SemaDeclCXX.cpp revision ccfe15ea60d055936a15b370765006c10c25d81a
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  QualType ParamType = Param->getType();
113
114  if (RequireCompleteType(Param->getLocation(), Param->getType(),
115                          diag::err_typecheck_decl_incomplete_type)) {
116    Param->setInvalidDecl();
117    return true;
118  }
119
120  Expr *Arg = (Expr *)DefaultArg.get();
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
129  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
130                                                           EqualLoc);
131  if (CheckInitializerTypes(Arg, ParamType, Entity, Kind))
132    return true;
133
134  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
135
136  // Okay: add the default argument to the parameter
137  Param->setDefaultArg(Arg);
138
139  DefaultArg.release();
140
141  return false;
142}
143
144/// ActOnParamDefaultArgument - Check whether the default argument
145/// provided for a function parameter is well-formed. If so, attach it
146/// to the parameter declaration.
147void
148Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
149                                ExprArg defarg) {
150  if (!param || !defarg.get())
151    return;
152
153  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
154  UnparsedDefaultArgLocs.erase(Param);
155
156  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
157  QualType ParamType = Param->getType();
158
159  // Default arguments are only permitted in C++
160  if (!getLangOptions().CPlusPlus) {
161    Diag(EqualLoc, diag::err_param_default_argument)
162      << DefaultArg->getSourceRange();
163    Param->setInvalidDecl();
164    return;
165  }
166
167  // Check that the default argument is well-formed
168  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
169  if (DefaultArgChecker.Visit(DefaultArg.get())) {
170    Param->setInvalidDecl();
171    return;
172  }
173
174  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
175}
176
177/// ActOnParamUnparsedDefaultArgument - We've seen a default
178/// argument for a function parameter, but we can't parse it yet
179/// because we're inside a class definition. Note that this default
180/// argument will be parsed later.
181void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
182                                             SourceLocation EqualLoc,
183                                             SourceLocation ArgLoc) {
184  if (!param)
185    return;
186
187  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
188  if (Param)
189    Param->setUnparsedDefaultArg();
190
191  UnparsedDefaultArgLocs[Param] = ArgLoc;
192}
193
194/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
195/// the default argument for the parameter param failed.
196void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
197  if (!param)
198    return;
199
200  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
201
202  Param->setInvalidDecl();
203
204  UnparsedDefaultArgLocs.erase(Param);
205}
206
207/// CheckExtraCXXDefaultArguments - Check for any extra default
208/// arguments in the declarator, which is not a function declaration
209/// or definition and therefore is not permitted to have default
210/// arguments. This routine should be invoked for every declarator
211/// that is not a function declaration or definition.
212void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
213  // C++ [dcl.fct.default]p3
214  //   A default argument expression shall be specified only in the
215  //   parameter-declaration-clause of a function declaration or in a
216  //   template-parameter (14.1). It shall not be specified for a
217  //   parameter pack. If it is specified in a
218  //   parameter-declaration-clause, it shall not occur within a
219  //   declarator or abstract-declarator of a parameter-declaration.
220  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
221    DeclaratorChunk &chunk = D.getTypeObject(i);
222    if (chunk.Kind == DeclaratorChunk::Function) {
223      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
224        ParmVarDecl *Param =
225          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
226        if (Param->hasUnparsedDefaultArg()) {
227          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
228          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
229            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
230          delete Toks;
231          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
232        } else if (Param->getDefaultArg()) {
233          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
234            << Param->getDefaultArg()->getSourceRange();
235          Param->setDefaultArg(0);
236        }
237      }
238    }
239  }
240}
241
242// MergeCXXFunctionDecl - Merge two declarations of the same C++
243// function, once we already know that they have the same
244// type. Subroutine of MergeFunctionDecl. Returns true if there was an
245// error, false otherwise.
246bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
247  bool Invalid = false;
248
249  // C++ [dcl.fct.default]p4:
250  //   For non-template functions, default arguments can be added in
251  //   later declarations of a function in the same
252  //   scope. Declarations in different scopes have completely
253  //   distinct sets of default arguments. That is, declarations in
254  //   inner scopes do not acquire default arguments from
255  //   declarations in outer scopes, and vice versa. In a given
256  //   function declaration, all parameters subsequent to a
257  //   parameter with a default argument shall have default
258  //   arguments supplied in this or previous declarations. A
259  //   default argument shall not be redefined by a later
260  //   declaration (not even to the same value).
261  //
262  // C++ [dcl.fct.default]p6:
263  //   Except for member functions of class templates, the default arguments
264  //   in a member function definition that appears outside of the class
265  //   definition are added to the set of default arguments provided by the
266  //   member function declaration in the class definition.
267  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
268    ParmVarDecl *OldParam = Old->getParamDecl(p);
269    ParmVarDecl *NewParam = New->getParamDecl(p);
270
271    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
272      // FIXME: If the parameter doesn't have an identifier then the location
273      // points to the '=' which means that the fixit hint won't remove any
274      // extra spaces between the type and the '='.
275      SourceLocation Begin = NewParam->getLocation();
276      if (NewParam->getIdentifier())
277        Begin = PP.getLocForEndOfToken(Begin);
278
279      Diag(NewParam->getLocation(),
280           diag::err_param_default_argument_redefinition)
281        << NewParam->getDefaultArgRange()
282        << CodeModificationHint::CreateRemoval(SourceRange(Begin,
283                                                        NewParam->getLocEnd()));
284
285      // Look for the function declaration where the default argument was
286      // actually written, which may be a declaration prior to Old.
287      for (FunctionDecl *Older = Old->getPreviousDeclaration();
288           Older; Older = Older->getPreviousDeclaration()) {
289        if (!Older->getParamDecl(p)->hasDefaultArg())
290          break;
291
292        OldParam = Older->getParamDecl(p);
293      }
294
295      Diag(OldParam->getLocation(), diag::note_previous_definition)
296        << OldParam->getDefaultArgRange();
297      Invalid = true;
298    } else if (OldParam->hasDefaultArg()) {
299      // Merge the old default argument into the new parameter
300      if (OldParam->hasUninstantiatedDefaultArg())
301        NewParam->setUninstantiatedDefaultArg(
302                                      OldParam->getUninstantiatedDefaultArg());
303      else
304        NewParam->setDefaultArg(OldParam->getDefaultArg());
305    } else if (NewParam->hasDefaultArg()) {
306      if (New->getDescribedFunctionTemplate()) {
307        // Paragraph 4, quoted above, only applies to non-template functions.
308        Diag(NewParam->getLocation(),
309             diag::err_param_default_argument_template_redecl)
310          << NewParam->getDefaultArgRange();
311        Diag(Old->getLocation(), diag::note_template_prev_declaration)
312          << false;
313      } else if (New->getTemplateSpecializationKind()
314                   != TSK_ImplicitInstantiation &&
315                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
316        // C++ [temp.expr.spec]p21:
317        //   Default function arguments shall not be specified in a declaration
318        //   or a definition for one of the following explicit specializations:
319        //     - the explicit specialization of a function template;
320        //     - the explicit specialization of a member function template;
321        //     - the explicit specialization of a member function of a class
322        //       template where the class template specialization to which the
323        //       member function specialization belongs is implicitly
324        //       instantiated.
325        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
326          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
327          << New->getDeclName()
328          << NewParam->getDefaultArgRange();
329      } else if (New->getDeclContext()->isDependentContext()) {
330        // C++ [dcl.fct.default]p6 (DR217):
331        //   Default arguments for a member function of a class template shall
332        //   be specified on the initial declaration of the member function
333        //   within the class template.
334        //
335        // Reading the tea leaves a bit in DR217 and its reference to DR205
336        // leads me to the conclusion that one cannot add default function
337        // arguments for an out-of-line definition of a member function of a
338        // dependent type.
339        int WhichKind = 2;
340        if (CXXRecordDecl *Record
341              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
342          if (Record->getDescribedClassTemplate())
343            WhichKind = 0;
344          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
345            WhichKind = 1;
346          else
347            WhichKind = 2;
348        }
349
350        Diag(NewParam->getLocation(),
351             diag::err_param_default_argument_member_template_redecl)
352          << WhichKind
353          << NewParam->getDefaultArgRange();
354      }
355    }
356  }
357
358  if (CheckEquivalentExceptionSpec(
359          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
360          New->getType()->getAs<FunctionProtoType>(), New->getLocation()))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        if (!Param->hasUnparsedDefaultArg())
413          Param->getDefaultArg()->Destroy(Context);
414        Param->setDefaultArg(0);
415      }
416    }
417  }
418}
419
420/// isCurrentClassName - Determine whether the identifier II is the
421/// name of the class type currently being defined. In the case of
422/// nested classes, this will only return true if II is the name of
423/// the innermost class.
424bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
425                              const CXXScopeSpec *SS) {
426  CXXRecordDecl *CurDecl;
427  if (SS && SS->isSet() && !SS->isInvalid()) {
428    DeclContext *DC = computeDeclContext(*SS, true);
429    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
430  } else
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
432
433  if (CurDecl)
434    return &II == CurDecl->getIdentifier();
435  else
436    return false;
437}
438
439/// \brief Check the validity of a C++ base class specifier.
440///
441/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
442/// and returns NULL otherwise.
443CXXBaseSpecifier *
444Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
445                         SourceRange SpecifierRange,
446                         bool Virtual, AccessSpecifier Access,
447                         QualType BaseType,
448                         SourceLocation BaseLoc) {
449  // C++ [class.union]p1:
450  //   A union shall not have base classes.
451  if (Class->isUnion()) {
452    Diag(Class->getLocation(), diag::err_base_clause_on_union)
453      << SpecifierRange;
454    return 0;
455  }
456
457  if (BaseType->isDependentType())
458    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
459                                Class->getTagKind() == RecordDecl::TK_class,
460                                Access, BaseType);
461
462  // Base specifiers must be record types.
463  if (!BaseType->isRecordType()) {
464    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
465    return 0;
466  }
467
468  // C++ [class.union]p1:
469  //   A union shall not be used as a base class.
470  if (BaseType->isUnionType()) {
471    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
472    return 0;
473  }
474
475  // C++ [class.derived]p2:
476  //   The class-name in a base-specifier shall not be an incompletely
477  //   defined class.
478  if (RequireCompleteType(BaseLoc, BaseType,
479                          PDiag(diag::err_incomplete_base_class)
480                            << SpecifierRange))
481    return 0;
482
483  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
484  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
485  assert(BaseDecl && "Record type has no declaration");
486  BaseDecl = BaseDecl->getDefinition(Context);
487  assert(BaseDecl && "Base type is not incomplete, but has no definition");
488  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
489  assert(CXXBaseDecl && "Base type is not a C++ type");
490
491  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
492  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
493    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
494    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
495      << BaseType;
496    return 0;
497  }
498
499  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
500
501  // Create the base specifier.
502  // FIXME: Allocate via ASTContext?
503  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
504                              Class->getTagKind() == RecordDecl::TK_class,
505                              Access, BaseType);
506}
507
508void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
509                                          const CXXRecordDecl *BaseClass,
510                                          bool BaseIsVirtual) {
511  // A class with a non-empty base class is not empty.
512  // FIXME: Standard ref?
513  if (!BaseClass->isEmpty())
514    Class->setEmpty(false);
515
516  // C++ [class.virtual]p1:
517  //   A class that [...] inherits a virtual function is called a polymorphic
518  //   class.
519  if (BaseClass->isPolymorphic())
520    Class->setPolymorphic(true);
521
522  // C++ [dcl.init.aggr]p1:
523  //   An aggregate is [...] a class with [...] no base classes [...].
524  Class->setAggregate(false);
525
526  // C++ [class]p4:
527  //   A POD-struct is an aggregate class...
528  Class->setPOD(false);
529
530  if (BaseIsVirtual) {
531    // C++ [class.ctor]p5:
532    //   A constructor is trivial if its class has no virtual base classes.
533    Class->setHasTrivialConstructor(false);
534
535    // C++ [class.copy]p6:
536    //   A copy constructor is trivial if its class has no virtual base classes.
537    Class->setHasTrivialCopyConstructor(false);
538
539    // C++ [class.copy]p11:
540    //   A copy assignment operator is trivial if its class has no virtual
541    //   base classes.
542    Class->setHasTrivialCopyAssignment(false);
543
544    // C++0x [meta.unary.prop] is_empty:
545    //    T is a class type, but not a union type, with ... no virtual base
546    //    classes
547    Class->setEmpty(false);
548  } else {
549    // C++ [class.ctor]p5:
550    //   A constructor is trivial if all the direct base classes of its
551    //   class have trivial constructors.
552    if (!BaseClass->hasTrivialConstructor())
553      Class->setHasTrivialConstructor(false);
554
555    // C++ [class.copy]p6:
556    //   A copy constructor is trivial if all the direct base classes of its
557    //   class have trivial copy constructors.
558    if (!BaseClass->hasTrivialCopyConstructor())
559      Class->setHasTrivialCopyConstructor(false);
560
561    // C++ [class.copy]p11:
562    //   A copy assignment operator is trivial if all the direct base classes
563    //   of its class have trivial copy assignment operators.
564    if (!BaseClass->hasTrivialCopyAssignment())
565      Class->setHasTrivialCopyAssignment(false);
566  }
567
568  // C++ [class.ctor]p3:
569  //   A destructor is trivial if all the direct base classes of its class
570  //   have trivial destructors.
571  if (!BaseClass->hasTrivialDestructor())
572    Class->setHasTrivialDestructor(false);
573}
574
575/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
576/// one entry in the base class list of a class specifier, for
577/// example:
578///    class foo : public bar, virtual private baz {
579/// 'public bar' and 'virtual private baz' are each base-specifiers.
580Sema::BaseResult
581Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
582                         bool Virtual, AccessSpecifier Access,
583                         TypeTy *basetype, SourceLocation BaseLoc) {
584  if (!classdecl)
585    return true;
586
587  AdjustDeclIfTemplate(classdecl);
588  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
589  QualType BaseType = GetTypeFromParser(basetype);
590  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
591                                                      Virtual, Access,
592                                                      BaseType, BaseLoc))
593    return BaseSpec;
594
595  return true;
596}
597
598/// \brief Performs the actual work of attaching the given base class
599/// specifiers to a C++ class.
600bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
601                                unsigned NumBases) {
602 if (NumBases == 0)
603    return false;
604
605  // Used to keep track of which base types we have already seen, so
606  // that we can properly diagnose redundant direct base types. Note
607  // that the key is always the unqualified canonical type of the base
608  // class.
609  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
610
611  // Copy non-redundant base specifiers into permanent storage.
612  unsigned NumGoodBases = 0;
613  bool Invalid = false;
614  for (unsigned idx = 0; idx < NumBases; ++idx) {
615    QualType NewBaseType
616      = Context.getCanonicalType(Bases[idx]->getType());
617    NewBaseType = NewBaseType.getLocalUnqualifiedType();
618
619    if (KnownBaseTypes[NewBaseType]) {
620      // C++ [class.mi]p3:
621      //   A class shall not be specified as a direct base class of a
622      //   derived class more than once.
623      Diag(Bases[idx]->getSourceRange().getBegin(),
624           diag::err_duplicate_base_class)
625        << KnownBaseTypes[NewBaseType]->getType()
626        << Bases[idx]->getSourceRange();
627
628      // Delete the duplicate base class specifier; we're going to
629      // overwrite its pointer later.
630      Context.Deallocate(Bases[idx]);
631
632      Invalid = true;
633    } else {
634      // Okay, add this new base class.
635      KnownBaseTypes[NewBaseType] = Bases[idx];
636      Bases[NumGoodBases++] = Bases[idx];
637    }
638  }
639
640  // Attach the remaining base class specifiers to the derived class.
641  Class->setBases(Context, Bases, NumGoodBases);
642
643  // Delete the remaining (good) base class specifiers, since their
644  // data has been copied into the CXXRecordDecl.
645  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
646    Context.Deallocate(Bases[idx]);
647
648  return Invalid;
649}
650
651/// ActOnBaseSpecifiers - Attach the given base specifiers to the
652/// class, after checking whether there are any duplicate base
653/// classes.
654void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
655                               unsigned NumBases) {
656  if (!ClassDecl || !Bases || !NumBases)
657    return;
658
659  AdjustDeclIfTemplate(ClassDecl);
660  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
661                       (CXXBaseSpecifier**)(Bases), NumBases);
662}
663
664/// \brief Determine whether the type \p Derived is a C++ class that is
665/// derived from the type \p Base.
666bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
667  if (!getLangOptions().CPlusPlus)
668    return false;
669
670  const RecordType *DerivedRT = Derived->getAs<RecordType>();
671  if (!DerivedRT)
672    return false;
673
674  const RecordType *BaseRT = Base->getAs<RecordType>();
675  if (!BaseRT)
676    return false;
677
678  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
679  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
680  return DerivedRD->isDerivedFrom(BaseRD);
681}
682
683/// \brief Determine whether the type \p Derived is a C++ class that is
684/// derived from the type \p Base.
685bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
686  if (!getLangOptions().CPlusPlus)
687    return false;
688
689  const RecordType *DerivedRT = Derived->getAs<RecordType>();
690  if (!DerivedRT)
691    return false;
692
693  const RecordType *BaseRT = Base->getAs<RecordType>();
694  if (!BaseRT)
695    return false;
696
697  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
698  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
699  return DerivedRD->isDerivedFrom(BaseRD, Paths);
700}
701
702/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
703/// conversion (where Derived and Base are class types) is
704/// well-formed, meaning that the conversion is unambiguous (and
705/// that all of the base classes are accessible). Returns true
706/// and emits a diagnostic if the code is ill-formed, returns false
707/// otherwise. Loc is the location where this routine should point to
708/// if there is an error, and Range is the source range to highlight
709/// if there is an error.
710bool
711Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
712                                   unsigned InaccessibleBaseID,
713                                   unsigned AmbigiousBaseConvID,
714                                   SourceLocation Loc, SourceRange Range,
715                                   DeclarationName Name) {
716  // First, determine whether the path from Derived to Base is
717  // ambiguous. This is slightly more expensive than checking whether
718  // the Derived to Base conversion exists, because here we need to
719  // explore multiple paths to determine if there is an ambiguity.
720  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
721                     /*DetectVirtual=*/false);
722  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
723  assert(DerivationOkay &&
724         "Can only be used with a derived-to-base conversion");
725  (void)DerivationOkay;
726
727  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
728    if (InaccessibleBaseID == 0)
729      return false;
730    // Check that the base class can be accessed.
731    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
732                                Name);
733  }
734
735  // We know that the derived-to-base conversion is ambiguous, and
736  // we're going to produce a diagnostic. Perform the derived-to-base
737  // search just one more time to compute all of the possible paths so
738  // that we can print them out. This is more expensive than any of
739  // the previous derived-to-base checks we've done, but at this point
740  // performance isn't as much of an issue.
741  Paths.clear();
742  Paths.setRecordingPaths(true);
743  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
744  assert(StillOkay && "Can only be used with a derived-to-base conversion");
745  (void)StillOkay;
746
747  // Build up a textual representation of the ambiguous paths, e.g.,
748  // D -> B -> A, that will be used to illustrate the ambiguous
749  // conversions in the diagnostic. We only print one of the paths
750  // to each base class subobject.
751  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
752
753  Diag(Loc, AmbigiousBaseConvID)
754  << Derived << Base << PathDisplayStr << Range << Name;
755  return true;
756}
757
758bool
759Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
760                                   SourceLocation Loc, SourceRange Range,
761                                   bool IgnoreAccess) {
762  return CheckDerivedToBaseConversion(Derived, Base,
763                                      IgnoreAccess ? 0 :
764                                        diag::err_conv_to_inaccessible_base,
765                                      diag::err_ambiguous_derived_to_base_conv,
766                                      Loc, Range, DeclarationName());
767}
768
769
770/// @brief Builds a string representing ambiguous paths from a
771/// specific derived class to different subobjects of the same base
772/// class.
773///
774/// This function builds a string that can be used in error messages
775/// to show the different paths that one can take through the
776/// inheritance hierarchy to go from the derived class to different
777/// subobjects of a base class. The result looks something like this:
778/// @code
779/// struct D -> struct B -> struct A
780/// struct D -> struct C -> struct A
781/// @endcode
782std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
783  std::string PathDisplayStr;
784  std::set<unsigned> DisplayedPaths;
785  for (CXXBasePaths::paths_iterator Path = Paths.begin();
786       Path != Paths.end(); ++Path) {
787    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
788      // We haven't displayed a path to this particular base
789      // class subobject yet.
790      PathDisplayStr += "\n    ";
791      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
792      for (CXXBasePath::const_iterator Element = Path->begin();
793           Element != Path->end(); ++Element)
794        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
795    }
796  }
797
798  return PathDisplayStr;
799}
800
801//===----------------------------------------------------------------------===//
802// C++ class member Handling
803//===----------------------------------------------------------------------===//
804
805/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
806/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
807/// bitfield width if there is one and 'InitExpr' specifies the initializer if
808/// any.
809Sema::DeclPtrTy
810Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
811                               MultiTemplateParamsArg TemplateParameterLists,
812                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
813                               bool Deleted) {
814  const DeclSpec &DS = D.getDeclSpec();
815  DeclarationName Name = GetNameForDeclarator(D);
816  Expr *BitWidth = static_cast<Expr*>(BW);
817  Expr *Init = static_cast<Expr*>(InitExpr);
818  SourceLocation Loc = D.getIdentifierLoc();
819
820  bool isFunc = D.isFunctionDeclarator();
821
822  assert(!DS.isFriendSpecified());
823
824  // C++ 9.2p6: A member shall not be declared to have automatic storage
825  // duration (auto, register) or with the extern storage-class-specifier.
826  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
827  // data members and cannot be applied to names declared const or static,
828  // and cannot be applied to reference members.
829  switch (DS.getStorageClassSpec()) {
830    case DeclSpec::SCS_unspecified:
831    case DeclSpec::SCS_typedef:
832    case DeclSpec::SCS_static:
833      // FALL THROUGH.
834      break;
835    case DeclSpec::SCS_mutable:
836      if (isFunc) {
837        if (DS.getStorageClassSpecLoc().isValid())
838          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
839        else
840          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
841
842        // FIXME: It would be nicer if the keyword was ignored only for this
843        // declarator. Otherwise we could get follow-up errors.
844        D.getMutableDeclSpec().ClearStorageClassSpecs();
845      } else {
846        QualType T = GetTypeForDeclarator(D, S);
847        diag::kind err = static_cast<diag::kind>(0);
848        if (T->isReferenceType())
849          err = diag::err_mutable_reference;
850        else if (T.isConstQualified())
851          err = diag::err_mutable_const;
852        if (err != 0) {
853          if (DS.getStorageClassSpecLoc().isValid())
854            Diag(DS.getStorageClassSpecLoc(), err);
855          else
856            Diag(DS.getThreadSpecLoc(), err);
857          // FIXME: It would be nicer if the keyword was ignored only for this
858          // declarator. Otherwise we could get follow-up errors.
