it must be because we
2125    // scanned past it on a previous iteration.  That can only
2126    // happen if we're out of order;  emit a warning.
2127    if (IdealIndex == NumIdealInits && PrevInit) {
2128      Sema::SemaDiagnosticBuilder D =
2129        SemaRef.Diag(PrevInit->getSourceLocation(),
2130                     diag::warn_initializer_out_of_order);
2131
2132      if (PrevInit->isAnyMemberInitializer())
2133        D << 0 << PrevInit->getAnyMember()->getDeclName();
2134      else
2135        D << 1 << PrevInit->getBaseClassInfo()->getType();
2136
2137      if (Init->isAnyMemberInitializer())
2138        D << 0 << Init->getAnyMember()->getDeclName();
2139      else
2140        D << 1 << Init->getBaseClassInfo()->getType();
2141
2142      // Move back to the initializer's location in the ideal list.
2143      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2144        if (InitKey == IdealInitKeys[IdealIndex])
2145          break;
2146
2147      assert(IdealIndex != NumIdealInits &&
2148             "initializer not found in initializer list");
2149    }
2150
2151    PrevInit = Init;
2152  }
2153}
2154
2155namespace {
2156bool CheckRedundantInit(Sema &S,
2157                        CXXCtorInitializer *Init,
2158                        CXXCtorInitializer *&PrevInit) {
2159  if (!PrevInit) {
2160    PrevInit = Init;
2161    return false;
2162  }
2163
2164  if (FieldDecl *Field = Init->getMember())
2165    S.Diag(Init->getSourceLocation(),
2166           diag::err_multiple_mem_initialization)
2167      << Field->getDeclName()
2168      << Init->getSourceRange();
2169  else {
2170    Type *BaseClass = Init->getBaseClass();
2171    assert(BaseClass && "neither field nor base");
2172    S.Diag(Init->getSourceLocation(),
2173           diag::err_multiple_base_initialization)
2174      << QualType(BaseClass, 0)
2175      << Init->getSourceRange();
2176  }
2177  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2178    << 0 << PrevInit->getSourceRange();
2179
2180  return true;
2181}
2182
2183typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2184typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2185
2186bool CheckRedundantUnionInit(Sema &S,
2187                             CXXCtorInitializer *Init,
2188                             RedundantUnionMap &Unions) {
2189  FieldDecl *Field = Init->getAnyMember();
2190  RecordDecl *Parent = Field->getParent();
2191  if (!Parent->isAnonymousStructOrUnion())
2192    return false;
2193
2194  NamedDecl *Child = Field;
2195  do {
2196    if (Parent->isUnion()) {
2197      UnionEntry &En = Unions[Parent];
2198      if (En.first && En.first != Child) {
2199        S.Diag(Init->getSourceLocation(),
2200               diag::err_multiple_mem_union_initialization)
2201          << Field->getDeclName()
2202          << Init->getSourceRange();
2203        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2204          << 0 << En.second->getSourceRange();
2205        return true;
2206      } else if (!En.first) {
2207        En.first = Child;
2208        En.second = Init;
2209      }
2210    }
2211
2212    Child = Parent;
2213    Parent = cast<RecordDecl>(Parent->getDeclContext());
2214  } while (Parent->isAnonymousStructOrUnion());
2215
2216  return false;
2217}
2218}
2219
2220/// ActOnMemInitializers - Handle the member initializers for a constructor.
2221void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2222                                SourceLocation ColonLoc,
2223                                MemInitTy **meminits, unsigned NumMemInits,
2224                                bool AnyErrors) {
2225  if (!ConstructorDecl)
2226    return;
2227
2228  AdjustDeclIfTemplate(ConstructorDecl);
2229
2230  CXXConstructorDecl *Constructor
2231    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2232
2233  if (!Constructor) {
2234    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2235    return;
2236  }
2237
2238  CXXCtorInitializer **MemInits =
2239    reinterpret_cast<CXXCtorInitializer **>(meminits);
2240
2241  // Mapping for the duplicate initializers check.
2242  // For member initializers, this is keyed with a FieldDecl*.
2243  // For base initializers, this is keyed with a Type*.
2244  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2245
2246  // Mapping for the inconsistent anonymous-union initializers check.
2247  RedundantUnionMap MemberUnions;
2248
2249  bool HadError = false;
2250  for (unsigned i = 0; i < NumMemInits; i++) {
2251    CXXCtorInitializer *Init = MemInits[i];
2252
2253    // Set the source order index.
2254    Init->setSourceOrder(i);
2255
2256    if (Init->isAnyMemberInitializer()) {
2257      FieldDecl *Field = Init->getAnyMember();
2258      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2259          CheckRedundantUnionInit(*this, Init, MemberUnions))
2260        HadError = true;
2261    } else {
2262      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2263      if (CheckRedundantInit(*this, Init, Members[Key]))
2264        HadError = true;
2265    }
2266  }
2267
2268  if (HadError)
2269    return;
2270
2271  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2272
2273  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2274}
2275
2276void
2277Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2278                                             CXXRecordDecl *ClassDecl) {
2279  // Ignore dependent contexts.
2280  if (ClassDecl->isDependentContext())
2281    return;
2282
2283  // FIXME: all the access-control diagnostics are positioned on the
2284  // field/base declaration.  That's probably good; that said, the
2285  // user might reasonably want to know why the destructor is being
2286  // emitted, and we currently don't say.
2287
2288  // Non-static data members.
2289  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2290       E = ClassDecl->field_end(); I != E; ++I) {
2291    FieldDecl *Field = *I;
2292    if (Field->isInvalidDecl())
2293      continue;
2294    QualType FieldType = Context.getBaseElementType(Field->getType());
2295
2296    const RecordType* RT = FieldType->getAs<RecordType>();
2297    if (!RT)
2298      continue;
2299
2300    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2301    if (FieldClassDecl->hasTrivialDestructor())
2302      continue;
2303
2304    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2305    CheckDestructorAccess(Field->getLocation(), Dtor,
2306                          PDiag(diag::err_access_dtor_field)
2307                            << Field->getDeclName()
2308                            << FieldType);
2309
2310    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2311  }
2312
2313  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2314
2315  // Bases.
2316  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2317       E = ClassDecl->bases_end(); Base != E; ++Base) {
2318    // Bases are always records in a well-formed non-dependent class.
2319    const RecordType *RT = Base->getType()->getAs<RecordType>();
2320
2321    // Remember direct virtual bases.
2322    if (Base->isVirtual())
2323      DirectVirtualBases.insert(RT);
2324
2325    // Ignore trivial destructors.
2326    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2327    if (BaseClassDecl->hasTrivialDestructor())
2328      continue;
2329
2330    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2331
2332    // FIXME: caret should be on the start of the class name
2333    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2334                          PDiag(diag::err_access_dtor_base)
2335                            << Base->getType()
2336                            << Base->getSourceRange());
2337
2338    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2339  }
2340
2341  // Virtual bases.
2342  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2343       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2344
2345    // Bases are always records in a well-formed non-dependent class.
2346    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2347
2348    // Ignore direct virtual bases.
2349    if (DirectVirtualBases.count(RT))
2350      continue;
2351
2352    // Ignore trivial destructors.
2353    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2354    if (BaseClassDecl->hasTrivialDestructor())
2355      continue;
2356
2357    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2358    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2359                          PDiag(diag::err_access_dtor_vbase)
2360                            << VBase->getType());
2361
2362    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2363  }
2364}
2365
2366void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2367  if (!CDtorDecl)
2368    return;
2369
2370  if (CXXConstructorDecl *Constructor
2371      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2372    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2373}
2374
2375bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2376                                  unsigned DiagID, AbstractDiagSelID SelID) {
2377  if (SelID == -1)
2378    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2379  else
2380    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2381}
2382
2383bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2384                                  const PartialDiagnostic &PD) {
2385  if (!getLangOptions().CPlusPlus)
2386    return false;
2387
2388  if (const ArrayType *AT = Context.getAsArrayType(T))
2389    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2390
2391  if (const PointerType *PT = T->getAs<PointerType>()) {
2392    // Find the innermost pointer type.
2393    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2394      PT = T;
2395
2396    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2397      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2398  }
2399
2400  const RecordType *RT = T->getAs<RecordType>();
2401  if (!RT)
2402    return false;
2403
2404  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2405
2406  // We can't answer whether something is abstract until it has a
2407  // definition.  If it's currently being defined, we'll walk back
2408  // over all the declarations when we have a full definition.
2409  const CXXRecordDecl *Def = RD->getDefinition();
2410  if (!Def || Def->isBeingDefined())
2411    return false;
2412
2413  if (!RD->isAbstract())
2414    return false;
2415
2416  Diag(Loc, PD) << RD->getDeclName();
2417  DiagnoseAbstractType(RD);
2418
2419  return true;
2420}
2421
2422void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2423  // Check if we've already emitted the list of pure virtual functions
2424  // for this class.
2425  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2426    return;
2427
2428  CXXFinalOverriderMap FinalOverriders;
2429  RD->getFinalOverriders(FinalOverriders);
2430
2431  // Keep a set of seen pure methods so we won't diagnose the same method
2432  // more than once.
2433  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2434
2435  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2436                                   MEnd = FinalOverriders.end();
2437       M != MEnd;
2438       ++M) {
2439    for (OverridingMethods::iterator SO = M->second.begin(),
2440                                  SOEnd = M->second.end();
2441         SO != SOEnd; ++SO) {
2442      // C++ [class.abstract]p4:
2443      //   A class is abstract if it contains or inherits at least one
2444      //   pure virtual function for which the final overrider is pure
2445      //   virtual.
2446
2447      //
2448      if (SO->second.size() != 1)
2449        continue;
2450
2451      if (!SO->second.front().Method->isPure())
2452        continue;
2453
2454      if (!SeenPureMethods.insert(SO->second.front().Method))
2455        continue;
2456
2457      Diag(SO->second.front().Method->getLocation(),
2458           diag::note_pure_virtual_function)
2459        << SO->second.front().Method->getDeclName();
2460    }
2461  }
2462
2463  if (!PureVirtualClassDiagSet)
2464    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2465  PureVirtualClassDiagSet->insert(RD);
2466}
2467
2468namespace {
2469struct AbstractUsageInfo {
2470  Sema &S;
2471  CXXRecordDecl *Record;
2472  CanQualType AbstractType;
2473  bool Invalid;
2474
2475  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2476    : S(S), Record(Record),
2477      AbstractType(S.Context.getCanonicalType(
2478                   S.Context.getTypeDeclType(Record))),
2479      Invalid(false) {}
2480
2481  void DiagnoseAbstractType() {
2482    if (Invalid) return;
2483    S.DiagnoseAbstractType(Record);
2484    Invalid = true;
2485  }
2486
2487  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2488};
2489
2490struct CheckAbstractUsage {
2491  AbstractUsageInfo &Info;
2492  const NamedDecl *Ctx;
2493
2494  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2495    : Info(Info), Ctx(Ctx) {}
2496
2497  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2498    switch (TL.getTypeLocClass()) {
2499#define ABSTRACT_TYPELOC(CLASS, PARENT)
2500#define TYPELOC(CLASS, PARENT) \
2501    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2502#include "clang/AST/TypeLocNodes.def"
2503    }
2504  }
2505
2506  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2507    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2508    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2509      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2510      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2511    }
2512  }
2513
2514  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2515    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2516  }
2517
2518  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2519    // Visit the type parameters from a permissive context.
2520    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2521      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2522      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2523        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2524          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2525      // TODO: other template argument types?
2526    }
2527  }
2528
2529  // Visit pointee types from a permissive context.
2530#define CheckPolymorphic(Type) \
2531  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2532    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2533  }
2534  CheckPolymorphic(PointerTypeLoc)
2535  CheckPolymorphic(ReferenceTypeLoc)
2536  CheckPolymorphic(MemberPointerTypeLoc)
2537  CheckPolymorphic(BlockPointerTypeLoc)
2538
2539  /// Handle all the types we haven't given a more specific
2540  /// implementation for above.
2541  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2542    // Every other kind of type that we haven't called out already
2543    // that has an inner type is either (1) sugar or (2) contains that
2544    // inner type in some way as a subobject.
2545    if (TypeLoc Next = TL.getNextTypeLoc())
2546      return Visit(Next, Sel);
2547
2548    // If there's no inner type and we're in a permissive context,
2549    // don't diagnose.
2550    if (Sel == Sema::AbstractNone) return;
2551
2552    // Check whether the type matches the abstract type.
2553    QualType T = TL.getType();
2554    if (T->isArrayType()) {
2555      Sel = Sema::AbstractArrayType;
2556      T = Info.S.Context.getBaseElementType(T);
2557    }
2558    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2559    if (CT != Info.AbstractType) return;
2560
2561    // It matched; do some magic.
2562    if (Sel == Sema::AbstractArrayType) {
2563      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2564        << T << TL.getSourceRange();
2565    } else {
2566      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2567        << Sel << T << TL.getSourceRange();
2568    }
2569    Info.DiagnoseAbstractType();
2570  }
2571};
2572
2573void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2574                                  Sema::AbstractDiagSelID Sel) {
2575  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2576}
2577
2578}
2579
2580/// Check for invalid uses of an abstract type in a method declaration.
2581static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2582                                    CXXMethodDecl *MD) {
2583  // No need to do the check on definitions, which require that
2584  // the return/param types be complete.
2585  if (MD->isThisDeclarationADefinition())
2586    return;
2587
2588  // For safety's sake, just ignore it if we don't have type source
2589  // information.  This should never happen for non-implicit methods,
2590  // but...
2591  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2592    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2593}
2594
2595/// Check for invalid uses of an abstract type within a class definition.
2596static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2597                                    CXXRecordDecl *RD) {
2598  for (CXXRecordDecl::decl_iterator
2599         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2600    Decl *D = *I;
2601    if (D->isImplicit()) continue;
2602
2603    // Methods and method templates.
2604    if (isa<CXXMethodDecl>(D)) {
2605      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2606    } else if (isa<FunctionTemplateDecl>(D)) {
2607      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2608      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2609
2610    // Fields and static variables.
2611    } else if (isa<FieldDecl>(D)) {
2612      FieldDecl *FD = cast<FieldDecl>(D);
2613      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2614        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2615    } else if (isa<VarDecl>(D)) {
2616      VarDecl *VD = cast<VarDecl>(D);
2617      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2618        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2619
2620    // Nested classes and class templates.
2621    } else if (isa<CXXRecordDecl>(D)) {
2622      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2623    } else if (isa<ClassTemplateDecl>(D)) {
2624      CheckAbstractClassUsage(Info,
2625                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2626    }
2627  }
2628}
2629
2630/// \brief Perform semantic checks on a class definition that has been
2631/// completing, introducing implicitly-declared members, checking for
2632/// abstract types, etc.
2633void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2634  if (!Record)
2635    return;
2636
2637  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2638    AbstractUsageInfo Info(*this, Record);
2639    CheckAbstractClassUsage(Info, Record);
2640  }
2641
2642  // If this is not an aggregate type and has no user-declared constructor,
2643  // complain about any non-static data members of reference or const scalar
2644  // type, since they will never get initializers.
2645  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2646      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2647    bool Complained = false;
2648    for (RecordDecl::field_iterator F = Record->field_begin(),
2649                                 FEnd = Record->field_end();
2650         F != FEnd; ++F) {
2651      if (F->getType()->isReferenceType() ||
2652          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2653        if (!Complained) {
2654          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2655            << Record->getTagKind() << Record;
2656          Complained = true;
2657        }
2658
2659        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2660          << F->getType()->isReferenceType()
2661          << F->getDeclName();
2662      }
2663    }
2664  }
2665
2666  if (Record->isDynamicClass())
2667    DynamicClasses.push_back(Record);
2668
2669  if (Record->getIdentifier()) {
2670    // C++ [class.mem]p13:
2671    //   If T is the name of a class, then each of the following shall have a
2672    //   name different from T:
2673    //     - every member of every anonymous union that is a member of class T.
2674    //
2675    // C++ [class.mem]p14:
2676    //   In addition, if class T has a user-declared constructor (12.1), every
2677    //   non-static data member of class T shall have a name different from T.
2678    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2679         R.first != R.second; ++R.first) {
2680      NamedDecl *D = *R.first;
2681      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2682          isa<IndirectFieldDecl>(D)) {
2683        Diag(D->getLocation(), diag::err_member_name_of_class)
2684          << D->getDeclName();
2685        break;
2686      }
2687    }
2688  }
2689}
2690
2691void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2692                                             Decl *TagDecl,
2693                                             SourceLocation LBrac,
2694                                             SourceLocation RBrac,
2695                                             AttributeList *AttrList) {
2696  if (!TagDecl)
2697    return;
2698
2699  AdjustDeclIfTemplate(TagDecl);
2700
2701  ActOnFields(S, RLoc, TagDecl,
2702              // strict aliasing violation!
2703              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2704              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2705
2706  CheckCompletedCXXClass(
2707                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2708}
2709
2710namespace {
2711  /// \brief Helper class that collects exception specifications for
2712  /// implicitly-declared special member functions.
2713  class ImplicitExceptionSpecification {
2714    ASTContext &Context;
2715    bool AllowsAllExceptions;
2716    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2717    llvm::SmallVector<QualType, 4> Exceptions;
2718
2719  public:
2720    explicit ImplicitExceptionSpecification(ASTContext &Context)
2721      : Context(Context), AllowsAllExceptions(false) { }
2722
2723    /// \brief Whether the special member function should have any
2724    /// exception specification at all.
2725    bool hasExceptionSpecification() const {
2726      return !AllowsAllExceptions;
2727    }
2728
2729    /// \brief Whether the special member function should have a
2730    /// throw(...) exception specification (a Microsoft extension).
2731    bool hasAnyExceptionSpecification() const {
2732      return false;
2733    }
2734
2735    /// \brief The number of exceptions in the exception specification.
2736    unsigned size() const { return Exceptions.size(); }
2737
2738    /// \brief The set of exceptions in the exception specification.
2739    const QualType *data() const { return Exceptions.data(); }
2740
2741    /// \brief Note that
2742    void CalledDecl(CXXMethodDecl *Method) {
2743      // If we already know that we allow all exceptions, do nothing.
2744      if (AllowsAllExceptions || !Method)
2745        return;
2746
2747      const FunctionProtoType *Proto
2748        = Method->getType()->getAs<FunctionProtoType>();
2749
2750      // If this function can throw any exceptions, make a note of that.
2751      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2752        AllowsAllExceptions = true;
2753        ExceptionsSeen.clear();
2754        Exceptions.clear();
2755        return;
2756      }
2757
2758      // Record the exceptions in this function's exception specification.
2759      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2760                                              EEnd = Proto->exception_end();
2761           E != EEnd; ++E)
2762        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2763          Exceptions.push_back(*E);
2764    }
2765  };
2766}
2767
2768
2769/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2770/// special functions, such as the default constructor, copy
2771/// constructor, or destructor, to the given C++ class (C++
2772/// [special]p1).  This routine can only be executed just before the
2773/// definition of the class is complete.
2774void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2775  if (!ClassDecl->hasUserDeclaredConstructor())
2776    ++ASTContext::NumImplicitDefaultConstructors;
2777
2778  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2779    ++ASTContext::NumImplicitCopyConstructors;
2780
2781  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2782    ++ASTContext::NumImplicitCopyAssignmentOperators;
2783
2784    // If we have a dynamic class, then the copy assignment operator may be
2785    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2786    // it shows up in the right place in the vtable and that we diagnose
2787    // problems with the implicit exception specification.
2788    if (ClassDecl->isDynamicClass())
2789      DeclareImplicitCopyAssignment(ClassDecl);
2790  }
2791
2792  if (!ClassDecl->hasUserDeclaredDestructor()) {
2793    ++ASTContext::NumImplicitDestructors;
2794
2795    // If we have a dynamic class, then the destructor may be virtual, so we
2796    // have to declare the destructor immediately. This ensures that, e.g., it
2797    // shows up in the right place in the vtable and that we diagnose problems
2798    // with the implicit exception specification.
