SemaDeclCXX.cpp revision d9d22dd9c94618490dbffb0e2caf222530ca39d3
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/TypeOrdering.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm> // for std::equal
25#include <map>
26
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30// CheckDefaultArgumentVisitor
31//===----------------------------------------------------------------------===//
32
33namespace {
34  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
35  /// the default argument of a parameter to determine whether it
36  /// contains any ill-formed subexpressions. For example, this will
37  /// diagnose the use of local variables or parameters within the
38  /// default argument expression.
39  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
40    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
41    Expr *DefaultArg;
42    Sema *S;
43
44  public:
45    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
46      : DefaultArg(defarg), S(s) {}
47
48    bool VisitExpr(Expr *Node);
49    bool VisitDeclRefExpr(DeclRefExpr *DRE);
50    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
51  };
52
53  /// VisitExpr - Visit all of the children of this expression.
54  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
55    bool IsInvalid = false;
56    for (Stmt::child_iterator I = Node->child_begin(),
57         E = Node->child_end(); I != E; ++I)
58      IsInvalid |= Visit(*I);
59    return IsInvalid;
60  }
61
62  /// VisitDeclRefExpr - Visit a reference to a declaration, to
63  /// determine whether this declaration can be used in the default
64  /// argument expression.
65  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
66    NamedDecl *Decl = DRE->getDecl();
67    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
68      // C++ [dcl.fct.default]p9
69      //   Default arguments are evaluated each time the function is
70      //   called. The order of evaluation of function arguments is
71      //   unspecified. Consequently, parameters of a function shall not
72      //   be used in default argument expressions, even if they are not
73      //   evaluated. Parameters of a function declared before a default
74      //   argument expression are in scope and can hide namespace and
75      //   class member names.
76      return S->Diag(DRE->getSourceRange().getBegin(),
77                     diag::err_param_default_argument_references_param)
78         << Param->getDeclName() << DefaultArg->getSourceRange();
79    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
80      // C++ [dcl.fct.default]p7
81      //   Local variables shall not be used in default argument
82      //   expressions.
83      if (VDecl->isBlockVarDecl())
84        return S->Diag(DRE->getSourceRange().getBegin(),
85                       diag::err_param_default_argument_references_local)
86          << VDecl->getDeclName() << DefaultArg->getSourceRange();
87    }
88
89    return false;
90  }
91
92  /// VisitCXXThisExpr - Visit a C++ "this" expression.
93  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
94    // C++ [dcl.fct.default]p8:
95    //   The keyword this shall not be used in a default argument of a
96    //   member function.
97    return S->Diag(ThisE->getSourceRange().getBegin(),
98                   diag::err_param_default_argument_references_this)
99               << ThisE->getSourceRange();
100  }
101}
102
103/// ActOnParamDefaultArgument - Check whether the default argument
104/// provided for a function parameter is well-formed. If so, attach it
105/// to the parameter declaration.
106void
107Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
108                                ExprTy *defarg) {
109  ParmVarDecl *Param = (ParmVarDecl *)param;
110  llvm::OwningPtr<Expr> DefaultArg((Expr *)defarg);
111  QualType ParamType = Param->getType();
112
113  // Default arguments are only permitted in C++
114  if (!getLangOptions().CPlusPlus) {
115    Diag(EqualLoc, diag::err_param_default_argument)
116      << DefaultArg->getSourceRange();
117    return;
118  }
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  Expr *DefaultArgPtr = DefaultArg.get();
127  bool DefaultInitFailed = PerformCopyInitialization(DefaultArgPtr, ParamType,
128                                                     "in default argument");
129  if (DefaultArgPtr != DefaultArg.get()) {
130    DefaultArg.take();
131    DefaultArg.reset(DefaultArgPtr);
132  }
133  if (DefaultInitFailed) {
134    return;
135  }
136
137  // Check that the default argument is well-formed
138  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
139  if (DefaultArgChecker.Visit(DefaultArg.get()))
140    return;
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(DefaultArg.take());
144}
145
146/// CheckExtraCXXDefaultArguments - Check for any extra default
147/// arguments in the declarator, which is not a function declaration
148/// or definition and therefore is not permitted to have default
149/// arguments. This routine should be invoked for every declarator
150/// that is not a function declaration or definition.
151void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
152  // C++ [dcl.fct.default]p3
153  //   A default argument expression shall be specified only in the
154  //   parameter-declaration-clause of a function declaration or in a
155  //   template-parameter (14.1). It shall not be specified for a
156  //   parameter pack. If it is specified in a
157  //   parameter-declaration-clause, it shall not occur within a
158  //   declarator or abstract-declarator of a parameter-declaration.
159  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
160    DeclaratorChunk &chunk = D.getTypeObject(i);
161    if (chunk.Kind == DeclaratorChunk::Function) {
162      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
163        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
164        if (Param->getDefaultArg()) {
165          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
166            << Param->getDefaultArg()->getSourceRange();
167          Param->setDefaultArg(0);
168        }
169      }
170    }
171  }
172}
173
174// MergeCXXFunctionDecl - Merge two declarations of the same C++
175// function, once we already know that they have the same
176// type. Subroutine of MergeFunctionDecl.
177FunctionDecl *
178Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
179  // C++ [dcl.fct.default]p4:
180  //
181  //   For non-template functions, default arguments can be added in
182  //   later declarations of a function in the same
183  //   scope. Declarations in different scopes have completely
184  //   distinct sets of default arguments. That is, declarations in
185  //   inner scopes do not acquire default arguments from
186  //   declarations in outer scopes, and vice versa. In a given
187  //   function declaration, all parameters subsequent to a
188  //   parameter with a default argument shall have default
189  //   arguments supplied in this or previous declarations. A
190  //   default argument shall not be redefined by a later
191  //   declaration (not even to the same value).
192  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
193    ParmVarDecl *OldParam = Old->getParamDecl(p);
194    ParmVarDecl *NewParam = New->getParamDecl(p);
195
196    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
197      Diag(NewParam->getLocation(),
198           diag::err_param_default_argument_redefinition)
199        << NewParam->getDefaultArg()->getSourceRange();
200      Diag(OldParam->getLocation(), diag::note_previous_definition);
201    } else if (OldParam->getDefaultArg()) {
202      // Merge the old default argument into the new parameter
203      NewParam->setDefaultArg(OldParam->getDefaultArg());
204    }
205  }
206
207  return New;
208}
209
210/// CheckCXXDefaultArguments - Verify that the default arguments for a
211/// function declaration are well-formed according to C++
212/// [dcl.fct.default].
213void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
214  unsigned NumParams = FD->getNumParams();
215  unsigned p;
216
217  // Find first parameter with a default argument
218  for (p = 0; p < NumParams; ++p) {
219    ParmVarDecl *Param = FD->getParamDecl(p);
220    if (Param->getDefaultArg())
221      break;
222  }
223
224  // C++ [dcl.fct.default]p4:
225  //   In a given function declaration, all parameters
226  //   subsequent to a parameter with a default argument shall
227  //   have default arguments supplied in this or previous
228  //   declarations. A default argument shall not be redefined
229  //   by a later declaration (not even to the same value).
230  unsigned LastMissingDefaultArg = 0;
231  for(; p < NumParams; ++p) {
232    ParmVarDecl *Param = FD->getParamDecl(p);
233    if (!Param->getDefaultArg()) {
234      if (Param->getIdentifier())
235        Diag(Param->getLocation(),
236             diag::err_param_default_argument_missing_name)
237          << Param->getIdentifier();
238      else
239        Diag(Param->getLocation(),
240             diag::err_param_default_argument_missing);
241
242      LastMissingDefaultArg = p;
243    }
244  }
245
246  if (LastMissingDefaultArg > 0) {
247    // Some default arguments were missing. Clear out all of the
248    // default arguments up to (and including) the last missing
249    // default argument, so that we leave the function parameters
250    // in a semantically valid state.
251    for (p = 0; p <= LastMissingDefaultArg; ++p) {
252      ParmVarDecl *Param = FD->getParamDecl(p);
253      if (Param->getDefaultArg()) {
254        delete Param->getDefaultArg();
255        Param->setDefaultArg(0);
256      }
257    }
258  }
259}
260
261/// isCurrentClassName - Determine whether the identifier II is the
262/// name of the class type currently being defined. In the case of
263/// nested classes, this will only return true if II is the name of
264/// the innermost class.
265bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
266                              const CXXScopeSpec *SS) {
267  CXXRecordDecl *CurDecl;
268  if (SS) {
269    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
270    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
271  } else
272    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
273
274  if (CurDecl)
275    return &II == CurDecl->getIdentifier();
276  else
277    return false;
278}
279
280/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
281/// one entry in the base class list of a class specifier, for
282/// example:
283///    class foo : public bar, virtual private baz {
284/// 'public bar' and 'virtual private baz' are each base-specifiers.