859          D.getMutableDeclSpec().ClearStorageClassSpecs();
860        }
861      }
862      break;
863    default:
864      if (DS.getStorageClassSpecLoc().isValid())
865        Diag(DS.getStorageClassSpecLoc(),
866             diag::err_storageclass_invalid_for_member);
867      else
868        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
869      D.getMutableDeclSpec().ClearStorageClassSpecs();
870  }
871
872  if (!isFunc &&
873      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
874      D.getNumTypeObjects() == 0) {
875    // Check also for this case:
876    //
877    // typedef int f();
878    // f a;
879    //
880    QualType TDType = GetTypeFromParser(DS.getTypeRep());
881    isFunc = TDType->isFunctionType();
882  }
883
884  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
885                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
886                      !isFunc);
887
888  Decl *Member;
889  if (isInstField) {
890    // FIXME: Check for template parameters!
891    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
892                         AS);
893    assert(Member && "HandleField never returns null");
894  } else {
895    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
896               .getAs<Decl>();
897    if (!Member) {
898      if (BitWidth) DeleteExpr(BitWidth);
899      return DeclPtrTy();
900    }
901
902    // Non-instance-fields can't have a bitfield.
903    if (BitWidth) {
904      if (Member->isInvalidDecl()) {
905        // don't emit another diagnostic.
906      } else if (isa<VarDecl>(Member)) {
907        // C++ 9.6p3: A bit-field shall not be a static member.
908        // "static member 'A' cannot be a bit-field"
909        Diag(Loc, diag::err_static_not_bitfield)
910          << Name << BitWidth->getSourceRange();
911      } else if (isa<TypedefDecl>(Member)) {
912        // "typedef member 'x' cannot be a bit-field"
913        Diag(Loc, diag::err_typedef_not_bitfield)
914          << Name << BitWidth->getSourceRange();
915      } else {
916        // A function typedef ("typedef int f(); f a;").
917        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
918        Diag(Loc, diag::err_not_integral_type_bitfield)
919          << Name << cast<ValueDecl>(Member)->getType()
920          << BitWidth->getSourceRange();
921      }
922
923      DeleteExpr(BitWidth);
924      BitWidth = 0;
925      Member->setInvalidDecl();
926    }
927
928    Member->setAccess(AS);
929
930    // If we have declared a member function template, set the access of the
931    // templated declaration as well.
932    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
933      FunTmpl->getTemplatedDecl()->setAccess(AS);
934  }
935
936  assert((Name || isInstField) && "No identifier for non-field ?");
937
938  if (Init)
939    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
940  if (Deleted) // FIXME: Source location is not very good.
941    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
942
943  if (isInstField) {
944    FieldCollector->Add(cast<FieldDecl>(Member));
945    return DeclPtrTy();
946  }
947  return DeclPtrTy::make(Member);
948}
949
950/// ActOnMemInitializer - Handle a C++ member initializer.
951Sema::MemInitResult
952Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
953                          Scope *S,
954                          const CXXScopeSpec &SS,
955                          IdentifierInfo *MemberOrBase,
956                          TypeTy *TemplateTypeTy,
957                          SourceLocation IdLoc,
958                          SourceLocation LParenLoc,
959                          ExprTy **Args, unsigned NumArgs,
960                          SourceLocation *CommaLocs,
961                          SourceLocation RParenLoc) {
962  if (!ConstructorD)
963    return true;
964
965  AdjustDeclIfTemplate(ConstructorD);
966
967  CXXConstructorDecl *Constructor
968    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
969  if (!Constructor) {
970    // The user wrote a constructor initializer on a function that is
971    // not a C++ constructor. Ignore the error for now, because we may
972    // have more member initializers coming; we'll diagnose it just
973    // once in ActOnMemInitializers.
974    return true;
975  }
976
977  CXXRecordDecl *ClassDecl = Constructor->getParent();
978
979  // C++ [class.base.init]p2:
980  //   Names in a mem-initializer-id are looked up in the scope of the
981  //   constructor’s class and, if not found in that scope, are looked
982  //   up in the scope containing the constructor’s
983  //   definition. [Note: if the constructor’s class contains a member
984  //   with the same name as a direct or virtual base class of the
985  //   class, a mem-initializer-id naming the member or base class and
986  //   composed of a single identifier refers to the class member. A
987  //   mem-initializer-id for the hidden base class may be specified
988  //   using a qualified name. ]
989  if (!SS.getScopeRep() && !TemplateTypeTy) {
990    // Look for a member, first.
991    FieldDecl *Member = 0;
992    DeclContext::lookup_result Result
993      = ClassDecl->lookup(MemberOrBase);
994    if (Result.first != Result.second)
995      Member = dyn_cast<FieldDecl>(*Result.first);
996
997    // FIXME: Handle members of an anonymous union.
998
999    if (Member)
1000      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1001                                    LParenLoc, RParenLoc);
1002  }
1003  // It didn't name a member, so see if it names a class.
1004  QualType BaseType;
1005
1006  TypeSourceInfo *TInfo = 0;
1007  if (TemplateTypeTy)
1008    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1009  else
1010    BaseType = QualType::getFromOpaquePtr(getTypeName(*MemberOrBase, IdLoc,
1011                                                      S, &SS));
1012  if (BaseType.isNull())
1013    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1014      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1015
1016  if (!TInfo)
1017    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1018
1019  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1020                              LParenLoc, RParenLoc, ClassDecl);
1021}
1022
1023/// Checks an initializer expression for use of uninitialized fields, such as
1024/// containing the field that is being initialized. Returns true if there is an
1025/// uninitialized field was used an updates the SourceLocation parameter; false
1026/// otherwise.
1027static bool InitExprContainsUninitializedFields(const Stmt* S,
1028                                                const FieldDecl* LhsField,
1029                                                SourceLocation* L) {
1030  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1031  if (ME) {
1032    const NamedDecl* RhsField = ME->getMemberDecl();
1033    if (RhsField == LhsField) {
1034      // Initializing a field with itself. Throw a warning.
1035      // But wait; there are exceptions!
1036      // Exception #1:  The field may not belong to this record.
1037      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1038      const Expr* base = ME->getBase();
1039      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1040        // Even though the field matches, it does not belong to this record.
1041        return false;
1042      }
1043      // None of the exceptions triggered; return true to indicate an
1044      // uninitialized field was used.
1045      *L = ME->getMemberLoc();
1046      return true;
1047    }
1048  }
1049  bool found = false;
1050  for (Stmt::const_child_iterator it = S->child_begin();
1051       it != S->child_end() && found == false;
1052       ++it) {
1053    if (isa<CallExpr>(S)) {
1054      // Do not descend into function calls or constructors, as the use
1055      // of an uninitialized field may be valid. One would have to inspect
1056      // the contents of the function/ctor to determine if it is safe or not.
1057      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1058      // may be safe, depending on what the function/ctor does.
1059      continue;
1060    }
1061    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1062  }
1063  return found;
1064}
1065
1066Sema::MemInitResult
1067Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1068                             unsigned NumArgs, SourceLocation IdLoc,
1069                             SourceLocation LParenLoc,
1070                             SourceLocation RParenLoc) {
1071  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1072  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1073  ExprTemporaries.clear();
1074
1075  // Diagnose value-uses of fields to initialize themselves, e.g.
1076  //   foo(foo)
1077  // where foo is not also a parameter to the constructor.
1078  // TODO: implement -Wuninitialized and fold this into that framework.
1079  for (unsigned i = 0; i < NumArgs; ++i) {
1080    SourceLocation L;
1081    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1082      // FIXME: Return true in the case when other fields are used before being
1083      // uninitialized. For example, let this field be the i'th field. When
1084      // initializing the i'th field, throw a warning if any of the >= i'th
1085      // fields are used, as they are not yet initialized.
1086      // Right now we are only handling the case where the i'th field uses
1087      // itself in its initializer.
1088      Diag(L, diag::warn_field_is_uninit);
1089    }
1090  }
1091
1092  bool HasDependentArg = false;
1093  for (unsigned i = 0; i < NumArgs; i++)
1094    HasDependentArg |= Args[i]->isTypeDependent();
1095
1096  CXXConstructorDecl *C = 0;
1097  QualType FieldType = Member->getType();
1098  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1099    FieldType = Array->getElementType();
1100  if (FieldType->isDependentType()) {
1101    // Can't check init for dependent type.
1102  } else if (FieldType->isRecordType()) {
1103    // Member is a record (struct/union/class), so pass the initializer
1104    // arguments down to the record's constructor.
1105    if (!HasDependentArg) {
1106      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1107
1108      C = PerformInitializationByConstructor(FieldType,
1109                                             MultiExprArg(*this,
1110                                                          (void**)Args,
1111                                                          NumArgs),
1112                                             IdLoc,
1113                                             SourceRange(IdLoc, RParenLoc),
1114                                             Member->getDeclName(),
1115                  InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc),
1116                                             ConstructorArgs);
1117
1118      if (C) {
1119        // Take over the constructor arguments as our own.
1120        NumArgs = ConstructorArgs.size();
1121        Args = (Expr **)ConstructorArgs.take();
1122      }
1123    }
1124  } else if (NumArgs != 1 && NumArgs != 0) {
1125    // The member type is not a record type (or an array of record
1126    // types), so it can be only be default- or copy-initialized.
1127    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1128                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1129  } else if (!HasDependentArg) {
1130    Expr *NewExp;
1131    if (NumArgs == 0) {
1132      if (FieldType->isReferenceType()) {
1133        Diag(IdLoc, diag::err_null_intialized_reference_member)
1134              << Member->getDeclName();
1135        return Diag(Member->getLocation(), diag::note_declared_at);
1136      }
1137      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1138      NumArgs = 1;
1139    }
1140    else
1141      NewExp = (Expr*)Args[0];
1142    if (PerformCopyInitialization(NewExp, FieldType, AA_Passing))
1143      return true;
1144    Args[0] = NewExp;
1145  }
1146
1147  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1148  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1149  ExprTemporaries.clear();
1150
1151  // FIXME: Perform direct initialization of the member.
1152  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1153                                                  C, LParenLoc, (Expr **)Args,
1154                                                  NumArgs, RParenLoc);
1155}
1156
1157Sema::MemInitResult
1158Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1159                           Expr **Args, unsigned NumArgs,
1160                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1161                           CXXRecordDecl *ClassDecl) {
1162  bool HasDependentArg = false;
1163  for (unsigned i = 0; i < NumArgs; i++)
1164    HasDependentArg |= Args[i]->isTypeDependent();
1165
1166  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1167  if (!BaseType->isDependentType()) {
1168    if (!BaseType->isRecordType())
1169      return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1170        << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1171
1172    // C++ [class.base.init]p2:
1173    //   [...] Unless the mem-initializer-id names a nonstatic data
1174    //   member of the constructor’s class or a direct or virtual base
1175    //   of that class, the mem-initializer is ill-formed. A
1176    //   mem-initializer-list can initialize a base class using any
1177    //   name that denotes that base class type.
1178
1179    // First, check for a direct base class.
1180    const CXXBaseSpecifier *DirectBaseSpec = 0;
1181    for (CXXRecordDecl::base_class_const_iterator Base =
1182         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
1183      if (Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1184        // We found a direct base of this type. That's what we're
1185        // initializing.
1186        DirectBaseSpec = &*Base;
1187        break;
1188      }
1189    }
1190
1191    // Check for a virtual base class.
1192    // FIXME: We might be able to short-circuit this if we know in advance that
1193    // there are no virtual bases.
1194    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1195    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1196      // We haven't found a base yet; search the class hierarchy for a
1197      // virtual base class.
1198      CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1199                         /*DetectVirtual=*/false);
1200      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
1201        for (CXXBasePaths::paths_iterator Path = Paths.begin();
1202             Path != Paths.end(); ++Path) {
1203          if (Path->back().Base->isVirtual()) {
1204            VirtualBaseSpec = Path->back().Base;
1205            break;
1206          }
1207        }
1208      }
1209    }
1210
1211    // C++ [base.class.init]p2:
1212    //   If a mem-initializer-id is ambiguous because it designates both
1213    //   a direct non-virtual base class and an inherited virtual base
1214    //   class, the mem-initializer is ill-formed.
1215    if (DirectBaseSpec && VirtualBaseSpec)
1216      return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1217        << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1218    // C++ [base.class.init]p2:
1219    // Unless the mem-initializer-id names a nonstatic data membeer of the
1220    // constructor's class ot a direst or virtual base of that class, the
1221    // mem-initializer is ill-formed.
1222    if (!DirectBaseSpec && !VirtualBaseSpec)
1223      return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1224        << BaseType << ClassDecl->getNameAsCString()
1225        << BaseTInfo->getTypeLoc().getSourceRange();
1226  }
1227
1228  CXXConstructorDecl *C = 0;
1229  if (!BaseType->isDependentType() && !HasDependentArg) {
1230    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1231                      Context.getCanonicalType(BaseType).getUnqualifiedType());
1232    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1233
1234    C = PerformInitializationByConstructor(BaseType,
1235                                           MultiExprArg(*this,
1236                                                        (void**)Args, NumArgs),
1237                                           BaseLoc,
1238                                           SourceRange(BaseLoc, RParenLoc),
1239                                           Name,
1240                InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc),
1241                                           ConstructorArgs);
1242    if (C) {
1243      // Take over the constructor arguments as our own.
1244      NumArgs = ConstructorArgs.size();
1245      Args = (Expr **)ConstructorArgs.take();
1246    }
1247  }
1248
1249  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1250  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1251  ExprTemporaries.clear();
1252
1253  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, C,
1254                                                  LParenLoc, (Expr **)Args,
1255                                                  NumArgs, RParenLoc);
1256}
1257
1258bool
1259Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1260                              CXXBaseOrMemberInitializer **Initializers,
1261                              unsigned NumInitializers,
1262                              bool IsImplicitConstructor) {
1263  // We need to build the initializer AST according to order of construction
1264  // and not what user specified in the Initializers list.
1265  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1266  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1267  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1268  bool HasDependentBaseInit = false;
1269  bool HadError = false;
1270
1271  for (unsigned i = 0; i < NumInitializers; i++) {
1272    CXXBaseOrMemberInitializer *Member = Initializers[i];
1273    if (Member->isBaseInitializer()) {
1274      if (Member->getBaseClass()->isDependentType())
1275        HasDependentBaseInit = true;
1276      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1277    } else {
1278      AllBaseFields[Member->getMember()] = Member;
1279    }
1280  }
1281
1282  if (HasDependentBaseInit) {
1283    // FIXME. This does not preserve the ordering of the initializers.
1284    // Try (with -Wreorder)
1285    // template<class X> struct A {};
1286    // template<class X> struct B : A<X> {
1287    //   B() : x1(10), A<X>() {}
1288    //   int x1;
1289    // };
1290    // B<int> x;
1291    // On seeing one dependent type, we should essentially exit this routine
1292    // while preserving user-declared initializer list. When this routine is
1293    // called during instantiatiation process, this routine will rebuild the
1294    // ordered initializer list correctly.
1295
1296    // If we have a dependent base initialization, we can't determine the
1297    // association between initializers and bases; just dump the known
1298    // initializers into the list, and don't try to deal with other bases.
1299    for (unsigned i = 0; i < NumInitializers; i++) {
1300      CXXBaseOrMemberInitializer *Member = Initializers[i];
1301      if (Member->isBaseInitializer())
1302        AllToInit.push_back(Member);
1303    }
1304  } else {
1305    // Push virtual bases before others.
1306    for (CXXRecordDecl::base_class_iterator VBase =
1307         ClassDecl->vbases_begin(),
1308         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1309      if (VBase->getType()->isDependentType())
1310        continue;
1311      if (CXXBaseOrMemberInitializer *Value
1312            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1313        AllToInit.push_back(Value);
1314      }
1315      else {
1316        CXXRecordDecl *VBaseDecl =
1317          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1318        assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null");
1319        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1320        if (!Ctor) {
1321          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1322            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1323            << 0 << VBase->getType();
1324          Diag(VBaseDecl->getLocation(), diag::note_previous_decl)
1325            << Context.getTagDeclType(VBaseDecl);
1326          HadError = true;
1327          continue;
1328        }
1329
1330        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1331        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1332                                    Constructor->getLocation(), CtorArgs))
1333          continue;
1334
1335        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1336
1337        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1338        // subexpression so we can wrap it in a CXXExprWithTemporaries if
1339        // necessary.
1340        // FIXME: Is there any better source-location information we can give?
1341        ExprTemporaries.clear();
1342        CXXBaseOrMemberInitializer *Member =
1343          new (Context) CXXBaseOrMemberInitializer(Context,
1344                             Context.getTrivialTypeSourceInfo(VBase->getType(),
1345                                                              SourceLocation()),
1346                                                   Ctor,
1347                                                   SourceLocation(),
1348                                                   CtorArgs.takeAs<Expr>(),
1349                                                   CtorArgs.size(),
1350                                                   SourceLocation());
1351        AllToInit.push_back(Member);
1352      }
1353    }
1354
1355    for (CXXRecordDecl::base_class_iterator Base =
1356         ClassDecl->bases_begin(),
1357         E = ClassDecl->bases_end(); Base != E; ++Base) {
1358      // Virtuals are in the virtual base list and already constructed.
1359      if (Base->isVirtual())
1360        continue;
1361      // Skip dependent types.
1362      if (Base->getType()->isDependentType())
1363        continue;
1364      if (CXXBaseOrMemberInitializer *Value
1365            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1366        AllToInit.push_back(Value);
1367      }
1368      else {
1369        CXXRecordDecl *BaseDecl =
1370          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1371        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1372         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1373        if (!Ctor) {
1374          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1375            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1376            << 0 << Base->getType();
1377          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1378            << Context.getTagDeclType(BaseDecl);
1379          HadError = true;
1380          continue;
1381        }
1382
1383        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1384        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1385                                     Constructor->getLocation(), CtorArgs))
1386          continue;
1387
1388        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1389
1390        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1391        // subexpression so we can wrap it in a CXXExprWithTemporaries if
1392        // necessary.
1393        // FIXME: Is there any better source-location information we can give?
1394        ExprTemporaries.clear();
1395        CXXBaseOrMemberInitializer *Member =
1396          new (Context) CXXBaseOrMemberInitializer(Context,
1397                             Context.getTrivialTypeSourceInfo(Base->getType(),
1398                                                              SourceLocation()),
1399                                                   Ctor,
1400                                                   SourceLocation(),
1401                                                   CtorArgs.takeAs<Expr>(),
1402                                                   CtorArgs.size(),
1403                                                   SourceLocation());
1404        AllToInit.push_back(Member);
1405      }
1406    }
1407  }
1408
1409  // non-static data members.
1410  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1411       E = ClassDecl->field_end(); Field != E; ++Field) {
1412    if ((*Field)->isAnonymousStructOrUnion()) {
1413      if (const RecordType *FieldClassType =
1414          Field->getType()->getAs<RecordType>()) {
1415        CXXRecordDecl *FieldClassDecl
1416          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1417        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1418            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1419          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1420            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1421            // set to the anonymous union data member used in the initializer
1422            // list.
1423            Value->setMember(*Field);
1424            Value->setAnonUnionMember(*FA);
1425            AllToInit.push_back(Value);
1426            break;
1427          }
1428        }
1429      }
1430      continue;
1431    }
1432    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1433      AllToInit.push_back(Value);
1434      continue;
1435    }
1436
1437    if ((*Field)->getType()->isDependentType())
1438      continue;
1439
1440    QualType FT = Context.getBaseElementType((*Field)->getType());
1441    if (const RecordType* RT = FT->getAs<RecordType>()) {
1442      CXXConstructorDecl *Ctor =
1443        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1444      if (!Ctor) {
1445        Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1446          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1447          << 1 << (*Field)->getDeclName();
1448        Diag(Field->getLocation(), diag::note_field_decl);
1449        Diag(RT->getDecl()->getLocation(), diag::note_previous_decl)
1450          << Context.getTagDeclType(RT->getDecl());
1451        HadError = true;
1452        continue;
1453      }
1454
1455      if (FT.isConstQualified() && Ctor->isTrivial()) {
1456        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1457          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1458          << 1 << (*Field)->getDeclName();
1459        Diag((*Field)->getLocation(), diag::note_declared_at);
1460        HadError = true;
1461      }
1462
1463      // Don't create initializers for trivial constructors, since they don't
1464      // actually need to be run.
1465      if (Ctor->isTrivial())
1466        continue;
1467
1468      ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1469      if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1470                                  Constructor->getLocation(), CtorArgs))
1471        continue;
1472
1473      // FIXME: CXXBaseOrMemberInitializer should only contain a single
1474      // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1475      ExprTemporaries.clear();
1476      CXXBaseOrMemberInitializer *Member =
1477        new (Context) CXXBaseOrMemberInitializer(Context,
1478                                                 *Field, SourceLocation(),
1479                                                 Ctor,
1480                                                 SourceLocation(),
1481                                                 CtorArgs.takeAs<Expr>(),
1482                                                 CtorArgs.size(),
1483                                                 SourceLocation());
1484
1485      AllToInit.push_back(Member);
1486      MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1487    }
1488    else if (FT->isReferenceType()) {
1489      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1490        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1491        << 0 << (*Field)->getDeclName();
1492      Diag((*Field)->getLocation(), diag::note_declared_at);
1493      HadError = true;
1494    }
1495    else if (FT.isConstQualified()) {
1496      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1497        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1498        << 1 << (*Field)->getDeclName();
1499      Diag((*Field)->getLocation(), diag::note_declared_at);
1500      HadError = true;
1501    }
1502  }
1503
1504  NumInitializers = AllToInit.size();
1505  if (NumInitializers > 0) {
1506    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1507    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1508      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1509
1510    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1511    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1512      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1513  }
1514
1515  return HadError;
1516}
1517
1518static void *GetKeyForTopLevelField(FieldDecl *Field) {
1519  // For anonymous unions, use the class declaration as the key.
1520  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1521    if (RT->getDecl()->isAnonymousStructOrUnion())
1522      return static_cast<void *>(RT->getDecl());
1523  }
1524  return static_cast<void *>(Field);
1525}
1526
1527static void *GetKeyForBase(QualType BaseType) {
1528  if (const RecordType *RT = BaseType->getAs<RecordType>())
1529    return (void *)RT;
1530
1531  assert(0 && "Unexpected base type!");
1532  return 0;
1533}
1534
1535static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1536                             bool MemberMaybeAnon = false) {
1537  // For fields injected into the class via declaration of an anonymous union,
1538  // use its anonymous union class declaration as the unique key.
1539  if (Member->isMemberInitializer()) {
1540    FieldDecl *Field = Member->getMember();
1541
1542    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1543    // data member of the class. Data member used in the initializer list is
1544    // in AnonUnionMember field.
