SemaDeclCXX.cpp revision d5c95ab821ceb80361bcca24d60b589d79cdec95
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
128  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
129                                                           EqualLoc);
130  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
131  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
132                                          MultiExprArg(*this, (void**)&Arg, 1));
133  if (Result.isInvalid())
134    return true;
135  Arg = Result.takeAs<Expr>();
136
137  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
138
139  // Okay: add the default argument to the parameter
140  Param->setDefaultArg(Arg);
141
142  DefaultArg.release();
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
152                                ExprArg defarg) {
153  if (!param || !defarg.get())
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
157  UnparsedDefaultArgLocs.erase(Param);
158
159  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
160
161  // Default arguments are only permitted in C++
162  if (!getLangOptions().CPlusPlus) {
163    Diag(EqualLoc, diag::err_param_default_argument)
164      << DefaultArg->getSourceRange();
165    Param->setInvalidDecl();
166    return;
167  }
168
169  // Check that the default argument is well-formed
170  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
171  if (DefaultArgChecker.Visit(DefaultArg.get())) {
172    Param->setInvalidDecl();
173    return;
174  }
175
176  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
177}
178
179/// ActOnParamUnparsedDefaultArgument - We've seen a default
180/// argument for a function parameter, but we can't parse it yet
181/// because we're inside a class definition. Note that this default
182/// argument will be parsed later.
183void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
184                                             SourceLocation EqualLoc,
185                                             SourceLocation ArgLoc) {
186  if (!param)
187    return;
188
189  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
190  if (Param)
191    Param->setUnparsedDefaultArg();
192
193  UnparsedDefaultArgLocs[Param] = ArgLoc;
194}
195
196/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
197/// the default argument for the parameter param failed.
198void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
199  if (!param)
200    return;
201
202  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
203
204  Param->setInvalidDecl();
205
206  UnparsedDefaultArgLocs.erase(Param);
207}
208
209/// CheckExtraCXXDefaultArguments - Check for any extra default
210/// arguments in the declarator, which is not a function declaration
211/// or definition and therefore is not permitted to have default
212/// arguments. This routine should be invoked for every declarator
213/// that is not a function declaration or definition.
214void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
215  // C++ [dcl.fct.default]p3
216  //   A default argument expression shall be specified only in the
217  //   parameter-declaration-clause of a function declaration or in a
218  //   template-parameter (14.1). It shall not be specified for a
219  //   parameter pack. If it is specified in a
220  //   parameter-declaration-clause, it shall not occur within a
221  //   declarator or abstract-declarator of a parameter-declaration.
222  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
223    DeclaratorChunk &chunk = D.getTypeObject(i);
224    if (chunk.Kind == DeclaratorChunk::Function) {
225      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
226        ParmVarDecl *Param =
227          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
228        if (Param->hasUnparsedDefaultArg()) {
229          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
232          delete Toks;
233          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
234        } else if (Param->getDefaultArg()) {
235          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
236            << Param->getDefaultArg()->getSourceRange();
237          Param->setDefaultArg(0);
238        }
239      }
240    }
241  }
242}
243
244// MergeCXXFunctionDecl - Merge two declarations of the same C++
245// function, once we already know that they have the same
246// type. Subroutine of MergeFunctionDecl. Returns true if there was an
247// error, false otherwise.
248bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
249  bool Invalid = false;
250
251  // C++ [dcl.fct.default]p4:
252  //   For non-template functions, default arguments can be added in
253  //   later declarations of a function in the same
254  //   scope. Declarations in different scopes have completely
255  //   distinct sets of default arguments. That is, declarations in
256  //   inner scopes do not acquire default arguments from
257  //   declarations in outer scopes, and vice versa. In a given
258  //   function declaration, all parameters subsequent to a
259  //   parameter with a default argument shall have default
260  //   arguments supplied in this or previous declarations. A
261  //   default argument shall not be redefined by a later
262  //   declaration (not even to the same value).
263  //
264  // C++ [dcl.fct.default]p6:
265  //   Except for member functions of class templates, the default arguments
266  //   in a member function definition that appears outside of the class
267  //   definition are added to the set of default arguments provided by the
268  //   member function declaration in the class definition.
269  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
270    ParmVarDecl *OldParam = Old->getParamDecl(p);
271    ParmVarDecl *NewParam = New->getParamDecl(p);
272
273    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
274      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
275      // hint here. Alternatively, we could walk the type-source information
276      // for NewParam to find the last source location in the type... but it
277      // isn't worth the effort right now. This is the kind of test case that
278      // is hard to get right:
279
280      //   int f(int);
281      //   void g(int (*fp)(int) = f);
282      //   void g(int (*fp)(int) = &f);
283      Diag(NewParam->getLocation(),
284           diag::err_param_default_argument_redefinition)
285        << NewParam->getDefaultArgRange();
286
287      // Look for the function declaration where the default argument was
288      // actually written, which may be a declaration prior to Old.
289      for (FunctionDecl *Older = Old->getPreviousDeclaration();
290           Older; Older = Older->getPreviousDeclaration()) {
291        if (!Older->getParamDecl(p)->hasDefaultArg())
292          break;
293
294        OldParam = Older->getParamDecl(p);
295      }
296
297      Diag(OldParam->getLocation(), diag::note_previous_definition)
298        << OldParam->getDefaultArgRange();
299      Invalid = true;
300    } else if (OldParam->hasDefaultArg()) {
301      // Merge the old default argument into the new parameter.
302      // It's important to use getInit() here;  getDefaultArg()
303      // strips off any top-level CXXExprWithTemporaries.
304      NewParam->setHasInheritedDefaultArg();
305      if (OldParam->hasUninstantiatedDefaultArg())
306        NewParam->setUninstantiatedDefaultArg(
307                                      OldParam->getUninstantiatedDefaultArg());
308      else
309        NewParam->setDefaultArg(OldParam->getInit());
310    } else if (NewParam->hasDefaultArg()) {
311      if (New->getDescribedFunctionTemplate()) {
312        // Paragraph 4, quoted above, only applies to non-template functions.
313        Diag(NewParam->getLocation(),
314             diag::err_param_default_argument_template_redecl)
315          << NewParam->getDefaultArgRange();
316        Diag(Old->getLocation(), diag::note_template_prev_declaration)
317          << false;
318      } else if (New->getTemplateSpecializationKind()
319                   != TSK_ImplicitInstantiation &&
320                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
321        // C++ [temp.expr.spec]p21:
322        //   Default function arguments shall not be specified in a declaration
323        //   or a definition for one of the following explicit specializations:
324        //     - the explicit specialization of a function template;
325        //     - the explicit specialization of a member function template;
326        //     - the explicit specialization of a member function of a class
327        //       template where the class template specialization to which the
328        //       member function specialization belongs is implicitly
329        //       instantiated.
330        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
331          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
332          << New->getDeclName()
333          << NewParam->getDefaultArgRange();
334      } else if (New->getDeclContext()->isDependentContext()) {
335        // C++ [dcl.fct.default]p6 (DR217):
336        //   Default arguments for a member function of a class template shall
337        //   be specified on the initial declaration of the member function
338        //   within the class template.
339        //
340        // Reading the tea leaves a bit in DR217 and its reference to DR205
341        // leads me to the conclusion that one cannot add default function
342        // arguments for an out-of-line definition of a member function of a
343        // dependent type.
344        int WhichKind = 2;
345        if (CXXRecordDecl *Record
346              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
347          if (Record->getDescribedClassTemplate())
348            WhichKind = 0;
349          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
350            WhichKind = 1;
351          else
352            WhichKind = 2;
353        }
354
355        Diag(NewParam->getLocation(),
356             diag::err_param_default_argument_member_template_redecl)
357          << WhichKind
358          << NewParam->getDefaultArgRange();
359      }
360    }
361  }
362
363  if (CheckEquivalentExceptionSpec(Old, New))
364    Invalid = true;
365
366  return Invalid;
367}
368
369/// CheckCXXDefaultArguments - Verify that the default arguments for a
370/// function declaration are well-formed according to C++
371/// [dcl.fct.default].
372void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
373  unsigned NumParams = FD->getNumParams();
374  unsigned p;
375
376  // Find first parameter with a default argument
377  for (p = 0; p < NumParams; ++p) {
378    ParmVarDecl *Param = FD->getParamDecl(p);
379    if (Param->hasDefaultArg())
380      break;
381  }
382
383  // C++ [dcl.fct.default]p4:
384  //   In a given function declaration, all parameters
385  //   subsequent to a parameter with a default argument shall
386  //   have default arguments supplied in this or previous
387  //   declarations. A default argument shall not be redefined
388  //   by a later declaration (not even to the same value).
389  unsigned LastMissingDefaultArg = 0;
390  for (; p < NumParams; ++p) {
391    ParmVarDecl *Param = FD->getParamDecl(p);
392    if (!Param->hasDefaultArg()) {
393      if (Param->isInvalidDecl())
394        /* We already complained about this parameter. */;
395      else if (Param->getIdentifier())
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing_name)
398          << Param->getIdentifier();
399      else
400        Diag(Param->getLocation(),
401             diag::err_param_default_argument_missing);
402
403      LastMissingDefaultArg = p;
404    }
405  }
406
407  if (LastMissingDefaultArg > 0) {
408    // Some default arguments were missing. Clear out all of the
409    // default arguments up to (and including) the last missing
410    // default argument, so that we leave the function parameters
411    // in a semantically valid state.
412    for (p = 0; p <= LastMissingDefaultArg; ++p) {
413      ParmVarDecl *Param = FD->getParamDecl(p);
414      if (Param->hasDefaultArg()) {
415        Param->setDefaultArg(0);
416      }
417    }
418  }
419}
420
421/// isCurrentClassName - Determine whether the identifier II is the
422/// name of the class type currently being defined. In the case of
423/// nested classes, this will only return true if II is the name of
424/// the innermost class.
425bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
426                              const CXXScopeSpec *SS) {
427  assert(getLangOptions().CPlusPlus && "No class names in C!");
428
429  CXXRecordDecl *CurDecl;
430  if (SS && SS->isSet() && !SS->isInvalid()) {
431    DeclContext *DC = computeDeclContext(*SS, true);
432    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
433  } else
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
435
436  if (CurDecl && CurDecl->getIdentifier())
437    return &II == CurDecl->getIdentifier();
438  else
439    return false;
440}
441
442/// \brief Check the validity of a C++ base class specifier.
443///
444/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
445/// and returns NULL otherwise.
446CXXBaseSpecifier *
447Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
448                         SourceRange SpecifierRange,
449                         bool Virtual, AccessSpecifier Access,
450                         TypeSourceInfo *TInfo) {
451  QualType BaseType = TInfo->getType();
452
453  // C++ [class.union]p1:
454  //   A union shall not have base classes.
455  if (Class->isUnion()) {
456    Diag(Class->getLocation(), diag::err_base_clause_on_union)
457      << SpecifierRange;
458    return 0;
459  }
460
461  if (BaseType->isDependentType())
462    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
463                                          Class->getTagKind() == TTK_Class,
464                                          Access, TInfo);
465
466  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
467
468  // Base specifiers must be record types.
469  if (!BaseType->isRecordType()) {
470    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
471    return 0;
472  }
473
474  // C++ [class.union]p1:
475  //   A union shall not be used as a base class.
476  if (BaseType->isUnionType()) {
477    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
478    return 0;
479  }
480
481  // C++ [class.derived]p2:
482  //   The class-name in a base-specifier shall not be an incompletely
483  //   defined class.
484  if (RequireCompleteType(BaseLoc, BaseType,
485                          PDiag(diag::err_incomplete_base_class)
486                            << SpecifierRange)) {
487    Class->setInvalidDecl();
488    return 0;
489  }
490
491  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
492  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
493  assert(BaseDecl && "Record type has no declaration");
494  BaseDecl = BaseDecl->getDefinition();
495  assert(BaseDecl && "Base type is not incomplete, but has no definition");
496  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
497  assert(CXXBaseDecl && "Base type is not a C++ type");
498
499  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
500  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
501    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
502    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
503      << BaseType;
504    return 0;
505  }
506
507  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
508
509  if (BaseDecl->isInvalidDecl())
510    Class->setInvalidDecl();
511
512  // Create the base specifier.
513  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
514                                        Class->getTagKind() == TTK_Class,
515                                        Access, TInfo);
516}
517
518void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
519                                          const CXXRecordDecl *BaseClass,
520                                          bool BaseIsVirtual) {
521  // A class with a non-empty base class is not empty.
522  // FIXME: Standard ref?
523  if (!BaseClass->isEmpty())
524    Class->setEmpty(false);
525
526  // C++ [class.virtual]p1:
527  //   A class that [...] inherits a virtual function is called a polymorphic
528  //   class.
529  if (BaseClass->isPolymorphic())
530    Class->setPolymorphic(true);
531
532  // C++ [dcl.init.aggr]p1:
533  //   An aggregate is [...] a class with [...] no base classes [...].
534  Class->setAggregate(false);
535
536  // C++ [class]p4:
537  //   A POD-struct is an aggregate class...
538  Class->setPOD(false);
539
540  if (BaseIsVirtual) {
541    // C++ [class.ctor]p5:
542    //   A constructor is trivial if its class has no virtual base classes.
543    Class->setHasTrivialConstructor(false);
544
545    // C++ [class.copy]p6:
546    //   A copy constructor is trivial if its class has no virtual base classes.
547    Class->setHasTrivialCopyConstructor(false);
548
549    // C++ [class.copy]p11:
550    //   A copy assignment operator is trivial if its class has no virtual
551    //   base classes.
552    Class->setHasTrivialCopyAssignment(false);
553
554    // C++0x [meta.unary.prop] is_empty:
555    //    T is a class type, but not a union type, with ... no virtual base
556    //    classes
557    Class->setEmpty(false);
558  } else {
559    // C++ [class.ctor]p5:
560    //   A constructor is trivial if all the direct base classes of its
561    //   class have trivial constructors.
562    if (!BaseClass->hasTrivialConstructor())
563      Class->setHasTrivialConstructor(false);
564
565    // C++ [class.copy]p6:
566    //   A copy constructor is trivial if all the direct base classes of its
567    //   class have trivial copy constructors.
568    if (!BaseClass->hasTrivialCopyConstructor())
569      Class->setHasTrivialCopyConstructor(false);
570
571    // C++ [class.copy]p11:
572    //   A copy assignment operator is trivial if all the direct base classes
573    //   of its class have trivial copy assignment operators.
574    if (!BaseClass->hasTrivialCopyAssignment())
575      Class->setHasTrivialCopyAssignment(false);
576  }
577
578  // C++ [class.ctor]p3:
579  //   A destructor is trivial if all the direct base classes of its class
580  //   have trivial destructors.
581  if (!BaseClass->hasTrivialDestructor())
582    Class->setHasTrivialDestructor(false);
583}
584
585/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
586/// one entry in the base class list of a class specifier, for
587/// example:
588///    class foo : public bar, virtual private baz {
589/// 'public bar' and 'virtual private baz' are each base-specifiers.
590Sema::BaseResult
591Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
592                         bool Virtual, AccessSpecifier Access,
593                         TypeTy *basetype, SourceLocation BaseLoc) {
594  if (!classdecl)
595    return true;
596
597  AdjustDeclIfTemplate(classdecl);
598  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
599  if (!Class)
600    return true;
601
602  TypeSourceInfo *TInfo = 0;
603  GetTypeFromParser(basetype, &TInfo);
604  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
605                                                      Virtual, Access, TInfo))
606    return BaseSpec;
607
608  return true;
609}
610
611/// \brief Performs the actual work of attaching the given base class
612/// specifiers to a C++ class.
613bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
614                                unsigned NumBases) {
615 if (NumBases == 0)
616    return false;
617
618  // Used to keep track of which base types we have already seen, so
619  // that we can properly diagnose redundant direct base types. Note
620  // that the key is always the unqualified canonical type of the base
621  // class.
622  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
623
624  // Copy non-redundant base specifiers into permanent storage.
625  unsigned NumGoodBases = 0;
626  bool Invalid = false;
627  for (unsigned idx = 0; idx < NumBases; ++idx) {
628    QualType NewBaseType
629      = Context.getCanonicalType(Bases[idx]->getType());
630    NewBaseType = NewBaseType.getLocalUnqualifiedType();
631    if (!Class->hasObjectMember()) {
632      if (const RecordType *FDTTy =
633            NewBaseType.getTypePtr()->getAs<RecordType>())
634        if (FDTTy->getDecl()->hasObjectMember())
635          Class->setHasObjectMember(true);
636    }
637
638    if (KnownBaseTypes[NewBaseType]) {
639      // C++ [class.mi]p3:
640      //   A class shall not be specified as a direct base class of a
641      //   derived class more than once.
642      Diag(Bases[idx]->getSourceRange().getBegin(),
643           diag::err_duplicate_base_class)
644        << KnownBaseTypes[NewBaseType]->getType()
645        << Bases[idx]->getSourceRange();
646
647      // Delete the duplicate base class specifier; we're going to
648      // overwrite its pointer later.
649      Context.Deallocate(Bases[idx]);
650
651      Invalid = true;
652    } else {
653      // Okay, add this new base class.
654      KnownBaseTypes[NewBaseType] = Bases[idx];
655      Bases[NumGoodBases++] = Bases[idx];
656    }
657  }
658
659  // Attach the remaining base class specifiers to the derived class.
660  Class->setBases(Bases, NumGoodBases);
661
662  // Delete the remaining (good) base class specifiers, since their
663  // data has been copied into the CXXRecordDecl.
664  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
665    Context.Deallocate(Bases[idx]);
666
667  return Invalid;
668}
669
670/// ActOnBaseSpecifiers - Attach the given base specifiers to the
671/// class, after checking whether there are any duplicate base
672/// classes.
673void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
674                               unsigned NumBases) {
675  if (!ClassDecl || !Bases || !NumBases)
676    return;
677
678  AdjustDeclIfTemplate(ClassDecl);
679  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
680                       (CXXBaseSpecifier**)(Bases), NumBases);
681}
682
683static CXXRecordDecl *GetClassForType(QualType T) {
684  if (const RecordType *RT = T->getAs<RecordType>())
685    return cast<CXXRecordDecl>(RT->getDecl());
686  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
687    return ICT->getDecl();
688  else
689    return 0;
690}
691
692/// \brief Determine whether the type \p Derived is a C++ class that is
693/// derived from the type \p Base.
694bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
695  if (!getLangOptions().CPlusPlus)
696    return false;
697
698  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
699  if (!DerivedRD)
700    return false;
701
702  CXXRecordDecl *BaseRD = GetClassForType(Base);
703  if (!BaseRD)
704    return false;
705
706  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
707  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
708}
709
710/// \brief Determine whether the type \p Derived is a C++ class that is
711/// derived from the type \p Base.
712bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
713  if (!getLangOptions().CPlusPlus)
714    return false;
715
716  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
717  if (!DerivedRD)
718    return false;
719
720  CXXRecordDecl *BaseRD = GetClassForType(Base);
721  if (!BaseRD)
722    return false;
723
724  return DerivedRD->isDerivedFrom(BaseRD, Paths);
725}
726
727void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
728                              CXXCastPath &BasePathArray) {
729  assert(BasePathArray.empty() && "Base path array must be empty!");
730  assert(Paths.isRecordingPaths() && "Must record paths!");
731
732  const CXXBasePath &Path = Paths.front();
733
734  // We first go backward and check if we have a virtual base.
735  // FIXME: It would be better if CXXBasePath had the base specifier for
736  // the nearest virtual base.
737  unsigned Start = 0;
738  for (unsigned I = Path.size(); I != 0; --I) {
739    if (Path[I - 1].Base->isVirtual()) {
740      Start = I - 1;
741      break;
742    }
743  }
744
745  // Now add all bases.
746  for (unsigned I = Start, E = Path.size(); I != E; ++I)
747    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
748}
749
750/// \brief Determine whether the given base path includes a virtual
751/// base class.
752bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
753  for (CXXCastPath::const_iterator B = BasePath.begin(),
754                                BEnd = BasePath.end();
755       B != BEnd; ++B)
756    if ((*B)->isVirtual())
757      return true;
758
759  return false;
760}
761
762/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
763/// conversion (where Derived and Base are class types) is
764/// well-formed, meaning that the conversion is unambiguous (and
765/// that all of the base classes are accessible). Returns true
766/// and emits a diagnostic if the code is ill-formed, returns false
767/// otherwise. Loc is the location where this routine should point to
768/// if there is an error, and Range is the source range to highlight
769/// if there is an error.
770bool
771Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
772                                   unsigned InaccessibleBaseID,
773                                   unsigned AmbigiousBaseConvID,
774                                   SourceLocation Loc, SourceRange Range,
775                                   DeclarationName Name,
776                                   CXXCastPath *BasePath) {
777  // First, determine whether the path from Derived to Base is
778  // ambiguous. This is slightly more expensive than checking whether
779  // the Derived to Base conversion exists, because here we need to
780  // explore multiple paths to determine if there is an ambiguity.
781  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
782                     /*DetectVirtual=*/false);
783  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
784  assert(DerivationOkay &&
785         "Can only be used with a derived-to-base conversion");
786  (void)DerivationOkay;
787
788  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
789    if (InaccessibleBaseID) {
790      // Check that the base class can be accessed.
791      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
792                                   InaccessibleBaseID)) {
793        case AR_inaccessible:
794          return true;
795        case AR_accessible:
796        case AR_dependent:
797        case AR_delayed:
798          break;
799      }
800    }
801
802    // Build a base path if necessary.
803    if (BasePath)
804      BuildBasePathArray(Paths, *BasePath);
805    return false;
806  }
807
808  // We know that the derived-to-base conversion is ambiguous, and
809  // we're going to produce a diagnostic. Perform the derived-to-base
810  // search just one more time to compute all of the possible paths so
811  // that we can print them out. This is more expensive than any of
812  // the previous derived-to-base checks we've done, but at this point
813  // performance isn't as much of an issue.
814  Paths.clear();
815  Paths.setRecordingPaths(true);
816  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
817  assert(StillOkay && "Can only be used with a derived-to-base conversion");
818  (void)StillOkay;
819
820  // Build up a textual representation of the ambiguous paths, e.g.,
821  // D -> B -> A, that will be used to illustrate the ambiguous
822  // conversions in the diagnostic. We only print one of the paths
823  // to each base class subobject.
824  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
825
826  Diag(Loc, AmbigiousBaseConvID)
827  << Derived << Base << PathDisplayStr << Range << Name;
828  return true;
829}
830
831bool
832Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
833                                   SourceLocation Loc, SourceRange Range,
834                                   CXXCastPath *BasePath,
835                                   bool IgnoreAccess) {
836  return CheckDerivedToBaseConversion(Derived, Base,
837                                      IgnoreAccess ? 0
838                                       : diag::err_upcast_to_inaccessible_base,
839                                      diag::err_ambiguous_derived_to_base_conv,
840                                      Loc, Range, DeclarationName(),
841                                      BasePath);
842}
843
844
845/// @brief Builds a string representing ambiguous paths from a
846/// specific derived class to different subobjects of the same base
847/// class.
848///
849/// This function builds a string that can be used in error messages
850/// to show the different paths that one can take through the
851/// inheritance hierarchy to go from the derived class to different
852/// subobjects of a base class. The result looks something like this:
853/// @code
854/// struct D -> struct B -> struct A
855/// struct D -> struct C -> struct A
856/// @endcode
857std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
858  std::string PathDisplayStr;
859  std::set<unsigned> DisplayedPaths;
860  for (CXXBasePaths::paths_iterator Path = Paths.begin();
861       Path != Paths.end(); ++Path) {
862    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
863      // We haven't displayed a path to this particular base
864      // class subobject yet.
865      PathDisplayStr += "\n    ";
866      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
867      for (CXXBasePath::const_iterator Element = Path->begin();
868           Element != Path->end(); ++Element)
869        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
870    }
871  }
872
873  return PathDisplayStr;
874}
875
876//===----------------------------------------------------------------------===//
877// C++ class member Handling
878//===----------------------------------------------------------------------===//
879
880/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
881Sema::DeclPtrTy
882Sema::ActOnAccessSpecifier(AccessSpecifier Access,
883                           SourceLocation ASLoc, SourceLocation ColonLoc) {
884  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
885  AccessSpecDecl* ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
886                                                  ASLoc, ColonLoc);
887  CurContext->addHiddenDecl(ASDecl);
888  return DeclPtrTy::make(ASDecl);
889}
890
891/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
892/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
893/// bitfield width if there is one and 'InitExpr' specifies the initializer if
894/// any.
895Sema::DeclPtrTy
896Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
897                               MultiTemplateParamsArg TemplateParameterLists,
898                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
899                               bool Deleted) {
900  const DeclSpec &DS = D.getDeclSpec();
901  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
902  DeclarationName Name = NameInfo.getName();
903  SourceLocation Loc = NameInfo.getLoc();
904  Expr *BitWidth = static_cast<Expr*>(BW);
905  Expr *Init = static_cast<Expr*>(InitExpr);
906
907  assert(isa<CXXRecordDecl>(CurContext));
908  assert(!DS.isFriendSpecified());
909
910  bool isFunc = false;
911  if (D.isFunctionDeclarator())
912    isFunc = true;
913  else if (D.getNumTypeObjects() == 0 &&
914           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
915    QualType TDType = GetTypeFromParser(DS.getTypeRep());
916    isFunc = TDType->isFunctionType();
917  }
918
919  // C++ 9.2p6: A member shall not be declared to have automatic storage
920  // duration (auto, register) or with the extern storage-class-specifier.
921  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
922  // data members and cannot be applied to names declared const or static,
923  // and cannot be applied to reference members.
924  switch (DS.getStorageClassSpec()) {
925    case DeclSpec::SCS_unspecified:
926    case DeclSpec::SCS_typedef:
927    case DeclSpec::SCS_static:
928      // FALL THROUGH.
929      break;
930    case DeclSpec::SCS_mutable:
931      if (isFunc) {
932        if (DS.getStorageClassSpecLoc().isValid())
933          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
934        else
935          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
936
937        // FIXME: It would be nicer if the keyword was ignored only for this
938        // declarator. Otherwise we could get follow-up errors.
939        D.getMutableDeclSpec().ClearStorageClassSpecs();
940      }
941      break;
942    default:
943      if (DS.getStorageClassSpecLoc().isValid())
944        Diag(DS.getStorageClassSpecLoc(),
945             diag::err_storageclass_invalid_for_member);
946      else
947        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
948      D.getMutableDeclSpec().ClearStorageClassSpecs();
949  }
950
951  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
952                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
953                      !isFunc);
954
955  Decl *Member;
956  if (isInstField) {
957    // FIXME: Check for template parameters!
958    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
959                         AS);
960    assert(Member && "HandleField never returns null");
961  } else {
962    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
963               .getAs<Decl>();
964    if (!Member) {
965      if (BitWidth) DeleteExpr(BitWidth);
966      return DeclPtrTy();
967    }
968
969    // Non-instance-fields can't have a bitfield.
970    if (BitWidth) {
971      if (Member->isInvalidDecl()) {
972        // don't emit another diagnostic.
973      } else if (isa<VarDecl>(Member)) {
974        // C++ 9.6p3: A bit-field shall not be a static member.
975        // "static member 'A' cannot be a bit-field"
976        Diag(Loc, diag::err_static_not_bitfield)
977          << Name << BitWidth->getSourceRange();
978      } else if (isa<TypedefDecl>(Member)) {
979        // "typedef member 'x' cannot be a bit-field"
980        Diag(Loc, diag::err_typedef_not_bitfield)
981          << Name << BitWidth->getSourceRange();
982      } else {
983        // A function typedef ("typedef int f(); f a;").