285Sema::BaseResult
286Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
287                         bool Virtual, AccessSpecifier Access,
288                         TypeTy *basetype, SourceLocation BaseLoc) {
289  RecordDecl *Decl = (RecordDecl*)classdecl;
290  QualType BaseType = Context.getTypeDeclType((TypeDecl*)basetype);
291
292  // Base specifiers must be record types.
293  if (!BaseType->isRecordType())
294    return Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
295
296  // C++ [class.union]p1:
297  //   A union shall not be used as a base class.
298  if (BaseType->isUnionType())
299    return Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
300
301  // C++ [class.union]p1:
302  //   A union shall not have base classes.
303  if (Decl->isUnion())
304    return Diag(Decl->getLocation(), diag::err_base_clause_on_union)
305              << SpecifierRange;
306
307  // C++ [class.derived]p2:
308  //   The class-name in a base-specifier shall not be an incompletely
309  //   defined class.
310  if (BaseType->isIncompleteType())
311    return Diag(BaseLoc, diag::err_incomplete_base_class) << SpecifierRange;
312
313  // If the base class is polymorphic, the new one is, too.
314  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
315  assert(BaseDecl && "Record type has no declaration");
316  BaseDecl = BaseDecl->getDefinition(Context);
317  assert(BaseDecl && "Base type is not incomplete, but has no definition");
318  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
319    cast<CXXRecordDecl>(Decl)->setPolymorphic(true);
320
321  // Create the base specifier.
322  return new CXXBaseSpecifier(SpecifierRange, Virtual,
323                              BaseType->isClassType(), Access, BaseType);
324}
325
326/// ActOnBaseSpecifiers - Attach the given base specifiers to the
327/// class, after checking whether there are any duplicate base
328/// classes.
329void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
330                               unsigned NumBases) {
331  if (NumBases == 0)
332    return;
333
334  // Used to keep track of which base types we have already seen, so
335  // that we can properly diagnose redundant direct base types. Note
336  // that the key is always the unqualified canonical type of the base
337  // class.
338  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
339
340  // Copy non-redundant base specifiers into permanent storage.
341  CXXBaseSpecifier **BaseSpecs = (CXXBaseSpecifier **)Bases;
342  unsigned NumGoodBases = 0;
343  for (unsigned idx = 0; idx < NumBases; ++idx) {
344    QualType NewBaseType
345      = Context.getCanonicalType(BaseSpecs[idx]->getType());
346    NewBaseType = NewBaseType.getUnqualifiedType();
347
348    if (KnownBaseTypes[NewBaseType]) {
349      // C++ [class.mi]p3:
350      //   A class shall not be specified as a direct base class of a
351      //   derived class more than once.
352      Diag(BaseSpecs[idx]->getSourceRange().getBegin(),
353           diag::err_duplicate_base_class)
354        << KnownBaseTypes[NewBaseType]->getType().getAsString()
355        << BaseSpecs[idx]->getSourceRange();
356
357      // Delete the duplicate base class specifier; we're going to
358      // overwrite its pointer later.
359      delete BaseSpecs[idx];
360    } else {
361      // Okay, add this new base class.
362      KnownBaseTypes[NewBaseType] = BaseSpecs[idx];
363      BaseSpecs[NumGoodBases++] = BaseSpecs[idx];
364    }
365  }
366
367  // Attach the remaining base class specifiers to the derived class.
368  CXXRecordDecl *Decl = (CXXRecordDecl*)ClassDecl;
369  Decl->setBases(BaseSpecs, NumGoodBases);
370
371  // Delete the remaining (good) base class specifiers, since their
372  // data has been copied into the CXXRecordDecl.
373  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
374    delete BaseSpecs[idx];
375}
376
377//===----------------------------------------------------------------------===//
378// C++ class member Handling
379//===----------------------------------------------------------------------===//
380
381/// ActOnStartCXXClassDef - This is called at the start of a class/struct/union
382/// definition, when on C++.
383void Sema::ActOnStartCXXClassDef(Scope *S, DeclTy *D, SourceLocation LBrace) {
384  CXXRecordDecl *Dcl = cast<CXXRecordDecl>(static_cast<Decl *>(D));
385  PushDeclContext(Dcl);
386  FieldCollector->StartClass();
387
388  if (Dcl->getIdentifier()) {
389    // C++ [class]p2:
390    //   [...] The class-name is also inserted into the scope of the
391    //   class itself; this is known as the injected-class-name. For
392    //   purposes of access checking, the injected-class-name is treated
393    //   as if it were a public member name.
394    PushOnScopeChains(Dcl, S);
395  }
396}
397
398/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
399/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
400/// bitfield width if there is one and 'InitExpr' specifies the initializer if
401/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
402/// declarators on it.
403///
404/// NOTE: Because of CXXFieldDecl's inability to be chained like ScopedDecls, if
405/// an instance field is declared, a new CXXFieldDecl is created but the method
406/// does *not* return it; it returns LastInGroup instead. The other C++ members
407/// (which are all ScopedDecls) are returned after appending them to
408/// LastInGroup.
409Sema::DeclTy *
410Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
411                               ExprTy *BW, ExprTy *InitExpr,
412                               DeclTy *LastInGroup) {
413  const DeclSpec &DS = D.getDeclSpec();
414  DeclarationName Name = GetNameForDeclarator(D);
415  Expr *BitWidth = static_cast<Expr*>(BW);
416  Expr *Init = static_cast<Expr*>(InitExpr);
417  SourceLocation Loc = D.getIdentifierLoc();
418
419  bool isFunc = D.isFunctionDeclarator();
420
421  // C++ 9.2p6: A member shall not be declared to have automatic storage
422  // duration (auto, register) or with the extern storage-class-specifier.
423  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
424  // data members and cannot be applied to names declared const or static,
425  // and cannot be applied to reference members.
426  switch (DS.getStorageClassSpec()) {
427    case DeclSpec::SCS_unspecified:
428    case DeclSpec::SCS_typedef:
429    case DeclSpec::SCS_static:
430      // FALL THROUGH.
431      break;
432    case DeclSpec::SCS_mutable:
433      if (isFunc) {
434        if (DS.getStorageClassSpecLoc().isValid())
435          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
436        else
437          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
438
439        // FIXME: It would be nicer if the keyword was ignored only for this
440        // declarator. Otherwise we could get follow-up errors.
441        D.getMutableDeclSpec().ClearStorageClassSpecs();
442      } else {
443        QualType T = GetTypeForDeclarator(D, S);
444        diag::kind err = static_cast<diag::kind>(0);
445        if (T->isReferenceType())
446          err = diag::err_mutable_reference;
447        else if (T.isConstQualified())
448          err = diag::err_mutable_const;
449        if (err != 0) {
450          if (DS.getStorageClassSpecLoc().isValid())
451            Diag(DS.getStorageClassSpecLoc(), err);
452          else
453            Diag(DS.getThreadSpecLoc(), err);
454          // FIXME: It would be nicer if the keyword was ignored only for this
455          // declarator. Otherwise we could get follow-up errors.
456          D.getMutableDeclSpec().ClearStorageClassSpecs();
457        }
458      }
459      break;
460    default:
461      if (DS.getStorageClassSpecLoc().isValid())
462        Diag(DS.getStorageClassSpecLoc(),
463             diag::err_storageclass_invalid_for_member);
464      else
465        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
466      D.getMutableDeclSpec().ClearStorageClassSpecs();
467  }
468
469  if (!isFunc &&
470      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typedef &&
471      D.getNumTypeObjects() == 0) {
472    // Check also for this case:
473    //
474    // typedef int f();
475    // f a;
476    //
477    Decl *TD = static_cast<Decl *>(DS.getTypeRep());
478    isFunc = Context.getTypeDeclType(cast<TypeDecl>(TD))->isFunctionType();
479  }
480
481  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
482                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
483                      !isFunc);
484
485  Decl *Member;
486  bool InvalidDecl = false;
487
488  if (isInstField)
489    Member = static_cast<Decl*>(ActOnField(S, Loc, D, BitWidth));
490  else
491    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
492
493  if (!Member) return LastInGroup;
494
495  assert((Name || isInstField) && "No identifier for non-field ?");
496
497  // set/getAccess is not part of Decl's interface to avoid bloating it with C++
498  // specific methods. Use a wrapper class that can be used with all C++ class
499  // member decls.
500  CXXClassMemberWrapper(Member).setAccess(AS);
501
502  // C++ [dcl.init.aggr]p1:
503  //   An aggregate is an array or a class (clause 9) with [...] no
504  //   private or protected non-static data members (clause 11).
505  if (isInstField && (AS == AS_private || AS == AS_protected))
506    cast<CXXRecordDecl>(CurContext)->setAggregate(false);
507
508  if (DS.isVirtualSpecified()) {
509    if (!isFunc || DS.getStorageClassSpec() == DeclSpec::SCS_static) {
510      Diag(DS.getVirtualSpecLoc(), diag::err_virtual_non_function);
511      InvalidDecl = true;
512    } else {
513      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(CurContext);
514      CurClass->setAggregate(false);
515      CurClass->setPolymorphic(true);
516    }
517  }
518
519  if (BitWidth) {
520    // C++ 9.6p2: Only when declaring an unnamed bit-field may the
521    // constant-expression be a value equal to zero.