1545    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1546      Field = Member->getAnonUnionMember();
1547    if (Field->getDeclContext()->isRecord()) {
1548      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1549      if (RD->isAnonymousStructOrUnion())
1550        return static_cast<void *>(RD);
1551    }
1552    return static_cast<void *>(Field);
1553  }
1554
1555  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1556}
1557
1558/// ActOnMemInitializers - Handle the member initializers for a constructor.
1559void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1560                                SourceLocation ColonLoc,
1561                                MemInitTy **MemInits, unsigned NumMemInits) {
1562  if (!ConstructorDecl)
1563    return;
1564
1565  AdjustDeclIfTemplate(ConstructorDecl);
1566
1567  CXXConstructorDecl *Constructor
1568    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1569
1570  if (!Constructor) {
1571    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1572    return;
1573  }
1574
1575  if (!Constructor->isDependentContext()) {
1576    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1577    bool err = false;
1578    for (unsigned i = 0; i < NumMemInits; i++) {
1579      CXXBaseOrMemberInitializer *Member =
1580        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1581      void *KeyToMember = GetKeyForMember(Member);
1582      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1583      if (!PrevMember) {
1584        PrevMember = Member;
1585        continue;
1586      }
1587      if (FieldDecl *Field = Member->getMember())
1588        Diag(Member->getSourceLocation(),
1589             diag::error_multiple_mem_initialization)
1590          << Field->getNameAsString()
1591          << Member->getSourceRange();
1592      else {
1593        Type *BaseClass = Member->getBaseClass();
1594        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1595        Diag(Member->getSourceLocation(),
1596             diag::error_multiple_base_initialization)
1597          << QualType(BaseClass, 0)
1598          << Member->getSourceRange();
1599      }
1600      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1601        << 0;
1602      err = true;
1603    }
1604
1605    if (err)
1606      return;
1607  }
1608
1609  SetBaseOrMemberInitializers(Constructor,
1610                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1611                      NumMemInits, false);
1612
1613  if (Constructor->isDependentContext())
1614    return;
1615
1616  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1617      Diagnostic::Ignored &&
1618      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1619      Diagnostic::Ignored)
1620    return;
1621
1622  // Also issue warning if order of ctor-initializer list does not match order
1623  // of 1) base class declarations and 2) order of non-static data members.
1624  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1625
1626  CXXRecordDecl *ClassDecl
1627    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1628  // Push virtual bases before others.
1629  for (CXXRecordDecl::base_class_iterator VBase =
1630       ClassDecl->vbases_begin(),
1631       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1632    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1633
1634  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1635       E = ClassDecl->bases_end(); Base != E; ++Base) {
1636    // Virtuals are alread in the virtual base list and are constructed
1637    // first.
1638    if (Base->isVirtual())
1639      continue;
1640    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1641  }
1642
1643  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1644       E = ClassDecl->field_end(); Field != E; ++Field)
1645    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1646
1647  int Last = AllBaseOrMembers.size();
1648  int curIndex = 0;
1649  CXXBaseOrMemberInitializer *PrevMember = 0;
1650  for (unsigned i = 0; i < NumMemInits; i++) {
1651    CXXBaseOrMemberInitializer *Member =
1652      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1653    void *MemberInCtorList = GetKeyForMember(Member, true);
1654
1655    for (; curIndex < Last; curIndex++)
1656      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1657        break;
1658    if (curIndex == Last) {
1659      assert(PrevMember && "Member not in member list?!");
1660      // Initializer as specified in ctor-initializer list is out of order.
1661      // Issue a warning diagnostic.
1662      if (PrevMember->isBaseInitializer()) {
1663        // Diagnostics is for an initialized base class.
1664        Type *BaseClass = PrevMember->getBaseClass();
1665        Diag(PrevMember->getSourceLocation(),
1666             diag::warn_base_initialized)
1667          << QualType(BaseClass, 0);
1668      } else {
1669        FieldDecl *Field = PrevMember->getMember();
1670        Diag(PrevMember->getSourceLocation(),
1671             diag::warn_field_initialized)
1672          << Field->getNameAsString();
1673      }
1674      // Also the note!
1675      if (FieldDecl *Field = Member->getMember())
1676        Diag(Member->getSourceLocation(),
1677             diag::note_fieldorbase_initialized_here) << 0
1678          << Field->getNameAsString();
1679      else {
1680        Type *BaseClass = Member->getBaseClass();
1681        Diag(Member->getSourceLocation(),
1682             diag::note_fieldorbase_initialized_here) << 1
1683          << QualType(BaseClass, 0);
1684      }
1685      for (curIndex = 0; curIndex < Last; curIndex++)
1686        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1687          break;
1688    }
1689    PrevMember = Member;
1690  }
1691}
1692
1693void
1694Sema::MarkBaseAndMemberDestructorsReferenced(CXXDestructorDecl *Destructor) {
1695  // Ignore dependent destructors.
1696  if (Destructor->isDependentContext())
1697    return;
1698
1699  CXXRecordDecl *ClassDecl = Destructor->getParent();
1700
1701  // Non-static data members.
1702  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1703       E = ClassDecl->field_end(); I != E; ++I) {
1704    FieldDecl *Field = *I;
1705
1706    QualType FieldType = Context.getBaseElementType(Field->getType());
1707
1708    const RecordType* RT = FieldType->getAs<RecordType>();
1709    if (!RT)
1710      continue;
1711
1712    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1713    if (FieldClassDecl->hasTrivialDestructor())
1714      continue;
1715
1716    const CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1717    MarkDeclarationReferenced(Destructor->getLocation(),
1718                              const_cast<CXXDestructorDecl*>(Dtor));
1719  }
1720
1721  // Bases.
1722  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1723       E = ClassDecl->bases_end(); Base != E; ++Base) {
1724    // Ignore virtual bases.
1725    if (Base->isVirtual())
1726      continue;
1727
1728    // Ignore trivial destructors.
1729    CXXRecordDecl *BaseClassDecl
1730      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1731    if (BaseClassDecl->hasTrivialDestructor())
1732      continue;
1733
1734    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1735    MarkDeclarationReferenced(Destructor->getLocation(),
1736                              const_cast<CXXDestructorDecl*>(Dtor));
1737  }
1738
1739  // Virtual bases.
1740  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1741       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1742    // Ignore trivial destructors.
1743    CXXRecordDecl *BaseClassDecl
1744      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1745    if (BaseClassDecl->hasTrivialDestructor())
1746      continue;
1747
1748    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1749    MarkDeclarationReferenced(Destructor->getLocation(),
1750                              const_cast<CXXDestructorDecl*>(Dtor));
1751  }
1752}
1753
1754void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1755  if (!CDtorDecl)
1756    return;
1757
1758  AdjustDeclIfTemplate(CDtorDecl);
1759
1760  if (CXXConstructorDecl *Constructor
1761      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1762    SetBaseOrMemberInitializers(Constructor, 0, 0, false);
1763}
1764
1765namespace {
1766  /// PureVirtualMethodCollector - traverses a class and its superclasses
1767  /// and determines if it has any pure virtual methods.
1768  class PureVirtualMethodCollector {
1769    ASTContext &Context;
1770
1771  public:
1772    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1773
1774  private:
1775    MethodList Methods;
1776
1777    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1778
1779  public:
1780    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1781      : Context(Ctx) {
1782
1783      MethodList List;
1784      Collect(RD, List);
1785
1786      // Copy the temporary list to methods, and make sure to ignore any
1787      // null entries.
1788      for (size_t i = 0, e = List.size(); i != e; ++i) {
1789        if (List[i])
1790          Methods.push_back(List[i]);
1791      }
1792    }
1793
1794    bool empty() const { return Methods.empty(); }
1795
1796    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1797    MethodList::const_iterator methods_end() { return Methods.end(); }
1798  };
1799
1800  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1801                                           MethodList& Methods) {
1802    // First, collect the pure virtual methods for the base classes.
1803    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1804         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1805      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1806        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1807        if (BaseDecl && BaseDecl->isAbstract())
1808          Collect(BaseDecl, Methods);
1809      }
1810    }
1811
1812    // Next, zero out any pure virtual methods that this class overrides.
1813    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1814
1815    MethodSetTy OverriddenMethods;
1816    size_t MethodsSize = Methods.size();
1817
1818    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1819         i != e; ++i) {
1820      // Traverse the record, looking for methods.
1821      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1822        // If the method is pure virtual, add it to the methods vector.
1823        if (MD->isPure())
1824          Methods.push_back(MD);
1825
1826        // Record all the overridden methods in our set.
1827        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1828             E = MD->end_overridden_methods(); I != E; ++I) {
1829          // Keep track of the overridden methods.
1830          OverriddenMethods.insert(*I);
1831        }
1832      }
1833    }
1834
1835    // Now go through the methods and zero out all the ones we know are
1836    // overridden.
1837    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1838      if (OverriddenMethods.count(Methods[i]))
1839        Methods[i] = 0;
1840    }
1841
1842  }
1843}
1844
1845
1846bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1847                                  unsigned DiagID, AbstractDiagSelID SelID,
1848                                  const CXXRecordDecl *CurrentRD) {
1849  if (SelID == -1)
1850    return RequireNonAbstractType(Loc, T,
1851                                  PDiag(DiagID), CurrentRD);
1852  else
1853    return RequireNonAbstractType(Loc, T,
1854                                  PDiag(DiagID) << SelID, CurrentRD);
1855}
1856
1857bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1858                                  const PartialDiagnostic &PD,
1859                                  const CXXRecordDecl *CurrentRD) {
1860  if (!getLangOptions().CPlusPlus)
1861    return false;
1862
1863  if (const ArrayType *AT = Context.getAsArrayType(T))
1864    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1865                                  CurrentRD);
1866
1867  if (const PointerType *PT = T->getAs<PointerType>()) {
1868    // Find the innermost pointer type.
1869    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1870      PT = T;
1871
1872    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1873      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1874  }
1875
1876  const RecordType *RT = T->getAs<RecordType>();
1877  if (!RT)
1878    return false;
1879
1880  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1881  if (!RD)
1882    return false;
1883
1884  if (CurrentRD && CurrentRD != RD)
1885    return false;
1886
1887  if (!RD->isAbstract())
1888    return false;
1889
1890  Diag(Loc, PD) << RD->getDeclName();
1891
1892  // Check if we've already emitted the list of pure virtual functions for this
1893  // class.
1894  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1895    return true;
1896
1897  PureVirtualMethodCollector Collector(Context, RD);
1898
1899  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1900       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1901    const CXXMethodDecl *MD = *I;
1902
1903    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1904      MD->getDeclName();
1905  }
1906
1907  if (!PureVirtualClassDiagSet)
1908    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1909  PureVirtualClassDiagSet->insert(RD);
1910
1911  return true;
1912}
1913
1914namespace {
1915  class AbstractClassUsageDiagnoser
1916    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1917    Sema &SemaRef;
1918    CXXRecordDecl *AbstractClass;
1919
1920    bool VisitDeclContext(const DeclContext *DC) {
1921      bool Invalid = false;
1922
1923      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1924           E = DC->decls_end(); I != E; ++I)
1925        Invalid |= Visit(*I);
1926
1927      return Invalid;
1928    }
1929
1930  public:
1931    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1932      : SemaRef(SemaRef), AbstractClass(ac) {
1933        Visit(SemaRef.Context.getTranslationUnitDecl());
1934    }
1935
1936    bool VisitFunctionDecl(const FunctionDecl *FD) {
1937      if (FD->isThisDeclarationADefinition()) {
1938        // No need to do the check if we're in a definition, because it requires
1939        // that the return/param types are complete.
1940        // because that requires
1941        return VisitDeclContext(FD);
1942      }
1943
1944      // Check the return type.
1945      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
1946      bool Invalid =
1947        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1948                                       diag::err_abstract_type_in_decl,
1949                                       Sema::AbstractReturnType,
1950                                       AbstractClass);
1951
1952      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1953           E = FD->param_end(); I != E; ++I) {
1954        const ParmVarDecl *VD = *I;
1955        Invalid |=
1956          SemaRef.RequireNonAbstractType(VD->getLocation(),
1957                                         VD->getOriginalType(),
1958                                         diag::err_abstract_type_in_decl,
1959                                         Sema::AbstractParamType,
1960                                         AbstractClass);
1961      }
1962
1963      return Invalid;
1964    }
1965
1966    bool VisitDecl(const Decl* D) {
1967      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1968        return VisitDeclContext(DC);
1969
1970      return false;
1971    }
1972  };
1973}
1974
1975/// \brief Perform semantic checks on a class definition that has been
1976/// completing, introducing implicitly-declared members, checking for
1977/// abstract types, etc.
1978void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
1979  if (!Record || Record->isInvalidDecl())
1980    return;
1981
1982  if (!Record->isDependentType())
1983    AddImplicitlyDeclaredMembersToClass(Record);
1984
1985  if (Record->isInvalidDecl())
1986    return;
1987
1988  if (!Record->isAbstract()) {
1989    // Collect all the pure virtual methods and see if this is an abstract
1990    // class after all.
1991    PureVirtualMethodCollector Collector(Context, Record);
1992    if (!Collector.empty())
1993      Record->setAbstract(true);
1994  }
1995
1996  if (Record->isAbstract())
1997    (void)AbstractClassUsageDiagnoser(*this, Record);
1998}
1999
2000void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2001                                             DeclPtrTy TagDecl,
2002                                             SourceLocation LBrac,
2003                                             SourceLocation RBrac) {
2004  if (!TagDecl)
2005    return;
2006
2007  AdjustDeclIfTemplate(TagDecl);
2008
2009  ActOnFields(S, RLoc, TagDecl,
2010              (DeclPtrTy*)FieldCollector->getCurFields(),
2011              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
2012
2013  CheckCompletedCXXClass(
2014                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2015}
2016
2017/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2018/// special functions, such as the default constructor, copy
2019/// constructor, or destructor, to the given C++ class (C++
2020/// [special]p1).  This routine can only be executed just before the
2021/// definition of the class is complete.
2022void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2023  CanQualType ClassType
2024    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2025
2026  // FIXME: Implicit declarations have exception specifications, which are
2027  // the union of the specifications of the implicitly called functions.
2028
2029  if (!ClassDecl->hasUserDeclaredConstructor()) {
2030    // C++ [class.ctor]p5:
2031    //   A default constructor for a class X is a constructor of class X
2032    //   that can be called without an argument. If there is no
2033    //   user-declared constructor for class X, a default constructor is
2034    //   implicitly declared. An implicitly-declared default constructor
2035    //   is an inline public member of its class.
2036    DeclarationName Name
2037      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2038    CXXConstructorDecl *DefaultCon =
2039      CXXConstructorDecl::Create(Context, ClassDecl,
2040                                 ClassDecl->getLocation(), Name,
2041                                 Context.getFunctionType(Context.VoidTy,
2042                                                         0, 0, false, 0),
2043                                 /*TInfo=*/0,
2044                                 /*isExplicit=*/false,
2045                                 /*isInline=*/true,
2046                                 /*isImplicitlyDeclared=*/true);
2047    DefaultCon->setAccess(AS_public);
2048    DefaultCon->setImplicit();
2049    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2050    ClassDecl->addDecl(DefaultCon);
2051  }
2052
2053  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2054    // C++ [class.copy]p4:
2055    //   If the class definition does not explicitly declare a copy
2056    //   constructor, one is declared implicitly.
2057
2058    // C++ [class.copy]p5:
2059    //   The implicitly-declared copy constructor for a class X will
2060    //   have the form
2061    //
2062    //       X::X(const X&)
2063    //
2064    //   if
2065    bool HasConstCopyConstructor = true;
2066
2067    //     -- each direct or virtual base class B of X has a copy
2068    //        constructor whose first parameter is of type const B& or
2069    //        const volatile B&, and
2070    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2071         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2072      const CXXRecordDecl *BaseClassDecl
2073        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2074      HasConstCopyConstructor
2075        = BaseClassDecl->hasConstCopyConstructor(Context);
2076    }
2077
2078    //     -- for all the nonstatic data members of X that are of a
2079    //        class type M (or array thereof), each such class type
2080    //        has a copy constructor whose first parameter is of type
2081    //        const M& or const volatile M&.
2082    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2083         HasConstCopyConstructor && Field != ClassDecl->field_end();
2084         ++Field) {
2085      QualType FieldType = (*Field)->getType();
2086      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2087        FieldType = Array->getElementType();
2088      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2089        const CXXRecordDecl *FieldClassDecl
2090          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2091        HasConstCopyConstructor
2092          = FieldClassDecl->hasConstCopyConstructor(Context);
2093      }
2094    }
2095
2096    //   Otherwise, the implicitly declared copy constructor will have
2097    //   the form
2098    //
2099    //       X::X(X&)
2100    QualType ArgType = ClassType;
2101    if (HasConstCopyConstructor)
2102      ArgType = ArgType.withConst();
2103    ArgType = Context.getLValueReferenceType(ArgType);
2104
2105    //   An implicitly-declared copy constructor is an inline public
2106    //   member of its class.
2107    DeclarationName Name
2108      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2109    CXXConstructorDecl *CopyConstructor
2110      = CXXConstructorDecl::Create(Context, ClassDecl,
2111                                   ClassDecl->getLocation(), Name,
2112                                   Context.getFunctionType(Context.VoidTy,
2113                                                           &ArgType, 1,
2114                                                           false, 0),
2115                                   /*TInfo=*/0,
2116                                   /*isExplicit=*/false,
2117                                   /*isInline=*/true,
2118                                   /*isImplicitlyDeclared=*/true);
2119    CopyConstructor->setAccess(AS_public);
2120    CopyConstructor->setImplicit();
2121    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2122
2123    // Add the parameter to the constructor.
2124    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2125                                                 ClassDecl->getLocation(),
2126                                                 /*IdentifierInfo=*/0,
2127                                                 ArgType, /*TInfo=*/0,
2128                                                 VarDecl::None, 0);
2129    CopyConstructor->setParams(Context, &FromParam, 1);
2130    ClassDecl->addDecl(CopyConstructor);
2131  }
2132
2133  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2134    // Note: The following rules are largely analoguous to the copy
2135    // constructor rules. Note that virtual bases are not taken into account
2136    // for determining the argument type of the operator. Note also that
2137    // operators taking an object instead of a reference are allowed.
2138    //
2139    // C++ [class.copy]p10:
2140    //   If the class definition does not explicitly declare a copy
2141    //   assignment operator, one is declared implicitly.
2142    //   The implicitly-defined copy assignment operator for a class X
2143    //   will have the form
2144    //
2145    //       X& X::operator=(const X&)
2146    //
2147    //   if
2148    bool HasConstCopyAssignment = true;
2149
2150    //       -- each direct base class B of X has a copy assignment operator
2151    //          whose parameter is of type const B&, const volatile B& or B,
2152    //          and
2153    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2154         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2155      assert(!Base->getType()->isDependentType() &&
2156            "Cannot generate implicit members for class with dependent bases.");
2157      const CXXRecordDecl *BaseClassDecl
2158        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2159      const CXXMethodDecl *MD = 0;
2160      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2161                                                                     MD);
2162    }
2163
2164    //       -- for all the nonstatic data members of X that are of a class
2165    //          type M (or array thereof), each such class type has a copy
2166    //          assignment operator whose parameter is of type const M&,
2167    //          const volatile M& or M.
2168    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2169         HasConstCopyAssignment && Field != ClassDecl->field_end();
2170         ++Field) {
2171      QualType FieldType = (*Field)->getType();
2172      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2173        FieldType = Array->getElementType();
2174      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2175        const CXXRecordDecl *FieldClassDecl
2176          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2177        const CXXMethodDecl *MD = 0;
2178        HasConstCopyAssignment
2179          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2180      }
2181    }
2182
2183    //   Otherwise, the implicitly declared copy assignment operator will
2184    //   have the form
2185    //
2186    //       X& X::operator=(X&)
2187    QualType ArgType = ClassType;
2188    QualType RetType = Context.getLValueReferenceType(ArgType);
2189    if (HasConstCopyAssignment)
2190      ArgType = ArgType.withConst();
2191    ArgType = Context.getLValueReferenceType(ArgType);
2192
2193    //   An implicitly-declared copy assignment operator is an inline public
2194    //   member of its class.
2195    DeclarationName Name =
2196      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2197    CXXMethodDecl *CopyAssignment =
2198      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2199                            Context.getFunctionType(RetType, &ArgType, 1,
2200                                                    false, 0),
2201                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2202    CopyAssignment->setAccess(AS_public);
2203    CopyAssignment->setImplicit();
2204    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2205    CopyAssignment->setCopyAssignment(true);
2206
2207    // Add the parameter to the operator.
2208    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2209                                                 ClassDecl->getLocation(),
2210                                                 /*IdentifierInfo=*/0,
2211                                                 ArgType, /*TInfo=*/0,
2212                                                 VarDecl::None, 0);
2213    CopyAssignment->setParams(Context, &FromParam, 1);
2214
2215    // Don't call addedAssignmentOperator. There is no way to distinguish an
2216    // implicit from an explicit assignment operator.
2217    ClassDecl->addDecl(CopyAssignment);
2218    AddOverriddenMethods(ClassDecl, CopyAssignment);
2219  }
2220
2221  if (!ClassDecl->hasUserDeclaredDestructor()) {
2222    // C++ [class.dtor]p2:
2223    //   If a class has no user-declared destructor, a destructor is
2224    //   declared implicitly. An implicitly-declared destructor is an
2225    //   inline public member of its class.
2226    DeclarationName Name
2227      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2228    CXXDestructorDecl *Destructor
2229      = CXXDestructorDecl::Create(Context, ClassDecl,
2230                                  ClassDecl->getLocation(), Name,
2231                                  Context.getFunctionType(Context.VoidTy,
2232                                                          0, 0, false, 0),
2233                                  /*isInline=*/true,
2234                                  /*isImplicitlyDeclared=*/true);
2235    Destructor->setAccess(AS_public);
2236    Destructor->setImplicit();
2237    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2238    ClassDecl->addDecl(Destructor);
2239
2240    AddOverriddenMethods(ClassDecl, Destructor);
2241  }
2242}
2243
2244void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2245  Decl *D = TemplateD.getAs<Decl>();
2246  if (!D)
2247    return;
2248
2249  TemplateParameterList *Params = 0;
2250  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2251    Params = Template->getTemplateParameters();
2252  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2253           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2254    Params = PartialSpec->getTemplateParameters();
2255  else
2256    return;
2257
2258  for (TemplateParameterList::iterator Param = Params->begin(),
2259                                    ParamEnd = Params->end();
2260       Param != ParamEnd; ++Param) {
2261    NamedDecl *Named = cast<NamedDecl>(*Param);
2262    if (Named->getDeclName()) {
2263      S->AddDecl(DeclPtrTy::make(Named));
2264      IdResolver.AddDecl(Named);
2265    }
2266  }
2267}
2268
2269/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2270/// parsing a top-level (non-nested) C++ class, and we are now
2271/// parsing those parts of the given Method declaration that could
2272/// not be parsed earlier (C++ [class.mem]p2), such as default
2273/// arguments. This action should enter the scope of the given
2274/// Method declaration as if we had just parsed the qualified method
2275/// name. However, it should not bring the parameters into scope;
2276/// that will be performed by ActOnDelayedCXXMethodParameter.
