SemaDeclCXX.cpp revision daebfef4b8c035d139f4b7d6f75be02b7a2c6218
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // If this function has a basic noexcept, it doesn't affect the outcome.
133  if (EST == EST_BasicNoexcept)
134    return;
135
136  // If we have a throw-all spec at this point, ignore the function.
137  if (ComputedEST == EST_None)
138    return;
139
140  // If we're still at noexcept(true) and there's a nothrow() callee,
141  // change to that specification.
142  if (EST == EST_DynamicNone) {
143    if (ComputedEST == EST_BasicNoexcept)
144      ComputedEST = EST_DynamicNone;
145    return;
146  }
147
148  // Check out noexcept specs.
149  if (EST == EST_ComputedNoexcept) {
150    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
151    assert(NR != FunctionProtoType::NR_NoNoexcept &&
152           "Must have noexcept result for EST_ComputedNoexcept.");
153    assert(NR != FunctionProtoType::NR_Dependent &&
154           "Should not generate implicit declarations for dependent cases, "
155           "and don't know how to handle them anyway.");
156
157    // noexcept(false) -> no spec on the new function
158    if (NR == FunctionProtoType::NR_Throw) {
159      ClearExceptions();
160      ComputedEST = EST_None;
161    }
162    // noexcept(true) won't change anything either.
163    return;
164  }
165
166  assert(EST == EST_Dynamic && "EST case not considered earlier.");
167  assert(ComputedEST != EST_None &&
168         "Shouldn't collect exceptions when throw-all is guaranteed.");
169  ComputedEST = EST_Dynamic;
170  // Record the exceptions in this function's exception specification.
171  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
172                                          EEnd = Proto->exception_end();
173       E != EEnd; ++E)
174    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
175      Exceptions.push_back(*E);
176}
177
178bool
179Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
180                              SourceLocation EqualLoc) {
181  if (RequireCompleteType(Param->getLocation(), Param->getType(),
182                          diag::err_typecheck_decl_incomplete_type)) {
183    Param->setInvalidDecl();
184    return true;
185  }
186
187  // C++ [dcl.fct.default]p5
188  //   A default argument expression is implicitly converted (clause
189  //   4) to the parameter type. The default argument expression has
190  //   the same semantic constraints as the initializer expression in
191  //   a declaration of a variable of the parameter type, using the
192  //   copy-initialization semantics (8.5).
193  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
194                                                                    Param);
195  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
196                                                           EqualLoc);
197  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
198  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
199                                      MultiExprArg(*this, &Arg, 1));
200  if (Result.isInvalid())
201    return true;
202  Arg = Result.takeAs<Expr>();
203
204  CheckImplicitConversions(Arg, EqualLoc);
205  Arg = MaybeCreateExprWithCleanups(Arg);
206
207  // Okay: add the default argument to the parameter
208  Param->setDefaultArg(Arg);
209
210  // We have already instantiated this parameter; provide each of the
211  // instantiations with the uninstantiated default argument.
212  UnparsedDefaultArgInstantiationsMap::iterator InstPos
213    = UnparsedDefaultArgInstantiations.find(Param);
214  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
215    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
216      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
217
218    // We're done tracking this parameter's instantiations.
219    UnparsedDefaultArgInstantiations.erase(InstPos);
220  }
221
222  return false;
223}
224
225/// ActOnParamDefaultArgument - Check whether the default argument
226/// provided for a function parameter is well-formed. If so, attach it
227/// to the parameter declaration.
228void
229Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
230                                Expr *DefaultArg) {
231  if (!param || !DefaultArg)
232    return;
233
234  ParmVarDecl *Param = cast<ParmVarDecl>(param);
235  UnparsedDefaultArgLocs.erase(Param);
236
237  // Default arguments are only permitted in C++
238  if (!getLangOptions().CPlusPlus) {
239    Diag(EqualLoc, diag::err_param_default_argument)
240      << DefaultArg->getSourceRange();
241    Param->setInvalidDecl();
242    return;
243  }
244
245  // Check for unexpanded parameter packs.
246  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
247    Param->setInvalidDecl();
248    return;
249  }
250
251  // Check that the default argument is well-formed
252  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
253  if (DefaultArgChecker.Visit(DefaultArg)) {
254    Param->setInvalidDecl();
255    return;
256  }
257
258  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
259}
260
261/// ActOnParamUnparsedDefaultArgument - We've seen a default
262/// argument for a function parameter, but we can't parse it yet
263/// because we're inside a class definition. Note that this default
264/// argument will be parsed later.
265void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
266                                             SourceLocation EqualLoc,
267                                             SourceLocation ArgLoc) {
268  if (!param)
269    return;
270
271  ParmVarDecl *Param = cast<ParmVarDecl>(param);
272  if (Param)
273    Param->setUnparsedDefaultArg();
274
275  UnparsedDefaultArgLocs[Param] = ArgLoc;
276}
277
278/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
279/// the default argument for the parameter param failed.
280void Sema::ActOnParamDefaultArgumentError(Decl *param) {
281  if (!param)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285
286  Param->setInvalidDecl();
287
288  UnparsedDefaultArgLocs.erase(Param);
289}
290
291/// CheckExtraCXXDefaultArguments - Check for any extra default
292/// arguments in the declarator, which is not a function declaration
293/// or definition and therefore is not permitted to have default
294/// arguments. This routine should be invoked for every declarator
295/// that is not a function declaration or definition.
296void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
297  // C++ [dcl.fct.default]p3
298  //   A default argument expression shall be specified only in the
299  //   parameter-declaration-clause of a function declaration or in a
300  //   template-parameter (14.1). It shall not be specified for a
301  //   parameter pack. If it is specified in a
302  //   parameter-declaration-clause, it shall not occur within a
303  //   declarator or abstract-declarator of a parameter-declaration.
304  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
305    DeclaratorChunk &chunk = D.getTypeObject(i);
306    if (chunk.Kind == DeclaratorChunk::Function) {
307      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
308        ParmVarDecl *Param =
309          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
310        if (Param->hasUnparsedDefaultArg()) {
311          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
312          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
313            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
314          delete Toks;
315          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
316        } else if (Param->getDefaultArg()) {
317          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
318            << Param->getDefaultArg()->getSourceRange();
319          Param->setDefaultArg(0);
320        }
321      }
322    }
323  }
324}
325
326// MergeCXXFunctionDecl - Merge two declarations of the same C++
327// function, once we already know that they have the same
328// type. Subroutine of MergeFunctionDecl. Returns true if there was an
329// error, false otherwise.
330bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
331  bool Invalid = false;
332
333  // C++ [dcl.fct.default]p4:
334  //   For non-template functions, default arguments can be added in
335  //   later declarations of a function in the same
336  //   scope. Declarations in different scopes have completely
337  //   distinct sets of default arguments. That is, declarations in
338  //   inner scopes do not acquire default arguments from
339  //   declarations in outer scopes, and vice versa. In a given
340  //   function declaration, all parameters subsequent to a
341  //   parameter with a default argument shall have default
342  //   arguments supplied in this or previous declarations. A
343  //   default argument shall not be redefined by a later
344  //   declaration (not even to the same value).
345  //
346  // C++ [dcl.fct.default]p6:
347  //   Except for member functions of class templates, the default arguments
348  //   in a member function definition that appears outside of the class
349  //   definition are added to the set of default arguments provided by the
350  //   member function declaration in the class definition.
351  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
352    ParmVarDecl *OldParam = Old->getParamDecl(p);
353    ParmVarDecl *NewParam = New->getParamDecl(p);
354
355    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
356
357      unsigned DiagDefaultParamID =
358        diag::err_param_default_argument_redefinition;
359
360      // MSVC accepts that default parameters be redefined for member functions
361      // of template class. The new default parameter's value is ignored.
362      Invalid = true;
363      if (getLangOptions().Microsoft) {
364        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
365        if (MD && MD->getParent()->getDescribedClassTemplate()) {
366          // Merge the old default argument into the new parameter.
367          NewParam->setHasInheritedDefaultArg();
368          if (OldParam->hasUninstantiatedDefaultArg())
369            NewParam->setUninstantiatedDefaultArg(
370                                      OldParam->getUninstantiatedDefaultArg());
371          else
372            NewParam->setDefaultArg(OldParam->getInit());
373          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
374          Invalid = false;
375        }
376      }
377
378      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
379      // hint here. Alternatively, we could walk the type-source information
380      // for NewParam to find the last source location in the type... but it
381      // isn't worth the effort right now. This is the kind of test case that
382      // is hard to get right:
383      //   int f(int);
384      //   void g(int (*fp)(int) = f);
385      //   void g(int (*fp)(int) = &f);
386      Diag(NewParam->getLocation(), DiagDefaultParamID)
387        << NewParam->getDefaultArgRange();
388
389      // Look for the function declaration where the default argument was
390      // actually written, which may be a declaration prior to Old.
391      for (FunctionDecl *Older = Old->getPreviousDeclaration();
392           Older; Older = Older->getPreviousDeclaration()) {
393        if (!Older->getParamDecl(p)->hasDefaultArg())
394          break;
395
396        OldParam = Older->getParamDecl(p);
397      }
398
399      Diag(OldParam->getLocation(), diag::note_previous_definition)
400        << OldParam->getDefaultArgRange();
401    } else if (OldParam->hasDefaultArg()) {
402      // Merge the old default argument into the new parameter.
403      // It's important to use getInit() here;  getDefaultArg()
404      // strips off any top-level ExprWithCleanups.
405      NewParam->setHasInheritedDefaultArg();
406      if (OldParam->hasUninstantiatedDefaultArg())
407        NewParam->setUninstantiatedDefaultArg(
408                                      OldParam->getUninstantiatedDefaultArg());
409      else
410        NewParam->setDefaultArg(OldParam->getInit());
411    } else if (NewParam->hasDefaultArg()) {
412      if (New->getDescribedFunctionTemplate()) {
413        // Paragraph 4, quoted above, only applies to non-template functions.
414        Diag(NewParam->getLocation(),
415             diag::err_param_default_argument_template_redecl)
416          << NewParam->getDefaultArgRange();
417        Diag(Old->getLocation(), diag::note_template_prev_declaration)
418          << false;
419      } else if (New->getTemplateSpecializationKind()
420                   != TSK_ImplicitInstantiation &&
421                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
422        // C++ [temp.expr.spec]p21:
423        //   Default function arguments shall not be specified in a declaration
424        //   or a definition for one of the following explicit specializations:
425        //     - the explicit specialization of a function template;
426        //     - the explicit specialization of a member function template;
427        //     - the explicit specialization of a member function of a class
428        //       template where the class template specialization to which the
429        //       member function specialization belongs is implicitly
430        //       instantiated.
431        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
432          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
433          << New->getDeclName()
434          << NewParam->getDefaultArgRange();
435      } else if (New->getDeclContext()->isDependentContext()) {
436        // C++ [dcl.fct.default]p6 (DR217):
437        //   Default arguments for a member function of a class template shall
438        //   be specified on the initial declaration of the member function
439        //   within the class template.
440        //
441        // Reading the tea leaves a bit in DR217 and its reference to DR205
442        // leads me to the conclusion that one cannot add default function
443        // arguments for an out-of-line definition of a member function of a
444        // dependent type.
445        int WhichKind = 2;
446        if (CXXRecordDecl *Record
447              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
448          if (Record->getDescribedClassTemplate())
449            WhichKind = 0;
450          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
451            WhichKind = 1;
452          else
453            WhichKind = 2;
454        }
455
456        Diag(NewParam->getLocation(),
457             diag::err_param_default_argument_member_template_redecl)
458          << WhichKind
459          << NewParam->getDefaultArgRange();
460      }
461    }
462  }
463
464  if (CheckEquivalentExceptionSpec(Old, New))
465    Invalid = true;
466
467  return Invalid;
468}
469
470/// \brief Merge the exception specifications of two variable declarations.
471///
472/// This is called when there's a redeclaration of a VarDecl. The function
473/// checks if the redeclaration might have an exception specification and
474/// validates compatibility and merges the specs if necessary.
475void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
476  // Shortcut if exceptions are disabled.
477  if (!getLangOptions().CXXExceptions)
478    return;
479
480  assert(Context.hasSameType(New->getType(), Old->getType()) &&
481         "Should only be called if types are otherwise the same.");
482
483  QualType NewType = New->getType();
484  QualType OldType = Old->getType();
485
486  // We're only interested in pointers and references to functions, as well
487  // as pointers to member functions.
488  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
489    NewType = R->getPointeeType();
490    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
491  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
492    NewType = P->getPointeeType();
493    OldType = OldType->getAs<PointerType>()->getPointeeType();
494  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
495    NewType = M->getPointeeType();
496    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
497  }
498
499  if (!NewType->isFunctionProtoType())
500    return;
501
502  // There's lots of special cases for functions. For function pointers, system
503  // libraries are hopefully not as broken so that we don't need these
504  // workarounds.
505  if (CheckEquivalentExceptionSpec(
506        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
507        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
508    New->setInvalidDecl();
509  }
510}
511
512/// CheckCXXDefaultArguments - Verify that the default arguments for a
513/// function declaration are well-formed according to C++
514/// [dcl.fct.default].
515void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
516  unsigned NumParams = FD->getNumParams();
517  unsigned p;
518
519  // Find first parameter with a default argument
520  for (p = 0; p < NumParams; ++p) {
521    ParmVarDecl *Param = FD->getParamDecl(p);
522    if (Param->hasDefaultArg())
523      break;
524  }
525
526  // C++ [dcl.fct.default]p4:
527  //   In a given function declaration, all parameters
528  //   subsequent to a parameter with a default argument shall
529  //   have default arguments supplied in this or previous
530  //   declarations. A default argument shall not be redefined
531  //   by a later declaration (not even to the same value).
532  unsigned LastMissingDefaultArg = 0;
533  for (; p < NumParams; ++p) {
534    ParmVarDecl *Param = FD->getParamDecl(p);
535    if (!Param->hasDefaultArg()) {
536      if (Param->isInvalidDecl())
537        /* We already complained about this parameter. */;
538      else if (Param->getIdentifier())
539        Diag(Param->getLocation(),
540             diag::err_param_default_argument_missing_name)
541          << Param->getIdentifier();
542      else
543        Diag(Param->getLocation(),
544             diag::err_param_default_argument_missing);
545
546      LastMissingDefaultArg = p;
547    }
548  }
549
550  if (LastMissingDefaultArg > 0) {
551    // Some default arguments were missing. Clear out all of the
552    // default arguments up to (and including) the last missing
553    // default argument, so that we leave the function parameters
554    // in a semantically valid state.
555    for (p = 0; p <= LastMissingDefaultArg; ++p) {
556      ParmVarDecl *Param = FD->getParamDecl(p);
557      if (Param->hasDefaultArg()) {
558        Param->setDefaultArg(0);
559      }
560    }
561  }
562}
563
564/// isCurrentClassName - Determine whether the identifier II is the
565/// name of the class type currently being defined. In the case of
566/// nested classes, this will only return true if II is the name of
567/// the innermost class.
568bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
569                              const CXXScopeSpec *SS) {
570  assert(getLangOptions().CPlusPlus && "No class names in C!");
571
572  CXXRecordDecl *CurDecl;
573  if (SS && SS->isSet() && !SS->isInvalid()) {
574    DeclContext *DC = computeDeclContext(*SS, true);
575    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
576  } else
577    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
578
579  if (CurDecl && CurDecl->getIdentifier())
580    return &II == CurDecl->getIdentifier();
581  else
582    return false;
583}
584
585/// \brief Check the validity of a C++ base class specifier.
586///
587/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
588/// and returns NULL otherwise.
589CXXBaseSpecifier *
590Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
591                         SourceRange SpecifierRange,
592                         bool Virtual, AccessSpecifier Access,
593                         TypeSourceInfo *TInfo,
594                         SourceLocation EllipsisLoc) {
595  QualType BaseType = TInfo->getType();
596
597  // C++ [class.union]p1:
598  //   A union shall not have base classes.
599  if (Class->isUnion()) {
600    Diag(Class->getLocation(), diag::err_base_clause_on_union)
601      << SpecifierRange;
602    return 0;
603  }
604
605  if (EllipsisLoc.isValid() &&
606      !TInfo->getType()->containsUnexpandedParameterPack()) {
607    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
608      << TInfo->getTypeLoc().getSourceRange();
609    EllipsisLoc = SourceLocation();
610  }
611
612  if (BaseType->isDependentType())
613    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
614                                          Class->getTagKind() == TTK_Class,
615                                          Access, TInfo, EllipsisLoc);
616
617  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
618
619  // Base specifiers must be record types.
620  if (!BaseType->isRecordType()) {
621    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
622    return 0;
623  }
624
625  // C++ [class.union]p1:
626  //   A union shall not be used as a base class.
627  if (BaseType->isUnionType()) {
628    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
629    return 0;
630  }
631
632  // C++ [class.derived]p2:
633  //   The class-name in a base-specifier shall not be an incompletely
634  //   defined class.
635  if (RequireCompleteType(BaseLoc, BaseType,
636                          PDiag(diag::err_incomplete_base_class)
637                            << SpecifierRange)) {
638    Class->setInvalidDecl();
639    return 0;
640  }
641
642  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
643  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
644  assert(BaseDecl && "Record type has no declaration");
645  BaseDecl = BaseDecl->getDefinition();
646  assert(BaseDecl && "Base type is not incomplete, but has no definition");
647  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
648  assert(CXXBaseDecl && "Base type is not a C++ type");
649
650  // C++ [class]p3:
651  //   If a class is marked final and it appears as a base-type-specifier in
652  //   base-clause, the program is ill-formed.
653  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
654    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
655      << CXXBaseDecl->getDeclName();
656    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
657      << CXXBaseDecl->getDeclName();
658    return 0;
659  }
660
661  if (BaseDecl->isInvalidDecl())
662    Class->setInvalidDecl();
663
664  // Create the base specifier.
665  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
666                                        Class->getTagKind() == TTK_Class,
667                                        Access, TInfo, EllipsisLoc);
668}
669
670/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
671/// one entry in the base class list of a class specifier, for
672/// example:
673///    class foo : public bar, virtual private baz {
674/// 'public bar' and 'virtual private baz' are each base-specifiers.
675BaseResult
676Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
677                         bool Virtual, AccessSpecifier Access,
678                         ParsedType basetype, SourceLocation BaseLoc,
679                         SourceLocation EllipsisLoc) {
680  if (!classdecl)
681    return true;
682
683  AdjustDeclIfTemplate(classdecl);
684  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
685  if (!Class)
686    return true;
687
688  TypeSourceInfo *TInfo = 0;
689  GetTypeFromParser(basetype, &TInfo);
690
691  if (EllipsisLoc.isInvalid() &&
692      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
693                                      UPPC_BaseType))
694    return true;
695
696  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
697                                                      Virtual, Access, TInfo,
698                                                      EllipsisLoc))
699    return BaseSpec;
700
701  return true;
702}
703
704/// \brief Performs the actual work of attaching the given base class
705/// specifiers to a C++ class.
706bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
707                                unsigned NumBases) {
708 if (NumBases == 0)
709    return false;
710
711  // Used to keep track of which base types we have already seen, so
712  // that we can properly diagnose redundant direct base types. Note
713  // that the key is always the unqualified canonical type of the base
714  // class.
715  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
716
717  // Copy non-redundant base specifiers into permanent storage.
718  unsigned NumGoodBases = 0;
719  bool Invalid = false;
720  for (unsigned idx = 0; idx < NumBases; ++idx) {
721    QualType NewBaseType
722      = Context.getCanonicalType(Bases[idx]->getType());
723    NewBaseType = NewBaseType.getLocalUnqualifiedType();
724    if (!Class->hasObjectMember()) {
725      if (const RecordType *FDTTy =
726            NewBaseType.getTypePtr()->getAs<RecordType>())
727        if (FDTTy->getDecl()->hasObjectMember())
728          Class->setHasObjectMember(true);
729    }
730
731    if (KnownBaseTypes[NewBaseType]) {
732      // C++ [class.mi]p3:
733      //   A class shall not be specified as a direct base class of a
734      //   derived class more than once.
735      Diag(Bases[idx]->getSourceRange().getBegin(),
736           diag::err_duplicate_base_class)
737        << KnownBaseTypes[NewBaseType]->getType()
738        << Bases[idx]->getSourceRange();
739
740      // Delete the duplicate base class specifier; we're going to
741      // overwrite its pointer later.
742      Context.Deallocate(Bases[idx]);
743
744      Invalid = true;
745    } else {
746      // Okay, add this new base class.
747      KnownBaseTypes[NewBaseType] = Bases[idx];
748      Bases[NumGoodBases++] = Bases[idx];
749    }
750  }
751
752  // Attach the remaining base class specifiers to the derived class.
753  Class->setBases(Bases, NumGoodBases);
754
755  // Delete the remaining (good) base class specifiers, since their
756  // data has been copied into the CXXRecordDecl.
757  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
758    Context.Deallocate(Bases[idx]);
759
760  return Invalid;
761}
762
763/// ActOnBaseSpecifiers - Attach the given base specifiers to the
764/// class, after checking whether there are any duplicate base
765/// classes.
766void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
767                               unsigned NumBases) {
768  if (!ClassDecl || !Bases || !NumBases)
769    return;
770
771  AdjustDeclIfTemplate(ClassDecl);
772  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
773                       (CXXBaseSpecifier**)(Bases), NumBases);
774}
775
776static CXXRecordDecl *GetClassForType(QualType T) {
777  if (const RecordType *RT = T->getAs<RecordType>())
778    return cast<CXXRecordDecl>(RT->getDecl());
779  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
780    return ICT->getDecl();
781  else
782    return 0;
783}
784
785/// \brief Determine whether the type \p Derived is a C++ class that is
786/// derived from the type \p Base.
787bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
788  if (!getLangOptions().CPlusPlus)
789    return false;
790
791  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
792  if (!DerivedRD)
793    return false;
794
795  CXXRecordDecl *BaseRD = GetClassForType(Base);
796  if (!BaseRD)
797    return false;
798
799  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
800  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
801}
802
803/// \brief Determine whether the type \p Derived is a C++ class that is
804/// derived from the type \p Base.
805bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
806  if (!getLangOptions().CPlusPlus)
807    return false;
808
809  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
810  if (!DerivedRD)
811    return false;
812
813  CXXRecordDecl *BaseRD = GetClassForType(Base);
814  if (!BaseRD)
815    return false;
816
817  return DerivedRD->isDerivedFrom(BaseRD, Paths);
818}
819
820void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
821                              CXXCastPath &BasePathArray) {
822  assert(BasePathArray.empty() && "Base path array must be empty!");
823  assert(Paths.isRecordingPaths() && "Must record paths!");
824
825  const CXXBasePath &Path = Paths.front();
826
827  // We first go backward and check if we have a virtual base.
828  // FIXME: It would be better if CXXBasePath had the base specifier for
829  // the nearest virtual base.
830  unsigned Start = 0;
831  for (unsigned I = Path.size(); I != 0; --I) {
832    if (Path[I - 1].Base->isVirtual()) {
833      Start = I - 1;
834      break;
835    }
836  }
837
838  // Now add all bases.
839  for (unsigned I = Start, E = Path.size(); I != E; ++I)
840    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
841}
842
843/// \brief Determine whether the given base path includes a virtual
844/// base class.
845bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
846  for (CXXCastPath::const_iterator B = BasePath.begin(),
847                                BEnd = BasePath.end();
848       B != BEnd; ++B)
849    if ((*B)->isVirtual())
850      return true;
851
852  return false;
853}
854
855/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
856/// conversion (where Derived and Base are class types) is
857/// well-formed, meaning that the conversion is unambiguous (and
858/// that all of the base classes are accessible). Returns true
859/// and emits a diagnostic if the code is ill-formed, returns false
860/// otherwise. Loc is the location where this routine should point to
861/// if there is an error, and Range is the source range to highlight
862/// if there is an error.
863bool
864Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
865                                   unsigned InaccessibleBaseID,
866                                   unsigned AmbigiousBaseConvID,
867                                   SourceLocation Loc, SourceRange Range,
868                                   DeclarationName Name,
869                                   CXXCastPath *BasePath) {
870  // First, determine whether the path from Derived to Base is
871  // ambiguous. This is slightly more expensive than checking whether
872  // the Derived to Base conversion exists, because here we need to
873  // explore multiple paths to determine if there is an ambiguity.
874  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
875                     /*DetectVirtual=*/false);
876  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
877  assert(DerivationOkay &&
878         "Can only be used with a derived-to-base conversion");
879  (void)DerivationOkay;
880
881  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
882    if (InaccessibleBaseID) {
883      // Check that the base class can be accessed.
884      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
885                                   InaccessibleBaseID)) {
886        case AR_inaccessible:
887          return true;
888        case AR_accessible:
889        case AR_dependent:
890        case AR_delayed:
891          break;
892      }
893    }
894
895    // Build a base path if necessary.
896    if (BasePath)
897      BuildBasePathArray(Paths, *BasePath);
898    return false;
899  }
900
901  // We know that the derived-to-base conversion is ambiguous, and
902  // we're going to produce a diagnostic. Perform the derived-to-base
903  // search just one more time to compute all of the possible paths so
904  // that we can print them out. This is more expensive than any of
905  // the previous derived-to-base checks we've done, but at this point
906  // performance isn't as much of an issue.
907  Paths.clear();
908  Paths.setRecordingPaths(true);
909  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
910  assert(StillOkay && "Can only be used with a derived-to-base conversion");
911  (void)StillOkay;
912
913  // Build up a textual representation of the ambiguous paths, e.g.,
914  // D -> B -> A, that will be used to illustrate the ambiguous
915  // conversions in the diagnostic. We only print one of the paths
916  // to each base class subobject.
917  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
918
919  Diag(Loc, AmbigiousBaseConvID)
920  << Derived << Base << PathDisplayStr << Range << Name;
921  return true;
922}
923
924bool
925Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
926                                   SourceLocation Loc, SourceRange Range,
927                                   CXXCastPath *BasePath,
928                                   bool IgnoreAccess) {
929  return CheckDerivedToBaseConversion(Derived, Base,
930                                      IgnoreAccess ? 0
931                                       : diag::err_upcast_to_inaccessible_base,
932                                      diag::err_ambiguous_derived_to_base_conv,
933                                      Loc, Range, DeclarationName(),
934                                      BasePath);
935}
936
937
938/// @brief Builds a string representing ambiguous paths from a
939/// specific derived class to different subobjects of the same base
940/// class.
941///
942/// This function builds a string that can be used in error messages
943/// to show the different paths that one can take through the
944/// inheritance hierarchy to go from the derived class to different
945/// subobjects of a base class. The result looks something like this:
946/// @code
947/// struct D -> struct B -> struct A
948/// struct D -> struct C -> struct A
949/// @endcode
950std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
951  std::string PathDisplayStr;
952  std::set<unsigned> DisplayedPaths;
953  for (CXXBasePaths::paths_iterator Path = Paths.begin();
954       Path != Paths.end(); ++Path) {
955    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
956      // We haven't displayed a path to this particular base
957      // class subobject yet.
958      PathDisplayStr += "\n    ";
959      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
960      for (CXXBasePath::const_iterator Element = Path->begin();
961           Element != Path->end(); ++Element)
962        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
963    }
964  }
965
966  return PathDisplayStr;
967}
968
969//===----------------------------------------------------------------------===//
970// C++ class member Handling
971//===----------------------------------------------------------------------===//
972
973/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
974Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
975                                 SourceLocation ASLoc,
976                                 SourceLocation ColonLoc) {
977  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
978  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
979                                                  ASLoc, ColonLoc);
980  CurContext->addHiddenDecl(ASDecl);
981  return ASDecl;
982}
983
984/// CheckOverrideControl - Check C++0x override control semantics.
985void Sema::CheckOverrideControl(const Decl *D) {
986  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
987  if (!MD || !MD->isVirtual())
988    return;
989
990  if (MD->isDependentContext())
991    return;
992
993  // C++0x [class.virtual]p3:
994  //   If a virtual function is marked with the virt-specifier override and does
995  //   not override a member function of a base class,
996  //   the program is ill-formed.
997  bool HasOverriddenMethods =
998    MD->begin_overridden_methods() != MD->end_overridden_methods();
999  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1000    Diag(MD->getLocation(),
1001                 diag::err_function_marked_override_not_overriding)
1002      << MD->getDeclName();
1003    return;
1004  }
1005}
1006
1007/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1008/// function overrides a virtual member function marked 'final', according to
1009/// C++0x [class.virtual]p3.
1010bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1011                                                  const CXXMethodDecl *Old) {
1012  if (!Old->hasAttr<FinalAttr>())
1013    return false;
1014
1015  Diag(New->getLocation(), diag::err_final_function_overridden)
1016    << New->getDeclName();
1017  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1018  return true;
1019}
1020
1021/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1022/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1023/// bitfield width if there is one and 'InitExpr' specifies the initializer if
1024/// any.
1025Decl *
1026Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1027                               MultiTemplateParamsArg TemplateParameterLists,
1028                               ExprTy *BW, const VirtSpecifiers &VS,
1029                               ExprTy *InitExpr, bool IsDefinition) {
1030  const DeclSpec &DS = D.getDeclSpec();
1031  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1032  DeclarationName Name = NameInfo.getName();
1033  SourceLocation Loc = NameInfo.getLoc();
1034
1035  // For anonymous bitfields, the location should point to the type.