2799    if (ClassDecl->isDynamicClass())
2800      DeclareImplicitDestructor(ClassDecl);
2801  }
2802}
2803
2804void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
2805  if (!D)
2806    return;
2807
2808  TemplateParameterList *Params = 0;
2809  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2810    Params = Template->getTemplateParameters();
2811  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2812           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2813    Params = PartialSpec->getTemplateParameters();
2814  else
2815    return;
2816
2817  for (TemplateParameterList::iterator Param = Params->begin(),
2818                                    ParamEnd = Params->end();
2819       Param != ParamEnd; ++Param) {
2820    NamedDecl *Named = cast<NamedDecl>(*Param);
2821    if (Named->getDeclName()) {
2822      S->AddDecl(Named);
2823      IdResolver.AddDecl(Named);
2824    }
2825  }
2826}
2827
2828void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2829  if (!RecordD) return;
2830  AdjustDeclIfTemplate(RecordD);
2831  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
2832  PushDeclContext(S, Record);
2833}
2834
2835void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2836  if (!RecordD) return;
2837  PopDeclContext();
2838}
2839
2840/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2841/// parsing a top-level (non-nested) C++ class, and we are now
2842/// parsing those parts of the given Method declaration that could
2843/// not be parsed earlier (C++ [class.mem]p2), such as default
2844/// arguments. This action should enter the scope of the given
2845/// Method declaration as if we had just parsed the qualified method
2846/// name. However, it should not bring the parameters into scope;
2847/// that will be performed by ActOnDelayedCXXMethodParameter.
2848void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2849}
2850
2851/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2852/// C++ method declaration. We're (re-)introducing the given
2853/// function parameter into scope for use in parsing later parts of
2854/// the method declaration. For example, we could see an
2855/// ActOnParamDefaultArgument event for this parameter.
2856void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
2857  if (!ParamD)
2858    return;
2859
2860  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
2861
2862  // If this parameter has an unparsed default argument, clear it out
2863  // to make way for the parsed default argument.
2864  if (Param->hasUnparsedDefaultArg())
2865    Param->setDefaultArg(0);
2866
2867  S->AddDecl(Param);
2868  if (Param->getDeclName())
2869    IdResolver.AddDecl(Param);
2870}
2871
2872/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2873/// processing the delayed method declaration for Method. The method
2874/// declaration is now considered finished. There may be a separate
2875/// ActOnStartOfFunctionDef action later (not necessarily
2876/// immediately!) for this method, if it was also defined inside the
2877/// class body.
2878void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2879  if (!MethodD)
2880    return;
2881
2882  AdjustDeclIfTemplate(MethodD);
2883
2884  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
2885
2886  // Now that we have our default arguments, check the constructor
2887  // again. It could produce additional diagnostics or affect whether
2888  // the class has implicitly-declared destructors, among other
2889  // things.
2890  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2891    CheckConstructor(Constructor);
2892
2893  // Check the default arguments, which we may have added.
2894  if (!Method->isInvalidDecl())
2895    CheckCXXDefaultArguments(Method);
2896}
2897
2898/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2899/// the well-formedness of the constructor declarator @p D with type @p
2900/// R. If there are any errors in the declarator, this routine will
2901/// emit diagnostics and set the invalid bit to true.  In any case, the type
2902/// will be updated to reflect a well-formed type for the constructor and
2903/// returned.
2904QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2905                                          StorageClass &SC) {
2906  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2907
2908  // C++ [class.ctor]p3:
2909  //   A constructor shall not be virtual (10.3) or static (9.4). A
2910  //   constructor can be invoked for a const, volatile or const
2911  //   volatile object. A constructor shall not be declared const,
2912  //   volatile, or const volatile (9.3.2).
2913  if (isVirtual) {
2914    if (!D.isInvalidType())
2915      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2916        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2917        << SourceRange(D.getIdentifierLoc());
2918    D.setInvalidType();
2919  }
2920  if (SC == SC_Static) {
2921    if (!D.isInvalidType())
2922      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2923        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2924        << SourceRange(D.getIdentifierLoc());
2925    D.setInvalidType();
2926    SC = SC_None;
2927  }
2928
2929  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
2930  if (FTI.TypeQuals != 0) {
2931    if (FTI.TypeQuals & Qualifiers::Const)
2932      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2933        << "const" << SourceRange(D.getIdentifierLoc());
2934    if (FTI.TypeQuals & Qualifiers::Volatile)
2935      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2936        << "volatile" << SourceRange(D.getIdentifierLoc());
2937    if (FTI.TypeQuals & Qualifiers::Restrict)
2938      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2939        << "restrict" << SourceRange(D.getIdentifierLoc());
2940    D.setInvalidType();
2941  }
2942
2943  // Rebuild the function type "R" without any type qualifiers (in
2944  // case any of the errors above fired) and with "void" as the
2945  // return type, since constructors don't have return types.
2946  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2947  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
2948    return R;
2949
2950  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
2951  EPI.TypeQuals = 0;
2952
2953  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2954                                 Proto->getNumArgs(), EPI);
2955}
2956
2957/// CheckConstructor - Checks a fully-formed constructor for
2958/// well-formedness, issuing any diagnostics required. Returns true if
2959/// the constructor declarator is invalid.
2960void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2961  CXXRecordDecl *ClassDecl
2962    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2963  if (!ClassDecl)
2964    return Constructor->setInvalidDecl();
2965
2966  // C++ [class.copy]p3:
2967  //   A declaration of a constructor for a class X is ill-formed if
2968  //   its first parameter is of type (optionally cv-qualified) X and
2969  //   either there are no other parameters or else all other
2970  //   parameters have default arguments.
2971  if (!Constructor->isInvalidDecl() &&
2972      ((Constructor->getNumParams() == 1) ||
2973       (Constructor->getNumParams() > 1 &&
2974        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2975      Constructor->getTemplateSpecializationKind()
2976                                              != TSK_ImplicitInstantiation) {
2977    QualType ParamType = Constructor->getParamDecl(0)->getType();
2978    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2979    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2980      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2981      const char *ConstRef
2982        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2983                                                        : " const &";
2984      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2985        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2986
2987      // FIXME: Rather that making the constructor invalid, we should endeavor
2988      // to fix the type.
2989      Constructor->setInvalidDecl();
2990    }
2991  }
2992}
2993
2994/// CheckDestructor - Checks a fully-formed destructor definition for
2995/// well-formedness, issuing any diagnostics required.  Returns true
2996/// on error.
2997bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2998  CXXRecordDecl *RD = Destructor->getParent();
2999
3000  if (Destructor->isVirtual()) {
3001    SourceLocation Loc;
3002
3003    if (!Destructor->isImplicit())
3004      Loc = Destructor->getLocation();
3005    else
3006      Loc = RD->getLocation();
3007
3008    // If we have a virtual destructor, look up the deallocation function
3009    FunctionDecl *OperatorDelete = 0;
3010    DeclarationName Name =
3011    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3012    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3013      return true;
3014
3015    MarkDeclarationReferenced(Loc, OperatorDelete);
3016
3017    Destructor->setOperatorDelete(OperatorDelete);
3018  }
3019
3020  return false;
3021}
3022
3023static inline bool
3024FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3025  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3026          FTI.ArgInfo[0].Param &&
3027          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3028}
3029
3030/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3031/// the well-formednes of the destructor declarator @p D with type @p
3032/// R. If there are any errors in the declarator, this routine will
3033/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3034/// will be updated to reflect a well-formed type for the destructor and
3035/// returned.
3036QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3037                                         StorageClass& SC) {
3038  // C++ [class.dtor]p1:
3039  //   [...] A typedef-name that names a class is a class-name
3040  //   (7.1.3); however, a typedef-name that names a class shall not
3041  //   be used as the identifier in the declarator for a destructor
3042  //   declaration.
3043  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3044  if (isa<TypedefType>(DeclaratorType))
3045    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3046      << DeclaratorType;
3047
3048  // C++ [class.dtor]p2:
3049  //   A destructor is used to destroy objects of its class type. A
3050  //   destructor takes no parameters, and no return type can be
3051  //   specified for it (not even void). The address of a destructor
3052  //   shall not be taken. A destructor shall not be static. A
3053  //   destructor can be invoked for a const, volatile or const
3054  //   volatile object. A destructor shall not be declared const,
3055  //   volatile or const volatile (9.3.2).
3056  if (SC == SC_Static) {
3057    if (!D.isInvalidType())
3058      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3059        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3060        << SourceRange(D.getIdentifierLoc())
3061        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3062
3063    SC = SC_None;
3064  }
3065  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3066    // Destructors don't have return types, but the parser will
3067    // happily parse something like:
3068    //
3069    //   class X {
3070    //     float ~X();
3071    //   };
3072    //
3073    // The return type will be eliminated later.
3074    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3075      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3076      << SourceRange(D.getIdentifierLoc());
3077  }
3078
3079  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3080  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3081    if (FTI.TypeQuals & Qualifiers::Const)
3082      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3083        << "const" << SourceRange(D.getIdentifierLoc());
3084    if (FTI.TypeQuals & Qualifiers::Volatile)
3085      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3086        << "volatile" << SourceRange(D.getIdentifierLoc());
3087    if (FTI.TypeQuals & Qualifiers::Restrict)
3088      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3089        << "restrict" << SourceRange(D.getIdentifierLoc());
3090    D.setInvalidType();
3091  }
3092
3093  // Make sure we don't have any parameters.
3094  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3095    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3096
3097    // Delete the parameters.
3098    FTI.freeArgs();
3099    D.setInvalidType();
3100  }
3101
3102  // Make sure the destructor isn't variadic.
3103  if (FTI.isVariadic) {
3104    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3105    D.setInvalidType();
3106  }
3107
3108  // Rebuild the function type "R" without any type qualifiers or
3109  // parameters (in case any of the errors above fired) and with
3110  // "void" as the return type, since destructors don't have return
3111  // types.
3112  if (!D.isInvalidType())
3113    return R;
3114
3115  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3116  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3117  EPI.Variadic = false;
3118  EPI.TypeQuals = 0;
3119  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3120}
3121
3122/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3123/// well-formednes of the conversion function declarator @p D with
3124/// type @p R. If there are any errors in the declarator, this routine
3125/// will emit diagnostics and return true. Otherwise, it will return
3126/// false. Either way, the type @p R will be updated to reflect a
3127/// well-formed type for the conversion operator.
3128void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3129                                     StorageClass& SC) {
3130  // C++ [class.conv.fct]p1:
3131  //   Neither parameter types nor return type can be specified. The
3132  //   type of a conversion function (8.3.5) is "function taking no
3133  //   parameter returning conversion-type-id."
3134  if (SC == SC_Static) {
3135    if (!D.isInvalidType())
3136      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3137        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3138        << SourceRange(D.getIdentifierLoc());
3139    D.setInvalidType();
3140    SC = SC_None;
3141  }
3142
3143  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3144
3145  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3146    // Conversion functions don't have return types, but the parser will
3147    // happily parse something like:
3148    //
3149    //   class X {
3150    //     float operator bool();
3151    //   };
3152    //
3153    // The return type will be changed later anyway.
3154    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3155      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3156      << SourceRange(D.getIdentifierLoc());
3157    D.setInvalidType();
3158  }
3159
3160  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3161
3162  // Make sure we don't have any parameters.
3163  if (Proto->getNumArgs() > 0) {
3164    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3165
3166    // Delete the parameters.
3167    D.getFunctionTypeInfo().freeArgs();
3168    D.setInvalidType();
3169  } else if (Proto->isVariadic()) {
3170    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3171    D.setInvalidType();
3172  }
3173
3174  // Diagnose "&operator bool()" and other such nonsense.  This
3175  // is actually a gcc extension which we don't support.
3176  if (Proto->getResultType() != ConvType) {
3177    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3178      << Proto->getResultType();
3179    D.setInvalidType();
3180    ConvType = Proto->getResultType();
3181  }
3182
3183  // C++ [class.conv.fct]p4:
3184  //   The conversion-type-id shall not represent a function type nor
3185  //   an array type.
3186  if (ConvType->isArrayType()) {
3187    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3188    ConvType = Context.getPointerType(ConvType);
3189    D.setInvalidType();
3190  } else if (ConvType->isFunctionType()) {
3191    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3192    ConvType = Context.getPointerType(ConvType);
3193    D.setInvalidType();
3194  }
3195
3196  // Rebuild the function type "R" without any parameters (in case any
3197  // of the errors above fired) and with the conversion type as the
3198  // return type.
3199  if (D.isInvalidType())
3200    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3201
3202  // C++0x explicit conversion operators.
3203  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3204    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3205         diag::warn_explicit_conversion_functions)
3206      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3207}
3208
3209/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3210/// the declaration of the given C++ conversion function. This routine
3211/// is responsible for recording the conversion function in the C++
3212/// class, if possible.
3213Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3214  assert(Conversion && "Expected to receive a conversion function declaration");
3215
3216  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3217
3218  // Make sure we aren't redeclaring the conversion function.
3219  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3220
3221  // C++ [class.conv.fct]p1:
3222  //   [...] A conversion function is never used to convert a
3223  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3224  //   same object type (or a reference to it), to a (possibly
3225  //   cv-qualified) base class of that type (or a reference to it),
3226  //   or to (possibly cv-qualified) void.
3227  // FIXME: Suppress this warning if the conversion function ends up being a
3228  // virtual function that overrides a virtual function in a base class.
3229  QualType ClassType
3230    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3231  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3232    ConvType = ConvTypeRef->getPointeeType();
3233  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3234      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3235    /* Suppress diagnostics for instantiations. */;
3236  else if (ConvType->isRecordType()) {
3237    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3238    if (ConvType == ClassType)
3239      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3240        << ClassType;
3241    else if (IsDerivedFrom(ClassType, ConvType))
3242      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3243        <<  ClassType << ConvType;
3244  } else if (ConvType->isVoidType()) {
3245    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3246      << ClassType << ConvType;
3247  }
3248
3249  if (FunctionTemplateDecl *ConversionTemplate
3250                                = Conversion->getDescribedFunctionTemplate())
3251    return ConversionTemplate;
3252
3253  return Conversion;
3254}
3255
3256//===----------------------------------------------------------------------===//
3257// Namespace Handling
3258//===----------------------------------------------------------------------===//
3259
3260
3261
3262/// ActOnStartNamespaceDef - This is called at the start of a namespace
3263/// definition.
3264Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3265                                   SourceLocation InlineLoc,
3266                                   SourceLocation IdentLoc,
3267                                   IdentifierInfo *II,
3268                                   SourceLocation LBrace,
3269                                   AttributeList *AttrList) {
3270  // anonymous namespace starts at its left brace
3271  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3272    (II ? IdentLoc : LBrace) , II);
3273  Namespc->setLBracLoc(LBrace);
3274  Namespc->setInline(InlineLoc.isValid());
3275
3276  Scope *DeclRegionScope = NamespcScope->getParent();
3277
3278  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3279
3280  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3281    PushNamespaceVisibilityAttr(Attr);
3282
3283  if (II) {
3284    // C++ [namespace.def]p2:
3285    //   The identifier in an original-namespace-definition shall not
3286    //   have been previously defined in the declarative region in
3287    //   which the original-namespace-definition appears. The
3288    //   identifier in an original-namespace-definition is the name of
3289    //   the namespace. Subsequently in that declarative region, it is
3290    //   treated as an original-namespace-name.
3291    //
3292    // Since namespace names are unique in their scope, and we don't
3293    // look through using directives, just
3294    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3295    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3296
3297    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3298      // This is an extended namespace definition.
3299      if (Namespc->isInline() != OrigNS->isInline()) {
3300        // inline-ness must match
3301        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3302          << Namespc->isInline();
3303        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3304        Namespc->setInvalidDecl();
3305        // Recover by ignoring the new namespace's inline status.
3306        Namespc->setInline(OrigNS->isInline());
3307      }
3308
3309      // Attach this namespace decl to the chain of extended namespace
3310      // definitions.
3311      OrigNS->setNextNamespace(Namespc);
3312      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3313
3314      // Remove the previous declaration from the scope.
3315      if (DeclRegionScope->isDeclScope(OrigNS)) {
3316        IdResolver.RemoveDecl(OrigNS);
3317        DeclRegionScope->RemoveDecl(OrigNS);
3318      }
3319    } else if (PrevDecl) {
3320      // This is an invalid name redefinition.
3321      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3322       << Namespc->getDeclName();
3323      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3324      Namespc->setInvalidDecl();
3325      // Continue on to push Namespc as current DeclContext and return it.
3326    } else if (II->isStr("std") &&
3327               CurContext->getRedeclContext()->isTranslationUnit()) {
3328      // This is the first "real" definition of the namespace "std", so update
3329      // our cache of the "std" namespace to point at this definition.
3330      if (NamespaceDecl *StdNS = getStdNamespace()) {
3331        // We had already defined a dummy namespace "std". Link this new
3332        // namespace definition to the dummy namespace "std".
3333        StdNS->setNextNamespace(Namespc);
3334        StdNS->setLocation(IdentLoc);
3335        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3336      }
3337
3338      // Make our StdNamespace cache point at the first real definition of the
3339      // "std" namespace.
3340      StdNamespace = Namespc;
3341    }
3342
3343    PushOnScopeChains(Namespc, DeclRegionScope);
3344  } else {
3345    // Anonymous namespaces.
3346    assert(Namespc->isAnonymousNamespace());
3347
3348    // Link the anonymous namespace into its parent.
3349    NamespaceDecl *PrevDecl;
3350    DeclContext *Parent = CurContext->getRedeclContext();
3351    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3352      PrevDecl = TU->getAnonymousNamespace();
3353      TU->setAnonymousNamespace(Namespc);
3354    } else {
3355      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3356      PrevDecl = ND->getAnonymousNamespace();
3357      ND->setAnonymousNamespace(Namespc);
3358    }
3359
3360    // Link the anonymous namespace with its previous declaration.
3361    if (PrevDecl) {
3362      assert(PrevDecl->isAnonymousNamespace());
3363      assert(!PrevDecl->getNextNamespace());
3364      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3365      PrevDecl->setNextNamespace(Namespc);
3366
3367      if (Namespc->isInline() != PrevDecl->isInline()) {
3368        // inline-ness must match
3369        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3370          << Namespc->isInline();
3371        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3372        Namespc->setInvalidDecl();
3373        // Recover by ignoring the new namespace's inline status.
3374        Namespc->setInline(PrevDecl->isInline());
3375      }
3376    }
3377
3378    CurContext->addDecl(Namespc);
3379
3380    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3381    //   behaves as if it were replaced by
3382    //     namespace unique { /* empty body */ }
3383    //     using namespace unique;
3384    //     namespace unique { namespace-body }
3385    //   where all occurrences of 'unique' in a translation unit are
3386    //   replaced by the same identifier and this identifier differs
3387    //   from all other identifiers in the entire program.
3388
3389    // We just create the namespace with an empty name and then add an
3390    // implicit using declaration, just like the standard suggests.
3391    //
3392    // CodeGen enforces the "universally unique" aspect by giving all
3393    // declarations semantically contained within an anonymous
3394    // namespace internal linkage.
3395
3396    if (!PrevDecl) {
3397      UsingDirectiveDecl* UD
3398        = UsingDirectiveDecl::Create(Context, CurContext,
3399                                     /* 'using' */ LBrace,
3400                                     /* 'namespace' */ SourceLocation(),
3401                                     /* qualifier */ SourceRange(),
3402                                     /* NNS */ NULL,
3403                                     /* identifier */ SourceLocation(),
3404                                     Namespc,
3405                                     /* Ancestor */ CurContext);
3406      UD->setImplicit();
3407      CurContext->addDecl(UD);
3408    }
3409  }
3410
3411  // Although we could have an invalid decl (i.e. the namespace name is a
3412  // redefinition), push it as current DeclContext and try to continue parsing.
3413  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3414  // for the namespace has the declarations that showed up in that particular
3415  // namespace definition.
3416  PushDeclContext(NamespcScope, Namespc);
3417  return Namespc;
3418}
3419
3420/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3421/// is a namespace alias, returns the namespace it points to.