984        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
985        Diag(Loc, diag::err_not_integral_type_bitfield)
986          << Name << cast<ValueDecl>(Member)->getType()
987          << BitWidth->getSourceRange();
988      }
989
990      DeleteExpr(BitWidth);
991      BitWidth = 0;
992      Member->setInvalidDecl();
993    }
994
995    Member->setAccess(AS);
996
997    // If we have declared a member function template, set the access of the
998    // templated declaration as well.
999    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1000      FunTmpl->getTemplatedDecl()->setAccess(AS);
1001  }
1002
1003  assert((Name || isInstField) && "No identifier for non-field ?");
1004
1005  if (Init)
1006    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
1007  if (Deleted) // FIXME: Source location is not very good.
1008    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
1009
1010  if (isInstField) {
1011    FieldCollector->Add(cast<FieldDecl>(Member));
1012    return DeclPtrTy();
1013  }
1014  return DeclPtrTy::make(Member);
1015}
1016
1017/// \brief Find the direct and/or virtual base specifiers that
1018/// correspond to the given base type, for use in base initialization
1019/// within a constructor.
1020static bool FindBaseInitializer(Sema &SemaRef,
1021                                CXXRecordDecl *ClassDecl,
1022                                QualType BaseType,
1023                                const CXXBaseSpecifier *&DirectBaseSpec,
1024                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1025  // First, check for a direct base class.
1026  DirectBaseSpec = 0;
1027  for (CXXRecordDecl::base_class_const_iterator Base
1028         = ClassDecl->bases_begin();
1029       Base != ClassDecl->bases_end(); ++Base) {
1030    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1031      // We found a direct base of this type. That's what we're
1032      // initializing.
1033      DirectBaseSpec = &*Base;
1034      break;
1035    }
1036  }
1037
1038  // Check for a virtual base class.
1039  // FIXME: We might be able to short-circuit this if we know in advance that
1040  // there are no virtual bases.
1041  VirtualBaseSpec = 0;
1042  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1043    // We haven't found a base yet; search the class hierarchy for a
1044    // virtual base class.
1045    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1046                       /*DetectVirtual=*/false);
1047    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1048                              BaseType, Paths)) {
1049      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1050           Path != Paths.end(); ++Path) {
1051        if (Path->back().Base->isVirtual()) {
1052          VirtualBaseSpec = Path->back().Base;
1053          break;
1054        }
1055      }
1056    }
1057  }
1058
1059  return DirectBaseSpec || VirtualBaseSpec;
1060}
1061
1062/// ActOnMemInitializer - Handle a C++ member initializer.
1063Sema::MemInitResult
1064Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1065                          Scope *S,
1066                          CXXScopeSpec &SS,
1067                          IdentifierInfo *MemberOrBase,
1068                          TypeTy *TemplateTypeTy,
1069                          SourceLocation IdLoc,
1070                          SourceLocation LParenLoc,
1071                          ExprTy **Args, unsigned NumArgs,
1072                          SourceLocation *CommaLocs,
1073                          SourceLocation RParenLoc) {
1074  if (!ConstructorD)
1075    return true;
1076
1077  AdjustDeclIfTemplate(ConstructorD);
1078
1079  CXXConstructorDecl *Constructor
1080    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1081  if (!Constructor) {
1082    // The user wrote a constructor initializer on a function that is
1083    // not a C++ constructor. Ignore the error for now, because we may
1084    // have more member initializers coming; we'll diagnose it just
1085    // once in ActOnMemInitializers.
1086    return true;
1087  }
1088
1089  CXXRecordDecl *ClassDecl = Constructor->getParent();
1090
1091  // C++ [class.base.init]p2:
1092  //   Names in a mem-initializer-id are looked up in the scope of the
1093  //   constructor’s class and, if not found in that scope, are looked
1094  //   up in the scope containing the constructor’s
1095  //   definition. [Note: if the constructor’s class contains a member
1096  //   with the same name as a direct or virtual base class of the
1097  //   class, a mem-initializer-id naming the member or base class and
1098  //   composed of a single identifier refers to the class member. A
1099  //   mem-initializer-id for the hidden base class may be specified
1100  //   using a qualified name. ]
1101  if (!SS.getScopeRep() && !TemplateTypeTy) {
1102    // Look for a member, first.
1103    FieldDecl *Member = 0;
1104    DeclContext::lookup_result Result
1105      = ClassDecl->lookup(MemberOrBase);
1106    if (Result.first != Result.second)
1107      Member = dyn_cast<FieldDecl>(*Result.first);
1108
1109    // FIXME: Handle members of an anonymous union.
1110
1111    if (Member)
1112      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1113                                    LParenLoc, RParenLoc);
1114  }
1115  // It didn't name a member, so see if it names a class.
1116  QualType BaseType;
1117  TypeSourceInfo *TInfo = 0;
1118
1119  if (TemplateTypeTy) {
1120    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1121  } else {
1122    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1123    LookupParsedName(R, S, &SS);
1124
1125    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1126    if (!TyD) {
1127      if (R.isAmbiguous()) return true;
1128
1129      // We don't want access-control diagnostics here.
1130      R.suppressDiagnostics();
1131
1132      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1133        bool NotUnknownSpecialization = false;
1134        DeclContext *DC = computeDeclContext(SS, false);
1135        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1136          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1137
1138        if (!NotUnknownSpecialization) {
1139          // When the scope specifier can refer to a member of an unknown
1140          // specialization, we take it as a type name.
1141          BaseType = CheckTypenameType(ETK_None,
1142                                       (NestedNameSpecifier *)SS.getScopeRep(),
1143                                       *MemberOrBase, SourceLocation(),
1144                                       SS.getRange(), IdLoc);
1145          if (BaseType.isNull())
1146            return true;
1147
1148          R.clear();
1149          R.setLookupName(MemberOrBase);
1150        }
1151      }
1152
1153      // If no results were found, try to correct typos.
1154      if (R.empty() && BaseType.isNull() &&
1155          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1156          R.isSingleResult()) {
1157        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1158          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1159            // We have found a non-static data member with a similar
1160            // name to what was typed; complain and initialize that
1161            // member.
1162            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1163              << MemberOrBase << true << R.getLookupName()
1164              << FixItHint::CreateReplacement(R.getNameLoc(),
1165                                              R.getLookupName().getAsString());
1166            Diag(Member->getLocation(), diag::note_previous_decl)
1167              << Member->getDeclName();
1168
1169            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1170                                          LParenLoc, RParenLoc);
1171          }
1172        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1173          const CXXBaseSpecifier *DirectBaseSpec;
1174          const CXXBaseSpecifier *VirtualBaseSpec;
1175          if (FindBaseInitializer(*this, ClassDecl,
1176                                  Context.getTypeDeclType(Type),
1177                                  DirectBaseSpec, VirtualBaseSpec)) {
1178            // We have found a direct or virtual base class with a
1179            // similar name to what was typed; complain and initialize
1180            // that base class.
1181            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1182              << MemberOrBase << false << R.getLookupName()
1183              << FixItHint::CreateReplacement(R.getNameLoc(),
1184                                              R.getLookupName().getAsString());
1185
1186            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1187                                                             : VirtualBaseSpec;
1188            Diag(BaseSpec->getSourceRange().getBegin(),
1189                 diag::note_base_class_specified_here)
1190              << BaseSpec->getType()
1191              << BaseSpec->getSourceRange();
1192
1193            TyD = Type;
1194          }
1195        }
1196      }
1197
1198      if (!TyD && BaseType.isNull()) {
1199        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1200          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1201        return true;
1202      }
1203    }
1204
1205    if (BaseType.isNull()) {
1206      BaseType = Context.getTypeDeclType(TyD);
1207      if (SS.isSet()) {
1208        NestedNameSpecifier *Qualifier =
1209          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1210
1211        // FIXME: preserve source range information
1212        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1213      }
1214    }
1215  }
1216
1217  if (!TInfo)
1218    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1219
1220  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1221                              LParenLoc, RParenLoc, ClassDecl);
1222}
1223
1224/// Checks an initializer expression for use of uninitialized fields, such as
1225/// containing the field that is being initialized. Returns true if there is an
1226/// uninitialized field was used an updates the SourceLocation parameter; false
1227/// otherwise.
1228static bool InitExprContainsUninitializedFields(const Stmt *S,
1229                                                const FieldDecl *LhsField,
1230                                                SourceLocation *L) {
1231  if (isa<CallExpr>(S)) {
1232    // Do not descend into function calls or constructors, as the use
1233    // of an uninitialized field may be valid. One would have to inspect
1234    // the contents of the function/ctor to determine if it is safe or not.
1235    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1236    // may be safe, depending on what the function/ctor does.
1237    return false;
1238  }
1239  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1240    const NamedDecl *RhsField = ME->getMemberDecl();
1241    if (RhsField == LhsField) {
1242      // Initializing a field with itself. Throw a warning.
1243      // But wait; there are exceptions!
1244      // Exception #1:  The field may not belong to this record.
1245      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1246      const Expr *base = ME->getBase();
1247      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1248        // Even though the field matches, it does not belong to this record.
1249        return false;
1250      }
1251      // None of the exceptions triggered; return true to indicate an
1252      // uninitialized field was used.
1253      *L = ME->getMemberLoc();
1254      return true;
1255    }
1256  }
1257  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1258       it != e; ++it) {
1259    if (!*it) {
1260      // An expression such as 'member(arg ?: "")' may trigger this.
1261      continue;
1262    }
1263    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1264      return true;
1265  }
1266  return false;
1267}
1268
1269Sema::MemInitResult
1270Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1271                             unsigned NumArgs, SourceLocation IdLoc,
1272                             SourceLocation LParenLoc,
1273                             SourceLocation RParenLoc) {
1274  // Diagnose value-uses of fields to initialize themselves, e.g.
1275  //   foo(foo)
1276  // where foo is not also a parameter to the constructor.
1277  // TODO: implement -Wuninitialized and fold this into that framework.
1278  for (unsigned i = 0; i < NumArgs; ++i) {
1279    SourceLocation L;
1280    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1281      // FIXME: Return true in the case when other fields are used before being
1282      // uninitialized. For example, let this field be the i'th field. When
1283      // initializing the i'th field, throw a warning if any of the >= i'th
1284      // fields are used, as they are not yet initialized.
1285      // Right now we are only handling the case where the i'th field uses
1286      // itself in its initializer.
1287      Diag(L, diag::warn_field_is_uninit);
1288    }
1289  }
1290
1291  bool HasDependentArg = false;
1292  for (unsigned i = 0; i < NumArgs; i++)
1293    HasDependentArg |= Args[i]->isTypeDependent();
1294
1295  if (Member->getType()->isDependentType() || HasDependentArg) {
1296    // Can't check initialization for a member of dependent type or when
1297    // any of the arguments are type-dependent expressions.
1298    OwningExprResult Init
1299      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1300                                          RParenLoc));
1301
1302    // Erase any temporaries within this evaluation context; we're not
1303    // going to track them in the AST, since we'll be rebuilding the
1304    // ASTs during template instantiation.
1305    ExprTemporaries.erase(
1306              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1307                          ExprTemporaries.end());
1308
1309    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1310                                                    LParenLoc,
1311                                                    Init.takeAs<Expr>(),
1312                                                    RParenLoc);
1313
1314  }
1315
1316  if (Member->isInvalidDecl())
1317    return true;
1318
1319  // Initialize the member.
1320  InitializedEntity MemberEntity =
1321    InitializedEntity::InitializeMember(Member, 0);
1322  InitializationKind Kind =
1323    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1324
1325  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1326
1327  OwningExprResult MemberInit =
1328    InitSeq.Perform(*this, MemberEntity, Kind,
1329                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1330  if (MemberInit.isInvalid())
1331    return true;
1332
1333  // C++0x [class.base.init]p7:
1334  //   The initialization of each base and member constitutes a
1335  //   full-expression.
1336  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1337  if (MemberInit.isInvalid())
1338    return true;
1339
1340  // If we are in a dependent context, template instantiation will
1341  // perform this type-checking again. Just save the arguments that we
1342  // received in a ParenListExpr.
1343  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1344  // of the information that we have about the member
1345  // initializer. However, deconstructing the ASTs is a dicey process,
1346  // and this approach is far more likely to get the corner cases right.
1347  if (CurContext->isDependentContext()) {
1348    // Bump the reference count of all of the arguments.
1349    for (unsigned I = 0; I != NumArgs; ++I)
1350      Args[I]->Retain();
1351
1352    OwningExprResult Init
1353      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1354                                          RParenLoc));
1355    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1356                                                    LParenLoc,
1357                                                    Init.takeAs<Expr>(),
1358                                                    RParenLoc);
1359  }
1360
1361  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1362                                                  LParenLoc,
1363                                                  MemberInit.takeAs<Expr>(),
1364                                                  RParenLoc);
1365}
1366
1367Sema::MemInitResult
1368Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1369                           Expr **Args, unsigned NumArgs,
1370                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1371                           CXXRecordDecl *ClassDecl) {
1372  bool HasDependentArg = false;
1373  for (unsigned i = 0; i < NumArgs; i++)
1374    HasDependentArg |= Args[i]->isTypeDependent();
1375
1376  SourceLocation BaseLoc
1377    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1378
1379  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1380    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1381             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1382
1383  // C++ [class.base.init]p2:
1384  //   [...] Unless the mem-initializer-id names a nonstatic data
1385  //   member of the constructor’s class or a direct or virtual base
1386  //   of that class, the mem-initializer is ill-formed. A
1387  //   mem-initializer-list can initialize a base class using any
1388  //   name that denotes that base class type.
1389  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1390
1391  // Check for direct and virtual base classes.
1392  const CXXBaseSpecifier *DirectBaseSpec = 0;
1393  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1394  if (!Dependent) {
1395    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1396                        VirtualBaseSpec);
1397
1398    // C++ [base.class.init]p2:
1399    // Unless the mem-initializer-id names a nonstatic data member of the
1400    // constructor's class or a direct or virtual base of that class, the
1401    // mem-initializer is ill-formed.
1402    if (!DirectBaseSpec && !VirtualBaseSpec) {
1403      // If the class has any dependent bases, then it's possible that
1404      // one of those types will resolve to the same type as
1405      // BaseType. Therefore, just treat this as a dependent base
1406      // class initialization.  FIXME: Should we try to check the
1407      // initialization anyway? It seems odd.
1408      if (ClassDecl->hasAnyDependentBases())
1409        Dependent = true;
1410      else
1411        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1412          << BaseType << Context.getTypeDeclType(ClassDecl)
1413          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1414    }
1415  }
1416
1417  if (Dependent) {
1418    // Can't check initialization for a base of dependent type or when
1419    // any of the arguments are type-dependent expressions.
1420    OwningExprResult BaseInit
1421      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1422                                          RParenLoc));
1423
1424    // Erase any temporaries within this evaluation context; we're not
1425    // going to track them in the AST, since we'll be rebuilding the
1426    // ASTs during template instantiation.
1427    ExprTemporaries.erase(
1428              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1429                          ExprTemporaries.end());
1430
1431    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1432                                                    /*IsVirtual=*/false,
1433                                                    LParenLoc,
1434                                                    BaseInit.takeAs<Expr>(),
1435                                                    RParenLoc);
1436  }
1437
1438  // C++ [base.class.init]p2:
1439  //   If a mem-initializer-id is ambiguous because it designates both
1440  //   a direct non-virtual base class and an inherited virtual base
1441  //   class, the mem-initializer is ill-formed.
1442  if (DirectBaseSpec && VirtualBaseSpec)
1443    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1444      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1445
1446  CXXBaseSpecifier *BaseSpec
1447    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1448  if (!BaseSpec)
1449    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1450
1451  // Initialize the base.
1452  InitializedEntity BaseEntity =
1453    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1454  InitializationKind Kind =
1455    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1456
1457  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1458
1459  OwningExprResult BaseInit =
1460    InitSeq.Perform(*this, BaseEntity, Kind,
1461                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1462  if (BaseInit.isInvalid())
1463    return true;
1464
1465  // C++0x [class.base.init]p7:
1466  //   The initialization of each base and member constitutes a
1467  //   full-expression.
1468  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1469  if (BaseInit.isInvalid())
1470    return true;
1471
1472  // If we are in a dependent context, template instantiation will
1473  // perform this type-checking again. Just save the arguments that we
1474  // received in a ParenListExpr.
1475  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1476  // of the information that we have about the base
1477  // initializer. However, deconstructing the ASTs is a dicey process,
1478  // and this approach is far more likely to get the corner cases right.
1479  if (CurContext->isDependentContext()) {
1480    // Bump the reference count of all of the arguments.
1481    for (unsigned I = 0; I != NumArgs; ++I)
1482      Args[I]->Retain();
1483
1484    OwningExprResult Init
1485      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1486                                          RParenLoc));
1487    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1488                                                    BaseSpec->isVirtual(),
1489                                                    LParenLoc,
1490                                                    Init.takeAs<Expr>(),
1491                                                    RParenLoc);
1492  }
1493
1494  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1495                                                  BaseSpec->isVirtual(),
1496                                                  LParenLoc,
1497                                                  BaseInit.takeAs<Expr>(),
1498                                                  RParenLoc);
1499}
1500
1501/// ImplicitInitializerKind - How an implicit base or member initializer should
1502/// initialize its base or member.
1503enum ImplicitInitializerKind {
1504  IIK_Default,
1505  IIK_Copy,
1506  IIK_Move
1507};
1508
1509static bool
1510BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1511                             ImplicitInitializerKind ImplicitInitKind,
1512                             CXXBaseSpecifier *BaseSpec,
1513                             bool IsInheritedVirtualBase,
1514                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1515  InitializedEntity InitEntity
1516    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1517                                        IsInheritedVirtualBase);
1518
1519  Sema::OwningExprResult BaseInit(SemaRef);
1520
1521  switch (ImplicitInitKind) {
1522  case IIK_Default: {
1523    InitializationKind InitKind
1524      = InitializationKind::CreateDefault(Constructor->getLocation());
1525    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1526    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1527                               Sema::MultiExprArg(SemaRef, 0, 0));
1528    break;
1529  }
1530
1531  case IIK_Copy: {
1532    ParmVarDecl *Param = Constructor->getParamDecl(0);
1533    QualType ParamType = Param->getType().getNonReferenceType();
1534
1535    Expr *CopyCtorArg =
1536      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1537                          Constructor->getLocation(), ParamType, 0);
1538
1539    // Cast to the base class to avoid ambiguities.
1540    QualType ArgTy =
1541      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1542                                       ParamType.getQualifiers());
1543
1544    CXXCastPath BasePath;
1545    BasePath.push_back(BaseSpec);
1546    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1547                              CastExpr::CK_UncheckedDerivedToBase,
1548                              ImplicitCastExpr::LValue, &BasePath);
1549
1550    InitializationKind InitKind
1551      = InitializationKind::CreateDirect(Constructor->getLocation(),
1552                                         SourceLocation(), SourceLocation());
1553    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1554                                   &CopyCtorArg, 1);
1555    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1556                               Sema::MultiExprArg(SemaRef,
1557                                                  (void**)&CopyCtorArg, 1));
1558    break;
1559  }
1560
1561  case IIK_Move:
1562    assert(false && "Unhandled initializer kind!");
1563  }
1564
1565  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1566  if (BaseInit.isInvalid())
1567    return true;
1568
1569  CXXBaseInit =
1570    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1571               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1572                                                        SourceLocation()),
1573                                             BaseSpec->isVirtual(),
1574                                             SourceLocation(),
1575                                             BaseInit.takeAs<Expr>(),
1576                                             SourceLocation());
1577
1578  return false;
1579}
1580
1581static bool
1582BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1583                               ImplicitInitializerKind ImplicitInitKind,
1584                               FieldDecl *Field,
1585                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1586  if (Field->isInvalidDecl())
1587    return true;
1588
1589  SourceLocation Loc = Constructor->getLocation();
1590
1591  if (ImplicitInitKind == IIK_Copy) {
1592    ParmVarDecl *Param = Constructor->getParamDecl(0);
1593    QualType ParamType = Param->getType().getNonReferenceType();
1594
1595    Expr *MemberExprBase =
1596      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1597                          Loc, ParamType, 0);
1598
1599    // Build a reference to this field within the parameter.
1600    CXXScopeSpec SS;
1601    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1602                              Sema::LookupMemberName);
1603    MemberLookup.addDecl(Field, AS_public);
1604    MemberLookup.resolveKind();
1605    Sema::OwningExprResult CopyCtorArg
1606      = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
1607                                         ParamType, Loc,
1608                                         /*IsArrow=*/false,
1609                                         SS,
1610                                         /*FirstQualifierInScope=*/0,
1611                                         MemberLookup,
1612                                         /*TemplateArgs=*/0);
1613    if (CopyCtorArg.isInvalid())
1614      return true;
1615
1616    // When the field we are copying is an array, create index variables for
1617    // each dimension of the array. We use these index variables to subscript
1618    // the source array, and other clients (e.g., CodeGen) will perform the
1619    // necessary iteration with these index variables.
1620    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1621    QualType BaseType = Field->getType();
1622    QualType SizeType = SemaRef.Context.getSizeType();
1623    while (const ConstantArrayType *Array
1624                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1625      // Create the iteration variable for this array index.
1626      IdentifierInfo *IterationVarName = 0;
1627      {
1628        llvm::SmallString<8> Str;
1629        llvm::raw_svector_ostream OS(Str);
1630        OS << "__i" << IndexVariables.size();
1631        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1632      }
1633      VarDecl *IterationVar
1634        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1635                          IterationVarName, SizeType,
1636                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1637                          VarDecl::None, VarDecl::None);
1638      IndexVariables.push_back(IterationVar);
1639
1640      // Create a reference to the iteration variable.
1641      Sema::OwningExprResult IterationVarRef
1642        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1643      assert(!IterationVarRef.isInvalid() &&
1644             "Reference to invented variable cannot fail!");
1645
1646      // Subscript the array with this iteration variable.
1647      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
1648                                                            Loc,
1649                                                          move(IterationVarRef),
1650                                                            Loc);
1651      if (CopyCtorArg.isInvalid())
1652        return true;
1653
1654      BaseType = Array->getElementType();
1655    }
1656
1657    // Construct the entity that we will be initializing. For an array, this
1658    // will be first element in the array, which may require several levels
1659    // of array-subscript entities.
1660    llvm::SmallVector<InitializedEntity, 4> Entities;
1661    Entities.reserve(1 + IndexVariables.size());
1662    Entities.push_back(InitializedEntity::InitializeMember(Field));
1663    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1664      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1665                                                              0,
1666                                                              Entities.back()));
1667
1668    // Direct-initialize to use the copy constructor.
1669    InitializationKind InitKind =
1670      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1671
1672    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1673    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1674                                   &CopyCtorArgE, 1);
1675
1676    Sema::OwningExprResult MemberInit
1677      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1678                        Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
1679    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1680    if (MemberInit.isInvalid())
1681      return true;
1682
1683    CXXMemberInit
1684      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1685                                           MemberInit.takeAs<Expr>(), Loc,
1686                                           IndexVariables.data(),
1687                                           IndexVariables.size());
1688    return false;
1689  }
1690
1691  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1692
1693  QualType FieldBaseElementType =
1694    SemaRef.Context.getBaseElementType(Field->getType());
1695
1696  if (FieldBaseElementType->isRecordType()) {
1697    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1698    InitializationKind InitKind =
1699      InitializationKind::CreateDefault(Loc);
1700
1701    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1702    Sema::OwningExprResult MemberInit =
1703      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1704                      Sema::MultiExprArg(SemaRef, 0, 0));
1705    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1706    if (MemberInit.isInvalid())
1707      return true;
1708
1709    CXXMemberInit =
1710      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1711                                                       Field, Loc, Loc,
1712                                                      MemberInit.takeAs<Expr>(),
1713                                                       Loc);
1714    return false;
1715  }
1716
1717  if (FieldBaseElementType->isReferenceType()) {
1718    SemaRef.Diag(Constructor->getLocation(),
1719                 diag::err_uninitialized_member_in_ctor)
1720    << (int)Constructor->isImplicit()
1721    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1722    << 0 << Field->getDeclName();
1723    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1724    return true;
1725  }
1726
1727  if (FieldBaseElementType.isConstQualified()) {
1728    SemaRef.Diag(Constructor->getLocation(),
1729                 diag::err_uninitialized_member_in_ctor)
1730    << (int)Constructor->isImplicit()
1731    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1732    << 1 << Field->getDeclName();
1733    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1734    return true;
1735  }
1736
1737  // Nothing to initialize.
1738  CXXMemberInit = 0;
1739  return false;
1740}
1741
1742namespace {
1743struct BaseAndFieldInfo {
1744  Sema &S;
1745  CXXConstructorDecl *Ctor;
1746  bool AnyErrorsInInits;
1747  ImplicitInitializerKind IIK;
1748  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1749  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1750
1751  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1752    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1753    // FIXME: Handle implicit move constructors.
1754    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1755      IIK = IIK_Copy;
1756    else
1757      IIK = IIK_Default;
1758  }
1759};
1760}
1761
1762static void RecordFieldInitializer(BaseAndFieldInfo &Info,
1763                                   FieldDecl *Top, FieldDecl *Field,
1764                                   CXXBaseOrMemberInitializer *Init) {
1765  // If the member doesn't need to be initialized, Init will still be null.
1766  if (!Init)
1767    return;
1768
1769  Info.AllToInit.push_back(Init);
1770  if (Field != Top) {
1771    Init->setMember(Top);
1772    Init->setAnonUnionMember(Field);
1773  }
1774}
1775
1776static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1777                                    FieldDecl *Top, FieldDecl *Field) {
1778
1779  // Overwhelmingly common case: we have a direct initializer for this field.
1780  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1781    RecordFieldInitializer(Info, Top, Field, Init);
1782    return false;
1783  }
1784
1785  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1786    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1787    assert(FieldClassType && "anonymous struct/union without record type");
1788    CXXRecordDecl *FieldClassDecl
1789      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1790
1791    // Even though union members never have non-trivial default
1792    // constructions in C++03, we still build member initializers for aggregate
1793    // record types which can be union members, and C++0x allows non-trivial
1794    // default constructors for union members, so we ensure that only one
1795    // member is initialized for these.
1796    if (FieldClassDecl->isUnion()) {
1797      // First check for an explicit initializer for one field.
1798      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1799           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1800        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1801          RecordFieldInitializer(Info, Top, *FA, Init);
1802
1803          // Once we've initialized a field of an anonymous union, the union
1804          // field in the class is also initialized, so exit immediately.
1805          return false;
1806        } else if ((*FA)->isAnonymousStructOrUnion()) {
1807          if (CollectFieldInitializer(Info, Top, *FA))
1808            return true;
1809        }
1810      }
1811
1812      // Fallthrough and construct a default initializer for the union as
1813      // a whole, which can call its default constructor if such a thing exists
1814      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1815      // behavior going forward with C++0x, when anonymous unions there are
1816      // finalized, we should revisit this.
1817    } else {
1818      // For structs, we simply descend through to initialize all members where
1819      // necessary.
1820      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1821           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1822        if (CollectFieldInitializer(Info, Top, *FA))
1823          return true;
1824      }
1825    }
1826  }
1827
1828  // Don't try to build an implicit initializer if there were semantic
1829  // errors in any of the initializers (and therefore we might be
1830  // missing some that the user actually wrote).
1831  if (Info.AnyErrorsInInits)
1832    return false;
1833
1834  CXXBaseOrMemberInitializer *Init = 0;
1835  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1836    return true;
1837
1838  RecordFieldInitializer(Info, Top, Field, Init);
1839  return false;
1840}
1841
1842bool
1843Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1844                                  CXXBaseOrMemberInitializer **Initializers,
1845                                  unsigned NumInitializers,
1846                                  bool AnyErrors) {
1847  if (Constructor->getDeclContext()->isDependentContext()) {
1848    // Just store the initializers as written, they will be checked during
1849    // instantiation.