2277void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2278  if (!MethodD)
2279    return;
2280
2281  AdjustDeclIfTemplate(MethodD);
2282
2283  CXXScopeSpec SS;
2284  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2285  QualType ClassTy
2286    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2287  SS.setScopeRep(
2288    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2289  ActOnCXXEnterDeclaratorScope(S, SS);
2290}
2291
2292/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2293/// C++ method declaration. We're (re-)introducing the given
2294/// function parameter into scope for use in parsing later parts of
2295/// the method declaration. For example, we could see an
2296/// ActOnParamDefaultArgument event for this parameter.
2297void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2298  if (!ParamD)
2299    return;
2300
2301  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2302
2303  // If this parameter has an unparsed default argument, clear it out
2304  // to make way for the parsed default argument.
2305  if (Param->hasUnparsedDefaultArg())
2306    Param->setDefaultArg(0);
2307
2308  S->AddDecl(DeclPtrTy::make(Param));
2309  if (Param->getDeclName())
2310    IdResolver.AddDecl(Param);
2311}
2312
2313/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2314/// processing the delayed method declaration for Method. The method
2315/// declaration is now considered finished. There may be a separate
2316/// ActOnStartOfFunctionDef action later (not necessarily
2317/// immediately!) for this method, if it was also defined inside the
2318/// class body.
2319void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2320  if (!MethodD)
2321    return;
2322
2323  AdjustDeclIfTemplate(MethodD);
2324
2325  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2326  CXXScopeSpec SS;
2327  QualType ClassTy
2328    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2329  SS.setScopeRep(
2330    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2331  ActOnCXXExitDeclaratorScope(S, SS);
2332
2333  // Now that we have our default arguments, check the constructor
2334  // again. It could produce additional diagnostics or affect whether
2335  // the class has implicitly-declared destructors, among other
2336  // things.
2337  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2338    CheckConstructor(Constructor);
2339
2340  // Check the default arguments, which we may have added.
2341  if (!Method->isInvalidDecl())
2342    CheckCXXDefaultArguments(Method);
2343}
2344
2345/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2346/// the well-formedness of the constructor declarator @p D with type @p
2347/// R. If there are any errors in the declarator, this routine will
2348/// emit diagnostics and set the invalid bit to true.  In any case, the type
2349/// will be updated to reflect a well-formed type for the constructor and
2350/// returned.
2351QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2352                                          FunctionDecl::StorageClass &SC) {
2353  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2354
2355  // C++ [class.ctor]p3:
2356  //   A constructor shall not be virtual (10.3) or static (9.4). A
2357  //   constructor can be invoked for a const, volatile or const
2358  //   volatile object. A constructor shall not be declared const,
2359  //   volatile, or const volatile (9.3.2).
2360  if (isVirtual) {
2361    if (!D.isInvalidType())
2362      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2363        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2364        << SourceRange(D.getIdentifierLoc());
2365    D.setInvalidType();
2366  }
2367  if (SC == FunctionDecl::Static) {
2368    if (!D.isInvalidType())
2369      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2370        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2371        << SourceRange(D.getIdentifierLoc());
2372    D.setInvalidType();
2373    SC = FunctionDecl::None;
2374  }
2375
2376  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2377  if (FTI.TypeQuals != 0) {
2378    if (FTI.TypeQuals & Qualifiers::Const)
2379      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2380        << "const" << SourceRange(D.getIdentifierLoc());
2381    if (FTI.TypeQuals & Qualifiers::Volatile)
2382      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2383        << "volatile" << SourceRange(D.getIdentifierLoc());
2384    if (FTI.TypeQuals & Qualifiers::Restrict)
2385      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2386        << "restrict" << SourceRange(D.getIdentifierLoc());
2387  }
2388
2389  // Rebuild the function type "R" without any type qualifiers (in
2390  // case any of the errors above fired) and with "void" as the
2391  // return type, since constructors don't have return types. We
2392  // *always* have to do this, because GetTypeForDeclarator will
2393  // put in a result type of "int" when none was specified.
2394  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2395  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2396                                 Proto->getNumArgs(),
2397                                 Proto->isVariadic(), 0);
2398}
2399
2400/// CheckConstructor - Checks a fully-formed constructor for
2401/// well-formedness, issuing any diagnostics required. Returns true if
2402/// the constructor declarator is invalid.
2403void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2404  CXXRecordDecl *ClassDecl
2405    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2406  if (!ClassDecl)
2407    return Constructor->setInvalidDecl();
2408
2409  // C++ [class.copy]p3:
2410  //   A declaration of a constructor for a class X is ill-formed if
2411  //   its first parameter is of type (optionally cv-qualified) X and
2412  //   either there are no other parameters or else all other
2413  //   parameters have default arguments.
2414  if (!Constructor->isInvalidDecl() &&
2415      ((Constructor->getNumParams() == 1) ||
2416       (Constructor->getNumParams() > 1 &&
2417        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2418      Constructor->getTemplateSpecializationKind()
2419                                              != TSK_ImplicitInstantiation) {
2420    QualType ParamType = Constructor->getParamDecl(0)->getType();
2421    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2422    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2423      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2424      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2425        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2426
2427      // FIXME: Rather that making the constructor invalid, we should endeavor
2428      // to fix the type.
2429      Constructor->setInvalidDecl();
2430    }
2431  }
2432
2433  // Notify the class that we've added a constructor.
2434  ClassDecl->addedConstructor(Context, Constructor);
2435}
2436
2437/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2438/// issuing any diagnostics required. Returns true on error.
2439bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2440  CXXRecordDecl *RD = Destructor->getParent();
2441
2442  if (Destructor->isVirtual()) {
2443    SourceLocation Loc;
2444
2445    if (!Destructor->isImplicit())
2446      Loc = Destructor->getLocation();
2447    else
2448      Loc = RD->getLocation();
2449
2450    // If we have a virtual destructor, look up the deallocation function
2451    FunctionDecl *OperatorDelete = 0;
2452    DeclarationName Name =
2453    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2454    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2455      return true;
2456
2457    Destructor->setOperatorDelete(OperatorDelete);
2458  }
2459
2460  return false;
2461}
2462
2463static inline bool
2464FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2465  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2466          FTI.ArgInfo[0].Param &&
2467          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2468}
2469
2470/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2471/// the well-formednes of the destructor declarator @p D with type @p
2472/// R. If there are any errors in the declarator, this routine will
2473/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2474/// will be updated to reflect a well-formed type for the destructor and
2475/// returned.
2476QualType Sema::CheckDestructorDeclarator(Declarator &D,
2477                                         FunctionDecl::StorageClass& SC) {
2478  // C++ [class.dtor]p1:
2479  //   [...] A typedef-name that names a class is a class-name
2480  //   (7.1.3); however, a typedef-name that names a class shall not
2481  //   be used as the identifier in the declarator for a destructor
2482  //   declaration.
2483  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2484  if (isa<TypedefType>(DeclaratorType)) {
2485    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2486      << DeclaratorType;
2487    D.setInvalidType();
2488  }
2489
2490  // C++ [class.dtor]p2:
2491  //   A destructor is used to destroy objects of its class type. A
2492  //   destructor takes no parameters, and no return type can be
2493  //   specified for it (not even void). The address of a destructor
2494  //   shall not be taken. A destructor shall not be static. A
2495  //   destructor can be invoked for a const, volatile or const
2496  //   volatile object. A destructor shall not be declared const,
2497  //   volatile or const volatile (9.3.2).
2498  if (SC == FunctionDecl::Static) {
2499    if (!D.isInvalidType())
2500      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2501        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2502        << SourceRange(D.getIdentifierLoc());
2503    SC = FunctionDecl::None;
2504    D.setInvalidType();
2505  }
2506  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2507    // Destructors don't have return types, but the parser will
2508    // happily parse something like:
2509    //
2510    //   class X {
2511    //     float ~X();
2512    //   };
2513    //
2514    // The return type will be eliminated later.
2515    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2516      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2517      << SourceRange(D.getIdentifierLoc());
2518  }
2519
2520  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2521  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2522    if (FTI.TypeQuals & Qualifiers::Const)
2523      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2524        << "const" << SourceRange(D.getIdentifierLoc());
2525    if (FTI.TypeQuals & Qualifiers::Volatile)
2526      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2527        << "volatile" << SourceRange(D.getIdentifierLoc());
2528    if (FTI.TypeQuals & Qualifiers::Restrict)
2529      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2530        << "restrict" << SourceRange(D.getIdentifierLoc());
2531    D.setInvalidType();
2532  }
2533
2534  // Make sure we don't have any parameters.
2535  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2536    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2537
2538    // Delete the parameters.
2539    FTI.freeArgs();
2540    D.setInvalidType();
2541  }
2542
2543  // Make sure the destructor isn't variadic.
2544  if (FTI.isVariadic) {
2545    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2546    D.setInvalidType();
2547  }
2548
2549  // Rebuild the function type "R" without any type qualifiers or
2550  // parameters (in case any of the errors above fired) and with
2551  // "void" as the return type, since destructors don't have return
2552  // types. We *always* have to do this, because GetTypeForDeclarator
2553  // will put in a result type of "int" when none was specified.
2554  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2555}
2556
2557/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2558/// well-formednes of the conversion function declarator @p D with
2559/// type @p R. If there are any errors in the declarator, this routine
2560/// will emit diagnostics and return true. Otherwise, it will return
2561/// false. Either way, the type @p R will be updated to reflect a
2562/// well-formed type for the conversion operator.
2563void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2564                                     FunctionDecl::StorageClass& SC) {
2565  // C++ [class.conv.fct]p1:
2566  //   Neither parameter types nor return type can be specified. The
2567  //   type of a conversion function (8.3.5) is "function taking no
2568  //   parameter returning conversion-type-id."
2569  if (SC == FunctionDecl::Static) {
2570    if (!D.isInvalidType())
2571      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2572        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2573        << SourceRange(D.getIdentifierLoc());
2574    D.setInvalidType();
2575    SC = FunctionDecl::None;
2576  }
2577  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2578    // Conversion functions don't have return types, but the parser will
2579    // happily parse something like:
2580    //
2581    //   class X {
2582    //     float operator bool();
2583    //   };
2584    //
2585    // The return type will be changed later anyway.
2586    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2587      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2588      << SourceRange(D.getIdentifierLoc());
2589  }
2590
2591  // Make sure we don't have any parameters.
2592  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2593    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2594
2595    // Delete the parameters.
2596    D.getTypeObject(0).Fun.freeArgs();
2597    D.setInvalidType();
2598  }
2599
2600  // Make sure the conversion function isn't variadic.
2601  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2602    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2603    D.setInvalidType();
2604  }
2605
2606  // C++ [class.conv.fct]p4:
2607  //   The conversion-type-id shall not represent a function type nor
2608  //   an array type.
2609  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2610  if (ConvType->isArrayType()) {
2611    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2612    ConvType = Context.getPointerType(ConvType);
2613    D.setInvalidType();
2614  } else if (ConvType->isFunctionType()) {
2615    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2616    ConvType = Context.getPointerType(ConvType);
2617    D.setInvalidType();
2618  }
2619
2620  // Rebuild the function type "R" without any parameters (in case any
2621  // of the errors above fired) and with the conversion type as the
2622  // return type.
2623  R = Context.getFunctionType(ConvType, 0, 0, false,
2624                              R->getAs<FunctionProtoType>()->getTypeQuals());
2625
2626  // C++0x explicit conversion operators.
2627  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2628    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2629         diag::warn_explicit_conversion_functions)
2630      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2631}
2632
2633/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2634/// the declaration of the given C++ conversion function. This routine
2635/// is responsible for recording the conversion function in the C++
2636/// class, if possible.
2637Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2638  assert(Conversion && "Expected to receive a conversion function declaration");
2639
2640  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2641
2642  // Make sure we aren't redeclaring the conversion function.
2643  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2644
2645  // C++ [class.conv.fct]p1:
2646  //   [...] A conversion function is never used to convert a
2647  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2648  //   same object type (or a reference to it), to a (possibly
2649  //   cv-qualified) base class of that type (or a reference to it),
2650  //   or to (possibly cv-qualified) void.
2651  // FIXME: Suppress this warning if the conversion function ends up being a
2652  // virtual function that overrides a virtual function in a base class.
2653  QualType ClassType
2654    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2655  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2656    ConvType = ConvTypeRef->getPointeeType();
2657  if (ConvType->isRecordType()) {
2658    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2659    if (ConvType == ClassType)
2660      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2661        << ClassType;
2662    else if (IsDerivedFrom(ClassType, ConvType))
2663      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2664        <<  ClassType << ConvType;
2665  } else if (ConvType->isVoidType()) {
2666    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2667      << ClassType << ConvType;
2668  }
2669
2670  if (Conversion->getPreviousDeclaration()) {
2671    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2672    if (FunctionTemplateDecl *ConversionTemplate
2673          = Conversion->getDescribedFunctionTemplate())
2674      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2675    if (ClassDecl->replaceConversion(ExpectedPrevDecl, Conversion))
2676      return DeclPtrTy::make(Conversion);
2677    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2678  } else if (FunctionTemplateDecl *ConversionTemplate
2679               = Conversion->getDescribedFunctionTemplate())
2680    ClassDecl->addConversionFunction(ConversionTemplate);
2681  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2682    ClassDecl->addConversionFunction(Conversion);
2683
2684  return DeclPtrTy::make(Conversion);
2685}
2686
2687//===----------------------------------------------------------------------===//
2688// Namespace Handling
2689//===----------------------------------------------------------------------===//
2690
2691/// ActOnStartNamespaceDef - This is called at the start of a namespace
2692/// definition.
2693Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2694                                             SourceLocation IdentLoc,
2695                                             IdentifierInfo *II,
2696                                             SourceLocation LBrace) {
2697  NamespaceDecl *Namespc =
2698      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2699  Namespc->setLBracLoc(LBrace);
2700
2701  Scope *DeclRegionScope = NamespcScope->getParent();
2702
2703  if (II) {
2704    // C++ [namespace.def]p2:
2705    // The identifier in an original-namespace-definition shall not have been
2706    // previously defined in the declarative region in which the
2707    // original-namespace-definition appears. The identifier in an
2708    // original-namespace-definition is the name of the namespace. Subsequently
2709    // in that declarative region, it is treated as an original-namespace-name.
2710
2711    NamedDecl *PrevDecl
2712      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2713                         ForRedeclaration);
2714
2715    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2716      // This is an extended namespace definition.
2717      // Attach this namespace decl to the chain of extended namespace
2718      // definitions.
2719      OrigNS->setNextNamespace(Namespc);
2720      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2721
2722      // Remove the previous declaration from the scope.
2723      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2724        IdResolver.RemoveDecl(OrigNS);
2725        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2726      }
2727    } else if (PrevDecl) {
2728      // This is an invalid name redefinition.
2729      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2730       << Namespc->getDeclName();
2731      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2732      Namespc->setInvalidDecl();
2733      // Continue on to push Namespc as current DeclContext and return it.
2734    } else if (II->isStr("std") &&
2735               CurContext->getLookupContext()->isTranslationUnit()) {
2736      // This is the first "real" definition of the namespace "std", so update
2737      // our cache of the "std" namespace to point at this definition.
2738      if (StdNamespace) {
2739        // We had already defined a dummy namespace "std". Link this new
2740        // namespace definition to the dummy namespace "std".
2741        StdNamespace->setNextNamespace(Namespc);
2742        StdNamespace->setLocation(IdentLoc);
2743        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2744      }
2745
2746      // Make our StdNamespace cache point at the first real definition of the
2747      // "std" namespace.
2748      StdNamespace = Namespc;
2749    }
2750
2751    PushOnScopeChains(Namespc, DeclRegionScope);
2752  } else {
2753    // Anonymous namespaces.
2754    assert(Namespc->isAnonymousNamespace());
2755    CurContext->addDecl(Namespc);
2756
2757    // Link the anonymous namespace into its parent.
2758    NamespaceDecl *PrevDecl;
2759    DeclContext *Parent = CurContext->getLookupContext();
2760    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
2761      PrevDecl = TU->getAnonymousNamespace();
2762      TU->setAnonymousNamespace(Namespc);
2763    } else {
2764      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
2765      PrevDecl = ND->getAnonymousNamespace();
2766      ND->setAnonymousNamespace(Namespc);
2767    }
2768
2769    // Link the anonymous namespace with its previous declaration.
2770    if (PrevDecl) {
2771      assert(PrevDecl->isAnonymousNamespace());
2772      assert(!PrevDecl->getNextNamespace());
2773      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
2774      PrevDecl->setNextNamespace(Namespc);
2775    }
2776
2777    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2778    //   behaves as if it were replaced by
2779    //     namespace unique { /* empty body */ }
2780    //     using namespace unique;
2781    //     namespace unique { namespace-body }
2782    //   where all occurrences of 'unique' in a translation unit are
2783    //   replaced by the same identifier and this identifier differs
2784    //   from all other identifiers in the entire program.
2785
2786    // We just create the namespace with an empty name and then add an
2787    // implicit using declaration, just like the standard suggests.
2788    //
2789    // CodeGen enforces the "universally unique" aspect by giving all
2790    // declarations semantically contained within an anonymous
2791    // namespace internal linkage.
2792
2793    if (!PrevDecl) {
2794      UsingDirectiveDecl* UD
2795        = UsingDirectiveDecl::Create(Context, CurContext,
2796                                     /* 'using' */ LBrace,
2797                                     /* 'namespace' */ SourceLocation(),
2798                                     /* qualifier */ SourceRange(),
2799                                     /* NNS */ NULL,
2800                                     /* identifier */ SourceLocation(),
2801                                     Namespc,
2802                                     /* Ancestor */ CurContext);
2803      UD->setImplicit();
2804      CurContext->addDecl(UD);
2805    }
2806  }
2807
2808  // Although we could have an invalid decl (i.e. the namespace name is a
2809  // redefinition), push it as current DeclContext and try to continue parsing.
2810  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2811  // for the namespace has the declarations that showed up in that particular
2812  // namespace definition.
2813  PushDeclContext(NamespcScope, Namespc);
2814  return DeclPtrTy::make(Namespc);
2815}
2816
2817/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2818/// is a namespace alias, returns the namespace it points to.
2819static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2820  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2821    return AD->getNamespace();
2822  return dyn_cast_or_null<NamespaceDecl>(D);
2823}
2824
2825/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2826/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2827void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2828  Decl *Dcl = D.getAs<Decl>();
2829  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2830  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2831  Namespc->setRBracLoc(RBrace);
2832  PopDeclContext();
2833}
2834
2835Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2836                                          SourceLocation UsingLoc,
2837                                          SourceLocation NamespcLoc,
2838                                          const CXXScopeSpec &SS,
2839                                          SourceLocation IdentLoc,
2840                                          IdentifierInfo *NamespcName,
2841                                          AttributeList *AttrList) {
2842  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2843  assert(NamespcName && "Invalid NamespcName.");
2844  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2845  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2846
2847  UsingDirectiveDecl *UDir = 0;
2848
2849  // Lookup namespace name.
2850  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
2851  LookupParsedName(R, S, &SS);
2852  if (R.isAmbiguous())
2853    return DeclPtrTy();
2854
2855  if (!R.empty()) {
2856    NamedDecl *Named = R.getFoundDecl();
2857    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
2858        && "expected namespace decl");
2859    // C++ [namespace.udir]p1:
2860    //   A using-directive specifies that the names in the nominated
2861    //   namespace can be used in the scope in which the
2862    //   using-directive appears after the using-directive. During
2863    //   unqualified name lookup (3.4.1), the names appear as if they
2864    //   were declared in the nearest enclosing namespace which
2865    //   contains both the using-directive and the nominated
2866    //   namespace. [Note: in this context, "contains" means "contains
2867    //   directly or indirectly". ]
2868
2869    // Find enclosing context containing both using-directive and
2870    // nominated namespace.
2871    NamespaceDecl *NS = getNamespaceDecl(Named);
2872    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2873    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2874      CommonAncestor = CommonAncestor->getParent();
2875
2876    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
2877                                      SS.getRange(),
2878                                      (NestedNameSpecifier *)SS.getScopeRep(),
2879                                      IdentLoc, Named, CommonAncestor);
2880    PushUsingDirective(S, UDir);
2881  } else {
2882    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2883  }
2884
2885  // FIXME: We ignore attributes for now.
2886  delete AttrList;
2887  return DeclPtrTy::make(UDir);
2888}
2889
2890void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2891  // If scope has associated entity, then using directive is at namespace
2892  // or translation unit scope. We add UsingDirectiveDecls, into
2893  // it's lookup structure.
2894  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2895    Ctx->addDecl(UDir);
2896  else
2897    // Otherwise it is block-sope. using-directives will affect lookup
2898    // only to the end of scope.
2899    S->PushUsingDirective(DeclPtrTy::make(UDir));
2900}
2901
2902
2903Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2904                                            AccessSpecifier AS,
2905                                            bool HasUsingKeyword,
2906                                            SourceLocation UsingLoc,
2907                                            const CXXScopeSpec &SS,
2908                                            UnqualifiedId &Name,
2909                                            AttributeList *AttrList,
2910                                            bool IsTypeName,
2911                                            SourceLocation TypenameLoc) {
2912  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2913
2914  switch (Name.getKind()) {
2915  case UnqualifiedId::IK_Identifier:
2916  case UnqualifiedId::IK_OperatorFunctionId:
2917  case UnqualifiedId::IK_LiteralOperatorId:
2918  case UnqualifiedId::IK_ConversionFunctionId:
2919    break;
2920
2921  case UnqualifiedId::IK_ConstructorName:
2922    // C++0x inherited constructors.
2923    if (getLangOptions().CPlusPlus0x) break;
2924
2925    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
2926      << SS.getRange();
2927    return DeclPtrTy();
2928
2929  case UnqualifiedId::IK_DestructorName:
2930    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
2931      << SS.getRange();
2932    return DeclPtrTy();
2933
2934  case UnqualifiedId::IK_TemplateId:
2935    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
2936      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
2937    return DeclPtrTy();
2938  }
2939
2940  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
2941  if (!TargetName)
2942    return DeclPtrTy();
2943
2944  // Warn about using declarations.
2945  // TODO: store that the declaration was written without 'using' and
2946  // talk about access decls instead of using decls in the
2947  // diagnostics.