3422static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3423  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3424    return AD->getNamespace();
3425  return dyn_cast_or_null<NamespaceDecl>(D);
3426}
3427
3428/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3429/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3430void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3431  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3432  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3433  Namespc->setRBracLoc(RBrace);
3434  PopDeclContext();
3435  if (Namespc->hasAttr<VisibilityAttr>())
3436    PopPragmaVisibility();
3437}
3438
3439CXXRecordDecl *Sema::getStdBadAlloc() const {
3440  return cast_or_null<CXXRecordDecl>(
3441                                  StdBadAlloc.get(Context.getExternalSource()));
3442}
3443
3444NamespaceDecl *Sema::getStdNamespace() const {
3445  return cast_or_null<NamespaceDecl>(
3446                                 StdNamespace.get(Context.getExternalSource()));
3447}
3448
3449/// \brief Retrieve the special "std" namespace, which may require us to
3450/// implicitly define the namespace.
3451NamespaceDecl *Sema::getOrCreateStdNamespace() {
3452  if (!StdNamespace) {
3453    // The "std" namespace has not yet been defined, so build one implicitly.
3454    StdNamespace = NamespaceDecl::Create(Context,
3455                                         Context.getTranslationUnitDecl(),
3456                                         SourceLocation(),
3457                                         &PP.getIdentifierTable().get("std"));
3458    getStdNamespace()->setImplicit(true);
3459  }
3460
3461  return getStdNamespace();
3462}
3463
3464Decl *Sema::ActOnUsingDirective(Scope *S,
3465                                          SourceLocation UsingLoc,
3466                                          SourceLocation NamespcLoc,
3467                                          CXXScopeSpec &SS,
3468                                          SourceLocation IdentLoc,
3469                                          IdentifierInfo *NamespcName,
3470                                          AttributeList *AttrList) {
3471  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3472  assert(NamespcName && "Invalid NamespcName.");
3473  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3474
3475  // This can only happen along a recovery path.
3476  while (S->getFlags() & Scope::TemplateParamScope)
3477    S = S->getParent();
3478  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3479
3480  UsingDirectiveDecl *UDir = 0;
3481  NestedNameSpecifier *Qualifier = 0;
3482  if (SS.isSet())
3483    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3484
3485  // Lookup namespace name.
3486  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3487  LookupParsedName(R, S, &SS);
3488  if (R.isAmbiguous())
3489    return 0;
3490
3491  if (R.empty()) {
3492    // Allow "using namespace std;" or "using namespace ::std;" even if
3493    // "std" hasn't been defined yet, for GCC compatibility.
3494    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3495        NamespcName->isStr("std")) {
3496      Diag(IdentLoc, diag::ext_using_undefined_std);
3497      R.addDecl(getOrCreateStdNamespace());
3498      R.resolveKind();
3499    }
3500    // Otherwise, attempt typo correction.
3501    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3502                                                       CTC_NoKeywords, 0)) {
3503      if (R.getAsSingle<NamespaceDecl>() ||
3504          R.getAsSingle<NamespaceAliasDecl>()) {
3505        if (DeclContext *DC = computeDeclContext(SS, false))
3506          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3507            << NamespcName << DC << Corrected << SS.getRange()
3508            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3509        else
3510          Diag(IdentLoc, diag::err_using_directive_suggest)
3511            << NamespcName << Corrected
3512            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3513        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3514          << Corrected;
3515
3516        NamespcName = Corrected.getAsIdentifierInfo();
3517      } else {
3518        R.clear();
3519        R.setLookupName(NamespcName);
3520      }
3521    }
3522  }
3523
3524  if (!R.empty()) {
3525    NamedDecl *Named = R.getFoundDecl();
3526    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3527        && "expected namespace decl");
3528    // C++ [namespace.udir]p1:
3529    //   A using-directive specifies that the names in the nominated
3530    //   namespace can be used in the scope in which the
3531    //   using-directive appears after the using-directive. During
3532    //   unqualified name lookup (3.4.1), the names appear as if they
3533    //   were declared in the nearest enclosing namespace which
3534    //   contains both the using-directive and the nominated
3535    //   namespace. [Note: in this context, "contains" means "contains
3536    //   directly or indirectly". ]
3537
3538    // Find enclosing context containing both using-directive and
3539    // nominated namespace.
3540    NamespaceDecl *NS = getNamespaceDecl(Named);
3541    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3542    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3543      CommonAncestor = CommonAncestor->getParent();
3544
3545    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3546                                      SS.getRange(),
3547                                      (NestedNameSpecifier *)SS.getScopeRep(),
3548                                      IdentLoc, Named, CommonAncestor);
3549    PushUsingDirective(S, UDir);
3550  } else {
3551    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3552  }
3553
3554  // FIXME: We ignore attributes for now.
3555  return UDir;
3556}
3557
3558void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3559  // If scope has associated entity, then using directive is at namespace
3560  // or translation unit scope. We add UsingDirectiveDecls, into
3561  // it's lookup structure.
3562  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3563    Ctx->addDecl(UDir);
3564  else
3565    // Otherwise it is block-sope. using-directives will affect lookup
3566    // only to the end of scope.
3567    S->PushUsingDirective(UDir);
3568}
3569
3570
3571Decl *Sema::ActOnUsingDeclaration(Scope *S,
3572                                  AccessSpecifier AS,
3573                                  bool HasUsingKeyword,
3574                                  SourceLocation UsingLoc,
3575                                  CXXScopeSpec &SS,
3576                                  UnqualifiedId &Name,
3577                                  AttributeList *AttrList,
3578                                  bool IsTypeName,
3579                                  SourceLocation TypenameLoc) {
3580  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3581
3582  switch (Name.getKind()) {
3583  case UnqualifiedId::IK_Identifier:
3584  case UnqualifiedId::IK_OperatorFunctionId:
3585  case UnqualifiedId::IK_LiteralOperatorId:
3586  case UnqualifiedId::IK_ConversionFunctionId:
3587    break;
3588
3589  case UnqualifiedId::IK_ConstructorName:
3590  case UnqualifiedId::IK_ConstructorTemplateId:
3591    // C++0x inherited constructors.
3592    if (getLangOptions().CPlusPlus0x) break;
3593
3594    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3595      << SS.getRange();
3596    return 0;
3597
3598  case UnqualifiedId::IK_DestructorName:
3599    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3600      << SS.getRange();
3601    return 0;
3602
3603  case UnqualifiedId::IK_TemplateId:
3604    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3605      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3606    return 0;
3607  }
3608
3609  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3610  DeclarationName TargetName = TargetNameInfo.getName();
3611  if (!TargetName)
3612    return 0;
3613
3614  // Warn about using declarations.
3615  // TODO: store that the declaration was written without 'using' and
3616  // talk about access decls instead of using decls in the
3617  // diagnostics.
3618  if (!HasUsingKeyword) {
3619    UsingLoc = Name.getSourceRange().getBegin();
3620
3621    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3622      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3623  }
3624
3625  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
3626      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
3627    return 0;
3628
3629  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3630                                        TargetNameInfo, AttrList,
3631                                        /* IsInstantiation */ false,
3632                                        IsTypeName, TypenameLoc);
3633  if (UD)
3634    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3635
3636  return UD;
3637}
3638
3639/// \brief Determine whether a using declaration considers the given
3640/// declarations as "equivalent", e.g., if they are redeclarations of
3641/// the same entity or are both typedefs of the same type.
3642static bool
3643IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3644                         bool &SuppressRedeclaration) {
3645  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3646    SuppressRedeclaration = false;
3647    return true;
3648  }
3649
3650  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3651    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3652      SuppressRedeclaration = true;
3653      return Context.hasSameType(TD1->getUnderlyingType(),
3654                                 TD2->getUnderlyingType());
3655    }
3656
3657  return false;
3658}
3659
3660
3661/// Determines whether to create a using shadow decl for a particular
3662/// decl, given the set of decls existing prior to this using lookup.
3663bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3664                                const LookupResult &Previous) {
3665  // Diagnose finding a decl which is not from a base class of the
3666  // current class.  We do this now because there are cases where this
3667  // function will silently decide not to build a shadow decl, which
3668  // will pre-empt further diagnostics.
3669  //
3670  // We don't need to do this in C++0x because we do the check once on
3671  // the qualifier.
3672  //
3673  // FIXME: diagnose the following if we care enough:
3674  //   struct A { int foo; };
3675  //   struct B : A { using A::foo; };
3676  //   template <class T> struct C : A {};
3677  //   template <class T> struct D : C<T> { using B::foo; } // <---
3678  // This is invalid (during instantiation) in C++03 because B::foo
3679  // resolves to the using decl in B, which is not a base class of D<T>.
3680  // We can't diagnose it immediately because C<T> is an unknown
3681  // specialization.  The UsingShadowDecl in D<T> then points directly
3682  // to A::foo, which will look well-formed when we instantiate.
3683  // The right solution is to not collapse the shadow-decl chain.
3684  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3685    DeclContext *OrigDC = Orig->getDeclContext();
3686
3687    // Handle enums and anonymous structs.
3688    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3689    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3690    while (OrigRec->isAnonymousStructOrUnion())
3691      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3692
3693    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3694      if (OrigDC == CurContext) {
3695        Diag(Using->getLocation(),
3696             diag::err_using_decl_nested_name_specifier_is_current_class)
3697          << Using->getNestedNameRange();
3698        Diag(Orig->getLocation(), diag::note_using_decl_target);
3699        return true;
3700      }
3701
3702      Diag(Using->getNestedNameRange().getBegin(),
3703           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3704        << Using->getTargetNestedNameDecl()
3705        << cast<CXXRecordDecl>(CurContext)
3706        << Using->getNestedNameRange();
3707      Diag(Orig->getLocation(), diag::note_using_decl_target);
3708      return true;
3709    }
3710  }
3711
3712  if (Previous.empty()) return false;
3713
3714  NamedDecl *Target = Orig;
3715  if (isa<UsingShadowDecl>(Target))
3716    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3717
3718  // If the target happens to be one of the previous declarations, we
3719  // don't have a conflict.
3720  //
3721  // FIXME: but we might be increasing its access, in which case we
3722  // should redeclare it.
3723  NamedDecl *NonTag = 0, *Tag = 0;
3724  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3725         I != E; ++I) {
3726    NamedDecl *D = (*I)->getUnderlyingDecl();
3727    bool Result;
3728    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3729      return Result;
3730
3731    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3732  }
3733
3734  if (Target->isFunctionOrFunctionTemplate()) {
3735    FunctionDecl *FD;
3736    if (isa<FunctionTemplateDecl>(Target))
3737      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3738    else
3739      FD = cast<FunctionDecl>(Target);
3740
3741    NamedDecl *OldDecl = 0;
3742    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3743    case Ovl_Overload:
3744      return false;
3745
3746    case Ovl_NonFunction:
3747      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3748      break;
3749
3750    // We found a decl with the exact signature.
3751    case Ovl_Match:
3752      // If we're in a record, we want to hide the target, so we
3753      // return true (without a diagnostic) to tell the caller not to
3754      // build a shadow decl.
3755      if (CurContext->isRecord())
3756        return true;
3757
3758      // If we're not in a record, this is an error.
3759      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3760      break;
3761    }
3762
3763    Diag(Target->getLocation(), diag::note_using_decl_target);
3764    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3765    return true;
3766  }
3767
3768  // Target is not a function.
3769
3770  if (isa<TagDecl>(Target)) {
3771    // No conflict between a tag and a non-tag.
3772    if (!Tag) return false;
3773
3774    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3775    Diag(Target->getLocation(), diag::note_using_decl_target);
3776    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3777    return true;
3778  }
3779
3780  // No conflict between a tag and a non-tag.
3781  if (!NonTag) return false;
3782
3783  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3784  Diag(Target->getLocation(), diag::note_using_decl_target);
3785  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3786  return true;
3787}
3788
3789/// Builds a shadow declaration corresponding to a 'using' declaration.
3790UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3791                                            UsingDecl *UD,
3792                                            NamedDecl *Orig) {
3793
3794  // If we resolved to another shadow declaration, just coalesce them.
3795  NamedDecl *Target = Orig;
3796  if (isa<UsingShadowDecl>(Target)) {
3797    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3798    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3799  }
3800
3801  UsingShadowDecl *Shadow
3802    = UsingShadowDecl::Create(Context, CurContext,
3803                              UD->getLocation(), UD, Target);
3804  UD->addShadowDecl(Shadow);
3805
3806  Shadow->setAccess(UD->getAccess());
3807  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3808    Shadow->setInvalidDecl();
3809
3810  if (S)
3811    PushOnScopeChains(Shadow, S);
3812  else
3813    CurContext->addDecl(Shadow);
3814
3815
3816  return Shadow;
3817}
3818
3819/// Hides a using shadow declaration.  This is required by the current
3820/// using-decl implementation when a resolvable using declaration in a
3821/// class is followed by a declaration which would hide or override
3822/// one or more of the using decl's targets; for example:
3823///
3824///   struct Base { void foo(int); };
3825///   struct Derived : Base {
3826///     using Base::foo;
3827///     void foo(int);
3828///   };
3829///
3830/// The governing language is C++03 [namespace.udecl]p12:
3831///
3832///   When a using-declaration brings names from a base class into a
3833///   derived class scope, member functions in the derived class
3834///   override and/or hide member functions with the same name and
3835///   parameter types in a base class (rather than conflicting).
3836///
3837/// There are two ways to implement this:
3838///   (1) optimistically create shadow decls when they're not hidden
3839///       by existing declarations, or
3840///   (2) don't create any shadow decls (or at least don't make them
3841///       visible) until we've fully parsed/instantiated the class.
3842/// The problem with (1) is that we might have to retroactively remove
3843/// a shadow decl, which requires several O(n) operations because the
3844/// decl structures are (very reasonably) not designed for removal.
3845/// (2) avoids this but is very fiddly and phase-dependent.
3846void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3847  if (Shadow->getDeclName().getNameKind() ==
3848        DeclarationName::CXXConversionFunctionName)
3849    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3850
3851  // Remove it from the DeclContext...
3852  Shadow->getDeclContext()->removeDecl(Shadow);
3853
3854  // ...and the scope, if applicable...
3855  if (S) {
3856    S->RemoveDecl(Shadow);
3857    IdResolver.RemoveDecl(Shadow);
3858  }
3859
3860  // ...and the using decl.
3861  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3862
3863  // TODO: complain somehow if Shadow was used.  It shouldn't
3864  // be possible for this to happen, because...?
3865}
3866
3867/// Builds a using declaration.
3868///
3869/// \param IsInstantiation - Whether this call arises from an
3870///   instantiation of an unresolved using declaration.  We treat
3871///   the lookup differently for these declarations.
3872NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3873                                       SourceLocation UsingLoc,
3874                                       CXXScopeSpec &SS,
3875                                       const DeclarationNameInfo &NameInfo,
3876                                       AttributeList *AttrList,
3877                                       bool IsInstantiation,
3878                                       bool IsTypeName,
3879                                       SourceLocation TypenameLoc) {
3880  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3881  SourceLocation IdentLoc = NameInfo.getLoc();
3882  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3883
3884  // FIXME: We ignore attributes for now.
3885
3886  if (SS.isEmpty()) {
3887    Diag(IdentLoc, diag::err_using_requires_qualname);
3888    return 0;
3889  }
3890
3891  // Do the redeclaration lookup in the current scope.
3892  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
3893                        ForRedeclaration);
3894  Previous.setHideTags(false);
3895  if (S) {
3896    LookupName(Previous, S);
3897
3898    // It is really dumb that we have to do this.
3899    LookupResult::Filter F = Previous.makeFilter();
3900    while (F.hasNext()) {
3901      NamedDecl *D = F.next();
3902      if (!isDeclInScope(D, CurContext, S))
3903        F.erase();
3904    }
3905    F.done();
3906  } else {
3907    assert(IsInstantiation && "no scope in non-instantiation");
3908    assert(CurContext->isRecord() && "scope not record in instantiation");
3909    LookupQualifiedName(Previous, CurContext);
3910  }
3911
3912  NestedNameSpecifier *NNS =
3913    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3914
3915  // Check for invalid redeclarations.
3916  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3917    return 0;
3918
3919  // Check for bad qualifiers.
3920  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3921    return 0;
3922
3923  DeclContext *LookupContext = computeDeclContext(SS);
3924  NamedDecl *D;
3925  if (!LookupContext) {
3926    if (IsTypeName) {
3927      // FIXME: not all declaration name kinds are legal here
3928      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3929                                              UsingLoc, TypenameLoc,
3930                                              SS.getRange(), NNS,
3931                                              IdentLoc, NameInfo.getName());
3932    } else {
3933      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3934                                           UsingLoc, SS.getRange(),
3935                                           NNS, NameInfo);
3936    }
3937  } else {
3938    D = UsingDecl::Create(Context, CurContext,
3939                          SS.getRange(), UsingLoc, NNS, NameInfo,
3940                          IsTypeName);
3941  }
3942  D->setAccess(AS);
3943  CurContext->addDecl(D);
3944
3945  if (!LookupContext) return D;
3946  UsingDecl *UD = cast<UsingDecl>(D);
3947
3948  if (RequireCompleteDeclContext(SS, LookupContext)) {
3949    UD->setInvalidDecl();
3950    return UD;
3951  }
3952
3953  // Look up the target name.
3954
3955  LookupResult R(*this, NameInfo, LookupOrdinaryName);
3956
3957  // Unlike most lookups, we don't always want to hide tag
3958  // declarations: tag names are visible through the using declaration
3959  // even if hidden by ordinary names, *except* in a dependent context
3960  // where it's important for the sanity of two-phase lookup.
3961  if (!IsInstantiation)
3962    R.setHideTags(false);
3963
3964  LookupQualifiedName(R, LookupContext);
3965
3966  if (R.empty()) {
3967    Diag(IdentLoc, diag::err_no_member)
3968      << NameInfo.getName() << LookupContext << SS.getRange();
3969    UD->setInvalidDecl();
3970    return UD;
3971  }
3972
3973  if (R.isAmbiguous()) {
3974    UD->setInvalidDecl();
3975    return UD;
3976  }
3977
3978  if (IsTypeName) {
3979    // If we asked for a typename and got a non-type decl, error out.
3980    if (!R.getAsSingle<TypeDecl>()) {
3981      Diag(IdentLoc, diag::err_using_typename_non_type);
3982      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3983        Diag((*I)->getUnderlyingDecl()->getLocation(),
3984             diag::note_using_decl_target);
3985      UD->setInvalidDecl();
3986      return UD;
3987    }
3988  } else {
3989    // If we asked for a non-typename and we got a type, error out,
3990    // but only if this is an instantiation of an unresolved using
3991    // decl.  Otherwise just silently find the type name.
3992    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3993      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3994      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3995      UD->setInvalidDecl();
3996      return UD;
3997    }
3998  }
3999
4000  // C++0x N2914 [namespace.udecl]p6:
4001  // A using-declaration shall not name a namespace.
4002  if (R.getAsSingle<NamespaceDecl>()) {
4003    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4004      << SS.getRange();
4005    UD->setInvalidDecl();
4006    return UD;
4007  }
4008
4009  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4010    if (!CheckUsingShadowDecl(UD, *I, Previous))
4011      BuildUsingShadowDecl(S, UD, *I);
4012  }
4013
4014  return UD;
4015}
4016
4017/// Checks that the given using declaration is not an invalid
4018/// redeclaration.  Note that this is checking only for the using decl
4019/// itself, not for any ill-formedness among the UsingShadowDecls.
4020bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4021                                       bool isTypeName,
4022                                       const CXXScopeSpec &SS,
4023                                       SourceLocation NameLoc,
4024                                       const LookupResult &Prev) {
4025  // C++03 [namespace.udecl]p8:
4026  // C++0x [namespace.udecl]p10:
4027  //   A using-declaration is a declaration and can therefore be used
4028  //   repeatedly where (and only where) multiple declarations are
4029  //   allowed.
4030  //
4031  // That's in non-member contexts.
4032  if (!CurContext->getRedeclContext()->isRecord())
4033    return false;
4034
4035  NestedNameSpecifier *Qual
4036    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4037
4038  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4039    NamedDecl *D = *I;
4040
4041    bool DTypename;
4042    NestedNameSpecifier *DQual;
4043    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4044      DTypename = UD->isTypeName();
4045      DQual = UD->getTargetNestedNameDecl();
4046    } else if (UnresolvedUsingValueDecl *UD
4047                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4048      DTypename = false;
4049      DQual = UD->getTargetNestedNameSpecifier();
4050    } else if (UnresolvedUsingTypenameDecl *UD
4051                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4052      DTypename = true;
4053      DQual = UD->getTargetNestedNameSpecifier();
4054    } else continue;
4055
4056    // using decls differ if one says 'typename' and the other doesn't.