1850    if (NumInitializers > 0) {
1851      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1852      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1853        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1854      memcpy(baseOrMemberInitializers, Initializers,
1855             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1856      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1857    }
1858
1859    return false;
1860  }
1861
1862  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1863
1864  // We need to build the initializer AST according to order of construction
1865  // and not what user specified in the Initializers list.
1866  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1867  if (!ClassDecl)
1868    return true;
1869
1870  bool HadError = false;
1871
1872  for (unsigned i = 0; i < NumInitializers; i++) {
1873    CXXBaseOrMemberInitializer *Member = Initializers[i];
1874
1875    if (Member->isBaseInitializer())
1876      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1877    else
1878      Info.AllBaseFields[Member->getMember()] = Member;
1879  }
1880
1881  // Keep track of the direct virtual bases.
1882  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1883  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1884       E = ClassDecl->bases_end(); I != E; ++I) {
1885    if (I->isVirtual())
1886      DirectVBases.insert(I);
1887  }
1888
1889  // Push virtual bases before others.
1890  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1891       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1892
1893    if (CXXBaseOrMemberInitializer *Value
1894        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1895      Info.AllToInit.push_back(Value);
1896    } else if (!AnyErrors) {
1897      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1898      CXXBaseOrMemberInitializer *CXXBaseInit;
1899      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1900                                       VBase, IsInheritedVirtualBase,
1901                                       CXXBaseInit)) {
1902        HadError = true;
1903        continue;
1904      }
1905
1906      Info.AllToInit.push_back(CXXBaseInit);
1907    }
1908  }
1909
1910  // Non-virtual bases.
1911  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1912       E = ClassDecl->bases_end(); Base != E; ++Base) {
1913    // Virtuals are in the virtual base list and already constructed.
1914    if (Base->isVirtual())
1915      continue;
1916
1917    if (CXXBaseOrMemberInitializer *Value
1918          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1919      Info.AllToInit.push_back(Value);
1920    } else if (!AnyErrors) {
1921      CXXBaseOrMemberInitializer *CXXBaseInit;
1922      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1923                                       Base, /*IsInheritedVirtualBase=*/false,
1924                                       CXXBaseInit)) {
1925        HadError = true;
1926        continue;
1927      }
1928
1929      Info.AllToInit.push_back(CXXBaseInit);
1930    }
1931  }
1932
1933  // Fields.
1934  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1935       E = ClassDecl->field_end(); Field != E; ++Field) {
1936    if ((*Field)->getType()->isIncompleteArrayType()) {
1937      assert(ClassDecl->hasFlexibleArrayMember() &&
1938             "Incomplete array type is not valid");
1939      continue;
1940    }
1941    if (CollectFieldInitializer(Info, *Field, *Field))
1942      HadError = true;
1943  }
1944
1945  NumInitializers = Info.AllToInit.size();
1946  if (NumInitializers > 0) {
1947    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1948    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1949      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1950    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1951           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1952    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1953
1954    // Constructors implicitly reference the base and member
1955    // destructors.
1956    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1957                                           Constructor->getParent());
1958  }
1959
1960  return HadError;
1961}
1962
1963static void *GetKeyForTopLevelField(FieldDecl *Field) {
1964  // For anonymous unions, use the class declaration as the key.
1965  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1966    if (RT->getDecl()->isAnonymousStructOrUnion())
1967      return static_cast<void *>(RT->getDecl());
1968  }
1969  return static_cast<void *>(Field);
1970}
1971
1972static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1973  return Context.getCanonicalType(BaseType).getTypePtr();
1974}
1975
1976static void *GetKeyForMember(ASTContext &Context,
1977                             CXXBaseOrMemberInitializer *Member,
1978                             bool MemberMaybeAnon = false) {
1979  if (!Member->isMemberInitializer())
1980    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1981
1982  // For fields injected into the class via declaration of an anonymous union,
1983  // use its anonymous union class declaration as the unique key.
1984  FieldDecl *Field = Member->getMember();
1985
1986  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1987  // data member of the class. Data member used in the initializer list is
1988  // in AnonUnionMember field.
1989  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1990    Field = Member->getAnonUnionMember();
1991
1992  // If the field is a member of an anonymous struct or union, our key
1993  // is the anonymous record decl that's a direct child of the class.
1994  RecordDecl *RD = Field->getParent();
1995  if (RD->isAnonymousStructOrUnion()) {
1996    while (true) {
1997      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1998      if (Parent->isAnonymousStructOrUnion())
1999        RD = Parent;
2000      else
2001        break;
2002    }
2003
2004    return static_cast<void *>(RD);
2005  }
2006
2007  return static_cast<void *>(Field);
2008}
2009
2010static void
2011DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2012                                  const CXXConstructorDecl *Constructor,
2013                                  CXXBaseOrMemberInitializer **Inits,
2014                                  unsigned NumInits) {
2015  if (Constructor->getDeclContext()->isDependentContext())
2016    return;
2017
2018  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
2019        == Diagnostic::Ignored)
2020    return;
2021
2022  // Build the list of bases and members in the order that they'll
2023  // actually be initialized.  The explicit initializers should be in
2024  // this same order but may be missing things.
2025  llvm::SmallVector<const void*, 32> IdealInitKeys;
2026
2027  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2028
2029  // 1. Virtual bases.
2030  for (CXXRecordDecl::base_class_const_iterator VBase =
2031       ClassDecl->vbases_begin(),
2032       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2033    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2034
2035  // 2. Non-virtual bases.
2036  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2037       E = ClassDecl->bases_end(); Base != E; ++Base) {
2038    if (Base->isVirtual())
2039      continue;
2040    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2041  }
2042
2043  // 3. Direct fields.
2044  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2045       E = ClassDecl->field_end(); Field != E; ++Field)
2046    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2047
2048  unsigned NumIdealInits = IdealInitKeys.size();
2049  unsigned IdealIndex = 0;
2050
2051  CXXBaseOrMemberInitializer *PrevInit = 0;
2052  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2053    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2054    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2055
2056    // Scan forward to try to find this initializer in the idealized
2057    // initializers list.
2058    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2059      if (InitKey == IdealInitKeys[IdealIndex])
2060        break;
2061
2062    // If we didn't find this initializer, it must be because we
2063    // scanned past it on a previous iteration.  That can only
2064    // happen if we're out of order;  emit a warning.
2065    if (IdealIndex == NumIdealInits && PrevInit) {
2066      Sema::SemaDiagnosticBuilder D =
2067        SemaRef.Diag(PrevInit->getSourceLocation(),
2068                     diag::warn_initializer_out_of_order);
2069
2070      if (PrevInit->isMemberInitializer())
2071        D << 0 << PrevInit->getMember()->getDeclName();
2072      else
2073        D << 1 << PrevInit->getBaseClassInfo()->getType();
2074
2075      if (Init->isMemberInitializer())
2076        D << 0 << Init->getMember()->getDeclName();
2077      else
2078        D << 1 << Init->getBaseClassInfo()->getType();
2079
2080      // Move back to the initializer's location in the ideal list.
2081      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2082        if (InitKey == IdealInitKeys[IdealIndex])
2083          break;
2084
2085      assert(IdealIndex != NumIdealInits &&
2086             "initializer not found in initializer list");
2087    }
2088
2089    PrevInit = Init;
2090  }
2091}
2092
2093namespace {
2094bool CheckRedundantInit(Sema &S,
2095                        CXXBaseOrMemberInitializer *Init,
2096                        CXXBaseOrMemberInitializer *&PrevInit) {
2097  if (!PrevInit) {
2098    PrevInit = Init;
2099    return false;
2100  }
2101
2102  if (FieldDecl *Field = Init->getMember())
2103    S.Diag(Init->getSourceLocation(),
2104           diag::err_multiple_mem_initialization)
2105      << Field->getDeclName()
2106      << Init->getSourceRange();
2107  else {
2108    Type *BaseClass = Init->getBaseClass();
2109    assert(BaseClass && "neither field nor base");
2110    S.Diag(Init->getSourceLocation(),
2111           diag::err_multiple_base_initialization)
2112      << QualType(BaseClass, 0)
2113      << Init->getSourceRange();
2114  }
2115  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2116    << 0 << PrevInit->getSourceRange();
2117
2118  return true;
2119}
2120
2121typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2122typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2123
2124bool CheckRedundantUnionInit(Sema &S,
2125                             CXXBaseOrMemberInitializer *Init,
2126                             RedundantUnionMap &Unions) {
2127  FieldDecl *Field = Init->getMember();
2128  RecordDecl *Parent = Field->getParent();
2129  if (!Parent->isAnonymousStructOrUnion())
2130    return false;
2131
2132  NamedDecl *Child = Field;
2133  do {
2134    if (Parent->isUnion()) {
2135      UnionEntry &En = Unions[Parent];
2136      if (En.first && En.first != Child) {
2137        S.Diag(Init->getSourceLocation(),
2138               diag::err_multiple_mem_union_initialization)
2139          << Field->getDeclName()
2140          << Init->getSourceRange();
2141        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2142          << 0 << En.second->getSourceRange();
2143        return true;
2144      } else if (!En.first) {
2145        En.first = Child;
2146        En.second = Init;
2147      }
2148    }
2149
2150    Child = Parent;
2151    Parent = cast<RecordDecl>(Parent->getDeclContext());
2152  } while (Parent->isAnonymousStructOrUnion());
2153
2154  return false;
2155}
2156}
2157
2158/// ActOnMemInitializers - Handle the member initializers for a constructor.
2159void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
2160                                SourceLocation ColonLoc,
2161                                MemInitTy **meminits, unsigned NumMemInits,
2162                                bool AnyErrors) {
2163  if (!ConstructorDecl)
2164    return;
2165
2166  AdjustDeclIfTemplate(ConstructorDecl);
2167
2168  CXXConstructorDecl *Constructor
2169    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
2170
2171  if (!Constructor) {
2172    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2173    return;
2174  }
2175
2176  CXXBaseOrMemberInitializer **MemInits =
2177    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2178
2179  // Mapping for the duplicate initializers check.
2180  // For member initializers, this is keyed with a FieldDecl*.
2181  // For base initializers, this is keyed with a Type*.
2182  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2183
2184  // Mapping for the inconsistent anonymous-union initializers check.
2185  RedundantUnionMap MemberUnions;
2186
2187  bool HadError = false;
2188  for (unsigned i = 0; i < NumMemInits; i++) {
2189    CXXBaseOrMemberInitializer *Init = MemInits[i];
2190
2191    // Set the source order index.
2192    Init->setSourceOrder(i);
2193
2194    if (Init->isMemberInitializer()) {
2195      FieldDecl *Field = Init->getMember();
2196      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2197          CheckRedundantUnionInit(*this, Init, MemberUnions))
2198        HadError = true;
2199    } else {
2200      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2201      if (CheckRedundantInit(*this, Init, Members[Key]))
2202        HadError = true;
2203    }
2204  }
2205
2206  if (HadError)
2207    return;
2208
2209  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2210
2211  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2212}
2213
2214void
2215Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2216                                             CXXRecordDecl *ClassDecl) {
2217  // Ignore dependent contexts.
2218  if (ClassDecl->isDependentContext())
2219    return;
2220
2221  // FIXME: all the access-control diagnostics are positioned on the
2222  // field/base declaration.  That's probably good; that said, the
2223  // user might reasonably want to know why the destructor is being
2224  // emitted, and we currently don't say.
2225
2226  // Non-static data members.
2227  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2228       E = ClassDecl->field_end(); I != E; ++I) {
2229    FieldDecl *Field = *I;
2230    if (Field->isInvalidDecl())
2231      continue;
2232    QualType FieldType = Context.getBaseElementType(Field->getType());
2233
2234    const RecordType* RT = FieldType->getAs<RecordType>();
2235    if (!RT)
2236      continue;
2237
2238    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2239    if (FieldClassDecl->hasTrivialDestructor())
2240      continue;
2241
2242    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2243    CheckDestructorAccess(Field->getLocation(), Dtor,
2244                          PDiag(diag::err_access_dtor_field)
2245                            << Field->getDeclName()
2246                            << FieldType);
2247
2248    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2249  }
2250
2251  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2252
2253  // Bases.
2254  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2255       E = ClassDecl->bases_end(); Base != E; ++Base) {
2256    // Bases are always records in a well-formed non-dependent class.
2257    const RecordType *RT = Base->getType()->getAs<RecordType>();
2258
2259    // Remember direct virtual bases.
2260    if (Base->isVirtual())
2261      DirectVirtualBases.insert(RT);
2262
2263    // Ignore trivial destructors.
2264    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2265    if (BaseClassDecl->hasTrivialDestructor())
2266      continue;
2267
2268    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2269
2270    // FIXME: caret should be on the start of the class name
2271    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2272                          PDiag(diag::err_access_dtor_base)
2273                            << Base->getType()
2274                            << Base->getSourceRange());
2275
2276    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2277  }
2278
2279  // Virtual bases.
2280  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2281       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2282
2283    // Bases are always records in a well-formed non-dependent class.
2284    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2285
2286    // Ignore direct virtual bases.
2287    if (DirectVirtualBases.count(RT))
2288      continue;
2289
2290    // Ignore trivial destructors.
2291    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2292    if (BaseClassDecl->hasTrivialDestructor())
2293      continue;
2294
2295    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2296    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2297                          PDiag(diag::err_access_dtor_vbase)
2298                            << VBase->getType());
2299
2300    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2301  }
2302}
2303
2304void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2305  if (!CDtorDecl)
2306    return;
2307
2308  if (CXXConstructorDecl *Constructor
2309      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2310    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2311}
2312
2313bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2314                                  unsigned DiagID, AbstractDiagSelID SelID) {
2315  if (SelID == -1)
2316    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2317  else
2318    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2319}
2320
2321bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2322                                  const PartialDiagnostic &PD) {
2323  if (!getLangOptions().CPlusPlus)
2324    return false;
2325
2326  if (const ArrayType *AT = Context.getAsArrayType(T))
2327    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2328
2329  if (const PointerType *PT = T->getAs<PointerType>()) {
2330    // Find the innermost pointer type.
2331    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2332      PT = T;
2333
2334    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2335      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2336  }
2337
2338  const RecordType *RT = T->getAs<RecordType>();
2339  if (!RT)
2340    return false;
2341
2342  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2343
2344  // We can't answer whether something is abstract until it has a
2345  // definition.  If it's currently being defined, we'll walk back
2346  // over all the declarations when we have a full definition.
2347  const CXXRecordDecl *Def = RD->getDefinition();
2348  if (!Def || Def->isBeingDefined())
2349    return false;
2350
2351  if (!RD->isAbstract())
2352    return false;
2353
2354  Diag(Loc, PD) << RD->getDeclName();
2355  DiagnoseAbstractType(RD);
2356
2357  return true;
2358}
2359
2360void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2361  // Check if we've already emitted the list of pure virtual functions
2362  // for this class.
2363  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2364    return;
2365
2366  CXXFinalOverriderMap FinalOverriders;
2367  RD->getFinalOverriders(FinalOverriders);
2368
2369  // Keep a set of seen pure methods so we won't diagnose the same method
2370  // more than once.
2371  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2372
2373  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2374                                   MEnd = FinalOverriders.end();
2375       M != MEnd;
2376       ++M) {
2377    for (OverridingMethods::iterator SO = M->second.begin(),
2378                                  SOEnd = M->second.end();
2379         SO != SOEnd; ++SO) {
2380      // C++ [class.abstract]p4:
2381      //   A class is abstract if it contains or inherits at least one
2382      //   pure virtual function for which the final overrider is pure
2383      //   virtual.
2384
2385      //
2386      if (SO->second.size() != 1)
2387        continue;
2388
2389      if (!SO->second.front().Method->isPure())
2390        continue;
2391
2392      if (!SeenPureMethods.insert(SO->second.front().Method))
2393        continue;
2394
2395      Diag(SO->second.front().Method->getLocation(),
2396           diag::note_pure_virtual_function)
2397        << SO->second.front().Method->getDeclName();
2398    }
2399  }
2400
2401  if (!PureVirtualClassDiagSet)
2402    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2403  PureVirtualClassDiagSet->insert(RD);
2404}
2405
2406namespace {
2407struct AbstractUsageInfo {
2408  Sema &S;
2409  CXXRecordDecl *Record;
2410  CanQualType AbstractType;
2411  bool Invalid;
2412
2413  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2414    : S(S), Record(Record),
2415      AbstractType(S.Context.getCanonicalType(
2416                   S.Context.getTypeDeclType(Record))),
2417      Invalid(false) {}
2418
2419  void DiagnoseAbstractType() {
2420    if (Invalid) return;
2421    S.DiagnoseAbstractType(Record);
2422    Invalid = true;
2423  }
2424
2425  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2426};
2427
2428struct CheckAbstractUsage {
2429  AbstractUsageInfo &Info;
2430  const NamedDecl *Ctx;
2431
2432  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2433    : Info(Info), Ctx(Ctx) {}
2434
2435  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2436    switch (TL.getTypeLocClass()) {
2437#define ABSTRACT_TYPELOC(CLASS, PARENT)
2438#define TYPELOC(CLASS, PARENT) \
2439    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2440#include "clang/AST/TypeLocNodes.def"
2441    }
2442  }
2443
2444  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2445    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2446    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2447      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2448      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2449    }
2450  }
2451
2452  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2453    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2454  }
2455
2456  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2457    // Visit the type parameters from a permissive context.
2458    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2459      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2460      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2461        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2462          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2463      // TODO: other template argument types?
2464    }
2465  }
2466
2467  // Visit pointee types from a permissive context.
2468#define CheckPolymorphic(Type) \
2469  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2470    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2471  }
2472  CheckPolymorphic(PointerTypeLoc)
2473  CheckPolymorphic(ReferenceTypeLoc)
2474  CheckPolymorphic(MemberPointerTypeLoc)
2475  CheckPolymorphic(BlockPointerTypeLoc)
2476
2477  /// Handle all the types we haven't given a more specific
2478  /// implementation for above.
2479  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2480    // Every other kind of type that we haven't called out already
2481    // that has an inner type is either (1) sugar or (2) contains that
2482    // inner type in some way as a subobject.
2483    if (TypeLoc Next = TL.getNextTypeLoc())
2484      return Visit(Next, Sel);
2485
2486    // If there's no inner type and we're in a permissive context,
2487    // don't diagnose.
2488    if (Sel == Sema::AbstractNone) return;
2489
2490    // Check whether the type matches the abstract type.
2491    QualType T = TL.getType();
2492    if (T->isArrayType()) {
2493      Sel = Sema::AbstractArrayType;
2494      T = Info.S.Context.getBaseElementType(T);
2495    }
2496    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2497    if (CT != Info.AbstractType) return;
2498
2499    // It matched; do some magic.
2500    if (Sel == Sema::AbstractArrayType) {
2501      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2502        << T << TL.getSourceRange();
2503    } else {
2504      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2505        << Sel << T << TL.getSourceRange();
2506    }
2507    Info.DiagnoseAbstractType();
2508  }
2509};
2510
2511void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2512                                  Sema::AbstractDiagSelID Sel) {
2513  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2514}
2515
2516}
2517
2518/// Check for invalid uses of an abstract type in a method declaration.
2519static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2520                                    CXXMethodDecl *MD) {
2521  // No need to do the check on definitions, which require that
2522  // the return/param types be complete.
2523  if (MD->isThisDeclarationADefinition())
2524    return;
2525
2526  // For safety's sake, just ignore it if we don't have type source
2527  // information.  This should never happen for non-implicit methods,
2528  // but...
2529  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2530    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2531}
2532
2533/// Check for invalid uses of an abstract type within a class definition.
2534static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2535                                    CXXRecordDecl *RD) {
2536  for (CXXRecordDecl::decl_iterator
2537         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2538    Decl *D = *I;
2539    if (D->isImplicit()) continue;
2540
2541    // Methods and method templates.
2542    if (isa<CXXMethodDecl>(D)) {
2543      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2544    } else if (isa<FunctionTemplateDecl>(D)) {
2545      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2546      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2547
2548    // Fields and static variables.
2549    } else if (isa<FieldDecl>(D)) {
2550      FieldDecl *FD = cast<FieldDecl>(D);
2551      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2552        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2553    } else if (isa<VarDecl>(D)) {
2554      VarDecl *VD = cast<VarDecl>(D);
2555      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2556        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2557
2558    // Nested classes and class templates.
2559    } else if (isa<CXXRecordDecl>(D)) {
2560      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2561    } else if (isa<ClassTemplateDecl>(D)) {
2562      CheckAbstractClassUsage(Info,
2563                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2564    }
2565  }
2566}
2567
2568/// \brief Perform semantic checks on a class definition that has been
2569/// completing, introducing implicitly-declared members, checking for
2570/// abstract types, etc.
2571void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2572  if (!Record || Record->isInvalidDecl())
2573    return;
2574
2575  if (!Record->isDependentType())
2576    AddImplicitlyDeclaredMembersToClass(Record);
2577
2578  if (Record->isInvalidDecl())
2579    return;
2580
2581  // Set access bits correctly on the directly-declared conversions.
2582  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2583  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2584    Convs->setAccess(I, (*I)->getAccess());
2585
2586  // Determine whether we need to check for final overriders. We do
2587  // this either when there are virtual base classes (in which case we
2588  // may end up finding multiple final overriders for a given virtual
2589  // function) or any of the base classes is abstract (in which case
2590  // we might detect that this class is abstract).
2591  bool CheckFinalOverriders = false;
2592  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2593      !Record->isDependentType()) {
2594    if (Record->getNumVBases())
2595      CheckFinalOverriders = true;
2596    else if (!Record->isAbstract()) {
2597      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2598                                                 BEnd = Record->bases_end();
2599           B != BEnd; ++B) {
2600        CXXRecordDecl *BaseDecl
2601          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2602        if (BaseDecl->isAbstract()) {
2603          CheckFinalOverriders = true;
2604          break;
2605        }
2606      }
2607    }
2608  }
2609
2610  if (CheckFinalOverriders) {
2611    CXXFinalOverriderMap FinalOverriders;
2612    Record->getFinalOverriders(FinalOverriders);
2613
2614    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2615                                     MEnd = FinalOverriders.end();
2616         M != MEnd; ++M) {
2617      for (OverridingMethods::iterator SO = M->second.begin(),
2618                                    SOEnd = M->second.end();
2619           SO != SOEnd; ++SO) {
2620        assert(SO->second.size() > 0 &&
2621               "All virtual functions have overridding virtual functions");
2622        if (SO->second.size() == 1) {
2623          // C++ [class.abstract]p4:
2624          //   A class is abstract if it contains or inherits at least one
2625          //   pure virtual function for which the final overrider is pure
2626          //   virtual.
2627          if (SO->second.front().Method->isPure())
2628            Record->setAbstract(true);
2629          continue;
2630        }
2631
2632        // C++ [class.virtual]p2:
2633        //   In a derived class, if a virtual member function of a base
2634        //   class subobject has more than one final overrider the
2635        //   program is ill-formed.
2636        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2637          << (NamedDecl *)M->first << Record;
2638        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2639        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2640                                                 OMEnd = SO->second.end();
2641             OM != OMEnd; ++OM)
2642          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2643            << (NamedDecl *)M->first << OM->Method->getParent();
2644
2645        Record->setInvalidDecl();
2646      }
2647    }
2648  }
2649
2650  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2651    AbstractUsageInfo Info(*this, Record);
2652    CheckAbstractClassUsage(Info, Record);
2653  }
2654
2655  // If this is not an aggregate type and has no user-declared constructor,
2656  // complain about any non-static data members of reference or const scalar
2657  // type, since they will never get initializers.
2658  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2659      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2660    bool Complained = false;
2661    for (RecordDecl::field_iterator F = Record->field_begin(),
2662                                 FEnd = Record->field_end();
2663         F != FEnd; ++F) {
2664      if (F->getType()->isReferenceType() ||
2665          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2666        if (!Complained) {
2667          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2668            << Record->getTagKind() << Record;
2669          Complained = true;
2670        }
2671
2672        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2673          << F->getType()->isReferenceType()
2674          << F->getDeclName();
2675      }
2676    }
2677  }
2678
2679  if (Record->isDynamicClass())
2680    DynamicClasses.push_back(Record);
2681}
2682
2683void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2684                                             DeclPtrTy TagDecl,
2685                                             SourceLocation LBrac,
2686                                             SourceLocation RBrac,
2687                                             AttributeList *AttrList) {
2688  if (!TagDecl)
2689    return;
2690
2691  AdjustDeclIfTemplate(TagDecl);
2692
2693  ActOnFields(S, RLoc, TagDecl,
2694              (DeclPtrTy*)FieldCollector->getCurFields(),
2695              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2696
2697  CheckCompletedCXXClass(
2698                        dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2699}
2700
2701namespace {
2702  /// \brief Helper class that collects exception specifications for
2703  /// implicitly-declared special member functions.
2704  class ImplicitExceptionSpecification {
2705    ASTContext &Context;
2706    bool AllowsAllExceptions;
2707    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2708    llvm::SmallVector<QualType, 4> Exceptions;
2709
2710  public:
2711    explicit ImplicitExceptionSpecification(ASTContext &Context)
2712      : Context(Context), AllowsAllExceptions(false) { }
2713
2714    /// \brief Whether the special member function should have any
2715    /// exception specification at all.
2716    bool hasExceptionSpecification() const {
2717      return !AllowsAllExceptions;
2718    }
2719
2720    /// \brief Whether the special member function should have a
2721    /// throw(...) exception specification (a Microsoft extension).
2722    bool hasAnyExceptionSpecification() const {
2723      return false;
2724    }
2725
2726    /// \brief The number of exceptions in the exception specification.
2727    unsigned size() const { return Exceptions.size(); }
2728
2729    /// \brief The set of exceptions in the exception specification.
2730    const QualType *data() const { return Exceptions.data(); }
2731
2732    /// \brief Note that
2733    void CalledDecl(CXXMethodDecl *Method) {
2734      // If we already know that we allow all exceptions, do nothing.
2735      if (AllowsAllExceptions || !Method)
2736        return;
2737
2738      const FunctionProtoType *Proto
2739        = Method->getType()->getAs<FunctionProtoType>();
2740
2741      // If this function can throw any exceptions, make a note of that.
2742      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2743        AllowsAllExceptions = true;
2744        ExceptionsSeen.clear();
2745        Exceptions.clear();
2746        return;
2747      }
2748
2749      // Record the exceptions in this function's exception specification.
2750      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2751                                              EEnd = Proto->exception_end();
2752           E != EEnd; ++E)
2753        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2754          Exceptions.push_back(*E);
2755    }
2756  };
2757}
2758
2759
2760/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2761/// special functions, such as the default constructor, copy
2762/// constructor, or destructor, to the given C++ class (C++
2763/// [special]p1).  This routine can only be executed just before the
2764/// definition of the class is complete.
2765void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2766  if (!ClassDecl->hasUserDeclaredConstructor())
2767    ++ASTContext::NumImplicitDefaultConstructors;
2768
2769  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2770    ++ASTContext::NumImplicitCopyConstructors;
2771
2772  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2773    ++ASTContext::NumImplicitCopyAssignmentOperators;
2774
2775    // If we have a dynamic class, then the copy assignment operator may be
2776    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2777    // it shows up in the right place in the vtable and that we diagnose
2778    // problems with the implicit exception specification.