1036  if (Loc.isInvalid())
1037    Loc = D.getSourceRange().getBegin();
1038
1039  Expr *BitWidth = static_cast<Expr*>(BW);
1040  Expr *Init = static_cast<Expr*>(InitExpr);
1041
1042  assert(isa<CXXRecordDecl>(CurContext));
1043  assert(!DS.isFriendSpecified());
1044
1045  bool isFunc = false;
1046  if (D.isFunctionDeclarator())
1047    isFunc = true;
1048  else if (D.getNumTypeObjects() == 0 &&
1049           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
1050    QualType TDType = GetTypeFromParser(DS.getRepAsType());
1051    isFunc = TDType->isFunctionType();
1052  }
1053
1054  // C++ 9.2p6: A member shall not be declared to have automatic storage
1055  // duration (auto, register) or with the extern storage-class-specifier.
1056  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1057  // data members and cannot be applied to names declared const or static,
1058  // and cannot be applied to reference members.
1059  switch (DS.getStorageClassSpec()) {
1060    case DeclSpec::SCS_unspecified:
1061    case DeclSpec::SCS_typedef:
1062    case DeclSpec::SCS_static:
1063      // FALL THROUGH.
1064      break;
1065    case DeclSpec::SCS_mutable:
1066      if (isFunc) {
1067        if (DS.getStorageClassSpecLoc().isValid())
1068          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1069        else
1070          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1071
1072        // FIXME: It would be nicer if the keyword was ignored only for this
1073        // declarator. Otherwise we could get follow-up errors.
1074        D.getMutableDeclSpec().ClearStorageClassSpecs();
1075      }
1076      break;
1077    default:
1078      if (DS.getStorageClassSpecLoc().isValid())
1079        Diag(DS.getStorageClassSpecLoc(),
1080             diag::err_storageclass_invalid_for_member);
1081      else
1082        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1083      D.getMutableDeclSpec().ClearStorageClassSpecs();
1084  }
1085
1086  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1087                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1088                      !isFunc);
1089
1090  Decl *Member;
1091  if (isInstField) {
1092    CXXScopeSpec &SS = D.getCXXScopeSpec();
1093
1094    if (SS.isSet() && !SS.isInvalid()) {
1095      // The user provided a superfluous scope specifier inside a class
1096      // definition:
1097      //
1098      // class X {
1099      //   int X::member;
1100      // };
1101      DeclContext *DC = 0;
1102      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1103        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1104        << Name << FixItHint::CreateRemoval(SS.getRange());
1105      else
1106        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1107          << Name << SS.getRange();
1108
1109      SS.clear();
1110    }
1111
1112    // FIXME: Check for template parameters!
1113    // FIXME: Check that the name is an identifier!
1114    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1115                         AS);
1116    assert(Member && "HandleField never returns null");
1117  } else {
1118    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1119    if (!Member) {
1120      return 0;
1121    }
1122
1123    // Non-instance-fields can't have a bitfield.
1124    if (BitWidth) {
1125      if (Member->isInvalidDecl()) {
1126        // don't emit another diagnostic.
1127      } else if (isa<VarDecl>(Member)) {
1128        // C++ 9.6p3: A bit-field shall not be a static member.
1129        // "static member 'A' cannot be a bit-field"
1130        Diag(Loc, diag::err_static_not_bitfield)
1131          << Name << BitWidth->getSourceRange();
1132      } else if (isa<TypedefDecl>(Member)) {
1133        // "typedef member 'x' cannot be a bit-field"
1134        Diag(Loc, diag::err_typedef_not_bitfield)
1135          << Name << BitWidth->getSourceRange();
1136      } else {
1137        // A function typedef ("typedef int f(); f a;").
1138        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1139        Diag(Loc, diag::err_not_integral_type_bitfield)
1140          << Name << cast<ValueDecl>(Member)->getType()
1141          << BitWidth->getSourceRange();
1142      }
1143
1144      BitWidth = 0;
1145      Member->setInvalidDecl();
1146    }
1147
1148    Member->setAccess(AS);
1149
1150    // If we have declared a member function template, set the access of the
1151    // templated declaration as well.
1152    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1153      FunTmpl->getTemplatedDecl()->setAccess(AS);
1154  }
1155
1156  if (VS.isOverrideSpecified()) {
1157    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1158    if (!MD || !MD->isVirtual()) {
1159      Diag(Member->getLocStart(),
1160           diag::override_keyword_only_allowed_on_virtual_member_functions)
1161        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1162    } else
1163      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1164  }
1165  if (VS.isFinalSpecified()) {
1166    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1167    if (!MD || !MD->isVirtual()) {
1168      Diag(Member->getLocStart(),
1169           diag::override_keyword_only_allowed_on_virtual_member_functions)
1170      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1171    } else
1172      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1173  }
1174
1175  if (VS.getLastLocation().isValid()) {
1176    // Update the end location of a method that has a virt-specifiers.
1177    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1178      MD->setRangeEnd(VS.getLastLocation());
1179  }
1180
1181  CheckOverrideControl(Member);
1182
1183  assert((Name || isInstField) && "No identifier for non-field ?");
1184
1185  if (Init)
1186    AddInitializerToDecl(Member, Init, false,
1187                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1188
1189  FinalizeDeclaration(Member);
1190
1191  if (isInstField)
1192    FieldCollector->Add(cast<FieldDecl>(Member));
1193  return Member;
1194}
1195
1196/// \brief Find the direct and/or virtual base specifiers that
1197/// correspond to the given base type, for use in base initialization
1198/// within a constructor.
1199static bool FindBaseInitializer(Sema &SemaRef,
1200                                CXXRecordDecl *ClassDecl,
1201                                QualType BaseType,
1202                                const CXXBaseSpecifier *&DirectBaseSpec,
1203                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1204  // First, check for a direct base class.
1205  DirectBaseSpec = 0;
1206  for (CXXRecordDecl::base_class_const_iterator Base
1207         = ClassDecl->bases_begin();
1208       Base != ClassDecl->bases_end(); ++Base) {
1209    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1210      // We found a direct base of this type. That's what we're
1211      // initializing.
1212      DirectBaseSpec = &*Base;
1213      break;
1214    }
1215  }
1216
1217  // Check for a virtual base class.
1218  // FIXME: We might be able to short-circuit this if we know in advance that
1219  // there are no virtual bases.
1220  VirtualBaseSpec = 0;
1221  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1222    // We haven't found a base yet; search the class hierarchy for a
1223    // virtual base class.
1224    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1225                       /*DetectVirtual=*/false);
1226    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1227                              BaseType, Paths)) {
1228      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1229           Path != Paths.end(); ++Path) {
1230        if (Path->back().Base->isVirtual()) {
1231          VirtualBaseSpec = Path->back().Base;
1232          break;
1233        }
1234      }
1235    }
1236  }
1237
1238  return DirectBaseSpec || VirtualBaseSpec;
1239}
1240
1241/// ActOnMemInitializer - Handle a C++ member initializer.
1242MemInitResult
1243Sema::ActOnMemInitializer(Decl *ConstructorD,
1244                          Scope *S,
1245                          CXXScopeSpec &SS,
1246                          IdentifierInfo *MemberOrBase,
1247                          ParsedType TemplateTypeTy,
1248                          SourceLocation IdLoc,
1249                          SourceLocation LParenLoc,
1250                          ExprTy **Args, unsigned NumArgs,
1251                          SourceLocation RParenLoc,
1252                          SourceLocation EllipsisLoc) {
1253  if (!ConstructorD)
1254    return true;
1255
1256  AdjustDeclIfTemplate(ConstructorD);
1257
1258  CXXConstructorDecl *Constructor
1259    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1260  if (!Constructor) {
1261    // The user wrote a constructor initializer on a function that is
1262    // not a C++ constructor. Ignore the error for now, because we may
1263    // have more member initializers coming; we'll diagnose it just
1264    // once in ActOnMemInitializers.
1265    return true;
1266  }
1267
1268  CXXRecordDecl *ClassDecl = Constructor->getParent();
1269
1270  // C++ [class.base.init]p2:
1271  //   Names in a mem-initializer-id are looked up in the scope of the
1272  //   constructor's class and, if not found in that scope, are looked
1273  //   up in the scope containing the constructor's definition.
1274  //   [Note: if the constructor's class contains a member with the
1275  //   same name as a direct or virtual base class of the class, a
1276  //   mem-initializer-id naming the member or base class and composed
1277  //   of a single identifier refers to the class member. A
1278  //   mem-initializer-id for the hidden base class may be specified
1279  //   using a qualified name. ]
1280  if (!SS.getScopeRep() && !TemplateTypeTy) {
1281    // Look for a member, first.
1282    FieldDecl *Member = 0;
1283    DeclContext::lookup_result Result
1284      = ClassDecl->lookup(MemberOrBase);
1285    if (Result.first != Result.second) {
1286      Member = dyn_cast<FieldDecl>(*Result.first);
1287
1288      if (Member) {
1289        if (EllipsisLoc.isValid())
1290          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1291            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1292
1293        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1294                                    LParenLoc, RParenLoc);
1295      }
1296
1297      // Handle anonymous union case.
1298      if (IndirectFieldDecl* IndirectField
1299            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1300        if (EllipsisLoc.isValid())
1301          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1302            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1303
1304         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1305                                       NumArgs, IdLoc,
1306                                       LParenLoc, RParenLoc);
1307      }
1308    }
1309  }
1310  // It didn't name a member, so see if it names a class.
1311  QualType BaseType;
1312  TypeSourceInfo *TInfo = 0;
1313
1314  if (TemplateTypeTy) {
1315    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1316  } else {
1317    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1318    LookupParsedName(R, S, &SS);
1319
1320    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1321    if (!TyD) {
1322      if (R.isAmbiguous()) return true;
1323
1324      // We don't want access-control diagnostics here.
1325      R.suppressDiagnostics();
1326
1327      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1328        bool NotUnknownSpecialization = false;
1329        DeclContext *DC = computeDeclContext(SS, false);
1330        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1331          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1332
1333        if (!NotUnknownSpecialization) {
1334          // When the scope specifier can refer to a member of an unknown
1335          // specialization, we take it as a type name.
1336          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1337                                       SS.getWithLocInContext(Context),
1338                                       *MemberOrBase, IdLoc);
1339          if (BaseType.isNull())
1340            return true;
1341
1342          R.clear();
1343          R.setLookupName(MemberOrBase);
1344        }
1345      }
1346
1347      // If no results were found, try to correct typos.
1348      if (R.empty() && BaseType.isNull() &&
1349          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1350          R.isSingleResult()) {
1351        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1352          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1353            // We have found a non-static data member with a similar
1354            // name to what was typed; complain and initialize that
1355            // member.
1356            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1357              << MemberOrBase << true << R.getLookupName()
1358              << FixItHint::CreateReplacement(R.getNameLoc(),
1359                                              R.getLookupName().getAsString());
1360            Diag(Member->getLocation(), diag::note_previous_decl)
1361              << Member->getDeclName();
1362
1363            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1364                                          LParenLoc, RParenLoc);
1365          }
1366        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1367          const CXXBaseSpecifier *DirectBaseSpec;
1368          const CXXBaseSpecifier *VirtualBaseSpec;
1369          if (FindBaseInitializer(*this, ClassDecl,
1370                                  Context.getTypeDeclType(Type),
1371                                  DirectBaseSpec, VirtualBaseSpec)) {
1372            // We have found a direct or virtual base class with a
1373            // similar name to what was typed; complain and initialize
1374            // that base class.
1375            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1376              << MemberOrBase << false << R.getLookupName()
1377              << FixItHint::CreateReplacement(R.getNameLoc(),
1378                                              R.getLookupName().getAsString());
1379
1380            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1381                                                             : VirtualBaseSpec;
1382            Diag(BaseSpec->getSourceRange().getBegin(),
1383                 diag::note_base_class_specified_here)
1384              << BaseSpec->getType()
1385              << BaseSpec->getSourceRange();
1386
1387            TyD = Type;
1388          }
1389        }
1390      }
1391
1392      if (!TyD && BaseType.isNull()) {
1393        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1394          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1395        return true;
1396      }
1397    }
1398
1399    if (BaseType.isNull()) {
1400      BaseType = Context.getTypeDeclType(TyD);
1401      if (SS.isSet()) {
1402        NestedNameSpecifier *Qualifier =
1403          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1404
1405        // FIXME: preserve source range information
1406        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1407      }
1408    }
1409  }
1410
1411  if (!TInfo)
1412    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1413
1414  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1415                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1416}
1417
1418/// Checks an initializer expression for use of uninitialized fields, such as
1419/// containing the field that is being initialized. Returns true if there is an
1420/// uninitialized field was used an updates the SourceLocation parameter; false
1421/// otherwise.
1422static bool InitExprContainsUninitializedFields(const Stmt *S,
1423                                                const ValueDecl *LhsField,
1424                                                SourceLocation *L) {
1425  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1426
1427  if (isa<CallExpr>(S)) {
1428    // Do not descend into function calls or constructors, as the use
1429    // of an uninitialized field may be valid. One would have to inspect
1430    // the contents of the function/ctor to determine if it is safe or not.
1431    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1432    // may be safe, depending on what the function/ctor does.
1433    return false;
1434  }
1435  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1436    const NamedDecl *RhsField = ME->getMemberDecl();
1437
1438    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1439      // The member expression points to a static data member.
1440      assert(VD->isStaticDataMember() &&
1441             "Member points to non-static data member!");
1442      (void)VD;
1443      return false;
1444    }
1445
1446    if (isa<EnumConstantDecl>(RhsField)) {
1447      // The member expression points to an enum.
1448      return false;
1449    }
1450
1451    if (RhsField == LhsField) {
1452      // Initializing a field with itself. Throw a warning.
1453      // But wait; there are exceptions!
1454      // Exception #1:  The field may not belong to this record.
1455      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1456      const Expr *base = ME->getBase();
1457      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1458        // Even though the field matches, it does not belong to this record.
1459        return false;
1460      }
1461      // None of the exceptions triggered; return true to indicate an
1462      // uninitialized field was used.
1463      *L = ME->getMemberLoc();
1464      return true;
1465    }
1466  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1467    // sizeof/alignof doesn't reference contents, do not warn.
1468    return false;
1469  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1470    // address-of doesn't reference contents (the pointer may be dereferenced
1471    // in the same expression but it would be rare; and weird).
1472    if (UOE->getOpcode() == UO_AddrOf)
1473      return false;
1474  }
1475  for (Stmt::const_child_range it = S->children(); it; ++it) {
1476    if (!*it) {
1477      // An expression such as 'member(arg ?: "")' may trigger this.
1478      continue;
1479    }
1480    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1481      return true;
1482  }
1483  return false;
1484}
1485
1486MemInitResult
1487Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1488                             unsigned NumArgs, SourceLocation IdLoc,
1489                             SourceLocation LParenLoc,
1490                             SourceLocation RParenLoc) {
1491  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1492  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1493  assert((DirectMember || IndirectMember) &&
1494         "Member must be a FieldDecl or IndirectFieldDecl");
1495
1496  if (Member->isInvalidDecl())
1497    return true;
1498
1499  // Diagnose value-uses of fields to initialize themselves, e.g.
1500  //   foo(foo)
1501  // where foo is not also a parameter to the constructor.
1502  // TODO: implement -Wuninitialized and fold this into that framework.
1503  for (unsigned i = 0; i < NumArgs; ++i) {
1504    SourceLocation L;
1505    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1506      // FIXME: Return true in the case when other fields are used before being
1507      // uninitialized. For example, let this field be the i'th field. When
1508      // initializing the i'th field, throw a warning if any of the >= i'th
1509      // fields are used, as they are not yet initialized.
1510      // Right now we are only handling the case where the i'th field uses
1511      // itself in its initializer.
1512      Diag(L, diag::warn_field_is_uninit);
1513    }
1514  }
1515
1516  bool HasDependentArg = false;
1517  for (unsigned i = 0; i < NumArgs; i++)
1518    HasDependentArg |= Args[i]->isTypeDependent();
1519
1520  Expr *Init;
1521  if (Member->getType()->isDependentType() || HasDependentArg) {
1522    // Can't check initialization for a member of dependent type or when
1523    // any of the arguments are type-dependent expressions.
1524    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1525                                       RParenLoc);
1526
1527    // Erase any temporaries within this evaluation context; we're not
1528    // going to track them in the AST, since we'll be rebuilding the
1529    // ASTs during template instantiation.
1530    ExprTemporaries.erase(
1531              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1532                          ExprTemporaries.end());
1533  } else {
1534    // Initialize the member.
1535    InitializedEntity MemberEntity =
1536      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1537                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1538    InitializationKind Kind =
1539      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1540
1541    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1542
1543    ExprResult MemberInit =
1544      InitSeq.Perform(*this, MemberEntity, Kind,
1545                      MultiExprArg(*this, Args, NumArgs), 0);
1546    if (MemberInit.isInvalid())
1547      return true;
1548
1549    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1550
1551    // C++0x [class.base.init]p7:
1552    //   The initialization of each base and member constitutes a
1553    //   full-expression.
1554    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1555    if (MemberInit.isInvalid())
1556      return true;
1557
1558    // If we are in a dependent context, template instantiation will
1559    // perform this type-checking again. Just save the arguments that we
1560    // received in a ParenListExpr.
1561    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1562    // of the information that we have about the member
1563    // initializer. However, deconstructing the ASTs is a dicey process,
1564    // and this approach is far more likely to get the corner cases right.
1565    if (CurContext->isDependentContext())
1566      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1567                                               RParenLoc);
1568    else
1569      Init = MemberInit.get();
1570  }
1571
1572  if (DirectMember) {
1573    return new (Context) CXXCtorInitializer(Context, DirectMember,
1574                                                    IdLoc, LParenLoc, Init,
1575                                                    RParenLoc);
1576  } else {
1577    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1578                                                    IdLoc, LParenLoc, Init,
1579                                                    RParenLoc);
1580  }
1581}
1582
1583MemInitResult
1584Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1585                                 Expr **Args, unsigned NumArgs,
1586                                 SourceLocation NameLoc,
1587                                 SourceLocation LParenLoc,
1588                                 SourceLocation RParenLoc,
1589                                 CXXRecordDecl *ClassDecl) {
1590  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1591  if (!LangOpts.CPlusPlus0x)
1592    return Diag(Loc, diag::err_delegation_0x_only)
1593      << TInfo->getTypeLoc().getLocalSourceRange();
1594
1595  // Initialize the object.
1596  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1597                                     QualType(ClassDecl->getTypeForDecl(), 0));
1598  InitializationKind Kind =
1599    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1600
1601  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1602
1603  ExprResult DelegationInit =
1604    InitSeq.Perform(*this, DelegationEntity, Kind,
1605                    MultiExprArg(*this, Args, NumArgs), 0);
1606  if (DelegationInit.isInvalid())
1607    return true;
1608
1609  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1610  CXXConstructorDecl *Constructor
1611    = ConExpr->getConstructor();
1612  assert(Constructor && "Delegating constructor with no target?");
1613
1614  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1615
1616  // C++0x [class.base.init]p7:
1617  //   The initialization of each base and member constitutes a
1618  //   full-expression.
1619  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1620  if (DelegationInit.isInvalid())
1621    return true;
1622
1623  // If we are in a dependent context, template instantiation will
1624  // perform this type-checking again. Just save the arguments that we
1625  // received in a ParenListExpr.
1626  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1627  // of the information that we have about the base
1628  // initializer. However, deconstructing the ASTs is a dicey process,
1629  // and this approach is far more likely to get the corner cases right.
1630  if (CurContext->isDependentContext()) {
1631    ExprResult Init
1632      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args,
1633                                          NumArgs, RParenLoc));
1634    return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc,
1635                                            Constructor, Init.takeAs<Expr>(),
1636                                            RParenLoc);
1637  }
1638
1639  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1640                                          DelegationInit.takeAs<Expr>(),
1641                                          RParenLoc);
1642}
1643
1644MemInitResult
1645Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1646                           Expr **Args, unsigned NumArgs,
1647                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1648                           CXXRecordDecl *ClassDecl,
1649                           SourceLocation EllipsisLoc) {
1650  bool HasDependentArg = false;
1651  for (unsigned i = 0; i < NumArgs; i++)
1652    HasDependentArg |= Args[i]->isTypeDependent();
1653
1654  SourceLocation BaseLoc
1655    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1656
1657  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1658    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1659             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1660
1661  // C++ [class.base.init]p2:
1662  //   [...] Unless the mem-initializer-id names a nonstatic data
1663  //   member of the constructor's class or a direct or virtual base
1664  //   of that class, the mem-initializer is ill-formed. A
1665  //   mem-initializer-list can initialize a base class using any
1666  //   name that denotes that base class type.
1667  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1668
1669  if (EllipsisLoc.isValid()) {
1670    // This is a pack expansion.
1671    if (!BaseType->containsUnexpandedParameterPack())  {
1672      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1673        << SourceRange(BaseLoc, RParenLoc);
1674
1675      EllipsisLoc = SourceLocation();
1676    }
1677  } else {
1678    // Check for any unexpanded parameter packs.
1679    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1680      return true;
1681
1682    for (unsigned I = 0; I != NumArgs; ++I)
1683      if (DiagnoseUnexpandedParameterPack(Args[I]))
1684        return true;
1685  }
1686
1687  // Check for direct and virtual base classes.
1688  const CXXBaseSpecifier *DirectBaseSpec = 0;
1689  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1690  if (!Dependent) {
1691    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1692                                       BaseType))
1693      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1694                                        LParenLoc, RParenLoc, ClassDecl);
1695
1696    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1697                        VirtualBaseSpec);
1698
1699    // C++ [base.class.init]p2:
1700    // Unless the mem-initializer-id names a nonstatic data member of the
1701    // constructor's class or a direct or virtual base of that class, the
1702    // mem-initializer is ill-formed.
1703    if (!DirectBaseSpec && !VirtualBaseSpec) {
1704      // If the class has any dependent bases, then it's possible that
1705      // one of those types will resolve to the same type as
1706      // BaseType. Therefore, just treat this as a dependent base
1707      // class initialization.  FIXME: Should we try to check the
1708      // initialization anyway? It seems odd.
1709      if (ClassDecl->hasAnyDependentBases())
1710        Dependent = true;
1711      else
1712        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1713          << BaseType << Context.getTypeDeclType(ClassDecl)
1714          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1715    }
1716  }
1717
1718  if (Dependent) {
1719    // Can't check initialization for a base of dependent type or when
1720    // any of the arguments are type-dependent expressions.
1721    ExprResult BaseInit
1722      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1723                                          RParenLoc));
1724
1725    // Erase any temporaries within this evaluation context; we're not
1726    // going to track them in the AST, since we'll be rebuilding the
1727    // ASTs during template instantiation.
1728    ExprTemporaries.erase(
1729              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1730                          ExprTemporaries.end());
1731
1732    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1733                                                    /*IsVirtual=*/false,
1734                                                    LParenLoc,
1735                                                    BaseInit.takeAs<Expr>(),
1736                                                    RParenLoc,
1737                                                    EllipsisLoc);
1738  }
1739
1740  // C++ [base.class.init]p2:
1741  //   If a mem-initializer-id is ambiguous because it designates both
1742  //   a direct non-virtual base class and an inherited virtual base
1743  //   class, the mem-initializer is ill-formed.
1744  if (DirectBaseSpec && VirtualBaseSpec)
1745    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1746      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1747
1748  CXXBaseSpecifier *BaseSpec
1749    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1750  if (!BaseSpec)
1751    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1752
1753  // Initialize the base.
1754  InitializedEntity BaseEntity =
1755    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1756  InitializationKind Kind =
1757    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1758
1759  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1760
1761  ExprResult BaseInit =
1762    InitSeq.Perform(*this, BaseEntity, Kind,
1763                    MultiExprArg(*this, Args, NumArgs), 0);
1764  if (BaseInit.isInvalid())
1765    return true;
1766
1767  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1768
1769  // C++0x [class.base.init]p7:
1770  //   The initialization of each base and member constitutes a
1771  //   full-expression.
1772  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1773  if (BaseInit.isInvalid())
1774    return true;
1775
1776  // If we are in a dependent context, template instantiation will
1777  // perform this type-checking again. Just save the arguments that we
1778  // received in a ParenListExpr.
1779  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1780  // of the information that we have about the base
1781  // initializer. However, deconstructing the ASTs is a dicey process,
1782  // and this approach is far more likely to get the corner cases right.
1783  if (CurContext->isDependentContext()) {
1784    ExprResult Init
1785      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1786                                          RParenLoc));
1787    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1788                                                    BaseSpec->isVirtual(),
1789                                                    LParenLoc,
1790                                                    Init.takeAs<Expr>(),
1791                                                    RParenLoc,
1792                                                    EllipsisLoc);
1793  }
1794
1795  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1796                                                  BaseSpec->isVirtual(),
1797                                                  LParenLoc,
1798                                                  BaseInit.takeAs<Expr>(),
1799                                                  RParenLoc,
1800                                                  EllipsisLoc);
1801}
1802
1803/// ImplicitInitializerKind - How an implicit base or member initializer should
1804/// initialize its base or member.
1805enum ImplicitInitializerKind {
1806  IIK_Default,
1807  IIK_Copy,
1808  IIK_Move
1809};
1810
1811static bool
1812BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1813                             ImplicitInitializerKind ImplicitInitKind,
1814                             CXXBaseSpecifier *BaseSpec,
1815                             bool IsInheritedVirtualBase,
1816                             CXXCtorInitializer *&CXXBaseInit) {
1817  InitializedEntity InitEntity
1818    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1819                                        IsInheritedVirtualBase);
1820
1821  ExprResult BaseInit;
1822
1823  switch (ImplicitInitKind) {
1824  case IIK_Default: {
1825    InitializationKind InitKind
1826      = InitializationKind::CreateDefault(Constructor->getLocation());
1827    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1828    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1829                               MultiExprArg(SemaRef, 0, 0));
1830    break;
1831  }
1832
1833  case IIK_Copy: {
1834    ParmVarDecl *Param = Constructor->getParamDecl(0);
1835    QualType ParamType = Param->getType().getNonReferenceType();
1836
1837    Expr *CopyCtorArg =
1838      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1839                          Constructor->getLocation(), ParamType,
1840                          VK_LValue, 0);
1841
1842    // Cast to the base class to avoid ambiguities.
1843    QualType ArgTy =
1844      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1845                                       ParamType.getQualifiers());
1846
1847    CXXCastPath BasePath;
1848    BasePath.push_back(BaseSpec);
1849    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1850                                            CK_UncheckedDerivedToBase,
1851                                            VK_LValue, &BasePath).take();
1852
1853    InitializationKind InitKind
1854      = InitializationKind::CreateDirect(Constructor->getLocation(),
1855                                         SourceLocation(), SourceLocation());
1856    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1857                                   &CopyCtorArg, 1);
1858    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1859                               MultiExprArg(&CopyCtorArg, 1));
1860    break;
1861  }
1862
1863  case IIK_Move:
1864    assert(false && "Unhandled initializer kind!");
1865  }
1866
1867  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1868  if (BaseInit.isInvalid())
1869    return true;
1870
1871  CXXBaseInit =
1872    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1873               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1874                                                        SourceLocation()),
1875                                             BaseSpec->isVirtual(),
1876                                             SourceLocation(),
1877                                             BaseInit.takeAs<Expr>(),
1878                                             SourceLocation(),
1879                                             SourceLocation());
1880
1881  return false;
1882}
1883
1884static bool
1885BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1886                               ImplicitInitializerKind ImplicitInitKind,
1887                               FieldDecl *Field,
1888                               CXXCtorInitializer *&CXXMemberInit) {
1889  if (Field->isInvalidDecl())
1890    return true;
1891
1892  SourceLocation Loc = Constructor->getLocation();
1893
1894  if (ImplicitInitKind == IIK_Copy) {
1895    ParmVarDecl *Param = Constructor->getParamDecl(0);
1896    QualType ParamType = Param->getType().getNonReferenceType();
1897
1898    Expr *MemberExprBase =
1899      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1900                          Loc, ParamType, VK_LValue, 0);
1901
1902    // Build a reference to this field within the parameter.
1903    CXXScopeSpec SS;
1904    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1905                              Sema::LookupMemberName);
1906    MemberLookup.addDecl(Field, AS_public);
1907    MemberLookup.resolveKind();
1908    ExprResult CopyCtorArg
1909      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1910                                         ParamType, Loc,
1911                                         /*IsArrow=*/false,
1912                                         SS,
1913                                         /*FirstQualifierInScope=*/0,
1914                                         MemberLookup,
1915                                         /*TemplateArgs=*/0);
1916    if (CopyCtorArg.isInvalid())
1917      return true;
1918
1919    // When the field we are copying is an array, create index variables for
1920    // each dimension of the array. We use these index variables to subscript
1921    // the source array, and other clients (e.g., CodeGen) will perform the
1922    // necessary iteration with these index variables.
1923    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1924    QualType BaseType = Field->getType();
1925    QualType SizeType = SemaRef.Context.getSizeType();
1926    while (const ConstantArrayType *Array
1927                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1928      // Create the iteration variable for this array index.