2948  if (!HasUsingKeyword) {
2949    UsingLoc = Name.getSourceRange().getBegin();
2950
2951    Diag(UsingLoc, diag::warn_access_decl_deprecated)
2952      << CodeModificationHint::CreateInsertion(SS.getRange().getBegin(),
2953                                               "using ");
2954  }
2955
2956  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
2957                                        Name.getSourceRange().getBegin(),
2958                                        TargetName, AttrList,
2959                                        /* IsInstantiation */ false,
2960                                        IsTypeName, TypenameLoc);
2961  if (UD)
2962    PushOnScopeChains(UD, S, /*AddToContext*/ false);
2963
2964  return DeclPtrTy::make(UD);
2965}
2966
2967/// Determines whether to create a using shadow decl for a particular
2968/// decl, given the set of decls existing prior to this using lookup.
2969bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
2970                                const LookupResult &Previous) {
2971  // Diagnose finding a decl which is not from a base class of the
2972  // current class.  We do this now because there are cases where this
2973  // function will silently decide not to build a shadow decl, which
2974  // will pre-empt further diagnostics.
2975  //
2976  // We don't need to do this in C++0x because we do the check once on
2977  // the qualifier.
2978  //
2979  // FIXME: diagnose the following if we care enough:
2980  //   struct A { int foo; };
2981  //   struct B : A { using A::foo; };
2982  //   template <class T> struct C : A {};
2983  //   template <class T> struct D : C<T> { using B::foo; } // <---
2984  // This is invalid (during instantiation) in C++03 because B::foo
2985  // resolves to the using decl in B, which is not a base class of D<T>.
2986  // We can't diagnose it immediately because C<T> is an unknown
2987  // specialization.  The UsingShadowDecl in D<T> then points directly
2988  // to A::foo, which will look well-formed when we instantiate.
2989  // The right solution is to not collapse the shadow-decl chain.
2990  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
2991    DeclContext *OrigDC = Orig->getDeclContext();
2992
2993    // Handle enums and anonymous structs.
2994    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
2995    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
2996    while (OrigRec->isAnonymousStructOrUnion())
2997      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
2998
2999    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3000      if (OrigDC == CurContext) {
3001        Diag(Using->getLocation(),
3002             diag::err_using_decl_nested_name_specifier_is_current_class)
3003          << Using->getNestedNameRange();
3004        Diag(Orig->getLocation(), diag::note_using_decl_target);
3005        return true;
3006      }
3007
3008      Diag(Using->getNestedNameRange().getBegin(),
3009           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3010        << Using->getTargetNestedNameDecl()
3011        << cast<CXXRecordDecl>(CurContext)
3012        << Using->getNestedNameRange();
3013      Diag(Orig->getLocation(), diag::note_using_decl_target);
3014      return true;
3015    }
3016  }
3017
3018  if (Previous.empty()) return false;
3019
3020  NamedDecl *Target = Orig;
3021  if (isa<UsingShadowDecl>(Target))
3022    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3023
3024  // If the target happens to be one of the previous declarations, we
3025  // don't have a conflict.
3026  //
3027  // FIXME: but we might be increasing its access, in which case we
3028  // should redeclare it.
3029  NamedDecl *NonTag = 0, *Tag = 0;
3030  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3031         I != E; ++I) {
3032    NamedDecl *D = (*I)->getUnderlyingDecl();
3033    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3034      return false;
3035
3036    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3037  }
3038
3039  if (Target->isFunctionOrFunctionTemplate()) {
3040    FunctionDecl *FD;
3041    if (isa<FunctionTemplateDecl>(Target))
3042      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3043    else
3044      FD = cast<FunctionDecl>(Target);
3045
3046    NamedDecl *OldDecl = 0;
3047    switch (CheckOverload(FD, Previous, OldDecl)) {
3048    case Ovl_Overload:
3049      return false;
3050
3051    case Ovl_NonFunction:
3052      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3053      break;
3054
3055    // We found a decl with the exact signature.
3056    case Ovl_Match:
3057      if (isa<UsingShadowDecl>(OldDecl)) {
3058        // Silently ignore the possible conflict.
3059        return false;
3060      }
3061
3062      // If we're in a record, we want to hide the target, so we
3063      // return true (without a diagnostic) to tell the caller not to
3064      // build a shadow decl.
3065      if (CurContext->isRecord())
3066        return true;
3067
3068      // If we're not in a record, this is an error.
3069      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3070      break;
3071    }
3072
3073    Diag(Target->getLocation(), diag::note_using_decl_target);
3074    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3075    return true;
3076  }
3077
3078  // Target is not a function.
3079
3080  if (isa<TagDecl>(Target)) {
3081    // No conflict between a tag and a non-tag.
3082    if (!Tag) return false;
3083
3084    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3085    Diag(Target->getLocation(), diag::note_using_decl_target);
3086    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3087    return true;
3088  }
3089
3090  // No conflict between a tag and a non-tag.
3091  if (!NonTag) return false;
3092
3093  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3094  Diag(Target->getLocation(), diag::note_using_decl_target);
3095  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3096  return true;
3097}
3098
3099/// Builds a shadow declaration corresponding to a 'using' declaration.
3100UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3101                                            UsingDecl *UD,
3102                                            NamedDecl *Orig) {
3103
3104  // If we resolved to another shadow declaration, just coalesce them.
3105  NamedDecl *Target = Orig;
3106  if (isa<UsingShadowDecl>(Target)) {
3107    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3108    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3109  }
3110
3111  UsingShadowDecl *Shadow
3112    = UsingShadowDecl::Create(Context, CurContext,
3113                              UD->getLocation(), UD, Target);
3114  UD->addShadowDecl(Shadow);
3115
3116  if (S)
3117    PushOnScopeChains(Shadow, S);
3118  else
3119    CurContext->addDecl(Shadow);
3120  Shadow->setAccess(UD->getAccess());
3121
3122  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3123    Shadow->setInvalidDecl();
3124
3125  return Shadow;
3126}
3127
3128/// Hides a using shadow declaration.  This is required by the current
3129/// using-decl implementation when a resolvable using declaration in a
3130/// class is followed by a declaration which would hide or override
3131/// one or more of the using decl's targets; for example:
3132///
3133///   struct Base { void foo(int); };
3134///   struct Derived : Base {
3135///     using Base::foo;
3136///     void foo(int);
3137///   };
3138///
3139/// The governing language is C++03 [namespace.udecl]p12:
3140///
3141///   When a using-declaration brings names from a base class into a
3142///   derived class scope, member functions in the derived class
3143///   override and/or hide member functions with the same name and
3144///   parameter types in a base class (rather than conflicting).
3145///
3146/// There are two ways to implement this:
3147///   (1) optimistically create shadow decls when they're not hidden
3148///       by existing declarations, or
3149///   (2) don't create any shadow decls (or at least don't make them
3150///       visible) until we've fully parsed/instantiated the class.
3151/// The problem with (1) is that we might have to retroactively remove
3152/// a shadow decl, which requires several O(n) operations because the
3153/// decl structures are (very reasonably) not designed for removal.
3154/// (2) avoids this but is very fiddly and phase-dependent.
3155void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3156  // Remove it from the DeclContext...
3157  Shadow->getDeclContext()->removeDecl(Shadow);
3158
3159  // ...and the scope, if applicable...
3160  if (S) {
3161    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3162    IdResolver.RemoveDecl(Shadow);
3163  }
3164
3165  // ...and the using decl.
3166  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3167
3168  // TODO: complain somehow if Shadow was used.  It shouldn't
3169  // be possible for this to happen, because
3170}
3171
3172/// Builds a using declaration.
3173///
3174/// \param IsInstantiation - Whether this call arises from an
3175///   instantiation of an unresolved using declaration.  We treat
3176///   the lookup differently for these declarations.
3177NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3178                                       SourceLocation UsingLoc,
3179                                       const CXXScopeSpec &SS,
3180                                       SourceLocation IdentLoc,
3181                                       DeclarationName Name,
3182                                       AttributeList *AttrList,
3183                                       bool IsInstantiation,
3184                                       bool IsTypeName,
3185                                       SourceLocation TypenameLoc) {
3186  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3187  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3188
3189  // FIXME: We ignore attributes for now.
3190  delete AttrList;
3191
3192  if (SS.isEmpty()) {
3193    Diag(IdentLoc, diag::err_using_requires_qualname);
3194    return 0;
3195  }
3196
3197  // Do the redeclaration lookup in the current scope.
3198  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3199                        ForRedeclaration);
3200  Previous.setHideTags(false);
3201  if (S) {
3202    LookupName(Previous, S);
3203
3204    // It is really dumb that we have to do this.
3205    LookupResult::Filter F = Previous.makeFilter();
3206    while (F.hasNext()) {
3207      NamedDecl *D = F.next();
3208      if (!isDeclInScope(D, CurContext, S))
3209        F.erase();
3210    }
3211    F.done();
3212  } else {
3213    assert(IsInstantiation && "no scope in non-instantiation");
3214    assert(CurContext->isRecord() && "scope not record in instantiation");
3215    LookupQualifiedName(Previous, CurContext);
3216  }
3217
3218  NestedNameSpecifier *NNS =
3219    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3220
3221  // Check for invalid redeclarations.
3222  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3223    return 0;
3224
3225  // Check for bad qualifiers.
3226  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3227    return 0;
3228
3229  DeclContext *LookupContext = computeDeclContext(SS);
3230  NamedDecl *D;
3231  if (!LookupContext) {
3232    if (IsTypeName) {
3233      // FIXME: not all declaration name kinds are legal here
3234      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3235                                              UsingLoc, TypenameLoc,
3236                                              SS.getRange(), NNS,
3237                                              IdentLoc, Name);
3238    } else {
3239      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3240                                           UsingLoc, SS.getRange(), NNS,
3241                                           IdentLoc, Name);
3242    }
3243  } else {
3244    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3245                          SS.getRange(), UsingLoc, NNS, Name,
3246                          IsTypeName);
3247  }
3248  D->setAccess(AS);
3249  CurContext->addDecl(D);
3250
3251  if (!LookupContext) return D;
3252  UsingDecl *UD = cast<UsingDecl>(D);
3253
3254  if (RequireCompleteDeclContext(SS)) {
3255    UD->setInvalidDecl();
3256    return UD;
3257  }
3258
3259  // Look up the target name.
3260
3261  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3262
3263  // Unlike most lookups, we don't always want to hide tag
3264  // declarations: tag names are visible through the using declaration
3265  // even if hidden by ordinary names, *except* in a dependent context
3266  // where it's important for the sanity of two-phase lookup.
3267  if (!IsInstantiation)
3268    R.setHideTags(false);
3269
3270  LookupQualifiedName(R, LookupContext);
3271
3272  if (R.empty()) {
3273    Diag(IdentLoc, diag::err_no_member)
3274      << Name << LookupContext << SS.getRange();
3275    UD->setInvalidDecl();
3276    return UD;
3277  }
3278
3279  if (R.isAmbiguous()) {
3280    UD->setInvalidDecl();
3281    return UD;
3282  }
3283
3284  if (IsTypeName) {
3285    // If we asked for a typename and got a non-type decl, error out.
3286    if (!R.getAsSingle<TypeDecl>()) {
3287      Diag(IdentLoc, diag::err_using_typename_non_type);
3288      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3289        Diag((*I)->getUnderlyingDecl()->getLocation(),
3290             diag::note_using_decl_target);
3291      UD->setInvalidDecl();
3292      return UD;
3293    }
3294  } else {
3295    // If we asked for a non-typename and we got a type, error out,
3296    // but only if this is an instantiation of an unresolved using
3297    // decl.  Otherwise just silently find the type name.
3298    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3299      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3300      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3301      UD->setInvalidDecl();
3302      return UD;
3303    }
3304  }
3305
3306  // C++0x N2914 [namespace.udecl]p6:
3307  // A using-declaration shall not name a namespace.
3308  if (R.getAsSingle<NamespaceDecl>()) {
3309    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3310      << SS.getRange();
3311    UD->setInvalidDecl();
3312    return UD;
3313  }
3314
3315  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3316    if (!CheckUsingShadowDecl(UD, *I, Previous))
3317      BuildUsingShadowDecl(S, UD, *I);
3318  }
3319
3320  return UD;
3321}
3322
3323/// Checks that the given using declaration is not an invalid
3324/// redeclaration.  Note that this is checking only for the using decl
3325/// itself, not for any ill-formedness among the UsingShadowDecls.
3326bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3327                                       bool isTypeName,
3328                                       const CXXScopeSpec &SS,
3329                                       SourceLocation NameLoc,
3330                                       const LookupResult &Prev) {
3331  // C++03 [namespace.udecl]p8:
3332  // C++0x [namespace.udecl]p10:
3333  //   A using-declaration is a declaration and can therefore be used
3334  //   repeatedly where (and only where) multiple declarations are
3335  //   allowed.
3336  // That's only in file contexts.
3337  if (CurContext->getLookupContext()->isFileContext())
3338    return false;
3339
3340  NestedNameSpecifier *Qual
3341    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3342
3343  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3344    NamedDecl *D = *I;
3345
3346    bool DTypename;
3347    NestedNameSpecifier *DQual;
3348    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3349      DTypename = UD->isTypeName();
3350      DQual = UD->getTargetNestedNameDecl();
3351    } else if (UnresolvedUsingValueDecl *UD
3352                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3353      DTypename = false;
3354      DQual = UD->getTargetNestedNameSpecifier();
3355    } else if (UnresolvedUsingTypenameDecl *UD
3356                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3357      DTypename = true;
3358      DQual = UD->getTargetNestedNameSpecifier();
3359    } else continue;
3360
3361    // using decls differ if one says 'typename' and the other doesn't.
3362    // FIXME: non-dependent using decls?
3363    if (isTypeName != DTypename) continue;
3364
3365    // using decls differ if they name different scopes (but note that
3366    // template instantiation can cause this check to trigger when it
3367    // didn't before instantiation).
3368    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3369        Context.getCanonicalNestedNameSpecifier(DQual))
3370      continue;
3371
3372    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3373    Diag(D->getLocation(), diag::note_using_decl) << 1;
3374    return true;
3375  }
3376
3377  return false;
3378}
3379
3380
3381/// Checks that the given nested-name qualifier used in a using decl
3382/// in the current context is appropriately related to the current
3383/// scope.  If an error is found, diagnoses it and returns true.
3384bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3385                                   const CXXScopeSpec &SS,
3386                                   SourceLocation NameLoc) {
3387  DeclContext *NamedContext = computeDeclContext(SS);
3388
3389  if (!CurContext->isRecord()) {
3390    // C++03 [namespace.udecl]p3:
3391    // C++0x [namespace.udecl]p8:
3392    //   A using-declaration for a class member shall be a member-declaration.
3393
3394    // If we weren't able to compute a valid scope, it must be a
3395    // dependent class scope.
3396    if (!NamedContext || NamedContext->isRecord()) {
3397      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3398        << SS.getRange();
3399      return true;
3400    }
3401
3402    // Otherwise, everything is known to be fine.
3403    return false;
3404  }
3405
3406  // The current scope is a record.
3407
3408  // If the named context is dependent, we can't decide much.
3409  if (!NamedContext) {
3410    // FIXME: in C++0x, we can diagnose if we can prove that the
3411    // nested-name-specifier does not refer to a base class, which is
3412    // still possible in some cases.
3413
3414    // Otherwise we have to conservatively report that things might be
3415    // okay.
3416    return false;
3417  }
3418
3419  if (!NamedContext->isRecord()) {
3420    // Ideally this would point at the last name in the specifier,
3421    // but we don't have that level of source info.
3422    Diag(SS.getRange().getBegin(),
3423         diag::err_using_decl_nested_name_specifier_is_not_class)
3424      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3425    return true;
3426  }
3427
3428  if (getLangOptions().CPlusPlus0x) {
3429    // C++0x [namespace.udecl]p3:
3430    //   In a using-declaration used as a member-declaration, the
3431    //   nested-name-specifier shall name a base class of the class
3432    //   being defined.
3433
3434    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3435                                 cast<CXXRecordDecl>(NamedContext))) {
3436      if (CurContext == NamedContext) {
3437        Diag(NameLoc,
3438             diag::err_using_decl_nested_name_specifier_is_current_class)
3439          << SS.getRange();
3440        return true;
3441      }
3442
3443      Diag(SS.getRange().getBegin(),
3444           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3445        << (NestedNameSpecifier*) SS.getScopeRep()
3446        << cast<CXXRecordDecl>(CurContext)
3447        << SS.getRange();
3448      return true;
3449    }
3450
3451    return false;
3452  }
3453
3454  // C++03 [namespace.udecl]p4:
3455  //   A using-declaration used as a member-declaration shall refer
3456  //   to a member of a base class of the class being defined [etc.].
3457
3458  // Salient point: SS doesn't have to name a base class as long as
3459  // lookup only finds members from base classes.  Therefore we can
3460  // diagnose here only if we can prove that that can't happen,
3461  // i.e. if the class hierarchies provably don't intersect.
3462
3463  // TODO: it would be nice if "definitely valid" results were cached
3464  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3465  // need to be repeated.
3466
3467  struct UserData {
3468    llvm::DenseSet<const CXXRecordDecl*> Bases;
3469
3470    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3471      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3472      Data->Bases.insert(Base);
3473      return true;
3474    }
3475
3476    bool hasDependentBases(const CXXRecordDecl *Class) {
3477      return !Class->forallBases(collect, this);
3478    }
3479
3480    /// Returns true if the base is dependent or is one of the
3481    /// accumulated base classes.
3482    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3483      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3484      return !Data->Bases.count(Base);
3485    }
3486
3487    bool mightShareBases(const CXXRecordDecl *Class) {
3488      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3489    }
3490  };
3491
3492  UserData Data;
3493
3494  // Returns false if we find a dependent base.
3495  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3496    return false;
3497
3498  // Returns false if the class has a dependent base or if it or one
3499  // of its bases is present in the base set of the current context.
3500  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3501    return false;
3502
3503  Diag(SS.getRange().getBegin(),
3504       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3505    << (NestedNameSpecifier*) SS.getScopeRep()
3506    << cast<CXXRecordDecl>(CurContext)
3507    << SS.getRange();
3508
3509  return true;
3510}
3511
3512Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3513                                             SourceLocation NamespaceLoc,
3514                                             SourceLocation AliasLoc,
3515                                             IdentifierInfo *Alias,
3516                                             const CXXScopeSpec &SS,
3517                                             SourceLocation IdentLoc,
3518                                             IdentifierInfo *Ident) {
3519
3520  // Lookup the namespace name.
3521  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3522  LookupParsedName(R, S, &SS);
3523
3524  // Check if we have a previous declaration with the same name.
3525  if (NamedDecl *PrevDecl
3526        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3527    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3528      // We already have an alias with the same name that points to the same
3529      // namespace, so don't create a new one.
3530      if (!R.isAmbiguous() && !R.empty() &&
3531          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
3532        return DeclPtrTy();
3533    }
3534
3535    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3536      diag::err_redefinition_different_kind;
3537    Diag(AliasLoc, DiagID) << Alias;
3538    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3539    return DeclPtrTy();
3540  }
3541
3542  if (R.isAmbiguous())
3543    return DeclPtrTy();
3544
3545  if (R.empty()) {
3546    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3547    return DeclPtrTy();
3548  }
3549
3550  NamespaceAliasDecl *AliasDecl =
3551    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3552                               Alias, SS.getRange(),
3553                               (NestedNameSpecifier *)SS.getScopeRep(),
3554                               IdentLoc, R.getFoundDecl());
3555
3556  CurContext->addDecl(AliasDecl);
3557  return DeclPtrTy::make(AliasDecl);
3558}
3559
3560void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3561                                            CXXConstructorDecl *Constructor) {
3562  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3563          !Constructor->isUsed()) &&
3564    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3565
3566  CXXRecordDecl *ClassDecl
3567    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3568  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3569
3570  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) {
3571    Diag(CurrentLocation, diag::note_member_synthesized_at)
3572      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3573    Constructor->setInvalidDecl();
3574  } else {
3575    Constructor->setUsed();
3576  }
3577}
3578
3579void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3580                                    CXXDestructorDecl *Destructor) {
3581  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3582         "DefineImplicitDestructor - call it for implicit default dtor");
3583  CXXRecordDecl *ClassDecl = Destructor->getParent();
3584  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3585  // C++ [class.dtor] p5
3586  // Before the implicitly-declared default destructor for a class is
3587  // implicitly defined, all the implicitly-declared default destructors
3588  // for its base class and its non-static data members shall have been
3589  // implicitly defined.
3590  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3591       E = ClassDecl->bases_end(); Base != E; ++Base) {
3592    CXXRecordDecl *BaseClassDecl
3593      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3594    if (!BaseClassDecl->hasTrivialDestructor()) {
3595      if (CXXDestructorDecl *BaseDtor =
3596          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3597        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3598      else
3599        assert(false &&
3600               "DefineImplicitDestructor - missing dtor in a base class");
3601    }
3602  }
3603
3604  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3605       E = ClassDecl->field_end(); Field != E; ++Field) {
3606    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3607    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3608      FieldType = Array->getElementType();
3609    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3610      CXXRecordDecl *FieldClassDecl
3611        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3612      if (!FieldClassDecl->hasTrivialDestructor()) {
3613        if (CXXDestructorDecl *FieldDtor =
3614            const_cast<CXXDestructorDecl*>(
3615                                        FieldClassDecl->getDestructor(Context)))
3616          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3617        else
3618          assert(false &&
3619          "DefineImplicitDestructor - missing dtor in class of a data member");
3620      }
3621    }
3622  }
3623
3624  // FIXME: If CheckDestructor fails, we should emit a note about where the
3625  // implicit destructor was needed.
3626  if (CheckDestructor(Destructor)) {
3627    Diag(CurrentLocation, diag::note_member_synthesized_at)
3628      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3629
3630    Destructor->setInvalidDecl();
3631    return;
3632  }
3633
3634  Destructor->setUsed();
3635}
3636
3637void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3638                                          CXXMethodDecl *MethodDecl) {
3639  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3640          MethodDecl->getOverloadedOperator() == OO_Equal &&
3641          !MethodDecl->isUsed()) &&
3642         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3643
3644  CXXRecordDecl *ClassDecl
3645    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3646
3647  // C++[class.copy] p12
3648  // Before the implicitly-declared copy assignment operator for a class is
3649  // implicitly defined, all implicitly-declared copy assignment operators
3650  // for its direct base classes and its nonstatic data members shall have
3651  // been implicitly defined.