522    // FIXME: Check this.
523
524    if (D.isFunctionDeclarator()) {
525      // FIXME: Emit diagnostic about only constructors taking base initializers
526      // or something similar, when constructor support is in place.
527      Diag(Loc, diag::err_not_bitfield_type)
528        << Name.getAsString() << BitWidth->getSourceRange();
529      InvalidDecl = true;
530
531    } else if (isInstField) {
532      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
533      if (!cast<FieldDecl>(Member)->getType()->isIntegralType()) {
534        Diag(Loc, diag::err_not_integral_type_bitfield)
535          << Name.getAsString() << BitWidth->getSourceRange();
536        InvalidDecl = true;
537      }
538
539    } else if (isa<FunctionDecl>(Member)) {
540      // A function typedef ("typedef int f(); f a;").
541      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
542      Diag(Loc, diag::err_not_integral_type_bitfield)
543        << Name.getAsString() << BitWidth->getSourceRange();
544      InvalidDecl = true;
545
546    } else if (isa<TypedefDecl>(Member)) {
547      // "cannot declare 'A' to be a bit-field type"
548      Diag(Loc, diag::err_not_bitfield_type)
549        << Name.getAsString() << BitWidth->getSourceRange();
550      InvalidDecl = true;
551
552    } else {
553      assert(isa<CXXClassVarDecl>(Member) &&
554             "Didn't we cover all member kinds?");
555      // C++ 9.6p3: A bit-field shall not be a static member.
556      // "static member 'A' cannot be a bit-field"
557      Diag(Loc, diag::err_static_not_bitfield)
558        << Name.getAsString() << BitWidth->getSourceRange();
559      InvalidDecl = true;
560    }
561  }
562
563  if (Init) {
564    // C++ 9.2p4: A member-declarator can contain a constant-initializer only
565    // if it declares a static member of const integral or const enumeration
566    // type.
567    if (CXXClassVarDecl *CVD = dyn_cast<CXXClassVarDecl>(Member)) {
568      // ...static member of...
569      CVD->setInit(Init);
570      // ...const integral or const enumeration type.
571      if (Context.getCanonicalType(CVD->getType()).isConstQualified() &&
572          CVD->getType()->isIntegralType()) {
573        // constant-initializer
574        if (CheckForConstantInitializer(Init, CVD->getType()))
575          InvalidDecl = true;
576
577      } else {
578        // not const integral.
579        Diag(Loc, diag::err_member_initialization)
580          << Name.getAsString() << Init->getSourceRange();
581        InvalidDecl = true;
582      }
583
584    } else {
585      // not static member.
586      Diag(Loc, diag::err_member_initialization)
587        << Name.getAsString() << Init->getSourceRange();
588      InvalidDecl = true;
589    }
590  }
591
592  if (InvalidDecl)
593    Member->setInvalidDecl();
594
595  if (isInstField) {
596    FieldCollector->Add(cast<CXXFieldDecl>(Member));
597    return LastInGroup;
598  }
599  return Member;
600}
601
602/// ActOnMemInitializer - Handle a C++ member initializer.
603Sema::MemInitResult
604Sema::ActOnMemInitializer(DeclTy *ConstructorD,
605                          Scope *S,
606                          IdentifierInfo *MemberOrBase,
607                          SourceLocation IdLoc,
608                          SourceLocation LParenLoc,
609                          ExprTy **Args, unsigned NumArgs,
610                          SourceLocation *CommaLocs,
611                          SourceLocation RParenLoc) {
612  CXXConstructorDecl *Constructor
613    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
614  if (!Constructor) {
615    // The user wrote a constructor initializer on a function that is
616    // not a C++ constructor. Ignore the error for now, because we may
617    // have more member initializers coming; we'll diagnose it just
618    // once in ActOnMemInitializers.
619    return true;
620  }
621
622  CXXRecordDecl *ClassDecl = Constructor->getParent();
623
624  // C++ [class.base.init]p2:
625  //   Names in a mem-initializer-id are looked up in the scope of the
626  //   constructor’s class and, if not found in that scope, are looked
627  //   up in the scope containing the constructor’s
628  //   definition. [Note: if the constructor’s class contains a member
629  //   with the same name as a direct or virtual base class of the
630  //   class, a mem-initializer-id naming the member or base class and
631  //   composed of a single identifier refers to the class member. A
632  //   mem-initializer-id for the hidden base class may be specified
633  //   using a qualified name. ]
634  // Look for a member, first.
635  CXXFieldDecl *Member = ClassDecl->getMember(MemberOrBase);
636
637  // FIXME: Handle members of an anonymous union.
638
639  if (Member) {
640    // FIXME: Perform direct initialization of the member.
641    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
642  }
643
644  // It didn't name a member, so see if it names a class.
645  TypeTy *BaseTy = isTypeName(*MemberOrBase, S, 0/*SS*/);
646  if (!BaseTy)
647    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
648      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
649
650  QualType BaseType = Context.getTypeDeclType((TypeDecl *)BaseTy);
651  if (!BaseType->isRecordType())
652    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
653      << BaseType << SourceRange(IdLoc, RParenLoc);
654
655  // C++ [class.base.init]p2:
656  //   [...] Unless the mem-initializer-id names a nonstatic data
657  //   member of the constructor’s class or a direct or virtual base
658  //   of that class, the mem-initializer is ill-formed. A
659  //   mem-initializer-list can initialize a base class using any
660  //   name that denotes that base class type.
661
662  // First, check for a direct base class.
663  const CXXBaseSpecifier *DirectBaseSpec = 0;
664  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
665       Base != ClassDecl->bases_end(); ++Base) {
666    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
667        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
668      // We found a direct base of this type. That's what we're
669      // initializing.
670      DirectBaseSpec = &*Base;
671      break;
672    }
673  }
674
675  // Check for a virtual base class.
676  // FIXME: We might be able to short-circuit this if we know in
677  // advance that there are no virtual bases.
678  const CXXBaseSpecifier *VirtualBaseSpec = 0;
679  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
680    // We haven't found a base yet; search the class hierarchy for a
681    // virtual base class.
682    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
683                    /*DetectVirtual=*/false);
684    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
685      for (BasePaths::paths_iterator Path = Paths.begin();
686           Path != Paths.end(); ++Path) {
687        if (Path->back().Base->isVirtual()) {
688          VirtualBaseSpec = Path->back().Base;
689          break;
690        }
691      }
692    }
693  }
694
695  // C++ [base.class.init]p2:
696  //   If a mem-initializer-id is ambiguous because it designates both
697  //   a direct non-virtual base class and an inherited virtual base
698  //   class, the mem-initializer is ill-formed.
699  if (DirectBaseSpec && VirtualBaseSpec)
700    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
701      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
702
703  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
704}
705
706
707void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
708                                             DeclTy *TagDecl,
709                                             SourceLocation LBrac,
710                                             SourceLocation RBrac) {
711  ActOnFields(S, RLoc, TagDecl,
712              (DeclTy**)FieldCollector->getCurFields(),
713              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
714}
715
716/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
717/// special functions, such as the default constructor, copy
718/// constructor, or destructor, to the given C++ class (C++
719/// [special]p1).  This routine can only be executed just before the
720/// definition of the class is complete.
721void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
722  QualType ClassType = Context.getTypeDeclType(ClassDecl);
723  ClassType = Context.getCanonicalType(ClassType);
724
725  if (!ClassDecl->hasUserDeclaredConstructor()) {
726    // C++ [class.ctor]p5:
727    //   A default constructor for a class X is a constructor of class X
728    //   that can be called without an argument. If there is no
729    //   user-declared constructor for class X, a default constructor is
730    //   implicitly declared. An implicitly-declared default constructor
731    //   is an inline public member of its class.
732    DeclarationName Name
733      = Context.DeclarationNames.getCXXConstructorName(ClassType);
734    CXXConstructorDecl *DefaultCon =
735      CXXConstructorDecl::Create(Context, ClassDecl,
736                                 ClassDecl->getLocation(), Name,
737                                 Context.getFunctionType(Context.VoidTy,
738                                                         0, 0, false, 0),
739                                 /*isExplicit=*/false,
740                                 /*isInline=*/true,
741                                 /*isImplicitlyDeclared=*/true);
742    DefaultCon->setAccess(AS_public);
743    ClassDecl->addConstructor(Context, DefaultCon);
744  }
745
746  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
747    // C++ [class.copy]p4:
748    //   If the class definition does not explicitly declare a copy
749    //   constructor, one is declared implicitly.