2779    if (ClassDecl->isDynamicClass())
2780      DeclareImplicitCopyAssignment(ClassDecl);
2781  }
2782
2783  if (!ClassDecl->hasUserDeclaredDestructor()) {
2784    ++ASTContext::NumImplicitDestructors;
2785
2786    // If we have a dynamic class, then the destructor may be virtual, so we
2787    // have to declare the destructor immediately. This ensures that, e.g., it
2788    // shows up in the right place in the vtable and that we diagnose problems
2789    // with the implicit exception specification.
2790    if (ClassDecl->isDynamicClass())
2791      DeclareImplicitDestructor(ClassDecl);
2792  }
2793}
2794
2795void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2796  Decl *D = TemplateD.getAs<Decl>();
2797  if (!D)
2798    return;
2799
2800  TemplateParameterList *Params = 0;
2801  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2802    Params = Template->getTemplateParameters();
2803  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2804           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2805    Params = PartialSpec->getTemplateParameters();
2806  else
2807    return;
2808
2809  for (TemplateParameterList::iterator Param = Params->begin(),
2810                                    ParamEnd = Params->end();
2811       Param != ParamEnd; ++Param) {
2812    NamedDecl *Named = cast<NamedDecl>(*Param);
2813    if (Named->getDeclName()) {
2814      S->AddDecl(DeclPtrTy::make(Named));
2815      IdResolver.AddDecl(Named);
2816    }
2817  }
2818}
2819
2820void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2821  if (!RecordD) return;
2822  AdjustDeclIfTemplate(RecordD);
2823  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2824  PushDeclContext(S, Record);
2825}
2826
2827void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2828  if (!RecordD) return;
2829  PopDeclContext();
2830}
2831
2832/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2833/// parsing a top-level (non-nested) C++ class, and we are now
2834/// parsing those parts of the given Method declaration that could
2835/// not be parsed earlier (C++ [class.mem]p2), such as default
2836/// arguments. This action should enter the scope of the given
2837/// Method declaration as if we had just parsed the qualified method
2838/// name. However, it should not bring the parameters into scope;
2839/// that will be performed by ActOnDelayedCXXMethodParameter.
2840void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2841}
2842
2843/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2844/// C++ method declaration. We're (re-)introducing the given
2845/// function parameter into scope for use in parsing later parts of
2846/// the method declaration. For example, we could see an
2847/// ActOnParamDefaultArgument event for this parameter.
2848void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2849  if (!ParamD)
2850    return;
2851
2852  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2853
2854  // If this parameter has an unparsed default argument, clear it out
2855  // to make way for the parsed default argument.
2856  if (Param->hasUnparsedDefaultArg())
2857    Param->setDefaultArg(0);
2858
2859  S->AddDecl(DeclPtrTy::make(Param));
2860  if (Param->getDeclName())
2861    IdResolver.AddDecl(Param);
2862}
2863
2864/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2865/// processing the delayed method declaration for Method. The method
2866/// declaration is now considered finished. There may be a separate
2867/// ActOnStartOfFunctionDef action later (not necessarily
2868/// immediately!) for this method, if it was also defined inside the
2869/// class body.
2870void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2871  if (!MethodD)
2872    return;
2873
2874  AdjustDeclIfTemplate(MethodD);
2875
2876  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2877
2878  // Now that we have our default arguments, check the constructor
2879  // again. It could produce additional diagnostics or affect whether
2880  // the class has implicitly-declared destructors, among other
2881  // things.
2882  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2883    CheckConstructor(Constructor);
2884
2885  // Check the default arguments, which we may have added.
2886  if (!Method->isInvalidDecl())
2887    CheckCXXDefaultArguments(Method);
2888}
2889
2890/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2891/// the well-formedness of the constructor declarator @p D with type @p
2892/// R. If there are any errors in the declarator, this routine will
2893/// emit diagnostics and set the invalid bit to true.  In any case, the type
2894/// will be updated to reflect a well-formed type for the constructor and
2895/// returned.
2896QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2897                                          FunctionDecl::StorageClass &SC) {
2898  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2899
2900  // C++ [class.ctor]p3:
2901  //   A constructor shall not be virtual (10.3) or static (9.4). A
2902  //   constructor can be invoked for a const, volatile or const
2903  //   volatile object. A constructor shall not be declared const,
2904  //   volatile, or const volatile (9.3.2).
2905  if (isVirtual) {
2906    if (!D.isInvalidType())
2907      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2908        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2909        << SourceRange(D.getIdentifierLoc());
2910    D.setInvalidType();
2911  }
2912  if (SC == FunctionDecl::Static) {
2913    if (!D.isInvalidType())
2914      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2915        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2916        << SourceRange(D.getIdentifierLoc());
2917    D.setInvalidType();
2918    SC = FunctionDecl::None;
2919  }
2920
2921  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2922  if (FTI.TypeQuals != 0) {
2923    if (FTI.TypeQuals & Qualifiers::Const)
2924      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2925        << "const" << SourceRange(D.getIdentifierLoc());
2926    if (FTI.TypeQuals & Qualifiers::Volatile)
2927      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2928        << "volatile" << SourceRange(D.getIdentifierLoc());
2929    if (FTI.TypeQuals & Qualifiers::Restrict)
2930      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2931        << "restrict" << SourceRange(D.getIdentifierLoc());
2932  }
2933
2934  // Rebuild the function type "R" without any type qualifiers (in
2935  // case any of the errors above fired) and with "void" as the
2936  // return type, since constructors don't have return types.
2937  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2938  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2939                                 Proto->getNumArgs(),
2940                                 Proto->isVariadic(), 0,
2941                                 Proto->hasExceptionSpec(),
2942                                 Proto->hasAnyExceptionSpec(),
2943                                 Proto->getNumExceptions(),
2944                                 Proto->exception_begin(),
2945                                 Proto->getExtInfo());
2946}
2947
2948/// CheckConstructor - Checks a fully-formed constructor for
2949/// well-formedness, issuing any diagnostics required. Returns true if
2950/// the constructor declarator is invalid.
2951void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2952  CXXRecordDecl *ClassDecl
2953    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2954  if (!ClassDecl)
2955    return Constructor->setInvalidDecl();
2956
2957  // C++ [class.copy]p3:
2958  //   A declaration of a constructor for a class X is ill-formed if
2959  //   its first parameter is of type (optionally cv-qualified) X and
2960  //   either there are no other parameters or else all other
2961  //   parameters have default arguments.
2962  if (!Constructor->isInvalidDecl() &&
2963      ((Constructor->getNumParams() == 1) ||
2964       (Constructor->getNumParams() > 1 &&
2965        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2966      Constructor->getTemplateSpecializationKind()
2967                                              != TSK_ImplicitInstantiation) {
2968    QualType ParamType = Constructor->getParamDecl(0)->getType();
2969    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2970    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2971      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2972      const char *ConstRef
2973        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2974                                                        : " const &";
2975      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2976        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2977
2978      // FIXME: Rather that making the constructor invalid, we should endeavor
2979      // to fix the type.
2980      Constructor->setInvalidDecl();
2981    }
2982  }
2983
2984  // Notify the class that we've added a constructor.  In principle we
2985  // don't need to do this for out-of-line declarations; in practice
2986  // we only instantiate the most recent declaration of a method, so
2987  // we have to call this for everything but friends.
2988  if (!Constructor->getFriendObjectKind())
2989    ClassDecl->addedConstructor(Context, Constructor);
2990}
2991
2992/// CheckDestructor - Checks a fully-formed destructor definition for
2993/// well-formedness, issuing any diagnostics required.  Returns true
2994/// on error.
2995bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2996  CXXRecordDecl *RD = Destructor->getParent();
2997
2998  if (Destructor->isVirtual()) {
2999    SourceLocation Loc;
3000
3001    if (!Destructor->isImplicit())
3002      Loc = Destructor->getLocation();
3003    else
3004      Loc = RD->getLocation();
3005
3006    // If we have a virtual destructor, look up the deallocation function
3007    FunctionDecl *OperatorDelete = 0;
3008    DeclarationName Name =
3009    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3010    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3011      return true;
3012
3013    MarkDeclarationReferenced(Loc, OperatorDelete);
3014
3015    Destructor->setOperatorDelete(OperatorDelete);
3016  }
3017
3018  return false;
3019}
3020
3021static inline bool
3022FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3023  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3024          FTI.ArgInfo[0].Param &&
3025          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
3026}
3027
3028/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3029/// the well-formednes of the destructor declarator @p D with type @p
3030/// R. If there are any errors in the declarator, this routine will
3031/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3032/// will be updated to reflect a well-formed type for the destructor and
3033/// returned.
3034QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3035                                         FunctionDecl::StorageClass& SC) {
3036  // C++ [class.dtor]p1:
3037  //   [...] A typedef-name that names a class is a class-name
3038  //   (7.1.3); however, a typedef-name that names a class shall not
3039  //   be used as the identifier in the declarator for a destructor
3040  //   declaration.
3041  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3042  if (isa<TypedefType>(DeclaratorType))
3043    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3044      << DeclaratorType;
3045
3046  // C++ [class.dtor]p2:
3047  //   A destructor is used to destroy objects of its class type. A
3048  //   destructor takes no parameters, and no return type can be
3049  //   specified for it (not even void). The address of a destructor
3050  //   shall not be taken. A destructor shall not be static. A
3051  //   destructor can be invoked for a const, volatile or const
3052  //   volatile object. A destructor shall not be declared const,
3053  //   volatile or const volatile (9.3.2).
3054  if (SC == FunctionDecl::Static) {
3055    if (!D.isInvalidType())
3056      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3057        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3058        << SourceRange(D.getIdentifierLoc())
3059        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3060
3061    SC = FunctionDecl::None;
3062  }
3063  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3064    // Destructors don't have return types, but the parser will
3065    // happily parse something like:
3066    //
3067    //   class X {
3068    //     float ~X();
3069    //   };
3070    //
3071    // The return type will be eliminated later.
3072    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3073      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3074      << SourceRange(D.getIdentifierLoc());
3075  }
3076
3077  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3078  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3079    if (FTI.TypeQuals & Qualifiers::Const)
3080      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3081        << "const" << SourceRange(D.getIdentifierLoc());
3082    if (FTI.TypeQuals & Qualifiers::Volatile)
3083      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3084        << "volatile" << SourceRange(D.getIdentifierLoc());
3085    if (FTI.TypeQuals & Qualifiers::Restrict)
3086      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3087        << "restrict" << SourceRange(D.getIdentifierLoc());
3088    D.setInvalidType();
3089  }
3090
3091  // Make sure we don't have any parameters.
3092  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3093    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3094
3095    // Delete the parameters.
3096    FTI.freeArgs();
3097    D.setInvalidType();
3098  }
3099
3100  // Make sure the destructor isn't variadic.
3101  if (FTI.isVariadic) {
3102    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3103    D.setInvalidType();
3104  }
3105
3106  // Rebuild the function type "R" without any type qualifiers or
3107  // parameters (in case any of the errors above fired) and with
3108  // "void" as the return type, since destructors don't have return
3109  // types.
3110  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3111  if (!Proto)
3112    return QualType();
3113
3114  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3115                                 Proto->hasExceptionSpec(),
3116                                 Proto->hasAnyExceptionSpec(),
3117                                 Proto->getNumExceptions(),
3118                                 Proto->exception_begin(),
3119                                 Proto->getExtInfo());
3120}
3121
3122/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3123/// well-formednes of the conversion function declarator @p D with
3124/// type @p R. If there are any errors in the declarator, this routine
3125/// will emit diagnostics and return true. Otherwise, it will return
3126/// false. Either way, the type @p R will be updated to reflect a
3127/// well-formed type for the conversion operator.
3128void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3129                                     FunctionDecl::StorageClass& SC) {
3130  // C++ [class.conv.fct]p1:
3131  //   Neither parameter types nor return type can be specified. The
3132  //   type of a conversion function (8.3.5) is "function taking no
3133  //   parameter returning conversion-type-id."
3134  if (SC == FunctionDecl::Static) {
3135    if (!D.isInvalidType())
3136      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3137        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3138        << SourceRange(D.getIdentifierLoc());
3139    D.setInvalidType();
3140    SC = FunctionDecl::None;
3141  }
3142
3143  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3144
3145  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3146    // Conversion functions don't have return types, but the parser will
3147    // happily parse something like:
3148    //
3149    //   class X {
3150    //     float operator bool();
3151    //   };
3152    //
3153    // The return type will be changed later anyway.
3154    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3155      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3156      << SourceRange(D.getIdentifierLoc());
3157    D.setInvalidType();
3158  }
3159
3160  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3161
3162  // Make sure we don't have any parameters.
3163  if (Proto->getNumArgs() > 0) {
3164    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3165
3166    // Delete the parameters.
3167    D.getTypeObject(0).Fun.freeArgs();
3168    D.setInvalidType();
3169  } else if (Proto->isVariadic()) {
3170    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3171    D.setInvalidType();
3172  }
3173
3174  // Diagnose "&operator bool()" and other such nonsense.  This
3175  // is actually a gcc extension which we don't support.
3176  if (Proto->getResultType() != ConvType) {
3177    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3178      << Proto->getResultType();
3179    D.setInvalidType();
3180    ConvType = Proto->getResultType();
3181  }
3182
3183  // C++ [class.conv.fct]p4:
3184  //   The conversion-type-id shall not represent a function type nor
3185  //   an array type.
3186  if (ConvType->isArrayType()) {
3187    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3188    ConvType = Context.getPointerType(ConvType);
3189    D.setInvalidType();
3190  } else if (ConvType->isFunctionType()) {
3191    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3192    ConvType = Context.getPointerType(ConvType);
3193    D.setInvalidType();
3194  }
3195
3196  // Rebuild the function type "R" without any parameters (in case any
3197  // of the errors above fired) and with the conversion type as the
3198  // return type.
3199  if (D.isInvalidType()) {
3200    R = Context.getFunctionType(ConvType, 0, 0, false,
3201                                Proto->getTypeQuals(),
3202                                Proto->hasExceptionSpec(),
3203                                Proto->hasAnyExceptionSpec(),
3204                                Proto->getNumExceptions(),
3205                                Proto->exception_begin(),
3206                                Proto->getExtInfo());
3207  }
3208
3209  // C++0x explicit conversion operators.
3210  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3211    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3212         diag::warn_explicit_conversion_functions)
3213      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3214}
3215
3216/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3217/// the declaration of the given C++ conversion function. This routine
3218/// is responsible for recording the conversion function in the C++
3219/// class, if possible.
3220Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3221  assert(Conversion && "Expected to receive a conversion function declaration");
3222
3223  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3224
3225  // Make sure we aren't redeclaring the conversion function.
3226  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3227
3228  // C++ [class.conv.fct]p1:
3229  //   [...] A conversion function is never used to convert a
3230  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3231  //   same object type (or a reference to it), to a (possibly
3232  //   cv-qualified) base class of that type (or a reference to it),
3233  //   or to (possibly cv-qualified) void.
3234  // FIXME: Suppress this warning if the conversion function ends up being a
3235  // virtual function that overrides a virtual function in a base class.
3236  QualType ClassType
3237    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3238  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3239    ConvType = ConvTypeRef->getPointeeType();
3240  if (ConvType->isRecordType()) {
3241    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3242    if (ConvType == ClassType)
3243      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3244        << ClassType;
3245    else if (IsDerivedFrom(ClassType, ConvType))
3246      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3247        <<  ClassType << ConvType;
3248  } else if (ConvType->isVoidType()) {
3249    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3250      << ClassType << ConvType;
3251  }
3252
3253  if (Conversion->getPrimaryTemplate()) {
3254    // ignore specializations
3255  } else if (Conversion->getPreviousDeclaration()) {
3256    if (FunctionTemplateDecl *ConversionTemplate
3257                                  = Conversion->getDescribedFunctionTemplate()) {
3258      if (ClassDecl->replaceConversion(
3259                                   ConversionTemplate->getPreviousDeclaration(),
3260                                       ConversionTemplate))
3261        return DeclPtrTy::make(ConversionTemplate);
3262    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3263                                            Conversion))
3264      return DeclPtrTy::make(Conversion);
3265    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3266  } else if (FunctionTemplateDecl *ConversionTemplate
3267               = Conversion->getDescribedFunctionTemplate())
3268    ClassDecl->addConversionFunction(ConversionTemplate);
3269  else
3270    ClassDecl->addConversionFunction(Conversion);
3271
3272  return DeclPtrTy::make(Conversion);
3273}
3274
3275//===----------------------------------------------------------------------===//
3276// Namespace Handling
3277//===----------------------------------------------------------------------===//
3278
3279/// ActOnStartNamespaceDef - This is called at the start of a namespace
3280/// definition.
3281Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3282                                             SourceLocation IdentLoc,
3283                                             IdentifierInfo *II,
3284                                             SourceLocation LBrace,
3285                                             AttributeList *AttrList) {
3286  // anonymous namespace starts at its left brace
3287  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3288    (II ? IdentLoc : LBrace) , II);
3289  Namespc->setLBracLoc(LBrace);
3290
3291  Scope *DeclRegionScope = NamespcScope->getParent();
3292
3293  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3294
3295  if (const VisibilityAttr *attr = Namespc->getAttr<VisibilityAttr>())
3296    PushPragmaVisibility(attr->getVisibility(), attr->getLocation());
3297
3298  if (II) {
3299    // C++ [namespace.def]p2:
3300    // The identifier in an original-namespace-definition shall not have been
3301    // previously defined in the declarative region in which the
3302    // original-namespace-definition appears. The identifier in an
3303    // original-namespace-definition is the name of the namespace. Subsequently
3304    // in that declarative region, it is treated as an original-namespace-name.
3305
3306    NamedDecl *PrevDecl
3307      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3308                         ForRedeclaration);
3309
3310    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3311      // This is an extended namespace definition.
3312      // Attach this namespace decl to the chain of extended namespace
3313      // definitions.
3314      OrigNS->setNextNamespace(Namespc);
3315      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3316
3317      // Remove the previous declaration from the scope.
3318      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3319        IdResolver.RemoveDecl(OrigNS);
3320        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3321      }
3322    } else if (PrevDecl) {
3323      // This is an invalid name redefinition.
3324      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3325       << Namespc->getDeclName();
3326      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3327      Namespc->setInvalidDecl();
3328      // Continue on to push Namespc as current DeclContext and return it.
3329    } else if (II->isStr("std") &&
3330               CurContext->getLookupContext()->isTranslationUnit()) {
3331      // This is the first "real" definition of the namespace "std", so update
3332      // our cache of the "std" namespace to point at this definition.
3333      if (NamespaceDecl *StdNS = getStdNamespace()) {
3334        // We had already defined a dummy namespace "std". Link this new
3335        // namespace definition to the dummy namespace "std".
3336        StdNS->setNextNamespace(Namespc);
3337        StdNS->setLocation(IdentLoc);
3338        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3339      }
3340
3341      // Make our StdNamespace cache point at the first real definition of the
3342      // "std" namespace.
3343      StdNamespace = Namespc;
3344    }
3345
3346    PushOnScopeChains(Namespc, DeclRegionScope);
3347  } else {
3348    // Anonymous namespaces.
3349    assert(Namespc->isAnonymousNamespace());
3350
3351    // Link the anonymous namespace into its parent.
3352    NamespaceDecl *PrevDecl;
3353    DeclContext *Parent = CurContext->getLookupContext();
3354    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3355      PrevDecl = TU->getAnonymousNamespace();
3356      TU->setAnonymousNamespace(Namespc);
3357    } else {
3358      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3359      PrevDecl = ND->getAnonymousNamespace();
3360      ND->setAnonymousNamespace(Namespc);
3361    }
3362
3363    // Link the anonymous namespace with its previous declaration.
3364    if (PrevDecl) {
3365      assert(PrevDecl->isAnonymousNamespace());
3366      assert(!PrevDecl->getNextNamespace());
3367      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3368      PrevDecl->setNextNamespace(Namespc);
3369    }
3370
3371    CurContext->addDecl(Namespc);
3372
3373    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3374    //   behaves as if it were replaced by
3375    //     namespace unique { /* empty body */ }
3376    //     using namespace unique;
3377    //     namespace unique { namespace-body }
3378    //   where all occurrences of 'unique' in a translation unit are
3379    //   replaced by the same identifier and this identifier differs
3380    //   from all other identifiers in the entire program.
3381
3382    // We just create the namespace with an empty name and then add an
3383    // implicit using declaration, just like the standard suggests.
3384    //
3385    // CodeGen enforces the "universally unique" aspect by giving all
3386    // declarations semantically contained within an anonymous
3387    // namespace internal linkage.
3388
3389    if (!PrevDecl) {
3390      UsingDirectiveDecl* UD
3391        = UsingDirectiveDecl::Create(Context, CurContext,
3392                                     /* 'using' */ LBrace,
3393                                     /* 'namespace' */ SourceLocation(),
3394                                     /* qualifier */ SourceRange(),
3395                                     /* NNS */ NULL,
3396                                     /* identifier */ SourceLocation(),
3397                                     Namespc,
3398                                     /* Ancestor */ CurContext);
3399      UD->setImplicit();
3400      CurContext->addDecl(UD);
3401    }
3402  }
3403
3404  // Although we could have an invalid decl (i.e. the namespace name is a
3405  // redefinition), push it as current DeclContext and try to continue parsing.
3406  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3407  // for the namespace has the declarations that showed up in that particular
3408  // namespace definition.
3409  PushDeclContext(NamespcScope, Namespc);
3410  return DeclPtrTy::make(Namespc);
3411}
3412
3413/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3414/// is a namespace alias, returns the namespace it points to.
3415static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3416  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3417    return AD->getNamespace();
3418  return dyn_cast_or_null<NamespaceDecl>(D);
3419}
3420
3421/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3422/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3423void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3424  Decl *Dcl = D.getAs<Decl>();
3425  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3426  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3427  Namespc->setRBracLoc(RBrace);
3428  PopDeclContext();
3429  if (Namespc->hasAttr<VisibilityAttr>())
3430    PopPragmaVisibility();
3431}
3432
3433/// \brief Retrieve the special "std" namespace, which may require us to
3434/// implicitly define the namespace.
3435NamespaceDecl *Sema::getOrCreateStdNamespace() {
3436  if (!StdNamespace) {
3437    // The "std" namespace has not yet been defined, so build one implicitly.
3438    StdNamespace = NamespaceDecl::Create(Context,
3439                                         Context.getTranslationUnitDecl(),
3440                                         SourceLocation(),
3441                                         &PP.getIdentifierTable().get("std"));
3442    getStdNamespace()->setImplicit(true);
3443  }
3444
3445  return getStdNamespace();
3446}
3447
3448Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3449                                          SourceLocation UsingLoc,
3450                                          SourceLocation NamespcLoc,
3451                                          CXXScopeSpec &SS,
3452                                          SourceLocation IdentLoc,
3453                                          IdentifierInfo *NamespcName,
3454                                          AttributeList *AttrList) {
3455  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3456  assert(NamespcName && "Invalid NamespcName.");
3457  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3458  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3459
3460  UsingDirectiveDecl *UDir = 0;
3461  NestedNameSpecifier *Qualifier = 0;
3462  if (SS.isSet())
3463    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3464
3465  // Lookup namespace name.
3466  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3467  LookupParsedName(R, S, &SS);
3468  if (R.isAmbiguous())
3469    return DeclPtrTy();
3470
3471  if (R.empty()) {
3472    // Allow "using namespace std;" or "using namespace ::std;" even if
3473    // "std" hasn't been defined yet, for GCC compatibility.
3474    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3475        NamespcName->isStr("std")) {
3476      Diag(IdentLoc, diag::ext_using_undefined_std);
3477      R.addDecl(getOrCreateStdNamespace());
3478      R.resolveKind();
3479    }
3480    // Otherwise, attempt typo correction.
3481    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3482                                                       CTC_NoKeywords, 0)) {
3483      if (R.getAsSingle<NamespaceDecl>() ||
3484          R.getAsSingle<NamespaceAliasDecl>()) {
3485        if (DeclContext *DC = computeDeclContext(SS, false))
3486          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3487            << NamespcName << DC << Corrected << SS.getRange()
3488            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3489        else
3490          Diag(IdentLoc, diag::err_using_directive_suggest)
3491            << NamespcName << Corrected
3492            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3493        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3494          << Corrected;
3495
3496        NamespcName = Corrected.getAsIdentifierInfo();
3497      } else {
3498        R.clear();
3499        R.setLookupName(NamespcName);
3500      }
3501    }
3502  }
3503
3504  if (!R.empty()) {
3505    NamedDecl *Named = R.getFoundDecl();
3506    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3507        && "expected namespace decl");
3508    // C++ [namespace.udir]p1:
3509    //   A using-directive specifies that the names in the nominated
3510    //   namespace can be used in the scope in which the
3511    //   using-directive appears after the using-directive. During
3512    //   unqualified name lookup (3.4.1), the names appear as if they
3513    //   were declared in the nearest enclosing namespace which
3514    //   contains both the using-directive and the nominated
3515    //   namespace. [Note: in this context, "contains" means "contains
3516    //   directly or indirectly". ]
3517
3518    // Find enclosing context containing both using-directive and
3519    // nominated namespace.
3520    NamespaceDecl *NS = getNamespaceDecl(Named);
3521    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3522    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3523      CommonAncestor = CommonAncestor->getParent();
3524
3525    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3526                                      SS.getRange(),
3527                                      (NestedNameSpecifier *)SS.getScopeRep(),
3528                                      IdentLoc, Named, CommonAncestor);
3529    PushUsingDirective(S, UDir);
3530  } else {
3531    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3532  }
3533
3534  // FIXME: We ignore attributes for now.
3535  delete AttrList;
3536  return DeclPtrTy::make(UDir);
3537}
3538
3539void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3540  // If scope has associated entity, then using directive is at namespace
3541  // or translation unit scope. We add UsingDirectiveDecls, into
3542  // it's lookup structure.
3543  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3544    Ctx->addDecl(UDir);
3545  else
3546    // Otherwise it is block-sope. using-directives will affect lookup
3547    // only to the end of scope.
3548    S->PushUsingDirective(DeclPtrTy::make(UDir));
3549}
3550
3551
3552Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3553                                            AccessSpecifier AS,
3554                                            bool HasUsingKeyword,
3555                                            SourceLocation UsingLoc,
3556                                            CXXScopeSpec &SS,
3557                                            UnqualifiedId &Name,
3558                                            AttributeList *AttrList,
3559                                            bool IsTypeName,
3560                                            SourceLocation TypenameLoc) {
3561  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3562
3563  switch (Name.getKind()) {
3564  case UnqualifiedId::IK_Identifier:
3565  case UnqualifiedId::IK_OperatorFunctionId:
3566  case UnqualifiedId::IK_LiteralOperatorId:
3567  case UnqualifiedId::IK_ConversionFunctionId:
3568    break;
3569
3570  case UnqualifiedId::IK_ConstructorName:
3571  case UnqualifiedId::IK_ConstructorTemplateId:
3572    // C++0x inherited constructors.
3573    if (getLangOptions().CPlusPlus0x) break;
3574
3575    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3576      << SS.getRange();
3577    return DeclPtrTy();
3578
3579  case UnqualifiedId::IK_DestructorName:
3580    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3581      << SS.getRange();
3582    return DeclPtrTy();
3583
3584  case UnqualifiedId::IK_TemplateId:
3585    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3586      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3587    return DeclPtrTy();
3588  }
3589
3590  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3591  DeclarationName TargetName = TargetNameInfo.getName();
3592  if (!TargetName)
3593    return DeclPtrTy();
3594
3595  // Warn about using declarations.
3596  // TODO: store that the declaration was written without 'using' and
3597  // talk about access decls instead of using decls in the
3598  // diagnostics.