1929      IdentifierInfo *IterationVarName = 0;
1930      {
1931        llvm::SmallString<8> Str;
1932        llvm::raw_svector_ostream OS(Str);
1933        OS << "__i" << IndexVariables.size();
1934        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1935      }
1936      VarDecl *IterationVar
1937        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
1938                          IterationVarName, SizeType,
1939                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1940                          SC_None, SC_None);
1941      IndexVariables.push_back(IterationVar);
1942
1943      // Create a reference to the iteration variable.
1944      ExprResult IterationVarRef
1945        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1946      assert(!IterationVarRef.isInvalid() &&
1947             "Reference to invented variable cannot fail!");
1948
1949      // Subscript the array with this iteration variable.
1950      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1951                                                            Loc,
1952                                                        IterationVarRef.take(),
1953                                                            Loc);
1954      if (CopyCtorArg.isInvalid())
1955        return true;
1956
1957      BaseType = Array->getElementType();
1958    }
1959
1960    // Construct the entity that we will be initializing. For an array, this
1961    // will be first element in the array, which may require several levels
1962    // of array-subscript entities.
1963    llvm::SmallVector<InitializedEntity, 4> Entities;
1964    Entities.reserve(1 + IndexVariables.size());
1965    Entities.push_back(InitializedEntity::InitializeMember(Field));
1966    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1967      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1968                                                              0,
1969                                                              Entities.back()));
1970
1971    // Direct-initialize to use the copy constructor.
1972    InitializationKind InitKind =
1973      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1974
1975    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1976    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1977                                   &CopyCtorArgE, 1);
1978
1979    ExprResult MemberInit
1980      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1981                        MultiExprArg(&CopyCtorArgE, 1));
1982    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1983    if (MemberInit.isInvalid())
1984      return true;
1985
1986    CXXMemberInit
1987      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1988                                           MemberInit.takeAs<Expr>(), Loc,
1989                                           IndexVariables.data(),
1990                                           IndexVariables.size());
1991    return false;
1992  }
1993
1994  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1995
1996  QualType FieldBaseElementType =
1997    SemaRef.Context.getBaseElementType(Field->getType());
1998
1999  if (FieldBaseElementType->isRecordType()) {
2000    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
2001    InitializationKind InitKind =
2002      InitializationKind::CreateDefault(Loc);
2003
2004    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2005    ExprResult MemberInit =
2006      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2007
2008    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2009    if (MemberInit.isInvalid())
2010      return true;
2011
2012    CXXMemberInit =
2013      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2014                                                       Field, Loc, Loc,
2015                                                       MemberInit.get(),
2016                                                       Loc);
2017    return false;
2018  }
2019
2020  if (FieldBaseElementType->isReferenceType()) {
2021    SemaRef.Diag(Constructor->getLocation(),
2022                 diag::err_uninitialized_member_in_ctor)
2023    << (int)Constructor->isImplicit()
2024    << SemaRef.Context.getTagDeclType(Constructor->getParent())
2025    << 0 << Field->getDeclName();
2026    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2027    return true;
2028  }
2029
2030  if (FieldBaseElementType.isConstQualified()) {
2031    SemaRef.Diag(Constructor->getLocation(),
2032                 diag::err_uninitialized_member_in_ctor)
2033    << (int)Constructor->isImplicit()
2034    << SemaRef.Context.getTagDeclType(Constructor->getParent())
2035    << 1 << Field->getDeclName();
2036    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2037    return true;
2038  }
2039
2040  // Nothing to initialize.
2041  CXXMemberInit = 0;
2042  return false;
2043}
2044
2045namespace {
2046struct BaseAndFieldInfo {
2047  Sema &S;
2048  CXXConstructorDecl *Ctor;
2049  bool AnyErrorsInInits;
2050  ImplicitInitializerKind IIK;
2051  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2052  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
2053
2054  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2055    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2056    // FIXME: Handle implicit move constructors.
2057    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
2058      IIK = IIK_Copy;
2059    else
2060      IIK = IIK_Default;
2061  }
2062};
2063}
2064
2065static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
2066                                    FieldDecl *Top, FieldDecl *Field) {
2067
2068  // Overwhelmingly common case: we have a direct initializer for this field.
2069  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2070    Info.AllToInit.push_back(Init);
2071    return false;
2072  }
2073
2074  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
2075    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
2076    assert(FieldClassType && "anonymous struct/union without record type");
2077    CXXRecordDecl *FieldClassDecl
2078      = cast<CXXRecordDecl>(FieldClassType->getDecl());
2079
2080    // Even though union members never have non-trivial default
2081    // constructions in C++03, we still build member initializers for aggregate
2082    // record types which can be union members, and C++0x allows non-trivial
2083    // default constructors for union members, so we ensure that only one
2084    // member is initialized for these.
2085    if (FieldClassDecl->isUnion()) {
2086      // First check for an explicit initializer for one field.
2087      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2088           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2089        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2090          Info.AllToInit.push_back(Init);
2091
2092          // Once we've initialized a field of an anonymous union, the union
2093          // field in the class is also initialized, so exit immediately.
2094          return false;
2095        } else if ((*FA)->isAnonymousStructOrUnion()) {
2096          if (CollectFieldInitializer(Info, Top, *FA))
2097            return true;
2098        }
2099      }
2100
2101      // Fallthrough and construct a default initializer for the union as
2102      // a whole, which can call its default constructor if such a thing exists
2103      // (C++0x perhaps). FIXME: It's not clear that this is the correct
2104      // behavior going forward with C++0x, when anonymous unions there are
2105      // finalized, we should revisit this.
2106    } else {
2107      // For structs, we simply descend through to initialize all members where
2108      // necessary.
2109      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2110           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2111        if (CollectFieldInitializer(Info, Top, *FA))
2112          return true;
2113      }
2114    }
2115  }
2116
2117  // Don't try to build an implicit initializer if there were semantic
2118  // errors in any of the initializers (and therefore we might be
2119  // missing some that the user actually wrote).
2120  if (Info.AnyErrorsInInits)
2121    return false;
2122
2123  CXXCtorInitializer *Init = 0;
2124  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2125    return true;
2126
2127  if (Init)
2128    Info.AllToInit.push_back(Init);
2129
2130  return false;
2131}
2132
2133bool
2134Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2135                               CXXCtorInitializer *Initializer) {
2136  assert(Initializer->isDelegatingInitializer());
2137  Constructor->setNumCtorInitializers(1);
2138  CXXCtorInitializer **initializer =
2139    new (Context) CXXCtorInitializer*[1];
2140  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2141  Constructor->setCtorInitializers(initializer);
2142
2143  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2144    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2145    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2146  }
2147
2148  DelegatingCtorDecls.push_back(Constructor);
2149
2150  return false;
2151}
2152
2153bool
2154Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2155                                  CXXCtorInitializer **Initializers,
2156                                  unsigned NumInitializers,
2157                                  bool AnyErrors) {
2158  if (Constructor->getDeclContext()->isDependentContext()) {
2159    // Just store the initializers as written, they will be checked during
2160    // instantiation.
2161    if (NumInitializers > 0) {
2162      Constructor->setNumCtorInitializers(NumInitializers);
2163      CXXCtorInitializer **baseOrMemberInitializers =
2164        new (Context) CXXCtorInitializer*[NumInitializers];
2165      memcpy(baseOrMemberInitializers, Initializers,
2166             NumInitializers * sizeof(CXXCtorInitializer*));
2167      Constructor->setCtorInitializers(baseOrMemberInitializers);
2168    }
2169
2170    return false;
2171  }
2172
2173  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2174
2175  // We need to build the initializer AST according to order of construction
2176  // and not what user specified in the Initializers list.
2177  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2178  if (!ClassDecl)
2179    return true;
2180
2181  bool HadError = false;
2182
2183  for (unsigned i = 0; i < NumInitializers; i++) {
2184    CXXCtorInitializer *Member = Initializers[i];
2185
2186    if (Member->isBaseInitializer())
2187      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2188    else
2189      Info.AllBaseFields[Member->getAnyMember()] = Member;
2190  }
2191
2192  // Keep track of the direct virtual bases.
2193  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2194  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2195       E = ClassDecl->bases_end(); I != E; ++I) {
2196    if (I->isVirtual())
2197      DirectVBases.insert(I);
2198  }
2199
2200  // Push virtual bases before others.
2201  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2202       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2203
2204    if (CXXCtorInitializer *Value
2205        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2206      Info.AllToInit.push_back(Value);
2207    } else if (!AnyErrors) {
2208      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2209      CXXCtorInitializer *CXXBaseInit;
2210      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2211                                       VBase, IsInheritedVirtualBase,
2212                                       CXXBaseInit)) {
2213        HadError = true;
2214        continue;
2215      }
2216
2217      Info.AllToInit.push_back(CXXBaseInit);
2218    }
2219  }
2220
2221  // Non-virtual bases.
2222  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2223       E = ClassDecl->bases_end(); Base != E; ++Base) {
2224    // Virtuals are in the virtual base list and already constructed.
2225    if (Base->isVirtual())
2226      continue;
2227
2228    if (CXXCtorInitializer *Value
2229          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2230      Info.AllToInit.push_back(Value);
2231    } else if (!AnyErrors) {
2232      CXXCtorInitializer *CXXBaseInit;
2233      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2234                                       Base, /*IsInheritedVirtualBase=*/false,
2235                                       CXXBaseInit)) {
2236        HadError = true;
2237        continue;
2238      }
2239
2240      Info.AllToInit.push_back(CXXBaseInit);
2241    }
2242  }
2243
2244  // Fields.
2245  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2246       E = ClassDecl->field_end(); Field != E; ++Field) {
2247    if ((*Field)->getType()->isIncompleteArrayType()) {
2248      assert(ClassDecl->hasFlexibleArrayMember() &&
2249             "Incomplete array type is not valid");
2250      continue;
2251    }
2252    if (CollectFieldInitializer(Info, *Field, *Field))
2253      HadError = true;
2254  }
2255
2256  NumInitializers = Info.AllToInit.size();
2257  if (NumInitializers > 0) {
2258    Constructor->setNumCtorInitializers(NumInitializers);
2259    CXXCtorInitializer **baseOrMemberInitializers =
2260      new (Context) CXXCtorInitializer*[NumInitializers];
2261    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2262           NumInitializers * sizeof(CXXCtorInitializer*));
2263    Constructor->setCtorInitializers(baseOrMemberInitializers);
2264
2265    // Constructors implicitly reference the base and member
2266    // destructors.
2267    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2268                                           Constructor->getParent());
2269  }
2270
2271  return HadError;
2272}
2273
2274static void *GetKeyForTopLevelField(FieldDecl *Field) {
2275  // For anonymous unions, use the class declaration as the key.
2276  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2277    if (RT->getDecl()->isAnonymousStructOrUnion())
2278      return static_cast<void *>(RT->getDecl());
2279  }
2280  return static_cast<void *>(Field);
2281}
2282
2283static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2284  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2285}
2286
2287static void *GetKeyForMember(ASTContext &Context,
2288                             CXXCtorInitializer *Member) {
2289  if (!Member->isAnyMemberInitializer())
2290    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2291
2292  // For fields injected into the class via declaration of an anonymous union,
2293  // use its anonymous union class declaration as the unique key.
2294  FieldDecl *Field = Member->getAnyMember();
2295
2296  // If the field is a member of an anonymous struct or union, our key
2297  // is the anonymous record decl that's a direct child of the class.
2298  RecordDecl *RD = Field->getParent();
2299  if (RD->isAnonymousStructOrUnion()) {
2300    while (true) {
2301      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2302      if (Parent->isAnonymousStructOrUnion())
2303        RD = Parent;
2304      else
2305        break;
2306    }
2307
2308    return static_cast<void *>(RD);
2309  }
2310
2311  return static_cast<void *>(Field);
2312}
2313
2314static void
2315DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2316                                  const CXXConstructorDecl *Constructor,
2317                                  CXXCtorInitializer **Inits,
2318                                  unsigned NumInits) {
2319  if (Constructor->getDeclContext()->isDependentContext())
2320    return;
2321
2322  // Don't check initializers order unless the warning is enabled at the
2323  // location of at least one initializer.
2324  bool ShouldCheckOrder = false;
2325  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2326    CXXCtorInitializer *Init = Inits[InitIndex];
2327    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2328                                         Init->getSourceLocation())
2329          != Diagnostic::Ignored) {
2330      ShouldCheckOrder = true;
2331      break;
2332    }
2333  }
2334  if (!ShouldCheckOrder)
2335    return;
2336
2337  // Build the list of bases and members in the order that they'll
2338  // actually be initialized.  The explicit initializers should be in
2339  // this same order but may be missing things.
2340  llvm::SmallVector<const void*, 32> IdealInitKeys;
2341
2342  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2343
2344  // 1. Virtual bases.
2345  for (CXXRecordDecl::base_class_const_iterator VBase =
2346       ClassDecl->vbases_begin(),
2347       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2348    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2349
2350  // 2. Non-virtual bases.
2351  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2352       E = ClassDecl->bases_end(); Base != E; ++Base) {
2353    if (Base->isVirtual())
2354      continue;
2355    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2356  }
2357
2358  // 3. Direct fields.
2359  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2360       E = ClassDecl->field_end(); Field != E; ++Field)
2361    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2362
2363  unsigned NumIdealInits = IdealInitKeys.size();
2364  unsigned IdealIndex = 0;
2365
2366  CXXCtorInitializer *PrevInit = 0;
2367  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2368    CXXCtorInitializer *Init = Inits[InitIndex];
2369    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2370
2371    // Scan forward to try to find this initializer in the idealized
2372    // initializers list.
2373    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2374      if (InitKey == IdealInitKeys[IdealIndex])
2375        break;
2376
2377    // If we didn't find this initializer, it must be because we
2378    // scanned past it on a previous iteration.  That can only
2379    // happen if we're out of order;  emit a warning.
2380    if (IdealIndex == NumIdealInits && PrevInit) {
2381      Sema::SemaDiagnosticBuilder D =
2382        SemaRef.Diag(PrevInit->getSourceLocation(),
2383                     diag::warn_initializer_out_of_order);
2384
2385      if (PrevInit->isAnyMemberInitializer())
2386        D << 0 << PrevInit->getAnyMember()->getDeclName();
2387      else
2388        D << 1 << PrevInit->getBaseClassInfo()->getType();
2389
2390      if (Init->isAnyMemberInitializer())
2391        D << 0 << Init->getAnyMember()->getDeclName();
2392      else
2393        D << 1 << Init->getBaseClassInfo()->getType();
2394
2395      // Move back to the initializer's location in the ideal list.
2396      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2397        if (InitKey == IdealInitKeys[IdealIndex])
2398          break;
2399
2400      assert(IdealIndex != NumIdealInits &&
2401             "initializer not found in initializer list");
2402    }
2403
2404    PrevInit = Init;
2405  }
2406}
2407
2408namespace {
2409bool CheckRedundantInit(Sema &S,
2410                        CXXCtorInitializer *Init,
2411                        CXXCtorInitializer *&PrevInit) {
2412  if (!PrevInit) {
2413    PrevInit = Init;
2414    return false;
2415  }
2416
2417  if (FieldDecl *Field = Init->getMember())
2418    S.Diag(Init->getSourceLocation(),
2419           diag::err_multiple_mem_initialization)
2420      << Field->getDeclName()
2421      << Init->getSourceRange();
2422  else {
2423    const Type *BaseClass = Init->getBaseClass();
2424    assert(BaseClass && "neither field nor base");
2425    S.Diag(Init->getSourceLocation(),
2426           diag::err_multiple_base_initialization)
2427      << QualType(BaseClass, 0)
2428      << Init->getSourceRange();
2429  }
2430  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2431    << 0 << PrevInit->getSourceRange();
2432
2433  return true;
2434}
2435
2436typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2437typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2438
2439bool CheckRedundantUnionInit(Sema &S,
2440                             CXXCtorInitializer *Init,
2441                             RedundantUnionMap &Unions) {
2442  FieldDecl *Field = Init->getAnyMember();
2443  RecordDecl *Parent = Field->getParent();
2444  if (!Parent->isAnonymousStructOrUnion())
2445    return false;
2446
2447  NamedDecl *Child = Field;
2448  do {
2449    if (Parent->isUnion()) {
2450      UnionEntry &En = Unions[Parent];
2451      if (En.first && En.first != Child) {
2452        S.Diag(Init->getSourceLocation(),
2453               diag::err_multiple_mem_union_initialization)
2454          << Field->getDeclName()
2455          << Init->getSourceRange();
2456        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2457          << 0 << En.second->getSourceRange();
2458        return true;
2459      } else if (!En.first) {
2460        En.first = Child;
2461        En.second = Init;
2462      }
2463    }
2464
2465    Child = Parent;
2466    Parent = cast<RecordDecl>(Parent->getDeclContext());
2467  } while (Parent->isAnonymousStructOrUnion());
2468
2469  return false;
2470}
2471}
2472
2473/// ActOnMemInitializers - Handle the member initializers for a constructor.
2474void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2475                                SourceLocation ColonLoc,
2476                                MemInitTy **meminits, unsigned NumMemInits,
2477                                bool AnyErrors) {
2478  if (!ConstructorDecl)
2479    return;
2480
2481  AdjustDeclIfTemplate(ConstructorDecl);
2482
2483  CXXConstructorDecl *Constructor
2484    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2485
2486  if (!Constructor) {
2487    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2488    return;
2489  }
2490
2491  CXXCtorInitializer **MemInits =
2492    reinterpret_cast<CXXCtorInitializer **>(meminits);
2493
2494  // Mapping for the duplicate initializers check.
2495  // For member initializers, this is keyed with a FieldDecl*.
2496  // For base initializers, this is keyed with a Type*.
2497  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2498
2499  // Mapping for the inconsistent anonymous-union initializers check.
2500  RedundantUnionMap MemberUnions;
2501
2502  bool HadError = false;
2503  for (unsigned i = 0; i < NumMemInits; i++) {
2504    CXXCtorInitializer *Init = MemInits[i];
2505
2506    // Set the source order index.
2507    Init->setSourceOrder(i);
2508
2509    if (Init->isAnyMemberInitializer()) {
2510      FieldDecl *Field = Init->getAnyMember();
2511      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2512          CheckRedundantUnionInit(*this, Init, MemberUnions))
2513        HadError = true;
2514    } else if (Init->isBaseInitializer()) {
2515      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2516      if (CheckRedundantInit(*this, Init, Members[Key]))
2517        HadError = true;
2518    } else {
2519      assert(Init->isDelegatingInitializer());
2520      // This must be the only initializer
2521      if (i != 0 || NumMemInits > 1) {
2522        Diag(MemInits[0]->getSourceLocation(),
2523             diag::err_delegating_initializer_alone)
2524          << MemInits[0]->getSourceRange();
2525        HadError = true;
2526        // We will treat this as being the only initializer.
2527      }
2528      SetDelegatingInitializer(Constructor, MemInits[i]);
2529      // Return immediately as the initializer is set.
2530      return;
2531    }
2532  }
2533
2534  if (HadError)
2535    return;
2536
2537  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2538
2539  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2540}
2541
2542void
2543Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2544                                             CXXRecordDecl *ClassDecl) {
2545  // Ignore dependent contexts.
2546  if (ClassDecl->isDependentContext())
2547    return;
2548
2549  // FIXME: all the access-control diagnostics are positioned on the
2550  // field/base declaration.  That's probably good; that said, the
2551  // user might reasonably want to know why the destructor is being
2552  // emitted, and we currently don't say.
2553
2554  // Non-static data members.
2555  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2556       E = ClassDecl->field_end(); I != E; ++I) {
2557    FieldDecl *Field = *I;
2558    if (Field->isInvalidDecl())
2559      continue;
2560    QualType FieldType = Context.getBaseElementType(Field->getType());
2561
2562    const RecordType* RT = FieldType->getAs<RecordType>();
2563    if (!RT)
2564      continue;
2565
2566    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2567    if (FieldClassDecl->isInvalidDecl())
2568      continue;
2569    if (FieldClassDecl->hasTrivialDestructor())
2570      continue;
2571
2572    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2573    assert(Dtor && "No dtor found for FieldClassDecl!");
2574    CheckDestructorAccess(Field->getLocation(), Dtor,
2575                          PDiag(diag::err_access_dtor_field)
2576                            << Field->getDeclName()
2577                            << FieldType);
2578
2579    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2580  }
2581
2582  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2583
2584  // Bases.
2585  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2586       E = ClassDecl->bases_end(); Base != E; ++Base) {
2587    // Bases are always records in a well-formed non-dependent class.
2588    const RecordType *RT = Base->getType()->getAs<RecordType>();
2589
2590    // Remember direct virtual bases.
2591    if (Base->isVirtual())
2592      DirectVirtualBases.insert(RT);
2593
2594    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2595    // If our base class is invalid, we probably can't get its dtor anyway.
2596    if (BaseClassDecl->isInvalidDecl())
2597      continue;
2598    // Ignore trivial destructors.
2599    if (BaseClassDecl->hasTrivialDestructor())
2600      continue;
2601
2602    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2603    assert(Dtor && "No dtor found for BaseClassDecl!");
2604
2605    // FIXME: caret should be on the start of the class name
2606    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2607                          PDiag(diag::err_access_dtor_base)
2608                            << Base->getType()
2609                            << Base->getSourceRange());
2610
2611    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2612  }
2613
2614  // Virtual bases.
2615  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2616       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2617
2618    // Bases are always records in a well-formed non-dependent class.
2619    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2620
2621    // Ignore direct virtual bases.
2622    if (DirectVirtualBases.count(RT))
2623      continue;
2624
2625    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2626    // If our base class is invalid, we probably can't get its dtor anyway.
2627    if (BaseClassDecl->isInvalidDecl())
2628      continue;
2629    // Ignore trivial destructors.
2630    if (BaseClassDecl->hasTrivialDestructor())
2631      continue;
2632
2633    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2634    assert(Dtor && "No dtor found for BaseClassDecl!");
2635    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2636                          PDiag(diag::err_access_dtor_vbase)
2637                            << VBase->getType());
2638
2639    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2640  }
2641}
2642
2643void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2644  if (!CDtorDecl)
2645    return;
2646
2647  if (CXXConstructorDecl *Constructor
2648      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2649    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2650}
2651
2652bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2653                                  unsigned DiagID, AbstractDiagSelID SelID) {
2654  if (SelID == -1)
2655    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2656  else
2657    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2658}
2659
2660bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2661                                  const PartialDiagnostic &PD) {
2662  if (!getLangOptions().CPlusPlus)
2663    return false;
2664
2665  if (const ArrayType *AT = Context.getAsArrayType(T))
2666    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2667
2668  if (const PointerType *PT = T->getAs<PointerType>()) {
2669    // Find the innermost pointer type.
2670    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2671      PT = T;
2672
2673    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2674      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2675  }
2676
2677  const RecordType *RT = T->getAs<RecordType>();
2678  if (!RT)
2679    return false;
2680
2681  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2682
2683  // We can't answer whether something is abstract until it has a
2684  // definition.  If it's currently being defined, we'll walk back
2685  // over all the declarations when we have a full definition.
2686  const CXXRecordDecl *Def = RD->getDefinition();
2687  if (!Def || Def->isBeingDefined())
2688    return false;
2689
2690  if (!RD->isAbstract())
2691    return false;
2692
2693  Diag(Loc, PD) << RD->getDeclName();
2694  DiagnoseAbstractType(RD);
2695
2696  return true;
2697}
2698
2699void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2700  // Check if we've already emitted the list of pure virtual functions
2701  // for this class.
2702  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2703    return;
2704
2705  CXXFinalOverriderMap FinalOverriders;
2706  RD->getFinalOverriders(FinalOverriders);
2707
2708  // Keep a set of seen pure methods so we won't diagnose the same method
2709  // more than once.
2710  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2711
2712  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2713                                   MEnd = FinalOverriders.end();
2714       M != MEnd;
2715       ++M) {
2716    for (OverridingMethods::iterator SO = M->second.begin(),
2717                                  SOEnd = M->second.end();
2718         SO != SOEnd; ++SO) {
2719      // C++ [class.abstract]p4:
2720      //   A class is abstract if it contains or inherits at least one
2721      //   pure virtual function for which the final overrider is pure
2722      //   virtual.
2723
2724      //
2725      if (SO->second.size() != 1)
2726        continue;
2727
2728      if (!SO->second.front().Method->isPure())
2729        continue;
2730
2731      if (!SeenPureMethods.insert(SO->second.front().Method))
2732        continue;
2733
2734      Diag(SO->second.front().Method->getLocation(),
2735           diag::note_pure_virtual_function)
2736        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2737    }
2738  }
2739
2740  if (!PureVirtualClassDiagSet)
2741    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2742  PureVirtualClassDiagSet->insert(RD);
2743}
2744
2745namespace {
2746struct AbstractUsageInfo {
2747  Sema &S;
2748  CXXRecordDecl *Record;
2749  CanQualType AbstractType;
2750  bool Invalid;
2751
2752  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2753    : S(S), Record(Record),
2754      AbstractType(S.Context.getCanonicalType(
2755                   S.Context.getTypeDeclType(Record))),
2756      Invalid(false) {}
2757
2758  void DiagnoseAbstractType() {
2759    if (Invalid) return;
2760    S.DiagnoseAbstractType(Record);
2761    Invalid = true;
2762  }
2763
2764  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2765};
2766
2767struct CheckAbstractUsage {
2768  AbstractUsageInfo &Info;
2769  const NamedDecl *Ctx;
2770
2771  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2772    : Info(Info), Ctx(Ctx) {}
2773
2774  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2775    switch (TL.getTypeLocClass()) {
2776#define ABSTRACT_TYPELOC(CLASS, PARENT)
2777#define TYPELOC(CLASS, PARENT) \
2778    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2779#include "clang/AST/TypeLocNodes.def"
2780    }
2781  }
2782
2783  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2784    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2785    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2786      if (!TL.getArg(I))
2787        continue;
2788
2789      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2790      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2791    }
2792  }
2793
2794  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2795    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2796  }
2797
2798  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2799    // Visit the type parameters from a permissive context.
2800    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2801      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2802      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2803        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2804          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2805      // TODO: other template argument types?
2806    }
2807  }
2808
2809  // Visit pointee types from a permissive context.
2810#define CheckPolymorphic(Type) \
2811  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2812    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2813  }
2814  CheckPolymorphic(PointerTypeLoc)
2815  CheckPolymorphic(ReferenceTypeLoc)
2816  CheckPolymorphic(MemberPointerTypeLoc)
2817  CheckPolymorphic(BlockPointerTypeLoc)
2818
2819  /// Handle all the types we haven't given a more specific
2820  /// implementation for above.
2821  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2822    // Every other kind of type that we haven't called out already
2823    // that has an inner type is either (1) sugar or (2) contains that
2824    // inner type in some way as a subobject.
2825    if (TypeLoc Next = TL.getNextTypeLoc())
2826      return Visit(Next, Sel);
2827
2828    // If there's no inner type and we're in a permissive context,
2829    // don't diagnose.
2830    if (Sel == Sema::AbstractNone) return;
2831
2832    // Check whether the type matches the abstract type.
2833    QualType T = TL.getType();
2834    if (T->isArrayType()) {
2835      Sel = Sema::AbstractArrayType;
2836      T = Info.S.Context.getBaseElementType(T);
2837    }
2838    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2839    if (CT != Info.AbstractType) return;
2840
2841    // It matched; do some magic.
2842    if (Sel == Sema::AbstractArrayType) {
2843      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2844        << T << TL.getSourceRange();
2845    } else {
2846      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2847        << Sel << T << TL.getSourceRange();
2848    }
2849    Info.DiagnoseAbstractType();
2850  }
2851};
2852
2853void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2854                                  Sema::AbstractDiagSelID Sel) {
2855  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2856}
2857
2858}
2859
2860/// Check for invalid uses of an abstract type in a method declaration.
2861static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2862                                    CXXMethodDecl *MD) {
2863  // No need to do the check on definitions, which require that
2864  // the return/param types be complete.
2865  if (MD->doesThisDeclarationHaveABody())
2866    return;
2867
2868  // For safety's sake, just ignore it if we don't have type source
2869  // information.  This should never happen for non-implicit methods,
2870  // but...
2871  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2872    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2873}
2874
2875/// Check for invalid uses of an abstract type within a class definition.
2876static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2877                                    CXXRecordDecl *RD) {
2878  for (CXXRecordDecl::decl_iterator
2879         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2880    Decl *D = *I;
2881    if (D->isImplicit()) continue;
2882
2883    // Methods and method templates.
2884    if (isa<CXXMethodDecl>(D)) {
2885      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2886    } else if (isa<FunctionTemplateDecl>(D)) {
2887      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2888      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2889
2890    // Fields and static variables.
2891    } else if (isa<FieldDecl>(D)) {
2892      FieldDecl *FD = cast<FieldDecl>(D);
2893      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2894        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2895    } else if (isa<VarDecl>(D)) {
2896      VarDecl *VD = cast<VarDecl>(D);
2897      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2898        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2899
2900    // Nested classes and class templates.