750
751    // C++ [class.copy]p5:
752    //   The implicitly-declared copy constructor for a class X will
753    //   have the form
754    //
755    //       X::X(const X&)
756    //
757    //   if
758    bool HasConstCopyConstructor = true;
759
760    //     -- each direct or virtual base class B of X has a copy
761    //        constructor whose first parameter is of type const B& or
762    //        const volatile B&, and
763    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
764         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
765      const CXXRecordDecl *BaseClassDecl
766        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
767      HasConstCopyConstructor
768        = BaseClassDecl->hasConstCopyConstructor(Context);
769    }
770
771    //     -- for all the nonstatic data members of X that are of a
772    //        class type M (or array thereof), each such class type
773    //        has a copy constructor whose first parameter is of type
774    //        const M& or const volatile M&.
775    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
776         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
777      QualType FieldType = (*Field)->getType();
778      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
779        FieldType = Array->getElementType();
780      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
781        const CXXRecordDecl *FieldClassDecl
782          = cast<CXXRecordDecl>(FieldClassType->getDecl());
783        HasConstCopyConstructor
784          = FieldClassDecl->hasConstCopyConstructor(Context);
785      }
786    }
787
788    //  Otherwise, the implicitly declared copy constructor will have
789    //  the form
790    //
791    //       X::X(X&)
792    QualType ArgType = Context.getTypeDeclType(ClassDecl);
793    if (HasConstCopyConstructor)
794      ArgType = ArgType.withConst();
795    ArgType = Context.getReferenceType(ArgType);
796
797    //  An implicitly-declared copy constructor is an inline public
798    //  member of its class.
799    DeclarationName Name
800      = Context.DeclarationNames.getCXXConstructorName(ClassType);
801    CXXConstructorDecl *CopyConstructor
802      = CXXConstructorDecl::Create(Context, ClassDecl,
803                                   ClassDecl->getLocation(), Name,
804                                   Context.getFunctionType(Context.VoidTy,
805                                                           &ArgType, 1,
806                                                           false, 0),
807                                   /*isExplicit=*/false,
808                                   /*isInline=*/true,
809                                   /*isImplicitlyDeclared=*/true);
810    CopyConstructor->setAccess(AS_public);
811
812    // Add the parameter to the constructor.
813    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
814                                                 ClassDecl->getLocation(),
815                                                 /*IdentifierInfo=*/0,
816                                                 ArgType, VarDecl::None, 0, 0);
817    CopyConstructor->setParams(&FromParam, 1);
818
819    ClassDecl->addConstructor(Context, CopyConstructor);
820  }
821
822  if (!ClassDecl->getDestructor()) {
823    // C++ [class.dtor]p2:
824    //   If a class has no user-declared destructor, a destructor is
825    //   declared implicitly. An implicitly-declared destructor is an
826    //   inline public member of its class.
827    DeclarationName Name
828      = Context.DeclarationNames.getCXXDestructorName(ClassType);
829    CXXDestructorDecl *Destructor
830      = CXXDestructorDecl::Create(Context, ClassDecl,
831                                  ClassDecl->getLocation(), Name,
832                                  Context.getFunctionType(Context.VoidTy,
833                                                          0, 0, false, 0),
834                                  /*isInline=*/true,
835                                  /*isImplicitlyDeclared=*/true);
836    Destructor->setAccess(AS_public);
837    ClassDecl->setDestructor(Destructor);
838  }
839
840  // FIXME: Implicit copy assignment operator
841}
842
843void Sema::ActOnFinishCXXClassDef(DeclTy *D) {
844  CXXRecordDecl *Rec = cast<CXXRecordDecl>(static_cast<Decl *>(D));
845  FieldCollector->FinishClass();
846  AddImplicitlyDeclaredMembersToClass(Rec);
847  PopDeclContext();
848
849  // Everything, including inline method definitions, have been parsed.
850  // Let the consumer know of the new TagDecl definition.
851  Consumer.HandleTagDeclDefinition(Rec);
852}
853
854/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
855/// the well-formednes of the constructor declarator @p D with type @p
856/// R. If there are any errors in the declarator, this routine will
857/// emit diagnostics and return true. Otherwise, it will return
858/// false. Either way, the type @p R will be updated to reflect a
859/// well-formed type for the constructor.
860bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
861                                      FunctionDecl::StorageClass& SC) {
862  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
863  bool isInvalid = false;
864
865  // C++ [class.ctor]p3:
866  //   A constructor shall not be virtual (10.3) or static (9.4). A
867  //   constructor can be invoked for a const, volatile or const
868  //   volatile object. A constructor shall not be declared const,
869  //   volatile, or const volatile (9.3.2).
870  if (isVirtual) {
871    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
872      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
873      << SourceRange(D.getIdentifierLoc());
874    isInvalid = true;
875  }
876  if (SC == FunctionDecl::Static) {
877    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
878      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
879      << SourceRange(D.getIdentifierLoc());
880    isInvalid = true;
881    SC = FunctionDecl::None;
882  }
883  if (D.getDeclSpec().hasTypeSpecifier()) {
884    // Constructors don't have return types, but the parser will
885    // happily parse something like:
886    //
887    //   class X {
888    //     float X(float);
889    //   };
890    //
891    // The return type will be eliminated later.
892    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
893      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
894      << SourceRange(D.getIdentifierLoc());
895  }
896  if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
897    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
898    if (FTI.TypeQuals & QualType::Const)
899      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
900        << "const" << SourceRange(D.getIdentifierLoc());
901    if (FTI.TypeQuals & QualType::Volatile)
902      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
903        << "volatile" << SourceRange(D.getIdentifierLoc());
904    if (FTI.TypeQuals & QualType::Restrict)
905      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
906        << "restrict" << SourceRange(D.getIdentifierLoc());
907  }
908
909  // Rebuild the function type "R" without any type qualifiers (in
910  // case any of the errors above fired) and with "void" as the
911  // return type, since constructors don't have return types. We
912  // *always* have to do this, because GetTypeForDeclarator will
913  // put in a result type of "int" when none was specified.
914  const FunctionTypeProto *Proto = R->getAsFunctionTypeProto();
915  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
916                              Proto->getNumArgs(),
917                              Proto->isVariadic(),
918                              0);
919
920  return isInvalid;
921}
922
923/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
924/// the well-formednes of the destructor declarator @p D with type @p
925/// R. If there are any errors in the declarator, this routine will
926/// emit diagnostics and return true. Otherwise, it will return
927/// false. Either way, the type @p R will be updated to reflect a
928/// well-formed type for the destructor.
929bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
930                                     FunctionDecl::StorageClass& SC) {
931  bool isInvalid = false;
932
933  // C++ [class.dtor]p1:
934  //   [...] A typedef-name that names a class is a class-name
935  //   (7.1.3); however, a typedef-name that names a class shall not
936  //   be used as the identifier in the declarator for a destructor
937  //   declaration.
938  TypeDecl *DeclaratorTypeD = (TypeDecl *)D.getDeclaratorIdType();
939  if (const TypedefDecl *TypedefD = dyn_cast<TypedefDecl>(DeclaratorTypeD)) {
940    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
941      << TypedefD->getDeclName();
942    isInvalid = true;
943  }
944
945  // C++ [class.dtor]p2:
946  //   A destructor is used to destroy objects of its class type. A
947  //   destructor takes no parameters, and no return type can be
948  //   specified for it (not even void). The address of a destructor
949  //   shall not be taken. A destructor shall not be static. A
950  //   destructor can be invoked for a const, volatile or const
951  //   volatile object. A destructor shall not be declared const,
952  //   volatile or const volatile (9.3.2).
953  if (SC == FunctionDecl::Static) {
954    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
955      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
956      << SourceRange(D.getIdentifierLoc());
957    isInvalid = true;
958    SC = FunctionDecl::None;
959  }
960  if (D.getDeclSpec().hasTypeSpecifier()) {
961    // Destructors don't have return types, but the parser will
962    // happily parse something like:
963    //
964    //   class X {
965    //     float ~X();
966    //   };
967    //
968    // The return type will be eliminated later.
969    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
970      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
971      << SourceRange(D.getIdentifierLoc());
972  }
973  if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
974    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
975    if (FTI.TypeQuals & QualType::Const)
976      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
977        << "const" << SourceRange(D.getIdentifierLoc());
978    if (FTI.TypeQuals & QualType::Volatile)
979      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
980        << "volatile" << SourceRange(D.getIdentifierLoc());
981    if (FTI.TypeQuals & QualType::Restrict)
982      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
983        << "restrict" << SourceRange(D.getIdentifierLoc());
984  }
985
986  // Make sure we don't have any parameters.
987  if (R->getAsFunctionTypeProto()->getNumArgs() > 0) {
988    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
989
990    // Delete the parameters.
991    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
992    if (FTI.NumArgs) {
993      delete [] FTI.ArgInfo;
994      FTI.NumArgs = 0;
995      FTI.ArgInfo = 0;
996    }
997  }
998
999  // Make sure the destructor isn't variadic.