3599  if (!HasUsingKeyword) {
3600    UsingLoc = Name.getSourceRange().getBegin();
3601
3602    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3603      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3604  }
3605
3606  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3607                                        TargetNameInfo, AttrList,
3608                                        /* IsInstantiation */ false,
3609                                        IsTypeName, TypenameLoc);
3610  if (UD)
3611    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3612
3613  return DeclPtrTy::make(UD);
3614}
3615
3616/// \brief Determine whether a using declaration considers the given
3617/// declarations as "equivalent", e.g., if they are redeclarations of
3618/// the same entity or are both typedefs of the same type.
3619static bool
3620IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3621                         bool &SuppressRedeclaration) {
3622  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3623    SuppressRedeclaration = false;
3624    return true;
3625  }
3626
3627  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3628    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3629      SuppressRedeclaration = true;
3630      return Context.hasSameType(TD1->getUnderlyingType(),
3631                                 TD2->getUnderlyingType());
3632    }
3633
3634  return false;
3635}
3636
3637
3638/// Determines whether to create a using shadow decl for a particular
3639/// decl, given the set of decls existing prior to this using lookup.
3640bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3641                                const LookupResult &Previous) {
3642  // Diagnose finding a decl which is not from a base class of the
3643  // current class.  We do this now because there are cases where this
3644  // function will silently decide not to build a shadow decl, which
3645  // will pre-empt further diagnostics.
3646  //
3647  // We don't need to do this in C++0x because we do the check once on
3648  // the qualifier.
3649  //
3650  // FIXME: diagnose the following if we care enough:
3651  //   struct A { int foo; };
3652  //   struct B : A { using A::foo; };
3653  //   template <class T> struct C : A {};
3654  //   template <class T> struct D : C<T> { using B::foo; } // <---
3655  // This is invalid (during instantiation) in C++03 because B::foo
3656  // resolves to the using decl in B, which is not a base class of D<T>.
3657  // We can't diagnose it immediately because C<T> is an unknown
3658  // specialization.  The UsingShadowDecl in D<T> then points directly
3659  // to A::foo, which will look well-formed when we instantiate.
3660  // The right solution is to not collapse the shadow-decl chain.
3661  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3662    DeclContext *OrigDC = Orig->getDeclContext();
3663
3664    // Handle enums and anonymous structs.
3665    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3666    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3667    while (OrigRec->isAnonymousStructOrUnion())
3668      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3669
3670    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3671      if (OrigDC == CurContext) {
3672        Diag(Using->getLocation(),
3673             diag::err_using_decl_nested_name_specifier_is_current_class)
3674          << Using->getNestedNameRange();
3675        Diag(Orig->getLocation(), diag::note_using_decl_target);
3676        return true;
3677      }
3678
3679      Diag(Using->getNestedNameRange().getBegin(),
3680           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3681        << Using->getTargetNestedNameDecl()
3682        << cast<CXXRecordDecl>(CurContext)
3683        << Using->getNestedNameRange();
3684      Diag(Orig->getLocation(), diag::note_using_decl_target);
3685      return true;
3686    }
3687  }
3688
3689  if (Previous.empty()) return false;
3690
3691  NamedDecl *Target = Orig;
3692  if (isa<UsingShadowDecl>(Target))
3693    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3694
3695  // If the target happens to be one of the previous declarations, we
3696  // don't have a conflict.
3697  //
3698  // FIXME: but we might be increasing its access, in which case we
3699  // should redeclare it.
3700  NamedDecl *NonTag = 0, *Tag = 0;
3701  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3702         I != E; ++I) {
3703    NamedDecl *D = (*I)->getUnderlyingDecl();
3704    bool Result;
3705    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3706      return Result;
3707
3708    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3709  }
3710
3711  if (Target->isFunctionOrFunctionTemplate()) {
3712    FunctionDecl *FD;
3713    if (isa<FunctionTemplateDecl>(Target))
3714      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3715    else
3716      FD = cast<FunctionDecl>(Target);
3717
3718    NamedDecl *OldDecl = 0;
3719    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3720    case Ovl_Overload:
3721      return false;
3722
3723    case Ovl_NonFunction:
3724      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3725      break;
3726
3727    // We found a decl with the exact signature.
3728    case Ovl_Match:
3729      // If we're in a record, we want to hide the target, so we
3730      // return true (without a diagnostic) to tell the caller not to
3731      // build a shadow decl.
3732      if (CurContext->isRecord())
3733        return true;
3734
3735      // If we're not in a record, this is an error.
3736      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3737      break;
3738    }
3739
3740    Diag(Target->getLocation(), diag::note_using_decl_target);
3741    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3742    return true;
3743  }
3744
3745  // Target is not a function.
3746
3747  if (isa<TagDecl>(Target)) {
3748    // No conflict between a tag and a non-tag.
3749    if (!Tag) return false;
3750
3751    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3752    Diag(Target->getLocation(), diag::note_using_decl_target);
3753    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3754    return true;
3755  }
3756
3757  // No conflict between a tag and a non-tag.
3758  if (!NonTag) return false;
3759
3760  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3761  Diag(Target->getLocation(), diag::note_using_decl_target);
3762  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3763  return true;
3764}
3765
3766/// Builds a shadow declaration corresponding to a 'using' declaration.
3767UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3768                                            UsingDecl *UD,
3769                                            NamedDecl *Orig) {
3770
3771  // If we resolved to another shadow declaration, just coalesce them.
3772  NamedDecl *Target = Orig;
3773  if (isa<UsingShadowDecl>(Target)) {
3774    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3775    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3776  }
3777
3778  UsingShadowDecl *Shadow
3779    = UsingShadowDecl::Create(Context, CurContext,
3780                              UD->getLocation(), UD, Target);
3781  UD->addShadowDecl(Shadow);
3782
3783  if (S)
3784    PushOnScopeChains(Shadow, S);
3785  else
3786    CurContext->addDecl(Shadow);
3787  Shadow->setAccess(UD->getAccess());
3788
3789  // Register it as a conversion if appropriate.
3790  if (Shadow->getDeclName().getNameKind()
3791        == DeclarationName::CXXConversionFunctionName)
3792    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3793
3794  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3795    Shadow->setInvalidDecl();
3796
3797  return Shadow;
3798}
3799
3800/// Hides a using shadow declaration.  This is required by the current
3801/// using-decl implementation when a resolvable using declaration in a
3802/// class is followed by a declaration which would hide or override
3803/// one or more of the using decl's targets; for example:
3804///
3805///   struct Base { void foo(int); };
3806///   struct Derived : Base {
3807///     using Base::foo;
3808///     void foo(int);
3809///   };
3810///
3811/// The governing language is C++03 [namespace.udecl]p12:
3812///
3813///   When a using-declaration brings names from a base class into a
3814///   derived class scope, member functions in the derived class
3815///   override and/or hide member functions with the same name and
3816///   parameter types in a base class (rather than conflicting).
3817///
3818/// There are two ways to implement this:
3819///   (1) optimistically create shadow decls when they're not hidden
3820///       by existing declarations, or
3821///   (2) don't create any shadow decls (or at least don't make them
3822///       visible) until we've fully parsed/instantiated the class.
3823/// The problem with (1) is that we might have to retroactively remove
3824/// a shadow decl, which requires several O(n) operations because the
3825/// decl structures are (very reasonably) not designed for removal.
3826/// (2) avoids this but is very fiddly and phase-dependent.
3827void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3828  if (Shadow->getDeclName().getNameKind() ==
3829        DeclarationName::CXXConversionFunctionName)
3830    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3831
3832  // Remove it from the DeclContext...
3833  Shadow->getDeclContext()->removeDecl(Shadow);
3834
3835  // ...and the scope, if applicable...
3836  if (S) {
3837    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3838    IdResolver.RemoveDecl(Shadow);
3839  }
3840
3841  // ...and the using decl.
3842  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3843
3844  // TODO: complain somehow if Shadow was used.  It shouldn't
3845  // be possible for this to happen, because...?
3846}
3847
3848/// Builds a using declaration.
3849///
3850/// \param IsInstantiation - Whether this call arises from an
3851///   instantiation of an unresolved using declaration.  We treat
3852///   the lookup differently for these declarations.
3853NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3854                                       SourceLocation UsingLoc,
3855                                       CXXScopeSpec &SS,
3856                                       const DeclarationNameInfo &NameInfo,
3857                                       AttributeList *AttrList,
3858                                       bool IsInstantiation,
3859                                       bool IsTypeName,
3860                                       SourceLocation TypenameLoc) {
3861  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3862  SourceLocation IdentLoc = NameInfo.getLoc();
3863  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3864
3865  // FIXME: We ignore attributes for now.
3866  delete AttrList;
3867
3868  if (SS.isEmpty()) {
3869    Diag(IdentLoc, diag::err_using_requires_qualname);
3870    return 0;
3871  }
3872
3873  // Do the redeclaration lookup in the current scope.
3874  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
3875                        ForRedeclaration);
3876  Previous.setHideTags(false);
3877  if (S) {
3878    LookupName(Previous, S);
3879
3880    // It is really dumb that we have to do this.
3881    LookupResult::Filter F = Previous.makeFilter();
3882    while (F.hasNext()) {
3883      NamedDecl *D = F.next();
3884      if (!isDeclInScope(D, CurContext, S))
3885        F.erase();
3886    }
3887    F.done();
3888  } else {
3889    assert(IsInstantiation && "no scope in non-instantiation");
3890    assert(CurContext->isRecord() && "scope not record in instantiation");
3891    LookupQualifiedName(Previous, CurContext);
3892  }
3893
3894  NestedNameSpecifier *NNS =
3895    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3896
3897  // Check for invalid redeclarations.
3898  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3899    return 0;
3900
3901  // Check for bad qualifiers.
3902  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3903    return 0;
3904
3905  DeclContext *LookupContext = computeDeclContext(SS);
3906  NamedDecl *D;
3907  if (!LookupContext) {
3908    if (IsTypeName) {
3909      // FIXME: not all declaration name kinds are legal here
3910      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3911                                              UsingLoc, TypenameLoc,
3912                                              SS.getRange(), NNS,
3913                                              IdentLoc, NameInfo.getName());
3914    } else {
3915      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3916                                           UsingLoc, SS.getRange(),
3917                                           NNS, NameInfo);
3918    }
3919  } else {
3920    D = UsingDecl::Create(Context, CurContext,
3921                          SS.getRange(), UsingLoc, NNS, NameInfo,
3922                          IsTypeName);
3923  }
3924  D->setAccess(AS);
3925  CurContext->addDecl(D);
3926
3927  if (!LookupContext) return D;
3928  UsingDecl *UD = cast<UsingDecl>(D);
3929
3930  if (RequireCompleteDeclContext(SS, LookupContext)) {
3931    UD->setInvalidDecl();
3932    return UD;
3933  }
3934
3935  // Look up the target name.
3936
3937  LookupResult R(*this, NameInfo, LookupOrdinaryName);
3938
3939  // Unlike most lookups, we don't always want to hide tag
3940  // declarations: tag names are visible through the using declaration
3941  // even if hidden by ordinary names, *except* in a dependent context
3942  // where it's important for the sanity of two-phase lookup.
3943  if (!IsInstantiation)
3944    R.setHideTags(false);
3945
3946  LookupQualifiedName(R, LookupContext);
3947
3948  if (R.empty()) {
3949    Diag(IdentLoc, diag::err_no_member)
3950      << NameInfo.getName() << LookupContext << SS.getRange();
3951    UD->setInvalidDecl();
3952    return UD;
3953  }
3954
3955  if (R.isAmbiguous()) {
3956    UD->setInvalidDecl();
3957    return UD;
3958  }
3959
3960  if (IsTypeName) {
3961    // If we asked for a typename and got a non-type decl, error out.
3962    if (!R.getAsSingle<TypeDecl>()) {
3963      Diag(IdentLoc, diag::err_using_typename_non_type);
3964      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3965        Diag((*I)->getUnderlyingDecl()->getLocation(),
3966             diag::note_using_decl_target);
3967      UD->setInvalidDecl();
3968      return UD;
3969    }
3970  } else {
3971    // If we asked for a non-typename and we got a type, error out,
3972    // but only if this is an instantiation of an unresolved using
3973    // decl.  Otherwise just silently find the type name.
3974    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3975      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3976      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3977      UD->setInvalidDecl();
3978      return UD;
3979    }
3980  }
3981
3982  // C++0x N2914 [namespace.udecl]p6:
3983  // A using-declaration shall not name a namespace.
3984  if (R.getAsSingle<NamespaceDecl>()) {
3985    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3986      << SS.getRange();
3987    UD->setInvalidDecl();
3988    return UD;
3989  }
3990
3991  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3992    if (!CheckUsingShadowDecl(UD, *I, Previous))
3993      BuildUsingShadowDecl(S, UD, *I);
3994  }
3995
3996  return UD;
3997}
3998
3999/// Checks that the given using declaration is not an invalid
4000/// redeclaration.  Note that this is checking only for the using decl
4001/// itself, not for any ill-formedness among the UsingShadowDecls.
4002bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4003                                       bool isTypeName,
4004                                       const CXXScopeSpec &SS,
4005                                       SourceLocation NameLoc,
4006                                       const LookupResult &Prev) {
4007  // C++03 [namespace.udecl]p8:
4008  // C++0x [namespace.udecl]p10:
4009  //   A using-declaration is a declaration and can therefore be used
4010  //   repeatedly where (and only where) multiple declarations are
4011  //   allowed.
4012  //
4013  // That's in non-member contexts.
4014  if (!CurContext->getLookupContext()->isRecord())
4015    return false;
4016
4017  NestedNameSpecifier *Qual
4018    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4019
4020  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4021    NamedDecl *D = *I;
4022
4023    bool DTypename;
4024    NestedNameSpecifier *DQual;
4025    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4026      DTypename = UD->isTypeName();
4027      DQual = UD->getTargetNestedNameDecl();
4028    } else if (UnresolvedUsingValueDecl *UD
4029                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4030      DTypename = false;
4031      DQual = UD->getTargetNestedNameSpecifier();
4032    } else if (UnresolvedUsingTypenameDecl *UD
4033                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4034      DTypename = true;
4035      DQual = UD->getTargetNestedNameSpecifier();
4036    } else continue;
4037
4038    // using decls differ if one says 'typename' and the other doesn't.
4039    // FIXME: non-dependent using decls?
4040    if (isTypeName != DTypename) continue;
4041
4042    // using decls differ if they name different scopes (but note that
4043    // template instantiation can cause this check to trigger when it
4044    // didn't before instantiation).
4045    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4046        Context.getCanonicalNestedNameSpecifier(DQual))
4047      continue;
4048
4049    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4050    Diag(D->getLocation(), diag::note_using_decl) << 1;
4051    return true;
4052  }
4053
4054  return false;
4055}
4056
4057
4058/// Checks that the given nested-name qualifier used in a using decl
4059/// in the current context is appropriately related to the current
4060/// scope.  If an error is found, diagnoses it and returns true.
4061bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4062                                   const CXXScopeSpec &SS,
4063                                   SourceLocation NameLoc) {
4064  DeclContext *NamedContext = computeDeclContext(SS);
4065
4066  if (!CurContext->isRecord()) {
4067    // C++03 [namespace.udecl]p3:
4068    // C++0x [namespace.udecl]p8:
4069    //   A using-declaration for a class member shall be a member-declaration.
4070
4071    // If we weren't able to compute a valid scope, it must be a
4072    // dependent class scope.
4073    if (!NamedContext || NamedContext->isRecord()) {
4074      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4075        << SS.getRange();
4076      return true;
4077    }
4078
4079    // Otherwise, everything is known to be fine.
4080    return false;
4081  }
4082
4083  // The current scope is a record.
4084
4085  // If the named context is dependent, we can't decide much.
4086  if (!NamedContext) {
4087    // FIXME: in C++0x, we can diagnose if we can prove that the
4088    // nested-name-specifier does not refer to a base class, which is
4089    // still possible in some cases.
4090
4091    // Otherwise we have to conservatively report that things might be
4092    // okay.
4093    return false;
4094  }
4095
4096  if (!NamedContext->isRecord()) {
4097    // Ideally this would point at the last name in the specifier,
4098    // but we don't have that level of source info.
4099    Diag(SS.getRange().getBegin(),
4100         diag::err_using_decl_nested_name_specifier_is_not_class)
4101      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4102    return true;
4103  }
4104
4105  if (getLangOptions().CPlusPlus0x) {
4106    // C++0x [namespace.udecl]p3:
4107    //   In a using-declaration used as a member-declaration, the
4108    //   nested-name-specifier shall name a base class of the class
4109    //   being defined.
4110
4111    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4112                                 cast<CXXRecordDecl>(NamedContext))) {
4113      if (CurContext == NamedContext) {
4114        Diag(NameLoc,
4115             diag::err_using_decl_nested_name_specifier_is_current_class)
4116          << SS.getRange();
4117        return true;
4118      }
4119
4120      Diag(SS.getRange().getBegin(),
4121           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4122        << (NestedNameSpecifier*) SS.getScopeRep()
4123        << cast<CXXRecordDecl>(CurContext)
4124        << SS.getRange();
4125      return true;
4126    }
4127
4128    return false;
4129  }
4130
4131  // C++03 [namespace.udecl]p4:
4132  //   A using-declaration used as a member-declaration shall refer
4133  //   to a member of a base class of the class being defined [etc.].
4134
4135  // Salient point: SS doesn't have to name a base class as long as
4136  // lookup only finds members from base classes.  Therefore we can
4137  // diagnose here only if we can prove that that can't happen,
4138  // i.e. if the class hierarchies provably don't intersect.
4139
4140  // TODO: it would be nice if "definitely valid" results were cached
4141  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4142  // need to be repeated.
4143
4144  struct UserData {
4145    llvm::DenseSet<const CXXRecordDecl*> Bases;
4146
4147    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4148      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4149      Data->Bases.insert(Base);
4150      return true;
4151    }
4152
4153    bool hasDependentBases(const CXXRecordDecl *Class) {
4154      return !Class->forallBases(collect, this);
4155    }
4156
4157    /// Returns true if the base is dependent or is one of the
4158    /// accumulated base classes.
4159    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4160      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4161      return !Data->Bases.count(Base);
4162    }
4163
4164    bool mightShareBases(const CXXRecordDecl *Class) {
4165      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4166    }
4167  };
4168
4169  UserData Data;
4170
4171  // Returns false if we find a dependent base.
4172  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4173    return false;
4174
4175  // Returns false if the class has a dependent base or if it or one
4176  // of its bases is present in the base set of the current context.
4177  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4178    return false;
4179
4180  Diag(SS.getRange().getBegin(),
4181       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4182    << (NestedNameSpecifier*) SS.getScopeRep()
4183    << cast<CXXRecordDecl>(CurContext)
4184    << SS.getRange();
4185
4186  return true;
4187}
4188
4189Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
4190                                             SourceLocation NamespaceLoc,
4191                                             SourceLocation AliasLoc,
4192                                             IdentifierInfo *Alias,
4193                                             CXXScopeSpec &SS,
4194                                             SourceLocation IdentLoc,
4195                                             IdentifierInfo *Ident) {
4196
4197  // Lookup the namespace name.
4198  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4199  LookupParsedName(R, S, &SS);
4200
4201  // Check if we have a previous declaration with the same name.
4202  NamedDecl *PrevDecl
4203    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4204                       ForRedeclaration);
4205  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4206    PrevDecl = 0;
4207
4208  if (PrevDecl) {
4209    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4210      // We already have an alias with the same name that points to the same
4211      // namespace, so don't create a new one.
4212      // FIXME: At some point, we'll want to create the (redundant)
4213      // declaration to maintain better source information.
4214      if (!R.isAmbiguous() && !R.empty() &&
4215          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4216        return DeclPtrTy();
4217    }
4218
4219    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4220      diag::err_redefinition_different_kind;
4221    Diag(AliasLoc, DiagID) << Alias;
4222    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4223    return DeclPtrTy();
4224  }
4225
4226  if (R.isAmbiguous())
4227    return DeclPtrTy();
4228
4229  if (R.empty()) {
4230    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4231                                                CTC_NoKeywords, 0)) {
4232      if (R.getAsSingle<NamespaceDecl>() ||
4233          R.getAsSingle<NamespaceAliasDecl>()) {
4234        if (DeclContext *DC = computeDeclContext(SS, false))
4235          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4236            << Ident << DC << Corrected << SS.getRange()
4237            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4238        else
4239          Diag(IdentLoc, diag::err_using_directive_suggest)
4240            << Ident << Corrected
4241            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4242
4243        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4244          << Corrected;
4245
4246        Ident = Corrected.getAsIdentifierInfo();
4247      } else {
4248        R.clear();
4249        R.setLookupName(Ident);
4250      }
4251    }
4252
4253    if (R.empty()) {
4254      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4255      return DeclPtrTy();
4256    }
4257  }
4258
4259  NamespaceAliasDecl *AliasDecl =
4260    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4261                               Alias, SS.getRange(),
4262                               (NestedNameSpecifier *)SS.getScopeRep(),
4263                               IdentLoc, R.getFoundDecl());
4264
4265  PushOnScopeChains(AliasDecl, S);
4266  return DeclPtrTy::make(AliasDecl);
4267}
4268
4269namespace {
4270  /// \brief Scoped object used to handle the state changes required in Sema
4271  /// to implicitly define the body of a C++ member function;
4272  class ImplicitlyDefinedFunctionScope {
4273    Sema &S;
4274    DeclContext *PreviousContext;
4275
4276  public:
4277    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4278      : S(S), PreviousContext(S.CurContext)
4279    {
4280      S.CurContext = Method;
4281      S.PushFunctionScope();
4282      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4283    }
4284
4285    ~ImplicitlyDefinedFunctionScope() {
4286      S.PopExpressionEvaluationContext();
4287      S.PopFunctionOrBlockScope();
4288      S.CurContext = PreviousContext;
4289    }
4290  };
4291}
4292
4293CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4294                                                     CXXRecordDecl *ClassDecl) {
4295  // C++ [class.ctor]p5:
4296  //   A default constructor for a class X is a constructor of class X
4297  //   that can be called without an argument. If there is no
4298  //   user-declared constructor for class X, a default constructor is
4299  //   implicitly declared. An implicitly-declared default constructor
4300  //   is an inline public member of its class.
4301  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4302         "Should not build implicit default constructor!");
4303
4304  // C++ [except.spec]p14:
4305  //   An implicitly declared special member function (Clause 12) shall have an
4306  //   exception-specification. [...]
4307  ImplicitExceptionSpecification ExceptSpec(Context);
4308
4309  // Direct base-class destructors.
4310  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4311                                       BEnd = ClassDecl->bases_end();
4312       B != BEnd; ++B) {
4313    if (B->isVirtual()) // Handled below.
4314      continue;
4315
4316    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4317      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4318      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4319        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4320      else if (CXXConstructorDecl *Constructor
4321                                       = BaseClassDecl->getDefaultConstructor())
4322        ExceptSpec.CalledDecl(Constructor);
4323    }
4324  }
4325
4326  // Virtual base-class destructors.
4327  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4328                                       BEnd = ClassDecl->vbases_end();
4329       B != BEnd; ++B) {
4330    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4331      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4332      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4333        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4334      else if (CXXConstructorDecl *Constructor
4335                                       = BaseClassDecl->getDefaultConstructor())
4336        ExceptSpec.CalledDecl(Constructor);
4337    }
4338  }
4339
4340  // Field destructors.
4341  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4342                               FEnd = ClassDecl->field_end();
4343       F != FEnd; ++F) {
4344    if (const RecordType *RecordTy
4345              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4346      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4347      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4348        ExceptSpec.CalledDecl(
4349                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4350      else if (CXXConstructorDecl *Constructor
4351                                      = FieldClassDecl->getDefaultConstructor())
4352        ExceptSpec.CalledDecl(Constructor);
4353    }
4354  }
4355
4356
4357  // Create the actual constructor declaration.
4358  CanQualType ClassType
4359    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4360  DeclarationName Name
4361    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4362  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4363  CXXConstructorDecl *DefaultCon
4364    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4365                                 Context.getFunctionType(Context.VoidTy,
4366                                                         0, 0, false, 0,
4367                                       ExceptSpec.hasExceptionSpecification(),
4368                                     ExceptSpec.hasAnyExceptionSpecification(),
4369                                                         ExceptSpec.size(),
4370                                                         ExceptSpec.data(),
4371                                                       FunctionType::ExtInfo()),
4372                                 /*TInfo=*/0,
4373                                 /*isExplicit=*/false,
4374                                 /*isInline=*/true,
4375                                 /*isImplicitlyDeclared=*/true);
4376  DefaultCon->setAccess(AS_public);
4377  DefaultCon->setImplicit();
4378  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4379
4380  // Note that we have declared this constructor.
4381  ClassDecl->setDeclaredDefaultConstructor(true);
4382  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4383
4384  if (Scope *S = getScopeForContext(ClassDecl))
4385    PushOnScopeChains(DefaultCon, S, false);
4386  ClassDecl->addDecl(DefaultCon);
4387
4388  return DefaultCon;
4389}
4390
4391void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4392                                            CXXConstructorDecl *Constructor) {
4393  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4394          !Constructor->isUsed(false)) &&
4395    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4396
4397  CXXRecordDecl *ClassDecl = Constructor->getParent();
4398  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4399
4400  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4401  ErrorTrap Trap(*this);
4402  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4403      Trap.hasErrorOccurred()) {
4404    Diag(CurrentLocation, diag::note_member_synthesized_at)
4405      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4406    Constructor->setInvalidDecl();
4407  } else {
4408    Constructor->setUsed();
4409    MarkVTableUsed(CurrentLocation, ClassDecl);
4410  }
4411}
4412
4413CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4414  // C++ [class.dtor]p2:
4415  //   If a class has no user-declared destructor, a destructor is
4416  //   declared implicitly. An implicitly-declared destructor is an
4417  //   inline public member of its class.
4418
4419  // C++ [except.spec]p14:
4420  //   An implicitly declared special member function (Clause 12) shall have
4421  //   an exception-specification.
4422  ImplicitExceptionSpecification ExceptSpec(Context);
4423
4424  // Direct base-class destructors.
4425  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4426                                       BEnd = ClassDecl->bases_end();
4427       B != BEnd; ++B) {
4428    if (B->isVirtual()) // Handled below.
4429      continue;
4430
4431    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4432      ExceptSpec.CalledDecl(
4433                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4434  }
4435
4436  // Virtual base-class destructors.
4437  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4438                                       BEnd = ClassDecl->vbases_end();
4439       B != BEnd; ++B) {
4440    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4441      ExceptSpec.CalledDecl(
4442                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4443  }
4444
4445  // Field destructors.
4446  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4447                               FEnd = ClassDecl->field_end();
4448       F != FEnd; ++F) {
4449    if (const RecordType *RecordTy
4450        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4451      ExceptSpec.CalledDecl(
4452                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4453  }
4454
4455  // Create the actual destructor declaration.
4456  QualType Ty = Context.getFunctionType(Context.VoidTy,
4457                                        0, 0, false, 0,
4458                                        ExceptSpec.hasExceptionSpecification(),
4459                                    ExceptSpec.hasAnyExceptionSpecification(),
4460                                        ExceptSpec.size(),
4461                                        ExceptSpec.data(),
4462                                        FunctionType::ExtInfo());
4463
4464  CanQualType ClassType
4465    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4466  DeclarationName Name
4467    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4468  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4469  CXXDestructorDecl *Destructor
4470    = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty,
4471                                /*isInline=*/true,
4472                                /*isImplicitlyDeclared=*/true);
4473  Destructor->setAccess(AS_public);
4474  Destructor->setImplicit();
4475  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4476
4477  // Note that we have declared this destructor.
4478  ClassDecl->setDeclaredDestructor(true);
4479  ++ASTContext::NumImplicitDestructorsDeclared;
4480
4481  // Introduce this destructor into its scope.