2901    } else if (isa<CXXRecordDecl>(D)) {
2902      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2903    } else if (isa<ClassTemplateDecl>(D)) {
2904      CheckAbstractClassUsage(Info,
2905                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2906    }
2907  }
2908}
2909
2910/// \brief Perform semantic checks on a class definition that has been
2911/// completing, introducing implicitly-declared members, checking for
2912/// abstract types, etc.
2913void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2914  if (!Record)
2915    return;
2916
2917  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2918    AbstractUsageInfo Info(*this, Record);
2919    CheckAbstractClassUsage(Info, Record);
2920  }
2921
2922  // If this is not an aggregate type and has no user-declared constructor,
2923  // complain about any non-static data members of reference or const scalar
2924  // type, since they will never get initializers.
2925  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2926      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2927    bool Complained = false;
2928    for (RecordDecl::field_iterator F = Record->field_begin(),
2929                                 FEnd = Record->field_end();
2930         F != FEnd; ++F) {
2931      if (F->getType()->isReferenceType() ||
2932          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2933        if (!Complained) {
2934          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2935            << Record->getTagKind() << Record;
2936          Complained = true;
2937        }
2938
2939        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2940          << F->getType()->isReferenceType()
2941          << F->getDeclName();
2942      }
2943    }
2944  }
2945
2946  if (Record->isDynamicClass() && !Record->isDependentType())
2947    DynamicClasses.push_back(Record);
2948
2949  if (Record->getIdentifier()) {
2950    // C++ [class.mem]p13:
2951    //   If T is the name of a class, then each of the following shall have a
2952    //   name different from T:
2953    //     - every member of every anonymous union that is a member of class T.
2954    //
2955    // C++ [class.mem]p14:
2956    //   In addition, if class T has a user-declared constructor (12.1), every
2957    //   non-static data member of class T shall have a name different from T.
2958    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2959         R.first != R.second; ++R.first) {
2960      NamedDecl *D = *R.first;
2961      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2962          isa<IndirectFieldDecl>(D)) {
2963        Diag(D->getLocation(), diag::err_member_name_of_class)
2964          << D->getDeclName();
2965        break;
2966      }
2967    }
2968  }
2969
2970  // Warn if the class has virtual methods but non-virtual public destructor.
2971  if (Record->isPolymorphic() && !Record->isDependentType()) {
2972    CXXDestructorDecl *dtor = Record->getDestructor();
2973    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2974      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2975           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2976  }
2977
2978  // See if a method overloads virtual methods in a base
2979  /// class without overriding any.
2980  if (!Record->isDependentType()) {
2981    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2982                                     MEnd = Record->method_end();
2983         M != MEnd; ++M) {
2984      if (!(*M)->isStatic())
2985        DiagnoseHiddenVirtualMethods(Record, *M);
2986    }
2987  }
2988
2989  // Declare inherited constructors. We do this eagerly here because:
2990  // - The standard requires an eager diagnostic for conflicting inherited
2991  //   constructors from different classes.
2992  // - The lazy declaration of the other implicit constructors is so as to not
2993  //   waste space and performance on classes that are not meant to be
2994  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
2995  //   have inherited constructors.
2996  DeclareInheritedConstructors(Record);
2997
2998  CheckExplicitlyDefaultedMethods(Record);
2999}
3000
3001void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3002  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3003                                      ME = Record->method_end();
3004       MI != ME; ++MI) {
3005    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3006      switch (getSpecialMember(*MI)) {
3007      case CXXDefaultConstructor:
3008        CheckExplicitlyDefaultedDefaultConstructor(
3009                                                  cast<CXXConstructorDecl>(*MI));
3010        break;
3011
3012      case CXXDestructor:
3013        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3014        break;
3015
3016      case CXXCopyConstructor:
3017        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3018        break;
3019
3020      case CXXCopyAssignment:
3021      // FIXME: Do copy assignment operators and moves
3022        break;
3023
3024      default:
3025        llvm_unreachable("non-special member explicitly defaulted!");
3026      }
3027    }
3028  }
3029
3030}
3031
3032void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3033  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3034
3035  // Whether this was the first-declared instance of the constructor.
3036  // This affects whether we implicitly add an exception spec (and, eventually,
3037  // constexpr). It is also ill-formed to explicitly default a constructor such
3038  // that it would be deleted. (C++0x [decl.fct.def.default])
3039  bool First = CD == CD->getCanonicalDecl();
3040
3041  bool HadError = false;
3042  if (CD->getNumParams() != 0) {
3043    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3044      << CD->getSourceRange();
3045    HadError = true;
3046  }
3047
3048  ImplicitExceptionSpecification Spec
3049    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3050  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3051  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3052                          *ExceptionType = Context.getFunctionType(
3053                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3054
3055  if (CtorType->hasExceptionSpec()) {
3056    if (CheckEquivalentExceptionSpec(
3057          PDiag(diag::err_incorrect_defaulted_exception_spec)
3058            << 0 /* default constructor */,
3059          PDiag(),
3060          ExceptionType, SourceLocation(),
3061          CtorType, CD->getLocation())) {
3062      HadError = true;
3063    }
3064  } else if (First) {
3065    // We set the declaration to have the computed exception spec here.
3066    // We know there are no parameters.
3067    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3068  }
3069
3070  if (HadError) {
3071    CD->setInvalidDecl();
3072    return;
3073  }
3074
3075  if (ShouldDeleteDefaultConstructor(CD)) {
3076    if (First) {
3077      CD->setDeletedAsWritten();
3078    } else {
3079      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3080        << 0 /* default constructor */;
3081      CD->setInvalidDecl();
3082    }
3083  }
3084}
3085
3086void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3087  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3088
3089  // Whether this was the first-declared instance of the constructor.
3090  bool First = CD == CD->getCanonicalDecl();
3091
3092  bool HadError = false;
3093  if (CD->getNumParams() != 1) {
3094    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3095      << CD->getSourceRange();
3096    HadError = true;
3097  }
3098
3099  ImplicitExceptionSpecification Spec(Context);
3100  bool Const;
3101  llvm::tie(Spec, Const) =
3102    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3103
3104  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3105  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3106                          *ExceptionType = Context.getFunctionType(
3107                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3108
3109  // Check for parameter type matching.
3110  // This is a copy ctor so we know it's a cv-qualified reference to T.
3111  QualType ArgType = CtorType->getArgType(0);
3112  if (ArgType->getPointeeType().isVolatileQualified()) {
3113    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3114    HadError = true;
3115  }
3116  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3117    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3118    HadError = true;
3119  }
3120
3121  if (CtorType->hasExceptionSpec()) {
3122    if (CheckEquivalentExceptionSpec(
3123          PDiag(diag::err_incorrect_defaulted_exception_spec)
3124            << 1 /* copy constructor */,
3125          PDiag(),
3126          ExceptionType, SourceLocation(),
3127          CtorType, CD->getLocation())) {
3128      HadError = true;
3129    }
3130  } else if (First) {
3131    // We set the declaration to have the computed exception spec here.
3132    // We duplicate the one parameter type.
3133    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3134  }
3135
3136  if (HadError) {
3137    CD->setInvalidDecl();
3138    return;
3139  }
3140
3141  if (ShouldDeleteCopyConstructor(CD)) {
3142    if (First) {
3143      CD->setDeletedAsWritten();
3144    } else {
3145      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3146        << 1 /* copy constructor */;
3147      CD->setInvalidDecl();
3148    }
3149  }
3150}
3151
3152void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
3153  assert(DD->isExplicitlyDefaulted());
3154
3155  // Whether this was the first-declared instance of the destructor.
3156  bool First = DD == DD->getCanonicalDecl();
3157
3158  ImplicitExceptionSpecification Spec
3159    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
3160  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3161  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
3162                          *ExceptionType = Context.getFunctionType(
3163                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3164
3165  if (DtorType->hasExceptionSpec()) {
3166    if (CheckEquivalentExceptionSpec(
3167          PDiag(diag::err_incorrect_defaulted_exception_spec)
3168            << 3 /* destructor */,
3169          PDiag(),
3170          ExceptionType, SourceLocation(),
3171          DtorType, DD->getLocation())) {
3172      DD->setInvalidDecl();
3173      return;
3174    }
3175  } else if (First) {
3176    // We set the declaration to have the computed exception spec here.
3177    // There are no parameters.
3178    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3179  }
3180
3181  if (ShouldDeleteDestructor(DD)) {
3182    if (First) {
3183      DD->setDeletedAsWritten();
3184    } else {
3185      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
3186        << 3 /* destructor */;
3187      DD->setInvalidDecl();
3188    }
3189  }
3190}
3191
3192bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
3193  CXXRecordDecl *RD = CD->getParent();
3194  assert(!RD->isDependentType() && "do deletion after instantiation");
3195  if (!LangOpts.CPlusPlus0x)
3196    return false;
3197
3198  // Do access control from the constructor
3199  ContextRAII CtorContext(*this, CD);
3200
3201  bool Union = RD->isUnion();
3202  bool AllConst = true;
3203
3204  // We do this because we should never actually use an anonymous
3205  // union's constructor.
3206  if (Union && RD->isAnonymousStructOrUnion())
3207    return false;
3208
3209  // FIXME: We should put some diagnostic logic right into this function.
3210
3211  // C++0x [class.ctor]/5
3212  //    A defaulted default constructor for class X is defined as delete if:
3213
3214  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3215                                          BE = RD->bases_end();
3216       BI != BE; ++BI) {
3217    // We'll handle this one later
3218    if (BI->isVirtual())
3219      continue;
3220
3221    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3222    assert(BaseDecl && "base isn't a CXXRecordDecl");
3223
3224    // -- any [direct base class] has a type with a destructor that is
3225    //    delete or inaccessible from the defaulted default constructor
3226    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3227    if (BaseDtor->isDeleted())
3228      return true;
3229    if (CheckDestructorAccess(SourceLocation(), BaseDtor, PDiag()) !=
3230        AR_accessible)
3231      return true;
3232
3233    // -- any [direct base class either] has no default constructor or
3234    //    overload resolution as applied to [its] default constructor
3235    //    results in an ambiguity or in a function that is deleted or
3236    //    inaccessible from the defaulted default constructor
3237    InitializedEntity BaseEntity =
3238      InitializedEntity::InitializeBase(Context, BI, 0);
3239    InitializationKind Kind =
3240      InitializationKind::CreateDirect(SourceLocation(), SourceLocation(),
3241                                       SourceLocation());
3242
3243    InitializationSequence InitSeq(*this, BaseEntity, Kind, 0, 0);
3244
3245    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3246      return true;
3247  }
3248
3249  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3250                                          BE = RD->vbases_end();
3251       BI != BE; ++BI) {
3252    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3253    assert(BaseDecl && "base isn't a CXXRecordDecl");
3254
3255    // -- any [virtual base class] has a type with a destructor that is
3256    //    delete or inaccessible from the defaulted default constructor
3257    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3258    if (BaseDtor->isDeleted())
3259      return true;
3260    if (CheckDestructorAccess(SourceLocation(), BaseDtor, PDiag()) !=
3261        AR_accessible)
3262      return true;
3263
3264    // -- any [virtual base class either] has no default constructor or
3265    //    overload resolution as applied to [its] default constructor
3266    //    results in an ambiguity or in a function that is deleted or
3267    //    inaccessible from the defaulted default constructor
3268    InitializedEntity BaseEntity =
3269      InitializedEntity::InitializeBase(Context, BI, BI);
3270    InitializationKind Kind =
3271      InitializationKind::CreateDirect(SourceLocation(), SourceLocation(),
3272                                       SourceLocation());
3273
3274    InitializationSequence InitSeq(*this, BaseEntity, Kind, 0, 0);
3275
3276    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3277      return true;
3278  }
3279
3280  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3281                                     FE = RD->field_end();
3282       FI != FE; ++FI) {
3283    QualType FieldType = Context.getBaseElementType(FI->getType());
3284    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3285
3286    // -- any non-static data member with no brace-or-equal-initializer is of
3287    //    reference type
3288    if (FieldType->isReferenceType())
3289      return true;
3290
3291    // -- X is a union and all its variant members are of const-qualified type
3292    //    (or array thereof)
3293    if (Union && !FieldType.isConstQualified())
3294      AllConst = false;
3295
3296    if (FieldRecord) {
3297      // -- X is a union-like class that has a variant member with a non-trivial
3298      //    default constructor
3299      if (Union && !FieldRecord->hasTrivialDefaultConstructor())
3300        return true;
3301
3302      CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3303      if (FieldDtor->isDeleted())
3304        return true;
3305      if (CheckDestructorAccess(SourceLocation(), FieldDtor, PDiag()) !=
3306          AR_accessible)
3307        return true;
3308
3309      // -- any non-variant non-static data member of const-qualified type (or
3310      //    array thereof) with no brace-or-equal-initializer does not have a
3311      //    user-provided default constructor
3312      if (FieldType.isConstQualified() &&
3313          !FieldRecord->hasUserProvidedDefaultConstructor())
3314        return true;
3315
3316      if (!Union && FieldRecord->isUnion() &&
3317          FieldRecord->isAnonymousStructOrUnion()) {
3318        // We're okay to reuse AllConst here since we only care about the
3319        // value otherwise if we're in a union.
3320        AllConst = true;
3321
3322        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3323                                           UE = FieldRecord->field_end();
3324             UI != UE; ++UI) {
3325          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3326          CXXRecordDecl *UnionFieldRecord =
3327            UnionFieldType->getAsCXXRecordDecl();
3328
3329          if (!UnionFieldType.isConstQualified())
3330            AllConst = false;
3331
3332          if (UnionFieldRecord &&
3333              !UnionFieldRecord->hasTrivialDefaultConstructor())
3334            return true;
3335        }
3336
3337        if (AllConst)
3338          return true;
3339
3340        // Don't try to initialize the anonymous union
3341        // This is technically non-conformant, but sanity demands it.
3342        continue;
3343      }
3344    }
3345
3346    InitializedEntity MemberEntity =
3347      InitializedEntity::InitializeMember(*FI, 0);
3348    InitializationKind Kind =
3349      InitializationKind::CreateDirect(SourceLocation(), SourceLocation(),
3350                                       SourceLocation());
3351
3352    InitializationSequence InitSeq(*this, MemberEntity, Kind, 0, 0);
3353
3354    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3355      return true;
3356  }
3357
3358  if (Union && AllConst)
3359    return true;
3360
3361  return false;
3362}
3363
3364bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
3365  CXXRecordDecl *RD = CD->getParent();
3366  assert(!RD->isDependentType() && "do deletion after instantiation");
3367  if (!LangOpts.CPlusPlus0x)
3368    return false;
3369
3370  // Do access control from the constructor
3371  ContextRAII CtorContext(*this, CD);
3372
3373  bool Union = RD->isUnion();
3374
3375  bool ConstArg = CD->getParamDecl(0)->getType().isConstQualified();
3376
3377  // We do this because we should never actually use an anonymous
3378  // union's constructor.
3379  if (Union && RD->isAnonymousStructOrUnion())
3380    return false;
3381
3382  // FIXME: We should put some diagnostic logic right into this function.
3383
3384  // C++0x [class.copy]/11
3385  //    A defaulted [copy] constructor for class X is defined as delete if X has:
3386
3387  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3388                                          BE = RD->bases_end();
3389       BI != BE; ++BI) {
3390    // We'll handle this one later
3391    if (BI->isVirtual())
3392      continue;
3393
3394    QualType BaseType = BI->getType();
3395    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3396    assert(BaseDecl && "base isn't a CXXRecordDecl");
3397
3398    // -- any [direct base class] of a type with a destructor that is deleted or
3399    //    inaccessible from the defaulted constructor
3400    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3401    if (BaseDtor->isDeleted())
3402      return true;
3403    if (CheckDestructorAccess(SourceLocation(), BaseDtor, PDiag()) !=
3404        AR_accessible)
3405      return true;
3406
3407    // -- a [direct base class] B that cannot be [copied] because overload
3408    //    resolution, as applied to B's [copy] constructor, results in an
3409    //    ambiguity or a function that is deleted or inaccessible from the
3410    //    defaulted constructor
3411    InitializedEntity BaseEntity =
3412      InitializedEntity::InitializeBase(Context, BI, 0);
3413    InitializationKind Kind =
3414      InitializationKind::CreateDirect(SourceLocation(), SourceLocation(),
3415                                       SourceLocation());
3416
3417    // Construct a fake expression to perform the copy overloading.
3418    QualType ArgType = BaseType.getUnqualifiedType();
3419    if (ArgType->isReferenceType())
3420      ArgType = ArgType->getPointeeType();
3421    if (ConstArg)
3422      ArgType.addConst();
3423    Expr *Arg = new (Context) OpaqueValueExpr(SourceLocation(), ArgType,
3424                                              VK_LValue);
3425
3426    InitializationSequence InitSeq(*this, BaseEntity, Kind, &Arg, 1);
3427
3428    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3429      return true;
3430  }
3431
3432  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3433                                          BE = RD->vbases_end();
3434       BI != BE; ++BI) {
3435    QualType BaseType = BI->getType();
3436    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3437    assert(BaseDecl && "base isn't a CXXRecordDecl");
3438
3439    // -- any [direct base class] of a type with a destructor that is deleted or
3440    //    inaccessible from the defaulted constructor
3441    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3442    if (BaseDtor->isDeleted())
3443      return true;
3444    if (CheckDestructorAccess(SourceLocation(), BaseDtor, PDiag()) !=
3445        AR_accessible)
3446      return true;
3447
3448    // -- a [virtual base class] B that cannot be [copied] because overload
3449    //    resolution, as applied to B's [copy] constructor, results in an
3450    //    ambiguity or a function that is deleted or inaccessible from the
3451    //    defaulted constructor
3452    InitializedEntity BaseEntity =
3453      InitializedEntity::InitializeBase(Context, BI, BI);
3454    InitializationKind Kind =
3455      InitializationKind::CreateDirect(SourceLocation(), SourceLocation(),
3456                                       SourceLocation());
3457
3458    // Construct a fake expression to perform the copy overloading.
3459    QualType ArgType = BaseType.getUnqualifiedType();
3460    if (ArgType->isReferenceType())
3461      ArgType = ArgType->getPointeeType();
3462    if (ConstArg)
3463      ArgType.addConst();
3464    Expr *Arg = new (Context) OpaqueValueExpr(SourceLocation(), ArgType,
3465                                              VK_LValue);
3466
3467    InitializationSequence InitSeq(*this, BaseEntity, Kind, &Arg, 1);
3468
3469    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3470      return true;
3471  }
3472
3473  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3474                                     FE = RD->field_end();
3475       FI != FE; ++FI) {
3476    QualType FieldType = Context.getBaseElementType(FI->getType());
3477
3478    // -- for a copy constructor, a non-static data member of rvalue reference
3479    //    type
3480    if (FieldType->isRValueReferenceType())
3481      return true;
3482
3483    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3484
3485    if (FieldRecord) {
3486      // This is an anonymous union
3487      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3488        // Anonymous unions inside unions do not variant members create
3489        if (!Union) {
3490          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3491                                             UE = FieldRecord->field_end();
3492               UI != UE; ++UI) {
3493            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3494            CXXRecordDecl *UnionFieldRecord =
3495              UnionFieldType->getAsCXXRecordDecl();
3496
3497            // -- a variant member with a non-trivial [copy] constructor and X
3498            //    is a union-like class
3499            if (UnionFieldRecord &&
3500                !UnionFieldRecord->hasTrivialCopyConstructor())
3501              return true;
3502          }
3503        }
3504
3505        // Don't try to initalize an anonymous union
3506        continue;
3507      } else {
3508         // -- a variant member with a non-trivial [copy] constructor and X is a
3509         //    union-like class
3510        if (Union && !FieldRecord->hasTrivialCopyConstructor())
3511          return true;
3512
3513        // -- any [non-static data member] of a type with a destructor that is
3514        //    deleted or inaccessible from the defaulted constructor
3515        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3516        if (FieldDtor->isDeleted())
3517          return true;
3518        if (CheckDestructorAccess(SourceLocation(), FieldDtor, PDiag()) !=
3519            AR_accessible)
3520          return true;
3521      }
3522    }
3523
3524    llvm::SmallVector<InitializedEntity, 4> Entities;
3525    QualType CurType = FI->getType();
3526    Entities.push_back(InitializedEntity::InitializeMember(*FI, 0));
3527    while (CurType->isArrayType()) {
3528      Entities.push_back(InitializedEntity::InitializeElement(Context, 0,
3529                                                              Entities.back()));
3530      CurType = Context.getAsArrayType(CurType)->getElementType();
3531    }
3532
3533    InitializationKind Kind =
3534      InitializationKind::CreateDirect(SourceLocation(), SourceLocation(),
3535                                       SourceLocation());
3536
3537    // Construct a fake expression to perform the copy overloading.
3538    QualType ArgType = FieldType;
3539    if (ArgType->isReferenceType())
3540      ArgType = ArgType->getPointeeType();
3541    if (ConstArg)
3542      ArgType.addConst();
3543    Expr *Arg = new (Context) OpaqueValueExpr(SourceLocation(), ArgType,
3544                                              VK_LValue);
3545
3546    InitializationSequence InitSeq(*this, Entities.back(), Kind, &Arg, 1);
3547
3548    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3549      return true;
3550  }
3551
3552  return false;
3553}
3554
3555bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
3556  CXXRecordDecl *RD = DD->getParent();
3557  assert(!RD->isDependentType() && "do deletion after instantiation");
3558  if (!LangOpts.CPlusPlus0x)
3559    return false;
3560
3561  // Do access control from the destructor
3562  ContextRAII CtorContext(*this, DD);
3563
3564  bool Union = RD->isUnion();
3565
3566  // We do this because we should never actually use an anonymous
3567  // union's destructor.
3568  if (Union && RD->isAnonymousStructOrUnion())
3569    return false;
3570
3571  // C++0x [class.dtor]p5
3572  //    A defaulted destructor for a class X is defined as deleted if:
3573  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3574                                          BE = RD->bases_end();
3575       BI != BE; ++BI) {
3576    // We'll handle this one later
3577    if (BI->isVirtual())
3578      continue;
3579
3580    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3581    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3582    assert(BaseDtor && "base has no destructor");
3583
3584    // -- any direct or virtual base class has a deleted destructor or
3585    //    a destructor that is inaccessible from the defaulted destructor
3586    if (BaseDtor->isDeleted())
3587      return true;
3588    if (CheckDestructorAccess(SourceLocation(), BaseDtor, PDiag()) !=
3589        AR_accessible)
3590      return true;
3591  }
3592
3593  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3594                                          BE = RD->vbases_end();
3595       BI != BE; ++BI) {
3596    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3597    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3598    assert(BaseDtor && "base has no destructor");
3599
3600    // -- any direct or virtual base class has a deleted destructor or
3601    //    a destructor that is inaccessible from the defaulted destructor
3602    if (BaseDtor->isDeleted())
3603      return true;
3604    if (CheckDestructorAccess(SourceLocation(), BaseDtor, PDiag()) !=
3605        AR_accessible)
3606      return true;
3607  }
3608
3609  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3610                                     FE = RD->field_end();
3611       FI != FE; ++FI) {
3612    QualType FieldType = Context.getBaseElementType(FI->getType());
3613    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3614    if (FieldRecord) {
3615      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3616         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3617                                            UE = FieldRecord->field_end();
3618              UI != UE; ++UI) {
3619           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
3620           CXXRecordDecl *UnionFieldRecord =
3621             UnionFieldType->getAsCXXRecordDecl();
3622
3623           // -- X is a union-like class that has a variant member with a non-
3624           //    trivial destructor.
3625           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
3626             return true;
3627         }
3628      // Technically we are supposed to do this next check unconditionally.
3629      // But that makes absolutely no sense.
3630      } else {
3631        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3632
3633        // -- any of the non-static data members has class type M (or array
3634        //    thereof) and M has a deleted destructor or a destructor that is
3635        //    inaccessible from the defaulted destructor
3636        if (FieldDtor->isDeleted())
3637          return true;
3638        if (CheckDestructorAccess(SourceLocation(), FieldDtor, PDiag()) !=
3639          AR_accessible)
3640        return true;
3641
3642        // -- X is a union-like class that has a variant member with a non-
3643        //    trivial destructor.
3644        if (Union && !FieldDtor->isTrivial())
3645          return true;
3646      }
3647    }
3648  }
3649
3650  if (DD->isVirtual()) {
3651    FunctionDecl *OperatorDelete = 0;
3652    DeclarationName Name =
3653      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3654    if (FindDeallocationFunction(SourceLocation(), RD, Name, OperatorDelete,
3655          false))
3656      return true;
3657  }
3658
3659
3660  return false;
3661}
3662
3663/// \brief Data used with FindHiddenVirtualMethod
3664namespace {
3665  struct FindHiddenVirtualMethodData {
3666    Sema *S;
3667    CXXMethodDecl *Method;
3668    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
3669    llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3670  };
3671}
3672
3673/// \brief Member lookup function that determines whether a given C++
3674/// method overloads virtual methods in a base class without overriding any,
3675/// to be used with CXXRecordDecl::lookupInBases().
3676static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
3677                                    CXXBasePath &Path,
3678                                    void *UserData) {
3679  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3680
3681  FindHiddenVirtualMethodData &Data
3682    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
3683
3684  DeclarationName Name = Data.Method->getDeclName();
3685  assert(Name.getNameKind() == DeclarationName::Identifier);
3686
3687  bool foundSameNameMethod = false;
3688  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
3689  for (Path.Decls = BaseRecord->lookup(Name);
3690       Path.Decls.first != Path.Decls.second;
3691       ++Path.Decls.first) {
3692    NamedDecl *D = *Path.Decls.first;
3693    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3694      MD = MD->getCanonicalDecl();
3695      foundSameNameMethod = true;
3696      // Interested only in hidden virtual methods.
3697      if (!MD->isVirtual())
3698        continue;
3699      // If the method we are checking overrides a method from its base
3700      // don't warn about the other overloaded methods.
3701      if (!Data.S->IsOverload(Data.Method, MD, false))
3702        return true;
3703      // Collect the overload only if its hidden.
3704      if (!Data.OverridenAndUsingBaseMethods.count(MD))
3705        overloadedMethods.push_back(MD);
3706    }
3707  }
3708
3709  if (foundSameNameMethod)
3710    Data.OverloadedMethods.append(overloadedMethods.begin(),
3711                                   overloadedMethods.end());
3712  return foundSameNameMethod;
3713}
3714
3715/// \brief See if a method overloads virtual methods in a base class without
3716/// overriding any.
3717void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3718  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
3719                               MD->getLocation()) == Diagnostic::Ignored)
3720    return;
3721  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
3722    return;
3723
3724  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
3725                     /*bool RecordPaths=*/false,
3726                     /*bool DetectVirtual=*/false);
3727  FindHiddenVirtualMethodData Data;
3728  Data.Method = MD;
3729  Data.S = this;
3730
3731  // Keep the base methods that were overriden or introduced in the subclass
3732  // by 'using' in a set. A base method not in this set is hidden.
3733  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
3734       res.first != res.second; ++res.first) {
3735    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
3736      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
3737                                          E = MD->end_overridden_methods();
3738           I != E; ++I)
3739        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
3740    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
3741      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
3742        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
3743  }
3744
3745  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
3746      !Data.OverloadedMethods.empty()) {
3747    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
3748      << MD << (Data.OverloadedMethods.size() > 1);
3749
3750    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
3751      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
3752      Diag(overloadedMD->getLocation(),
3753           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
3754    }
3755  }
3756}
3757
3758void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
3759                                             Decl *TagDecl,
3760                                             SourceLocation LBrac,
3761                                             SourceLocation RBrac,
3762                                             AttributeList *AttrList) {
3763  if (!TagDecl)
3764    return;
3765
3766  AdjustDeclIfTemplate(TagDecl);
3767
3768  ActOnFields(S, RLoc, TagDecl,
3769              // strict aliasing violation!
3770              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
3771              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
3772
3773  CheckCompletedCXXClass(
3774                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
3775}
3776
3777/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
3778/// special functions, such as the default constructor, copy
3779/// constructor, or destructor, to the given C++ class (C++
3780/// [special]p1).  This routine can only be executed just before the
3781/// definition of the class is complete.
3782void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
3783  if (!ClassDecl->hasUserDeclaredConstructor())
3784    ++ASTContext::NumImplicitDefaultConstructors;
3785
3786  if (!ClassDecl->hasUserDeclaredCopyConstructor())
3787    ++ASTContext::NumImplicitCopyConstructors;
3788
3789  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
3790    ++ASTContext::NumImplicitCopyAssignmentOperators;
3791
3792    // If we have a dynamic class, then the copy assignment operator may be
3793    // virtual, so we have to declare it immediately. This ensures that, e.g.,
3794    // it shows up in the right place in the vtable and that we diagnose
3795    // problems with the implicit exception specification.
3796    if (ClassDecl->isDynamicClass())
3797      DeclareImplicitCopyAssignment(ClassDecl);
3798  }
3799
3800  if (!ClassDecl->hasUserDeclaredDestructor()) {
3801    ++ASTContext::NumImplicitDestructors;
3802
3803    // If we have a dynamic class, then the destructor may be virtual, so we
3804    // have to declare the destructor immediately. This ensures that, e.g., it
3805    // shows up in the right place in the vtable and that we diagnose problems
3806    // with the implicit exception specification.