3652  bool err = false;
3653  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3654       E = ClassDecl->bases_end(); Base != E; ++Base) {
3655    CXXRecordDecl *BaseClassDecl
3656      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3657    if (CXXMethodDecl *BaseAssignOpMethod =
3658          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3659                                  BaseClassDecl))
3660      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3661  }
3662  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3663       E = ClassDecl->field_end(); Field != E; ++Field) {
3664    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3665    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3666      FieldType = Array->getElementType();
3667    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3668      CXXRecordDecl *FieldClassDecl
3669        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3670      if (CXXMethodDecl *FieldAssignOpMethod =
3671          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3672                                  FieldClassDecl))
3673        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3674    } else if (FieldType->isReferenceType()) {
3675      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3676      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3677      Diag(Field->getLocation(), diag::note_declared_at);
3678      Diag(CurrentLocation, diag::note_first_required_here);
3679      err = true;
3680    } else if (FieldType.isConstQualified()) {
3681      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3682      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3683      Diag(Field->getLocation(), diag::note_declared_at);
3684      Diag(CurrentLocation, diag::note_first_required_here);
3685      err = true;
3686    }
3687  }
3688  if (!err)
3689    MethodDecl->setUsed();
3690}
3691
3692CXXMethodDecl *
3693Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3694                              ParmVarDecl *ParmDecl,
3695                              CXXRecordDecl *ClassDecl) {
3696  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3697  QualType RHSType(LHSType);
3698  // If class's assignment operator argument is const/volatile qualified,
3699  // look for operator = (const/volatile B&). Otherwise, look for
3700  // operator = (B&).
3701  RHSType = Context.getCVRQualifiedType(RHSType,
3702                                     ParmDecl->getType().getCVRQualifiers());
3703  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3704                                                           LHSType,
3705                                                           SourceLocation()));
3706  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3707                                                           RHSType,
3708                                                           CurrentLocation));
3709  Expr *Args[2] = { &*LHS, &*RHS };
3710  OverloadCandidateSet CandidateSet;
3711  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3712                              CandidateSet);
3713  OverloadCandidateSet::iterator Best;
3714  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3715    return cast<CXXMethodDecl>(Best->Function);
3716  assert(false &&
3717         "getAssignOperatorMethod - copy assignment operator method not found");
3718  return 0;
3719}
3720
3721void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3722                                   CXXConstructorDecl *CopyConstructor,
3723                                   unsigned TypeQuals) {
3724  assert((CopyConstructor->isImplicit() &&
3725          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
3726          !CopyConstructor->isUsed()) &&
3727         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3728
3729  CXXRecordDecl *ClassDecl
3730    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3731  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3732  // C++ [class.copy] p209
3733  // Before the implicitly-declared copy constructor for a class is
3734  // implicitly defined, all the implicitly-declared copy constructors
3735  // for its base class and its non-static data members shall have been
3736  // implicitly defined.
3737  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3738       Base != ClassDecl->bases_end(); ++Base) {
3739    CXXRecordDecl *BaseClassDecl
3740      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3741    if (CXXConstructorDecl *BaseCopyCtor =
3742        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3743      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3744  }
3745  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3746                                  FieldEnd = ClassDecl->field_end();
3747       Field != FieldEnd; ++Field) {
3748    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3749    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3750      FieldType = Array->getElementType();
3751    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3752      CXXRecordDecl *FieldClassDecl
3753        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3754      if (CXXConstructorDecl *FieldCopyCtor =
3755          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3756        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3757    }
3758  }
3759  CopyConstructor->setUsed();
3760}
3761
3762Sema::OwningExprResult
3763Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3764                            CXXConstructorDecl *Constructor,
3765                            MultiExprArg ExprArgs,
3766                            bool RequiresZeroInit) {
3767  bool Elidable = false;
3768
3769  // C++ [class.copy]p15:
3770  //   Whenever a temporary class object is copied using a copy constructor, and
3771  //   this object and the copy have the same cv-unqualified type, an
3772  //   implementation is permitted to treat the original and the copy as two
3773  //   different ways of referring to the same object and not perform a copy at
3774  //   all, even if the class copy constructor or destructor have side effects.
3775
3776  // FIXME: Is this enough?
3777  if (Constructor->isCopyConstructor(Context)) {
3778    Expr *E = ((Expr **)ExprArgs.get())[0];
3779    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3780      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3781        E = ICE->getSubExpr();
3782    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3783      E = BE->getSubExpr();
3784    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3785      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3786        E = ICE->getSubExpr();
3787
3788    if (CallExpr *CE = dyn_cast<CallExpr>(E))
3789      Elidable = !CE->getCallReturnType()->isReferenceType();
3790    else if (isa<CXXTemporaryObjectExpr>(E))
3791      Elidable = true;
3792  }
3793
3794  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3795                               Elidable, move(ExprArgs), RequiresZeroInit);
3796}
3797
3798/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3799/// including handling of its default argument expressions.
3800Sema::OwningExprResult
3801Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3802                            CXXConstructorDecl *Constructor, bool Elidable,
3803                            MultiExprArg ExprArgs,
3804                            bool RequiresZeroInit) {
3805  unsigned NumExprs = ExprArgs.size();
3806  Expr **Exprs = (Expr **)ExprArgs.release();
3807
3808  MarkDeclarationReferenced(ConstructLoc, Constructor);
3809  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
3810                                        Constructor, Elidable, Exprs, NumExprs,
3811                                        RequiresZeroInit));
3812}
3813
3814Sema::OwningExprResult
3815Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3816                                  QualType Ty,
3817                                  SourceLocation TyBeginLoc,
3818                                  MultiExprArg Args,
3819                                  SourceLocation RParenLoc) {
3820  unsigned NumExprs = Args.size();
3821  Expr **Exprs = (Expr **)Args.release();
3822
3823  MarkDeclarationReferenced(TyBeginLoc, Constructor);
3824  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3825                                                    TyBeginLoc, Exprs,
3826                                                    NumExprs, RParenLoc));
3827}
3828
3829
3830bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3831                                        CXXConstructorDecl *Constructor,
3832                                        MultiExprArg Exprs) {
3833  OwningExprResult TempResult =
3834    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3835                          move(Exprs));
3836  if (TempResult.isInvalid())
3837    return true;
3838
3839  Expr *Temp = TempResult.takeAs<Expr>();
3840  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3841  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
3842  VD->setInit(Context, Temp);
3843
3844  return false;
3845}
3846
3847void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3848  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3849                                  DeclInitType->getAs<RecordType>()->getDecl());
3850  if (!ClassDecl->hasTrivialDestructor())
3851    if (CXXDestructorDecl *Destructor =
3852        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3853      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3854}
3855
3856/// AddCXXDirectInitializerToDecl - This action is called immediately after
3857/// ActOnDeclarator, when a C++ direct initializer is present.
3858/// e.g: "int x(1);"
3859void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3860                                         SourceLocation LParenLoc,
3861                                         MultiExprArg Exprs,
3862                                         SourceLocation *CommaLocs,
3863                                         SourceLocation RParenLoc) {
3864  unsigned NumExprs = Exprs.size();
3865  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
3866  Decl *RealDecl = Dcl.getAs<Decl>();
3867
3868  // If there is no declaration, there was an error parsing it.  Just ignore
3869  // the initializer.
3870  if (RealDecl == 0)
3871    return;
3872
3873  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3874  if (!VDecl) {
3875    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3876    RealDecl->setInvalidDecl();
3877    return;
3878  }
3879
3880  // We will represent direct-initialization similarly to copy-initialization:
3881  //    int x(1);  -as-> int x = 1;
3882  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3883  //
3884  // Clients that want to distinguish between the two forms, can check for
3885  // direct initializer using VarDecl::hasCXXDirectInitializer().
3886  // A major benefit is that clients that don't particularly care about which
3887  // exactly form was it (like the CodeGen) can handle both cases without
3888  // special case code.
3889
3890  // If either the declaration has a dependent type or if any of the expressions
3891  // is type-dependent, we represent the initialization via a ParenListExpr for
3892  // later use during template instantiation.
3893  if (VDecl->getType()->isDependentType() ||
3894      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3895    // Let clients know that initialization was done with a direct initializer.
3896    VDecl->setCXXDirectInitializer(true);
3897
3898    // Store the initialization expressions as a ParenListExpr.
3899    unsigned NumExprs = Exprs.size();
3900    VDecl->setInit(Context,
3901                   new (Context) ParenListExpr(Context, LParenLoc,
3902                                               (Expr **)Exprs.release(),
3903                                               NumExprs, RParenLoc));
3904    return;
3905  }
3906
3907
3908  // C++ 8.5p11:
3909  // The form of initialization (using parentheses or '=') is generally
3910  // insignificant, but does matter when the entity being initialized has a
3911  // class type.
3912  QualType DeclInitType = VDecl->getType();
3913  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3914    DeclInitType = Context.getBaseElementType(Array);
3915
3916  // FIXME: This isn't the right place to complete the type.
3917  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3918                          diag::err_typecheck_decl_incomplete_type)) {
3919    VDecl->setInvalidDecl();
3920    return;
3921  }
3922
3923  if (VDecl->getType()->isRecordType()) {
3924    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3925
3926    CXXConstructorDecl *Constructor
3927      = PerformInitializationByConstructor(DeclInitType,
3928                                           move(Exprs),
3929                                           VDecl->getLocation(),
3930                                           SourceRange(VDecl->getLocation(),
3931                                                       RParenLoc),
3932                                           VDecl->getDeclName(),
3933                      InitializationKind::CreateDirect(VDecl->getLocation(),
3934                                                       LParenLoc,
3935                                                       RParenLoc),
3936                                           ConstructorArgs);
3937    if (!Constructor)
3938      RealDecl->setInvalidDecl();
3939    else {
3940      VDecl->setCXXDirectInitializer(true);
3941      if (InitializeVarWithConstructor(VDecl, Constructor,
3942                                       move_arg(ConstructorArgs)))
3943        RealDecl->setInvalidDecl();
3944      FinalizeVarWithDestructor(VDecl, DeclInitType);
3945    }
3946    return;
3947  }
3948
3949  if (NumExprs > 1) {
3950    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
3951      << SourceRange(VDecl->getLocation(), RParenLoc);
3952    RealDecl->setInvalidDecl();
3953    return;
3954  }
3955
3956  // Let clients know that initialization was done with a direct initializer.
3957  VDecl->setCXXDirectInitializer(true);
3958
3959  assert(NumExprs == 1 && "Expected 1 expression");
3960  // Set the init expression, handles conversions.
3961  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
3962                       /*DirectInit=*/true);
3963}
3964
3965/// \brief Add the applicable constructor candidates for an initialization
3966/// by constructor.
3967static void AddConstructorInitializationCandidates(Sema &SemaRef,
3968                                                   QualType ClassType,
3969                                                   Expr **Args,
3970                                                   unsigned NumArgs,
3971                                                   InitializationKind Kind,
3972                                           OverloadCandidateSet &CandidateSet) {
3973  // C++ [dcl.init]p14:
3974  //   If the initialization is direct-initialization, or if it is
3975  //   copy-initialization where the cv-unqualified version of the
3976  //   source type is the same class as, or a derived class of, the
3977  //   class of the destination, constructors are considered. The
3978  //   applicable constructors are enumerated (13.3.1.3), and the
3979  //   best one is chosen through overload resolution (13.3). The
3980  //   constructor so selected is called to initialize the object,
3981  //   with the initializer expression(s) as its argument(s). If no
3982  //   constructor applies, or the overload resolution is ambiguous,
3983  //   the initialization is ill-formed.
3984  const RecordType *ClassRec = ClassType->getAs<RecordType>();
3985  assert(ClassRec && "Can only initialize a class type here");
3986
3987  // FIXME: When we decide not to synthesize the implicitly-declared
3988  // constructors, we'll need to make them appear here.
3989
3990  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
3991  DeclarationName ConstructorName
3992    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
3993              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
3994  DeclContext::lookup_const_iterator Con, ConEnd;
3995  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
3996       Con != ConEnd; ++Con) {
3997    // Find the constructor (which may be a template).
3998    CXXConstructorDecl *Constructor = 0;
3999    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4000    if (ConstructorTmpl)
4001      Constructor
4002      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4003    else
4004      Constructor = cast<CXXConstructorDecl>(*Con);
4005
4006    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4007        (Kind.getKind() == InitializationKind::IK_Value) ||
4008        (Kind.getKind() == InitializationKind::IK_Copy &&
4009         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4010        ((Kind.getKind() == InitializationKind::IK_Default) &&
4011         Constructor->isDefaultConstructor())) {
4012      if (ConstructorTmpl)
4013        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl,
4014                                             /*ExplicitArgs*/ 0,
4015                                             Args, NumArgs, CandidateSet);
4016      else
4017        SemaRef.AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
4018    }
4019  }
4020}
4021
4022/// \brief Attempt to perform initialization by constructor
4023/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4024/// copy-initialization.
4025///
4026/// This routine determines whether initialization by constructor is possible,
4027/// but it does not emit any diagnostics in the case where the initialization
4028/// is ill-formed.
4029///
4030/// \param ClassType the type of the object being initialized, which must have
4031/// class type.
4032///
4033/// \param Args the arguments provided to initialize the object
4034///
4035/// \param NumArgs the number of arguments provided to initialize the object
4036///
4037/// \param Kind the type of initialization being performed
4038///
4039/// \returns the constructor used to initialize the object, if successful.
4040/// Otherwise, emits a diagnostic and returns NULL.
4041CXXConstructorDecl *
4042Sema::TryInitializationByConstructor(QualType ClassType,
4043                                     Expr **Args, unsigned NumArgs,
4044                                     SourceLocation Loc,
4045                                     InitializationKind Kind) {
4046  // Build the overload candidate set
4047  OverloadCandidateSet CandidateSet;
4048  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4049                                         CandidateSet);
4050
4051  // Determine whether we found a constructor we can use.
4052  OverloadCandidateSet::iterator Best;
4053  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4054    case OR_Success:
4055    case OR_Deleted:
4056      // We found a constructor. Return it.
4057      return cast<CXXConstructorDecl>(Best->Function);
4058
4059    case OR_No_Viable_Function:
4060    case OR_Ambiguous:
4061      // Overload resolution failed. Return nothing.
4062      return 0;
4063  }
4064
4065  // Silence GCC warning
4066  return 0;
4067}
4068
4069/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
4070/// may occur as part of direct-initialization or copy-initialization.
4071///
4072/// \param ClassType the type of the object being initialized, which must have
4073/// class type.
4074///
4075/// \param ArgsPtr the arguments provided to initialize the object
4076///
4077/// \param Loc the source location where the initialization occurs
4078///
4079/// \param Range the source range that covers the entire initialization
4080///
4081/// \param InitEntity the name of the entity being initialized, if known
4082///
4083/// \param Kind the type of initialization being performed
4084///
4085/// \param ConvertedArgs a vector that will be filled in with the
4086/// appropriately-converted arguments to the constructor (if initialization
4087/// succeeded).
4088///
4089/// \returns the constructor used to initialize the object, if successful.
4090/// Otherwise, emits a diagnostic and returns NULL.
4091CXXConstructorDecl *
4092Sema::PerformInitializationByConstructor(QualType ClassType,
4093                                         MultiExprArg ArgsPtr,
4094                                         SourceLocation Loc, SourceRange Range,
4095                                         DeclarationName InitEntity,
4096                                         InitializationKind Kind,
4097                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4098
4099  // Build the overload candidate set
4100  Expr **Args = (Expr **)ArgsPtr.get();
4101  unsigned NumArgs = ArgsPtr.size();
4102  OverloadCandidateSet CandidateSet;
4103  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4104                                         CandidateSet);
4105
4106  OverloadCandidateSet::iterator Best;
4107  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4108  case OR_Success:
4109    // We found a constructor. Break out so that we can convert the arguments
4110    // appropriately.
4111    break;
4112
4113  case OR_No_Viable_Function:
4114    if (InitEntity)
4115      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
4116        << InitEntity << Range;
4117    else
4118      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
4119        << ClassType << Range;
4120    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4121    return 0;
4122
4123  case OR_Ambiguous:
4124    if (InitEntity)
4125      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
4126    else
4127      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
4128    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4129    return 0;
4130
4131  case OR_Deleted:
4132    if (InitEntity)
4133      Diag(Loc, diag::err_ovl_deleted_init)
4134        << Best->Function->isDeleted()
4135        << InitEntity << Range;
4136    else {
4137      const CXXRecordDecl *RD =
4138          cast<CXXRecordDecl>(ClassType->getAs<RecordType>()->getDecl());
4139      Diag(Loc, diag::err_ovl_deleted_init)
4140        << Best->Function->isDeleted()
4141        << RD->getDeclName() << Range;
4142    }
4143    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4144    return 0;
4145  }
4146
4147  // Convert the arguments, fill in default arguments, etc.
4148  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4149  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
4150    return 0;
4151
4152  return Constructor;
4153}
4154
4155/// \brief Given a constructor and the set of arguments provided for the
4156/// constructor, convert the arguments and add any required default arguments
4157/// to form a proper call to this constructor.
4158///
4159/// \returns true if an error occurred, false otherwise.
4160bool
4161Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4162                              MultiExprArg ArgsPtr,
4163                              SourceLocation Loc,
4164                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4165  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4166  unsigned NumArgs = ArgsPtr.size();
4167  Expr **Args = (Expr **)ArgsPtr.get();
4168
4169  const FunctionProtoType *Proto
4170    = Constructor->getType()->getAs<FunctionProtoType>();
4171  assert(Proto && "Constructor without a prototype?");
4172  unsigned NumArgsInProto = Proto->getNumArgs();
4173
4174  // If too few arguments are available, we'll fill in the rest with defaults.
4175  if (NumArgs < NumArgsInProto)
4176    ConvertedArgs.reserve(NumArgsInProto);
4177  else
4178    ConvertedArgs.reserve(NumArgs);
4179
4180  VariadicCallType CallType =
4181    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4182  llvm::SmallVector<Expr *, 8> AllArgs;
4183  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4184                                        Proto, 0, Args, NumArgs, AllArgs,
4185                                        CallType);
4186  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4187    ConvertedArgs.push_back(AllArgs[i]);
4188  return Invalid;
4189}
4190
4191/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4192/// determine whether they are reference-related,
4193/// reference-compatible, reference-compatible with added
4194/// qualification, or incompatible, for use in C++ initialization by
4195/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4196/// type, and the first type (T1) is the pointee type of the reference
4197/// type being initialized.
4198Sema::ReferenceCompareResult
4199Sema::CompareReferenceRelationship(SourceLocation Loc,
4200                                   QualType OrigT1, QualType OrigT2,
4201                                   bool& DerivedToBase) {
4202  assert(!OrigT1->isReferenceType() &&
4203    "T1 must be the pointee type of the reference type");
4204  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4205
4206  QualType T1 = Context.getCanonicalType(OrigT1);
4207  QualType T2 = Context.getCanonicalType(OrigT2);
4208  QualType UnqualT1 = T1.getLocalUnqualifiedType();
4209  QualType UnqualT2 = T2.getLocalUnqualifiedType();
4210
4211  // C++ [dcl.init.ref]p4:
4212  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4213  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4214  //   T1 is a base class of T2.
4215  if (UnqualT1 == UnqualT2)
4216    DerivedToBase = false;
4217  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4218           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4219           IsDerivedFrom(UnqualT2, UnqualT1))
4220    DerivedToBase = true;
4221  else
4222    return Ref_Incompatible;
4223
4224  // At this point, we know that T1 and T2 are reference-related (at
4225  // least).
4226
4227  // C++ [dcl.init.ref]p4:
4228  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4229  //   reference-related to T2 and cv1 is the same cv-qualification
4230  //   as, or greater cv-qualification than, cv2. For purposes of
4231  //   overload resolution, cases for which cv1 is greater
4232  //   cv-qualification than cv2 are identified as
4233  //   reference-compatible with added qualification (see 13.3.3.2).
4234  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
4235    return Ref_Compatible;
4236  else if (T1.isMoreQualifiedThan(T2))
4237    return Ref_Compatible_With_Added_Qualification;
4238  else
4239    return Ref_Related;
4240}
4241
4242/// CheckReferenceInit - Check the initialization of a reference
4243/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4244/// the initializer (either a simple initializer or an initializer
4245/// list), and DeclType is the type of the declaration. When ICS is
4246/// non-null, this routine will compute the implicit conversion
4247/// sequence according to C++ [over.ics.ref] and will not produce any
4248/// diagnostics; when ICS is null, it will emit diagnostics when any
4249/// errors are found. Either way, a return value of true indicates
4250/// that there was a failure, a return value of false indicates that
4251/// the reference initialization succeeded.
4252///
4253/// When @p SuppressUserConversions, user-defined conversions are
4254/// suppressed.
4255/// When @p AllowExplicit, we also permit explicit user-defined
4256/// conversion functions.
4257/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4258/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4259/// This is used when this is called from a C-style cast.
4260bool
4261Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4262                         SourceLocation DeclLoc,
4263                         bool SuppressUserConversions,
4264                         bool AllowExplicit, bool ForceRValue,
4265                         ImplicitConversionSequence *ICS,
4266                         bool IgnoreBaseAccess) {
4267  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4268
4269  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4270  QualType T2 = Init->getType();
4271
4272  // If the initializer is the address of an overloaded function, try
4273  // to resolve the overloaded function. If all goes well, T2 is the
4274  // type of the resulting function.
4275  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4276    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4277                                                          ICS != 0);
4278    if (Fn) {
4279      // Since we're performing this reference-initialization for
4280      // real, update the initializer with the resulting function.
4281      if (!ICS) {
4282        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4283          return true;
4284
4285        Init = FixOverloadedFunctionReference(Init, Fn);
4286      }
4287
4288      T2 = Fn->getType();
4289    }
4290  }
4291
4292  // Compute some basic properties of the types and the initializer.
4293  bool isRValRef = DeclType->isRValueReferenceType();
4294  bool DerivedToBase = false;
4295  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4296                                                  Init->isLvalue(Context);
4297  ReferenceCompareResult RefRelationship
4298    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4299
4300  // Most paths end in a failed conversion.
4301  if (ICS)
4302    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
4303
4304  // C++ [dcl.init.ref]p5:
4305  //   A reference to type "cv1 T1" is initialized by an expression
4306  //   of type "cv2 T2" as follows:
4307
4308  //     -- If the initializer expression
4309
4310  // Rvalue references cannot bind to lvalues (N2812).
4311  // There is absolutely no situation where they can. In particular, note that
4312  // this is ill-formed, even if B has a user-defined conversion to A&&:
4313  //   B b;
4314  //   A&& r = b;
4315  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4316    if (!ICS)
4317      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4318        << Init->getSourceRange();
4319    return true;
4320  }
4321
4322  bool BindsDirectly = false;
4323  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4324  //          reference-compatible with "cv2 T2," or
4325  //
4326  // Note that the bit-field check is skipped if we are just computing
4327  // the implicit conversion sequence (C++ [over.best.ics]p2).
4328  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4329      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4330    BindsDirectly = true;
4331
4332    if (ICS) {
4333      // C++ [over.ics.ref]p1:
4334      //   When a parameter of reference type binds directly (8.5.3)
4335      //   to an argument expression, the implicit conversion sequence
4336      //   is the identity conversion, unless the argument expression
4337      //   has a type that is a derived class of the parameter type,
4338      //   in which case the implicit conversion sequence is a
4339      //   derived-to-base Conversion (13.3.3.1).