4482  if (Scope *S = getScopeForContext(ClassDecl))
4483    PushOnScopeChains(Destructor, S, false);
4484  ClassDecl->addDecl(Destructor);
4485
4486  // This could be uniqued if it ever proves significant.
4487  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4488
4489  AddOverriddenMethods(ClassDecl, Destructor);
4490
4491  return Destructor;
4492}
4493
4494void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4495                                    CXXDestructorDecl *Destructor) {
4496  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4497         "DefineImplicitDestructor - call it for implicit default dtor");
4498  CXXRecordDecl *ClassDecl = Destructor->getParent();
4499  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4500
4501  if (Destructor->isInvalidDecl())
4502    return;
4503
4504  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4505
4506  ErrorTrap Trap(*this);
4507  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4508                                         Destructor->getParent());
4509
4510  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4511    Diag(CurrentLocation, diag::note_member_synthesized_at)
4512      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4513
4514    Destructor->setInvalidDecl();
4515    return;
4516  }
4517
4518  Destructor->setUsed();
4519  MarkVTableUsed(CurrentLocation, ClassDecl);
4520}
4521
4522/// \brief Builds a statement that copies the given entity from \p From to
4523/// \c To.
4524///
4525/// This routine is used to copy the members of a class with an
4526/// implicitly-declared copy assignment operator. When the entities being
4527/// copied are arrays, this routine builds for loops to copy them.
4528///
4529/// \param S The Sema object used for type-checking.
4530///
4531/// \param Loc The location where the implicit copy is being generated.
4532///
4533/// \param T The type of the expressions being copied. Both expressions must
4534/// have this type.
4535///
4536/// \param To The expression we are copying to.
4537///
4538/// \param From The expression we are copying from.
4539///
4540/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4541/// Otherwise, it's a non-static member subobject.
4542///
4543/// \param Depth Internal parameter recording the depth of the recursion.
4544///
4545/// \returns A statement or a loop that copies the expressions.
4546static Sema::OwningStmtResult
4547BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4548                      Sema::OwningExprResult To, Sema::OwningExprResult From,
4549                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4550  typedef Sema::OwningStmtResult OwningStmtResult;
4551  typedef Sema::OwningExprResult OwningExprResult;
4552
4553  // C++0x [class.copy]p30:
4554  //   Each subobject is assigned in the manner appropriate to its type:
4555  //
4556  //     - if the subobject is of class type, the copy assignment operator
4557  //       for the class is used (as if by explicit qualification; that is,
4558  //       ignoring any possible virtual overriding functions in more derived
4559  //       classes);
4560  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4561    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4562
4563    // Look for operator=.
4564    DeclarationName Name
4565      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4566    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4567    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4568
4569    // Filter out any result that isn't a copy-assignment operator.
4570    LookupResult::Filter F = OpLookup.makeFilter();
4571    while (F.hasNext()) {
4572      NamedDecl *D = F.next();
4573      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4574        if (Method->isCopyAssignmentOperator())
4575          continue;
4576
4577      F.erase();
4578    }
4579    F.done();
4580
4581    // Suppress the protected check (C++ [class.protected]) for each of the
4582    // assignment operators we found. This strange dance is required when
4583    // we're assigning via a base classes's copy-assignment operator. To
4584    // ensure that we're getting the right base class subobject (without
4585    // ambiguities), we need to cast "this" to that subobject type; to
4586    // ensure that we don't go through the virtual call mechanism, we need
4587    // to qualify the operator= name with the base class (see below). However,
4588    // this means that if the base class has a protected copy assignment
4589    // operator, the protected member access check will fail. So, we
4590    // rewrite "protected" access to "public" access in this case, since we
4591    // know by construction that we're calling from a derived class.
4592    if (CopyingBaseSubobject) {
4593      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4594           L != LEnd; ++L) {
4595        if (L.getAccess() == AS_protected)
4596          L.setAccess(AS_public);
4597      }
4598    }
4599
4600    // Create the nested-name-specifier that will be used to qualify the
4601    // reference to operator=; this is required to suppress the virtual
4602    // call mechanism.
4603    CXXScopeSpec SS;
4604    SS.setRange(Loc);
4605    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4606                                               T.getTypePtr()));
4607
4608    // Create the reference to operator=.
4609    OwningExprResult OpEqualRef
4610      = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
4611                                   /*FirstQualifierInScope=*/0, OpLookup,
4612                                   /*TemplateArgs=*/0,
4613                                   /*SuppressQualifierCheck=*/true);
4614    if (OpEqualRef.isInvalid())
4615      return S.StmtError();
4616
4617    // Build the call to the assignment operator.
4618    Expr *FromE = From.takeAs<Expr>();
4619    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4620                                                      OpEqualRef.takeAs<Expr>(),
4621                                                        Loc, &FromE, 1, 0, Loc);
4622    if (Call.isInvalid())
4623      return S.StmtError();
4624
4625    return S.Owned(Call.takeAs<Stmt>());
4626  }
4627
4628  //     - if the subobject is of scalar type, the built-in assignment
4629  //       operator is used.
4630  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4631  if (!ArrayTy) {
4632    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4633                                                       BinaryOperator::Assign,
4634                                                       To.takeAs<Expr>(),
4635                                                       From.takeAs<Expr>());
4636    if (Assignment.isInvalid())
4637      return S.StmtError();
4638
4639    return S.Owned(Assignment.takeAs<Stmt>());
4640  }
4641
4642  //     - if the subobject is an array, each element is assigned, in the
4643  //       manner appropriate to the element type;
4644
4645  // Construct a loop over the array bounds, e.g.,
4646  //
4647  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4648  //
4649  // that will copy each of the array elements.
4650  QualType SizeType = S.Context.getSizeType();
4651
4652  // Create the iteration variable.
4653  IdentifierInfo *IterationVarName = 0;
4654  {
4655    llvm::SmallString<8> Str;
4656    llvm::raw_svector_ostream OS(Str);
4657    OS << "__i" << Depth;
4658    IterationVarName = &S.Context.Idents.get(OS.str());
4659  }
4660  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4661                                          IterationVarName, SizeType,
4662                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4663                                          VarDecl::None, VarDecl::None);
4664
4665  // Initialize the iteration variable to zero.
4666  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4667  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4668
4669  // Create a reference to the iteration variable; we'll use this several
4670  // times throughout.
4671  Expr *IterationVarRef
4672    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4673  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4674
4675  // Create the DeclStmt that holds the iteration variable.
4676  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4677
4678  // Create the comparison against the array bound.
4679  llvm::APInt Upper = ArrayTy->getSize();
4680  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4681  OwningExprResult Comparison
4682    = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4683                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4684                                    BinaryOperator::NE, S.Context.BoolTy, Loc));
4685
4686  // Create the pre-increment of the iteration variable.
4687  OwningExprResult Increment
4688    = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4689                                            UnaryOperator::PreInc,
4690                                            SizeType, Loc));
4691
4692  // Subscript the "from" and "to" expressions with the iteration variable.
4693  From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
4694                                           S.Owned(IterationVarRef->Retain()),
4695                                           Loc);
4696  To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
4697                                         S.Owned(IterationVarRef->Retain()),
4698                                         Loc);
4699  assert(!From.isInvalid() && "Builtin subscripting can't fail!");
4700  assert(!To.isInvalid() && "Builtin subscripting can't fail!");
4701
4702  // Build the copy for an individual element of the array.
4703  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4704                                                ArrayTy->getElementType(),
4705                                                move(To), move(From),
4706                                                CopyingBaseSubobject, Depth+1);
4707  if (Copy.isInvalid())
4708    return S.StmtError();
4709
4710  // Construct the loop that copies all elements of this array.
4711  return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
4712                        S.MakeFullExpr(Comparison),
4713                        Sema::DeclPtrTy(),
4714                        S.MakeFullExpr(Increment),
4715                        Loc, move(Copy));
4716}
4717
4718/// \brief Determine whether the given class has a copy assignment operator
4719/// that accepts a const-qualified argument.
4720static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4721  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4722
4723  if (!Class->hasDeclaredCopyAssignment())
4724    S.DeclareImplicitCopyAssignment(Class);
4725
4726  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4727  DeclarationName OpName
4728    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4729
4730  DeclContext::lookup_const_iterator Op, OpEnd;
4731  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4732    // C++ [class.copy]p9:
4733    //   A user-declared copy assignment operator is a non-static non-template
4734    //   member function of class X with exactly one parameter of type X, X&,
4735    //   const X&, volatile X& or const volatile X&.
4736    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4737    if (!Method)
4738      continue;
4739
4740    if (Method->isStatic())
4741      continue;
4742    if (Method->getPrimaryTemplate())
4743      continue;
4744    const FunctionProtoType *FnType =
4745    Method->getType()->getAs<FunctionProtoType>();
4746    assert(FnType && "Overloaded operator has no prototype.");
4747    // Don't assert on this; an invalid decl might have been left in the AST.
4748    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4749      continue;
4750    bool AcceptsConst = true;
4751    QualType ArgType = FnType->getArgType(0);
4752    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4753      ArgType = Ref->getPointeeType();
4754      // Is it a non-const lvalue reference?
4755      if (!ArgType.isConstQualified())
4756        AcceptsConst = false;
4757    }
4758    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4759      continue;
4760
4761    // We have a single argument of type cv X or cv X&, i.e. we've found the
4762    // copy assignment operator. Return whether it accepts const arguments.
4763    return AcceptsConst;
4764  }
4765  assert(Class->isInvalidDecl() &&
4766         "No copy assignment operator declared in valid code.");
4767  return false;
4768}
4769
4770CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4771  // Note: The following rules are largely analoguous to the copy
4772  // constructor rules. Note that virtual bases are not taken into account
4773  // for determining the argument type of the operator. Note also that
4774  // operators taking an object instead of a reference are allowed.
4775
4776
4777  // C++ [class.copy]p10:
4778  //   If the class definition does not explicitly declare a copy
4779  //   assignment operator, one is declared implicitly.
4780  //   The implicitly-defined copy assignment operator for a class X
4781  //   will have the form
4782  //
4783  //       X& X::operator=(const X&)
4784  //
4785  //   if
4786  bool HasConstCopyAssignment = true;
4787
4788  //       -- each direct base class B of X has a copy assignment operator
4789  //          whose parameter is of type const B&, const volatile B& or B,
4790  //          and
4791  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4792                                       BaseEnd = ClassDecl->bases_end();
4793       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4794    assert(!Base->getType()->isDependentType() &&
4795           "Cannot generate implicit members for class with dependent bases.");
4796    const CXXRecordDecl *BaseClassDecl
4797      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4798    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4799  }
4800
4801  //       -- for all the nonstatic data members of X that are of a class
4802  //          type M (or array thereof), each such class type has a copy
4803  //          assignment operator whose parameter is of type const M&,
4804  //          const volatile M& or M.
4805  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4806                                  FieldEnd = ClassDecl->field_end();
4807       HasConstCopyAssignment && Field != FieldEnd;
4808       ++Field) {
4809    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4810    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4811      const CXXRecordDecl *FieldClassDecl
4812        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4813      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4814    }
4815  }
4816
4817  //   Otherwise, the implicitly declared copy assignment operator will
4818  //   have the form
4819  //
4820  //       X& X::operator=(X&)
4821  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4822  QualType RetType = Context.getLValueReferenceType(ArgType);
4823  if (HasConstCopyAssignment)
4824    ArgType = ArgType.withConst();
4825  ArgType = Context.getLValueReferenceType(ArgType);
4826
4827  // C++ [except.spec]p14:
4828  //   An implicitly declared special member function (Clause 12) shall have an
4829  //   exception-specification. [...]
4830  ImplicitExceptionSpecification ExceptSpec(Context);
4831  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4832                                       BaseEnd = ClassDecl->bases_end();
4833       Base != BaseEnd; ++Base) {
4834    CXXRecordDecl *BaseClassDecl
4835      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4836
4837    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4838      DeclareImplicitCopyAssignment(BaseClassDecl);
4839
4840    if (CXXMethodDecl *CopyAssign
4841           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4842      ExceptSpec.CalledDecl(CopyAssign);
4843  }
4844  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4845                                  FieldEnd = ClassDecl->field_end();
4846       Field != FieldEnd;
4847       ++Field) {
4848    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4849    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4850      CXXRecordDecl *FieldClassDecl
4851        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4852
4853      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4854        DeclareImplicitCopyAssignment(FieldClassDecl);
4855
4856      if (CXXMethodDecl *CopyAssign
4857            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4858        ExceptSpec.CalledDecl(CopyAssign);
4859    }
4860  }
4861
4862  //   An implicitly-declared copy assignment operator is an inline public
4863  //   member of its class.
4864  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4865  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4866  CXXMethodDecl *CopyAssignment
4867    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
4868                            Context.getFunctionType(RetType, &ArgType, 1,
4869                                                    false, 0,
4870                                         ExceptSpec.hasExceptionSpecification(),
4871                                      ExceptSpec.hasAnyExceptionSpecification(),
4872                                                    ExceptSpec.size(),
4873                                                    ExceptSpec.data(),
4874                                                    FunctionType::ExtInfo()),
4875                            /*TInfo=*/0, /*isStatic=*/false,
4876                            /*StorageClassAsWritten=*/FunctionDecl::None,
4877                            /*isInline=*/true);
4878  CopyAssignment->setAccess(AS_public);
4879  CopyAssignment->setImplicit();
4880  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4881  CopyAssignment->setCopyAssignment(true);
4882
4883  // Add the parameter to the operator.
4884  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4885                                               ClassDecl->getLocation(),
4886                                               /*Id=*/0,
4887                                               ArgType, /*TInfo=*/0,
4888                                               VarDecl::None,
4889                                               VarDecl::None, 0);
4890  CopyAssignment->setParams(&FromParam, 1);
4891
4892  // Note that we have added this copy-assignment operator.
4893  ClassDecl->setDeclaredCopyAssignment(true);
4894  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4895
4896  if (Scope *S = getScopeForContext(ClassDecl))
4897    PushOnScopeChains(CopyAssignment, S, false);
4898  ClassDecl->addDecl(CopyAssignment);
4899
4900  AddOverriddenMethods(ClassDecl, CopyAssignment);
4901  return CopyAssignment;
4902}
4903
4904void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4905                                        CXXMethodDecl *CopyAssignOperator) {
4906  assert((CopyAssignOperator->isImplicit() &&
4907          CopyAssignOperator->isOverloadedOperator() &&
4908          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4909          !CopyAssignOperator->isUsed(false)) &&
4910         "DefineImplicitCopyAssignment called for wrong function");
4911
4912  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4913
4914  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4915    CopyAssignOperator->setInvalidDecl();
4916    return;
4917  }
4918
4919  CopyAssignOperator->setUsed();
4920
4921  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4922  ErrorTrap Trap(*this);
4923
4924  // C++0x [class.copy]p30:
4925  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4926  //   for a non-union class X performs memberwise copy assignment of its
4927  //   subobjects. The direct base classes of X are assigned first, in the
4928  //   order of their declaration in the base-specifier-list, and then the
4929  //   immediate non-static data members of X are assigned, in the order in
4930  //   which they were declared in the class definition.
4931
4932  // The statements that form the synthesized function body.
4933  ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
4934
4935  // The parameter for the "other" object, which we are copying from.
4936  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4937  Qualifiers OtherQuals = Other->getType().getQualifiers();
4938  QualType OtherRefType = Other->getType();
4939  if (const LValueReferenceType *OtherRef
4940                                = OtherRefType->getAs<LValueReferenceType>()) {
4941    OtherRefType = OtherRef->getPointeeType();
4942    OtherQuals = OtherRefType.getQualifiers();
4943  }
4944
4945  // Our location for everything implicitly-generated.
4946  SourceLocation Loc = CopyAssignOperator->getLocation();
4947
4948  // Construct a reference to the "other" object. We'll be using this
4949  // throughout the generated ASTs.
4950  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4951  assert(OtherRef && "Reference to parameter cannot fail!");
4952
4953  // Construct the "this" pointer. We'll be using this throughout the generated
4954  // ASTs.
4955  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4956  assert(This && "Reference to this cannot fail!");
4957
4958  // Assign base classes.
4959  bool Invalid = false;
4960  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4961       E = ClassDecl->bases_end(); Base != E; ++Base) {
4962    // Form the assignment:
4963    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4964    QualType BaseType = Base->getType().getUnqualifiedType();
4965    CXXRecordDecl *BaseClassDecl = 0;
4966    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4967      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4968    else {
4969      Invalid = true;
4970      continue;
4971    }
4972
4973    CXXCastPath BasePath;
4974    BasePath.push_back(Base);
4975
4976    // Construct the "from" expression, which is an implicit cast to the
4977    // appropriately-qualified base type.
4978    Expr *From = OtherRef->Retain();
4979    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4980                      CastExpr::CK_UncheckedDerivedToBase,
4981                      ImplicitCastExpr::LValue, &BasePath);
4982
4983    // Dereference "this".
4984    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4985                                               Owned(This->Retain()));
4986
4987    // Implicitly cast "this" to the appropriately-qualified base type.
4988    Expr *ToE = To.takeAs<Expr>();
4989    ImpCastExprToType(ToE,
4990                      Context.getCVRQualifiedType(BaseType,
4991                                      CopyAssignOperator->getTypeQualifiers()),
4992                      CastExpr::CK_UncheckedDerivedToBase,
4993                      ImplicitCastExpr::LValue, &BasePath);
4994    To = Owned(ToE);
4995
4996    // Build the copy.
4997    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4998                                                  move(To), Owned(From),
4999                                                /*CopyingBaseSubobject=*/true);
5000    if (Copy.isInvalid()) {
5001      Diag(CurrentLocation, diag::note_member_synthesized_at)
5002        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5003      CopyAssignOperator->setInvalidDecl();
5004      return;
5005    }
5006
5007    // Success! Record the copy.
5008    Statements.push_back(Copy.takeAs<Expr>());
5009  }
5010
5011  // \brief Reference to the __builtin_memcpy function.
5012  Expr *BuiltinMemCpyRef = 0;
5013  // \brief Reference to the __builtin_objc_memmove_collectable function.
5014  Expr *CollectableMemCpyRef = 0;
5015
5016  // Assign non-static members.
5017  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5018                                  FieldEnd = ClassDecl->field_end();
5019       Field != FieldEnd; ++Field) {
5020    // Check for members of reference type; we can't copy those.
5021    if (Field->getType()->isReferenceType()) {
5022      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5023        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5024      Diag(Field->getLocation(), diag::note_declared_at);
5025      Diag(CurrentLocation, diag::note_member_synthesized_at)
5026        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5027      Invalid = true;
5028      continue;
5029    }
5030
5031    // Check for members of const-qualified, non-class type.
5032    QualType BaseType = Context.getBaseElementType(Field->getType());
5033    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5034      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5035        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5036      Diag(Field->getLocation(), diag::note_declared_at);
5037      Diag(CurrentLocation, diag::note_member_synthesized_at)
5038        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5039      Invalid = true;
5040      continue;
5041    }
5042
5043    QualType FieldType = Field->getType().getNonReferenceType();
5044    if (FieldType->isIncompleteArrayType()) {
5045      assert(ClassDecl->hasFlexibleArrayMember() &&
5046             "Incomplete array type is not valid");
5047      continue;
5048    }
5049
5050    // Build references to the field in the object we're copying from and to.
5051    CXXScopeSpec SS; // Intentionally empty
5052    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5053                              LookupMemberName);
5054    MemberLookup.addDecl(*Field);
5055    MemberLookup.resolveKind();
5056    OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
5057                                                     OtherRefType,
5058                                                     Loc, /*IsArrow=*/false,
5059                                                     SS, 0, MemberLookup, 0);
5060    OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
5061                                                   This->getType(),
5062                                                   Loc, /*IsArrow=*/true,
5063                                                   SS, 0, MemberLookup, 0);
5064    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5065    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5066
5067    // If the field should be copied with __builtin_memcpy rather than via
5068    // explicit assignments, do so. This optimization only applies for arrays
5069    // of scalars and arrays of class type with trivial copy-assignment
5070    // operators.
5071    if (FieldType->isArrayType() &&
5072        (!BaseType->isRecordType() ||
5073         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5074           ->hasTrivialCopyAssignment())) {
5075      // Compute the size of the memory buffer to be copied.
5076      QualType SizeType = Context.getSizeType();
5077      llvm::APInt Size(Context.getTypeSize(SizeType),
5078                       Context.getTypeSizeInChars(BaseType).getQuantity());
5079      for (const ConstantArrayType *Array
5080              = Context.getAsConstantArrayType(FieldType);
5081           Array;
5082           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5083        llvm::APInt ArraySize = Array->getSize();
5084        ArraySize.zextOrTrunc(Size.getBitWidth());
5085        Size *= ArraySize;
5086      }
5087
5088      // Take the address of the field references for "from" and "to".
5089      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
5090      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
5091
5092      bool NeedsCollectableMemCpy =
5093          (BaseType->isRecordType() &&
5094           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5095
5096      if (NeedsCollectableMemCpy) {
5097        if (!CollectableMemCpyRef) {
5098          // Create a reference to the __builtin_objc_memmove_collectable function.
5099          LookupResult R(*this,
5100                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5101                         Loc, LookupOrdinaryName);
5102          LookupName(R, TUScope, true);
5103
5104          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5105          if (!CollectableMemCpy) {
5106            // Something went horribly wrong earlier, and we will have
5107            // complained about it.
5108            Invalid = true;
5109            continue;
5110          }
5111
5112          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5113                                                  CollectableMemCpy->getType(),
5114                                                  Loc, 0).takeAs<Expr>();
5115          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5116        }
5117      }
5118      // Create a reference to the __builtin_memcpy builtin function.
5119      else if (!BuiltinMemCpyRef) {
5120        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5121                       LookupOrdinaryName);
5122        LookupName(R, TUScope, true);
5123
5124        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5125        if (!BuiltinMemCpy) {
5126          // Something went horribly wrong earlier, and we will have complained
5127          // about it.
5128          Invalid = true;
5129          continue;
5130        }
5131
5132        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5133                                            BuiltinMemCpy->getType(),
5134                                            Loc, 0).takeAs<Expr>();
5135        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5136      }
5137
5138      ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
5139      CallArgs.push_back(To.takeAs<Expr>());
5140      CallArgs.push_back(From.takeAs<Expr>());
5141      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
5142      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
5143      Commas.push_back(Loc);
5144      Commas.push_back(Loc);
5145      OwningExprResult Call = ExprError();
5146      if (NeedsCollectableMemCpy)
5147        Call = ActOnCallExpr(/*Scope=*/0,
5148                             Owned(CollectableMemCpyRef->Retain()),
5149                             Loc, move_arg(CallArgs),
5150                             Commas.data(), Loc);
5151      else
5152        Call = ActOnCallExpr(/*Scope=*/0,
5153                             Owned(BuiltinMemCpyRef->Retain()),
5154                             Loc, move_arg(CallArgs),
5155                             Commas.data(), Loc);
5156
5157      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5158      Statements.push_back(Call.takeAs<Expr>());
5159      continue;
5160    }
5161
5162    // Build the copy of this field.
5163    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5164                                                  move(To), move(From),
5165                                              /*CopyingBaseSubobject=*/false);
5166    if (Copy.isInvalid()) {
5167      Diag(CurrentLocation, diag::note_member_synthesized_at)
5168        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5169      CopyAssignOperator->setInvalidDecl();
5170      return;
5171    }
5172
5173    // Success! Record the copy.
5174    Statements.push_back(Copy.takeAs<Stmt>());
5175  }
5176
5177  if (!Invalid) {
5178    // Add a "return *this;"
5179    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
5180                                                    Owned(This->Retain()));
5181
5182    OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
5183    if (Return.isInvalid())
5184      Invalid = true;
5185    else {
5186      Statements.push_back(Return.takeAs<Stmt>());
5187
5188      if (Trap.hasErrorOccurred()) {
5189        Diag(CurrentLocation, diag::note_member_synthesized_at)
5190          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5191        Invalid = true;
5192      }
5193    }
5194  }
5195
5196  if (Invalid) {
5197    CopyAssignOperator->setInvalidDecl();
5198    return;
5199  }
5200
5201  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5202                                            /*isStmtExpr=*/false);
5203  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5204  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5205}
5206
5207CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5208                                                    CXXRecordDecl *ClassDecl) {
5209  // C++ [class.copy]p4:
5210  //   If the class definition does not explicitly declare a copy
5211  //   constructor, one is declared implicitly.
5212
5213  // C++ [class.copy]p5:
5214  //   The implicitly-declared copy constructor for a class X will
5215  //   have the form
5216  //
5217  //       X::X(const X&)
5218  //
5219  //   if
5220  bool HasConstCopyConstructor = true;
5221
5222  //     -- each direct or virtual base class B of X has a copy
5223  //        constructor whose first parameter is of type const B& or
5224  //        const volatile B&, and
5225  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5226                                       BaseEnd = ClassDecl->bases_end();
5227       HasConstCopyConstructor && Base != BaseEnd;
5228       ++Base) {
5229    // Virtual bases are handled below.
5230    if (Base->isVirtual())
5231      continue;
5232
5233    CXXRecordDecl *BaseClassDecl
5234      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5235    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5236      DeclareImplicitCopyConstructor(BaseClassDecl);
5237
5238    HasConstCopyConstructor
5239      = BaseClassDecl->hasConstCopyConstructor(Context);
5240  }
5241
5242  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5243                                       BaseEnd = ClassDecl->vbases_end();
5244       HasConstCopyConstructor && Base != BaseEnd;
5245       ++Base) {
5246    CXXRecordDecl *BaseClassDecl
5247      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5248    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5249      DeclareImplicitCopyConstructor(BaseClassDecl);
5250
5251    HasConstCopyConstructor
5252      = BaseClassDecl->hasConstCopyConstructor(Context);
5253  }
5254
5255  //     -- for all the nonstatic data members of X that are of a
5256  //        class type M (or array thereof), each such class type
5257  //        has a copy constructor whose first parameter is of type
5258  //        const M& or const volatile M&.
5259  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5260                                  FieldEnd = ClassDecl->field_end();
5261       HasConstCopyConstructor && Field != FieldEnd;
5262       ++Field) {
5263    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5264    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5265      CXXRecordDecl *FieldClassDecl
5266        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5267      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5268        DeclareImplicitCopyConstructor(FieldClassDecl);
5269
5270      HasConstCopyConstructor
5271        = FieldClassDecl->hasConstCopyConstructor(Context);
5272    }
5273  }
5274
5275  //   Otherwise, the implicitly declared copy constructor will have
5276  //   the form
5277  //
5278  //       X::X(X&)
5279  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5280  QualType ArgType = ClassType;
5281  if (HasConstCopyConstructor)
5282    ArgType = ArgType.withConst();
5283  ArgType = Context.getLValueReferenceType(ArgType);
5284
5285  // C++ [except.spec]p14:
5286  //   An implicitly declared special member function (Clause 12) shall have an
5287  //   exception-specification. [...]
5288  ImplicitExceptionSpecification ExceptSpec(Context);
5289  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5290  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5291                                       BaseEnd = ClassDecl->bases_end();
5292       Base != BaseEnd;
5293       ++Base) {
5294    // Virtual bases are handled below.