1000  if (R->getAsFunctionTypeProto()->isVariadic())
1001    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1002
1003  // Rebuild the function type "R" without any type qualifiers or
1004  // parameters (in case any of the errors above fired) and with
1005  // "void" as the return type, since destructors don't have return
1006  // types. We *always* have to do this, because GetTypeForDeclarator
1007  // will put in a result type of "int" when none was specified.
1008  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1009
1010  return isInvalid;
1011}
1012
1013/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1014/// well-formednes of the conversion function declarator @p D with
1015/// type @p R. If there are any errors in the declarator, this routine
1016/// will emit diagnostics and return true. Otherwise, it will return
1017/// false. Either way, the type @p R will be updated to reflect a
1018/// well-formed type for the conversion operator.
1019bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1020                                     FunctionDecl::StorageClass& SC) {
1021  bool isInvalid = false;
1022
1023  // C++ [class.conv.fct]p1:
1024  //   Neither parameter types nor return type can be specified. The
1025  //   type of a conversion function (8.3.5) is “function taking no
1026  //   parameter returning conversion-type-id.”
1027  if (SC == FunctionDecl::Static) {
1028    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1029      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1030      << SourceRange(D.getIdentifierLoc());
1031    isInvalid = true;
1032    SC = FunctionDecl::None;
1033  }
1034  if (D.getDeclSpec().hasTypeSpecifier()) {
1035    // Conversion functions don't have return types, but the parser will
1036    // happily parse something like:
1037    //
1038    //   class X {
1039    //     float operator bool();
1040    //   };
1041    //
1042    // The return type will be changed later anyway.
1043    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1044      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1045      << SourceRange(D.getIdentifierLoc());
1046  }
1047
1048  // Make sure we don't have any parameters.
1049  if (R->getAsFunctionTypeProto()->getNumArgs() > 0) {
1050    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1051
1052    // Delete the parameters.
1053    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1054    if (FTI.NumArgs) {
1055      delete [] FTI.ArgInfo;
1056      FTI.NumArgs = 0;
1057      FTI.ArgInfo = 0;
1058    }
1059  }
1060
1061  // Make sure the conversion function isn't variadic.
1062  if (R->getAsFunctionTypeProto()->isVariadic())
1063    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1064
1065  // C++ [class.conv.fct]p4:
1066  //   The conversion-type-id shall not represent a function type nor
1067  //   an array type.
1068  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1069  if (ConvType->isArrayType()) {
1070    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1071    ConvType = Context.getPointerType(ConvType);
1072  } else if (ConvType->isFunctionType()) {
1073    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1074    ConvType = Context.getPointerType(ConvType);
1075  }
1076
1077  // Rebuild the function type "R" without any parameters (in case any
1078  // of the errors above fired) and with the conversion type as the
1079  // return type.
1080  R = Context.getFunctionType(ConvType, 0, 0, false,
1081                              R->getAsFunctionTypeProto()->getTypeQuals());
1082
1083  return isInvalid;
1084}
1085
1086/// ActOnConstructorDeclarator - Called by ActOnDeclarator to complete
1087/// the declaration of the given C++ constructor ConDecl that was
1088/// built from declarator D. This routine is responsible for checking
1089/// that the newly-created constructor declaration is well-formed and
1090/// for recording it in the C++ class. Example:
1091///
1092/// @code
1093/// class X {
1094///   X(); // X::X() will be the ConDecl.
1095/// };
1096/// @endcode
1097Sema::DeclTy *Sema::ActOnConstructorDeclarator(CXXConstructorDecl *ConDecl) {
1098  assert(ConDecl && "Expected to receive a constructor declaration");
1099
1100  // Check default arguments on the constructor
1101  CheckCXXDefaultArguments(ConDecl);
1102
1103  CXXRecordDecl *ClassDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1104  if (!ClassDecl) {
1105    ConDecl->setInvalidDecl();
1106    return ConDecl;
1107  }
1108
1109  // Make sure this constructor is an overload of the existing
1110  // constructors.
1111  OverloadedFunctionDecl::function_iterator MatchedDecl;
1112  if (!IsOverload(ConDecl, ClassDecl->getConstructors(), MatchedDecl)) {
1113    Diag(ConDecl->getLocation(), diag::err_constructor_redeclared)
1114      << SourceRange(ConDecl->getLocation());
1115    Diag((*MatchedDecl)->getLocation(), diag::note_previous_declaration)
1116      << SourceRange((*MatchedDecl)->getLocation());
1117    ConDecl->setInvalidDecl();
1118    return ConDecl;
1119  }
1120
1121
1122  // C++ [class.copy]p3:
1123  //   A declaration of a constructor for a class X is ill-formed if
1124  //   its first parameter is of type (optionally cv-qualified) X and
1125  //   either there are no other parameters or else all other
1126  //   parameters have default arguments.
1127  if ((ConDecl->getNumParams() == 1) ||
1128      (ConDecl->getNumParams() > 1 &&
1129       ConDecl->getParamDecl(1)->getDefaultArg() != 0)) {
1130    QualType ParamType = ConDecl->getParamDecl(0)->getType();
1131    QualType ClassTy = Context.getTagDeclType(
1132                         const_cast<CXXRecordDecl*>(ConDecl->getParent()));
1133    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1134      Diag(ConDecl->getLocation(), diag::err_constructor_byvalue_arg)
1135        << SourceRange(ConDecl->getParamDecl(0)->getLocation());
1136      ConDecl->setInvalidDecl();
1137      return ConDecl;
1138    }
1139  }
1140
1141  // Add this constructor to the set of constructors of the current
1142  // class.
1143  ClassDecl->addConstructor(Context, ConDecl);
1144  return (DeclTy *)ConDecl;
1145}
1146
1147/// ActOnDestructorDeclarator - Called by ActOnDeclarator to complete
1148/// the declaration of the given C++ @p Destructor. This routine is
1149/// responsible for recording the destructor in the C++ class, if
1150/// possible.
1151Sema::DeclTy *Sema::ActOnDestructorDeclarator(CXXDestructorDecl *Destructor) {
1152  assert(Destructor && "Expected to receive a destructor declaration");
1153
1154  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CurContext);
1155
1156  // Make sure we aren't redeclaring the destructor.
1157  if (CXXDestructorDecl *PrevDestructor = ClassDecl->getDestructor()) {
1158    Diag(Destructor->getLocation(), diag::err_destructor_redeclared);
1159    Diag(PrevDestructor->getLocation(),
1160         PrevDestructor->isThisDeclarationADefinition() ?
1161             diag::note_previous_definition
1162           : diag::note_previous_declaration);
1163    Destructor->setInvalidDecl();
1164    return Destructor;
1165  }
1166
1167  ClassDecl->setDestructor(Destructor);
1168  return (DeclTy *)Destructor;
1169}
1170
1171/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1172/// the declaration of the given C++ conversion function. This routine
1173/// is responsible for recording the conversion function in the C++
1174/// class, if possible.
1175Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1176  assert(Conversion && "Expected to receive a conversion function declaration");
1177
1178  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CurContext);
1179
1180  // Make sure we aren't redeclaring the conversion function.
1181  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1182  OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1183  for (OverloadedFunctionDecl::function_iterator Func
1184         = Conversions->function_begin();
1185       Func != Conversions->function_end(); ++Func) {
1186    CXXConversionDecl *OtherConv = cast<CXXConversionDecl>(*Func);
1187    if (ConvType == Context.getCanonicalType(OtherConv->getConversionType())) {
1188      Diag(Conversion->getLocation(), diag::err_conv_function_redeclared);
1189      Diag(OtherConv->getLocation(),
1190           OtherConv->isThisDeclarationADefinition()?
1191              diag::note_previous_definition
1192            : diag::note_previous_declaration);
1193      Conversion->setInvalidDecl();
1194      return (DeclTy *)Conversion;
1195    }
1196  }
1197
1198  // C++ [class.conv.fct]p1:
1199  //   [...] A conversion function is never used to convert a
1200  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1201  //   same object type (or a reference to it), to a (possibly
1202  //   cv-qualified) base class of that type (or a reference to it),
1203  //   or to (possibly cv-qualified) void.
1204  // FIXME: Suppress this warning if the conversion function ends up
1205  // being a virtual function that overrides a virtual function in a
1206  // base class.
1207  QualType ClassType
1208    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1209  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1210    ConvType = ConvTypeRef->getPointeeType();
1211  if (ConvType->isRecordType()) {
1212    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1213    if (ConvType == ClassType)
1214      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1215        << ClassType.getAsString();
1216    else if (IsDerivedFrom(ClassType, ConvType))
1217      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1218        <<  ClassType.getAsString() << ConvType.getAsString();
1219  } else if (ConvType->isVoidType()) {
1220    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1221      << ClassType.getAsString() << ConvType.getAsString();
1222  }
1223
1224  ClassDecl->addConversionFunction(Context, Conversion);
1225
1226  return (DeclTy *)Conversion;
1227}
1228
1229//===----------------------------------------------------------------------===//
1230// Namespace Handling
1231//===----------------------------------------------------------------------===//
1232
1233/// ActOnStartNamespaceDef - This is called at the start of a namespace
1234/// definition.