3807    if (ClassDecl->isDynamicClass())
3808      DeclareImplicitDestructor(ClassDecl);
3809  }
3810}
3811
3812void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
3813  if (!D)
3814    return;
3815
3816  int NumParamList = D->getNumTemplateParameterLists();
3817  for (int i = 0; i < NumParamList; i++) {
3818    TemplateParameterList* Params = D->getTemplateParameterList(i);
3819    for (TemplateParameterList::iterator Param = Params->begin(),
3820                                      ParamEnd = Params->end();
3821          Param != ParamEnd; ++Param) {
3822      NamedDecl *Named = cast<NamedDecl>(*Param);
3823      if (Named->getDeclName()) {
3824        S->AddDecl(Named);
3825        IdResolver.AddDecl(Named);
3826      }
3827    }
3828  }
3829}
3830
3831void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
3832  if (!D)
3833    return;
3834
3835  TemplateParameterList *Params = 0;
3836  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
3837    Params = Template->getTemplateParameters();
3838  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
3839           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
3840    Params = PartialSpec->getTemplateParameters();
3841  else
3842    return;
3843
3844  for (TemplateParameterList::iterator Param = Params->begin(),
3845                                    ParamEnd = Params->end();
3846       Param != ParamEnd; ++Param) {
3847    NamedDecl *Named = cast<NamedDecl>(*Param);
3848    if (Named->getDeclName()) {
3849      S->AddDecl(Named);
3850      IdResolver.AddDecl(Named);
3851    }
3852  }
3853}
3854
3855void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3856  if (!RecordD) return;
3857  AdjustDeclIfTemplate(RecordD);
3858  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
3859  PushDeclContext(S, Record);
3860}
3861
3862void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3863  if (!RecordD) return;
3864  PopDeclContext();
3865}
3866
3867/// ActOnStartDelayedCXXMethodDeclaration - We have completed
3868/// parsing a top-level (non-nested) C++ class, and we are now
3869/// parsing those parts of the given Method declaration that could
3870/// not be parsed earlier (C++ [class.mem]p2), such as default
3871/// arguments. This action should enter the scope of the given
3872/// Method declaration as if we had just parsed the qualified method
3873/// name. However, it should not bring the parameters into scope;
3874/// that will be performed by ActOnDelayedCXXMethodParameter.
3875void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3876}
3877
3878/// ActOnDelayedCXXMethodParameter - We've already started a delayed
3879/// C++ method declaration. We're (re-)introducing the given
3880/// function parameter into scope for use in parsing later parts of
3881/// the method declaration. For example, we could see an
3882/// ActOnParamDefaultArgument event for this parameter.
3883void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
3884  if (!ParamD)
3885    return;
3886
3887  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
3888
3889  // If this parameter has an unparsed default argument, clear it out
3890  // to make way for the parsed default argument.
3891  if (Param->hasUnparsedDefaultArg())
3892    Param->setDefaultArg(0);
3893
3894  S->AddDecl(Param);
3895  if (Param->getDeclName())
3896    IdResolver.AddDecl(Param);
3897}
3898
3899/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
3900/// processing the delayed method declaration for Method. The method
3901/// declaration is now considered finished. There may be a separate
3902/// ActOnStartOfFunctionDef action later (not necessarily
3903/// immediately!) for this method, if it was also defined inside the
3904/// class body.
3905void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3906  if (!MethodD)
3907    return;
3908
3909  AdjustDeclIfTemplate(MethodD);
3910
3911  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
3912
3913  // Now that we have our default arguments, check the constructor
3914  // again. It could produce additional diagnostics or affect whether
3915  // the class has implicitly-declared destructors, among other
3916  // things.
3917  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
3918    CheckConstructor(Constructor);
3919
3920  // Check the default arguments, which we may have added.
3921  if (!Method->isInvalidDecl())
3922    CheckCXXDefaultArguments(Method);
3923}
3924
3925/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
3926/// the well-formedness of the constructor declarator @p D with type @p
3927/// R. If there are any errors in the declarator, this routine will
3928/// emit diagnostics and set the invalid bit to true.  In any case, the type
3929/// will be updated to reflect a well-formed type for the constructor and
3930/// returned.
3931QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
3932                                          StorageClass &SC) {
3933  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3934
3935  // C++ [class.ctor]p3:
3936  //   A constructor shall not be virtual (10.3) or static (9.4). A
3937  //   constructor can be invoked for a const, volatile or const
3938  //   volatile object. A constructor shall not be declared const,
3939  //   volatile, or const volatile (9.3.2).
3940  if (isVirtual) {
3941    if (!D.isInvalidType())
3942      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3943        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
3944        << SourceRange(D.getIdentifierLoc());
3945    D.setInvalidType();
3946  }
3947  if (SC == SC_Static) {
3948    if (!D.isInvalidType())
3949      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3950        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3951        << SourceRange(D.getIdentifierLoc());
3952    D.setInvalidType();
3953    SC = SC_None;
3954  }
3955
3956  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3957  if (FTI.TypeQuals != 0) {
3958    if (FTI.TypeQuals & Qualifiers::Const)
3959      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3960        << "const" << SourceRange(D.getIdentifierLoc());
3961    if (FTI.TypeQuals & Qualifiers::Volatile)
3962      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3963        << "volatile" << SourceRange(D.getIdentifierLoc());
3964    if (FTI.TypeQuals & Qualifiers::Restrict)
3965      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3966        << "restrict" << SourceRange(D.getIdentifierLoc());
3967    D.setInvalidType();
3968  }
3969
3970  // C++0x [class.ctor]p4:
3971  //   A constructor shall not be declared with a ref-qualifier.
3972  if (FTI.hasRefQualifier()) {
3973    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
3974      << FTI.RefQualifierIsLValueRef
3975      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3976    D.setInvalidType();
3977  }
3978
3979  // Rebuild the function type "R" without any type qualifiers (in
3980  // case any of the errors above fired) and with "void" as the
3981  // return type, since constructors don't have return types.
3982  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3983  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
3984    return R;
3985
3986  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3987  EPI.TypeQuals = 0;
3988  EPI.RefQualifier = RQ_None;
3989
3990  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
3991                                 Proto->getNumArgs(), EPI);
3992}
3993
3994/// CheckConstructor - Checks a fully-formed constructor for
3995/// well-formedness, issuing any diagnostics required. Returns true if
3996/// the constructor declarator is invalid.
3997void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3998  CXXRecordDecl *ClassDecl
3999    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4000  if (!ClassDecl)
4001    return Constructor->setInvalidDecl();
4002
4003  // C++ [class.copy]p3:
4004  //   A declaration of a constructor for a class X is ill-formed if
4005  //   its first parameter is of type (optionally cv-qualified) X and
4006  //   either there are no other parameters or else all other
4007  //   parameters have default arguments.
4008  if (!Constructor->isInvalidDecl() &&
4009      ((Constructor->getNumParams() == 1) ||
4010       (Constructor->getNumParams() > 1 &&
4011        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4012      Constructor->getTemplateSpecializationKind()
4013                                              != TSK_ImplicitInstantiation) {
4014    QualType ParamType = Constructor->getParamDecl(0)->getType();
4015    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4016    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4017      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4018      const char *ConstRef
4019        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4020                                                        : " const &";
4021      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4022        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4023
4024      // FIXME: Rather that making the constructor invalid, we should endeavor
4025      // to fix the type.
4026      Constructor->setInvalidDecl();
4027    }
4028  }
4029}
4030
4031/// CheckDestructor - Checks a fully-formed destructor definition for
4032/// well-formedness, issuing any diagnostics required.  Returns true
4033/// on error.
4034bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4035  CXXRecordDecl *RD = Destructor->getParent();
4036
4037  if (Destructor->isVirtual()) {
4038    SourceLocation Loc;
4039
4040    if (!Destructor->isImplicit())
4041      Loc = Destructor->getLocation();
4042    else
4043      Loc = RD->getLocation();
4044
4045    // If we have a virtual destructor, look up the deallocation function
4046    FunctionDecl *OperatorDelete = 0;
4047    DeclarationName Name =
4048    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4049    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4050      return true;
4051
4052    MarkDeclarationReferenced(Loc, OperatorDelete);
4053
4054    Destructor->setOperatorDelete(OperatorDelete);
4055  }
4056
4057  return false;
4058}
4059
4060static inline bool
4061FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4062  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4063          FTI.ArgInfo[0].Param &&
4064          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4065}
4066
4067/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4068/// the well-formednes of the destructor declarator @p D with type @p
4069/// R. If there are any errors in the declarator, this routine will
4070/// emit diagnostics and set the declarator to invalid.  Even if this happens,
4071/// will be updated to reflect a well-formed type for the destructor and
4072/// returned.
4073QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
4074                                         StorageClass& SC) {
4075  // C++ [class.dtor]p1:
4076  //   [...] A typedef-name that names a class is a class-name
4077  //   (7.1.3); however, a typedef-name that names a class shall not
4078  //   be used as the identifier in the declarator for a destructor
4079  //   declaration.
4080  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
4081  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
4082    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4083      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
4084  else if (const TemplateSpecializationType *TST =
4085             DeclaratorType->getAs<TemplateSpecializationType>())
4086    if (TST->isTypeAlias())
4087      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4088        << DeclaratorType << 1;
4089
4090  // C++ [class.dtor]p2:
4091  //   A destructor is used to destroy objects of its class type. A
4092  //   destructor takes no parameters, and no return type can be
4093  //   specified for it (not even void). The address of a destructor
4094  //   shall not be taken. A destructor shall not be static. A
4095  //   destructor can be invoked for a const, volatile or const
4096  //   volatile object. A destructor shall not be declared const,
4097  //   volatile or const volatile (9.3.2).
4098  if (SC == SC_Static) {
4099    if (!D.isInvalidType())
4100      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
4101        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4102        << SourceRange(D.getIdentifierLoc())
4103        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4104
4105    SC = SC_None;
4106  }
4107  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4108    // Destructors don't have return types, but the parser will
4109    // happily parse something like:
4110    //
4111    //   class X {
4112    //     float ~X();
4113    //   };
4114    //
4115    // The return type will be eliminated later.
4116    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
4117      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4118      << SourceRange(D.getIdentifierLoc());
4119  }
4120
4121  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4122  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
4123    if (FTI.TypeQuals & Qualifiers::Const)
4124      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4125        << "const" << SourceRange(D.getIdentifierLoc());
4126    if (FTI.TypeQuals & Qualifiers::Volatile)
4127      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4128        << "volatile" << SourceRange(D.getIdentifierLoc());
4129    if (FTI.TypeQuals & Qualifiers::Restrict)
4130      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4131        << "restrict" << SourceRange(D.getIdentifierLoc());
4132    D.setInvalidType();
4133  }
4134
4135  // C++0x [class.dtor]p2:
4136  //   A destructor shall not be declared with a ref-qualifier.
4137  if (FTI.hasRefQualifier()) {
4138    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
4139      << FTI.RefQualifierIsLValueRef
4140      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4141    D.setInvalidType();
4142  }
4143
4144  // Make sure we don't have any parameters.
4145  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
4146    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
4147
4148    // Delete the parameters.
4149    FTI.freeArgs();
4150    D.setInvalidType();
4151  }
4152
4153  // Make sure the destructor isn't variadic.
4154  if (FTI.isVariadic) {
4155    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
4156    D.setInvalidType();
4157  }
4158
4159  // Rebuild the function type "R" without any type qualifiers or
4160  // parameters (in case any of the errors above fired) and with
4161  // "void" as the return type, since destructors don't have return
4162  // types.
4163  if (!D.isInvalidType())
4164    return R;
4165
4166  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4167  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4168  EPI.Variadic = false;
4169  EPI.TypeQuals = 0;
4170  EPI.RefQualifier = RQ_None;
4171  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4172}
4173
4174/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
4175/// well-formednes of the conversion function declarator @p D with
4176/// type @p R. If there are any errors in the declarator, this routine
4177/// will emit diagnostics and return true. Otherwise, it will return
4178/// false. Either way, the type @p R will be updated to reflect a
4179/// well-formed type for the conversion operator.
4180void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
4181                                     StorageClass& SC) {
4182  // C++ [class.conv.fct]p1:
4183  //   Neither parameter types nor return type can be specified. The
4184  //   type of a conversion function (8.3.5) is "function taking no
4185  //   parameter returning conversion-type-id."
4186  if (SC == SC_Static) {
4187    if (!D.isInvalidType())
4188      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
4189        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4190        << SourceRange(D.getIdentifierLoc());
4191    D.setInvalidType();
4192    SC = SC_None;
4193  }
4194
4195  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
4196
4197  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4198    // Conversion functions don't have return types, but the parser will
4199    // happily parse something like:
4200    //
4201    //   class X {
4202    //     float operator bool();
4203    //   };
4204    //
4205    // The return type will be changed later anyway.
4206    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
4207      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4208      << SourceRange(D.getIdentifierLoc());
4209    D.setInvalidType();
4210  }
4211
4212  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4213
4214  // Make sure we don't have any parameters.
4215  if (Proto->getNumArgs() > 0) {
4216    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
4217
4218    // Delete the parameters.
4219    D.getFunctionTypeInfo().freeArgs();
4220    D.setInvalidType();
4221  } else if (Proto->isVariadic()) {
4222    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
4223    D.setInvalidType();
4224  }
4225
4226  // Diagnose "&operator bool()" and other such nonsense.  This
4227  // is actually a gcc extension which we don't support.
4228  if (Proto->getResultType() != ConvType) {
4229    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
4230      << Proto->getResultType();
4231    D.setInvalidType();
4232    ConvType = Proto->getResultType();
4233  }
4234
4235  // C++ [class.conv.fct]p4:
4236  //   The conversion-type-id shall not represent a function type nor
4237  //   an array type.
4238  if (ConvType->isArrayType()) {
4239    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
4240    ConvType = Context.getPointerType(ConvType);
4241    D.setInvalidType();
4242  } else if (ConvType->isFunctionType()) {
4243    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
4244    ConvType = Context.getPointerType(ConvType);
4245    D.setInvalidType();
4246  }
4247
4248  // Rebuild the function type "R" without any parameters (in case any
4249  // of the errors above fired) and with the conversion type as the
4250  // return type.
4251  if (D.isInvalidType())
4252    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
4253
4254  // C++0x explicit conversion operators.
4255  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
4256    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4257         diag::warn_explicit_conversion_functions)
4258      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
4259}
4260
4261/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
4262/// the declaration of the given C++ conversion function. This routine
4263/// is responsible for recording the conversion function in the C++
4264/// class, if possible.
4265Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
4266  assert(Conversion && "Expected to receive a conversion function declaration");
4267
4268  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
4269
4270  // Make sure we aren't redeclaring the conversion function.
4271  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
4272
4273  // C++ [class.conv.fct]p1:
4274  //   [...] A conversion function is never used to convert a
4275  //   (possibly cv-qualified) object to the (possibly cv-qualified)
4276  //   same object type (or a reference to it), to a (possibly
4277  //   cv-qualified) base class of that type (or a reference to it),
4278  //   or to (possibly cv-qualified) void.
4279  // FIXME: Suppress this warning if the conversion function ends up being a
4280  // virtual function that overrides a virtual function in a base class.
4281  QualType ClassType
4282    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4283  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
4284    ConvType = ConvTypeRef->getPointeeType();
4285  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
4286      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4287    /* Suppress diagnostics for instantiations. */;
4288  else if (ConvType->isRecordType()) {
4289    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
4290    if (ConvType == ClassType)
4291      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
4292        << ClassType;
4293    else if (IsDerivedFrom(ClassType, ConvType))
4294      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
4295        <<  ClassType << ConvType;
4296  } else if (ConvType->isVoidType()) {
4297    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
4298      << ClassType << ConvType;
4299  }
4300
4301  if (FunctionTemplateDecl *ConversionTemplate
4302                                = Conversion->getDescribedFunctionTemplate())
4303    return ConversionTemplate;
4304
4305  return Conversion;
4306}
4307
4308//===----------------------------------------------------------------------===//
4309// Namespace Handling
4310//===----------------------------------------------------------------------===//
4311
4312
4313
4314/// ActOnStartNamespaceDef - This is called at the start of a namespace
4315/// definition.
4316Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
4317                                   SourceLocation InlineLoc,
4318                                   SourceLocation NamespaceLoc,
4319                                   SourceLocation IdentLoc,
4320                                   IdentifierInfo *II,
4321                                   SourceLocation LBrace,
4322                                   AttributeList *AttrList) {
4323  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
4324  // For anonymous namespace, take the location of the left brace.
4325  SourceLocation Loc = II ? IdentLoc : LBrace;
4326  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
4327                                                 StartLoc, Loc, II);
4328  Namespc->setInline(InlineLoc.isValid());
4329
4330  Scope *DeclRegionScope = NamespcScope->getParent();
4331
4332  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
4333
4334  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
4335    PushNamespaceVisibilityAttr(Attr);
4336
4337  if (II) {
4338    // C++ [namespace.def]p2:
4339    //   The identifier in an original-namespace-definition shall not
4340    //   have been previously defined in the declarative region in
4341    //   which the original-namespace-definition appears. The
4342    //   identifier in an original-namespace-definition is the name of
4343    //   the namespace. Subsequently in that declarative region, it is
4344    //   treated as an original-namespace-name.
4345    //
4346    // Since namespace names are unique in their scope, and we don't
4347    // look through using directives, just look for any ordinary names.
4348
4349    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
4350      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
4351      Decl::IDNS_Namespace;
4352    NamedDecl *PrevDecl = 0;
4353    for (DeclContext::lookup_result R
4354            = CurContext->getRedeclContext()->lookup(II);
4355         R.first != R.second; ++R.first) {
4356      if ((*R.first)->getIdentifierNamespace() & IDNS) {
4357        PrevDecl = *R.first;
4358        break;
4359      }
4360    }
4361
4362    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
4363      // This is an extended namespace definition.
4364      if (Namespc->isInline() != OrigNS->isInline()) {
4365        // inline-ness must match
4366        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4367          << Namespc->isInline();
4368        Diag(OrigNS->getLocation(), diag::note_previous_definition);
4369        Namespc->setInvalidDecl();
4370        // Recover by ignoring the new namespace's inline status.
4371        Namespc->setInline(OrigNS->isInline());
4372      }
4373
4374      // Attach this namespace decl to the chain of extended namespace
4375      // definitions.
4376      OrigNS->setNextNamespace(Namespc);
4377      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
4378
4379      // Remove the previous declaration from the scope.
4380      if (DeclRegionScope->isDeclScope(OrigNS)) {
4381        IdResolver.RemoveDecl(OrigNS);
4382        DeclRegionScope->RemoveDecl(OrigNS);
4383      }
4384    } else if (PrevDecl) {
4385      // This is an invalid name redefinition.
4386      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
4387       << Namespc->getDeclName();
4388      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4389      Namespc->setInvalidDecl();
4390      // Continue on to push Namespc as current DeclContext and return it.
4391    } else if (II->isStr("std") &&
4392               CurContext->getRedeclContext()->isTranslationUnit()) {
4393      // This is the first "real" definition of the namespace "std", so update
4394      // our cache of the "std" namespace to point at this definition.
4395      if (NamespaceDecl *StdNS = getStdNamespace()) {
4396        // We had already defined a dummy namespace "std". Link this new
4397        // namespace definition to the dummy namespace "std".
4398        StdNS->setNextNamespace(Namespc);
4399        StdNS->setLocation(IdentLoc);
4400        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
4401      }
4402
4403      // Make our StdNamespace cache point at the first real definition of the
4404      // "std" namespace.
4405      StdNamespace = Namespc;
4406    }
4407
4408    PushOnScopeChains(Namespc, DeclRegionScope);
4409  } else {
4410    // Anonymous namespaces.
4411    assert(Namespc->isAnonymousNamespace());
4412
4413    // Link the anonymous namespace into its parent.
4414    NamespaceDecl *PrevDecl;
4415    DeclContext *Parent = CurContext->getRedeclContext();
4416    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
4417      PrevDecl = TU->getAnonymousNamespace();
4418      TU->setAnonymousNamespace(Namespc);
4419    } else {
4420      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
4421      PrevDecl = ND->getAnonymousNamespace();
4422      ND->setAnonymousNamespace(Namespc);
4423    }
4424
4425    // Link the anonymous namespace with its previous declaration.
4426    if (PrevDecl) {
4427      assert(PrevDecl->isAnonymousNamespace());
4428      assert(!PrevDecl->getNextNamespace());
4429      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
4430      PrevDecl->setNextNamespace(Namespc);
4431
4432      if (Namespc->isInline() != PrevDecl->isInline()) {
4433        // inline-ness must match
4434        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4435          << Namespc->isInline();
4436        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4437        Namespc->setInvalidDecl();
4438        // Recover by ignoring the new namespace's inline status.
4439        Namespc->setInline(PrevDecl->isInline());
4440      }
4441    }
4442
4443    CurContext->addDecl(Namespc);
4444
4445    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
4446    //   behaves as if it were replaced by
4447    //     namespace unique { /* empty body */ }
4448    //     using namespace unique;
4449    //     namespace unique { namespace-body }
4450    //   where all occurrences of 'unique' in a translation unit are
4451    //   replaced by the same identifier and this identifier differs
4452    //   from all other identifiers in the entire program.
4453
4454    // We just create the namespace with an empty name and then add an
4455    // implicit using declaration, just like the standard suggests.
4456    //
4457    // CodeGen enforces the "universally unique" aspect by giving all
4458    // declarations semantically contained within an anonymous
4459    // namespace internal linkage.
4460
4461    if (!PrevDecl) {
4462      UsingDirectiveDecl* UD
4463        = UsingDirectiveDecl::Create(Context, CurContext,
4464                                     /* 'using' */ LBrace,
4465                                     /* 'namespace' */ SourceLocation(),
4466                                     /* qualifier */ NestedNameSpecifierLoc(),
4467                                     /* identifier */ SourceLocation(),
4468                                     Namespc,
4469                                     /* Ancestor */ CurContext);
4470      UD->setImplicit();
4471      CurContext->addDecl(UD);
4472    }
4473  }
4474
4475  // Although we could have an invalid decl (i.e. the namespace name is a
4476  // redefinition), push it as current DeclContext and try to continue parsing.
4477  // FIXME: We should be able to push Namespc here, so that the each DeclContext
4478  // for the namespace has the declarations that showed up in that particular
4479  // namespace definition.
4480  PushDeclContext(NamespcScope, Namespc);
4481  return Namespc;
4482}
4483
4484/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
4485/// is a namespace alias, returns the namespace it points to.
4486static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
4487  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
4488    return AD->getNamespace();
4489  return dyn_cast_or_null<NamespaceDecl>(D);
4490}
4491
4492/// ActOnFinishNamespaceDef - This callback is called after a namespace is
4493/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
4494void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
4495  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
4496  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
4497  Namespc->setRBraceLoc(RBrace);
4498  PopDeclContext();
4499  if (Namespc->hasAttr<VisibilityAttr>())
4500    PopPragmaVisibility();
4501}
4502
4503CXXRecordDecl *Sema::getStdBadAlloc() const {
4504  return cast_or_null<CXXRecordDecl>(
4505                                  StdBadAlloc.get(Context.getExternalSource()));
4506}
4507
4508NamespaceDecl *Sema::getStdNamespace() const {
4509  return cast_or_null<NamespaceDecl>(
4510                                 StdNamespace.get(Context.getExternalSource()));
4511}
4512
4513/// \brief Retrieve the special "std" namespace, which may require us to
4514/// implicitly define the namespace.
4515NamespaceDecl *Sema::getOrCreateStdNamespace() {
4516  if (!StdNamespace) {
4517    // The "std" namespace has not yet been defined, so build one implicitly.
4518    StdNamespace = NamespaceDecl::Create(Context,
4519                                         Context.getTranslationUnitDecl(),
4520                                         SourceLocation(), SourceLocation(),
4521                                         &PP.getIdentifierTable().get("std"));
4522    getStdNamespace()->setImplicit(true);
4523  }
4524
4525  return getStdNamespace();
4526}
4527
4528/// \brief Determine whether a using statement is in a context where it will be
4529/// apply in all contexts.
4530static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
4531  switch (CurContext->getDeclKind()) {
4532    case Decl::TranslationUnit:
4533      return true;
4534    case Decl::LinkageSpec:
4535      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
4536    default:
4537      return false;
4538  }
4539}
4540
4541Decl *Sema::ActOnUsingDirective(Scope *S,
4542                                          SourceLocation UsingLoc,
4543                                          SourceLocation NamespcLoc,
4544                                          CXXScopeSpec &SS,
4545                                          SourceLocation IdentLoc,
4546                                          IdentifierInfo *NamespcName,
4547                                          AttributeList *AttrList) {
4548  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4549  assert(NamespcName && "Invalid NamespcName.");
4550  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
4551
4552  // This can only happen along a recovery path.
4553  while (S->getFlags() & Scope::TemplateParamScope)
4554    S = S->getParent();
4555  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4556
4557  UsingDirectiveDecl *UDir = 0;
4558  NestedNameSpecifier *Qualifier = 0;
4559  if (SS.isSet())
4560    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4561
4562  // Lookup namespace name.
4563  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
4564  LookupParsedName(R, S, &SS);
4565  if (R.isAmbiguous())
4566    return 0;
4567
4568  if (R.empty()) {
4569    // Allow "using namespace std;" or "using namespace ::std;" even if
4570    // "std" hasn't been defined yet, for GCC compatibility.
4571    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
4572        NamespcName->isStr("std")) {
4573      Diag(IdentLoc, diag::ext_using_undefined_std);
4574      R.addDecl(getOrCreateStdNamespace());
4575      R.resolveKind();
4576    }
4577    // Otherwise, attempt typo correction.
4578    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4579                                                       CTC_NoKeywords, 0)) {
4580      if (R.getAsSingle<NamespaceDecl>() ||
4581          R.getAsSingle<NamespaceAliasDecl>()) {
4582        if (DeclContext *DC = computeDeclContext(SS, false))
4583          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4584            << NamespcName << DC << Corrected << SS.getRange()
4585            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4586        else
4587          Diag(IdentLoc, diag::err_using_directive_suggest)
4588            << NamespcName << Corrected
4589            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4590        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4591          << Corrected;
4592
4593        NamespcName = Corrected.getAsIdentifierInfo();
4594      } else {
4595        R.clear();
4596        R.setLookupName(NamespcName);
4597      }
4598    }
4599  }
4600
4601  if (!R.empty()) {
4602    NamedDecl *Named = R.getFoundDecl();
4603    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
4604        && "expected namespace decl");
4605    // C++ [namespace.udir]p1:
4606    //   A using-directive specifies that the names in the nominated
4607    //   namespace can be used in the scope in which the
4608    //   using-directive appears after the using-directive. During
4609    //   unqualified name lookup (3.4.1), the names appear as if they
4610    //   were declared in the nearest enclosing namespace which
4611    //   contains both the using-directive and the nominated
4612    //   namespace. [Note: in this context, "contains" means "contains
4613    //   directly or indirectly". ]
4614
4615    // Find enclosing context containing both using-directive and
4616    // nominated namespace.
4617    NamespaceDecl *NS = getNamespaceDecl(Named);
4618    DeclContext *CommonAncestor = cast<DeclContext>(NS);
4619    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
4620      CommonAncestor = CommonAncestor->getParent();
4621
4622    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
4623                                      SS.getWithLocInContext(Context),
4624                                      IdentLoc, Named, CommonAncestor);
4625
4626    if (IsUsingDirectiveInToplevelContext(CurContext) &&
4627        !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
4628      Diag(IdentLoc, diag::warn_using_directive_in_header);
4629    }
4630
4631    PushUsingDirective(S, UDir);
4632  } else {
4633    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
4634  }
4635
4636  // FIXME: We ignore attributes for now.
4637  return UDir;
4638}
4639
4640void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
4641  // If scope has associated entity, then using directive is at namespace
4642  // or translation unit scope. We add UsingDirectiveDecls, into
4643  // it's lookup structure.
4644  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
4645    Ctx->addDecl(UDir);
4646  else
4647    // Otherwise it is block-sope. using-directives will affect lookup
4648    // only to the end of scope.
4649    S->PushUsingDirective(UDir);
4650}
4651
4652
4653Decl *Sema::ActOnUsingDeclaration(Scope *S,
4654                                  AccessSpecifier AS,
4655                                  bool HasUsingKeyword,
4656                                  SourceLocation UsingLoc,
4657                                  CXXScopeSpec &SS,
4658                                  UnqualifiedId &Name,
4659                                  AttributeList *AttrList,
4660                                  bool IsTypeName,
4661                                  SourceLocation TypenameLoc) {
4662  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4663
4664  switch (Name.getKind()) {
4665  case UnqualifiedId::IK_Identifier:
4666  case UnqualifiedId::IK_OperatorFunctionId:
4667  case UnqualifiedId::IK_LiteralOperatorId:
4668  case UnqualifiedId::IK_ConversionFunctionId:
4669    break;
4670
4671  case UnqualifiedId::IK_ConstructorName:
4672  case UnqualifiedId::IK_ConstructorTemplateId:
4673    // C++0x inherited constructors.