4340      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
4341      ICS->Standard.First = ICK_Identity;
4342      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4343      ICS->Standard.Third = ICK_Identity;
4344      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4345      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
4346      ICS->Standard.ReferenceBinding = true;
4347      ICS->Standard.DirectBinding = true;
4348      ICS->Standard.RRefBinding = false;
4349      ICS->Standard.CopyConstructor = 0;
4350
4351      // Nothing more to do: the inaccessibility/ambiguity check for
4352      // derived-to-base conversions is suppressed when we're
4353      // computing the implicit conversion sequence (C++
4354      // [over.best.ics]p2).
4355      return false;
4356    } else {
4357      // Perform the conversion.
4358      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4359      if (DerivedToBase)
4360        CK = CastExpr::CK_DerivedToBase;
4361      else if(CheckExceptionSpecCompatibility(Init, T1))
4362        return true;
4363      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4364    }
4365  }
4366
4367  //       -- has a class type (i.e., T2 is a class type) and can be
4368  //          implicitly converted to an lvalue of type "cv3 T3,"
4369  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4370  //          92) (this conversion is selected by enumerating the
4371  //          applicable conversion functions (13.3.1.6) and choosing
4372  //          the best one through overload resolution (13.3)),
4373  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4374      !RequireCompleteType(DeclLoc, T2, 0)) {
4375    CXXRecordDecl *T2RecordDecl
4376      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4377
4378    OverloadCandidateSet CandidateSet;
4379    const UnresolvedSet *Conversions
4380      = T2RecordDecl->getVisibleConversionFunctions();
4381    for (UnresolvedSet::iterator I = Conversions->begin(),
4382           E = Conversions->end(); I != E; ++I) {
4383      NamedDecl *D = *I;
4384      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4385      if (isa<UsingShadowDecl>(D))
4386        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4387
4388      FunctionTemplateDecl *ConvTemplate
4389        = dyn_cast<FunctionTemplateDecl>(D);
4390      CXXConversionDecl *Conv;
4391      if (ConvTemplate)
4392        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4393      else
4394        Conv = cast<CXXConversionDecl>(D);
4395
4396      // If the conversion function doesn't return a reference type,
4397      // it can't be considered for this conversion.
4398      if (Conv->getConversionType()->isLValueReferenceType() &&
4399          (AllowExplicit || !Conv->isExplicit())) {
4400        if (ConvTemplate)
4401          AddTemplateConversionCandidate(ConvTemplate, ActingDC,
4402                                         Init, DeclType, CandidateSet);
4403        else
4404          AddConversionCandidate(Conv, ActingDC, Init, DeclType, CandidateSet);
4405      }
4406    }
4407
4408    OverloadCandidateSet::iterator Best;
4409    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4410    case OR_Success:
4411      // This is a direct binding.
4412      BindsDirectly = true;
4413
4414      if (ICS) {
4415        // C++ [over.ics.ref]p1:
4416        //
4417        //   [...] If the parameter binds directly to the result of
4418        //   applying a conversion function to the argument
4419        //   expression, the implicit conversion sequence is a
4420        //   user-defined conversion sequence (13.3.3.1.2), with the
4421        //   second standard conversion sequence either an identity
4422        //   conversion or, if the conversion function returns an
4423        //   entity of a type that is a derived class of the parameter
4424        //   type, a derived-to-base Conversion.
4425        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
4426        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4427        ICS->UserDefined.After = Best->FinalConversion;
4428        ICS->UserDefined.ConversionFunction = Best->Function;
4429        ICS->UserDefined.EllipsisConversion = false;
4430        assert(ICS->UserDefined.After.ReferenceBinding &&
4431               ICS->UserDefined.After.DirectBinding &&
4432               "Expected a direct reference binding!");
4433        return false;
4434      } else {
4435        OwningExprResult InitConversion =
4436          BuildCXXCastArgument(DeclLoc, QualType(),
4437                               CastExpr::CK_UserDefinedConversion,
4438                               cast<CXXMethodDecl>(Best->Function),
4439                               Owned(Init));
4440        Init = InitConversion.takeAs<Expr>();
4441
4442        if (CheckExceptionSpecCompatibility(Init, T1))
4443          return true;
4444        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4445                          /*isLvalue=*/true);
4446      }
4447      break;
4448
4449    case OR_Ambiguous:
4450      if (ICS) {
4451        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4452             Cand != CandidateSet.end(); ++Cand)
4453          if (Cand->Viable)
4454            ICS->ConversionFunctionSet.push_back(Cand->Function);
4455        break;
4456      }
4457      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4458            << Init->getSourceRange();
4459      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4460      return true;
4461
4462    case OR_No_Viable_Function:
4463    case OR_Deleted:
4464      // There was no suitable conversion, or we found a deleted
4465      // conversion; continue with other checks.
4466      break;
4467    }
4468  }
4469
4470  if (BindsDirectly) {
4471    // C++ [dcl.init.ref]p4:
4472    //   [...] In all cases where the reference-related or
4473    //   reference-compatible relationship of two types is used to
4474    //   establish the validity of a reference binding, and T1 is a
4475    //   base class of T2, a program that necessitates such a binding
4476    //   is ill-formed if T1 is an inaccessible (clause 11) or
4477    //   ambiguous (10.2) base class of T2.
4478    //
4479    // Note that we only check this condition when we're allowed to
4480    // complain about errors, because we should not be checking for
4481    // ambiguity (or inaccessibility) unless the reference binding
4482    // actually happens.
4483    if (DerivedToBase)
4484      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4485                                          Init->getSourceRange(),
4486                                          IgnoreBaseAccess);
4487    else
4488      return false;
4489  }
4490
4491  //     -- Otherwise, the reference shall be to a non-volatile const
4492  //        type (i.e., cv1 shall be const), or the reference shall be an
4493  //        rvalue reference and the initializer expression shall be an rvalue.
4494  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4495    if (!ICS)
4496      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4497        << T1 << int(InitLvalue != Expr::LV_Valid)
4498        << T2 << Init->getSourceRange();
4499    return true;
4500  }
4501
4502  //       -- If the initializer expression is an rvalue, with T2 a
4503  //          class type, and "cv1 T1" is reference-compatible with
4504  //          "cv2 T2," the reference is bound in one of the
4505  //          following ways (the choice is implementation-defined):
4506  //
4507  //          -- The reference is bound to the object represented by
4508  //             the rvalue (see 3.10) or to a sub-object within that
4509  //             object.
4510  //
4511  //          -- A temporary of type "cv1 T2" [sic] is created, and
4512  //             a constructor is called to copy the entire rvalue
4513  //             object into the temporary. The reference is bound to
4514  //             the temporary or to a sub-object within the
4515  //             temporary.
4516  //
4517  //          The constructor that would be used to make the copy
4518  //          shall be callable whether or not the copy is actually
4519  //          done.
4520  //
4521  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4522  // freedom, so we will always take the first option and never build
4523  // a temporary in this case. FIXME: We will, however, have to check
4524  // for the presence of a copy constructor in C++98/03 mode.
4525  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4526      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4527    if (ICS) {
4528      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
4529      ICS->Standard.First = ICK_Identity;
4530      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4531      ICS->Standard.Third = ICK_Identity;
4532      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4533      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
4534      ICS->Standard.ReferenceBinding = true;
4535      ICS->Standard.DirectBinding = false;
4536      ICS->Standard.RRefBinding = isRValRef;
4537      ICS->Standard.CopyConstructor = 0;
4538    } else {
4539      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4540      if (DerivedToBase)
4541        CK = CastExpr::CK_DerivedToBase;
4542      else if(CheckExceptionSpecCompatibility(Init, T1))
4543        return true;
4544      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4545    }
4546    return false;
4547  }
4548
4549  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4550  //          initialized from the initializer expression using the
4551  //          rules for a non-reference copy initialization (8.5). The
4552  //          reference is then bound to the temporary. If T1 is
4553  //          reference-related to T2, cv1 must be the same
4554  //          cv-qualification as, or greater cv-qualification than,
4555  //          cv2; otherwise, the program is ill-formed.
4556  if (RefRelationship == Ref_Related) {
4557    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4558    // we would be reference-compatible or reference-compatible with
4559    // added qualification. But that wasn't the case, so the reference
4560    // initialization fails.
4561    if (!ICS)
4562      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4563        << T1 << int(InitLvalue != Expr::LV_Valid)
4564        << T2 << Init->getSourceRange();
4565    return true;
4566  }
4567
4568  // If at least one of the types is a class type, the types are not
4569  // related, and we aren't allowed any user conversions, the
4570  // reference binding fails. This case is important for breaking
4571  // recursion, since TryImplicitConversion below will attempt to
4572  // create a temporary through the use of a copy constructor.
4573  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4574      (T1->isRecordType() || T2->isRecordType())) {
4575    if (!ICS)
4576      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4577        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4578    return true;
4579  }
4580
4581  // Actually try to convert the initializer to T1.
4582  if (ICS) {
4583    // C++ [over.ics.ref]p2:
4584    //
4585    //   When a parameter of reference type is not bound directly to
4586    //   an argument expression, the conversion sequence is the one
4587    //   required to convert the argument expression to the
4588    //   underlying type of the reference according to
4589    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4590    //   to copy-initializing a temporary of the underlying type with
4591    //   the argument expression. Any difference in top-level
4592    //   cv-qualification is subsumed by the initialization itself
4593    //   and does not constitute a conversion.
4594    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4595                                 /*AllowExplicit=*/false,
4596                                 /*ForceRValue=*/false,
4597                                 /*InOverloadResolution=*/false);
4598
4599    // Of course, that's still a reference binding.
4600    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
4601      ICS->Standard.ReferenceBinding = true;
4602      ICS->Standard.RRefBinding = isRValRef;
4603    } else if (ICS->ConversionKind ==
4604              ImplicitConversionSequence::UserDefinedConversion) {
4605      ICS->UserDefined.After.ReferenceBinding = true;
4606      ICS->UserDefined.After.RRefBinding = isRValRef;
4607    }
4608    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
4609  } else {
4610    ImplicitConversionSequence Conversions;
4611    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4612                                                   false, false,
4613                                                   Conversions);
4614    if (badConversion) {
4615      if ((Conversions.ConversionKind  ==
4616            ImplicitConversionSequence::BadConversion)
4617          && !Conversions.ConversionFunctionSet.empty()) {
4618        Diag(DeclLoc,
4619             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4620        for (int j = Conversions.ConversionFunctionSet.size()-1;
4621             j >= 0; j--) {
4622          FunctionDecl *Func = Conversions.ConversionFunctionSet[j];
4623          Diag(Func->getLocation(), diag::err_ovl_candidate);
4624        }
4625      }
4626      else {
4627        if (isRValRef)
4628          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4629            << Init->getSourceRange();
4630        else
4631          Diag(DeclLoc, diag::err_invalid_initialization)
4632            << DeclType << Init->getType() << Init->getSourceRange();
4633      }
4634    }
4635    return badConversion;
4636  }
4637}
4638
4639static inline bool
4640CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4641                                       const FunctionDecl *FnDecl) {
4642  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4643  if (isa<NamespaceDecl>(DC)) {
4644    return SemaRef.Diag(FnDecl->getLocation(),
4645                        diag::err_operator_new_delete_declared_in_namespace)
4646      << FnDecl->getDeclName();
4647  }
4648
4649  if (isa<TranslationUnitDecl>(DC) &&
4650      FnDecl->getStorageClass() == FunctionDecl::Static) {
4651    return SemaRef.Diag(FnDecl->getLocation(),
4652                        diag::err_operator_new_delete_declared_static)
4653      << FnDecl->getDeclName();
4654  }
4655
4656  return false;
4657}
4658
4659static inline bool
4660CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4661                            CanQualType ExpectedResultType,
4662                            CanQualType ExpectedFirstParamType,
4663                            unsigned DependentParamTypeDiag,
4664                            unsigned InvalidParamTypeDiag) {
4665  QualType ResultType =
4666    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4667
4668  // Check that the result type is not dependent.
4669  if (ResultType->isDependentType())
4670    return SemaRef.Diag(FnDecl->getLocation(),
4671                        diag::err_operator_new_delete_dependent_result_type)
4672    << FnDecl->getDeclName() << ExpectedResultType;
4673
4674  // Check that the result type is what we expect.
4675  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4676    return SemaRef.Diag(FnDecl->getLocation(),
4677                        diag::err_operator_new_delete_invalid_result_type)
4678    << FnDecl->getDeclName() << ExpectedResultType;
4679
4680  // A function template must have at least 2 parameters.
4681  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4682    return SemaRef.Diag(FnDecl->getLocation(),
4683                      diag::err_operator_new_delete_template_too_few_parameters)
4684        << FnDecl->getDeclName();
4685
4686  // The function decl must have at least 1 parameter.
4687  if (FnDecl->getNumParams() == 0)
4688    return SemaRef.Diag(FnDecl->getLocation(),
4689                        diag::err_operator_new_delete_too_few_parameters)
4690      << FnDecl->getDeclName();
4691
4692  // Check the the first parameter type is not dependent.
4693  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4694  if (FirstParamType->isDependentType())
4695    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4696      << FnDecl->getDeclName() << ExpectedFirstParamType;
4697
4698  // Check that the first parameter type is what we expect.
4699  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4700      ExpectedFirstParamType)
4701    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4702    << FnDecl->getDeclName() << ExpectedFirstParamType;
4703
4704  return false;
4705}
4706
4707static bool
4708CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4709  // C++ [basic.stc.dynamic.allocation]p1:
4710  //   A program is ill-formed if an allocation function is declared in a
4711  //   namespace scope other than global scope or declared static in global
4712  //   scope.
4713  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4714    return true;
4715
4716  CanQualType SizeTy =
4717    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4718
4719  // C++ [basic.stc.dynamic.allocation]p1:
4720  //  The return type shall be void*. The first parameter shall have type
4721  //  std::size_t.
4722  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4723                                  SizeTy,
4724                                  diag::err_operator_new_dependent_param_type,
4725                                  diag::err_operator_new_param_type))
4726    return true;
4727
4728  // C++ [basic.stc.dynamic.allocation]p1:
4729  //  The first parameter shall not have an associated default argument.
4730  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4731    return SemaRef.Diag(FnDecl->getLocation(),
4732                        diag::err_operator_new_default_arg)
4733      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4734
4735  return false;
4736}
4737
4738static bool
4739CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4740  // C++ [basic.stc.dynamic.deallocation]p1:
4741  //   A program is ill-formed if deallocation functions are declared in a
4742  //   namespace scope other than global scope or declared static in global
4743  //   scope.
4744  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4745    return true;
4746
4747  // C++ [basic.stc.dynamic.deallocation]p2:
4748  //   Each deallocation function shall return void and its first parameter
4749  //   shall be void*.
4750  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4751                                  SemaRef.Context.VoidPtrTy,
4752                                 diag::err_operator_delete_dependent_param_type,
4753                                 diag::err_operator_delete_param_type))
4754    return true;
4755
4756  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4757  if (FirstParamType->isDependentType())
4758    return SemaRef.Diag(FnDecl->getLocation(),
4759                        diag::err_operator_delete_dependent_param_type)
4760    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4761
4762  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4763      SemaRef.Context.VoidPtrTy)
4764    return SemaRef.Diag(FnDecl->getLocation(),
4765                        diag::err_operator_delete_param_type)
4766      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4767
4768  return false;
4769}
4770
4771/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4772/// of this overloaded operator is well-formed. If so, returns false;
4773/// otherwise, emits appropriate diagnostics and returns true.
4774bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4775  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4776         "Expected an overloaded operator declaration");
4777
4778  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4779
4780  // C++ [over.oper]p5:
4781  //   The allocation and deallocation functions, operator new,
4782  //   operator new[], operator delete and operator delete[], are
4783  //   described completely in 3.7.3. The attributes and restrictions
4784  //   found in the rest of this subclause do not apply to them unless
4785  //   explicitly stated in 3.7.3.
4786  if (Op == OO_Delete || Op == OO_Array_Delete)
4787    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4788
4789  if (Op == OO_New || Op == OO_Array_New)
4790    return CheckOperatorNewDeclaration(*this, FnDecl);
4791
4792  // C++ [over.oper]p6:
4793  //   An operator function shall either be a non-static member
4794  //   function or be a non-member function and have at least one
4795  //   parameter whose type is a class, a reference to a class, an
4796  //   enumeration, or a reference to an enumeration.
4797  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4798    if (MethodDecl->isStatic())
4799      return Diag(FnDecl->getLocation(),
4800                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4801  } else {
4802    bool ClassOrEnumParam = false;
4803    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4804                                   ParamEnd = FnDecl->param_end();
4805         Param != ParamEnd; ++Param) {
4806      QualType ParamType = (*Param)->getType().getNonReferenceType();
4807      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4808          ParamType->isEnumeralType()) {
4809        ClassOrEnumParam = true;
4810        break;
4811      }
4812    }
4813
4814    if (!ClassOrEnumParam)
4815      return Diag(FnDecl->getLocation(),
4816                  diag::err_operator_overload_needs_class_or_enum)
4817        << FnDecl->getDeclName();
4818  }
4819
4820  // C++ [over.oper]p8:
4821  //   An operator function cannot have default arguments (8.3.6),
4822  //   except where explicitly stated below.
4823  //
4824  // Only the function-call operator allows default arguments
4825  // (C++ [over.call]p1).
4826  if (Op != OO_Call) {
4827    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4828         Param != FnDecl->param_end(); ++Param) {
4829      if ((*Param)->hasDefaultArg())
4830        return Diag((*Param)->getLocation(),
4831                    diag::err_operator_overload_default_arg)
4832          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4833    }
4834  }
4835
4836  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4837    { false, false, false }
4838#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4839    , { Unary, Binary, MemberOnly }
4840#include "clang/Basic/OperatorKinds.def"
4841  };
4842
4843  bool CanBeUnaryOperator = OperatorUses[Op][0];
4844  bool CanBeBinaryOperator = OperatorUses[Op][1];
4845  bool MustBeMemberOperator = OperatorUses[Op][2];
4846
4847  // C++ [over.oper]p8:
4848  //   [...] Operator functions cannot have more or fewer parameters
4849  //   than the number required for the corresponding operator, as
4850  //   described in the rest of this subclause.
4851  unsigned NumParams = FnDecl->getNumParams()
4852                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4853  if (Op != OO_Call &&
4854      ((NumParams == 1 && !CanBeUnaryOperator) ||
4855       (NumParams == 2 && !CanBeBinaryOperator) ||
4856       (NumParams < 1) || (NumParams > 2))) {
4857    // We have the wrong number of parameters.
4858    unsigned ErrorKind;
4859    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4860      ErrorKind = 2;  // 2 -> unary or binary.
4861    } else if (CanBeUnaryOperator) {
4862      ErrorKind = 0;  // 0 -> unary
4863    } else {
4864      assert(CanBeBinaryOperator &&
4865             "All non-call overloaded operators are unary or binary!");
4866      ErrorKind = 1;  // 1 -> binary
4867    }
4868
4869    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4870      << FnDecl->getDeclName() << NumParams << ErrorKind;
4871  }
4872
4873  // Overloaded operators other than operator() cannot be variadic.
4874  if (Op != OO_Call &&
4875      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4876    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4877      << FnDecl->getDeclName();
4878  }
4879
4880  // Some operators must be non-static member functions.
4881  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4882    return Diag(FnDecl->getLocation(),
4883                diag::err_operator_overload_must_be_member)
4884      << FnDecl->getDeclName();
4885  }
4886
4887  // C++ [over.inc]p1:
4888  //   The user-defined function called operator++ implements the
4889  //   prefix and postfix ++ operator. If this function is a member
4890  //   function with no parameters, or a non-member function with one
4891  //   parameter of class or enumeration type, it defines the prefix
4892  //   increment operator ++ for objects of that type. If the function
4893  //   is a member function with one parameter (which shall be of type
4894  //   int) or a non-member function with two parameters (the second
4895  //   of which shall be of type int), it defines the postfix
4896  //   increment operator ++ for objects of that type.
4897  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4898    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4899    bool ParamIsInt = false;
4900    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4901      ParamIsInt = BT->getKind() == BuiltinType::Int;
4902
4903    if (!ParamIsInt)
4904      return Diag(LastParam->getLocation(),
4905                  diag::err_operator_overload_post_incdec_must_be_int)
4906        << LastParam->getType() << (Op == OO_MinusMinus);
4907  }
4908
4909  // Notify the class if it got an assignment operator.
4910  if (Op == OO_Equal) {
4911    // Would have returned earlier otherwise.
4912    assert(isa<CXXMethodDecl>(FnDecl) &&
4913      "Overloaded = not member, but not filtered.");
4914    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4915    Method->getParent()->addedAssignmentOperator(Context, Method);
4916  }
4917
4918  return false;
4919}
4920
4921/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4922/// linkage specification, including the language and (if present)
4923/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4924/// the location of the language string literal, which is provided
4925/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4926/// the '{' brace. Otherwise, this linkage specification does not
4927/// have any braces.
4928Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4929                                                     SourceLocation ExternLoc,
4930                                                     SourceLocation LangLoc,
4931                                                     const char *Lang,
4932                                                     unsigned StrSize,
4933                                                     SourceLocation LBraceLoc) {
4934  LinkageSpecDecl::LanguageIDs Language;
4935  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4936    Language = LinkageSpecDecl::lang_c;
4937  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4938    Language = LinkageSpecDecl::lang_cxx;
4939  else {
4940    Diag(LangLoc, diag::err_bad_language);
4941    return DeclPtrTy();
4942  }
4943
4944  // FIXME: Add all the various semantics of linkage specifications
4945
4946  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4947                                               LangLoc, Language,
4948                                               LBraceLoc.isValid());
4949  CurContext->addDecl(D);
4950  PushDeclContext(S, D);
4951  return DeclPtrTy::make(D);
4952}
4953
4954/// ActOnFinishLinkageSpecification - Completely the definition of
4955/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4956/// valid, it's the position of the closing '}' brace in a linkage
4957/// specification that uses braces.
4958Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4959                                                      DeclPtrTy LinkageSpec,
4960                                                      SourceLocation RBraceLoc) {
4961  if (LinkageSpec)
4962    PopDeclContext();
4963  return LinkageSpec;
4964}
4965
4966/// \brief Perform semantic analysis for the variable declaration that
4967/// occurs within a C++ catch clause, returning the newly-created
4968/// variable.
4969VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4970                                         TypeSourceInfo *TInfo,
4971                                         IdentifierInfo *Name,
4972                                         SourceLocation Loc,
4973                                         SourceRange Range) {
4974  bool Invalid = false;
4975
4976  // Arrays and functions decay.
4977  if (ExDeclType->isArrayType())
4978    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4979  else if (ExDeclType->isFunctionType())
4980    ExDeclType = Context.getPointerType(ExDeclType);
4981
4982  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4983  // The exception-declaration shall not denote a pointer or reference to an
4984  // incomplete type, other than [cv] void*.