5295    if (Base->isVirtual())
5296      continue;
5297
5298    CXXRecordDecl *BaseClassDecl
5299      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5300    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5301      DeclareImplicitCopyConstructor(BaseClassDecl);
5302
5303    if (CXXConstructorDecl *CopyConstructor
5304                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5305      ExceptSpec.CalledDecl(CopyConstructor);
5306  }
5307  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5308                                       BaseEnd = ClassDecl->vbases_end();
5309       Base != BaseEnd;
5310       ++Base) {
5311    CXXRecordDecl *BaseClassDecl
5312      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5313    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5314      DeclareImplicitCopyConstructor(BaseClassDecl);
5315
5316    if (CXXConstructorDecl *CopyConstructor
5317                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5318      ExceptSpec.CalledDecl(CopyConstructor);
5319  }
5320  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5321                                  FieldEnd = ClassDecl->field_end();
5322       Field != FieldEnd;
5323       ++Field) {
5324    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5325    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5326      CXXRecordDecl *FieldClassDecl
5327        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5328      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5329        DeclareImplicitCopyConstructor(FieldClassDecl);
5330
5331      if (CXXConstructorDecl *CopyConstructor
5332                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5333        ExceptSpec.CalledDecl(CopyConstructor);
5334    }
5335  }
5336
5337  //   An implicitly-declared copy constructor is an inline public
5338  //   member of its class.
5339  DeclarationName Name
5340    = Context.DeclarationNames.getCXXConstructorName(
5341                                           Context.getCanonicalType(ClassType));
5342  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5343  CXXConstructorDecl *CopyConstructor
5344    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5345                                 Context.getFunctionType(Context.VoidTy,
5346                                                         &ArgType, 1,
5347                                                         false, 0,
5348                                         ExceptSpec.hasExceptionSpecification(),
5349                                      ExceptSpec.hasAnyExceptionSpecification(),
5350                                                         ExceptSpec.size(),
5351                                                         ExceptSpec.data(),
5352                                                       FunctionType::ExtInfo()),
5353                                 /*TInfo=*/0,
5354                                 /*isExplicit=*/false,
5355                                 /*isInline=*/true,
5356                                 /*isImplicitlyDeclared=*/true);
5357  CopyConstructor->setAccess(AS_public);
5358  CopyConstructor->setImplicit();
5359  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5360
5361  // Note that we have declared this constructor.
5362  ClassDecl->setDeclaredCopyConstructor(true);
5363  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5364
5365  // Add the parameter to the constructor.
5366  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5367                                               ClassDecl->getLocation(),
5368                                               /*IdentifierInfo=*/0,
5369                                               ArgType, /*TInfo=*/0,
5370                                               VarDecl::None,
5371                                               VarDecl::None, 0);
5372  CopyConstructor->setParams(&FromParam, 1);
5373  if (Scope *S = getScopeForContext(ClassDecl))
5374    PushOnScopeChains(CopyConstructor, S, false);
5375  ClassDecl->addDecl(CopyConstructor);
5376
5377  return CopyConstructor;
5378}
5379
5380void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5381                                   CXXConstructorDecl *CopyConstructor,
5382                                   unsigned TypeQuals) {
5383  assert((CopyConstructor->isImplicit() &&
5384          CopyConstructor->isCopyConstructor(TypeQuals) &&
5385          !CopyConstructor->isUsed(false)) &&
5386         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5387
5388  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5389  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5390
5391  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5392  ErrorTrap Trap(*this);
5393
5394  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5395      Trap.hasErrorOccurred()) {
5396    Diag(CurrentLocation, diag::note_member_synthesized_at)
5397      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5398    CopyConstructor->setInvalidDecl();
5399  }  else {
5400    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5401                                               CopyConstructor->getLocation(),
5402                                               MultiStmtArg(*this, 0, 0),
5403                                               /*isStmtExpr=*/false)
5404                                                              .takeAs<Stmt>());
5405  }
5406
5407  CopyConstructor->setUsed();
5408}
5409
5410Sema::OwningExprResult
5411Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5412                            CXXConstructorDecl *Constructor,
5413                            MultiExprArg ExprArgs,
5414                            bool RequiresZeroInit,
5415                            CXXConstructExpr::ConstructionKind ConstructKind) {
5416  bool Elidable = false;
5417
5418  // C++0x [class.copy]p34:
5419  //   When certain criteria are met, an implementation is allowed to
5420  //   omit the copy/move construction of a class object, even if the
5421  //   copy/move constructor and/or destructor for the object have
5422  //   side effects. [...]
5423  //     - when a temporary class object that has not been bound to a
5424  //       reference (12.2) would be copied/moved to a class object
5425  //       with the same cv-unqualified type, the copy/move operation
5426  //       can be omitted by constructing the temporary object
5427  //       directly into the target of the omitted copy/move
5428  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5429    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5430    Elidable = SubExpr->isTemporaryObject() &&
5431      Context.hasSameUnqualifiedType(SubExpr->getType(),
5432                           Context.getTypeDeclType(Constructor->getParent()));
5433  }
5434
5435  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5436                               Elidable, move(ExprArgs), RequiresZeroInit,
5437                               ConstructKind);
5438}
5439
5440/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5441/// including handling of its default argument expressions.
5442Sema::OwningExprResult
5443Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5444                            CXXConstructorDecl *Constructor, bool Elidable,
5445                            MultiExprArg ExprArgs,
5446                            bool RequiresZeroInit,
5447                            CXXConstructExpr::ConstructionKind ConstructKind) {
5448  unsigned NumExprs = ExprArgs.size();
5449  Expr **Exprs = (Expr **)ExprArgs.release();
5450
5451  MarkDeclarationReferenced(ConstructLoc, Constructor);
5452  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5453                                        Constructor, Elidable, Exprs, NumExprs,
5454                                        RequiresZeroInit, ConstructKind));
5455}
5456
5457bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5458                                        CXXConstructorDecl *Constructor,
5459                                        MultiExprArg Exprs) {
5460  OwningExprResult TempResult =
5461    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5462                          move(Exprs));
5463  if (TempResult.isInvalid())
5464    return true;
5465
5466  Expr *Temp = TempResult.takeAs<Expr>();
5467  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5468  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
5469  VD->setInit(Temp);
5470
5471  return false;
5472}
5473
5474void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5475  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5476  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5477      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5478    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5479    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5480    CheckDestructorAccess(VD->getLocation(), Destructor,
5481                          PDiag(diag::err_access_dtor_var)
5482                            << VD->getDeclName()
5483                            << VD->getType());
5484
5485    if (!VD->isInvalidDecl() && VD->hasGlobalStorage())
5486      Diag(VD->getLocation(), diag::warn_global_destructor);
5487  }
5488}
5489
5490/// AddCXXDirectInitializerToDecl - This action is called immediately after
5491/// ActOnDeclarator, when a C++ direct initializer is present.
5492/// e.g: "int x(1);"
5493void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
5494                                         SourceLocation LParenLoc,
5495                                         MultiExprArg Exprs,
5496                                         SourceLocation *CommaLocs,
5497                                         SourceLocation RParenLoc) {
5498  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5499  Decl *RealDecl = Dcl.getAs<Decl>();
5500
5501  // If there is no declaration, there was an error parsing it.  Just ignore
5502  // the initializer.
5503  if (RealDecl == 0)
5504    return;
5505
5506  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5507  if (!VDecl) {
5508    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5509    RealDecl->setInvalidDecl();
5510    return;
5511  }
5512
5513  // We will represent direct-initialization similarly to copy-initialization:
5514  //    int x(1);  -as-> int x = 1;
5515  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5516  //
5517  // Clients that want to distinguish between the two forms, can check for
5518  // direct initializer using VarDecl::hasCXXDirectInitializer().
5519  // A major benefit is that clients that don't particularly care about which
5520  // exactly form was it (like the CodeGen) can handle both cases without
5521  // special case code.
5522
5523  // C++ 8.5p11:
5524  // The form of initialization (using parentheses or '=') is generally
5525  // insignificant, but does matter when the entity being initialized has a
5526  // class type.
5527
5528  if (!VDecl->getType()->isDependentType() &&
5529      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5530                          diag::err_typecheck_decl_incomplete_type)) {
5531    VDecl->setInvalidDecl();
5532    return;
5533  }
5534
5535  // The variable can not have an abstract class type.
5536  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5537                             diag::err_abstract_type_in_decl,
5538                             AbstractVariableType))
5539    VDecl->setInvalidDecl();
5540
5541  const VarDecl *Def;
5542  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5543    Diag(VDecl->getLocation(), diag::err_redefinition)
5544    << VDecl->getDeclName();
5545    Diag(Def->getLocation(), diag::note_previous_definition);
5546    VDecl->setInvalidDecl();
5547    return;
5548  }
5549
5550  // If either the declaration has a dependent type or if any of the
5551  // expressions is type-dependent, we represent the initialization
5552  // via a ParenListExpr for later use during template instantiation.
5553  if (VDecl->getType()->isDependentType() ||
5554      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5555    // Let clients know that initialization was done with a direct initializer.
5556    VDecl->setCXXDirectInitializer(true);
5557
5558    // Store the initialization expressions as a ParenListExpr.
5559    unsigned NumExprs = Exprs.size();
5560    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5561                                               (Expr **)Exprs.release(),
5562                                               NumExprs, RParenLoc));
5563    return;
5564  }
5565
5566  // Capture the variable that is being initialized and the style of
5567  // initialization.
5568  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5569
5570  // FIXME: Poor source location information.
5571  InitializationKind Kind
5572    = InitializationKind::CreateDirect(VDecl->getLocation(),
5573                                       LParenLoc, RParenLoc);
5574
5575  InitializationSequence InitSeq(*this, Entity, Kind,
5576                                 (Expr**)Exprs.get(), Exprs.size());
5577  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5578  if (Result.isInvalid()) {
5579    VDecl->setInvalidDecl();
5580    return;
5581  }
5582
5583  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
5584  VDecl->setInit(Result.takeAs<Expr>());
5585  VDecl->setCXXDirectInitializer(true);
5586
5587    if (!VDecl->isInvalidDecl() &&
5588        !VDecl->getDeclContext()->isDependentContext() &&
5589        VDecl->hasGlobalStorage() &&
5590        !VDecl->getInit()->isConstantInitializer(Context,
5591                                        VDecl->getType()->isReferenceType()))
5592      Diag(VDecl->getLocation(), diag::warn_global_constructor)
5593        << VDecl->getInit()->getSourceRange();
5594
5595  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5596    FinalizeVarWithDestructor(VDecl, Record);
5597}
5598
5599/// \brief Given a constructor and the set of arguments provided for the
5600/// constructor, convert the arguments and add any required default arguments
5601/// to form a proper call to this constructor.
5602///
5603/// \returns true if an error occurred, false otherwise.
5604bool
5605Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5606                              MultiExprArg ArgsPtr,
5607                              SourceLocation Loc,
5608                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
5609  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5610  unsigned NumArgs = ArgsPtr.size();
5611  Expr **Args = (Expr **)ArgsPtr.get();
5612
5613  const FunctionProtoType *Proto
5614    = Constructor->getType()->getAs<FunctionProtoType>();
5615  assert(Proto && "Constructor without a prototype?");
5616  unsigned NumArgsInProto = Proto->getNumArgs();
5617
5618  // If too few arguments are available, we'll fill in the rest with defaults.
5619  if (NumArgs < NumArgsInProto)
5620    ConvertedArgs.reserve(NumArgsInProto);
5621  else
5622    ConvertedArgs.reserve(NumArgs);
5623
5624  VariadicCallType CallType =
5625    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5626  llvm::SmallVector<Expr *, 8> AllArgs;
5627  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5628                                        Proto, 0, Args, NumArgs, AllArgs,
5629                                        CallType);
5630  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5631    ConvertedArgs.push_back(AllArgs[i]);
5632  return Invalid;
5633}
5634
5635static inline bool
5636CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5637                                       const FunctionDecl *FnDecl) {
5638  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
5639  if (isa<NamespaceDecl>(DC)) {
5640    return SemaRef.Diag(FnDecl->getLocation(),
5641                        diag::err_operator_new_delete_declared_in_namespace)
5642      << FnDecl->getDeclName();
5643  }
5644
5645  if (isa<TranslationUnitDecl>(DC) &&
5646      FnDecl->getStorageClass() == FunctionDecl::Static) {
5647    return SemaRef.Diag(FnDecl->getLocation(),
5648                        diag::err_operator_new_delete_declared_static)
5649      << FnDecl->getDeclName();
5650  }
5651
5652  return false;
5653}
5654
5655static inline bool
5656CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5657                            CanQualType ExpectedResultType,
5658                            CanQualType ExpectedFirstParamType,
5659                            unsigned DependentParamTypeDiag,
5660                            unsigned InvalidParamTypeDiag) {
5661  QualType ResultType =
5662    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5663
5664  // Check that the result type is not dependent.
5665  if (ResultType->isDependentType())
5666    return SemaRef.Diag(FnDecl->getLocation(),
5667                        diag::err_operator_new_delete_dependent_result_type)
5668    << FnDecl->getDeclName() << ExpectedResultType;
5669
5670  // Check that the result type is what we expect.
5671  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5672    return SemaRef.Diag(FnDecl->getLocation(),
5673                        diag::err_operator_new_delete_invalid_result_type)
5674    << FnDecl->getDeclName() << ExpectedResultType;
5675
5676  // A function template must have at least 2 parameters.
5677  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5678    return SemaRef.Diag(FnDecl->getLocation(),
5679                      diag::err_operator_new_delete_template_too_few_parameters)
5680        << FnDecl->getDeclName();
5681
5682  // The function decl must have at least 1 parameter.
5683  if (FnDecl->getNumParams() == 0)
5684    return SemaRef.Diag(FnDecl->getLocation(),
5685                        diag::err_operator_new_delete_too_few_parameters)
5686      << FnDecl->getDeclName();
5687
5688  // Check the the first parameter type is not dependent.
5689  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5690  if (FirstParamType->isDependentType())
5691    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5692      << FnDecl->getDeclName() << ExpectedFirstParamType;
5693
5694  // Check that the first parameter type is what we expect.
5695  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5696      ExpectedFirstParamType)
5697    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5698    << FnDecl->getDeclName() << ExpectedFirstParamType;
5699
5700  return false;
5701}
5702
5703static bool
5704CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5705  // C++ [basic.stc.dynamic.allocation]p1:
5706  //   A program is ill-formed if an allocation function is declared in a
5707  //   namespace scope other than global scope or declared static in global
5708  //   scope.
5709  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5710    return true;
5711
5712  CanQualType SizeTy =
5713    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5714
5715  // C++ [basic.stc.dynamic.allocation]p1:
5716  //  The return type shall be void*. The first parameter shall have type
5717  //  std::size_t.
5718  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5719                                  SizeTy,
5720                                  diag::err_operator_new_dependent_param_type,
5721                                  diag::err_operator_new_param_type))
5722    return true;
5723
5724  // C++ [basic.stc.dynamic.allocation]p1:
5725  //  The first parameter shall not have an associated default argument.
5726  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5727    return SemaRef.Diag(FnDecl->getLocation(),
5728                        diag::err_operator_new_default_arg)
5729      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5730
5731  return false;
5732}
5733
5734static bool
5735CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5736  // C++ [basic.stc.dynamic.deallocation]p1:
5737  //   A program is ill-formed if deallocation functions are declared in a
5738  //   namespace scope other than global scope or declared static in global
5739  //   scope.
5740  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5741    return true;
5742
5743  // C++ [basic.stc.dynamic.deallocation]p2:
5744  //   Each deallocation function shall return void and its first parameter
5745  //   shall be void*.
5746  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5747                                  SemaRef.Context.VoidPtrTy,
5748                                 diag::err_operator_delete_dependent_param_type,
5749                                 diag::err_operator_delete_param_type))
5750    return true;
5751
5752  return false;
5753}
5754
5755/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5756/// of this overloaded operator is well-formed. If so, returns false;
5757/// otherwise, emits appropriate diagnostics and returns true.
5758bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5759  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5760         "Expected an overloaded operator declaration");
5761
5762  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5763
5764  // C++ [over.oper]p5:
5765  //   The allocation and deallocation functions, operator new,
5766  //   operator new[], operator delete and operator delete[], are
5767  //   described completely in 3.7.3. The attributes and restrictions
5768  //   found in the rest of this subclause do not apply to them unless
5769  //   explicitly stated in 3.7.3.
5770  if (Op == OO_Delete || Op == OO_Array_Delete)
5771    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5772
5773  if (Op == OO_New || Op == OO_Array_New)
5774    return CheckOperatorNewDeclaration(*this, FnDecl);
5775
5776  // C++ [over.oper]p6:
5777  //   An operator function shall either be a non-static member
5778  //   function or be a non-member function and have at least one
5779  //   parameter whose type is a class, a reference to a class, an
5780  //   enumeration, or a reference to an enumeration.
5781  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5782    if (MethodDecl->isStatic())
5783      return Diag(FnDecl->getLocation(),
5784                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5785  } else {
5786    bool ClassOrEnumParam = false;
5787    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5788                                   ParamEnd = FnDecl->param_end();
5789         Param != ParamEnd; ++Param) {
5790      QualType ParamType = (*Param)->getType().getNonReferenceType();
5791      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5792          ParamType->isEnumeralType()) {
5793        ClassOrEnumParam = true;
5794        break;
5795      }
5796    }
5797
5798    if (!ClassOrEnumParam)
5799      return Diag(FnDecl->getLocation(),
5800                  diag::err_operator_overload_needs_class_or_enum)
5801        << FnDecl->getDeclName();
5802  }
5803
5804  // C++ [over.oper]p8:
5805  //   An operator function cannot have default arguments (8.3.6),
5806  //   except where explicitly stated below.
5807  //
5808  // Only the function-call operator allows default arguments
5809  // (C++ [over.call]p1).
5810  if (Op != OO_Call) {
5811    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5812         Param != FnDecl->param_end(); ++Param) {
5813      if ((*Param)->hasDefaultArg())
5814        return Diag((*Param)->getLocation(),
5815                    diag::err_operator_overload_default_arg)
5816          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5817    }
5818  }
5819
5820  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5821    { false, false, false }
5822#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5823    , { Unary, Binary, MemberOnly }
5824#include "clang/Basic/OperatorKinds.def"
5825  };
5826
5827  bool CanBeUnaryOperator = OperatorUses[Op][0];
5828  bool CanBeBinaryOperator = OperatorUses[Op][1];
5829  bool MustBeMemberOperator = OperatorUses[Op][2];
5830
5831  // C++ [over.oper]p8:
5832  //   [...] Operator functions cannot have more or fewer parameters
5833  //   than the number required for the corresponding operator, as
5834  //   described in the rest of this subclause.
5835  unsigned NumParams = FnDecl->getNumParams()
5836                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5837  if (Op != OO_Call &&
5838      ((NumParams == 1 && !CanBeUnaryOperator) ||
5839       (NumParams == 2 && !CanBeBinaryOperator) ||
5840       (NumParams < 1) || (NumParams > 2))) {
5841    // We have the wrong number of parameters.
5842    unsigned ErrorKind;
5843    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5844      ErrorKind = 2;  // 2 -> unary or binary.
5845    } else if (CanBeUnaryOperator) {
5846      ErrorKind = 0;  // 0 -> unary
5847    } else {
5848      assert(CanBeBinaryOperator &&
5849             "All non-call overloaded operators are unary or binary!");
5850      ErrorKind = 1;  // 1 -> binary
5851    }
5852
5853    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5854      << FnDecl->getDeclName() << NumParams << ErrorKind;
5855  }
5856
5857  // Overloaded operators other than operator() cannot be variadic.
5858  if (Op != OO_Call &&
5859      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5860    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5861      << FnDecl->getDeclName();
5862  }
5863
5864  // Some operators must be non-static member functions.
5865  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5866    return Diag(FnDecl->getLocation(),
5867                diag::err_operator_overload_must_be_member)
5868      << FnDecl->getDeclName();
5869  }
5870
5871  // C++ [over.inc]p1:
5872  //   The user-defined function called operator++ implements the
5873  //   prefix and postfix ++ operator. If this function is a member
5874  //   function with no parameters, or a non-member function with one
5875  //   parameter of class or enumeration type, it defines the prefix
5876  //   increment operator ++ for objects of that type. If the function
5877  //   is a member function with one parameter (which shall be of type
5878  //   int) or a non-member function with two parameters (the second
5879  //   of which shall be of type int), it defines the postfix
5880  //   increment operator ++ for objects of that type.
5881  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5882    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5883    bool ParamIsInt = false;
5884    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5885      ParamIsInt = BT->getKind() == BuiltinType::Int;
5886
5887    if (!ParamIsInt)
5888      return Diag(LastParam->getLocation(),
5889                  diag::err_operator_overload_post_incdec_must_be_int)
5890        << LastParam->getType() << (Op == OO_MinusMinus);
5891  }
5892
5893  // Notify the class if it got an assignment operator.
5894  if (Op == OO_Equal) {
5895    // Would have returned earlier otherwise.
5896    assert(isa<CXXMethodDecl>(FnDecl) &&
5897      "Overloaded = not member, but not filtered.");
5898    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5899    Method->getParent()->addedAssignmentOperator(Context, Method);
5900  }
5901
5902  return false;
5903}
5904
5905/// CheckLiteralOperatorDeclaration - Check whether the declaration
5906/// of this literal operator function is well-formed. If so, returns
5907/// false; otherwise, emits appropriate diagnostics and returns true.
5908bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5909  DeclContext *DC = FnDecl->getDeclContext();
5910  Decl::Kind Kind = DC->getDeclKind();
5911  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5912      Kind != Decl::LinkageSpec) {
5913    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5914      << FnDecl->getDeclName();
5915    return true;
5916  }
5917
5918  bool Valid = false;
5919
5920  // template <char...> type operator "" name() is the only valid template
5921  // signature, and the only valid signature with no parameters.
5922  if (FnDecl->param_size() == 0) {
5923    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5924      // Must have only one template parameter
5925      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5926      if (Params->size() == 1) {
5927        NonTypeTemplateParmDecl *PmDecl =
5928          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5929
5930        // The template parameter must be a char parameter pack.
5931        // FIXME: This test will always fail because non-type parameter packs
5932        //   have not been implemented.
5933        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5934            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5935          Valid = true;
5936      }
5937    }
5938  } else {
5939    // Check the first parameter
5940    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5941
5942    QualType T = (*Param)->getType();
5943
5944    // unsigned long long int, long double, and any character type are allowed
5945    // as the only parameters.
5946    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5947        Context.hasSameType(T, Context.LongDoubleTy) ||
5948        Context.hasSameType(T, Context.CharTy) ||
5949        Context.hasSameType(T, Context.WCharTy) ||
5950        Context.hasSameType(T, Context.Char16Ty) ||
5951        Context.hasSameType(T, Context.Char32Ty)) {
5952      if (++Param == FnDecl->param_end())
5953        Valid = true;
5954      goto FinishedParams;
5955    }
5956
5957    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5958    const PointerType *PT = T->getAs<PointerType>();
5959    if (!PT)
5960      goto FinishedParams;
5961    T = PT->getPointeeType();
5962    if (!T.isConstQualified())
5963      goto FinishedParams;
5964    T = T.getUnqualifiedType();
5965
5966    // Move on to the second parameter;
5967    ++Param;
5968
5969    // If there is no second parameter, the first must be a const char *
5970    if (Param == FnDecl->param_end()) {
5971      if (Context.hasSameType(T, Context.CharTy))
5972        Valid = true;
5973      goto FinishedParams;
5974    }
5975
5976    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5977    // are allowed as the first parameter to a two-parameter function
5978    if (!(Context.hasSameType(T, Context.CharTy) ||
5979          Context.hasSameType(T, Context.WCharTy) ||
5980          Context.hasSameType(T, Context.Char16Ty) ||
5981          Context.hasSameType(T, Context.Char32Ty)))
5982      goto FinishedParams;
5983
5984    // The second and final parameter must be an std::size_t
5985    T = (*Param)->getType().getUnqualifiedType();
5986    if (Context.hasSameType(T, Context.getSizeType()) &&
5987        ++Param == FnDecl->param_end())
5988      Valid = true;
5989  }
5990
5991  // FIXME: This diagnostic is absolutely terrible.
5992FinishedParams:
5993  if (!Valid) {
5994    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5995      << FnDecl->getDeclName();
5996    return true;
5997  }
5998
5999  return false;
6000}
6001
6002/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6003/// linkage specification, including the language and (if present)
6004/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6005/// the location of the language string literal, which is provided
6006/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6007/// the '{' brace. Otherwise, this linkage specification does not
6008/// have any braces.
6009Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
6010                                                     SourceLocation ExternLoc,
6011                                                     SourceLocation LangLoc,
6012                                                     llvm::StringRef Lang,
6013                                                     SourceLocation LBraceLoc) {
6014  LinkageSpecDecl::LanguageIDs Language;
6015  if (Lang == "\"C\"")
6016    Language = LinkageSpecDecl::lang_c;
6017  else if (Lang == "\"C++\"")
6018    Language = LinkageSpecDecl::lang_cxx;
6019  else {
6020    Diag(LangLoc, diag::err_bad_language);
6021    return DeclPtrTy();
6022  }
6023
6024  // FIXME: Add all the various semantics of linkage specifications
6025
6026  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6027                                               LangLoc, Language,
6028                                               LBraceLoc.isValid());
6029  CurContext->addDecl(D);
6030  PushDeclContext(S, D);
6031  return DeclPtrTy::make(D);
6032}
6033
6034/// ActOnFinishLinkageSpecification - Complete the definition of
6035/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6036/// valid, it's the position of the closing '}' brace in a linkage
6037/// specification that uses braces.
6038Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
6039                                                      DeclPtrTy LinkageSpec,
6040                                                      SourceLocation RBraceLoc) {
6041  if (LinkageSpec)
6042    PopDeclContext();
6043  return LinkageSpec;
6044}
6045
6046/// \brief Perform semantic analysis for the variable declaration that
6047/// occurs within a C++ catch clause, returning the newly-created
6048/// variable.
6049VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
6050                                         TypeSourceInfo *TInfo,
6051                                         IdentifierInfo *Name,
6052                                         SourceLocation Loc,
6053                                         SourceRange Range) {
6054  bool Invalid = false;
6055
6056  // Arrays and functions decay.
6057  if (ExDeclType->isArrayType())
6058    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6059  else if (ExDeclType->isFunctionType())
6060    ExDeclType = Context.getPointerType(ExDeclType);
6061
6062  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6063  // The exception-declaration shall not denote a pointer or reference to an
6064  // incomplete type, other than [cv] void*.
6065  // N2844 forbids rvalue references.
6066  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6067    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
6068    Invalid = true;
6069  }
6070
6071  // GCC allows catching pointers and references to incomplete types
6072  // as an extension; so do we, but we warn by default.
6073
6074  QualType BaseType = ExDeclType;
6075  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6076  unsigned DK = diag::err_catch_incomplete;
6077  bool IncompleteCatchIsInvalid = true;
6078  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6079    BaseType = Ptr->getPointeeType();
6080    Mode = 1;
6081    DK = diag::ext_catch_incomplete_ptr;
6082    IncompleteCatchIsInvalid = false;
6083  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6084    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6085    BaseType = Ref->getPointeeType();
6086    Mode = 2;
6087    DK = diag::ext_catch_incomplete_ref;
6088    IncompleteCatchIsInvalid = false;
6089  }
6090  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6091      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6092      IncompleteCatchIsInvalid)
6093    Invalid = true;
6094
6095  if (!Invalid && !ExDeclType->isDependentType() &&
6096      RequireNonAbstractType(Loc, ExDeclType,
6097                             diag::err_abstract_type_in_decl,
6098                             AbstractVariableType))
6099    Invalid = true;
6100
6101  // Only the non-fragile NeXT runtime currently supports C++ catches
6102  // of ObjC types, and no runtime supports catching ObjC types by value.