1235Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1236                                           SourceLocation IdentLoc,
1237                                           IdentifierInfo *II,
1238                                           SourceLocation LBrace) {
1239  NamespaceDecl *Namespc =
1240      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1241  Namespc->setLBracLoc(LBrace);
1242
1243  Scope *DeclRegionScope = NamespcScope->getParent();
1244
1245  if (II) {
1246    // C++ [namespace.def]p2:
1247    // The identifier in an original-namespace-definition shall not have been
1248    // previously defined in the declarative region in which the
1249    // original-namespace-definition appears. The identifier in an
1250    // original-namespace-definition is the name of the namespace. Subsequently
1251    // in that declarative region, it is treated as an original-namespace-name.
1252
1253    Decl *PrevDecl =
1254        LookupDecl(II, Decl::IDNS_Tag | Decl::IDNS_Ordinary, DeclRegionScope, 0,
1255                   /*enableLazyBuiltinCreation=*/false);
1256
1257    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, DeclRegionScope)) {
1258      if (NamespaceDecl *OrigNS = dyn_cast<NamespaceDecl>(PrevDecl)) {
1259        // This is an extended namespace definition.
1260        // Attach this namespace decl to the chain of extended namespace
1261        // definitions.
1262        NamespaceDecl *NextNS = OrigNS;
1263        while (NextNS->getNextNamespace())
1264          NextNS = NextNS->getNextNamespace();
1265
1266        NextNS->setNextNamespace(Namespc);
1267        Namespc->setOriginalNamespace(OrigNS);
1268
1269        // We won't add this decl to the current scope. We want the namespace
1270        // name to return the original namespace decl during a name lookup.
1271      } else {
1272        // This is an invalid name redefinition.
1273        Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1274          << Namespc->getDeclName();
1275        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1276        Namespc->setInvalidDecl();
1277        // Continue on to push Namespc as current DeclContext and return it.
1278      }
1279    } else {
1280      // This namespace name is declared for the first time.
1281      PushOnScopeChains(Namespc, DeclRegionScope);
1282    }
1283  }
1284  else {
1285    // FIXME: Handle anonymous namespaces
1286  }
1287
1288  // Although we could have an invalid decl (i.e. the namespace name is a
1289  // redefinition), push it as current DeclContext and try to continue parsing.
1290  PushDeclContext(Namespc->getOriginalNamespace());
1291  return Namespc;
1292}
1293
1294/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1295/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1296void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
1297  Decl *Dcl = static_cast<Decl *>(D);
1298  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1299  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1300  Namespc->setRBracLoc(RBrace);
1301  PopDeclContext();
1302}
1303
1304
1305/// AddCXXDirectInitializerToDecl - This action is called immediately after
1306/// ActOnDeclarator, when a C++ direct initializer is present.
1307/// e.g: "int x(1);"
1308void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
1309                                         ExprTy **ExprTys, unsigned NumExprs,
1310                                         SourceLocation *CommaLocs,
1311                                         SourceLocation RParenLoc) {
1312  assert(NumExprs != 0 && ExprTys && "missing expressions");
1313  Decl *RealDecl = static_cast<Decl *>(Dcl);
1314
1315  // If there is no declaration, there was an error parsing it.  Just ignore
1316  // the initializer.
1317  if (RealDecl == 0) {
1318    for (unsigned i = 0; i != NumExprs; ++i)
1319      delete static_cast<Expr *>(ExprTys[i]);
1320    return;
1321  }
1322
1323  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1324  if (!VDecl) {
1325    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1326    RealDecl->setInvalidDecl();
1327    return;
1328  }
1329
1330  // We will treat direct-initialization as a copy-initialization:
1331  //    int x(1);  -as-> int x = 1;
1332  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1333  //
1334  // Clients that want to distinguish between the two forms, can check for
1335  // direct initializer using VarDecl::hasCXXDirectInitializer().
1336  // A major benefit is that clients that don't particularly care about which
1337  // exactly form was it (like the CodeGen) can handle both cases without
1338  // special case code.
1339
1340  // C++ 8.5p11:
1341  // The form of initialization (using parentheses or '=') is generally
1342  // insignificant, but does matter when the entity being initialized has a
1343  // class type.
1344  QualType DeclInitType = VDecl->getType();
1345  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1346    DeclInitType = Array->getElementType();
1347
1348  if (VDecl->getType()->isRecordType()) {
1349    CXXConstructorDecl *Constructor
1350      = PerformInitializationByConstructor(DeclInitType,
1351                                           (Expr **)ExprTys, NumExprs,
1352                                           VDecl->getLocation(),
1353                                           SourceRange(VDecl->getLocation(),
1354                                                       RParenLoc),
1355                                           VDecl->getDeclName(),
1356                                           IK_Direct);
1357    if (!Constructor) {
1358      RealDecl->setInvalidDecl();
1359    }
1360
1361    // Let clients know that initialization was done with a direct
1362    // initializer.
1363    VDecl->setCXXDirectInitializer(true);
1364
1365    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1366    // the initializer.
1367    return;
1368  }
1369
1370  if (NumExprs > 1) {
1371    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1372      << SourceRange(VDecl->getLocation(), RParenLoc);
1373    RealDecl->setInvalidDecl();
1374    return;
1375  }
1376
1377  // Let clients know that initialization was done with a direct initializer.
1378  VDecl->setCXXDirectInitializer(true);
1379
1380  assert(NumExprs == 1 && "Expected 1 expression");
1381  // Set the init expression, handles conversions.
1382  AddInitializerToDecl(Dcl, ExprTys[0]);
1383}
1384
1385/// PerformInitializationByConstructor - Perform initialization by
1386/// constructor (C++ [dcl.init]p14), which may occur as part of
1387/// direct-initialization or copy-initialization. We are initializing
1388/// an object of type @p ClassType with the given arguments @p
1389/// Args. @p Loc is the location in the source code where the
1390/// initializer occurs (e.g., a declaration, member initializer,
1391/// functional cast, etc.) while @p Range covers the whole
1392/// initialization. @p InitEntity is the entity being initialized,
1393/// which may by the name of a declaration or a type. @p Kind is the
1394/// kind of initialization we're performing, which affects whether
1395/// explicit constructors will be considered. When successful, returns
1396/// the constructor that will be used to perform the initialization;
1397/// when the initialization fails, emits a diagnostic and returns
1398/// null.
1399CXXConstructorDecl *
1400Sema::PerformInitializationByConstructor(QualType ClassType,
1401                                         Expr **Args, unsigned NumArgs,
1402                                         SourceLocation Loc, SourceRange Range,
1403                                         DeclarationName InitEntity,
1404                                         InitializationKind Kind) {
1405  const RecordType *ClassRec = ClassType->getAsRecordType();
1406  assert(ClassRec && "Can only initialize a class type here");
1407
1408  // C++ [dcl.init]p14:
1409  //
1410  //   If the initialization is direct-initialization, or if it is
1411  //   copy-initialization where the cv-unqualified version of the
1412  //   source type is the same class as, or a derived class of, the
1413  //   class of the destination, constructors are considered. The
1414  //   applicable constructors are enumerated (13.3.1.3), and the
1415  //   best one is chosen through overload resolution (13.3). The
1416  //   constructor so selected is called to initialize the object,
1417  //   with the initializer expression(s) as its argument(s). If no
1418  //   constructor applies, or the overload resolution is ambiguous,
1419  //   the initialization is ill-formed.
1420  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1421  OverloadCandidateSet CandidateSet;
1422
1423  // Add constructors to the overload set.
1424  OverloadedFunctionDecl *Constructors
1425    = const_cast<OverloadedFunctionDecl *>(ClassDecl->getConstructors());
1426  for (OverloadedFunctionDecl::function_iterator Con
1427         = Constructors->function_begin();
1428       Con != Constructors->function_end(); ++Con) {
1429    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1430    if ((Kind == IK_Direct) ||
1431        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1432        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1433      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1434  }
1435
1436  OverloadCandidateSet::iterator Best;
1437  switch (BestViableFunction(CandidateSet, Best)) {
1438  case OR_Success:
1439    // We found a constructor. Return it.
1440    return cast<CXXConstructorDecl>(Best->Function);
1441
1442  case OR_No_Viable_Function:
1443    Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1444      << InitEntity << (unsigned)CandidateSet.size() << Range;
1445    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1446    return 0;
1447
1448  case OR_Ambiguous:
1449    Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1450    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1451    return 0;
1452  }
1453
1454  return 0;
1455}
1456
1457/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1458/// determine whether they are reference-related,
1459/// reference-compatible, reference-compatible with added
1460/// qualification, or incompatible, for use in C++ initialization by
1461/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1462/// type, and the first type (T1) is the pointee type of the reference
1463/// type being initialized.