4674    if (getLangOptions().CPlusPlus0x) break;
4675
4676    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
4677      << SS.getRange();
4678    return 0;
4679
4680  case UnqualifiedId::IK_DestructorName:
4681    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
4682      << SS.getRange();
4683    return 0;
4684
4685  case UnqualifiedId::IK_TemplateId:
4686    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
4687      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
4688    return 0;
4689  }
4690
4691  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
4692  DeclarationName TargetName = TargetNameInfo.getName();
4693  if (!TargetName)
4694    return 0;
4695
4696  // Warn about using declarations.
4697  // TODO: store that the declaration was written without 'using' and
4698  // talk about access decls instead of using decls in the
4699  // diagnostics.
4700  if (!HasUsingKeyword) {
4701    UsingLoc = Name.getSourceRange().getBegin();
4702
4703    Diag(UsingLoc, diag::warn_access_decl_deprecated)
4704      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
4705  }
4706
4707  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
4708      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
4709    return 0;
4710
4711  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
4712                                        TargetNameInfo, AttrList,
4713                                        /* IsInstantiation */ false,
4714                                        IsTypeName, TypenameLoc);
4715  if (UD)
4716    PushOnScopeChains(UD, S, /*AddToContext*/ false);
4717
4718  return UD;
4719}
4720
4721/// \brief Determine whether a using declaration considers the given
4722/// declarations as "equivalent", e.g., if they are redeclarations of
4723/// the same entity or are both typedefs of the same type.
4724static bool
4725IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
4726                         bool &SuppressRedeclaration) {
4727  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
4728    SuppressRedeclaration = false;
4729    return true;
4730  }
4731
4732  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
4733    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
4734      SuppressRedeclaration = true;
4735      return Context.hasSameType(TD1->getUnderlyingType(),
4736                                 TD2->getUnderlyingType());
4737    }
4738
4739  return false;
4740}
4741
4742
4743/// Determines whether to create a using shadow decl for a particular
4744/// decl, given the set of decls existing prior to this using lookup.
4745bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
4746                                const LookupResult &Previous) {
4747  // Diagnose finding a decl which is not from a base class of the
4748  // current class.  We do this now because there are cases where this
4749  // function will silently decide not to build a shadow decl, which
4750  // will pre-empt further diagnostics.
4751  //
4752  // We don't need to do this in C++0x because we do the check once on
4753  // the qualifier.
4754  //
4755  // FIXME: diagnose the following if we care enough:
4756  //   struct A { int foo; };
4757  //   struct B : A { using A::foo; };
4758  //   template <class T> struct C : A {};
4759  //   template <class T> struct D : C<T> { using B::foo; } // <---
4760  // This is invalid (during instantiation) in C++03 because B::foo
4761  // resolves to the using decl in B, which is not a base class of D<T>.
4762  // We can't diagnose it immediately because C<T> is an unknown
4763  // specialization.  The UsingShadowDecl in D<T> then points directly
4764  // to A::foo, which will look well-formed when we instantiate.
4765  // The right solution is to not collapse the shadow-decl chain.
4766  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
4767    DeclContext *OrigDC = Orig->getDeclContext();
4768
4769    // Handle enums and anonymous structs.
4770    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
4771    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
4772    while (OrigRec->isAnonymousStructOrUnion())
4773      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
4774
4775    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
4776      if (OrigDC == CurContext) {
4777        Diag(Using->getLocation(),
4778             diag::err_using_decl_nested_name_specifier_is_current_class)
4779          << Using->getQualifierLoc().getSourceRange();
4780        Diag(Orig->getLocation(), diag::note_using_decl_target);
4781        return true;
4782      }
4783
4784      Diag(Using->getQualifierLoc().getBeginLoc(),
4785           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4786        << Using->getQualifier()
4787        << cast<CXXRecordDecl>(CurContext)
4788        << Using->getQualifierLoc().getSourceRange();
4789      Diag(Orig->getLocation(), diag::note_using_decl_target);
4790      return true;
4791    }
4792  }
4793
4794  if (Previous.empty()) return false;
4795
4796  NamedDecl *Target = Orig;
4797  if (isa<UsingShadowDecl>(Target))
4798    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4799
4800  // If the target happens to be one of the previous declarations, we
4801  // don't have a conflict.
4802  //
4803  // FIXME: but we might be increasing its access, in which case we
4804  // should redeclare it.
4805  NamedDecl *NonTag = 0, *Tag = 0;
4806  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4807         I != E; ++I) {
4808    NamedDecl *D = (*I)->getUnderlyingDecl();
4809    bool Result;
4810    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
4811      return Result;
4812
4813    (isa<TagDecl>(D) ? Tag : NonTag) = D;
4814  }
4815
4816  if (Target->isFunctionOrFunctionTemplate()) {
4817    FunctionDecl *FD;
4818    if (isa<FunctionTemplateDecl>(Target))
4819      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
4820    else
4821      FD = cast<FunctionDecl>(Target);
4822
4823    NamedDecl *OldDecl = 0;
4824    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
4825    case Ovl_Overload:
4826      return false;
4827
4828    case Ovl_NonFunction:
4829      Diag(Using->getLocation(), diag::err_using_decl_conflict);
4830      break;
4831
4832    // We found a decl with the exact signature.
4833    case Ovl_Match:
4834      // If we're in a record, we want to hide the target, so we
4835      // return true (without a diagnostic) to tell the caller not to
4836      // build a shadow decl.
4837      if (CurContext->isRecord())
4838        return true;
4839
4840      // If we're not in a record, this is an error.
4841      Diag(Using->getLocation(), diag::err_using_decl_conflict);
4842      break;
4843    }
4844
4845    Diag(Target->getLocation(), diag::note_using_decl_target);
4846    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
4847    return true;
4848  }
4849
4850  // Target is not a function.
4851
4852  if (isa<TagDecl>(Target)) {
4853    // No conflict between a tag and a non-tag.
4854    if (!Tag) return false;
4855
4856    Diag(Using->getLocation(), diag::err_using_decl_conflict);
4857    Diag(Target->getLocation(), diag::note_using_decl_target);
4858    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
4859    return true;
4860  }
4861
4862  // No conflict between a tag and a non-tag.
4863  if (!NonTag) return false;
4864
4865  Diag(Using->getLocation(), diag::err_using_decl_conflict);
4866  Diag(Target->getLocation(), diag::note_using_decl_target);
4867  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
4868  return true;
4869}
4870
4871/// Builds a shadow declaration corresponding to a 'using' declaration.
4872UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
4873                                            UsingDecl *UD,
4874                                            NamedDecl *Orig) {
4875
4876  // If we resolved to another shadow declaration, just coalesce them.
4877  NamedDecl *Target = Orig;
4878  if (isa<UsingShadowDecl>(Target)) {
4879    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4880    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
4881  }
4882
4883  UsingShadowDecl *Shadow
4884    = UsingShadowDecl::Create(Context, CurContext,
4885                              UD->getLocation(), UD, Target);
4886  UD->addShadowDecl(Shadow);
4887
4888  Shadow->setAccess(UD->getAccess());
4889  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
4890    Shadow->setInvalidDecl();
4891
4892  if (S)
4893    PushOnScopeChains(Shadow, S);
4894  else
4895    CurContext->addDecl(Shadow);
4896
4897
4898  return Shadow;
4899}
4900
4901/// Hides a using shadow declaration.  This is required by the current
4902/// using-decl implementation when a resolvable using declaration in a
4903/// class is followed by a declaration which would hide or override
4904/// one or more of the using decl's targets; for example:
4905///
4906///   struct Base { void foo(int); };
4907///   struct Derived : Base {
4908///     using Base::foo;
4909///     void foo(int);
4910///   };
4911///
4912/// The governing language is C++03 [namespace.udecl]p12:
4913///
4914///   When a using-declaration brings names from a base class into a
4915///   derived class scope, member functions in the derived class
4916///   override and/or hide member functions with the same name and
4917///   parameter types in a base class (rather than conflicting).
4918///
4919/// There are two ways to implement this:
4920///   (1) optimistically create shadow decls when they're not hidden
4921///       by existing declarations, or
4922///   (2) don't create any shadow decls (or at least don't make them
4923///       visible) until we've fully parsed/instantiated the class.
4924/// The problem with (1) is that we might have to retroactively remove
4925/// a shadow decl, which requires several O(n) operations because the
4926/// decl structures are (very reasonably) not designed for removal.
4927/// (2) avoids this but is very fiddly and phase-dependent.
4928void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
4929  if (Shadow->getDeclName().getNameKind() ==
4930        DeclarationName::CXXConversionFunctionName)
4931    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
4932
4933  // Remove it from the DeclContext...
4934  Shadow->getDeclContext()->removeDecl(Shadow);
4935
4936  // ...and the scope, if applicable...
4937  if (S) {
4938    S->RemoveDecl(Shadow);
4939    IdResolver.RemoveDecl(Shadow);
4940  }
4941
4942  // ...and the using decl.
4943  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
4944
4945  // TODO: complain somehow if Shadow was used.  It shouldn't
4946  // be possible for this to happen, because...?
4947}
4948
4949/// Builds a using declaration.
4950///
4951/// \param IsInstantiation - Whether this call arises from an
4952///   instantiation of an unresolved using declaration.  We treat
4953///   the lookup differently for these declarations.
4954NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
4955                                       SourceLocation UsingLoc,
4956                                       CXXScopeSpec &SS,
4957                                       const DeclarationNameInfo &NameInfo,
4958                                       AttributeList *AttrList,
4959                                       bool IsInstantiation,
4960                                       bool IsTypeName,
4961                                       SourceLocation TypenameLoc) {
4962  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4963  SourceLocation IdentLoc = NameInfo.getLoc();
4964  assert(IdentLoc.isValid() && "Invalid TargetName location.");
4965
4966  // FIXME: We ignore attributes for now.
4967
4968  if (SS.isEmpty()) {
4969    Diag(IdentLoc, diag::err_using_requires_qualname);
4970    return 0;
4971  }
4972
4973  // Do the redeclaration lookup in the current scope.
4974  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
4975                        ForRedeclaration);
4976  Previous.setHideTags(false);
4977  if (S) {
4978    LookupName(Previous, S);
4979
4980    // It is really dumb that we have to do this.
4981    LookupResult::Filter F = Previous.makeFilter();
4982    while (F.hasNext()) {
4983      NamedDecl *D = F.next();
4984      if (!isDeclInScope(D, CurContext, S))
4985        F.erase();
4986    }
4987    F.done();
4988  } else {
4989    assert(IsInstantiation && "no scope in non-instantiation");
4990    assert(CurContext->isRecord() && "scope not record in instantiation");
4991    LookupQualifiedName(Previous, CurContext);
4992  }
4993
4994  // Check for invalid redeclarations.
4995  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
4996    return 0;
4997
4998  // Check for bad qualifiers.
4999  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
5000    return 0;
5001
5002  DeclContext *LookupContext = computeDeclContext(SS);
5003  NamedDecl *D;
5004  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
5005  if (!LookupContext) {
5006    if (IsTypeName) {
5007      // FIXME: not all declaration name kinds are legal here
5008      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
5009                                              UsingLoc, TypenameLoc,
5010                                              QualifierLoc,
5011                                              IdentLoc, NameInfo.getName());
5012    } else {
5013      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
5014                                           QualifierLoc, NameInfo);
5015    }
5016  } else {
5017    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
5018                          NameInfo, IsTypeName);
5019  }
5020  D->setAccess(AS);
5021  CurContext->addDecl(D);
5022
5023  if (!LookupContext) return D;
5024  UsingDecl *UD = cast<UsingDecl>(D);
5025
5026  if (RequireCompleteDeclContext(SS, LookupContext)) {
5027    UD->setInvalidDecl();
5028    return UD;
5029  }
5030
5031  // Constructor inheriting using decls get special treatment.
5032  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
5033    if (CheckInheritedConstructorUsingDecl(UD))
5034      UD->setInvalidDecl();
5035    return UD;
5036  }
5037
5038  // Otherwise, look up the target name.
5039
5040  LookupResult R(*this, NameInfo, LookupOrdinaryName);
5041
5042  // Unlike most lookups, we don't always want to hide tag
5043  // declarations: tag names are visible through the using declaration
5044  // even if hidden by ordinary names, *except* in a dependent context
5045  // where it's important for the sanity of two-phase lookup.
5046  if (!IsInstantiation)
5047    R.setHideTags(false);
5048
5049  LookupQualifiedName(R, LookupContext);
5050
5051  if (R.empty()) {
5052    Diag(IdentLoc, diag::err_no_member)
5053      << NameInfo.getName() << LookupContext << SS.getRange();
5054    UD->setInvalidDecl();
5055    return UD;
5056  }
5057
5058  if (R.isAmbiguous()) {
5059    UD->setInvalidDecl();
5060    return UD;
5061  }
5062
5063  if (IsTypeName) {
5064    // If we asked for a typename and got a non-type decl, error out.
5065    if (!R.getAsSingle<TypeDecl>()) {
5066      Diag(IdentLoc, diag::err_using_typename_non_type);
5067      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
5068        Diag((*I)->getUnderlyingDecl()->getLocation(),
5069             diag::note_using_decl_target);
5070      UD->setInvalidDecl();
5071      return UD;
5072    }
5073  } else {
5074    // If we asked for a non-typename and we got a type, error out,
5075    // but only if this is an instantiation of an unresolved using
5076    // decl.  Otherwise just silently find the type name.
5077    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
5078      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
5079      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
5080      UD->setInvalidDecl();
5081      return UD;
5082    }
5083  }
5084
5085  // C++0x N2914 [namespace.udecl]p6:
5086  // A using-declaration shall not name a namespace.
5087  if (R.getAsSingle<NamespaceDecl>()) {
5088    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
5089      << SS.getRange();
5090    UD->setInvalidDecl();
5091    return UD;
5092  }
5093
5094  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
5095    if (!CheckUsingShadowDecl(UD, *I, Previous))
5096      BuildUsingShadowDecl(S, UD, *I);
5097  }
5098
5099  return UD;
5100}
5101
5102/// Additional checks for a using declaration referring to a constructor name.
5103bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
5104  if (UD->isTypeName()) {
5105    // FIXME: Cannot specify typename when specifying constructor
5106    return true;
5107  }
5108
5109  const Type *SourceType = UD->getQualifier()->getAsType();
5110  assert(SourceType &&
5111         "Using decl naming constructor doesn't have type in scope spec.");
5112  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
5113
5114  // Check whether the named type is a direct base class.
5115  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
5116  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
5117  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
5118       BaseIt != BaseE; ++BaseIt) {
5119    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
5120    if (CanonicalSourceType == BaseType)
5121      break;
5122  }
5123
5124  if (BaseIt == BaseE) {
5125    // Did not find SourceType in the bases.
5126    Diag(UD->getUsingLocation(),
5127         diag::err_using_decl_constructor_not_in_direct_base)
5128      << UD->getNameInfo().getSourceRange()
5129      << QualType(SourceType, 0) << TargetClass;
5130    return true;
5131  }
5132
5133  BaseIt->setInheritConstructors();
5134
5135  return false;
5136}
5137
5138/// Checks that the given using declaration is not an invalid
5139/// redeclaration.  Note that this is checking only for the using decl
5140/// itself, not for any ill-formedness among the UsingShadowDecls.
5141bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5142                                       bool isTypeName,
5143                                       const CXXScopeSpec &SS,
5144                                       SourceLocation NameLoc,
5145                                       const LookupResult &Prev) {
5146  // C++03 [namespace.udecl]p8:
5147  // C++0x [namespace.udecl]p10:
5148  //   A using-declaration is a declaration and can therefore be used
5149  //   repeatedly where (and only where) multiple declarations are
5150  //   allowed.
5151  //
5152  // That's in non-member contexts.
5153  if (!CurContext->getRedeclContext()->isRecord())
5154    return false;
5155
5156  NestedNameSpecifier *Qual
5157    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5158
5159  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
5160    NamedDecl *D = *I;
5161
5162    bool DTypename;
5163    NestedNameSpecifier *DQual;
5164    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
5165      DTypename = UD->isTypeName();
5166      DQual = UD->getQualifier();
5167    } else if (UnresolvedUsingValueDecl *UD
5168                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
5169      DTypename = false;
5170      DQual = UD->getQualifier();
5171    } else if (UnresolvedUsingTypenameDecl *UD
5172                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
5173      DTypename = true;
5174      DQual = UD->getQualifier();
5175    } else continue;
5176
5177    // using decls differ if one says 'typename' and the other doesn't.
5178    // FIXME: non-dependent using decls?
5179    if (isTypeName != DTypename) continue;
5180
5181    // using decls differ if they name different scopes (but note that
5182    // template instantiation can cause this check to trigger when it
5183    // didn't before instantiation).
5184    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
5185        Context.getCanonicalNestedNameSpecifier(DQual))
5186      continue;
5187
5188    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
5189    Diag(D->getLocation(), diag::note_using_decl) << 1;
5190    return true;
5191  }
5192
5193  return false;
5194}
5195
5196
5197/// Checks that the given nested-name qualifier used in a using decl
5198/// in the current context is appropriately related to the current
5199/// scope.  If an error is found, diagnoses it and returns true.
5200bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
5201                                   const CXXScopeSpec &SS,
5202                                   SourceLocation NameLoc) {
5203  DeclContext *NamedContext = computeDeclContext(SS);
5204
5205  if (!CurContext->isRecord()) {
5206    // C++03 [namespace.udecl]p3:
5207    // C++0x [namespace.udecl]p8:
5208    //   A using-declaration for a class member shall be a member-declaration.
5209
5210    // If we weren't able to compute a valid scope, it must be a
5211    // dependent class scope.
5212    if (!NamedContext || NamedContext->isRecord()) {
5213      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
5214        << SS.getRange();
5215      return true;
5216    }
5217
5218    // Otherwise, everything is known to be fine.
5219    return false;
5220  }
5221
5222  // The current scope is a record.
5223
5224  // If the named context is dependent, we can't decide much.
5225  if (!NamedContext) {
5226    // FIXME: in C++0x, we can diagnose if we can prove that the
5227    // nested-name-specifier does not refer to a base class, which is
5228    // still possible in some cases.
5229
5230    // Otherwise we have to conservatively report that things might be
5231    // okay.
5232    return false;
5233  }
5234
5235  if (!NamedContext->isRecord()) {
5236    // Ideally this would point at the last name in the specifier,
5237    // but we don't have that level of source info.
5238    Diag(SS.getRange().getBegin(),
5239         diag::err_using_decl_nested_name_specifier_is_not_class)
5240      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
5241    return true;
5242  }
5243
5244  if (!NamedContext->isDependentContext() &&
5245      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
5246    return true;
5247
5248  if (getLangOptions().CPlusPlus0x) {
5249    // C++0x [namespace.udecl]p3:
5250    //   In a using-declaration used as a member-declaration, the
5251    //   nested-name-specifier shall name a base class of the class
5252    //   being defined.
5253
5254    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
5255                                 cast<CXXRecordDecl>(NamedContext))) {
5256      if (CurContext == NamedContext) {
5257        Diag(NameLoc,
5258             diag::err_using_decl_nested_name_specifier_is_current_class)
5259          << SS.getRange();
5260        return true;
5261      }
5262
5263      Diag(SS.getRange().getBegin(),
5264           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5265        << (NestedNameSpecifier*) SS.getScopeRep()
5266        << cast<CXXRecordDecl>(CurContext)
5267        << SS.getRange();
5268      return true;
5269    }
5270
5271    return false;
5272  }
5273
5274  // C++03 [namespace.udecl]p4:
5275  //   A using-declaration used as a member-declaration shall refer
5276  //   to a member of a base class of the class being defined [etc.].
5277
5278  // Salient point: SS doesn't have to name a base class as long as
5279  // lookup only finds members from base classes.  Therefore we can
5280  // diagnose here only if we can prove that that can't happen,
5281  // i.e. if the class hierarchies provably don't intersect.
5282
5283  // TODO: it would be nice if "definitely valid" results were cached
5284  // in the UsingDecl and UsingShadowDecl so that these checks didn't
5285  // need to be repeated.
5286
5287  struct UserData {
5288    llvm::DenseSet<const CXXRecordDecl*> Bases;
5289
5290    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
5291      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5292      Data->Bases.insert(Base);
5293      return true;
5294    }
5295
5296    bool hasDependentBases(const CXXRecordDecl *Class) {
5297      return !Class->forallBases(collect, this);
5298    }
5299
5300    /// Returns true if the base is dependent or is one of the
5301    /// accumulated base classes.
5302    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
5303      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5304      return !Data->Bases.count(Base);
5305    }
5306
5307    bool mightShareBases(const CXXRecordDecl *Class) {
5308      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
5309    }
5310  };
5311
5312  UserData Data;
5313
5314  // Returns false if we find a dependent base.
5315  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
5316    return false;
5317
5318  // Returns false if the class has a dependent base or if it or one
5319  // of its bases is present in the base set of the current context.
5320  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
5321    return false;
5322
5323  Diag(SS.getRange().getBegin(),
5324       diag::err_using_decl_nested_name_specifier_is_not_base_class)
5325    << (NestedNameSpecifier*) SS.getScopeRep()
5326    << cast<CXXRecordDecl>(CurContext)
5327    << SS.getRange();
5328
5329  return true;
5330}
5331
5332Decl *Sema::ActOnAliasDeclaration(Scope *S,
5333                                  AccessSpecifier AS,
5334                                  MultiTemplateParamsArg TemplateParamLists,
5335                                  SourceLocation UsingLoc,
5336                                  UnqualifiedId &Name,
5337                                  TypeResult Type) {
5338  // Skip up to the relevant declaration scope.
5339  while (S->getFlags() & Scope::TemplateParamScope)
5340    S = S->getParent();
5341  assert((S->getFlags() & Scope::DeclScope) &&
5342         "got alias-declaration outside of declaration scope");
5343
5344  if (Type.isInvalid())
5345    return 0;
5346
5347  bool Invalid = false;
5348  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
5349  TypeSourceInfo *TInfo = 0;
5350  GetTypeFromParser(Type.get(), &TInfo);
5351
5352  if (DiagnoseClassNameShadow(CurContext, NameInfo))
5353    return 0;
5354
5355  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
5356                                      UPPC_DeclarationType)) {
5357    Invalid = true;
5358    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
5359                                             TInfo->getTypeLoc().getBeginLoc());
5360  }
5361
5362  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
5363  LookupName(Previous, S);
5364
5365  // Warn about shadowing the name of a template parameter.
5366  if (Previous.isSingleResult() &&
5367      Previous.getFoundDecl()->isTemplateParameter()) {
5368    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
5369                                        Previous.getFoundDecl()))
5370      Invalid = true;
5371    Previous.clear();
5372  }
5373
5374  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
5375         "name in alias declaration must be an identifier");
5376  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
5377                                               Name.StartLocation,
5378                                               Name.Identifier, TInfo);
5379
5380  NewTD->setAccess(AS);
5381
5382  if (Invalid)
5383    NewTD->setInvalidDecl();
5384
5385  CheckTypedefForVariablyModifiedType(S, NewTD);
5386  Invalid |= NewTD->isInvalidDecl();
5387
5388  bool Redeclaration = false;
5389
5390  NamedDecl *NewND;
5391  if (TemplateParamLists.size()) {
5392    TypeAliasTemplateDecl *OldDecl = 0;
5393    TemplateParameterList *OldTemplateParams = 0;
5394
5395    if (TemplateParamLists.size() != 1) {
5396      Diag(UsingLoc, diag::err_alias_template_extra_headers)
5397        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
5398         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
5399    }
5400    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
5401
5402    // Only consider previous declarations in the same scope.
5403    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
5404                         /*ExplicitInstantiationOrSpecialization*/false);
5405    if (!Previous.empty()) {
5406      Redeclaration = true;
5407
5408      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
5409      if (!OldDecl && !Invalid) {
5410        Diag(UsingLoc, diag::err_redefinition_different_kind)
5411          << Name.Identifier;
5412
5413        NamedDecl *OldD = Previous.getRepresentativeDecl();
5414        if (OldD->getLocation().isValid())
5415          Diag(OldD->getLocation(), diag::note_previous_definition);
5416
5417        Invalid = true;
5418      }
5419
5420      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
5421        if (TemplateParameterListsAreEqual(TemplateParams,
5422                                           OldDecl->getTemplateParameters(),
5423                                           /*Complain=*/true,
5424                                           TPL_TemplateMatch))
5425          OldTemplateParams = OldDecl->getTemplateParameters();
5426        else
5427          Invalid = true;
5428
5429        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
5430        if (!Invalid &&
5431            !Context.hasSameType(OldTD->getUnderlyingType(),
5432                                 NewTD->getUnderlyingType())) {
5433          // FIXME: The C++0x standard does not clearly say this is ill-formed,
5434          // but we can't reasonably accept it.
5435          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
5436            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
5437          if (OldTD->getLocation().isValid())
5438            Diag(OldTD->getLocation(), diag::note_previous_definition);
5439          Invalid = true;
5440        }
5441      }
5442    }
5443
5444    // Merge any previous default template arguments into our parameters,
5445    // and check the parameter list.
5446    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
5447                                   TPC_TypeAliasTemplate))
5448      return 0;
5449
5450    TypeAliasTemplateDecl *NewDecl =
5451      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
5452                                    Name.Identifier, TemplateParams,
5453                                    NewTD);
5454
5455    NewDecl->setAccess(AS);
5456
5457    if (Invalid)
5458      NewDecl->setInvalidDecl();
5459    else if (OldDecl)
5460      NewDecl->setPreviousDeclaration(OldDecl);
5461
5462    NewND = NewDecl;
5463  } else {
5464    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
5465    NewND = NewTD;
5466  }
5467
5468  if (!Redeclaration)
5469    PushOnScopeChains(NewND, S);
5470
5471  return NewND;
5472}
5473
5474Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
5475                                             SourceLocation NamespaceLoc,
5476                                             SourceLocation AliasLoc,
5477                                             IdentifierInfo *Alias,
5478                                             CXXScopeSpec &SS,
5479                                             SourceLocation IdentLoc,
5480                                             IdentifierInfo *Ident) {
5481
5482  // Lookup the namespace name.
5483  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
5484  LookupParsedName(R, S, &SS);
5485
5486  // Check if we have a previous declaration with the same name.
5487  NamedDecl *PrevDecl
5488    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
5489                       ForRedeclaration);
5490  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
5491    PrevDecl = 0;
5492
5493  if (PrevDecl) {
5494    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
5495      // We already have an alias with the same name that points to the same
5496      // namespace, so don't create a new one.
5497      // FIXME: At some point, we'll want to create the (redundant)
5498      // declaration to maintain better source information.
5499      if (!R.isAmbiguous() && !R.empty() &&
5500          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
5501        return 0;
5502    }
5503
5504    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
5505      diag::err_redefinition_different_kind;
5506    Diag(AliasLoc, DiagID) << Alias;
5507    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5508    return 0;
5509  }
5510
5511  if (R.isAmbiguous())
5512    return 0;
5513
5514  if (R.empty()) {
5515    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
5516                                                CTC_NoKeywords, 0)) {
5517      if (R.getAsSingle<NamespaceDecl>() ||
5518          R.getAsSingle<NamespaceAliasDecl>()) {
5519        if (DeclContext *DC = computeDeclContext(SS, false))
5520          Diag(IdentLoc, diag::err_using_directive_member_suggest)
5521            << Ident << DC << Corrected << SS.getRange()
5522            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5523        else
5524          Diag(IdentLoc, diag::err_using_directive_suggest)
5525            << Ident << Corrected
5526            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5527
5528        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
5529          << Corrected;
5530
5531        Ident = Corrected.getAsIdentifierInfo();
5532      } else {
5533        R.clear();
5534        R.setLookupName(Ident);
5535      }
5536    }
5537
5538    if (R.empty()) {
5539      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
5540      return 0;
5541    }
5542  }
5543
5544  NamespaceAliasDecl *AliasDecl =
5545    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
5546                               Alias, SS.getWithLocInContext(Context),
5547                               IdentLoc, R.getFoundDecl());
5548
5549  PushOnScopeChains(AliasDecl, S);
5550  return AliasDecl;
5551}
5552
5553namespace {
5554  /// \brief Scoped object used to handle the state changes required in Sema
5555  /// to implicitly define the body of a C++ member function;
5556  class ImplicitlyDefinedFunctionScope {
5557    Sema &S;
5558    Sema::ContextRAII SavedContext;
5559
5560  public:
5561    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
5562      : S(S), SavedContext(S, Method)
5563    {
5564      S.PushFunctionScope();
5565      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
5566    }
5567
5568    ~ImplicitlyDefinedFunctionScope() {
5569      S.PopExpressionEvaluationContext();
5570      S.PopFunctionOrBlockScope();
5571    }
5572  };
5573}
5574
5575static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
5576                                                       CXXRecordDecl *D) {
5577  ASTContext &Context = Self.Context;
5578  QualType ClassType = Context.getTypeDeclType(D);
5579  DeclarationName ConstructorName
5580    = Context.DeclarationNames.getCXXConstructorName(
5581                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
5582
5583  DeclContext::lookup_const_iterator Con, ConEnd;
5584  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
5585       Con != ConEnd; ++Con) {
5586    // FIXME: In C++0x, a constructor template can be a default constructor.