4985  // N2844 forbids rvalue references.
4986  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4987    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4988    Invalid = true;
4989  }
4990
4991  QualType BaseType = ExDeclType;
4992  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4993  unsigned DK = diag::err_catch_incomplete;
4994  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4995    BaseType = Ptr->getPointeeType();
4996    Mode = 1;
4997    DK = diag::err_catch_incomplete_ptr;
4998  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4999    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5000    BaseType = Ref->getPointeeType();
5001    Mode = 2;
5002    DK = diag::err_catch_incomplete_ref;
5003  }
5004  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5005      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
5006    Invalid = true;
5007
5008  if (!Invalid && !ExDeclType->isDependentType() &&
5009      RequireNonAbstractType(Loc, ExDeclType,
5010                             diag::err_abstract_type_in_decl,
5011                             AbstractVariableType))
5012    Invalid = true;
5013
5014  // FIXME: Need to test for ability to copy-construct and destroy the
5015  // exception variable.
5016
5017  // FIXME: Need to check for abstract classes.
5018
5019  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5020                                    Name, ExDeclType, TInfo, VarDecl::None);
5021
5022  if (Invalid)
5023    ExDecl->setInvalidDecl();
5024
5025  return ExDecl;
5026}
5027
5028/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5029/// handler.
5030Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5031  TypeSourceInfo *TInfo = 0;
5032  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5033
5034  bool Invalid = D.isInvalidType();
5035  IdentifierInfo *II = D.getIdentifier();
5036  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5037    // The scope should be freshly made just for us. There is just no way
5038    // it contains any previous declaration.
5039    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5040    if (PrevDecl->isTemplateParameter()) {
5041      // Maybe we will complain about the shadowed template parameter.
5042      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5043    }
5044  }
5045
5046  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5047    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5048      << D.getCXXScopeSpec().getRange();
5049    Invalid = true;
5050  }
5051
5052  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5053                                              D.getIdentifier(),
5054                                              D.getIdentifierLoc(),
5055                                            D.getDeclSpec().getSourceRange());
5056
5057  if (Invalid)
5058    ExDecl->setInvalidDecl();
5059
5060  // Add the exception declaration into this scope.
5061  if (II)
5062    PushOnScopeChains(ExDecl, S);
5063  else
5064    CurContext->addDecl(ExDecl);
5065
5066  ProcessDeclAttributes(S, ExDecl, D);
5067  return DeclPtrTy::make(ExDecl);
5068}
5069
5070Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5071                                                   ExprArg assertexpr,
5072                                                   ExprArg assertmessageexpr) {
5073  Expr *AssertExpr = (Expr *)assertexpr.get();
5074  StringLiteral *AssertMessage =
5075    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5076
5077  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5078    llvm::APSInt Value(32);
5079    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5080      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5081        AssertExpr->getSourceRange();
5082      return DeclPtrTy();
5083    }
5084
5085    if (Value == 0) {
5086      Diag(AssertLoc, diag::err_static_assert_failed)
5087        << AssertMessage->getString() << AssertExpr->getSourceRange();
5088    }
5089  }
5090
5091  assertexpr.release();
5092  assertmessageexpr.release();
5093  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5094                                        AssertExpr, AssertMessage);
5095
5096  CurContext->addDecl(Decl);
5097  return DeclPtrTy::make(Decl);
5098}
5099
5100/// Handle a friend type declaration.  This works in tandem with
5101/// ActOnTag.
5102///
5103/// Notes on friend class templates:
5104///
5105/// We generally treat friend class declarations as if they were
5106/// declaring a class.  So, for example, the elaborated type specifier
5107/// in a friend declaration is required to obey the restrictions of a
5108/// class-head (i.e. no typedefs in the scope chain), template
5109/// parameters are required to match up with simple template-ids, &c.
5110/// However, unlike when declaring a template specialization, it's
5111/// okay to refer to a template specialization without an empty
5112/// template parameter declaration, e.g.
5113///   friend class A<T>::B<unsigned>;
5114/// We permit this as a special case; if there are any template
5115/// parameters present at all, require proper matching, i.e.
5116///   template <> template <class T> friend class A<int>::B;
5117Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5118                                          MultiTemplateParamsArg TempParams) {
5119  SourceLocation Loc = DS.getSourceRange().getBegin();
5120
5121  assert(DS.isFriendSpecified());
5122  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5123
5124  // Try to convert the decl specifier to a type.  This works for
5125  // friend templates because ActOnTag never produces a ClassTemplateDecl
5126  // for a TUK_Friend.
5127  Declarator TheDeclarator(DS, Declarator::MemberContext);
5128  QualType T = GetTypeForDeclarator(TheDeclarator, S);
5129  if (TheDeclarator.isInvalidType())
5130    return DeclPtrTy();
5131
5132  // This is definitely an error in C++98.  It's probably meant to
5133  // be forbidden in C++0x, too, but the specification is just
5134  // poorly written.
5135  //
5136  // The problem is with declarations like the following:
5137  //   template <T> friend A<T>::foo;
5138  // where deciding whether a class C is a friend or not now hinges
5139  // on whether there exists an instantiation of A that causes
5140  // 'foo' to equal C.  There are restrictions on class-heads
5141  // (which we declare (by fiat) elaborated friend declarations to
5142  // be) that makes this tractable.
5143  //
5144  // FIXME: handle "template <> friend class A<T>;", which
5145  // is possibly well-formed?  Who even knows?
5146  if (TempParams.size() && !isa<ElaboratedType>(T)) {
5147    Diag(Loc, diag::err_tagless_friend_type_template)
5148      << DS.getSourceRange();
5149    return DeclPtrTy();
5150  }
5151
5152  // C++ [class.friend]p2:
5153  //   An elaborated-type-specifier shall be used in a friend declaration
5154  //   for a class.*
5155  //   * The class-key of the elaborated-type-specifier is required.
5156  // This is one of the rare places in Clang where it's legitimate to
5157  // ask about the "spelling" of the type.
5158  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
5159    // If we evaluated the type to a record type, suggest putting
5160    // a tag in front.
5161    if (const RecordType *RT = T->getAs<RecordType>()) {
5162      RecordDecl *RD = RT->getDecl();
5163
5164      std::string InsertionText = std::string(" ") + RD->getKindName();
5165
5166      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
5167        << (unsigned) RD->getTagKind()
5168        << T
5169        << SourceRange(DS.getFriendSpecLoc())
5170        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
5171                                                 InsertionText);
5172      return DeclPtrTy();
5173    }else {
5174      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
5175          << DS.getSourceRange();
5176      return DeclPtrTy();
5177    }
5178  }
5179
5180  // Enum types cannot be friends.
5181  if (T->getAs<EnumType>()) {
5182    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
5183      << SourceRange(DS.getFriendSpecLoc());
5184    return DeclPtrTy();
5185  }
5186
5187  // C++98 [class.friend]p1: A friend of a class is a function
5188  //   or class that is not a member of the class . . .
5189  // But that's a silly restriction which nobody implements for
5190  // inner classes, and C++0x removes it anyway, so we only report
5191  // this (as a warning) if we're being pedantic.
5192  if (!getLangOptions().CPlusPlus0x)
5193    if (const RecordType *RT = T->getAs<RecordType>())
5194      if (RT->getDecl()->getDeclContext() == CurContext)
5195        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
5196
5197  Decl *D;
5198  if (TempParams.size())
5199    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5200                                   TempParams.size(),
5201                                 (TemplateParameterList**) TempParams.release(),
5202                                   T.getTypePtr(),
5203                                   DS.getFriendSpecLoc());
5204  else
5205    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
5206                           DS.getFriendSpecLoc());
5207  D->setAccess(AS_public);
5208  CurContext->addDecl(D);
5209
5210  return DeclPtrTy::make(D);
5211}
5212
5213Sema::DeclPtrTy
5214Sema::ActOnFriendFunctionDecl(Scope *S,
5215                              Declarator &D,
5216                              bool IsDefinition,
5217                              MultiTemplateParamsArg TemplateParams) {
5218  const DeclSpec &DS = D.getDeclSpec();
5219
5220  assert(DS.isFriendSpecified());
5221  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5222
5223  SourceLocation Loc = D.getIdentifierLoc();
5224  TypeSourceInfo *TInfo = 0;
5225  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5226
5227  // C++ [class.friend]p1
5228  //   A friend of a class is a function or class....
5229  // Note that this sees through typedefs, which is intended.
5230  // It *doesn't* see through dependent types, which is correct
5231  // according to [temp.arg.type]p3:
5232  //   If a declaration acquires a function type through a
5233  //   type dependent on a template-parameter and this causes
5234  //   a declaration that does not use the syntactic form of a
5235  //   function declarator to have a function type, the program
5236  //   is ill-formed.
5237  if (!T->isFunctionType()) {
5238    Diag(Loc, diag::err_unexpected_friend);
5239
5240    // It might be worthwhile to try to recover by creating an
5241    // appropriate declaration.
5242    return DeclPtrTy();
5243  }
5244
5245  // C++ [namespace.memdef]p3
5246  //  - If a friend declaration in a non-local class first declares a
5247  //    class or function, the friend class or function is a member
5248  //    of the innermost enclosing namespace.
5249  //  - The name of the friend is not found by simple name lookup
5250  //    until a matching declaration is provided in that namespace
5251  //    scope (either before or after the class declaration granting
5252  //    friendship).
5253  //  - If a friend function is called, its name may be found by the
5254  //    name lookup that considers functions from namespaces and
5255  //    classes associated with the types of the function arguments.
5256  //  - When looking for a prior declaration of a class or a function
5257  //    declared as a friend, scopes outside the innermost enclosing
5258  //    namespace scope are not considered.
5259
5260  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5261  DeclarationName Name = GetNameForDeclarator(D);
5262  assert(Name);
5263
5264  // The context we found the declaration in, or in which we should
5265  // create the declaration.
5266  DeclContext *DC;
5267
5268  // FIXME: handle local classes
5269
5270  // Recover from invalid scope qualifiers as if they just weren't there.
5271  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5272                        ForRedeclaration);
5273  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5274    // FIXME: RequireCompleteDeclContext
5275    DC = computeDeclContext(ScopeQual);
5276
5277    // FIXME: handle dependent contexts
5278    if (!DC) return DeclPtrTy();
5279
5280    LookupQualifiedName(Previous, DC);
5281
5282    // If searching in that context implicitly found a declaration in
5283    // a different context, treat it like it wasn't found at all.
5284    // TODO: better diagnostics for this case.  Suggesting the right
5285    // qualified scope would be nice...
5286    // FIXME: getRepresentativeDecl() is not right here at all
5287    if (Previous.empty() ||
5288        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5289      D.setInvalidType();
5290      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5291      return DeclPtrTy();
5292    }
5293
5294    // C++ [class.friend]p1: A friend of a class is a function or
5295    //   class that is not a member of the class . . .
5296    if (DC->Equals(CurContext))
5297      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5298
5299  // Otherwise walk out to the nearest namespace scope looking for matches.
5300  } else {
5301    // TODO: handle local class contexts.
5302
5303    DC = CurContext;
5304    while (true) {
5305      // Skip class contexts.  If someone can cite chapter and verse
5306      // for this behavior, that would be nice --- it's what GCC and
5307      // EDG do, and it seems like a reasonable intent, but the spec
5308      // really only says that checks for unqualified existing
5309      // declarations should stop at the nearest enclosing namespace,
5310      // not that they should only consider the nearest enclosing
5311      // namespace.
5312      while (DC->isRecord())
5313        DC = DC->getParent();
5314
5315      LookupQualifiedName(Previous, DC);
5316
5317      // TODO: decide what we think about using declarations.
5318      if (!Previous.empty())
5319        break;
5320
5321      if (DC->isFileContext()) break;
5322      DC = DC->getParent();
5323    }
5324
5325    // C++ [class.friend]p1: A friend of a class is a function or
5326    //   class that is not a member of the class . . .
5327    // C++0x changes this for both friend types and functions.
5328    // Most C++ 98 compilers do seem to give an error here, so
5329    // we do, too.
5330    if (!Previous.empty() && DC->Equals(CurContext)
5331        && !getLangOptions().CPlusPlus0x)
5332      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5333  }
5334
5335  if (DC->isFileContext()) {
5336    // This implies that it has to be an operator or function.
5337    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5338        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5339        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5340      Diag(Loc, diag::err_introducing_special_friend) <<
5341        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5342         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5343      return DeclPtrTy();
5344    }
5345  }
5346
5347  bool Redeclaration = false;
5348  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5349                                          move(TemplateParams),
5350                                          IsDefinition,
5351                                          Redeclaration);
5352  if (!ND) return DeclPtrTy();
5353
5354  assert(ND->getDeclContext() == DC);
5355  assert(ND->getLexicalDeclContext() == CurContext);
5356
5357  // Add the function declaration to the appropriate lookup tables,
5358  // adjusting the redeclarations list as necessary.  We don't
5359  // want to do this yet if the friending class is dependent.
5360  //
5361  // Also update the scope-based lookup if the target context's
5362  // lookup context is in lexical scope.
5363  if (!CurContext->isDependentContext()) {
5364    DC = DC->getLookupContext();
5365    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5366    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5367      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5368  }
5369
5370  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5371                                       D.getIdentifierLoc(), ND,
5372                                       DS.getFriendSpecLoc());
5373  FrD->setAccess(AS_public);
5374  CurContext->addDecl(FrD);
5375
5376  return DeclPtrTy::make(ND);
5377}
5378
5379void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5380  AdjustDeclIfTemplate(dcl);
5381
5382  Decl *Dcl = dcl.getAs<Decl>();
5383  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5384  if (!Fn) {
5385    Diag(DelLoc, diag::err_deleted_non_function);
5386    return;
5387  }
5388  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5389    Diag(DelLoc, diag::err_deleted_decl_not_first);
5390    Diag(Prev->getLocation(), diag::note_previous_declaration);
5391    // If the declaration wasn't the first, we delete the function anyway for
5392    // recovery.
5393  }
5394  Fn->setDeleted();
5395}
5396
5397static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5398  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5399       ++CI) {
5400    Stmt *SubStmt = *CI;
5401    if (!SubStmt)
5402      continue;
5403    if (isa<ReturnStmt>(SubStmt))
5404      Self.Diag(SubStmt->getSourceRange().getBegin(),
5405           diag::err_return_in_constructor_handler);
5406    if (!isa<Expr>(SubStmt))
5407      SearchForReturnInStmt(Self, SubStmt);
5408  }
5409}
5410
5411void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5412  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5413    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5414    SearchForReturnInStmt(*this, Handler);
5415  }
5416}
5417
5418bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5419                                             const CXXMethodDecl *Old) {
5420  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5421  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5422
5423  QualType CNewTy = Context.getCanonicalType(NewTy);
5424  QualType COldTy = Context.getCanonicalType(OldTy);
5425
5426  if (CNewTy == COldTy &&
5427      CNewTy.getLocalCVRQualifiers() == COldTy.getLocalCVRQualifiers())
5428    return false;
5429
5430  // Check if the return types are covariant
5431  QualType NewClassTy, OldClassTy;
5432
5433  /// Both types must be pointers or references to classes.
5434  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
5435    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
5436      NewClassTy = NewPT->getPointeeType();
5437      OldClassTy = OldPT->getPointeeType();
5438    }
5439  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
5440    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
5441      NewClassTy = NewRT->getPointeeType();
5442      OldClassTy = OldRT->getPointeeType();
5443    }
5444  }
5445
5446  // The return types aren't either both pointers or references to a class type.
5447  if (NewClassTy.isNull()) {
5448    Diag(New->getLocation(),
5449         diag::err_different_return_type_for_overriding_virtual_function)
5450      << New->getDeclName() << NewTy << OldTy;
5451    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5452
5453    return true;
5454  }
5455
5456  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5457    // Check if the new class derives from the old class.
5458    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5459      Diag(New->getLocation(),
5460           diag::err_covariant_return_not_derived)
5461      << New->getDeclName() << NewTy << OldTy;
5462      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5463      return true;
5464    }
5465
5466    // Check if we the conversion from derived to base is valid.
5467    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5468                      diag::err_covariant_return_inaccessible_base,
5469                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5470                      // FIXME: Should this point to the return type?
5471                      New->getLocation(), SourceRange(), New->getDeclName())) {
5472      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5473      return true;
5474    }
5475  }
5476
5477  // The qualifiers of the return types must be the same.
5478  if (CNewTy.getLocalCVRQualifiers() != COldTy.getLocalCVRQualifiers()) {
5479    Diag(New->getLocation(),
5480         diag::err_covariant_return_type_different_qualifications)
5481    << New->getDeclName() << NewTy << OldTy;
5482    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5483    return true;
5484  };
5485
5486
5487  // The new class type must have the same or less qualifiers as the old type.
5488  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5489    Diag(New->getLocation(),
5490         diag::err_covariant_return_type_class_type_more_qualified)
5491    << New->getDeclName() << NewTy << OldTy;
5492    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5493    return true;
5494  };
5495
5496  return false;
5497}
5498
5499bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5500                                             const CXXMethodDecl *Old)
5501{
5502  if (Old->hasAttr<FinalAttr>()) {
5503    Diag(New->getLocation(), diag::err_final_function_overridden)
5504      << New->getDeclName();
5505    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5506    return true;
5507  }
5508
5509  return false;
5510}
5511
5512/// \brief Mark the given method pure.
5513///
5514/// \param Method the method to be marked pure.
5515///
5516/// \param InitRange the source range that covers the "0" initializer.
5517bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5518  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5519    Method->setPure();
5520
5521    // A class is abstract if at least one function is pure virtual.
5522    Method->getParent()->setAbstract(true);
5523    return false;
5524  }
5525
5526  if (!Method->isInvalidDecl())
5527    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5528      << Method->getDeclName() << InitRange;
5529  return true;
5530}
5531
5532/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
5533/// initializer for the declaration 'Dcl'.
5534/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5535/// static data member of class X, names should be looked up in the scope of
5536/// class X.
5537void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5538  AdjustDeclIfTemplate(Dcl);
5539
5540  Decl *D = Dcl.getAs<Decl>();
5541  // If there is no declaration, there was an error parsing it.
5542  if (D == 0)
5543    return;
5544
5545  // Check whether it is a declaration with a nested name specifier like
5546  // int foo::bar;
5547  if (!D->isOutOfLine())
5548    return;
5549
5550  // C++ [basic.lookup.unqual]p13
5551  //
5552  // A name used in the definition of a static data member of class X
5553  // (after the qualified-id of the static member) is looked up as if the name
5554  // was used in a member function of X.
5555
5556  // Change current context into the context of the initializing declaration.
5557  EnterDeclaratorContext(S, D->getDeclContext());
5558}
5559
5560/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5561/// initializer for the declaration 'Dcl'.
5562void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5563  AdjustDeclIfTemplate(Dcl);
5564
5565  Decl *D = Dcl.getAs<Decl>();
5566  // If there is no declaration, there was an error parsing it.
5567  if (D == 0)
5568    return;
5569
5570  // Check whether it is a declaration with a nested name specifier like
5571  // int foo::bar;
5572  if (!D->isOutOfLine())
5573    return;
5574
5575  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
5576  ExitDeclaratorContext(S);
5577}
5578
5579/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5580/// C++ if/switch/while/for statement.
5581/// e.g: "if (int x = f()) {...}"
5582Action::DeclResult
5583Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5584  // C++ 6.4p2:
5585  // The declarator shall not specify a function or an array.
5586  // The type-specifier-seq shall not contain typedef and shall not declare a
5587  // new class or enumeration.
5588  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5589         "Parser allowed 'typedef' as storage class of condition decl.");
5590
5591  TypeSourceInfo *TInfo = 0;
5592  TagDecl *OwnedTag = 0;
5593  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5594
5595  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5596                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5597                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5598    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5599      << D.getSourceRange();
5600    return DeclResult();
5601  } else if (OwnedTag && OwnedTag->isDefinition()) {
5602    // The type-specifier-seq shall not declare a new class or enumeration.
5603    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5604  }
5605
5606  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5607  if (!Dcl)
5608    return DeclResult();
5609
5610  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5611  VD->setDeclaredInCondition(true);
5612  return Dcl;
5613}
5614
5615void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5616                                             CXXMethodDecl *MD) {
5617  // Ignore dependent types.
5618  if (MD->isDependentContext())
5619    return;
5620
5621  CXXRecordDecl *RD = MD->getParent();
5622
5623  // Ignore classes without a vtable.
5624  if (!RD->isDynamicClass())
5625    return;
5626
5627  if (!MD->isOutOfLine()) {
5628    // The only inline functions we care about are constructors. We also defer
5629    // marking the virtual members as referenced until we've reached the end
5630    // of the translation unit. We do this because we need to know the key
5631    // function of the class in order to determine the key function.
5632    if (isa<CXXConstructorDecl>(MD))
5633      ClassesWithUnmarkedVirtualMembers.insert(std::make_pair(RD, Loc));
5634    return;
5635  }
5636
5637  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5638
5639  if (!KeyFunction) {
5640    // This record does not have a key function, so we assume that the vtable
5641    // will be emitted when it's used by the constructor.
5642    if (!isa<CXXConstructorDecl>(MD))
5643      return;
5644  } else if (KeyFunction->getCanonicalDecl() != MD->getCanonicalDecl()) {
5645    // We don't have the right key function.
5646    return;
5647  }
5648
5649  // Mark the members as referenced.
5650  MarkVirtualMembersReferenced(Loc, RD);
5651  ClassesWithUnmarkedVirtualMembers.erase(RD);
5652}
5653
5654bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5655  if (ClassesWithUnmarkedVirtualMembers.empty())
5656    return false;
5657
5658  for (std::map<CXXRecordDecl *, SourceLocation>::iterator i =
5659       ClassesWithUnmarkedVirtualMembers.begin(),
5660       e = ClassesWithUnmarkedVirtualMembers.end(); i != e; ++i) {
5661    CXXRecordDecl *RD = i->first;
5662
5663    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5664    if (KeyFunction) {
5665      // We know that the class has a key function. If the key function was
5666      // declared in this translation unit, then it the class decl would not
5667      // have been in the ClassesWithUnmarkedVirtualMembers map.
5668      continue;
5669    }
5670
5671    SourceLocation Loc = i->second;
5672    MarkVirtualMembersReferenced(Loc, RD);
5673  }
5674
5675  ClassesWithUnmarkedVirtualMembers.clear();
5676  return true;
5677}
5678
5679void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, CXXRecordDecl *RD) {
5680  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5681       e = RD->method_end(); i != e; ++i) {
5682    CXXMethodDecl *MD = *i;
5683
5684    // C++ [basic.def.odr]p2:
5685    //   [...] A virtual member function is used if it is not pure. [...]
5686    if (MD->isVirtual() && !MD->isPure())
5687      MarkDeclarationReferenced(Loc, MD);
5688  }
5689}
5690
5691