4057    // FIXME: non-dependent using decls?
4058    if (isTypeName != DTypename) continue;
4059
4060    // using decls differ if they name different scopes (but note that
4061    // template instantiation can cause this check to trigger when it
4062    // didn't before instantiation).
4063    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4064        Context.getCanonicalNestedNameSpecifier(DQual))
4065      continue;
4066
4067    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4068    Diag(D->getLocation(), diag::note_using_decl) << 1;
4069    return true;
4070  }
4071
4072  return false;
4073}
4074
4075
4076/// Checks that the given nested-name qualifier used in a using decl
4077/// in the current context is appropriately related to the current
4078/// scope.  If an error is found, diagnoses it and returns true.
4079bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4080                                   const CXXScopeSpec &SS,
4081                                   SourceLocation NameLoc) {
4082  DeclContext *NamedContext = computeDeclContext(SS);
4083
4084  if (!CurContext->isRecord()) {
4085    // C++03 [namespace.udecl]p3:
4086    // C++0x [namespace.udecl]p8:
4087    //   A using-declaration for a class member shall be a member-declaration.
4088
4089    // If we weren't able to compute a valid scope, it must be a
4090    // dependent class scope.
4091    if (!NamedContext || NamedContext->isRecord()) {
4092      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4093        << SS.getRange();
4094      return true;
4095    }
4096
4097    // Otherwise, everything is known to be fine.
4098    return false;
4099  }
4100
4101  // The current scope is a record.
4102
4103  // If the named context is dependent, we can't decide much.
4104  if (!NamedContext) {
4105    // FIXME: in C++0x, we can diagnose if we can prove that the
4106    // nested-name-specifier does not refer to a base class, which is
4107    // still possible in some cases.
4108
4109    // Otherwise we have to conservatively report that things might be
4110    // okay.
4111    return false;
4112  }
4113
4114  if (!NamedContext->isRecord()) {
4115    // Ideally this would point at the last name in the specifier,
4116    // but we don't have that level of source info.
4117    Diag(SS.getRange().getBegin(),
4118         diag::err_using_decl_nested_name_specifier_is_not_class)
4119      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4120    return true;
4121  }
4122
4123  if (!NamedContext->isDependentContext() &&
4124      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4125    return true;
4126
4127  if (getLangOptions().CPlusPlus0x) {
4128    // C++0x [namespace.udecl]p3:
4129    //   In a using-declaration used as a member-declaration, the
4130    //   nested-name-specifier shall name a base class of the class
4131    //   being defined.
4132
4133    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4134                                 cast<CXXRecordDecl>(NamedContext))) {
4135      if (CurContext == NamedContext) {
4136        Diag(NameLoc,
4137             diag::err_using_decl_nested_name_specifier_is_current_class)
4138          << SS.getRange();
4139        return true;
4140      }
4141
4142      Diag(SS.getRange().getBegin(),
4143           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4144        << (NestedNameSpecifier*) SS.getScopeRep()
4145        << cast<CXXRecordDecl>(CurContext)
4146        << SS.getRange();
4147      return true;
4148    }
4149
4150    return false;
4151  }
4152
4153  // C++03 [namespace.udecl]p4:
4154  //   A using-declaration used as a member-declaration shall refer
4155  //   to a member of a base class of the class being defined [etc.].
4156
4157  // Salient point: SS doesn't have to name a base class as long as
4158  // lookup only finds members from base classes.  Therefore we can
4159  // diagnose here only if we can prove that that can't happen,
4160  // i.e. if the class hierarchies provably don't intersect.
4161
4162  // TODO: it would be nice if "definitely valid" results were cached
4163  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4164  // need to be repeated.
4165
4166  struct UserData {
4167    llvm::DenseSet<const CXXRecordDecl*> Bases;
4168
4169    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4170      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4171      Data->Bases.insert(Base);
4172      return true;
4173    }
4174
4175    bool hasDependentBases(const CXXRecordDecl *Class) {
4176      return !Class->forallBases(collect, this);
4177    }
4178
4179    /// Returns true if the base is dependent or is one of the
4180    /// accumulated base classes.
4181    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4182      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4183      return !Data->Bases.count(Base);
4184    }
4185
4186    bool mightShareBases(const CXXRecordDecl *Class) {
4187      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4188    }
4189  };
4190
4191  UserData Data;
4192
4193  // Returns false if we find a dependent base.
4194  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4195    return false;
4196
4197  // Returns false if the class has a dependent base or if it or one
4198  // of its bases is present in the base set of the current context.
4199  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4200    return false;
4201
4202  Diag(SS.getRange().getBegin(),
4203       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4204    << (NestedNameSpecifier*) SS.getScopeRep()
4205    << cast<CXXRecordDecl>(CurContext)
4206    << SS.getRange();
4207
4208  return true;
4209}
4210
4211Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4212                                             SourceLocation NamespaceLoc,
4213                                             SourceLocation AliasLoc,
4214                                             IdentifierInfo *Alias,
4215                                             CXXScopeSpec &SS,
4216                                             SourceLocation IdentLoc,
4217                                             IdentifierInfo *Ident) {
4218
4219  // Lookup the namespace name.
4220  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4221  LookupParsedName(R, S, &SS);
4222
4223  // Check if we have a previous declaration with the same name.
4224  NamedDecl *PrevDecl
4225    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4226                       ForRedeclaration);
4227  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4228    PrevDecl = 0;
4229
4230  if (PrevDecl) {
4231    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4232      // We already have an alias with the same name that points to the same
4233      // namespace, so don't create a new one.
4234      // FIXME: At some point, we'll want to create the (redundant)
4235      // declaration to maintain better source information.
4236      if (!R.isAmbiguous() && !R.empty() &&
4237          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4238        return 0;
4239    }
4240
4241    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4242      diag::err_redefinition_different_kind;
4243    Diag(AliasLoc, DiagID) << Alias;
4244    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4245    return 0;
4246  }
4247
4248  if (R.isAmbiguous())
4249    return 0;
4250
4251  if (R.empty()) {
4252    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4253                                                CTC_NoKeywords, 0)) {
4254      if (R.getAsSingle<NamespaceDecl>() ||
4255          R.getAsSingle<NamespaceAliasDecl>()) {
4256        if (DeclContext *DC = computeDeclContext(SS, false))
4257          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4258            << Ident << DC << Corrected << SS.getRange()
4259            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4260        else
4261          Diag(IdentLoc, diag::err_using_directive_suggest)
4262            << Ident << Corrected
4263            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4264
4265        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4266          << Corrected;
4267
4268        Ident = Corrected.getAsIdentifierInfo();
4269      } else {
4270        R.clear();
4271        R.setLookupName(Ident);
4272      }
4273    }
4274
4275    if (R.empty()) {
4276      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4277      return 0;
4278    }
4279  }
4280
4281  NamespaceAliasDecl *AliasDecl =
4282    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4283                               Alias, SS.getRange(),
4284                               (NestedNameSpecifier *)SS.getScopeRep(),
4285                               IdentLoc, R.getFoundDecl());
4286
4287  PushOnScopeChains(AliasDecl, S);
4288  return AliasDecl;
4289}
4290
4291namespace {
4292  /// \brief Scoped object used to handle the state changes required in Sema
4293  /// to implicitly define the body of a C++ member function;
4294  class ImplicitlyDefinedFunctionScope {
4295    Sema &S;
4296    DeclContext *PreviousContext;
4297
4298  public:
4299    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4300      : S(S), PreviousContext(S.CurContext)
4301    {
4302      S.CurContext = Method;
4303      S.PushFunctionScope();
4304      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4305    }
4306
4307    ~ImplicitlyDefinedFunctionScope() {
4308      S.PopExpressionEvaluationContext();
4309      S.PopFunctionOrBlockScope();
4310      S.CurContext = PreviousContext;
4311    }
4312  };
4313}
4314
4315static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4316                                                       CXXRecordDecl *D) {
4317  ASTContext &Context = Self.Context;
4318  QualType ClassType = Context.getTypeDeclType(D);
4319  DeclarationName ConstructorName
4320    = Context.DeclarationNames.getCXXConstructorName(
4321                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4322
4323  DeclContext::lookup_const_iterator Con, ConEnd;
4324  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4325       Con != ConEnd; ++Con) {
4326    // FIXME: In C++0x, a constructor template can be a default constructor.
4327    if (isa<FunctionTemplateDecl>(*Con))
4328      continue;
4329
4330    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4331    if (Constructor->isDefaultConstructor())
4332      return Constructor;
4333  }
4334  return 0;
4335}
4336
4337CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4338                                                     CXXRecordDecl *ClassDecl) {
4339  // C++ [class.ctor]p5:
4340  //   A default constructor for a class X is a constructor of class X
4341  //   that can be called without an argument. If there is no
4342  //   user-declared constructor for class X, a default constructor is
4343  //   implicitly declared. An implicitly-declared default constructor
4344  //   is an inline public member of its class.
4345  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4346         "Should not build implicit default constructor!");
4347
4348  // C++ [except.spec]p14:
4349  //   An implicitly declared special member function (Clause 12) shall have an
4350  //   exception-specification. [...]
4351  ImplicitExceptionSpecification ExceptSpec(Context);
4352
4353  // Direct base-class destructors.
4354  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4355                                       BEnd = ClassDecl->bases_end();
4356       B != BEnd; ++B) {
4357    if (B->isVirtual()) // Handled below.
4358      continue;
4359
4360    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4361      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4362      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4363        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4364      else if (CXXConstructorDecl *Constructor
4365                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4366        ExceptSpec.CalledDecl(Constructor);
4367    }
4368  }
4369
4370  // Virtual base-class destructors.
4371  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4372                                       BEnd = ClassDecl->vbases_end();
4373       B != BEnd; ++B) {
4374    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4375      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4376      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4377        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4378      else if (CXXConstructorDecl *Constructor
4379                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4380        ExceptSpec.CalledDecl(Constructor);
4381    }
4382  }
4383
4384  // Field destructors.
4385  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4386                               FEnd = ClassDecl->field_end();
4387       F != FEnd; ++F) {
4388    if (const RecordType *RecordTy
4389              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4390      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4391      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4392        ExceptSpec.CalledDecl(
4393                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4394      else if (CXXConstructorDecl *Constructor
4395                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4396        ExceptSpec.CalledDecl(Constructor);
4397    }
4398  }
4399
4400  FunctionProtoType::ExtProtoInfo EPI;
4401  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4402  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4403  EPI.NumExceptions = ExceptSpec.size();
4404  EPI.Exceptions = ExceptSpec.data();
4405
4406  // Create the actual constructor declaration.
4407  CanQualType ClassType
4408    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4409  DeclarationName Name
4410    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4411  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4412  CXXConstructorDecl *DefaultCon
4413    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4414                                 Context.getFunctionType(Context.VoidTy,
4415                                                         0, 0, EPI),
4416                                 /*TInfo=*/0,
4417                                 /*isExplicit=*/false,
4418                                 /*isInline=*/true,
4419                                 /*isImplicitlyDeclared=*/true);
4420  DefaultCon->setAccess(AS_public);
4421  DefaultCon->setImplicit();
4422  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4423
4424  // Note that we have declared this constructor.
4425  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4426
4427  if (Scope *S = getScopeForContext(ClassDecl))
4428    PushOnScopeChains(DefaultCon, S, false);
4429  ClassDecl->addDecl(DefaultCon);
4430
4431  return DefaultCon;
4432}
4433
4434void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4435                                            CXXConstructorDecl *Constructor) {
4436  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4437          !Constructor->isUsed(false)) &&
4438    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4439
4440  CXXRecordDecl *ClassDecl = Constructor->getParent();
4441  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4442
4443  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4444  DiagnosticErrorTrap Trap(Diags);
4445  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4446      Trap.hasErrorOccurred()) {
4447    Diag(CurrentLocation, diag::note_member_synthesized_at)
4448      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4449    Constructor->setInvalidDecl();
4450    return;
4451  }
4452
4453  SourceLocation Loc = Constructor->getLocation();
4454  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4455
4456  Constructor->setUsed();
4457  MarkVTableUsed(CurrentLocation, ClassDecl);
4458}
4459
4460CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4461  // C++ [class.dtor]p2:
4462  //   If a class has no user-declared destructor, a destructor is
4463  //   declared implicitly. An implicitly-declared destructor is an
4464  //   inline public member of its class.
4465
4466  // C++ [except.spec]p14:
4467  //   An implicitly declared special member function (Clause 12) shall have
4468  //   an exception-specification.
4469  ImplicitExceptionSpecification ExceptSpec(Context);
4470
4471  // Direct base-class destructors.
4472  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4473                                       BEnd = ClassDecl->bases_end();
4474       B != BEnd; ++B) {
4475    if (B->isVirtual()) // Handled below.
4476      continue;
4477
4478    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4479      ExceptSpec.CalledDecl(
4480                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4481  }
4482
4483  // Virtual base-class destructors.
4484  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4485                                       BEnd = ClassDecl->vbases_end();
4486       B != BEnd; ++B) {
4487    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4488      ExceptSpec.CalledDecl(
4489                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4490  }
4491
4492  // Field destructors.
4493  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4494                               FEnd = ClassDecl->field_end();
4495       F != FEnd; ++F) {
4496    if (const RecordType *RecordTy
4497        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4498      ExceptSpec.CalledDecl(
4499                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4500  }
4501
4502  // Create the actual destructor declaration.
4503  FunctionProtoType::ExtProtoInfo EPI;
4504  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4505  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4506  EPI.NumExceptions = ExceptSpec.size();
4507  EPI.Exceptions = ExceptSpec.data();
4508  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4509
4510  CanQualType ClassType
4511    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4512  DeclarationName Name
4513    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4514  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4515  CXXDestructorDecl *Destructor
4516      = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, 0,
4517                                /*isInline=*/true,
4518                                /*isImplicitlyDeclared=*/true);
4519  Destructor->setAccess(AS_public);
4520  Destructor->setImplicit();
4521  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4522
4523  // Note that we have declared this destructor.
4524  ++ASTContext::NumImplicitDestructorsDeclared;
4525
4526  // Introduce this destructor into its scope.
4527  if (Scope *S = getScopeForContext(ClassDecl))
4528    PushOnScopeChains(Destructor, S, false);
4529  ClassDecl->addDecl(Destructor);
4530
4531  // This could be uniqued if it ever proves significant.
4532  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4533
4534  AddOverriddenMethods(ClassDecl, Destructor);
4535
4536  return Destructor;
4537}
4538
4539void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4540                                    CXXDestructorDecl *Destructor) {
4541  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4542         "DefineImplicitDestructor - call it for implicit default dtor");
4543  CXXRecordDecl *ClassDecl = Destructor->getParent();
4544  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4545
4546  if (Destructor->isInvalidDecl())
4547    return;
4548
4549  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4550
4551  DiagnosticErrorTrap Trap(Diags);
4552  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4553                                         Destructor->getParent());
4554
4555  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4556    Diag(CurrentLocation, diag::note_member_synthesized_at)
4557      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4558
4559    Destructor->setInvalidDecl();
4560    return;
4561  }
4562
4563  SourceLocation Loc = Destructor->getLocation();
4564  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4565
4566  Destructor->setUsed();
4567  MarkVTableUsed(CurrentLocation, ClassDecl);
4568}
4569
4570/// \brief Builds a statement that copies the given entity from \p From to
4571/// \c To.
4572///
4573/// This routine is used to copy the members of a class with an
4574/// implicitly-declared copy assignment operator. When the entities being
4575/// copied are arrays, this routine builds for loops to copy them.
4576///
4577/// \param S The Sema object used for type-checking.
4578///
4579/// \param Loc The location where the implicit copy is being generated.
4580///
4581/// \param T The type of the expressions being copied. Both expressions must
4582/// have this type.
4583///
4584/// \param To The expression we are copying to.
4585///
4586/// \param From The expression we are copying from.
4587///
4588/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4589/// Otherwise, it's a non-static member subobject.
4590///
4591/// \param Depth Internal parameter recording the depth of the recursion.
4592///
4593/// \returns A statement or a loop that copies the expressions.
4594static StmtResult
4595BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4596                      Expr *To, Expr *From,
4597                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4598  // C++0x [class.copy]p30:
4599  //   Each subobject is assigned in the manner appropriate to its type:
4600  //
4601  //     - if the subobject is of class type, the copy assignment operator
4602  //       for the class is used (as if by explicit qualification; that is,
4603  //       ignoring any possible virtual overriding functions in more derived
4604  //       classes);
4605  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4606    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4607
4608    // Look for operator=.
4609    DeclarationName Name
4610      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4611    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4612    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4613
4614    // Filter out any result that isn't a copy-assignment operator.
4615    LookupResult::Filter F = OpLookup.makeFilter();
4616    while (F.hasNext()) {
4617      NamedDecl *D = F.next();
4618      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4619        if (Method->isCopyAssignmentOperator())
4620          continue;
4621
4622      F.erase();
4623    }
4624    F.done();
4625
4626    // Suppress the protected check (C++ [class.protected]) for each of the
4627    // assignment operators we found. This strange dance is required when
4628    // we're assigning via a base classes's copy-assignment operator. To
4629    // ensure that we're getting the right base class subobject (without
4630    // ambiguities), we need to cast "this" to that subobject type; to
4631    // ensure that we don't go through the virtual call mechanism, we need
4632    // to qualify the operator= name with the base class (see below). However,
4633    // this means that if the base class has a protected copy assignment
4634    // operator, the protected member access check will fail. So, we
4635    // rewrite "protected" access to "public" access in this case, since we
4636    // know by construction that we're calling from a derived class.
4637    if (CopyingBaseSubobject) {
4638      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4639           L != LEnd; ++L) {
4640        if (L.getAccess() == AS_protected)
4641          L.setAccess(AS_public);
4642      }
4643    }
4644
4645    // Create the nested-name-specifier that will be used to qualify the
4646    // reference to operator=; this is required to suppress the virtual
4647    // call mechanism.
4648    CXXScopeSpec SS;
4649    SS.setRange(Loc);
4650    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4651                                               T.getTypePtr()));
4652
4653    // Create the reference to operator=.
4654    ExprResult OpEqualRef
4655      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
4656                                   /*FirstQualifierInScope=*/0, OpLookup,
4657                                   /*TemplateArgs=*/0,
4658                                   /*SuppressQualifierCheck=*/true);
4659    if (OpEqualRef.isInvalid())
4660      return StmtError();
4661
4662    // Build the call to the assignment operator.
4663
4664    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4665                                                  OpEqualRef.takeAs<Expr>(),
4666                                                  Loc, &From, 1, Loc);
4667    if (Call.isInvalid())
4668      return StmtError();
4669
4670    return S.Owned(Call.takeAs<Stmt>());
4671  }
4672
4673  //     - if the subobject is of scalar type, the built-in assignment
4674  //       operator is used.
4675  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4676  if (!ArrayTy) {
4677    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
4678    if (Assignment.isInvalid())
4679      return StmtError();
4680
4681    return S.Owned(Assignment.takeAs<Stmt>());
4682  }
4683
4684  //     - if the subobject is an array, each element is assigned, in the
4685  //       manner appropriate to the element type;
4686
4687  // Construct a loop over the array bounds, e.g.,
4688  //
4689  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4690  //
4691  // that will copy each of the array elements.
4692  QualType SizeType = S.Context.getSizeType();
4693
4694  // Create the iteration variable.
4695  IdentifierInfo *IterationVarName = 0;
4696  {
4697    llvm::SmallString<8> Str;
4698    llvm::raw_svector_ostream OS(Str);
4699    OS << "__i" << Depth;
4700    IterationVarName = &S.Context.Idents.get(OS.str());
4701  }
4702  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4703                                          IterationVarName, SizeType,
4704                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4705                                          SC_None, SC_None);
4706
4707  // Initialize the iteration variable to zero.
4708  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4709  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
4710
4711  // Create a reference to the iteration variable; we'll use this several
4712  // times throughout.
4713  Expr *IterationVarRef
4714    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
4715  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4716
4717  // Create the DeclStmt that holds the iteration variable.