5587    if (isa<FunctionTemplateDecl>(*Con))
5588      continue;
5589
5590    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
5591    if (Constructor->isDefaultConstructor())
5592      return Constructor;
5593  }
5594  return 0;
5595}
5596
5597Sema::ImplicitExceptionSpecification
5598Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
5599  // C++ [except.spec]p14:
5600  //   An implicitly declared special member function (Clause 12) shall have an
5601  //   exception-specification. [...]
5602  ImplicitExceptionSpecification ExceptSpec(Context);
5603
5604  // Direct base-class constructors.
5605  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5606                                       BEnd = ClassDecl->bases_end();
5607       B != BEnd; ++B) {
5608    if (B->isVirtual()) // Handled below.
5609      continue;
5610
5611    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5612      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5613      if (BaseClassDecl->needsImplicitDefaultConstructor())
5614        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
5615      else if (CXXConstructorDecl *Constructor
5616                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
5617        ExceptSpec.CalledDecl(Constructor);
5618    }
5619  }
5620
5621  // Virtual base-class constructors.
5622  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5623                                       BEnd = ClassDecl->vbases_end();
5624       B != BEnd; ++B) {
5625    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5626      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5627      if (BaseClassDecl->needsImplicitDefaultConstructor())
5628        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
5629      else if (CXXConstructorDecl *Constructor
5630                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
5631        ExceptSpec.CalledDecl(Constructor);
5632    }
5633  }
5634
5635  // Field constructors.
5636  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5637                               FEnd = ClassDecl->field_end();
5638       F != FEnd; ++F) {
5639    if (const RecordType *RecordTy
5640              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
5641      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5642      if (FieldClassDecl->needsImplicitDefaultConstructor())
5643        ExceptSpec.CalledDecl(
5644                            DeclareImplicitDefaultConstructor(FieldClassDecl));
5645      else if (CXXConstructorDecl *Constructor
5646                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
5647        ExceptSpec.CalledDecl(Constructor);
5648    }
5649  }
5650
5651  return ExceptSpec;
5652}
5653
5654CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
5655                                                     CXXRecordDecl *ClassDecl) {
5656  // C++ [class.ctor]p5:
5657  //   A default constructor for a class X is a constructor of class X
5658  //   that can be called without an argument. If there is no
5659  //   user-declared constructor for class X, a default constructor is
5660  //   implicitly declared. An implicitly-declared default constructor
5661  //   is an inline public member of its class.
5662  assert(!ClassDecl->hasUserDeclaredConstructor() &&
5663         "Should not build implicit default constructor!");
5664
5665  ImplicitExceptionSpecification Spec =
5666    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
5667  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
5668
5669  // Create the actual constructor declaration.
5670  CanQualType ClassType
5671    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5672  SourceLocation ClassLoc = ClassDecl->getLocation();
5673  DeclarationName Name
5674    = Context.DeclarationNames.getCXXConstructorName(ClassType);
5675  DeclarationNameInfo NameInfo(Name, ClassLoc);
5676  CXXConstructorDecl *DefaultCon
5677    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5678                                 Context.getFunctionType(Context.VoidTy,
5679                                                         0, 0, EPI),
5680                                 /*TInfo=*/0,
5681                                 /*isExplicit=*/false,
5682                                 /*isInline=*/true,
5683                                 /*isImplicitlyDeclared=*/true);
5684  DefaultCon->setAccess(AS_public);
5685  DefaultCon->setDefaulted();
5686  DefaultCon->setImplicit();
5687  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
5688
5689  // Note that we have declared this constructor.
5690  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
5691
5692  // Do not delete this yet if we're in a template
5693  if (!ClassDecl->isDependentType() &&
5694      ShouldDeleteDefaultConstructor(DefaultCon))
5695    DefaultCon->setDeletedAsWritten();
5696
5697  if (Scope *S = getScopeForContext(ClassDecl))
5698    PushOnScopeChains(DefaultCon, S, false);
5699  ClassDecl->addDecl(DefaultCon);
5700
5701  return DefaultCon;
5702}
5703
5704void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
5705                                            CXXConstructorDecl *Constructor) {
5706  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5707          !Constructor->isUsed(false) && !Constructor->isDeleted()) &&
5708    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
5709
5710  CXXRecordDecl *ClassDecl = Constructor->getParent();
5711  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
5712
5713  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
5714  DiagnosticErrorTrap Trap(Diags);
5715  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
5716      Trap.hasErrorOccurred()) {
5717    Diag(CurrentLocation, diag::note_member_synthesized_at)
5718      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
5719    Constructor->setInvalidDecl();
5720    return;
5721  }
5722
5723  SourceLocation Loc = Constructor->getLocation();
5724  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
5725
5726  Constructor->setUsed();
5727  MarkVTableUsed(CurrentLocation, ClassDecl);
5728
5729  if (ASTMutationListener *L = getASTMutationListener()) {
5730    L->CompletedImplicitDefinition(Constructor);
5731  }
5732}
5733
5734void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
5735  // We start with an initial pass over the base classes to collect those that
5736  // inherit constructors from. If there are none, we can forgo all further
5737  // processing.
5738  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
5739  BasesVector BasesToInheritFrom;
5740  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
5741                                          BaseE = ClassDecl->bases_end();
5742         BaseIt != BaseE; ++BaseIt) {
5743    if (BaseIt->getInheritConstructors()) {
5744      QualType Base = BaseIt->getType();
5745      if (Base->isDependentType()) {
5746        // If we inherit constructors from anything that is dependent, just
5747        // abort processing altogether. We'll get another chance for the
5748        // instantiations.
5749        return;
5750      }
5751      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
5752    }
5753  }
5754  if (BasesToInheritFrom.empty())
5755    return;
5756
5757  // Now collect the constructors that we already have in the current class.
5758  // Those take precedence over inherited constructors.
5759  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
5760  //   unless there is a user-declared constructor with the same signature in
5761  //   the class where the using-declaration appears.
5762  llvm::SmallSet<const Type *, 8> ExistingConstructors;
5763  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
5764                                    CtorE = ClassDecl->ctor_end();
5765       CtorIt != CtorE; ++CtorIt) {
5766    ExistingConstructors.insert(
5767        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
5768  }
5769
5770  Scope *S = getScopeForContext(ClassDecl);
5771  DeclarationName CreatedCtorName =
5772      Context.DeclarationNames.getCXXConstructorName(
5773          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
5774
5775  // Now comes the true work.
5776  // First, we keep a map from constructor types to the base that introduced
5777  // them. Needed for finding conflicting constructors. We also keep the
5778  // actually inserted declarations in there, for pretty diagnostics.
5779  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
5780  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
5781  ConstructorToSourceMap InheritedConstructors;
5782  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
5783                             BaseE = BasesToInheritFrom.end();
5784       BaseIt != BaseE; ++BaseIt) {
5785    const RecordType *Base = *BaseIt;
5786    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
5787    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
5788    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
5789                                      CtorE = BaseDecl->ctor_end();
5790         CtorIt != CtorE; ++CtorIt) {
5791      // Find the using declaration for inheriting this base's constructors.
5792      DeclarationName Name =
5793          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
5794      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
5795          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
5796      SourceLocation UsingLoc = UD ? UD->getLocation() :
5797                                     ClassDecl->getLocation();
5798
5799      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
5800      //   from the class X named in the using-declaration consists of actual
5801      //   constructors and notional constructors that result from the
5802      //   transformation of defaulted parameters as follows:
5803      //   - all non-template default constructors of X, and
5804      //   - for each non-template constructor of X that has at least one
5805      //     parameter with a default argument, the set of constructors that
5806      //     results from omitting any ellipsis parameter specification and
5807      //     successively omitting parameters with a default argument from the
5808      //     end of the parameter-type-list.
5809      CXXConstructorDecl *BaseCtor = *CtorIt;
5810      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
5811      const FunctionProtoType *BaseCtorType =
5812          BaseCtor->getType()->getAs<FunctionProtoType>();
5813
5814      for (unsigned params = BaseCtor->getMinRequiredArguments(),
5815                    maxParams = BaseCtor->getNumParams();
5816           params <= maxParams; ++params) {
5817        // Skip default constructors. They're never inherited.
5818        if (params == 0)
5819          continue;
5820        // Skip copy and move constructors for the same reason.
5821        if (CanBeCopyOrMove && params == 1)
5822          continue;
5823
5824        // Build up a function type for this particular constructor.
5825        // FIXME: The working paper does not consider that the exception spec
5826        // for the inheriting constructor might be larger than that of the
5827        // source. This code doesn't yet, either.
5828        const Type *NewCtorType;
5829        if (params == maxParams)
5830          NewCtorType = BaseCtorType;
5831        else {
5832          llvm::SmallVector<QualType, 16> Args;
5833          for (unsigned i = 0; i < params; ++i) {
5834            Args.push_back(BaseCtorType->getArgType(i));
5835          }
5836          FunctionProtoType::ExtProtoInfo ExtInfo =
5837              BaseCtorType->getExtProtoInfo();
5838          ExtInfo.Variadic = false;
5839          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
5840                                                Args.data(), params, ExtInfo)
5841                       .getTypePtr();
5842        }
5843        const Type *CanonicalNewCtorType =
5844            Context.getCanonicalType(NewCtorType);
5845
5846        // Now that we have the type, first check if the class already has a
5847        // constructor with this signature.
5848        if (ExistingConstructors.count(CanonicalNewCtorType))
5849          continue;
5850
5851        // Then we check if we have already declared an inherited constructor
5852        // with this signature.
5853        std::pair<ConstructorToSourceMap::iterator, bool> result =
5854            InheritedConstructors.insert(std::make_pair(
5855                CanonicalNewCtorType,
5856                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
5857        if (!result.second) {
5858          // Already in the map. If it came from a different class, that's an
5859          // error. Not if it's from the same.
5860          CanQualType PreviousBase = result.first->second.first;
5861          if (CanonicalBase != PreviousBase) {
5862            const CXXConstructorDecl *PrevCtor = result.first->second.second;
5863            const CXXConstructorDecl *PrevBaseCtor =
5864                PrevCtor->getInheritedConstructor();
5865            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
5866
5867            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
5868            Diag(BaseCtor->getLocation(),
5869                 diag::note_using_decl_constructor_conflict_current_ctor);
5870            Diag(PrevBaseCtor->getLocation(),
5871                 diag::note_using_decl_constructor_conflict_previous_ctor);
5872            Diag(PrevCtor->getLocation(),
5873                 diag::note_using_decl_constructor_conflict_previous_using);
5874          }
5875          continue;
5876        }
5877
5878        // OK, we're there, now add the constructor.
5879        // C++0x [class.inhctor]p8: [...] that would be performed by a
5880        //   user-writtern inline constructor [...]
5881        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
5882        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
5883            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
5884            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
5885            /*ImplicitlyDeclared=*/true);
5886        NewCtor->setAccess(BaseCtor->getAccess());
5887
5888        // Build up the parameter decls and add them.
5889        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
5890        for (unsigned i = 0; i < params; ++i) {
5891          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
5892                                                   UsingLoc, UsingLoc,
5893                                                   /*IdentifierInfo=*/0,
5894                                                   BaseCtorType->getArgType(i),
5895                                                   /*TInfo=*/0, SC_None,
5896                                                   SC_None, /*DefaultArg=*/0));
5897        }
5898        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
5899        NewCtor->setInheritedConstructor(BaseCtor);
5900
5901        PushOnScopeChains(NewCtor, S, false);
5902        ClassDecl->addDecl(NewCtor);
5903        result.first->second.second = NewCtor;
5904      }
5905    }
5906  }
5907}
5908
5909Sema::ImplicitExceptionSpecification
5910Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
5911  // C++ [except.spec]p14:
5912  //   An implicitly declared special member function (Clause 12) shall have
5913  //   an exception-specification.
5914  ImplicitExceptionSpecification ExceptSpec(Context);
5915
5916  // Direct base-class destructors.
5917  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5918                                       BEnd = ClassDecl->bases_end();
5919       B != BEnd; ++B) {
5920    if (B->isVirtual()) // Handled below.
5921      continue;
5922
5923    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
5924      ExceptSpec.CalledDecl(
5925                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
5926  }
5927
5928  // Virtual base-class destructors.
5929  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5930                                       BEnd = ClassDecl->vbases_end();
5931       B != BEnd; ++B) {
5932    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
5933      ExceptSpec.CalledDecl(
5934                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
5935  }
5936
5937  // Field destructors.
5938  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5939                               FEnd = ClassDecl->field_end();
5940       F != FEnd; ++F) {
5941    if (const RecordType *RecordTy
5942        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
5943      ExceptSpec.CalledDecl(
5944                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
5945  }
5946
5947  return ExceptSpec;
5948}
5949
5950CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
5951  // C++ [class.dtor]p2:
5952  //   If a class has no user-declared destructor, a destructor is
5953  //   declared implicitly. An implicitly-declared destructor is an
5954  //   inline public member of its class.
5955
5956  ImplicitExceptionSpecification Spec =
5957   ComputeDefaultedDtorExceptionSpec(ClassDecl);
5958  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
5959
5960  // Create the actual destructor declaration.
5961  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5962
5963  CanQualType ClassType
5964    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5965  SourceLocation ClassLoc = ClassDecl->getLocation();
5966  DeclarationName Name
5967    = Context.DeclarationNames.getCXXDestructorName(ClassType);
5968  DeclarationNameInfo NameInfo(Name, ClassLoc);
5969  CXXDestructorDecl *Destructor
5970      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
5971                                  /*isInline=*/true,
5972                                  /*isImplicitlyDeclared=*/true);
5973  Destructor->setAccess(AS_public);
5974  Destructor->setDefaulted();
5975  Destructor->setImplicit();
5976  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
5977
5978  // Note that we have declared this destructor.
5979  ++ASTContext::NumImplicitDestructorsDeclared;
5980
5981  // Introduce this destructor into its scope.
5982  if (Scope *S = getScopeForContext(ClassDecl))
5983    PushOnScopeChains(Destructor, S, false);
5984  ClassDecl->addDecl(Destructor);
5985
5986  // This could be uniqued if it ever proves significant.
5987  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
5988
5989  if (ShouldDeleteDestructor(Destructor))
5990    Destructor->setDeletedAsWritten();
5991
5992  AddOverriddenMethods(ClassDecl, Destructor);
5993
5994  return Destructor;
5995}
5996
5997void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
5998                                    CXXDestructorDecl *Destructor) {
5999  assert((Destructor->isDefaulted() && !Destructor->isUsed(false)) &&
6000         "DefineImplicitDestructor - call it for implicit default dtor");
6001  CXXRecordDecl *ClassDecl = Destructor->getParent();
6002  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
6003
6004  if (Destructor->isInvalidDecl())
6005    return;
6006
6007  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
6008
6009  DiagnosticErrorTrap Trap(Diags);
6010  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6011                                         Destructor->getParent());
6012
6013  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
6014    Diag(CurrentLocation, diag::note_member_synthesized_at)
6015      << CXXDestructor << Context.getTagDeclType(ClassDecl);
6016
6017    Destructor->setInvalidDecl();
6018    return;
6019  }
6020
6021  SourceLocation Loc = Destructor->getLocation();
6022  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6023
6024  Destructor->setUsed();
6025  MarkVTableUsed(CurrentLocation, ClassDecl);
6026
6027  if (ASTMutationListener *L = getASTMutationListener()) {
6028    L->CompletedImplicitDefinition(Destructor);
6029  }
6030}
6031
6032/// \brief Builds a statement that copies the given entity from \p From to
6033/// \c To.
6034///
6035/// This routine is used to copy the members of a class with an
6036/// implicitly-declared copy assignment operator. When the entities being
6037/// copied are arrays, this routine builds for loops to copy them.
6038///
6039/// \param S The Sema object used for type-checking.
6040///
6041/// \param Loc The location where the implicit copy is being generated.
6042///
6043/// \param T The type of the expressions being copied. Both expressions must
6044/// have this type.
6045///
6046/// \param To The expression we are copying to.
6047///
6048/// \param From The expression we are copying from.
6049///
6050/// \param CopyingBaseSubobject Whether we're copying a base subobject.
6051/// Otherwise, it's a non-static member subobject.
6052///
6053/// \param Depth Internal parameter recording the depth of the recursion.
6054///
6055/// \returns A statement or a loop that copies the expressions.
6056static StmtResult
6057BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
6058                      Expr *To, Expr *From,
6059                      bool CopyingBaseSubobject, unsigned Depth = 0) {
6060  // C++0x [class.copy]p30:
6061  //   Each subobject is assigned in the manner appropriate to its type:
6062  //
6063  //     - if the subobject is of class type, the copy assignment operator
6064  //       for the class is used (as if by explicit qualification; that is,
6065  //       ignoring any possible virtual overriding functions in more derived
6066  //       classes);
6067  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
6068    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6069
6070    // Look for operator=.
6071    DeclarationName Name
6072      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6073    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
6074    S.LookupQualifiedName(OpLookup, ClassDecl, false);
6075
6076    // Filter out any result that isn't a copy-assignment operator.
6077    LookupResult::Filter F = OpLookup.makeFilter();
6078    while (F.hasNext()) {
6079      NamedDecl *D = F.next();
6080      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
6081        if (Method->isCopyAssignmentOperator())
6082          continue;
6083
6084      F.erase();
6085    }
6086    F.done();
6087
6088    // Suppress the protected check (C++ [class.protected]) for each of the
6089    // assignment operators we found. This strange dance is required when
6090    // we're assigning via a base classes's copy-assignment operator. To
6091    // ensure that we're getting the right base class subobject (without
6092    // ambiguities), we need to cast "this" to that subobject type; to
6093    // ensure that we don't go through the virtual call mechanism, we need
6094    // to qualify the operator= name with the base class (see below). However,
6095    // this means that if the base class has a protected copy assignment
6096    // operator, the protected member access check will fail. So, we
6097    // rewrite "protected" access to "public" access in this case, since we
6098    // know by construction that we're calling from a derived class.
6099    if (CopyingBaseSubobject) {
6100      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
6101           L != LEnd; ++L) {
6102        if (L.getAccess() == AS_protected)
6103          L.setAccess(AS_public);
6104      }
6105    }
6106
6107    // Create the nested-name-specifier that will be used to qualify the
6108    // reference to operator=; this is required to suppress the virtual
6109    // call mechanism.
6110    CXXScopeSpec SS;
6111    SS.MakeTrivial(S.Context,
6112                   NestedNameSpecifier::Create(S.Context, 0, false,
6113                                               T.getTypePtr()),
6114                   Loc);
6115
6116    // Create the reference to operator=.
6117    ExprResult OpEqualRef
6118      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
6119                                   /*FirstQualifierInScope=*/0, OpLookup,
6120                                   /*TemplateArgs=*/0,
6121                                   /*SuppressQualifierCheck=*/true);
6122    if (OpEqualRef.isInvalid())
6123      return StmtError();
6124
6125    // Build the call to the assignment operator.
6126
6127    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
6128                                                  OpEqualRef.takeAs<Expr>(),
6129                                                  Loc, &From, 1, Loc);
6130    if (Call.isInvalid())
6131      return StmtError();
6132
6133    return S.Owned(Call.takeAs<Stmt>());
6134  }
6135
6136  //     - if the subobject is of scalar type, the built-in assignment
6137  //       operator is used.
6138  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
6139  if (!ArrayTy) {
6140    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
6141    if (Assignment.isInvalid())
6142      return StmtError();
6143
6144    return S.Owned(Assignment.takeAs<Stmt>());
6145  }
6146
6147  //     - if the subobject is an array, each element is assigned, in the
6148  //       manner appropriate to the element type;
6149
6150  // Construct a loop over the array bounds, e.g.,
6151  //
6152  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
6153  //
6154  // that will copy each of the array elements.
6155  QualType SizeType = S.Context.getSizeType();
6156
6157  // Create the iteration variable.
6158  IdentifierInfo *IterationVarName = 0;
6159  {
6160    llvm::SmallString<8> Str;
6161    llvm::raw_svector_ostream OS(Str);
6162    OS << "__i" << Depth;
6163    IterationVarName = &S.Context.Idents.get(OS.str());
6164  }
6165  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
6166                                          IterationVarName, SizeType,
6167                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
6168                                          SC_None, SC_None);
6169
6170  // Initialize the iteration variable to zero.
6171  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
6172  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
6173
6174  // Create a reference to the iteration variable; we'll use this several
6175  // times throughout.
6176  Expr *IterationVarRef
6177    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
6178  assert(IterationVarRef && "Reference to invented variable cannot fail!");
6179
6180  // Create the DeclStmt that holds the iteration variable.
6181  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
6182
6183  // Create the comparison against the array bound.
6184  llvm::APInt Upper
6185    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
6186  Expr *Comparison
6187    = new (S.Context) BinaryOperator(IterationVarRef,
6188                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
6189                                     BO_NE, S.Context.BoolTy,
6190                                     VK_RValue, OK_Ordinary, Loc);
6191
6192  // Create the pre-increment of the iteration variable.
6193  Expr *Increment
6194    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
6195                                    VK_LValue, OK_Ordinary, Loc);
6196
6197  // Subscript the "from" and "to" expressions with the iteration variable.
6198  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
6199                                                         IterationVarRef, Loc));
6200  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
6201                                                       IterationVarRef, Loc));
6202
6203  // Build the copy for an individual element of the array.
6204  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
6205                                          To, From, CopyingBaseSubobject,
6206                                          Depth + 1);
6207  if (Copy.isInvalid())
6208    return StmtError();
6209
6210  // Construct the loop that copies all elements of this array.
6211  return S.ActOnForStmt(Loc, Loc, InitStmt,
6212                        S.MakeFullExpr(Comparison),
6213                        0, S.MakeFullExpr(Increment),
6214                        Loc, Copy.take());
6215}
6216
6217/// \brief Determine whether the given class has a copy assignment operator
6218/// that accepts a const-qualified argument.
6219static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
6220  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
6221
6222  if (!Class->hasDeclaredCopyAssignment())
6223    S.DeclareImplicitCopyAssignment(Class);
6224
6225  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
6226  DeclarationName OpName
6227    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6228
6229  DeclContext::lookup_const_iterator Op, OpEnd;
6230  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
6231    // C++ [class.copy]p9:
6232    //   A user-declared copy assignment operator is a non-static non-template
6233    //   member function of class X with exactly one parameter of type X, X&,
6234    //   const X&, volatile X& or const volatile X&.
6235    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
6236    if (!Method)
6237      continue;
6238
6239    if (Method->isStatic())
6240      continue;
6241    if (Method->getPrimaryTemplate())
6242      continue;
6243    const FunctionProtoType *FnType =
6244    Method->getType()->getAs<FunctionProtoType>();
6245    assert(FnType && "Overloaded operator has no prototype.");
6246    // Don't assert on this; an invalid decl might have been left in the AST.
6247    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
6248      continue;
6249    bool AcceptsConst = true;
6250    QualType ArgType = FnType->getArgType(0);
6251    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
6252      ArgType = Ref->getPointeeType();
6253      // Is it a non-const lvalue reference?
6254      if (!ArgType.isConstQualified())
6255        AcceptsConst = false;
6256    }
6257    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
6258      continue;
6259
6260    // We have a single argument of type cv X or cv X&, i.e. we've found the
6261    // copy assignment operator. Return whether it accepts const arguments.
6262    return AcceptsConst;
6263  }
6264  assert(Class->isInvalidDecl() &&
6265         "No copy assignment operator declared in valid code.");
6266  return false;
6267}
6268
6269CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
6270  // Note: The following rules are largely analoguous to the copy
6271  // constructor rules. Note that virtual bases are not taken into account
6272  // for determining the argument type of the operator. Note also that
6273  // operators taking an object instead of a reference are allowed.
6274
6275
6276  // C++ [class.copy]p10:
6277  //   If the class definition does not explicitly declare a copy
6278  //   assignment operator, one is declared implicitly.
6279  //   The implicitly-defined copy assignment operator for a class X
6280  //   will have the form
6281  //
6282  //       X& X::operator=(const X&)
6283  //
6284  //   if
6285  bool HasConstCopyAssignment = true;
6286
6287  //       -- each direct base class B of X has a copy assignment operator
6288  //          whose parameter is of type const B&, const volatile B& or B,
6289  //          and
6290  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6291                                       BaseEnd = ClassDecl->bases_end();
6292       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6293    assert(!Base->getType()->isDependentType() &&
6294           "Cannot generate implicit members for class with dependent bases.");
6295    const CXXRecordDecl *BaseClassDecl
6296      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6297    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
6298  }
6299
6300  //       -- for all the nonstatic data members of X that are of a class
6301  //          type M (or array thereof), each such class type has a copy
6302  //          assignment operator whose parameter is of type const M&,
6303  //          const volatile M& or M.
6304  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6305                                  FieldEnd = ClassDecl->field_end();
6306       HasConstCopyAssignment && Field != FieldEnd;
6307       ++Field) {
6308    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6309    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6310      const CXXRecordDecl *FieldClassDecl
6311        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6312      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
6313    }
6314  }
6315
6316  //   Otherwise, the implicitly declared copy assignment operator will
6317  //   have the form
6318  //
6319  //       X& X::operator=(X&)
6320  QualType ArgType = Context.getTypeDeclType(ClassDecl);
6321  QualType RetType = Context.getLValueReferenceType(ArgType);
6322  if (HasConstCopyAssignment)
6323    ArgType = ArgType.withConst();
6324  ArgType = Context.getLValueReferenceType(ArgType);
6325
6326  // C++ [except.spec]p14:
6327  //   An implicitly declared special member function (Clause 12) shall have an
6328  //   exception-specification. [...]
6329  ImplicitExceptionSpecification ExceptSpec(Context);
6330  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6331                                       BaseEnd = ClassDecl->bases_end();
6332       Base != BaseEnd; ++Base) {
6333    CXXRecordDecl *BaseClassDecl
6334      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6335
6336    if (!BaseClassDecl->hasDeclaredCopyAssignment())
6337      DeclareImplicitCopyAssignment(BaseClassDecl);
6338
6339    if (CXXMethodDecl *CopyAssign
6340           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
6341      ExceptSpec.CalledDecl(CopyAssign);
6342  }
6343  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6344                                  FieldEnd = ClassDecl->field_end();
6345       Field != FieldEnd;
6346       ++Field) {
6347    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6348    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6349      CXXRecordDecl *FieldClassDecl
6350        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6351
6352      if (!FieldClassDecl->hasDeclaredCopyAssignment())
6353        DeclareImplicitCopyAssignment(FieldClassDecl);
6354
6355      if (CXXMethodDecl *CopyAssign
6356            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
6357        ExceptSpec.CalledDecl(CopyAssign);
6358    }
6359  }
6360
6361  //   An implicitly-declared copy assignment operator is an inline public
6362  //   member of its class.
6363  FunctionProtoType::ExtProtoInfo EPI;
6364  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
6365  EPI.NumExceptions = ExceptSpec.size();
6366  EPI.Exceptions = ExceptSpec.data();
6367  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6368  SourceLocation ClassLoc = ClassDecl->getLocation();
6369  DeclarationNameInfo NameInfo(Name, ClassLoc);
6370  CXXMethodDecl *CopyAssignment
6371    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6372                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
6373                            /*TInfo=*/0, /*isStatic=*/false,
6374                            /*StorageClassAsWritten=*/SC_None,
6375                            /*isInline=*/true,
6376                            SourceLocation());
6377  CopyAssignment->setAccess(AS_public);
6378  CopyAssignment->setImplicit();
6379  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
6380
6381  // Add the parameter to the operator.
6382  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
6383                                               ClassLoc, ClassLoc, /*Id=*/0,
6384                                               ArgType, /*TInfo=*/0,
6385                                               SC_None,
6386                                               SC_None, 0);
6387  CopyAssignment->setParams(&FromParam, 1);
6388
6389  // Note that we have added this copy-assignment operator.
6390  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
6391
6392  if (Scope *S = getScopeForContext(ClassDecl))
6393    PushOnScopeChains(CopyAssignment, S, false);
6394  ClassDecl->addDecl(CopyAssignment);
6395
6396  AddOverriddenMethods(ClassDecl, CopyAssignment);
6397  return CopyAssignment;
6398}
6399
6400void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6401                                        CXXMethodDecl *CopyAssignOperator) {
6402  assert((CopyAssignOperator->isImplicit() &&
6403          CopyAssignOperator->isOverloadedOperator() &&
6404          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
6405          !CopyAssignOperator->isUsed(false)) &&
6406         "DefineImplicitCopyAssignment called for wrong function");
6407
6408  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
6409
6410  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
6411    CopyAssignOperator->setInvalidDecl();
6412    return;
6413  }
6414
6415  CopyAssignOperator->setUsed();
6416
6417  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
6418  DiagnosticErrorTrap Trap(Diags);
6419
6420  // C++0x [class.copy]p30:
6421  //   The implicitly-defined or explicitly-defaulted copy assignment operator
6422  //   for a non-union class X performs memberwise copy assignment of its
6423  //   subobjects. The direct base classes of X are assigned first, in the
6424  //   order of their declaration in the base-specifier-list, and then the
6425  //   immediate non-static data members of X are assigned, in the order in
6426  //   which they were declared in the class definition.