1464Sema::ReferenceCompareResult
1465Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1466                                   bool& DerivedToBase) {
1467  assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
1468  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1469
1470  T1 = Context.getCanonicalType(T1);
1471  T2 = Context.getCanonicalType(T2);
1472  QualType UnqualT1 = T1.getUnqualifiedType();
1473  QualType UnqualT2 = T2.getUnqualifiedType();
1474
1475  // C++ [dcl.init.ref]p4:
1476  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1477  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1478  //   T1 is a base class of T2.
1479  if (UnqualT1 == UnqualT2)
1480    DerivedToBase = false;
1481  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1482    DerivedToBase = true;
1483  else
1484    return Ref_Incompatible;
1485
1486  // At this point, we know that T1 and T2 are reference-related (at
1487  // least).
1488
1489  // C++ [dcl.init.ref]p4:
1490  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1491  //   reference-related to T2 and cv1 is the same cv-qualification
1492  //   as, or greater cv-qualification than, cv2. For purposes of
1493  //   overload resolution, cases for which cv1 is greater
1494  //   cv-qualification than cv2 are identified as
1495  //   reference-compatible with added qualification (see 13.3.3.2).
1496  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1497    return Ref_Compatible;
1498  else if (T1.isMoreQualifiedThan(T2))
1499    return Ref_Compatible_With_Added_Qualification;
1500  else
1501    return Ref_Related;
1502}
1503
1504/// CheckReferenceInit - Check the initialization of a reference
1505/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1506/// the initializer (either a simple initializer or an initializer
1507/// list), and DeclType is the type of the declaration. When ICS is
1508/// non-null, this routine will compute the implicit conversion
1509/// sequence according to C++ [over.ics.ref] and will not produce any
1510/// diagnostics; when ICS is null, it will emit diagnostics when any
1511/// errors are found. Either way, a return value of true indicates
1512/// that there was a failure, a return value of false indicates that
1513/// the reference initialization succeeded.
1514///
1515/// When @p SuppressUserConversions, user-defined conversions are
1516/// suppressed.
1517bool
1518Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1519                         ImplicitConversionSequence *ICS,
1520                         bool SuppressUserConversions) {
1521  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1522
1523  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1524  QualType T2 = Init->getType();
1525
1526  // If the initializer is the address of an overloaded function, try
1527  // to resolve the overloaded function. If all goes well, T2 is the
1528  // type of the resulting function.
1529  if (T2->isOverloadType()) {
1530    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
1531                                                          ICS != 0);
1532    if (Fn) {
1533      // Since we're performing this reference-initialization for
1534      // real, update the initializer with the resulting function.
1535      if (!ICS)
1536        FixOverloadedFunctionReference(Init, Fn);
1537
1538      T2 = Fn->getType();
1539    }
1540  }
1541
1542  // Compute some basic properties of the types and the initializer.
1543  bool DerivedToBase = false;
1544  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1545  ReferenceCompareResult RefRelationship
1546    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1547
1548  // Most paths end in a failed conversion.
1549  if (ICS)
1550    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1551
1552  // C++ [dcl.init.ref]p5:
1553  //   A reference to type “cv1 T1” is initialized by an expression
1554  //   of type “cv2 T2” as follows:
1555
1556  //     -- If the initializer expression
1557
1558  bool BindsDirectly = false;
1559  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1560  //          reference-compatible with “cv2 T2,” or
1561  //
1562  // Note that the bit-field check is skipped if we are just computing
1563  // the implicit conversion sequence (C++ [over.best.ics]p2).
1564  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1565      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1566    BindsDirectly = true;
1567
1568    if (ICS) {
1569      // C++ [over.ics.ref]p1:
1570      //   When a parameter of reference type binds directly (8.5.3)
1571      //   to an argument expression, the implicit conversion sequence
1572      //   is the identity conversion, unless the argument expression
1573      //   has a type that is a derived class of the parameter type,
1574      //   in which case the implicit conversion sequence is a
1575      //   derived-to-base Conversion (13.3.3.1).
1576      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1577      ICS->Standard.First = ICK_Identity;
1578      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1579      ICS->Standard.Third = ICK_Identity;
1580      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1581      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1582      ICS->Standard.ReferenceBinding = true;
1583      ICS->Standard.DirectBinding = true;
1584
1585      // Nothing more to do: the inaccessibility/ambiguity check for
1586      // derived-to-base conversions is suppressed when we're
1587      // computing the implicit conversion sequence (C++
1588      // [over.best.ics]p2).
1589      return false;
1590    } else {
1591      // Perform the conversion.
1592      // FIXME: Binding to a subobject of the lvalue is going to require
1593      // more AST annotation than this.
1594      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1595    }
1596  }
1597
1598  //       -- has a class type (i.e., T2 is a class type) and can be
1599  //          implicitly converted to an lvalue of type “cv3 T3,”
1600  //          where “cv1 T1” is reference-compatible with “cv3 T3”
1601  //          92) (this conversion is selected by enumerating the
1602  //          applicable conversion functions (13.3.1.6) and choosing
1603  //          the best one through overload resolution (13.3)),
1604  if (!SuppressUserConversions && T2->isRecordType()) {
1605    // FIXME: Look for conversions in base classes!
1606    CXXRecordDecl *T2RecordDecl
1607      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
1608
1609    OverloadCandidateSet CandidateSet;
1610    OverloadedFunctionDecl *Conversions
1611      = T2RecordDecl->getConversionFunctions();
1612    for (OverloadedFunctionDecl::function_iterator Func
1613           = Conversions->function_begin();
1614         Func != Conversions->function_end(); ++Func) {
1615      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1616
1617      // If the conversion function doesn't return a reference type,
1618      // it can't be considered for this conversion.
1619      // FIXME: This will change when we support rvalue references.
1620      if (Conv->getConversionType()->isReferenceType())
1621        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
1622    }
1623
1624    OverloadCandidateSet::iterator Best;
1625    switch (BestViableFunction(CandidateSet, Best)) {
1626    case OR_Success:
1627      // This is a direct binding.
1628      BindsDirectly = true;
1629
1630      if (ICS) {
1631        // C++ [over.ics.ref]p1:
1632        //
1633        //   [...] If the parameter binds directly to the result of
1634        //   applying a conversion function to the argument
1635        //   expression, the implicit conversion sequence is a
1636        //   user-defined conversion sequence (13.3.3.1.2), with the
1637        //   second standard conversion sequence either an identity
1638        //   conversion or, if the conversion function returns an
1639        //   entity of a type that is a derived class of the parameter
1640        //   type, a derived-to-base Conversion.
1641        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
1642        ICS->UserDefined.Before = Best->Conversions[0].Standard;
1643        ICS->UserDefined.After = Best->FinalConversion;
1644        ICS->UserDefined.ConversionFunction = Best->Function;
1645        assert(ICS->UserDefined.After.ReferenceBinding &&
1646               ICS->UserDefined.After.DirectBinding &&
1647               "Expected a direct reference binding!");
1648        return false;
1649      } else {
1650        // Perform the conversion.
1651        // FIXME: Binding to a subobject of the lvalue is going to require
1652        // more AST annotation than this.
1653        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1654      }
1655      break;
1656
1657    case OR_Ambiguous:
1658      assert(false && "Ambiguous reference binding conversions not implemented.");
1659      return true;
1660
1661    case OR_No_Viable_Function:
1662      // There was no suitable conversion; continue with other checks.
1663      break;
1664    }
1665  }
1666
1667  if (BindsDirectly) {
1668    // C++ [dcl.init.ref]p4:
1669    //   [...] In all cases where the reference-related or
1670    //   reference-compatible relationship of two types is used to
1671    //   establish the validity of a reference binding, and T1 is a
1672    //   base class of T2, a program that necessitates such a binding
1673    //   is ill-formed if T1 is an inaccessible (clause 11) or
1674    //   ambiguous (10.2) base class of T2.
1675    //
1676    // Note that we only check this condition when we're allowed to
1677    // complain about errors, because we should not be checking for
1678    // ambiguity (or inaccessibility) unless the reference binding
1679    // actually happens.
1680    if (DerivedToBase)
1681      return CheckDerivedToBaseConversion(T2, T1,
1682                                          Init->getSourceRange().getBegin(),
1683                                          Init->getSourceRange());
1684    else
1685      return false;
1686  }
1687
1688  //     -- Otherwise, the reference shall be to a non-volatile const
1689  //        type (i.e., cv1 shall be const).