4718  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4719
4720  // Create the comparison against the array bound.
4721  llvm::APInt Upper
4722    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
4723  Expr *Comparison
4724    = new (S.Context) BinaryOperator(IterationVarRef,
4725                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
4726                                     BO_NE, S.Context.BoolTy,
4727                                     VK_RValue, OK_Ordinary, Loc);
4728
4729  // Create the pre-increment of the iteration variable.
4730  Expr *Increment
4731    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
4732                                    VK_LValue, OK_Ordinary, Loc);
4733
4734  // Subscript the "from" and "to" expressions with the iteration variable.
4735  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
4736                                                         IterationVarRef, Loc));
4737  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
4738                                                       IterationVarRef, Loc));
4739
4740  // Build the copy for an individual element of the array.
4741  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
4742                                          To, From, CopyingBaseSubobject,
4743                                          Depth + 1);
4744  if (Copy.isInvalid())
4745    return StmtError();
4746
4747  // Construct the loop that copies all elements of this array.
4748  return S.ActOnForStmt(Loc, Loc, InitStmt,
4749                        S.MakeFullExpr(Comparison),
4750                        0, S.MakeFullExpr(Increment),
4751                        Loc, Copy.take());
4752}
4753
4754/// \brief Determine whether the given class has a copy assignment operator
4755/// that accepts a const-qualified argument.
4756static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4757  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4758
4759  if (!Class->hasDeclaredCopyAssignment())
4760    S.DeclareImplicitCopyAssignment(Class);
4761
4762  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4763  DeclarationName OpName
4764    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4765
4766  DeclContext::lookup_const_iterator Op, OpEnd;
4767  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4768    // C++ [class.copy]p9:
4769    //   A user-declared copy assignment operator is a non-static non-template
4770    //   member function of class X with exactly one parameter of type X, X&,
4771    //   const X&, volatile X& or const volatile X&.
4772    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4773    if (!Method)
4774      continue;
4775
4776    if (Method->isStatic())
4777      continue;
4778    if (Method->getPrimaryTemplate())
4779      continue;
4780    const FunctionProtoType *FnType =
4781    Method->getType()->getAs<FunctionProtoType>();
4782    assert(FnType && "Overloaded operator has no prototype.");
4783    // Don't assert on this; an invalid decl might have been left in the AST.
4784    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4785      continue;
4786    bool AcceptsConst = true;
4787    QualType ArgType = FnType->getArgType(0);
4788    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4789      ArgType = Ref->getPointeeType();
4790      // Is it a non-const lvalue reference?
4791      if (!ArgType.isConstQualified())
4792        AcceptsConst = false;
4793    }
4794    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4795      continue;
4796
4797    // We have a single argument of type cv X or cv X&, i.e. we've found the
4798    // copy assignment operator. Return whether it accepts const arguments.
4799    return AcceptsConst;
4800  }
4801  assert(Class->isInvalidDecl() &&
4802         "No copy assignment operator declared in valid code.");
4803  return false;
4804}
4805
4806CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4807  // Note: The following rules are largely analoguous to the copy
4808  // constructor rules. Note that virtual bases are not taken into account
4809  // for determining the argument type of the operator. Note also that
4810  // operators taking an object instead of a reference are allowed.
4811
4812
4813  // C++ [class.copy]p10:
4814  //   If the class definition does not explicitly declare a copy
4815  //   assignment operator, one is declared implicitly.
4816  //   The implicitly-defined copy assignment operator for a class X
4817  //   will have the form
4818  //
4819  //       X& X::operator=(const X&)
4820  //
4821  //   if
4822  bool HasConstCopyAssignment = true;
4823
4824  //       -- each direct base class B of X has a copy assignment operator
4825  //          whose parameter is of type const B&, const volatile B& or B,
4826  //          and
4827  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4828                                       BaseEnd = ClassDecl->bases_end();
4829       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4830    assert(!Base->getType()->isDependentType() &&
4831           "Cannot generate implicit members for class with dependent bases.");
4832    const CXXRecordDecl *BaseClassDecl
4833      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4834    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4835  }
4836
4837  //       -- for all the nonstatic data members of X that are of a class
4838  //          type M (or array thereof), each such class type has a copy
4839  //          assignment operator whose parameter is of type const M&,
4840  //          const volatile M& or M.
4841  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4842                                  FieldEnd = ClassDecl->field_end();
4843       HasConstCopyAssignment && Field != FieldEnd;
4844       ++Field) {
4845    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4846    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4847      const CXXRecordDecl *FieldClassDecl
4848        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4849      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4850    }
4851  }
4852
4853  //   Otherwise, the implicitly declared copy assignment operator will
4854  //   have the form
4855  //
4856  //       X& X::operator=(X&)
4857  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4858  QualType RetType = Context.getLValueReferenceType(ArgType);
4859  if (HasConstCopyAssignment)
4860    ArgType = ArgType.withConst();
4861  ArgType = Context.getLValueReferenceType(ArgType);
4862
4863  // C++ [except.spec]p14:
4864  //   An implicitly declared special member function (Clause 12) shall have an
4865  //   exception-specification. [...]
4866  ImplicitExceptionSpecification ExceptSpec(Context);
4867  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4868                                       BaseEnd = ClassDecl->bases_end();
4869       Base != BaseEnd; ++Base) {
4870    CXXRecordDecl *BaseClassDecl
4871      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4872
4873    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4874      DeclareImplicitCopyAssignment(BaseClassDecl);
4875
4876    if (CXXMethodDecl *CopyAssign
4877           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4878      ExceptSpec.CalledDecl(CopyAssign);
4879  }
4880  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4881                                  FieldEnd = ClassDecl->field_end();
4882       Field != FieldEnd;
4883       ++Field) {
4884    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4885    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4886      CXXRecordDecl *FieldClassDecl
4887        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4888
4889      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4890        DeclareImplicitCopyAssignment(FieldClassDecl);
4891
4892      if (CXXMethodDecl *CopyAssign
4893            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4894        ExceptSpec.CalledDecl(CopyAssign);
4895    }
4896  }
4897
4898  //   An implicitly-declared copy assignment operator is an inline public
4899  //   member of its class.
4900  FunctionProtoType::ExtProtoInfo EPI;
4901  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4902  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4903  EPI.NumExceptions = ExceptSpec.size();
4904  EPI.Exceptions = ExceptSpec.data();
4905  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4906  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4907  CXXMethodDecl *CopyAssignment
4908    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
4909                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
4910                            /*TInfo=*/0, /*isStatic=*/false,
4911                            /*StorageClassAsWritten=*/SC_None,
4912                            /*isInline=*/true);
4913  CopyAssignment->setAccess(AS_public);
4914  CopyAssignment->setImplicit();
4915  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4916
4917  // Add the parameter to the operator.
4918  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4919                                               ClassDecl->getLocation(),
4920                                               /*Id=*/0,
4921                                               ArgType, /*TInfo=*/0,
4922                                               SC_None,
4923                                               SC_None, 0);
4924  CopyAssignment->setParams(&FromParam, 1);
4925
4926  // Note that we have added this copy-assignment operator.
4927  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4928
4929  if (Scope *S = getScopeForContext(ClassDecl))
4930    PushOnScopeChains(CopyAssignment, S, false);
4931  ClassDecl->addDecl(CopyAssignment);
4932
4933  AddOverriddenMethods(ClassDecl, CopyAssignment);
4934  return CopyAssignment;
4935}
4936
4937void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4938                                        CXXMethodDecl *CopyAssignOperator) {
4939  assert((CopyAssignOperator->isImplicit() &&
4940          CopyAssignOperator->isOverloadedOperator() &&
4941          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4942          !CopyAssignOperator->isUsed(false)) &&
4943         "DefineImplicitCopyAssignment called for wrong function");
4944
4945  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4946
4947  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4948    CopyAssignOperator->setInvalidDecl();
4949    return;
4950  }
4951
4952  CopyAssignOperator->setUsed();
4953
4954  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4955  DiagnosticErrorTrap Trap(Diags);
4956
4957  // C++0x [class.copy]p30:
4958  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4959  //   for a non-union class X performs memberwise copy assignment of its
4960  //   subobjects. The direct base classes of X are assigned first, in the
4961  //   order of their declaration in the base-specifier-list, and then the
4962  //   immediate non-static data members of X are assigned, in the order in
4963  //   which they were declared in the class definition.
4964
4965  // The statements that form the synthesized function body.
4966  ASTOwningVector<Stmt*> Statements(*this);
4967
4968  // The parameter for the "other" object, which we are copying from.
4969  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4970  Qualifiers OtherQuals = Other->getType().getQualifiers();
4971  QualType OtherRefType = Other->getType();
4972  if (const LValueReferenceType *OtherRef
4973                                = OtherRefType->getAs<LValueReferenceType>()) {
4974    OtherRefType = OtherRef->getPointeeType();
4975    OtherQuals = OtherRefType.getQualifiers();
4976  }
4977
4978  // Our location for everything implicitly-generated.
4979  SourceLocation Loc = CopyAssignOperator->getLocation();
4980
4981  // Construct a reference to the "other" object. We'll be using this
4982  // throughout the generated ASTs.
4983  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
4984  assert(OtherRef && "Reference to parameter cannot fail!");
4985
4986  // Construct the "this" pointer. We'll be using this throughout the generated
4987  // ASTs.
4988  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4989  assert(This && "Reference to this cannot fail!");
4990
4991  // Assign base classes.
4992  bool Invalid = false;
4993  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4994       E = ClassDecl->bases_end(); Base != E; ++Base) {
4995    // Form the assignment:
4996    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4997    QualType BaseType = Base->getType().getUnqualifiedType();
4998    CXXRecordDecl *BaseClassDecl = 0;
4999    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
5000      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
5001    else {
5002      Invalid = true;
5003      continue;
5004    }
5005
5006    CXXCastPath BasePath;
5007    BasePath.push_back(Base);
5008
5009    // Construct the "from" expression, which is an implicit cast to the
5010    // appropriately-qualified base type.
5011    Expr *From = OtherRef;
5012    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5013                      CK_UncheckedDerivedToBase,
5014                      VK_LValue, &BasePath);
5015
5016    // Dereference "this".
5017    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5018
5019    // Implicitly cast "this" to the appropriately-qualified base type.
5020    Expr *ToE = To.takeAs<Expr>();
5021    ImpCastExprToType(ToE,
5022                      Context.getCVRQualifiedType(BaseType,
5023                                      CopyAssignOperator->getTypeQualifiers()),
5024                      CK_UncheckedDerivedToBase,
5025                      VK_LValue, &BasePath);
5026    To = Owned(ToE);
5027
5028    // Build the copy.
5029    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5030                                            To.get(), From,
5031                                            /*CopyingBaseSubobject=*/true);
5032    if (Copy.isInvalid()) {
5033      Diag(CurrentLocation, diag::note_member_synthesized_at)
5034        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5035      CopyAssignOperator->setInvalidDecl();
5036      return;
5037    }
5038
5039    // Success! Record the copy.
5040    Statements.push_back(Copy.takeAs<Expr>());
5041  }
5042
5043  // \brief Reference to the __builtin_memcpy function.
5044  Expr *BuiltinMemCpyRef = 0;
5045  // \brief Reference to the __builtin_objc_memmove_collectable function.
5046  Expr *CollectableMemCpyRef = 0;
5047
5048  // Assign non-static members.
5049  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5050                                  FieldEnd = ClassDecl->field_end();
5051       Field != FieldEnd; ++Field) {
5052    // Check for members of reference type; we can't copy those.
5053    if (Field->getType()->isReferenceType()) {
5054      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5055        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5056      Diag(Field->getLocation(), diag::note_declared_at);
5057      Diag(CurrentLocation, diag::note_member_synthesized_at)
5058        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5059      Invalid = true;
5060      continue;
5061    }
5062
5063    // Check for members of const-qualified, non-class type.
5064    QualType BaseType = Context.getBaseElementType(Field->getType());
5065    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5066      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5067        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5068      Diag(Field->getLocation(), diag::note_declared_at);
5069      Diag(CurrentLocation, diag::note_member_synthesized_at)
5070        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5071      Invalid = true;
5072      continue;
5073    }
5074
5075    QualType FieldType = Field->getType().getNonReferenceType();
5076    if (FieldType->isIncompleteArrayType()) {
5077      assert(ClassDecl->hasFlexibleArrayMember() &&
5078             "Incomplete array type is not valid");
5079      continue;
5080    }
5081
5082    // Build references to the field in the object we're copying from and to.
5083    CXXScopeSpec SS; // Intentionally empty
5084    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5085                              LookupMemberName);
5086    MemberLookup.addDecl(*Field);
5087    MemberLookup.resolveKind();
5088    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5089                                               Loc, /*IsArrow=*/false,
5090                                               SS, 0, MemberLookup, 0);
5091    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5092                                             Loc, /*IsArrow=*/true,
5093                                             SS, 0, MemberLookup, 0);
5094    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5095    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5096
5097    // If the field should be copied with __builtin_memcpy rather than via
5098    // explicit assignments, do so. This optimization only applies for arrays
5099    // of scalars and arrays of class type with trivial copy-assignment
5100    // operators.
5101    if (FieldType->isArrayType() &&
5102        (!BaseType->isRecordType() ||
5103         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5104           ->hasTrivialCopyAssignment())) {
5105      // Compute the size of the memory buffer to be copied.
5106      QualType SizeType = Context.getSizeType();
5107      llvm::APInt Size(Context.getTypeSize(SizeType),
5108                       Context.getTypeSizeInChars(BaseType).getQuantity());
5109      for (const ConstantArrayType *Array
5110              = Context.getAsConstantArrayType(FieldType);
5111           Array;
5112           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5113        llvm::APInt ArraySize
5114          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5115        Size *= ArraySize;
5116      }
5117
5118      // Take the address of the field references for "from" and "to".
5119      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5120      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5121
5122      bool NeedsCollectableMemCpy =
5123          (BaseType->isRecordType() &&
5124           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5125
5126      if (NeedsCollectableMemCpy) {
5127        if (!CollectableMemCpyRef) {
5128          // Create a reference to the __builtin_objc_memmove_collectable function.
5129          LookupResult R(*this,
5130                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5131                         Loc, LookupOrdinaryName);
5132          LookupName(R, TUScope, true);
5133
5134          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5135          if (!CollectableMemCpy) {
5136            // Something went horribly wrong earlier, and we will have
5137            // complained about it.
5138            Invalid = true;
5139            continue;
5140          }
5141
5142          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5143                                                  CollectableMemCpy->getType(),
5144                                                  VK_LValue, Loc, 0).take();
5145          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5146        }
5147      }
5148      // Create a reference to the __builtin_memcpy builtin function.
5149      else if (!BuiltinMemCpyRef) {
5150        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5151                       LookupOrdinaryName);
5152        LookupName(R, TUScope, true);
5153
5154        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5155        if (!BuiltinMemCpy) {
5156          // Something went horribly wrong earlier, and we will have complained
5157          // about it.
5158          Invalid = true;
5159          continue;
5160        }
5161
5162        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5163                                            BuiltinMemCpy->getType(),
5164                                            VK_LValue, Loc, 0).take();
5165        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5166      }
5167
5168      ASTOwningVector<Expr*> CallArgs(*this);
5169      CallArgs.push_back(To.takeAs<Expr>());
5170      CallArgs.push_back(From.takeAs<Expr>());
5171      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5172      ExprResult Call = ExprError();
5173      if (NeedsCollectableMemCpy)
5174        Call = ActOnCallExpr(/*Scope=*/0,
5175                             CollectableMemCpyRef,
5176                             Loc, move_arg(CallArgs),
5177                             Loc);
5178      else
5179        Call = ActOnCallExpr(/*Scope=*/0,
5180                             BuiltinMemCpyRef,
5181                             Loc, move_arg(CallArgs),
5182                             Loc);
5183
5184      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5185      Statements.push_back(Call.takeAs<Expr>());
5186      continue;
5187    }
5188
5189    // Build the copy of this field.
5190    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5191                                                  To.get(), From.get(),
5192                                              /*CopyingBaseSubobject=*/false);
5193    if (Copy.isInvalid()) {
5194      Diag(CurrentLocation, diag::note_member_synthesized_at)
5195        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5196      CopyAssignOperator->setInvalidDecl();
5197      return;
5198    }
5199
5200    // Success! Record the copy.
5201    Statements.push_back(Copy.takeAs<Stmt>());
5202  }
5203
5204  if (!Invalid) {
5205    // Add a "return *this;"
5206    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5207
5208    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5209    if (Return.isInvalid())
5210      Invalid = true;
5211    else {
5212      Statements.push_back(Return.takeAs<Stmt>());
5213
5214      if (Trap.hasErrorOccurred()) {
5215        Diag(CurrentLocation, diag::note_member_synthesized_at)
5216          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5217        Invalid = true;
5218      }
5219    }
5220  }
5221
5222  if (Invalid) {
5223    CopyAssignOperator->setInvalidDecl();
5224    return;
5225  }
5226
5227  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5228                                            /*isStmtExpr=*/false);
5229  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5230  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5231}
5232
5233CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5234                                                    CXXRecordDecl *ClassDecl) {
5235  // C++ [class.copy]p4:
5236  //   If the class definition does not explicitly declare a copy
5237  //   constructor, one is declared implicitly.
5238
5239  // C++ [class.copy]p5:
5240  //   The implicitly-declared copy constructor for a class X will
5241  //   have the form
5242  //
5243  //       X::X(const X&)
5244  //
5245  //   if
5246  bool HasConstCopyConstructor = true;
5247
5248  //     -- each direct or virtual base class B of X has a copy
5249  //        constructor whose first parameter is of type const B& or
5250  //        const volatile B&, and
5251  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5252                                       BaseEnd = ClassDecl->bases_end();
5253       HasConstCopyConstructor && Base != BaseEnd;
5254       ++Base) {
5255    // Virtual bases are handled below.
5256    if (Base->isVirtual())
5257      continue;
5258
5259    CXXRecordDecl *BaseClassDecl
5260      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5261    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5262      DeclareImplicitCopyConstructor(BaseClassDecl);
5263
5264    HasConstCopyConstructor
5265      = BaseClassDecl->hasConstCopyConstructor(Context);
5266  }
5267
5268  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5269                                       BaseEnd = ClassDecl->vbases_end();
5270       HasConstCopyConstructor && Base != BaseEnd;
5271       ++Base) {
5272    CXXRecordDecl *BaseClassDecl
5273      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5274    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5275      DeclareImplicitCopyConstructor(BaseClassDecl);
5276
5277    HasConstCopyConstructor
5278      = BaseClassDecl->hasConstCopyConstructor(Context);
5279  }
5280
5281  //     -- for all the nonstatic data members of X that are of a
5282  //        class type M (or array thereof), each such class type
5283  //        has a copy constructor whose first parameter is of type
5284  //        const M& or const volatile M&.
5285  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5286                                  FieldEnd = ClassDecl->field_end();
5287       HasConstCopyConstructor && Field != FieldEnd;
5288       ++Field) {
5289    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5290    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5291      CXXRecordDecl *FieldClassDecl
5292        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5293      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5294        DeclareImplicitCopyConstructor(FieldClassDecl);
5295
5296      HasConstCopyConstructor
5297        = FieldClassDecl->hasConstCopyConstructor(Context);
5298    }
5299  }
5300
5301  //   Otherwise, the implicitly declared copy constructor will have
5302  //   the form
5303  //
5304  //       X::X(X&)
5305  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5306  QualType ArgType = ClassType;
5307  if (HasConstCopyConstructor)
5308    ArgType = ArgType.withConst();
5309  ArgType = Context.getLValueReferenceType(ArgType);
5310
5311  // C++ [except.spec]p14:
5312  //   An implicitly declared special member function (Clause 12) shall have an
5313  //   exception-specification. [...]
5314  ImplicitExceptionSpecification ExceptSpec(Context);
5315  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5316  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5317                                       BaseEnd = ClassDecl->bases_end();
5318       Base != BaseEnd;
5319       ++Base) {
5320    // Virtual bases are handled below.