6103  if (!Invalid && getLangOptions().ObjC1) {
6104    QualType T = ExDeclType;
6105    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6106      T = RT->getPointeeType();
6107
6108    if (T->isObjCObjectType()) {
6109      Diag(Loc, diag::err_objc_object_catch);
6110      Invalid = true;
6111    } else if (T->isObjCObjectPointerType()) {
6112      if (!getLangOptions().NeXTRuntime) {
6113        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6114        Invalid = true;
6115      } else if (!getLangOptions().ObjCNonFragileABI) {
6116        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6117        Invalid = true;
6118      }
6119    }
6120  }
6121
6122  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6123                                    Name, ExDeclType, TInfo, VarDecl::None,
6124                                    VarDecl::None);
6125  ExDecl->setExceptionVariable(true);
6126
6127  if (!Invalid) {
6128    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6129      // C++ [except.handle]p16:
6130      //   The object declared in an exception-declaration or, if the
6131      //   exception-declaration does not specify a name, a temporary (12.2) is
6132      //   copy-initialized (8.5) from the exception object. [...]
6133      //   The object is destroyed when the handler exits, after the destruction
6134      //   of any automatic objects initialized within the handler.
6135      //
6136      // We just pretend to initialize the object with itself, then make sure
6137      // it can be destroyed later.
6138      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6139      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6140                                            Loc, ExDeclType, 0);
6141      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6142                                                               SourceLocation());
6143      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6144      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6145                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
6146      if (Result.isInvalid())
6147        Invalid = true;
6148      else
6149        FinalizeVarWithDestructor(ExDecl, RecordTy);
6150    }
6151  }
6152
6153  if (Invalid)
6154    ExDecl->setInvalidDecl();
6155
6156  return ExDecl;
6157}
6158
6159/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6160/// handler.
6161Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6162  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6163  QualType ExDeclType = TInfo->getType();
6164
6165  bool Invalid = D.isInvalidType();
6166  IdentifierInfo *II = D.getIdentifier();
6167  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6168                                             LookupOrdinaryName,
6169                                             ForRedeclaration)) {
6170    // The scope should be freshly made just for us. There is just no way
6171    // it contains any previous declaration.
6172    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
6173    if (PrevDecl->isTemplateParameter()) {
6174      // Maybe we will complain about the shadowed template parameter.
6175      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6176    }
6177  }
6178
6179  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6180    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6181      << D.getCXXScopeSpec().getRange();
6182    Invalid = true;
6183  }
6184
6185  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
6186                                              D.getIdentifier(),
6187                                              D.getIdentifierLoc(),
6188                                            D.getDeclSpec().getSourceRange());
6189
6190  if (Invalid)
6191    ExDecl->setInvalidDecl();
6192
6193  // Add the exception declaration into this scope.
6194  if (II)
6195    PushOnScopeChains(ExDecl, S);
6196  else
6197    CurContext->addDecl(ExDecl);
6198
6199  ProcessDeclAttributes(S, ExDecl, D);
6200  return DeclPtrTy::make(ExDecl);
6201}
6202
6203Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6204                                                   ExprArg assertexpr,
6205                                                   ExprArg assertmessageexpr) {
6206  Expr *AssertExpr = (Expr *)assertexpr.get();
6207  StringLiteral *AssertMessage =
6208    cast<StringLiteral>((Expr *)assertmessageexpr.get());
6209
6210  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6211    llvm::APSInt Value(32);
6212    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6213      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6214        AssertExpr->getSourceRange();
6215      return DeclPtrTy();
6216    }
6217
6218    if (Value == 0) {
6219      Diag(AssertLoc, diag::err_static_assert_failed)
6220        << AssertMessage->getString() << AssertExpr->getSourceRange();
6221    }
6222  }
6223
6224  assertexpr.release();
6225  assertmessageexpr.release();
6226  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6227                                        AssertExpr, AssertMessage);
6228
6229  CurContext->addDecl(Decl);
6230  return DeclPtrTy::make(Decl);
6231}
6232
6233/// \brief Perform semantic analysis of the given friend type declaration.
6234///
6235/// \returns A friend declaration that.
6236FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6237                                      TypeSourceInfo *TSInfo) {
6238  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6239
6240  QualType T = TSInfo->getType();
6241  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6242
6243  if (!getLangOptions().CPlusPlus0x) {
6244    // C++03 [class.friend]p2:
6245    //   An elaborated-type-specifier shall be used in a friend declaration
6246    //   for a class.*
6247    //
6248    //   * The class-key of the elaborated-type-specifier is required.
6249    if (!ActiveTemplateInstantiations.empty()) {
6250      // Do not complain about the form of friend template types during
6251      // template instantiation; we will already have complained when the
6252      // template was declared.
6253    } else if (!T->isElaboratedTypeSpecifier()) {
6254      // If we evaluated the type to a record type, suggest putting
6255      // a tag in front.
6256      if (const RecordType *RT = T->getAs<RecordType>()) {
6257        RecordDecl *RD = RT->getDecl();
6258
6259        std::string InsertionText = std::string(" ") + RD->getKindName();
6260
6261        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6262          << (unsigned) RD->getTagKind()
6263          << T
6264          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6265                                        InsertionText);
6266      } else {
6267        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6268          << T
6269          << SourceRange(FriendLoc, TypeRange.getEnd());
6270      }
6271    } else if (T->getAs<EnumType>()) {
6272      Diag(FriendLoc, diag::ext_enum_friend)
6273        << T
6274        << SourceRange(FriendLoc, TypeRange.getEnd());
6275    }
6276  }
6277
6278  // C++0x [class.friend]p3:
6279  //   If the type specifier in a friend declaration designates a (possibly
6280  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6281  //   the friend declaration is ignored.
6282
6283  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6284  // in [class.friend]p3 that we do not implement.
6285
6286  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6287}
6288
6289/// Handle a friend type declaration.  This works in tandem with
6290/// ActOnTag.
6291///
6292/// Notes on friend class templates:
6293///
6294/// We generally treat friend class declarations as if they were
6295/// declaring a class.  So, for example, the elaborated type specifier
6296/// in a friend declaration is required to obey the restrictions of a
6297/// class-head (i.e. no typedefs in the scope chain), template
6298/// parameters are required to match up with simple template-ids, &c.
6299/// However, unlike when declaring a template specialization, it's
6300/// okay to refer to a template specialization without an empty
6301/// template parameter declaration, e.g.
6302///   friend class A<T>::B<unsigned>;
6303/// We permit this as a special case; if there are any template
6304/// parameters present at all, require proper matching, i.e.
6305///   template <> template <class T> friend class A<int>::B;
6306Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6307                                          MultiTemplateParamsArg TempParams) {
6308  SourceLocation Loc = DS.getSourceRange().getBegin();
6309
6310  assert(DS.isFriendSpecified());
6311  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6312
6313  // Try to convert the decl specifier to a type.  This works for
6314  // friend templates because ActOnTag never produces a ClassTemplateDecl
6315  // for a TUK_Friend.
6316  Declarator TheDeclarator(DS, Declarator::MemberContext);
6317  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6318  QualType T = TSI->getType();
6319  if (TheDeclarator.isInvalidType())
6320    return DeclPtrTy();
6321
6322  // This is definitely an error in C++98.  It's probably meant to
6323  // be forbidden in C++0x, too, but the specification is just
6324  // poorly written.
6325  //
6326  // The problem is with declarations like the following:
6327  //   template <T> friend A<T>::foo;
6328  // where deciding whether a class C is a friend or not now hinges
6329  // on whether there exists an instantiation of A that causes
6330  // 'foo' to equal C.  There are restrictions on class-heads
6331  // (which we declare (by fiat) elaborated friend declarations to
6332  // be) that makes this tractable.
6333  //
6334  // FIXME: handle "template <> friend class A<T>;", which
6335  // is possibly well-formed?  Who even knows?
6336  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6337    Diag(Loc, diag::err_tagless_friend_type_template)
6338      << DS.getSourceRange();
6339    return DeclPtrTy();
6340  }
6341
6342  // C++98 [class.friend]p1: A friend of a class is a function
6343  //   or class that is not a member of the class . . .
6344  // This is fixed in DR77, which just barely didn't make the C++03
6345  // deadline.  It's also a very silly restriction that seriously
6346  // affects inner classes and which nobody else seems to implement;
6347  // thus we never diagnose it, not even in -pedantic.
6348  //
6349  // But note that we could warn about it: it's always useless to
6350  // friend one of your own members (it's not, however, worthless to
6351  // friend a member of an arbitrary specialization of your template).
6352
6353  Decl *D;
6354  if (unsigned NumTempParamLists = TempParams.size())
6355    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6356                                   NumTempParamLists,
6357                                 (TemplateParameterList**) TempParams.release(),
6358                                   TSI,
6359                                   DS.getFriendSpecLoc());
6360  else
6361    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6362
6363  if (!D)
6364    return DeclPtrTy();
6365
6366  D->setAccess(AS_public);
6367  CurContext->addDecl(D);
6368
6369  return DeclPtrTy::make(D);
6370}
6371
6372Sema::DeclPtrTy
6373Sema::ActOnFriendFunctionDecl(Scope *S,
6374                              Declarator &D,
6375                              bool IsDefinition,
6376                              MultiTemplateParamsArg TemplateParams) {
6377  const DeclSpec &DS = D.getDeclSpec();
6378
6379  assert(DS.isFriendSpecified());
6380  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6381
6382  SourceLocation Loc = D.getIdentifierLoc();
6383  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6384  QualType T = TInfo->getType();
6385
6386  // C++ [class.friend]p1
6387  //   A friend of a class is a function or class....
6388  // Note that this sees through typedefs, which is intended.
6389  // It *doesn't* see through dependent types, which is correct
6390  // according to [temp.arg.type]p3:
6391  //   If a declaration acquires a function type through a
6392  //   type dependent on a template-parameter and this causes
6393  //   a declaration that does not use the syntactic form of a
6394  //   function declarator to have a function type, the program
6395  //   is ill-formed.
6396  if (!T->isFunctionType()) {
6397    Diag(Loc, diag::err_unexpected_friend);
6398
6399    // It might be worthwhile to try to recover by creating an
6400    // appropriate declaration.
6401    return DeclPtrTy();
6402  }
6403
6404  // C++ [namespace.memdef]p3
6405  //  - If a friend declaration in a non-local class first declares a
6406  //    class or function, the friend class or function is a member
6407  //    of the innermost enclosing namespace.
6408  //  - The name of the friend is not found by simple name lookup
6409  //    until a matching declaration is provided in that namespace
6410  //    scope (either before or after the class declaration granting
6411  //    friendship).
6412  //  - If a friend function is called, its name may be found by the
6413  //    name lookup that considers functions from namespaces and
6414  //    classes associated with the types of the function arguments.
6415  //  - When looking for a prior declaration of a class or a function
6416  //    declared as a friend, scopes outside the innermost enclosing
6417  //    namespace scope are not considered.
6418
6419  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
6420  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6421  DeclarationName Name = NameInfo.getName();
6422  assert(Name);
6423
6424  // The context we found the declaration in, or in which we should
6425  // create the declaration.
6426  DeclContext *DC;
6427
6428  // FIXME: handle local classes
6429
6430  // Recover from invalid scope qualifiers as if they just weren't there.
6431  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6432                        ForRedeclaration);
6433  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
6434    DC = computeDeclContext(ScopeQual);
6435
6436    // FIXME: handle dependent contexts
6437    if (!DC) return DeclPtrTy();
6438    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
6439
6440    LookupQualifiedName(Previous, DC);
6441
6442    // Ignore things found implicitly in the wrong scope.
6443    // TODO: better diagnostics for this case.  Suggesting the right
6444    // qualified scope would be nice...
6445    LookupResult::Filter F = Previous.makeFilter();
6446    while (F.hasNext()) {
6447      NamedDecl *D = F.next();
6448      if (!D->getDeclContext()->getLookupContext()->Equals(DC))
6449        F.erase();
6450    }
6451    F.done();
6452
6453    if (Previous.empty()) {
6454      D.setInvalidType();
6455      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6456      return DeclPtrTy();
6457    }
6458
6459    // C++ [class.friend]p1: A friend of a class is a function or
6460    //   class that is not a member of the class . . .
6461    if (DC->Equals(CurContext))
6462      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6463
6464  // Otherwise walk out to the nearest namespace scope looking for matches.
6465  } else {
6466    // TODO: handle local class contexts.
6467
6468    DC = CurContext;
6469    while (true) {
6470      // Skip class contexts.  If someone can cite chapter and verse
6471      // for this behavior, that would be nice --- it's what GCC and
6472      // EDG do, and it seems like a reasonable intent, but the spec
6473      // really only says that checks for unqualified existing
6474      // declarations should stop at the nearest enclosing namespace,
6475      // not that they should only consider the nearest enclosing
6476      // namespace.
6477      while (DC->isRecord())
6478        DC = DC->getParent();
6479
6480      LookupQualifiedName(Previous, DC);
6481
6482      // TODO: decide what we think about using declarations.
6483      if (!Previous.empty())
6484        break;
6485
6486      if (DC->isFileContext()) break;
6487      DC = DC->getParent();
6488    }
6489
6490    // C++ [class.friend]p1: A friend of a class is a function or
6491    //   class that is not a member of the class . . .
6492    // C++0x changes this for both friend types and functions.
6493    // Most C++ 98 compilers do seem to give an error here, so
6494    // we do, too.
6495    if (!Previous.empty() && DC->Equals(CurContext)
6496        && !getLangOptions().CPlusPlus0x)
6497      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6498  }
6499
6500  if (DC->isFileContext()) {
6501    // This implies that it has to be an operator or function.
6502    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6503        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6504        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6505      Diag(Loc, diag::err_introducing_special_friend) <<
6506        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6507         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6508      return DeclPtrTy();
6509    }
6510  }
6511
6512  bool Redeclaration = false;
6513  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
6514                                          move(TemplateParams),
6515                                          IsDefinition,
6516                                          Redeclaration);
6517  if (!ND) return DeclPtrTy();
6518
6519  assert(ND->getDeclContext() == DC);
6520  assert(ND->getLexicalDeclContext() == CurContext);
6521
6522  // Add the function declaration to the appropriate lookup tables,
6523  // adjusting the redeclarations list as necessary.  We don't
6524  // want to do this yet if the friending class is dependent.
6525  //
6526  // Also update the scope-based lookup if the target context's
6527  // lookup context is in lexical scope.
6528  if (!CurContext->isDependentContext()) {
6529    DC = DC->getLookupContext();
6530    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6531    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6532      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6533  }
6534
6535  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6536                                       D.getIdentifierLoc(), ND,
6537                                       DS.getFriendSpecLoc());
6538  FrD->setAccess(AS_public);
6539  CurContext->addDecl(FrD);
6540
6541  return DeclPtrTy::make(ND);
6542}
6543
6544void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
6545  AdjustDeclIfTemplate(dcl);
6546
6547  Decl *Dcl = dcl.getAs<Decl>();
6548  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6549  if (!Fn) {
6550    Diag(DelLoc, diag::err_deleted_non_function);
6551    return;
6552  }
6553  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6554    Diag(DelLoc, diag::err_deleted_decl_not_first);
6555    Diag(Prev->getLocation(), diag::note_previous_declaration);
6556    // If the declaration wasn't the first, we delete the function anyway for
6557    // recovery.
6558  }
6559  Fn->setDeleted();
6560}
6561
6562static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6563  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6564       ++CI) {
6565    Stmt *SubStmt = *CI;
6566    if (!SubStmt)
6567      continue;
6568    if (isa<ReturnStmt>(SubStmt))
6569      Self.Diag(SubStmt->getSourceRange().getBegin(),
6570           diag::err_return_in_constructor_handler);
6571    if (!isa<Expr>(SubStmt))
6572      SearchForReturnInStmt(Self, SubStmt);
6573  }
6574}
6575
6576void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6577  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6578    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6579    SearchForReturnInStmt(*this, Handler);
6580  }
6581}
6582
6583bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6584                                             const CXXMethodDecl *Old) {
6585  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6586  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6587
6588  if (Context.hasSameType(NewTy, OldTy) ||
6589      NewTy->isDependentType() || OldTy->isDependentType())
6590    return false;
6591
6592  // Check if the return types are covariant
6593  QualType NewClassTy, OldClassTy;
6594
6595  /// Both types must be pointers or references to classes.
6596  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6597    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6598      NewClassTy = NewPT->getPointeeType();
6599      OldClassTy = OldPT->getPointeeType();
6600    }
6601  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6602    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6603      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6604        NewClassTy = NewRT->getPointeeType();
6605        OldClassTy = OldRT->getPointeeType();
6606      }
6607    }
6608  }
6609
6610  // The return types aren't either both pointers or references to a class type.
6611  if (NewClassTy.isNull()) {
6612    Diag(New->getLocation(),
6613         diag::err_different_return_type_for_overriding_virtual_function)
6614      << New->getDeclName() << NewTy << OldTy;
6615    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6616
6617    return true;
6618  }
6619
6620  // C++ [class.virtual]p6:
6621  //   If the return type of D::f differs from the return type of B::f, the
6622  //   class type in the return type of D::f shall be complete at the point of
6623  //   declaration of D::f or shall be the class type D.
6624  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6625    if (!RT->isBeingDefined() &&
6626        RequireCompleteType(New->getLocation(), NewClassTy,
6627                            PDiag(diag::err_covariant_return_incomplete)
6628                              << New->getDeclName()))
6629    return true;
6630  }
6631
6632  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6633    // Check if the new class derives from the old class.
6634    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6635      Diag(New->getLocation(),
6636           diag::err_covariant_return_not_derived)
6637      << New->getDeclName() << NewTy << OldTy;
6638      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6639      return true;
6640    }
6641
6642    // Check if we the conversion from derived to base is valid.
6643    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6644                    diag::err_covariant_return_inaccessible_base,
6645                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6646                    // FIXME: Should this point to the return type?
6647                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6648      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6649      return true;
6650    }
6651  }
6652
6653  // The qualifiers of the return types must be the same.
6654  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6655    Diag(New->getLocation(),
6656         diag::err_covariant_return_type_different_qualifications)
6657    << New->getDeclName() << NewTy << OldTy;
6658    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6659    return true;
6660  };
6661
6662
6663  // The new class type must have the same or less qualifiers as the old type.
6664  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6665    Diag(New->getLocation(),
6666         diag::err_covariant_return_type_class_type_more_qualified)
6667    << New->getDeclName() << NewTy << OldTy;
6668    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6669    return true;
6670  };
6671
6672  return false;
6673}
6674
6675bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6676                                             const CXXMethodDecl *Old)
6677{
6678  if (Old->hasAttr<FinalAttr>()) {
6679    Diag(New->getLocation(), diag::err_final_function_overridden)
6680      << New->getDeclName();
6681    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6682    return true;
6683  }
6684
6685  return false;
6686}
6687
6688/// \brief Mark the given method pure.
6689///
6690/// \param Method the method to be marked pure.
6691///
6692/// \param InitRange the source range that covers the "0" initializer.
6693bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6694  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6695    Method->setPure();
6696
6697    // A class is abstract if at least one function is pure virtual.
6698    Method->getParent()->setAbstract(true);
6699    return false;
6700  }
6701
6702  if (!Method->isInvalidDecl())
6703    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6704      << Method->getDeclName() << InitRange;
6705  return true;
6706}
6707
6708/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6709/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6710/// is a fresh scope pushed for just this purpose.
6711///
6712/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6713/// static data member of class X, names should be looked up in the scope of
6714/// class X.
6715void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6716  // If there is no declaration, there was an error parsing it.
6717  Decl *D = Dcl.getAs<Decl>();
6718  if (D == 0) return;
6719
6720  // We should only get called for declarations with scope specifiers, like:
6721  //   int foo::bar;
6722  assert(D->isOutOfLine());
6723  EnterDeclaratorContext(S, D->getDeclContext());
6724}
6725
6726/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6727/// initializer for the out-of-line declaration 'Dcl'.
6728void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6729  // If there is no declaration, there was an error parsing it.
6730  Decl *D = Dcl.getAs<Decl>();
6731  if (D == 0) return;
6732
6733  assert(D->isOutOfLine());
6734  ExitDeclaratorContext(S);
6735}
6736
6737/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6738/// C++ if/switch/while/for statement.
6739/// e.g: "if (int x = f()) {...}"
6740Action::DeclResult
6741Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6742  // C++ 6.4p2:
6743  // The declarator shall not specify a function or an array.
6744  // The type-specifier-seq shall not contain typedef and shall not declare a
6745  // new class or enumeration.
6746  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6747         "Parser allowed 'typedef' as storage class of condition decl.");
6748
6749  TagDecl *OwnedTag = 0;
6750  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6751  QualType Ty = TInfo->getType();
6752
6753  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6754                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6755                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6756    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6757      << D.getSourceRange();
6758    return DeclResult();
6759  } else if (OwnedTag && OwnedTag->isDefinition()) {
6760    // The type-specifier-seq shall not declare a new class or enumeration.
6761    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6762  }
6763
6764  DeclPtrTy Dcl = ActOnDeclarator(S, D);
6765  if (!Dcl)
6766    return DeclResult();
6767
6768  return Dcl;
6769}
6770
6771void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6772                          bool DefinitionRequired) {
6773  // Ignore any vtable uses in unevaluated operands or for classes that do
6774  // not have a vtable.
6775  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6776      CurContext->isDependentContext() ||
6777      ExprEvalContexts.back().Context == Unevaluated)
6778    return;
6779
6780  // Try to insert this class into the map.
6781  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6782  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6783    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6784  if (!Pos.second) {
6785    // If we already had an entry, check to see if we are promoting this vtable
6786    // to required a definition. If so, we need to reappend to the VTableUses
6787    // list, since we may have already processed the first entry.
6788    if (DefinitionRequired && !Pos.first->second) {
6789      Pos.first->second = true;
6790    } else {
6791      // Otherwise, we can early exit.
6792      return;
6793    }
6794  }
6795
6796  // Local classes need to have their virtual members marked
6797  // immediately. For all other classes, we mark their virtual members
6798  // at the end of the translation unit.
6799  if (Class->isLocalClass())
6800    MarkVirtualMembersReferenced(Loc, Class);
6801  else
6802    VTableUses.push_back(std::make_pair(Class, Loc));
6803}
6804
6805bool Sema::DefineUsedVTables() {
6806  // If any dynamic classes have their key function defined within
6807  // this translation unit, then those vtables are considered "used" and must
6808  // be emitted.
6809  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6810    if (const CXXMethodDecl *KeyFunction
6811                             = Context.getKeyFunction(DynamicClasses[I])) {
6812      const FunctionDecl *Definition = 0;
6813      if (KeyFunction->hasBody(Definition))
6814        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6815    }
6816  }
6817
6818  if (VTableUses.empty())
6819    return false;
6820
6821  // Note: The VTableUses vector could grow as a result of marking
6822  // the members of a class as "used", so we check the size each
6823  // time through the loop and prefer indices (with are stable) to
6824  // iterators (which are not).
6825  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6826    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6827    if (!Class)
6828      continue;
6829
6830    SourceLocation Loc = VTableUses[I].second;
6831
6832    // If this class has a key function, but that key function is
6833    // defined in another translation unit, we don't need to emit the
6834    // vtable even though we're using it.
6835    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6836    if (KeyFunction && !KeyFunction->hasBody()) {
6837      switch (KeyFunction->getTemplateSpecializationKind()) {
6838      case TSK_Undeclared:
6839      case TSK_ExplicitSpecialization:
6840      case TSK_ExplicitInstantiationDeclaration:
6841        // The key function is in another translation unit.
6842        continue;
6843
6844      case TSK_ExplicitInstantiationDefinition:
6845      case TSK_ImplicitInstantiation:
6846        // We will be instantiating the key function.
6847        break;
6848      }
6849    } else if (!KeyFunction) {
6850      // If we have a class with no key function that is the subject
6851      // of an explicit instantiation declaration, suppress the
6852      // vtable; it will live with the explicit instantiation
6853      // definition.
6854      bool IsExplicitInstantiationDeclaration
6855        = Class->getTemplateSpecializationKind()
6856                                      == TSK_ExplicitInstantiationDeclaration;
6857      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6858                                 REnd = Class->redecls_end();
6859           R != REnd; ++R) {
6860        TemplateSpecializationKind TSK
6861          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6862        if (TSK == TSK_ExplicitInstantiationDeclaration)
6863          IsExplicitInstantiationDeclaration = true;
6864        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6865          IsExplicitInstantiationDeclaration = false;
6866          break;
6867        }
6868      }
6869
6870      if (IsExplicitInstantiationDeclaration)
6871        continue;
6872    }
6873
6874    // Mark all of the virtual members of this class as referenced, so
6875    // that we can build a vtable. Then, tell the AST consumer that a
6876    // vtable for this class is required.
6877    MarkVirtualMembersReferenced(Loc, Class);
6878    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6879    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6880
6881    // Optionally warn if we're emitting a weak vtable.
6882    if (Class->getLinkage() == ExternalLinkage &&
6883        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6884      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
6885        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6886    }
6887  }
6888  VTableUses.clear();
6889
6890  return true;
6891}
6892
6893void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6894                                        const CXXRecordDecl *RD) {
6895  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6896       e = RD->method_end(); i != e; ++i) {
6897    CXXMethodDecl *MD = *i;
6898
6899    // C++ [basic.def.odr]p2:
6900    //   [...] A virtual member function is used if it is not pure. [...]
6901    if (MD->isVirtual() && !MD->isPure())
6902      MarkDeclarationReferenced(Loc, MD);
6903  }
6904
6905  // Only classes that have virtual bases need a VTT.
6906  if (RD->getNumVBases() == 0)
6907    return;
6908
6909  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6910           e = RD->bases_end(); i != e; ++i) {
6911    const CXXRecordDecl *Base =
6912        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6913    if (Base->getNumVBases() == 0)
6914      continue;
6915    MarkVirtualMembersReferenced(Loc, Base);
6916  }
6917}
6918
6919/// SetIvarInitializers - This routine builds initialization ASTs for the
6920/// Objective-C implementation whose ivars need be initialized.
6921void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6922  if (!getLangOptions().CPlusPlus)
6923    return;
6924  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6925    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6926    CollectIvarsToConstructOrDestruct(OID, ivars);
6927    if (ivars.empty())
6928      return;
6929    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6930    for (unsigned i = 0; i < ivars.size(); i++) {
6931      FieldDecl *Field = ivars[i];
6932      if (Field->isInvalidDecl())
6933        continue;
6934
6935      CXXBaseOrMemberInitializer *Member;
6936      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6937      InitializationKind InitKind =
6938        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6939
6940      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6941      Sema::OwningExprResult MemberInit =
6942        InitSeq.Perform(*this, InitEntity, InitKind,
6943                        Sema::MultiExprArg(*this, 0, 0));
6944      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
6945      // Note, MemberInit could actually come back empty if no initialization
6946      // is required (e.g., because it would call a trivial default constructor)
6947      if (!MemberInit.get() || MemberInit.isInvalid())
6948        continue;
6949
6950      Member =
6951        new (Context) CXXBaseOrMemberInitializer(Context,
6952                                                 Field, SourceLocation(),
6953                                                 SourceLocation(),
6954                                                 MemberInit.takeAs<Expr>(),
6955                                                 SourceLocation());
6956      AllToInit.push_back(Member);
6957
6958      // Be sure that the destructor is accessible and is marked as referenced.
6959      if (const RecordType *RecordTy
6960                  = Context.getBaseElementType(Field->getType())
6961                                                        ->getAs<RecordType>()) {
6962                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6963        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
6964          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6965          CheckDestructorAccess(Field->getLocation(), Destructor,
6966                            PDiag(diag::err_access_dtor_ivar)
6967                              << Context.getBaseElementType(Field->getType()));
6968        }
6969      }
6970    }
6971    ObjCImplementation->setIvarInitializers(Context,
6972                                            AllToInit.data(), AllToInit.size());
6973  }
6974}
6975