1690  if (T1.getCVRQualifiers() != QualType::Const) {
1691    if (!ICS)
1692      Diag(Init->getSourceRange().getBegin(),
1693           diag::err_not_reference_to_const_init)
1694        <<  T1.getAsString()
1695        << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1696        <<  T2.getAsString() << Init->getSourceRange();
1697    return true;
1698  }
1699
1700  //       -- If the initializer expression is an rvalue, with T2 a
1701  //          class type, and “cv1 T1” is reference-compatible with
1702  //          “cv2 T2,” the reference is bound in one of the
1703  //          following ways (the choice is implementation-defined):
1704  //
1705  //          -- The reference is bound to the object represented by
1706  //             the rvalue (see 3.10) or to a sub-object within that
1707  //             object.
1708  //
1709  //          -- A temporary of type “cv1 T2” [sic] is created, and
1710  //             a constructor is called to copy the entire rvalue
1711  //             object into the temporary. The reference is bound to
1712  //             the temporary or to a sub-object within the
1713  //             temporary.
1714  //
1715  //
1716  //          The constructor that would be used to make the copy
1717  //          shall be callable whether or not the copy is actually
1718  //          done.
1719  //
1720  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
1721  // freedom, so we will always take the first option and never build
1722  // a temporary in this case. FIXME: We will, however, have to check
1723  // for the presence of a copy constructor in C++98/03 mode.
1724  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
1725      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1726    if (ICS) {
1727      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1728      ICS->Standard.First = ICK_Identity;
1729      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1730      ICS->Standard.Third = ICK_Identity;
1731      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1732      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1733      ICS->Standard.ReferenceBinding = true;
1734      ICS->Standard.DirectBinding = false;
1735    } else {
1736      // FIXME: Binding to a subobject of the rvalue is going to require
1737      // more AST annotation than this.
1738      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1739    }
1740    return false;
1741  }
1742
1743  //       -- Otherwise, a temporary of type “cv1 T1” is created and
1744  //          initialized from the initializer expression using the
1745  //          rules for a non-reference copy initialization (8.5). The
1746  //          reference is then bound to the temporary. If T1 is
1747  //          reference-related to T2, cv1 must be the same
1748  //          cv-qualification as, or greater cv-qualification than,
1749  //          cv2; otherwise, the program is ill-formed.
1750  if (RefRelationship == Ref_Related) {
1751    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
1752    // we would be reference-compatible or reference-compatible with
1753    // added qualification. But that wasn't the case, so the reference
1754    // initialization fails.
1755    if (!ICS)
1756      Diag(Init->getSourceRange().getBegin(),
1757           diag::err_reference_init_drops_quals)
1758        << T1.getAsString()
1759        << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1760        << T2.getAsString() << Init->getSourceRange();
1761    return true;
1762  }
1763
1764  // Actually try to convert the initializer to T1.
1765  if (ICS) {
1766    /// C++ [over.ics.ref]p2:
1767    ///
1768    ///   When a parameter of reference type is not bound directly to
1769    ///   an argument expression, the conversion sequence is the one
1770    ///   required to convert the argument expression to the
1771    ///   underlying type of the reference according to
1772    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
1773    ///   to copy-initializing a temporary of the underlying type with
1774    ///   the argument expression. Any difference in top-level
1775    ///   cv-qualification is subsumed by the initialization itself
1776    ///   and does not constitute a conversion.
1777    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
1778    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
1779  } else {
1780    return PerformImplicitConversion(Init, T1);
1781  }
1782}
1783
1784/// CheckOverloadedOperatorDeclaration - Check whether the declaration
1785/// of this overloaded operator is well-formed. If so, returns false;
1786/// otherwise, emits appropriate diagnostics and returns true.
1787bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
1788  assert(FnDecl && FnDecl->isOverloadedOperator() &&
1789         "Expected an overloaded operator declaration");
1790
1791  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
1792
1793  // C++ [over.oper]p5:
1794  //   The allocation and deallocation functions, operator new,
1795  //   operator new[], operator delete and operator delete[], are
1796  //   described completely in 3.7.3. The attributes and restrictions
1797  //   found in the rest of this subclause do not apply to them unless
1798  //   explicitly stated in 3.7.3.
1799  // FIXME: Write a separate routine for checking this. For now, just
1800  // allow it.
1801  if (Op == OO_New || Op == OO_Array_New ||
1802      Op == OO_Delete || Op == OO_Array_Delete)
1803    return false;
1804
1805  // C++ [over.oper]p6:
1806  //   An operator function shall either be a non-static member
1807  //   function or be a non-member function and have at least one
1808  //   parameter whose type is a class, a reference to a class, an
1809  //   enumeration, or a reference to an enumeration.
1810  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
1811    if (MethodDecl->isStatic())
1812      return Diag(FnDecl->getLocation(),
1813                  diag::err_operator_overload_static) << FnDecl->getDeclName();
1814  } else {
1815    bool ClassOrEnumParam = false;
1816    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
1817                                   ParamEnd = FnDecl->param_end();
1818         Param != ParamEnd; ++Param) {
1819      QualType ParamType = (*Param)->getType().getNonReferenceType();
1820      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
1821        ClassOrEnumParam = true;
1822        break;
1823      }
1824    }
1825
1826    if (!ClassOrEnumParam)
1827      return Diag(FnDecl->getLocation(),
1828                  diag::err_operator_overload_needs_class_or_enum)
1829        << FnDecl->getDeclName();
1830  }
1831
1832  // C++ [over.oper]p8:
1833  //   An operator function cannot have default arguments (8.3.6),
1834  //   except where explicitly stated below.
1835  //
1836  // Only the function-call operator allows default arguments
1837  // (C++ [over.call]p1).
1838  if (Op != OO_Call) {
1839    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
1840         Param != FnDecl->param_end(); ++Param) {
1841      if (Expr *DefArg = (*Param)->getDefaultArg())
1842        return Diag((*Param)->getLocation(),
1843                    diag::err_operator_overload_default_arg)
1844          << FnDecl->getDeclName() << DefArg->getSourceRange();
1845    }
1846  }
1847
1848  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
1849    { false, false, false }
1850#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1851    , { Unary, Binary, MemberOnly }
1852#include "clang/Basic/OperatorKinds.def"
1853  };
1854
1855  bool CanBeUnaryOperator = OperatorUses[Op][0];
1856  bool CanBeBinaryOperator = OperatorUses[Op][1];
1857  bool MustBeMemberOperator = OperatorUses[Op][2];
1858
1859  // C++ [over.oper]p8:
1860  //   [...] Operator functions cannot have more or fewer parameters
1861  //   than the number required for the corresponding operator, as
1862  //   described in the rest of this subclause.
1863  unsigned NumParams = FnDecl->getNumParams()
1864                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
1865  if (Op != OO_Call &&
1866      ((NumParams == 1 && !CanBeUnaryOperator) ||
1867       (NumParams == 2 && !CanBeBinaryOperator) ||
1868       (NumParams < 1) || (NumParams > 2))) {
1869    // We have the wrong number of parameters.
1870    unsigned ErrorKind;
1871    if (CanBeUnaryOperator && CanBeBinaryOperator) {
1872      ErrorKind = 2;  // 2 -> unary or binary.
1873    } else if (CanBeUnaryOperator) {
1874      ErrorKind = 0;  // 0 -> unary
1875    } else {
1876      assert(CanBeBinaryOperator &&
1877             "All non-call overloaded operators are unary or binary!");
1878      ErrorKind = 1;  // 1 -> binary
1879    }
1880
1881    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
1882      << FnDecl->getDeclName() << NumParams << ErrorKind;
1883  }
1884
1885  // Overloaded operators other than operator() cannot be variadic.
1886  if (Op != OO_Call &&
1887      FnDecl->getType()->getAsFunctionTypeProto()->isVariadic()) {
1888    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
1889      << FnDecl->getDeclName();
1890  }
1891
1892  // Some operators must be non-static member functions.
1893  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
1894    return Diag(FnDecl->getLocation(),
1895                diag::err_operator_overload_must_be_member)
1896      << FnDecl->getDeclName();
1897  }
1898
1899  // C++ [over.inc]p1:
1900  //   The user-defined function called operator++ implements the
1901  //   prefix and postfix ++ operator. If this function is a member
1902  //   function with no parameters, or a non-member function with one
1903  //   parameter of class or enumeration type, it defines the prefix
1904  //   increment operator ++ for objects of that type. If the function
1905  //   is a member function with one parameter (which shall be of type
1906  //   int) or a non-member function with two parameters (the second
1907  //   of which shall be of type int), it defines the postfix
1908  //   increment operator ++ for objects of that type.
1909  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
1910    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
1911    bool ParamIsInt = false;
1912    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
1913      ParamIsInt = BT->getKind() == BuiltinType::Int;
1914
1915    if (!ParamIsInt)
1916      return Diag(LastParam->getLocation(),
1917                  diag::err_operator_overload_post_incdec_must_be_int)
1918        << LastParam->getType().getAsString() << (Op == OO_MinusMinus);
1919  }
1920
1921  return false;
1922}
1923