5321    if (Base->isVirtual())
5322      continue;
5323
5324    CXXRecordDecl *BaseClassDecl
5325      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5326    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5327      DeclareImplicitCopyConstructor(BaseClassDecl);
5328
5329    if (CXXConstructorDecl *CopyConstructor
5330                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5331      ExceptSpec.CalledDecl(CopyConstructor);
5332  }
5333  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5334                                       BaseEnd = ClassDecl->vbases_end();
5335       Base != BaseEnd;
5336       ++Base) {
5337    CXXRecordDecl *BaseClassDecl
5338      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5339    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5340      DeclareImplicitCopyConstructor(BaseClassDecl);
5341
5342    if (CXXConstructorDecl *CopyConstructor
5343                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5344      ExceptSpec.CalledDecl(CopyConstructor);
5345  }
5346  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5347                                  FieldEnd = ClassDecl->field_end();
5348       Field != FieldEnd;
5349       ++Field) {
5350    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5351    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5352      CXXRecordDecl *FieldClassDecl
5353        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5354      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5355        DeclareImplicitCopyConstructor(FieldClassDecl);
5356
5357      if (CXXConstructorDecl *CopyConstructor
5358                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5359        ExceptSpec.CalledDecl(CopyConstructor);
5360    }
5361  }
5362
5363  //   An implicitly-declared copy constructor is an inline public
5364  //   member of its class.
5365  FunctionProtoType::ExtProtoInfo EPI;
5366  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5367  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5368  EPI.NumExceptions = ExceptSpec.size();
5369  EPI.Exceptions = ExceptSpec.data();
5370  DeclarationName Name
5371    = Context.DeclarationNames.getCXXConstructorName(
5372                                           Context.getCanonicalType(ClassType));
5373  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5374  CXXConstructorDecl *CopyConstructor
5375    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5376                                 Context.getFunctionType(Context.VoidTy,
5377                                                         &ArgType, 1, EPI),
5378                                 /*TInfo=*/0,
5379                                 /*isExplicit=*/false,
5380                                 /*isInline=*/true,
5381                                 /*isImplicitlyDeclared=*/true);
5382  CopyConstructor->setAccess(AS_public);
5383  CopyConstructor->setImplicit();
5384  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5385
5386  // Note that we have declared this constructor.
5387  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5388
5389  // Add the parameter to the constructor.
5390  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5391                                               ClassDecl->getLocation(),
5392                                               /*IdentifierInfo=*/0,
5393                                               ArgType, /*TInfo=*/0,
5394                                               SC_None,
5395                                               SC_None, 0);
5396  CopyConstructor->setParams(&FromParam, 1);
5397  if (Scope *S = getScopeForContext(ClassDecl))
5398    PushOnScopeChains(CopyConstructor, S, false);
5399  ClassDecl->addDecl(CopyConstructor);
5400
5401  return CopyConstructor;
5402}
5403
5404void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5405                                   CXXConstructorDecl *CopyConstructor,
5406                                   unsigned TypeQuals) {
5407  assert((CopyConstructor->isImplicit() &&
5408          CopyConstructor->isCopyConstructor(TypeQuals) &&
5409          !CopyConstructor->isUsed(false)) &&
5410         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5411
5412  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5413  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5414
5415  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5416  DiagnosticErrorTrap Trap(Diags);
5417
5418  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5419      Trap.hasErrorOccurred()) {
5420    Diag(CurrentLocation, diag::note_member_synthesized_at)
5421      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5422    CopyConstructor->setInvalidDecl();
5423  }  else {
5424    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5425                                               CopyConstructor->getLocation(),
5426                                               MultiStmtArg(*this, 0, 0),
5427                                               /*isStmtExpr=*/false)
5428                                                              .takeAs<Stmt>());
5429  }
5430
5431  CopyConstructor->setUsed();
5432}
5433
5434ExprResult
5435Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5436                            CXXConstructorDecl *Constructor,
5437                            MultiExprArg ExprArgs,
5438                            bool RequiresZeroInit,
5439                            unsigned ConstructKind,
5440                            SourceRange ParenRange) {
5441  bool Elidable = false;
5442
5443  // C++0x [class.copy]p34:
5444  //   When certain criteria are met, an implementation is allowed to
5445  //   omit the copy/move construction of a class object, even if the
5446  //   copy/move constructor and/or destructor for the object have
5447  //   side effects. [...]
5448  //     - when a temporary class object that has not been bound to a
5449  //       reference (12.2) would be copied/moved to a class object
5450  //       with the same cv-unqualified type, the copy/move operation
5451  //       can be omitted by constructing the temporary object
5452  //       directly into the target of the omitted copy/move
5453  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5454      Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5455    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5456    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5457  }
5458
5459  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5460                               Elidable, move(ExprArgs), RequiresZeroInit,
5461                               ConstructKind, ParenRange);
5462}
5463
5464/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5465/// including handling of its default argument expressions.
5466ExprResult
5467Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5468                            CXXConstructorDecl *Constructor, bool Elidable,
5469                            MultiExprArg ExprArgs,
5470                            bool RequiresZeroInit,
5471                            unsigned ConstructKind,
5472                            SourceRange ParenRange) {
5473  unsigned NumExprs = ExprArgs.size();
5474  Expr **Exprs = (Expr **)ExprArgs.release();
5475
5476  MarkDeclarationReferenced(ConstructLoc, Constructor);
5477  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5478                                        Constructor, Elidable, Exprs, NumExprs,
5479                                        RequiresZeroInit,
5480              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
5481                                        ParenRange));
5482}
5483
5484bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5485                                        CXXConstructorDecl *Constructor,
5486                                        MultiExprArg Exprs) {
5487  // FIXME: Provide the correct paren SourceRange when available.
5488  ExprResult TempResult =
5489    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5490                          move(Exprs), false, CXXConstructExpr::CK_Complete,
5491                          SourceRange());
5492  if (TempResult.isInvalid())
5493    return true;
5494
5495  Expr *Temp = TempResult.takeAs<Expr>();
5496  CheckImplicitConversions(Temp, VD->getLocation());
5497  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5498  Temp = MaybeCreateExprWithCleanups(Temp);
5499  VD->setInit(Temp);
5500
5501  return false;
5502}
5503
5504void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5505  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5506  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5507      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5508    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5509    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5510    CheckDestructorAccess(VD->getLocation(), Destructor,
5511                          PDiag(diag::err_access_dtor_var)
5512                            << VD->getDeclName()
5513                            << VD->getType());
5514
5515    // TODO: this should be re-enabled for static locals by !CXAAtExit
5516    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5517      Diag(VD->getLocation(), diag::warn_global_destructor);
5518  }
5519}
5520
5521/// AddCXXDirectInitializerToDecl - This action is called immediately after
5522/// ActOnDeclarator, when a C++ direct initializer is present.
5523/// e.g: "int x(1);"
5524void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5525                                         SourceLocation LParenLoc,
5526                                         MultiExprArg Exprs,
5527                                         SourceLocation RParenLoc) {
5528  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5529
5530  // If there is no declaration, there was an error parsing it.  Just ignore
5531  // the initializer.
5532  if (RealDecl == 0)
5533    return;
5534
5535  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5536  if (!VDecl) {
5537    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5538    RealDecl->setInvalidDecl();
5539    return;
5540  }
5541
5542  // We will represent direct-initialization similarly to copy-initialization:
5543  //    int x(1);  -as-> int x = 1;
5544  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5545  //
5546  // Clients that want to distinguish between the two forms, can check for
5547  // direct initializer using VarDecl::hasCXXDirectInitializer().
5548  // A major benefit is that clients that don't particularly care about which
5549  // exactly form was it (like the CodeGen) can handle both cases without
5550  // special case code.
5551
5552  // C++ 8.5p11:
5553  // The form of initialization (using parentheses or '=') is generally
5554  // insignificant, but does matter when the entity being initialized has a
5555  // class type.
5556
5557  if (!VDecl->getType()->isDependentType() &&
5558      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5559                          diag::err_typecheck_decl_incomplete_type)) {
5560    VDecl->setInvalidDecl();
5561    return;
5562  }
5563
5564  // The variable can not have an abstract class type.
5565  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5566                             diag::err_abstract_type_in_decl,
5567                             AbstractVariableType))
5568    VDecl->setInvalidDecl();
5569
5570  const VarDecl *Def;
5571  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5572    Diag(VDecl->getLocation(), diag::err_redefinition)
5573    << VDecl->getDeclName();
5574    Diag(Def->getLocation(), diag::note_previous_definition);
5575    VDecl->setInvalidDecl();
5576    return;
5577  }
5578
5579  // C++ [class.static.data]p4
5580  //   If a static data member is of const integral or const
5581  //   enumeration type, its declaration in the class definition can
5582  //   specify a constant-initializer which shall be an integral
5583  //   constant expression (5.19). In that case, the member can appear
5584  //   in integral constant expressions. The member shall still be
5585  //   defined in a namespace scope if it is used in the program and the
5586  //   namespace scope definition shall not contain an initializer.
5587  //
5588  // We already performed a redefinition check above, but for static
5589  // data members we also need to check whether there was an in-class
5590  // declaration with an initializer.
5591  const VarDecl* PrevInit = 0;
5592  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5593    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5594    Diag(PrevInit->getLocation(), diag::note_previous_definition);
5595    return;
5596  }
5597
5598  bool IsDependent = false;
5599  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
5600    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
5601      VDecl->setInvalidDecl();
5602      return;
5603    }
5604
5605    if (Exprs.get()[I]->isTypeDependent())
5606      IsDependent = true;
5607  }
5608
5609  // If either the declaration has a dependent type or if any of the
5610  // expressions is type-dependent, we represent the initialization
5611  // via a ParenListExpr for later use during template instantiation.
5612  if (VDecl->getType()->isDependentType() || IsDependent) {
5613    // Let clients know that initialization was done with a direct initializer.
5614    VDecl->setCXXDirectInitializer(true);
5615
5616    // Store the initialization expressions as a ParenListExpr.
5617    unsigned NumExprs = Exprs.size();
5618    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5619                                               (Expr **)Exprs.release(),
5620                                               NumExprs, RParenLoc));
5621    return;
5622  }
5623
5624  // Capture the variable that is being initialized and the style of
5625  // initialization.
5626  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5627
5628  // FIXME: Poor source location information.
5629  InitializationKind Kind
5630    = InitializationKind::CreateDirect(VDecl->getLocation(),
5631                                       LParenLoc, RParenLoc);
5632
5633  InitializationSequence InitSeq(*this, Entity, Kind,
5634                                 Exprs.get(), Exprs.size());
5635  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5636  if (Result.isInvalid()) {
5637    VDecl->setInvalidDecl();
5638    return;
5639  }
5640
5641  CheckImplicitConversions(Result.get(), LParenLoc);
5642
5643  Result = MaybeCreateExprWithCleanups(Result);
5644  VDecl->setInit(Result.takeAs<Expr>());
5645  VDecl->setCXXDirectInitializer(true);
5646
5647    if (!VDecl->isInvalidDecl() &&
5648        !VDecl->getDeclContext()->isDependentContext() &&
5649        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
5650        !VDecl->getInit()->isConstantInitializer(Context,
5651                                        VDecl->getType()->isReferenceType()))
5652      Diag(VDecl->getLocation(), diag::warn_global_constructor)
5653        << VDecl->getInit()->getSourceRange();
5654
5655  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5656    FinalizeVarWithDestructor(VDecl, Record);
5657}
5658
5659/// \brief Given a constructor and the set of arguments provided for the
5660/// constructor, convert the arguments and add any required default arguments
5661/// to form a proper call to this constructor.
5662///
5663/// \returns true if an error occurred, false otherwise.
5664bool
5665Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5666                              MultiExprArg ArgsPtr,
5667                              SourceLocation Loc,
5668                              ASTOwningVector<Expr*> &ConvertedArgs) {
5669  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5670  unsigned NumArgs = ArgsPtr.size();
5671  Expr **Args = (Expr **)ArgsPtr.get();
5672
5673  const FunctionProtoType *Proto
5674    = Constructor->getType()->getAs<FunctionProtoType>();
5675  assert(Proto && "Constructor without a prototype?");
5676  unsigned NumArgsInProto = Proto->getNumArgs();
5677
5678  // If too few arguments are available, we'll fill in the rest with defaults.
5679  if (NumArgs < NumArgsInProto)
5680    ConvertedArgs.reserve(NumArgsInProto);
5681  else
5682    ConvertedArgs.reserve(NumArgs);
5683
5684  VariadicCallType CallType =
5685    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5686  llvm::SmallVector<Expr *, 8> AllArgs;
5687  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5688                                        Proto, 0, Args, NumArgs, AllArgs,
5689                                        CallType);
5690  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5691    ConvertedArgs.push_back(AllArgs[i]);
5692  return Invalid;
5693}
5694
5695static inline bool
5696CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5697                                       const FunctionDecl *FnDecl) {
5698  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
5699  if (isa<NamespaceDecl>(DC)) {
5700    return SemaRef.Diag(FnDecl->getLocation(),
5701                        diag::err_operator_new_delete_declared_in_namespace)
5702      << FnDecl->getDeclName();
5703  }
5704
5705  if (isa<TranslationUnitDecl>(DC) &&
5706      FnDecl->getStorageClass() == SC_Static) {
5707    return SemaRef.Diag(FnDecl->getLocation(),
5708                        diag::err_operator_new_delete_declared_static)
5709      << FnDecl->getDeclName();
5710  }
5711
5712  return false;
5713}
5714
5715static inline bool
5716CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5717                            CanQualType ExpectedResultType,
5718                            CanQualType ExpectedFirstParamType,
5719                            unsigned DependentParamTypeDiag,
5720                            unsigned InvalidParamTypeDiag) {
5721  QualType ResultType =
5722    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5723
5724  // Check that the result type is not dependent.
5725  if (ResultType->isDependentType())
5726    return SemaRef.Diag(FnDecl->getLocation(),
5727                        diag::err_operator_new_delete_dependent_result_type)
5728    << FnDecl->getDeclName() << ExpectedResultType;
5729
5730  // Check that the result type is what we expect.
5731  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5732    return SemaRef.Diag(FnDecl->getLocation(),
5733                        diag::err_operator_new_delete_invalid_result_type)
5734    << FnDecl->getDeclName() << ExpectedResultType;
5735
5736  // A function template must have at least 2 parameters.
5737  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5738    return SemaRef.Diag(FnDecl->getLocation(),
5739                      diag::err_operator_new_delete_template_too_few_parameters)
5740        << FnDecl->getDeclName();
5741
5742  // The function decl must have at least 1 parameter.
5743  if (FnDecl->getNumParams() == 0)
5744    return SemaRef.Diag(FnDecl->getLocation(),
5745                        diag::err_operator_new_delete_too_few_parameters)
5746      << FnDecl->getDeclName();
5747
5748  // Check the the first parameter type is not dependent.
5749  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5750  if (FirstParamType->isDependentType())
5751    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5752      << FnDecl->getDeclName() << ExpectedFirstParamType;
5753
5754  // Check that the first parameter type is what we expect.
5755  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5756      ExpectedFirstParamType)
5757    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5758    << FnDecl->getDeclName() << ExpectedFirstParamType;
5759
5760  return false;
5761}
5762
5763static bool
5764CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5765  // C++ [basic.stc.dynamic.allocation]p1:
5766  //   A program is ill-formed if an allocation function is declared in a
5767  //   namespace scope other than global scope or declared static in global
5768  //   scope.
5769  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5770    return true;
5771
5772  CanQualType SizeTy =
5773    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5774
5775  // C++ [basic.stc.dynamic.allocation]p1:
5776  //  The return type shall be void*. The first parameter shall have type
5777  //  std::size_t.
5778  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5779                                  SizeTy,
5780                                  diag::err_operator_new_dependent_param_type,
5781                                  diag::err_operator_new_param_type))
5782    return true;
5783
5784  // C++ [basic.stc.dynamic.allocation]p1:
5785  //  The first parameter shall not have an associated default argument.
5786  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5787    return SemaRef.Diag(FnDecl->getLocation(),
5788                        diag::err_operator_new_default_arg)
5789      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5790
5791  return false;
5792}
5793
5794static bool
5795CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5796  // C++ [basic.stc.dynamic.deallocation]p1:
5797  //   A program is ill-formed if deallocation functions are declared in a
5798  //   namespace scope other than global scope or declared static in global
5799  //   scope.
5800  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5801    return true;
5802
5803  // C++ [basic.stc.dynamic.deallocation]p2:
5804  //   Each deallocation function shall return void and its first parameter
5805  //   shall be void*.
5806  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5807                                  SemaRef.Context.VoidPtrTy,
5808                                 diag::err_operator_delete_dependent_param_type,
5809                                 diag::err_operator_delete_param_type))
5810    return true;
5811
5812  return false;
5813}
5814
5815/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5816/// of this overloaded operator is well-formed. If so, returns false;
5817/// otherwise, emits appropriate diagnostics and returns true.
5818bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5819  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5820         "Expected an overloaded operator declaration");
5821
5822  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5823
5824  // C++ [over.oper]p5:
5825  //   The allocation and deallocation functions, operator new,
5826  //   operator new[], operator delete and operator delete[], are
5827  //   described completely in 3.7.3. The attributes and restrictions
5828  //   found in the rest of this subclause do not apply to them unless
5829  //   explicitly stated in 3.7.3.
5830  if (Op == OO_Delete || Op == OO_Array_Delete)
5831    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5832
5833  if (Op == OO_New || Op == OO_Array_New)
5834    return CheckOperatorNewDeclaration(*this, FnDecl);
5835
5836  // C++ [over.oper]p6:
5837  //   An operator function shall either be a non-static member
5838  //   function or be a non-member function and have at least one
5839  //   parameter whose type is a class, a reference to a class, an
5840  //   enumeration, or a reference to an enumeration.
5841  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5842    if (MethodDecl->isStatic())
5843      return Diag(FnDecl->getLocation(),
5844                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5845  } else {
5846    bool ClassOrEnumParam = false;
5847    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5848                                   ParamEnd = FnDecl->param_end();
5849         Param != ParamEnd; ++Param) {
5850      QualType ParamType = (*Param)->getType().getNonReferenceType();
5851      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5852          ParamType->isEnumeralType()) {
5853        ClassOrEnumParam = true;
5854        break;
5855      }
5856    }
5857
5858    if (!ClassOrEnumParam)
5859      return Diag(FnDecl->getLocation(),
5860                  diag::err_operator_overload_needs_class_or_enum)
5861        << FnDecl->getDeclName();
5862  }
5863
5864  // C++ [over.oper]p8:
5865  //   An operator function cannot have default arguments (8.3.6),
5866  //   except where explicitly stated below.
5867  //
5868  // Only the function-call operator allows default arguments
5869  // (C++ [over.call]p1).
5870  if (Op != OO_Call) {
5871    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5872         Param != FnDecl->param_end(); ++Param) {
5873      if ((*Param)->hasDefaultArg())
5874        return Diag((*Param)->getLocation(),
5875                    diag::err_operator_overload_default_arg)
5876          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5877    }
5878  }
5879
5880  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5881    { false, false, false }
5882#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5883    , { Unary, Binary, MemberOnly }
5884#include "clang/Basic/OperatorKinds.def"
5885  };
5886
5887  bool CanBeUnaryOperator = OperatorUses[Op][0];
5888  bool CanBeBinaryOperator = OperatorUses[Op][1];
5889  bool MustBeMemberOperator = OperatorUses[Op][2];
5890
5891  // C++ [over.oper]p8:
5892  //   [...] Operator functions cannot have more or fewer parameters
5893  //   than the number required for the corresponding operator, as
5894  //   described in the rest of this subclause.
5895  unsigned NumParams = FnDecl->getNumParams()
5896                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5897  if (Op != OO_Call &&
5898      ((NumParams == 1 && !CanBeUnaryOperator) ||
5899       (NumParams == 2 && !CanBeBinaryOperator) ||
5900       (NumParams < 1) || (NumParams > 2))) {
5901    // We have the wrong number of parameters.
5902    unsigned ErrorKind;
5903    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5904      ErrorKind = 2;  // 2 -> unary or binary.
5905    } else if (CanBeUnaryOperator) {
5906      ErrorKind = 0;  // 0 -> unary
5907    } else {
5908      assert(CanBeBinaryOperator &&
5909             "All non-call overloaded operators are unary or binary!");
5910      ErrorKind = 1;  // 1 -> binary
5911    }
5912
5913    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5914      << FnDecl->getDeclName() << NumParams << ErrorKind;
5915  }
5916
5917  // Overloaded operators other than operator() cannot be variadic.
5918  if (Op != OO_Call &&
5919      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5920    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5921      << FnDecl->getDeclName();
5922  }
5923
5924  // Some operators must be non-static member functions.
5925  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5926    return Diag(FnDecl->getLocation(),
5927                diag::err_operator_overload_must_be_member)
5928      << FnDecl->getDeclName();
5929  }
5930
5931  // C++ [over.inc]p1:
5932  //   The user-defined function called operator++ implements the
5933  //   prefix and postfix ++ operator. If this function is a member
5934  //   function with no parameters, or a non-member function with one
5935  //   parameter of class or enumeration type, it defines the prefix
5936  //   increment operator ++ for objects of that type. If the function
5937  //   is a member function with one parameter (which shall be of type
5938  //   int) or a non-member function with two parameters (the second
5939  //   of which shall be of type int), it defines the postfix
5940  //   increment operator ++ for objects of that type.
5941  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5942    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5943    bool ParamIsInt = false;
5944    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5945      ParamIsInt = BT->getKind() == BuiltinType::Int;
5946
5947    if (!ParamIsInt)
5948      return Diag(LastParam->getLocation(),
5949                  diag::err_operator_overload_post_incdec_must_be_int)
5950        << LastParam->getType() << (Op == OO_MinusMinus);
5951  }
5952
5953  return false;
5954}
5955
5956/// CheckLiteralOperatorDeclaration - Check whether the declaration
5957/// of this literal operator function is well-formed. If so, returns
5958/// false; otherwise, emits appropriate diagnostics and returns true.
5959bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5960  DeclContext *DC = FnDecl->getDeclContext();
5961  Decl::Kind Kind = DC->getDeclKind();
5962  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5963      Kind != Decl::LinkageSpec) {
5964    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5965      << FnDecl->getDeclName();
5966    return true;
5967  }
5968
5969  bool Valid = false;
5970
5971  // template <char...> type operator "" name() is the only valid template
5972  // signature, and the only valid signature with no parameters.
5973  if (FnDecl->param_size() == 0) {
5974    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5975      // Must have only one template parameter
5976      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5977      if (Params->size() == 1) {
5978        NonTypeTemplateParmDecl *PmDecl =
5979          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5980
5981        // The template parameter must be a char parameter pack.
5982        // FIXME: This test will always fail because non-type parameter packs
5983        //   have not been implemented.
5984        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5985            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5986          Valid = true;
5987      }
5988    }
5989  } else {
5990    // Check the first parameter
5991    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5992
5993    QualType T = (*Param)->getType();
5994
5995    // unsigned long long int, long double, and any character type are allowed
5996    // as the only parameters.
5997    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5998        Context.hasSameType(T, Context.LongDoubleTy) ||
5999        Context.hasSameType(T, Context.CharTy) ||
6000        Context.hasSameType(T, Context.WCharTy) ||
6001        Context.hasSameType(T, Context.Char16Ty) ||
6002        Context.hasSameType(T, Context.Char32Ty)) {
6003      if (++Param == FnDecl->param_end())
6004        Valid = true;
6005      goto FinishedParams;
6006    }
6007
6008    // Otherwise it must be a pointer to const; let's strip those qualifiers.
6009    const PointerType *PT = T->getAs<PointerType>();
6010    if (!PT)
6011      goto FinishedParams;
6012    T = PT->getPointeeType();
6013    if (!T.isConstQualified())
6014      goto FinishedParams;
6015    T = T.getUnqualifiedType();
6016
6017    // Move on to the second parameter;
6018    ++Param;
6019
6020    // If there is no second parameter, the first must be a const char *
6021    if (Param == FnDecl->param_end()) {
6022      if (Context.hasSameType(T, Context.CharTy))
6023        Valid = true;
6024      goto FinishedParams;
6025    }
6026
6027    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6028    // are allowed as the first parameter to a two-parameter function
6029    if (!(Context.hasSameType(T, Context.CharTy) ||
6030          Context.hasSameType(T, Context.WCharTy) ||
6031          Context.hasSameType(T, Context.Char16Ty) ||
6032          Context.hasSameType(T, Context.Char32Ty)))
6033      goto FinishedParams;
6034
6035    // The second and final parameter must be an std::size_t
6036    T = (*Param)->getType().getUnqualifiedType();
6037    if (Context.hasSameType(T, Context.getSizeType()) &&
6038        ++Param == FnDecl->param_end())
6039      Valid = true;
6040  }
6041
6042  // FIXME: This diagnostic is absolutely terrible.
6043FinishedParams:
6044  if (!Valid) {
6045    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6046      << FnDecl->getDeclName();
6047    return true;
6048  }
6049
6050  return false;
6051}
6052
6053/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6054/// linkage specification, including the language and (if present)
6055/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6056/// the location of the language string literal, which is provided
6057/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6058/// the '{' brace. Otherwise, this linkage specification does not
6059/// have any braces.
6060Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6061                                           SourceLocation LangLoc,
6062                                           llvm::StringRef Lang,
6063                                           SourceLocation LBraceLoc) {
6064  LinkageSpecDecl::LanguageIDs Language;
6065  if (Lang == "\"C\"")
6066    Language = LinkageSpecDecl::lang_c;
6067  else if (Lang == "\"C++\"")
6068    Language = LinkageSpecDecl::lang_cxx;
6069  else {
6070    Diag(LangLoc, diag::err_bad_language);
6071    return 0;
6072  }
6073
6074  // FIXME: Add all the various semantics of linkage specifications
6075
6076  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6077                                               LangLoc, Language,
6078                                               LBraceLoc.isValid());
6079  CurContext->addDecl(D);
6080  PushDeclContext(S, D);
6081  return D;
6082}
6083
6084/// ActOnFinishLinkageSpecification - Complete the definition of
6085/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6086/// valid, it's the position of the closing '}' brace in a linkage
6087/// specification that uses braces.
6088Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6089                                                      Decl *LinkageSpec,
6090                                                      SourceLocation RBraceLoc) {
6091  if (LinkageSpec)
6092    PopDeclContext();
6093  return LinkageSpec;
6094}
6095
6096/// \brief Perform semantic analysis for the variable declaration that
6097/// occurs within a C++ catch clause, returning the newly-created
6098/// variable.
6099VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6100                                         TypeSourceInfo *TInfo,
6101                                         IdentifierInfo *Name,
6102                                         SourceLocation Loc) {
6103  bool Invalid = false;
6104  QualType ExDeclType = TInfo->getType();
6105
6106  // Arrays and functions decay.
6107  if (ExDeclType->isArrayType())
6108    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6109  else if (ExDeclType->isFunctionType())
6110    ExDeclType = Context.getPointerType(ExDeclType);
6111
6112  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6113  // The exception-declaration shall not denote a pointer or reference to an
6114  // incomplete type, other than [cv] void*.
6115  // N2844 forbids rvalue references.
6116  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6117    Diag(Loc, diag::err_catch_rvalue_ref);
6118    Invalid = true;
6119  }
6120
6121  // GCC allows catching pointers and references to incomplete types
6122  // as an extension; so do we, but we warn by default.
6123
6124  QualType BaseType = ExDeclType;
6125  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6126  unsigned DK = diag::err_catch_incomplete;
6127  bool IncompleteCatchIsInvalid = true;
6128  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6129    BaseType = Ptr->getPointeeType();
6130    Mode = 1;
6131    DK = diag::ext_catch_incomplete_ptr;
6132    IncompleteCatchIsInvalid = false;
6133  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6134    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6135    BaseType = Ref->getPointeeType();
6136    Mode = 2;
6137    DK = diag::ext_catch_incomplete_ref;
6138    IncompleteCatchIsInvalid = false;
6139  }
6140  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6141      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6142      IncompleteCatchIsInvalid)
6143    Invalid = true;
6144
6145  if (!Invalid && !ExDeclType->isDependentType() &&
6146      RequireNonAbstractType(Loc, ExDeclType,
6147                             diag::err_abstract_type_in_decl,
6148                             AbstractVariableType))
6149    Invalid = true;
6150
6151  // Only the non-fragile NeXT runtime currently supports C++ catches
6152  // of ObjC types, and no runtime supports catching ObjC types by value.
6153  if (!Invalid && getLangOptions().ObjC1) {
6154    QualType T = ExDeclType;
6155    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6156      T = RT->getPointeeType();
6157
6158    if (T->isObjCObjectType()) {
6159      Diag(Loc, diag::err_objc_object_catch);
6160      Invalid = true;
6161    } else if (T->isObjCObjectPointerType()) {
6162      if (!getLangOptions().NeXTRuntime) {
6163        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6164        Invalid = true;
6165      } else if (!getLangOptions().ObjCNonFragileABI) {
6166        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6167        Invalid = true;
6168      }
6169    }
6170  }
6171
6172  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6173                                    Name, ExDeclType, TInfo, SC_None,
6174                                    SC_None);
6175  ExDecl->setExceptionVariable(true);
6176
6177  if (!Invalid) {
6178    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6179      // C++ [except.handle]p16:
6180      //   The object declared in an exception-declaration or, if the
6181      //   exception-declaration does not specify a name, a temporary (12.2) is
6182      //   copy-initialized (8.5) from the exception object. [...]
6183      //   The object is destroyed when the handler exits, after the destruction
6184      //   of any automatic objects initialized within the handler.
6185      //
6186      // We just pretend to initialize the object with itself, then make sure
6187      // it can be destroyed later.
6188      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6189      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6190                                            Loc, ExDeclType, VK_LValue, 0);
6191      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6192                                                               SourceLocation());
6193      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6194      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6195                                         MultiExprArg(*this, &ExDeclRef, 1));
6196      if (Result.isInvalid())
6197        Invalid = true;
6198      else
6199        FinalizeVarWithDestructor(ExDecl, RecordTy);
6200    }
6201  }
6202
6203  if (Invalid)
6204    ExDecl->setInvalidDecl();
6205
6206  return ExDecl;
6207}
6208
6209/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6210/// handler.
6211Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6212  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6213  bool Invalid = D.isInvalidType();
6214
6215  // Check for unexpanded parameter packs.
6216  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6217                                               UPPC_ExceptionType)) {
6218    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6219                                             D.getIdentifierLoc());
6220    Invalid = true;
6221  }
6222
6223  QualType ExDeclType = TInfo->getType();
6224
6225  IdentifierInfo *II = D.getIdentifier();
6226  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6227                                             LookupOrdinaryName,
6228                                             ForRedeclaration)) {
6229    // The scope should be freshly made just for us. There is just no way
6230    // it contains any previous declaration.
6231    assert(!S->isDeclScope(PrevDecl));
6232    if (PrevDecl->isTemplateParameter()) {
6233      // Maybe we will complain about the shadowed template parameter.
6234      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6235    }
6236  }
6237
6238  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6239    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6240      << D.getCXXScopeSpec().getRange();
6241    Invalid = true;
6242  }
6243
6244  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6245                                              D.getIdentifier(),
6246                                              D.getIdentifierLoc());
6247
6248  if (Invalid)
6249    ExDecl->setInvalidDecl();
6250
6251  // Add the exception declaration into this scope.
6252  if (II)
6253    PushOnScopeChains(ExDecl, S);
6254  else
6255    CurContext->addDecl(ExDecl);
6256
6257  ProcessDeclAttributes(S, ExDecl, D);
6258  return ExDecl;
6259}
6260
6261Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6262                                         Expr *AssertExpr,
6263                                         Expr *AssertMessageExpr_) {
6264  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6265
6266  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6267    llvm::APSInt Value(32);
6268    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6269      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6270        AssertExpr->getSourceRange();
6271      return 0;
6272    }
6273
6274    if (Value == 0) {
6275      Diag(AssertLoc, diag::err_static_assert_failed)
6276        << AssertMessage->getString() << AssertExpr->getSourceRange();
6277    }
6278  }
6279
6280  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6281    return 0;
6282
6283  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6284                                        AssertExpr, AssertMessage);
6285
6286  CurContext->addDecl(Decl);
6287  return Decl;
6288}
6289
6290/// \brief Perform semantic analysis of the given friend type declaration.
6291///
6292/// \returns A friend declaration that.
6293FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6294                                      TypeSourceInfo *TSInfo) {
6295  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6296
6297  QualType T = TSInfo->getType();
6298  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6299
6300  if (!getLangOptions().CPlusPlus0x) {
6301    // C++03 [class.friend]p2:
6302    //   An elaborated-type-specifier shall be used in a friend declaration
6303    //   for a class.*
6304    //
6305    //   * The class-key of the elaborated-type-specifier is required.
6306    if (!ActiveTemplateInstantiations.empty()) {
6307      // Do not complain about the form of friend template types during
6308      // template instantiation; we will already have complained when the
6309      // template was declared.
6310    } else if (!T->isElaboratedTypeSpecifier()) {
6311      // If we evaluated the type to a record type, suggest putting
6312      // a tag in front.
6313      if (const RecordType *RT = T->getAs<RecordType>()) {
6314        RecordDecl *RD = RT->getDecl();
6315
6316        std::string InsertionText = std::string(" ") + RD->getKindName();
6317
6318        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6319          << (unsigned) RD->getTagKind()
6320          << T
6321          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6322                                        InsertionText);
6323      } else {
6324        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6325          << T
6326          << SourceRange(FriendLoc, TypeRange.getEnd());
6327      }
6328    } else if (T->getAs<EnumType>()) {
6329      Diag(FriendLoc, diag::ext_enum_friend)
6330        << T
6331        << SourceRange(FriendLoc, TypeRange.getEnd());
6332    }
6333  }
6334
6335  // C++0x [class.friend]p3:
6336  //   If the type specifier in a friend declaration designates a (possibly
6337  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6338  //   the friend declaration is ignored.
6339
6340  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6341  // in [class.friend]p3 that we do not implement.
6342
6343  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6344}
6345
6346/// Handle a friend tag declaration where the scope specifier was
6347/// templated.
6348Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6349                                    unsigned TagSpec, SourceLocation TagLoc,
6350                                    CXXScopeSpec &SS,
6351                                    IdentifierInfo *Name, SourceLocation NameLoc,
6352                                    AttributeList *Attr,
6353                                    MultiTemplateParamsArg TempParamLists) {
6354  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6355
6356  bool isExplicitSpecialization = false;
6357  unsigned NumMatchedTemplateParamLists = TempParamLists.size();
6358  bool Invalid = false;
6359
6360  if (TemplateParameterList *TemplateParams
6361        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6362                                                  TempParamLists.get(),
6363                                                  TempParamLists.size(),
6364                                                  /*friend*/ true,
6365                                                  isExplicitSpecialization,
6366                                                  Invalid)) {
6367    --NumMatchedTemplateParamLists;
6368
6369    if (TemplateParams->size() > 0) {
6370      // This is a declaration of a class template.
6371      if (Invalid)
6372        return 0;
6373
6374      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
6375                                SS, Name, NameLoc, Attr,
6376                                TemplateParams, AS_public).take();
6377    } else {
6378      // The "template<>" header is extraneous.
6379      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6380        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6381      isExplicitSpecialization = true;
6382    }
6383  }
6384
6385  if (Invalid) return 0;
6386
6387  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
6388
6389  bool isAllExplicitSpecializations = true;
6390  for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
6391    if (TempParamLists.get()[I]->size()) {
6392      isAllExplicitSpecializations = false;
6393      break;
6394    }
6395  }
6396
6397  // FIXME: don't ignore attributes.
6398
6399  // If it's explicit specializations all the way down, just forget
6400  // about the template header and build an appropriate non-templated
6401  // friend.  TODO: for source fidelity, remember the headers.
6402  if (isAllExplicitSpecializations) {
6403    ElaboratedTypeKeyword Keyword
6404      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6405    QualType T = CheckTypenameType(Keyword, SS.getScopeRep(), *Name,
6406                                   TagLoc, SS.getRange(), NameLoc);
6407    if (T.isNull())
6408      return 0;
6409
6410    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6411    if (isa<DependentNameType>(T)) {
6412      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6413      TL.setKeywordLoc(TagLoc);
6414      TL.setQualifierRange(SS.getRange());
6415      TL.setNameLoc(NameLoc);
6416    } else {
6417      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6418      TL.setKeywordLoc(TagLoc);
6419      TL.setQualifierRange(SS.getRange());
6420      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
6421    }
6422
6423    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6424                                            TSI, FriendLoc);
6425    Friend->setAccess(AS_public);
6426    CurContext->addDecl(Friend);
6427    return Friend;
6428  }
6429
6430  // Handle the case of a templated-scope friend class.  e.g.
6431  //   template <class T> class A<T>::B;
6432  // FIXME: we don't support these right now.
6433  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6434  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
6435  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6436  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6437  TL.setKeywordLoc(TagLoc);
6438  TL.setQualifierRange(SS.getRange());
6439  TL.setNameLoc(NameLoc);
6440
6441  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6442                                          TSI, FriendLoc);
6443  Friend->setAccess(AS_public);
6444  Friend->setUnsupportedFriend(true);
6445  CurContext->addDecl(Friend);
6446  return Friend;
6447}
6448
6449
6450/// Handle a friend type declaration.  This works in tandem with
6451/// ActOnTag.
6452///
6453/// Notes on friend class templates:
6454///
6455/// We generally treat friend class declarations as if they were
6456/// declaring a class.  So, for example, the elaborated type specifier
6457/// in a friend declaration is required to obey the restrictions of a
6458/// class-head (i.e. no typedefs in the scope chain), template
6459/// parameters are required to match up with simple template-ids, &c.
6460/// However, unlike when declaring a template specialization, it's
6461/// okay to refer to a template specialization without an empty
6462/// template parameter declaration, e.g.
6463///   friend class A<T>::B<unsigned>;
6464/// We permit this as a special case; if there are any template
6465/// parameters present at all, require proper matching, i.e.
6466///   template <> template <class T> friend class A<int>::B;
6467Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6468                                MultiTemplateParamsArg TempParams) {
6469  SourceLocation Loc = DS.getSourceRange().getBegin();
6470
6471  assert(DS.isFriendSpecified());
6472  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6473
6474  // Try to convert the decl specifier to a type.  This works for
6475  // friend templates because ActOnTag never produces a ClassTemplateDecl
6476  // for a TUK_Friend.
6477  Declarator TheDeclarator(DS, Declarator::MemberContext);
6478  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6479  QualType T = TSI->getType();
6480  if (TheDeclarator.isInvalidType())
6481    return 0;
6482
6483  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
6484    return 0;
6485
6486  // This is definitely an error in C++98.  It's probably meant to
6487  // be forbidden in C++0x, too, but the specification is just
6488  // poorly written.
6489  //
6490  // The problem is with declarations like the following:
6491  //   template <T> friend A<T>::foo;
6492  // where deciding whether a class C is a friend or not now hinges
6493  // on whether there exists an instantiation of A that causes
6494  // 'foo' to equal C.  There are restrictions on class-heads
6495  // (which we declare (by fiat) elaborated friend declarations to
6496  // be) that makes this tractable.
6497  //
6498  // FIXME: handle "template <> friend class A<T>;", which
6499  // is possibly well-formed?  Who even knows?
6500  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6501    Diag(Loc, diag::err_tagless_friend_type_template)
6502      << DS.getSourceRange();
6503    return 0;
6504  }
6505
6506  // C++98 [class.friend]p1: A friend of a class is a function
6507  //   or class that is not a member of the class . . .
6508  // This is fixed in DR77, which just barely didn't make the C++03
6509  // deadline.  It's also a very silly restriction that seriously
6510  // affects inner classes and which nobody else seems to implement;
6511  // thus we never diagnose it, not even in -pedantic.
6512  //
6513  // But note that we could warn about it: it's always useless to
6514  // friend one of your own members (it's not, however, worthless to
6515  // friend a member of an arbitrary specialization of your template).
6516
6517  Decl *D;
6518  if (unsigned NumTempParamLists = TempParams.size())
6519    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6520                                   NumTempParamLists,
6521                                   TempParams.release(),
6522                                   TSI,
6523                                   DS.getFriendSpecLoc());
6524  else
6525    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6526
6527  if (!D)
6528    return 0;
6529
6530  D->setAccess(AS_public);
6531  CurContext->addDecl(D);
6532
6533  return D;
6534}
6535
6536Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
6537                                    MultiTemplateParamsArg TemplateParams) {
6538  const DeclSpec &DS = D.getDeclSpec();
6539
6540  assert(DS.isFriendSpecified());
6541  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6542
6543  SourceLocation Loc = D.getIdentifierLoc();
6544  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6545  QualType T = TInfo->getType();
6546
6547  // C++ [class.friend]p1
6548  //   A friend of a class is a function or class....
6549  // Note that this sees through typedefs, which is intended.
6550  // It *doesn't* see through dependent types, which is correct
6551  // according to [temp.arg.type]p3:
6552  //   If a declaration acquires a function type through a
6553  //   type dependent on a template-parameter and this causes
6554  //   a declaration that does not use the syntactic form of a
6555  //   function declarator to have a function type, the program
6556  //   is ill-formed.
6557  if (!T->isFunctionType()) {
6558    Diag(Loc, diag::err_unexpected_friend);
6559
6560    // It might be worthwhile to try to recover by creating an
6561    // appropriate declaration.
6562    return 0;
6563  }
6564
6565  // C++ [namespace.memdef]p3
6566  //  - If a friend declaration in a non-local class first declares a
6567  //    class or function, the friend class or function is a member
6568  //    of the innermost enclosing namespace.
6569  //  - The name of the friend is not found by simple name lookup
6570  //    until a matching declaration is provided in that namespace
6571  //    scope (either before or after the class declaration granting
6572  //    friendship).
6573  //  - If a friend function is called, its name may be found by the
6574  //    name lookup that considers functions from namespaces and
6575  //    classes associated with the types of the function arguments.
6576  //  - When looking for a prior declaration of a class or a function
6577  //    declared as a friend, scopes outside the innermost enclosing
6578  //    namespace scope are not considered.
6579
6580  CXXScopeSpec &SS = D.getCXXScopeSpec();
6581  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6582  DeclarationName Name = NameInfo.getName();
6583  assert(Name);
6584
6585  // Check for unexpanded parameter packs.
6586  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
6587      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
6588      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
6589    return 0;
6590
6591  // The context we found the declaration in, or in which we should
6592  // create the declaration.
6593  DeclContext *DC;
6594  Scope *DCScope = S;
6595  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6596                        ForRedeclaration);
6597
6598  // FIXME: there are different rules in local classes
6599
6600  // There are four cases here.
6601  //   - There's no scope specifier, in which case we just go to the
6602  //     appropriate scope and look for a function or function template
6603  //     there as appropriate.
6604  // Recover from invalid scope qualifiers as if they just weren't there.
6605  if (SS.isInvalid() || !SS.isSet()) {
6606    // C++0x [namespace.memdef]p3:
6607    //   If the name in a friend declaration is neither qualified nor
6608    //   a template-id and the declaration is a function or an
6609    //   elaborated-type-specifier, the lookup to determine whether
6610    //   the entity has been previously declared shall not consider
6611    //   any scopes outside the innermost enclosing namespace.
6612    // C++0x [class.friend]p11:
6613    //   If a friend declaration appears in a local class and the name
6614    //   specified is an unqualified name, a prior declaration is
6615    //   looked up without considering scopes that are outside the
6616    //   innermost enclosing non-class scope. For a friend function
6617    //   declaration, if there is no prior declaration, the program is
6618    //   ill-formed.
6619    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
6620    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
6621
6622    // Find the appropriate context according to the above.
6623    DC = CurContext;
6624    while (true) {
6625      // Skip class contexts.  If someone can cite chapter and verse
6626      // for this behavior, that would be nice --- it's what GCC and
6627      // EDG do, and it seems like a reasonable intent, but the spec
6628      // really only says that checks for unqualified existing
6629      // declarations should stop at the nearest enclosing namespace,
6630      // not that they should only consider the nearest enclosing
6631      // namespace.
6632      while (DC->isRecord())
6633        DC = DC->getParent();
6634
6635      LookupQualifiedName(Previous, DC);
6636
6637      // TODO: decide what we think about using declarations.
6638      if (isLocal || !Previous.empty())
6639        break;
6640
6641      if (isTemplateId) {
6642        if (isa<TranslationUnitDecl>(DC)) break;
6643      } else {
6644        if (DC->isFileContext()) break;
6645      }
6646      DC = DC->getParent();
6647    }
6648
6649    // C++ [class.friend]p1: A friend of a class is a function or
6650    //   class that is not a member of the class . . .
6651    // C++0x changes this for both friend types and functions.
6652    // Most C++ 98 compilers do seem to give an error here, so
6653    // we do, too.
6654    if (!Previous.empty() && DC->Equals(CurContext)
6655        && !getLangOptions().CPlusPlus0x)
6656      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6657
6658    DCScope = getScopeForDeclContext(S, DC);
6659
6660  //   - There's a non-dependent scope specifier, in which case we
6661  //     compute it and do a previous lookup there for a function
6662  //     or function template.
6663  } else if (!SS.getScopeRep()->isDependent()) {
6664    DC = computeDeclContext(SS);
6665    if (!DC) return 0;
6666
6667    if (RequireCompleteDeclContext(SS, DC)) return 0;
6668
6669    LookupQualifiedName(Previous, DC);
6670
6671    // Ignore things found implicitly in the wrong scope.
6672    // TODO: better diagnostics for this case.  Suggesting the right
6673    // qualified scope would be nice...
6674    LookupResult::Filter F = Previous.makeFilter();
6675    while (F.hasNext()) {
6676      NamedDecl *D = F.next();
6677      if (!DC->InEnclosingNamespaceSetOf(
6678              D->getDeclContext()->getRedeclContext()))
6679        F.erase();
6680    }
6681    F.done();
6682
6683    if (Previous.empty()) {
6684      D.setInvalidType();
6685      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6686      return 0;
6687    }
6688
6689    // C++ [class.friend]p1: A friend of a class is a function or
6690    //   class that is not a member of the class . . .
6691    if (DC->Equals(CurContext))
6692      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6693
6694  //   - There's a scope specifier that does not match any template
6695  //     parameter lists, in which case we use some arbitrary context,
6696  //     create a method or method template, and wait for instantiation.
6697  //   - There's a scope specifier that does match some template
6698  //     parameter lists, which we don't handle right now.
6699  } else {
6700    DC = CurContext;
6701    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
6702  }
6703
6704  if (!DC->isRecord()) {
6705    // This implies that it has to be an operator or function.
6706    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6707        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6708        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6709      Diag(Loc, diag::err_introducing_special_friend) <<
6710        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6711         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6712      return 0;
6713    }
6714  }
6715
6716  bool Redeclaration = false;
6717  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
6718                                          move(TemplateParams),
6719                                          IsDefinition,
6720                                          Redeclaration);
6721  if (!ND) return 0;
6722
6723  assert(ND->getDeclContext() == DC);
6724  assert(ND->getLexicalDeclContext() == CurContext);
6725
6726  // Add the function declaration to the appropriate lookup tables,
6727  // adjusting the redeclarations list as necessary.  We don't
6728  // want to do this yet if the friending class is dependent.
6729  //
6730  // Also update the scope-based lookup if the target context's
6731  // lookup context is in lexical scope.
6732  if (!CurContext->isDependentContext()) {
6733    DC = DC->getRedeclContext();
6734    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6735    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6736      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6737  }
6738
6739  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6740                                       D.getIdentifierLoc(), ND,
6741                                       DS.getFriendSpecLoc());
6742  FrD->setAccess(AS_public);
6743  CurContext->addDecl(FrD);
6744
6745  if (ND->isInvalidDecl())
6746    FrD->setInvalidDecl();
6747  else {
6748    FunctionDecl *FD;
6749    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
6750      FD = FTD->getTemplatedDecl();
6751    else
6752      FD = cast<FunctionDecl>(ND);
6753
6754    // Mark templated-scope function declarations as unsupported.
6755    if (FD->getNumTemplateParameterLists())
6756      FrD->setUnsupportedFriend(true);
6757  }
6758
6759  return ND;
6760}
6761
6762void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
6763  AdjustDeclIfTemplate(Dcl);
6764
6765  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6766  if (!Fn) {
6767    Diag(DelLoc, diag::err_deleted_non_function);
6768    return;
6769  }
6770  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6771    Diag(DelLoc, diag::err_deleted_decl_not_first);
6772    Diag(Prev->getLocation(), diag::note_previous_declaration);
6773    // If the declaration wasn't the first, we delete the function anyway for
6774    // recovery.
6775  }
6776  Fn->setDeleted();
6777}
6778
6779static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6780  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6781       ++CI) {
6782    Stmt *SubStmt = *CI;
6783    if (!SubStmt)
6784      continue;
6785    if (isa<ReturnStmt>(SubStmt))
6786      Self.Diag(SubStmt->getSourceRange().getBegin(),
6787           diag::err_return_in_constructor_handler);
6788    if (!isa<Expr>(SubStmt))
6789      SearchForReturnInStmt(Self, SubStmt);
6790  }
6791}
6792
6793void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6794  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6795    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6796    SearchForReturnInStmt(*this, Handler);
6797  }
6798}
6799
6800bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6801                                             const CXXMethodDecl *Old) {
6802  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6803  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6804
6805  if (Context.hasSameType(NewTy, OldTy) ||
6806      NewTy->isDependentType() || OldTy->isDependentType())
6807    return false;
6808
6809  // Check if the return types are covariant
6810  QualType NewClassTy, OldClassTy;
6811
6812  /// Both types must be pointers or references to classes.
6813  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6814    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6815      NewClassTy = NewPT->getPointeeType();
6816      OldClassTy = OldPT->getPointeeType();
6817    }
6818  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6819    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6820      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6821        NewClassTy = NewRT->getPointeeType();
6822        OldClassTy = OldRT->getPointeeType();
6823      }
6824    }
6825  }
6826
6827  // The return types aren't either both pointers or references to a class type.
6828  if (NewClassTy.isNull()) {
6829    Diag(New->getLocation(),
6830         diag::err_different_return_type_for_overriding_virtual_function)
6831      << New->getDeclName() << NewTy << OldTy;
6832    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6833
6834    return true;
6835  }
6836
6837  // C++ [class.virtual]p6:
6838  //   If the return type of D::f differs from the return type of B::f, the
6839  //   class type in the return type of D::f shall be complete at the point of
6840  //   declaration of D::f or shall be the class type D.
6841  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6842    if (!RT->isBeingDefined() &&
6843        RequireCompleteType(New->getLocation(), NewClassTy,
6844                            PDiag(diag::err_covariant_return_incomplete)
6845                              << New->getDeclName()))
6846    return true;
6847  }
6848
6849  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6850    // Check if the new class derives from the old class.
6851    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6852      Diag(New->getLocation(),
6853           diag::err_covariant_return_not_derived)
6854      << New->getDeclName() << NewTy << OldTy;
6855      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6856      return true;
6857    }
6858
6859    // Check if we the conversion from derived to base is valid.
6860    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6861                    diag::err_covariant_return_inaccessible_base,
6862                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6863                    // FIXME: Should this point to the return type?
6864                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6865      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6866      return true;
6867    }
6868  }
6869
6870  // The qualifiers of the return types must be the same.
6871  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6872    Diag(New->getLocation(),
6873         diag::err_covariant_return_type_different_qualifications)
6874    << New->getDeclName() << NewTy << OldTy;
6875    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6876    return true;
6877  };
6878
6879
6880  // The new class type must have the same or less qualifiers as the old type.
6881  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6882    Diag(New->getLocation(),
6883         diag::err_covariant_return_type_class_type_more_qualified)
6884    << New->getDeclName() << NewTy << OldTy;
6885    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6886    return true;
6887  };
6888
6889  return false;
6890}
6891
6892bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6893                                             const CXXMethodDecl *Old)
6894{
6895  if (Old->hasAttr<FinalAttr>()) {
6896    Diag(New->getLocation(), diag::err_final_function_overridden)
6897      << New->getDeclName();
6898    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6899    return true;
6900  }
6901
6902  return false;
6903}
6904
6905/// \brief Mark the given method pure.
6906///
6907/// \param Method the method to be marked pure.
6908///
6909/// \param InitRange the source range that covers the "0" initializer.
6910bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6911  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6912    Method->setPure();
6913    return false;
6914  }
6915
6916  if (!Method->isInvalidDecl())
6917    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6918      << Method->getDeclName() << InitRange;
6919  return true;
6920}
6921
6922/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6923/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6924/// is a fresh scope pushed for just this purpose.
6925///
6926/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6927/// static data member of class X, names should be looked up in the scope of
6928/// class X.
6929void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
6930  // If there is no declaration, there was an error parsing it.
6931  if (D == 0) return;
6932
6933  // We should only get called for declarations with scope specifiers, like:
6934  //   int foo::bar;
6935  assert(D->isOutOfLine());
6936  EnterDeclaratorContext(S, D->getDeclContext());
6937}
6938
6939/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6940/// initializer for the out-of-line declaration 'D'.
6941void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
6942  // If there is no declaration, there was an error parsing it.
6943  if (D == 0) return;
6944
6945  assert(D->isOutOfLine());
6946  ExitDeclaratorContext(S);
6947}
6948
6949/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6950/// C++ if/switch/while/for statement.
6951/// e.g: "if (int x = f()) {...}"
6952DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6953  // C++ 6.4p2:
6954  // The declarator shall not specify a function or an array.
6955  // The type-specifier-seq shall not contain typedef and shall not declare a
6956  // new class or enumeration.
6957  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6958         "Parser allowed 'typedef' as storage class of condition decl.");
6959
6960  TagDecl *OwnedTag = 0;
6961  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6962  QualType Ty = TInfo->getType();
6963
6964  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6965                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6966                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6967    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6968      << D.getSourceRange();
6969    return DeclResult();
6970  } else if (OwnedTag && OwnedTag->isDefinition()) {
6971    // The type-specifier-seq shall not declare a new class or enumeration.
6972    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6973  }
6974
6975  Decl *Dcl = ActOnDeclarator(S, D);
6976  if (!Dcl)
6977    return DeclResult();
6978
6979  return Dcl;
6980}
6981
6982void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6983                          bool DefinitionRequired) {
6984  // Ignore any vtable uses in unevaluated operands or for classes that do
6985  // not have a vtable.
6986  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6987      CurContext->isDependentContext() ||
6988      ExprEvalContexts.back().Context == Unevaluated)
6989    return;
6990
6991  // Try to insert this class into the map.
6992  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6993  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6994    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6995  if (!Pos.second) {
6996    // If we already had an entry, check to see if we are promoting this vtable
6997    // to required a definition. If so, we need to reappend to the VTableUses
6998    // list, since we may have already processed the first entry.
6999    if (DefinitionRequired && !Pos.first->second) {
7000      Pos.first->second = true;
7001    } else {
7002      // Otherwise, we can early exit.
7003      return;
7004    }
7005  }
7006
7007  // Local classes need to have their virtual members marked
7008  // immediately. For all other classes, we mark their virtual members
7009  // at the end of the translation unit.
7010  if (Class->isLocalClass())
7011    MarkVirtualMembersReferenced(Loc, Class);
7012  else
7013    VTableUses.push_back(std::make_pair(Class, Loc));
7014}
7015
7016bool Sema::DefineUsedVTables() {
7017  if (VTableUses.empty())
7018    return false;
7019
7020  // Note: The VTableUses vector could grow as a result of marking
7021  // the members of a class as "used", so we check the size each
7022  // time through the loop and prefer indices (with are stable) to
7023  // iterators (which are not).
7024  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7025    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7026    if (!Class)
7027      continue;
7028
7029    SourceLocation Loc = VTableUses[I].second;
7030
7031    // If this class has a key function, but that key function is
7032    // defined in another translation unit, we don't need to emit the
7033    // vtable even though we're using it.
7034    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7035    if (KeyFunction && !KeyFunction->hasBody()) {
7036      switch (KeyFunction->getTemplateSpecializationKind()) {
7037      case TSK_Undeclared:
7038      case TSK_ExplicitSpecialization:
7039      case TSK_ExplicitInstantiationDeclaration:
7040        // The key function is in another translation unit.
7041        continue;
7042
7043      case TSK_ExplicitInstantiationDefinition:
7044      case TSK_ImplicitInstantiation:
7045        // We will be instantiating the key function.
7046        break;
7047      }
7048    } else if (!KeyFunction) {
7049      // If we have a class with no key function that is the subject
7050      // of an explicit instantiation declaration, suppress the
7051      // vtable; it will live with the explicit instantiation
7052      // definition.
7053      bool IsExplicitInstantiationDeclaration
7054        = Class->getTemplateSpecializationKind()
7055                                      == TSK_ExplicitInstantiationDeclaration;
7056      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7057                                 REnd = Class->redecls_end();
7058           R != REnd; ++R) {
7059        TemplateSpecializationKind TSK
7060          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7061        if (TSK == TSK_ExplicitInstantiationDeclaration)
7062          IsExplicitInstantiationDeclaration = true;
7063        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7064          IsExplicitInstantiationDeclaration = false;
7065          break;
7066        }
7067      }
7068
7069      if (IsExplicitInstantiationDeclaration)
7070        continue;
7071    }
7072
7073    // Mark all of the virtual members of this class as referenced, so
7074    // that we can build a vtable. Then, tell the AST consumer that a
7075    // vtable for this class is required.
7076    MarkVirtualMembersReferenced(Loc, Class);
7077    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7078    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7079
7080    // Optionally warn if we're emitting a weak vtable.
7081    if (Class->getLinkage() == ExternalLinkage &&
7082        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7083      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7084        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7085    }
7086  }
7087  VTableUses.clear();
7088
7089  return true;
7090}
7091
7092void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7093                                        const CXXRecordDecl *RD) {
7094  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7095       e = RD->method_end(); i != e; ++i) {
7096    CXXMethodDecl *MD = *i;
7097
7098    // C++ [basic.def.odr]p2:
7099    //   [...] A virtual member function is used if it is not pure. [...]
7100    if (MD->isVirtual() && !MD->isPure())
7101      MarkDeclarationReferenced(Loc, MD);
7102  }
7103
7104  // Only classes that have virtual bases need a VTT.
7105  if (RD->getNumVBases() == 0)
7106    return;
7107
7108  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7109           e = RD->bases_end(); i != e; ++i) {
7110    const CXXRecordDecl *Base =
7111        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7112    if (Base->getNumVBases() == 0)
7113      continue;
7114    MarkVirtualMembersReferenced(Loc, Base);
7115  }
7116}
7117
7118/// SetIvarInitializers - This routine builds initialization ASTs for the
7119/// Objective-C implementation whose ivars need be initialized.
7120void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7121  if (!getLangOptions().CPlusPlus)
7122    return;
7123  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7124    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7125    CollectIvarsToConstructOrDestruct(OID, ivars);
7126    if (ivars.empty())
7127      return;
7128    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
7129    for (unsigned i = 0; i < ivars.size(); i++) {
7130      FieldDecl *Field = ivars[i];
7131      if (Field->isInvalidDecl())
7132        continue;
7133
7134      CXXCtorInitializer *Member;
7135      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7136      InitializationKind InitKind =
7137        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7138
7139      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7140      ExprResult MemberInit =
7141        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7142      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7143      // Note, MemberInit could actually come back empty if no initialization
7144      // is required (e.g., because it would call a trivial default constructor)
7145      if (!MemberInit.get() || MemberInit.isInvalid())
7146        continue;
7147
7148      Member =
7149        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
7150                                         SourceLocation(),
7151                                         MemberInit.takeAs<Expr>(),
7152                                         SourceLocation());
7153      AllToInit.push_back(Member);
7154
7155      // Be sure that the destructor is accessible and is marked as referenced.
7156      if (const RecordType *RecordTy
7157                  = Context.getBaseElementType(Field->getType())
7158                                                        ->getAs<RecordType>()) {
7159                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7160        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7161          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7162          CheckDestructorAccess(Field->getLocation(), Destructor,
7163                            PDiag(diag::err_access_dtor_ivar)
7164                              << Context.getBaseElementType(Field->getType()));
7165        }
7166      }
7167    }
7168    ObjCImplementation->setIvarInitializers(Context,
7169                                            AllToInit.data(), AllToInit.size());
7170  }
7171}
7172