6427
6428  // The statements that form the synthesized function body.
6429  ASTOwningVector<Stmt*> Statements(*this);
6430
6431  // The parameter for the "other" object, which we are copying from.
6432  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
6433  Qualifiers OtherQuals = Other->getType().getQualifiers();
6434  QualType OtherRefType = Other->getType();
6435  if (const LValueReferenceType *OtherRef
6436                                = OtherRefType->getAs<LValueReferenceType>()) {
6437    OtherRefType = OtherRef->getPointeeType();
6438    OtherQuals = OtherRefType.getQualifiers();
6439  }
6440
6441  // Our location for everything implicitly-generated.
6442  SourceLocation Loc = CopyAssignOperator->getLocation();
6443
6444  // Construct a reference to the "other" object. We'll be using this
6445  // throughout the generated ASTs.
6446  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
6447  assert(OtherRef && "Reference to parameter cannot fail!");
6448
6449  // Construct the "this" pointer. We'll be using this throughout the generated
6450  // ASTs.
6451  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
6452  assert(This && "Reference to this cannot fail!");
6453
6454  // Assign base classes.
6455  bool Invalid = false;
6456  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6457       E = ClassDecl->bases_end(); Base != E; ++Base) {
6458    // Form the assignment:
6459    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
6460    QualType BaseType = Base->getType().getUnqualifiedType();
6461    if (!BaseType->isRecordType()) {
6462      Invalid = true;
6463      continue;
6464    }
6465
6466    CXXCastPath BasePath;
6467    BasePath.push_back(Base);
6468
6469    // Construct the "from" expression, which is an implicit cast to the
6470    // appropriately-qualified base type.
6471    Expr *From = OtherRef;
6472    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
6473                             CK_UncheckedDerivedToBase,
6474                             VK_LValue, &BasePath).take();
6475
6476    // Dereference "this".
6477    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
6478
6479    // Implicitly cast "this" to the appropriately-qualified base type.
6480    To = ImpCastExprToType(To.take(),
6481                           Context.getCVRQualifiedType(BaseType,
6482                                     CopyAssignOperator->getTypeQualifiers()),
6483                           CK_UncheckedDerivedToBase,
6484                           VK_LValue, &BasePath);
6485
6486    // Build the copy.
6487    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
6488                                            To.get(), From,
6489                                            /*CopyingBaseSubobject=*/true);
6490    if (Copy.isInvalid()) {
6491      Diag(CurrentLocation, diag::note_member_synthesized_at)
6492        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6493      CopyAssignOperator->setInvalidDecl();
6494      return;
6495    }
6496
6497    // Success! Record the copy.
6498    Statements.push_back(Copy.takeAs<Expr>());
6499  }
6500
6501  // \brief Reference to the __builtin_memcpy function.
6502  Expr *BuiltinMemCpyRef = 0;
6503  // \brief Reference to the __builtin_objc_memmove_collectable function.
6504  Expr *CollectableMemCpyRef = 0;
6505
6506  // Assign non-static members.
6507  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6508                                  FieldEnd = ClassDecl->field_end();
6509       Field != FieldEnd; ++Field) {
6510    // Check for members of reference type; we can't copy those.
6511    if (Field->getType()->isReferenceType()) {
6512      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6513        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
6514      Diag(Field->getLocation(), diag::note_declared_at);
6515      Diag(CurrentLocation, diag::note_member_synthesized_at)
6516        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6517      Invalid = true;
6518      continue;
6519    }
6520
6521    // Check for members of const-qualified, non-class type.
6522    QualType BaseType = Context.getBaseElementType(Field->getType());
6523    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
6524      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6525        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
6526      Diag(Field->getLocation(), diag::note_declared_at);
6527      Diag(CurrentLocation, diag::note_member_synthesized_at)
6528        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6529      Invalid = true;
6530      continue;
6531    }
6532
6533    QualType FieldType = Field->getType().getNonReferenceType();
6534    if (FieldType->isIncompleteArrayType()) {
6535      assert(ClassDecl->hasFlexibleArrayMember() &&
6536             "Incomplete array type is not valid");
6537      continue;
6538    }
6539
6540    // Build references to the field in the object we're copying from and to.
6541    CXXScopeSpec SS; // Intentionally empty
6542    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
6543                              LookupMemberName);
6544    MemberLookup.addDecl(*Field);
6545    MemberLookup.resolveKind();
6546    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
6547                                               Loc, /*IsArrow=*/false,
6548                                               SS, 0, MemberLookup, 0);
6549    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
6550                                             Loc, /*IsArrow=*/true,
6551                                             SS, 0, MemberLookup, 0);
6552    assert(!From.isInvalid() && "Implicit field reference cannot fail");
6553    assert(!To.isInvalid() && "Implicit field reference cannot fail");
6554
6555    // If the field should be copied with __builtin_memcpy rather than via
6556    // explicit assignments, do so. This optimization only applies for arrays
6557    // of scalars and arrays of class type with trivial copy-assignment
6558    // operators.
6559    if (FieldType->isArrayType() &&
6560        (!BaseType->isRecordType() ||
6561         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
6562           ->hasTrivialCopyAssignment())) {
6563      // Compute the size of the memory buffer to be copied.
6564      QualType SizeType = Context.getSizeType();
6565      llvm::APInt Size(Context.getTypeSize(SizeType),
6566                       Context.getTypeSizeInChars(BaseType).getQuantity());
6567      for (const ConstantArrayType *Array
6568              = Context.getAsConstantArrayType(FieldType);
6569           Array;
6570           Array = Context.getAsConstantArrayType(Array->getElementType())) {
6571        llvm::APInt ArraySize
6572          = Array->getSize().zextOrTrunc(Size.getBitWidth());
6573        Size *= ArraySize;
6574      }
6575
6576      // Take the address of the field references for "from" and "to".
6577      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
6578      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
6579
6580      bool NeedsCollectableMemCpy =
6581          (BaseType->isRecordType() &&
6582           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
6583
6584      if (NeedsCollectableMemCpy) {
6585        if (!CollectableMemCpyRef) {
6586          // Create a reference to the __builtin_objc_memmove_collectable function.
6587          LookupResult R(*this,
6588                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
6589                         Loc, LookupOrdinaryName);
6590          LookupName(R, TUScope, true);
6591
6592          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
6593          if (!CollectableMemCpy) {
6594            // Something went horribly wrong earlier, and we will have
6595            // complained about it.
6596            Invalid = true;
6597            continue;
6598          }
6599
6600          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
6601                                                  CollectableMemCpy->getType(),
6602                                                  VK_LValue, Loc, 0).take();
6603          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
6604        }
6605      }
6606      // Create a reference to the __builtin_memcpy builtin function.
6607      else if (!BuiltinMemCpyRef) {
6608        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
6609                       LookupOrdinaryName);
6610        LookupName(R, TUScope, true);
6611
6612        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
6613        if (!BuiltinMemCpy) {
6614          // Something went horribly wrong earlier, and we will have complained
6615          // about it.
6616          Invalid = true;
6617          continue;
6618        }
6619
6620        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
6621                                            BuiltinMemCpy->getType(),
6622                                            VK_LValue, Loc, 0).take();
6623        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
6624      }
6625
6626      ASTOwningVector<Expr*> CallArgs(*this);
6627      CallArgs.push_back(To.takeAs<Expr>());
6628      CallArgs.push_back(From.takeAs<Expr>());
6629      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
6630      ExprResult Call = ExprError();
6631      if (NeedsCollectableMemCpy)
6632        Call = ActOnCallExpr(/*Scope=*/0,
6633                             CollectableMemCpyRef,
6634                             Loc, move_arg(CallArgs),
6635                             Loc);
6636      else
6637        Call = ActOnCallExpr(/*Scope=*/0,
6638                             BuiltinMemCpyRef,
6639                             Loc, move_arg(CallArgs),
6640                             Loc);
6641
6642      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
6643      Statements.push_back(Call.takeAs<Expr>());
6644      continue;
6645    }
6646
6647    // Build the copy of this field.
6648    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
6649                                                  To.get(), From.get(),
6650                                              /*CopyingBaseSubobject=*/false);
6651    if (Copy.isInvalid()) {
6652      Diag(CurrentLocation, diag::note_member_synthesized_at)
6653        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6654      CopyAssignOperator->setInvalidDecl();
6655      return;
6656    }
6657
6658    // Success! Record the copy.
6659    Statements.push_back(Copy.takeAs<Stmt>());
6660  }
6661
6662  if (!Invalid) {
6663    // Add a "return *this;"
6664    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
6665
6666    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
6667    if (Return.isInvalid())
6668      Invalid = true;
6669    else {
6670      Statements.push_back(Return.takeAs<Stmt>());
6671
6672      if (Trap.hasErrorOccurred()) {
6673        Diag(CurrentLocation, diag::note_member_synthesized_at)
6674          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6675        Invalid = true;
6676      }
6677    }
6678  }
6679
6680  if (Invalid) {
6681    CopyAssignOperator->setInvalidDecl();
6682    return;
6683  }
6684
6685  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
6686                                            /*isStmtExpr=*/false);
6687  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
6688  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
6689
6690  if (ASTMutationListener *L = getASTMutationListener()) {
6691    L->CompletedImplicitDefinition(CopyAssignOperator);
6692  }
6693}
6694
6695std::pair<Sema::ImplicitExceptionSpecification, bool>
6696Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
6697  // C++ [class.copy]p5:
6698  //   The implicitly-declared copy constructor for a class X will
6699  //   have the form
6700  //
6701  //       X::X(const X&)
6702  //
6703  //   if
6704  bool HasConstCopyConstructor = true;
6705
6706  //     -- each direct or virtual base class B of X has a copy
6707  //        constructor whose first parameter is of type const B& or
6708  //        const volatile B&, and
6709  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6710                                       BaseEnd = ClassDecl->bases_end();
6711       HasConstCopyConstructor && Base != BaseEnd;
6712       ++Base) {
6713    // Virtual bases are handled below.
6714    if (Base->isVirtual())
6715      continue;
6716
6717    CXXRecordDecl *BaseClassDecl
6718      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6719    if (!BaseClassDecl->hasDeclaredCopyConstructor())
6720      DeclareImplicitCopyConstructor(BaseClassDecl);
6721
6722    HasConstCopyConstructor
6723      = BaseClassDecl->hasConstCopyConstructor(Context);
6724  }
6725
6726  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
6727                                       BaseEnd = ClassDecl->vbases_end();
6728       HasConstCopyConstructor && Base != BaseEnd;
6729       ++Base) {
6730    CXXRecordDecl *BaseClassDecl
6731      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6732    if (!BaseClassDecl->hasDeclaredCopyConstructor())
6733      DeclareImplicitCopyConstructor(BaseClassDecl);
6734
6735    HasConstCopyConstructor
6736      = BaseClassDecl->hasConstCopyConstructor(Context);
6737  }
6738
6739  //     -- for all the nonstatic data members of X that are of a
6740  //        class type M (or array thereof), each such class type
6741  //        has a copy constructor whose first parameter is of type
6742  //        const M& or const volatile M&.
6743  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6744                                  FieldEnd = ClassDecl->field_end();
6745       HasConstCopyConstructor && Field != FieldEnd;
6746       ++Field) {
6747    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6748    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6749      CXXRecordDecl *FieldClassDecl
6750        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6751      if (!FieldClassDecl->hasDeclaredCopyConstructor())
6752        DeclareImplicitCopyConstructor(FieldClassDecl);
6753
6754      HasConstCopyConstructor
6755        = FieldClassDecl->hasConstCopyConstructor(Context);
6756    }
6757  }
6758  //   Otherwise, the implicitly declared copy constructor will have
6759  //   the form
6760  //
6761  //       X::X(X&)
6762
6763  // C++ [except.spec]p14:
6764  //   An implicitly declared special member function (Clause 12) shall have an
6765  //   exception-specification. [...]
6766  ImplicitExceptionSpecification ExceptSpec(Context);
6767  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
6768  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6769                                       BaseEnd = ClassDecl->bases_end();
6770       Base != BaseEnd;
6771       ++Base) {
6772    // Virtual bases are handled below.
6773    if (Base->isVirtual())
6774      continue;
6775
6776    CXXRecordDecl *BaseClassDecl
6777      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6778    if (!BaseClassDecl->hasDeclaredCopyConstructor())
6779      DeclareImplicitCopyConstructor(BaseClassDecl);
6780
6781    if (CXXConstructorDecl *CopyConstructor
6782                          = BaseClassDecl->getCopyConstructor(Context, Quals))
6783      ExceptSpec.CalledDecl(CopyConstructor);
6784  }
6785  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
6786                                       BaseEnd = ClassDecl->vbases_end();
6787       Base != BaseEnd;
6788       ++Base) {
6789    CXXRecordDecl *BaseClassDecl
6790      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6791    if (!BaseClassDecl->hasDeclaredCopyConstructor())
6792      DeclareImplicitCopyConstructor(BaseClassDecl);
6793
6794    if (CXXConstructorDecl *CopyConstructor
6795                          = BaseClassDecl->getCopyConstructor(Context, Quals))
6796      ExceptSpec.CalledDecl(CopyConstructor);
6797  }
6798  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6799                                  FieldEnd = ClassDecl->field_end();
6800       Field != FieldEnd;
6801       ++Field) {
6802    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6803    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6804      CXXRecordDecl *FieldClassDecl
6805        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6806      if (!FieldClassDecl->hasDeclaredCopyConstructor())
6807        DeclareImplicitCopyConstructor(FieldClassDecl);
6808
6809      if (CXXConstructorDecl *CopyConstructor
6810                          = FieldClassDecl->getCopyConstructor(Context, Quals))
6811        ExceptSpec.CalledDecl(CopyConstructor);
6812    }
6813  }
6814
6815  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
6816}
6817
6818CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
6819                                                    CXXRecordDecl *ClassDecl) {
6820  // C++ [class.copy]p4:
6821  //   If the class definition does not explicitly declare a copy
6822  //   constructor, one is declared implicitly.
6823
6824  ImplicitExceptionSpecification Spec(Context);
6825  bool Const;
6826  llvm::tie(Spec, Const) =
6827    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
6828
6829  QualType ClassType = Context.getTypeDeclType(ClassDecl);
6830  QualType ArgType = ClassType;
6831  if (Const)
6832    ArgType = ArgType.withConst();
6833  ArgType = Context.getLValueReferenceType(ArgType);
6834
6835  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6836
6837  DeclarationName Name
6838    = Context.DeclarationNames.getCXXConstructorName(
6839                                           Context.getCanonicalType(ClassType));
6840  SourceLocation ClassLoc = ClassDecl->getLocation();
6841  DeclarationNameInfo NameInfo(Name, ClassLoc);
6842
6843  //   An implicitly-declared copy constructor is an inline public
6844  //   member of its class.
6845  CXXConstructorDecl *CopyConstructor
6846    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6847                                 Context.getFunctionType(Context.VoidTy,
6848                                                         &ArgType, 1, EPI),
6849                                 /*TInfo=*/0,
6850                                 /*isExplicit=*/false,
6851                                 /*isInline=*/true,
6852                                 /*isImplicitlyDeclared=*/true);
6853  CopyConstructor->setAccess(AS_public);
6854  CopyConstructor->setDefaulted();
6855  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
6856
6857  // Note that we have declared this constructor.
6858  ++ASTContext::NumImplicitCopyConstructorsDeclared;
6859
6860  // Add the parameter to the constructor.
6861  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
6862                                               ClassLoc, ClassLoc,
6863                                               /*IdentifierInfo=*/0,
6864                                               ArgType, /*TInfo=*/0,
6865                                               SC_None,
6866                                               SC_None, 0);
6867  CopyConstructor->setParams(&FromParam, 1);
6868
6869  if (ShouldDeleteCopyConstructor(CopyConstructor))
6870    CopyConstructor->setDeletedAsWritten();
6871
6872  if (Scope *S = getScopeForContext(ClassDecl))
6873    PushOnScopeChains(CopyConstructor, S, false);
6874  ClassDecl->addDecl(CopyConstructor);
6875
6876  return CopyConstructor;
6877}
6878
6879void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
6880                                   CXXConstructorDecl *CopyConstructor) {
6881  assert((CopyConstructor->isDefaulted() &&
6882          CopyConstructor->isCopyConstructor() &&
6883          !CopyConstructor->isUsed(false)) &&
6884         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
6885
6886  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
6887  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
6888
6889  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
6890  DiagnosticErrorTrap Trap(Diags);
6891
6892  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
6893      Trap.hasErrorOccurred()) {
6894    Diag(CurrentLocation, diag::note_member_synthesized_at)
6895      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
6896    CopyConstructor->setInvalidDecl();
6897  }  else {
6898    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
6899                                               CopyConstructor->getLocation(),
6900                                               MultiStmtArg(*this, 0, 0),
6901                                               /*isStmtExpr=*/false)
6902                                                              .takeAs<Stmt>());
6903  }
6904
6905  CopyConstructor->setUsed();
6906
6907  if (ASTMutationListener *L = getASTMutationListener()) {
6908    L->CompletedImplicitDefinition(CopyConstructor);
6909  }
6910}
6911
6912ExprResult
6913Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
6914                            CXXConstructorDecl *Constructor,
6915                            MultiExprArg ExprArgs,
6916                            bool RequiresZeroInit,
6917                            unsigned ConstructKind,
6918                            SourceRange ParenRange) {
6919  bool Elidable = false;
6920
6921  // C++0x [class.copy]p34:
6922  //   When certain criteria are met, an implementation is allowed to
6923  //   omit the copy/move construction of a class object, even if the
6924  //   copy/move constructor and/or destructor for the object have
6925  //   side effects. [...]
6926  //     - when a temporary class object that has not been bound to a
6927  //       reference (12.2) would be copied/moved to a class object
6928  //       with the same cv-unqualified type, the copy/move operation
6929  //       can be omitted by constructing the temporary object
6930  //       directly into the target of the omitted copy/move
6931  if (ConstructKind == CXXConstructExpr::CK_Complete &&
6932      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
6933    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
6934    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
6935  }
6936
6937  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
6938                               Elidable, move(ExprArgs), RequiresZeroInit,
6939                               ConstructKind, ParenRange);
6940}
6941
6942/// BuildCXXConstructExpr - Creates a complete call to a constructor,
6943/// including handling of its default argument expressions.
6944ExprResult
6945Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
6946                            CXXConstructorDecl *Constructor, bool Elidable,
6947                            MultiExprArg ExprArgs,
6948                            bool RequiresZeroInit,
6949                            unsigned ConstructKind,
6950                            SourceRange ParenRange) {
6951  unsigned NumExprs = ExprArgs.size();
6952  Expr **Exprs = (Expr **)ExprArgs.release();
6953
6954  for (specific_attr_iterator<NonNullAttr>
6955           i = Constructor->specific_attr_begin<NonNullAttr>(),
6956           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
6957    const NonNullAttr *NonNull = *i;
6958    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
6959  }
6960
6961  MarkDeclarationReferenced(ConstructLoc, Constructor);
6962  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
6963                                        Constructor, Elidable, Exprs, NumExprs,
6964                                        RequiresZeroInit,
6965              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
6966                                        ParenRange));
6967}
6968
6969bool Sema::InitializeVarWithConstructor(VarDecl *VD,
6970                                        CXXConstructorDecl *Constructor,
6971                                        MultiExprArg Exprs) {
6972  // FIXME: Provide the correct paren SourceRange when available.
6973  ExprResult TempResult =
6974    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
6975                          move(Exprs), false, CXXConstructExpr::CK_Complete,
6976                          SourceRange());
6977  if (TempResult.isInvalid())
6978    return true;
6979
6980  Expr *Temp = TempResult.takeAs<Expr>();
6981  CheckImplicitConversions(Temp, VD->getLocation());
6982  MarkDeclarationReferenced(VD->getLocation(), Constructor);
6983  Temp = MaybeCreateExprWithCleanups(Temp);
6984  VD->setInit(Temp);
6985
6986  return false;
6987}
6988
6989void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
6990  if (VD->isInvalidDecl()) return;
6991
6992  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
6993  if (ClassDecl->isInvalidDecl()) return;
6994  if (ClassDecl->hasTrivialDestructor()) return;
6995  if (ClassDecl->isDependentContext()) return;
6996
6997  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
6998  MarkDeclarationReferenced(VD->getLocation(), Destructor);
6999  CheckDestructorAccess(VD->getLocation(), Destructor,
7000                        PDiag(diag::err_access_dtor_var)
7001                        << VD->getDeclName()
7002                        << VD->getType());
7003
7004  if (!VD->hasGlobalStorage()) return;
7005
7006  // Emit warning for non-trivial dtor in global scope (a real global,
7007  // class-static, function-static).
7008  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
7009
7010  // TODO: this should be re-enabled for static locals by !CXAAtExit
7011  if (!VD->isStaticLocal())
7012    Diag(VD->getLocation(), diag::warn_global_destructor);
7013}
7014
7015/// AddCXXDirectInitializerToDecl - This action is called immediately after
7016/// ActOnDeclarator, when a C++ direct initializer is present.
7017/// e.g: "int x(1);"
7018void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
7019                                         SourceLocation LParenLoc,
7020                                         MultiExprArg Exprs,
7021                                         SourceLocation RParenLoc,
7022                                         bool TypeMayContainAuto) {
7023  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
7024
7025  // If there is no declaration, there was an error parsing it.  Just ignore
7026  // the initializer.
7027  if (RealDecl == 0)
7028    return;
7029
7030  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7031  if (!VDecl) {
7032    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7033    RealDecl->setInvalidDecl();
7034    return;
7035  }
7036
7037  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7038  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
7039    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
7040    if (Exprs.size() > 1) {
7041      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
7042           diag::err_auto_var_init_multiple_expressions)
7043        << VDecl->getDeclName() << VDecl->getType()
7044        << VDecl->getSourceRange();
7045      RealDecl->setInvalidDecl();
7046      return;
7047    }
7048
7049    Expr *Init = Exprs.get()[0];
7050    TypeSourceInfo *DeducedType = 0;
7051    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
7052      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
7053        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
7054        << Init->getSourceRange();
7055    if (!DeducedType) {
7056      RealDecl->setInvalidDecl();
7057      return;
7058    }
7059    VDecl->setTypeSourceInfo(DeducedType);
7060    VDecl->setType(DeducedType->getType());
7061
7062    // If this is a redeclaration, check that the type we just deduced matches
7063    // the previously declared type.
7064    if (VarDecl *Old = VDecl->getPreviousDeclaration())
7065      MergeVarDeclTypes(VDecl, Old);
7066  }
7067
7068  // We will represent direct-initialization similarly to copy-initialization:
7069  //    int x(1);  -as-> int x = 1;
7070  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7071  //
7072  // Clients that want to distinguish between the two forms, can check for
7073  // direct initializer using VarDecl::hasCXXDirectInitializer().
7074  // A major benefit is that clients that don't particularly care about which
7075  // exactly form was it (like the CodeGen) can handle both cases without
7076  // special case code.
7077
7078  // C++ 8.5p11:
7079  // The form of initialization (using parentheses or '=') is generally
7080  // insignificant, but does matter when the entity being initialized has a
7081  // class type.
7082
7083  if (!VDecl->getType()->isDependentType() &&
7084      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
7085                          diag::err_typecheck_decl_incomplete_type)) {
7086    VDecl->setInvalidDecl();
7087    return;
7088  }
7089
7090  // The variable can not have an abstract class type.
7091  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7092                             diag::err_abstract_type_in_decl,
7093                             AbstractVariableType))
7094    VDecl->setInvalidDecl();
7095
7096  const VarDecl *Def;
7097  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7098    Diag(VDecl->getLocation(), diag::err_redefinition)
7099    << VDecl->getDeclName();
7100    Diag(Def->getLocation(), diag::note_previous_definition);
7101    VDecl->setInvalidDecl();
7102    return;
7103  }
7104
7105  // C++ [class.static.data]p4
7106  //   If a static data member is of const integral or const
7107  //   enumeration type, its declaration in the class definition can
7108  //   specify a constant-initializer which shall be an integral
7109  //   constant expression (5.19). In that case, the member can appear
7110  //   in integral constant expressions. The member shall still be
7111  //   defined in a namespace scope if it is used in the program and the
7112  //   namespace scope definition shall not contain an initializer.
7113  //
7114  // We already performed a redefinition check above, but for static
7115  // data members we also need to check whether there was an in-class
7116  // declaration with an initializer.
7117  const VarDecl* PrevInit = 0;
7118  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7119    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
7120    Diag(PrevInit->getLocation(), diag::note_previous_definition);
7121    return;
7122  }
7123
7124  bool IsDependent = false;
7125  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
7126    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
7127      VDecl->setInvalidDecl();
7128      return;
7129    }
7130
7131    if (Exprs.get()[I]->isTypeDependent())
7132      IsDependent = true;
7133  }
7134
7135  // If either the declaration has a dependent type or if any of the
7136  // expressions is type-dependent, we represent the initialization
7137  // via a ParenListExpr for later use during template instantiation.
7138  if (VDecl->getType()->isDependentType() || IsDependent) {
7139    // Let clients know that initialization was done with a direct initializer.
7140    VDecl->setCXXDirectInitializer(true);
7141
7142    // Store the initialization expressions as a ParenListExpr.
7143    unsigned NumExprs = Exprs.size();
7144    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
7145                                               (Expr **)Exprs.release(),
7146                                               NumExprs, RParenLoc));
7147    return;
7148  }
7149
7150  // Capture the variable that is being initialized and the style of
7151  // initialization.
7152  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7153
7154  // FIXME: Poor source location information.
7155  InitializationKind Kind
7156    = InitializationKind::CreateDirect(VDecl->getLocation(),
7157                                       LParenLoc, RParenLoc);
7158
7159  InitializationSequence InitSeq(*this, Entity, Kind,
7160                                 Exprs.get(), Exprs.size());
7161  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
7162  if (Result.isInvalid()) {
7163    VDecl->setInvalidDecl();
7164    return;
7165  }
7166
7167  CheckImplicitConversions(Result.get(), LParenLoc);
7168
7169  Result = MaybeCreateExprWithCleanups(Result);
7170  VDecl->setInit(Result.takeAs<Expr>());
7171  VDecl->setCXXDirectInitializer(true);
7172
7173  CheckCompleteVariableDeclaration(VDecl);
7174}
7175
7176/// \brief Given a constructor and the set of arguments provided for the
7177/// constructor, convert the arguments and add any required default arguments
7178/// to form a proper call to this constructor.
7179///
7180/// \returns true if an error occurred, false otherwise.
7181bool
7182Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
7183                              MultiExprArg ArgsPtr,
7184                              SourceLocation Loc,
7185                              ASTOwningVector<Expr*> &ConvertedArgs) {
7186  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
7187  unsigned NumArgs = ArgsPtr.size();
7188  Expr **Args = (Expr **)ArgsPtr.get();
7189
7190  const FunctionProtoType *Proto
7191    = Constructor->getType()->getAs<FunctionProtoType>();
7192  assert(Proto && "Constructor without a prototype?");
7193  unsigned NumArgsInProto = Proto->getNumArgs();
7194
7195  // If too few arguments are available, we'll fill in the rest with defaults.
7196  if (NumArgs < NumArgsInProto)
7197    ConvertedArgs.reserve(NumArgsInProto);
7198  else
7199    ConvertedArgs.reserve(NumArgs);
7200
7201  VariadicCallType CallType =
7202    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
7203  llvm::SmallVector<Expr *, 8> AllArgs;
7204  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
7205                                        Proto, 0, Args, NumArgs, AllArgs,
7206                                        CallType);
7207  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
7208    ConvertedArgs.push_back(AllArgs[i]);
7209  return Invalid;
7210}
7211
7212static inline bool
7213CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
7214                                       const FunctionDecl *FnDecl) {
7215  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
7216  if (isa<NamespaceDecl>(DC)) {
7217    return SemaRef.Diag(FnDecl->getLocation(),
7218                        diag::err_operator_new_delete_declared_in_namespace)
7219      << FnDecl->getDeclName();
7220  }
7221
7222  if (isa<TranslationUnitDecl>(DC) &&
7223      FnDecl->getStorageClass() == SC_Static) {
7224    return SemaRef.Diag(FnDecl->getLocation(),
7225                        diag::err_operator_new_delete_declared_static)
7226      << FnDecl->getDeclName();
7227  }
7228
7229  return false;
7230}
7231
7232static inline bool
7233CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
7234                            CanQualType ExpectedResultType,
7235                            CanQualType ExpectedFirstParamType,
7236                            unsigned DependentParamTypeDiag,
7237                            unsigned InvalidParamTypeDiag) {
7238  QualType ResultType =
7239    FnDecl->getType()->getAs<FunctionType>()->getResultType();
7240
7241  // Check that the result type is not dependent.
7242  if (ResultType->isDependentType())
7243    return SemaRef.Diag(FnDecl->getLocation(),
7244                        diag::err_operator_new_delete_dependent_result_type)
7245    << FnDecl->getDeclName() << ExpectedResultType;
7246
7247  // Check that the result type is what we expect.
7248  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
7249    return SemaRef.Diag(FnDecl->getLocation(),
7250                        diag::err_operator_new_delete_invalid_result_type)
7251    << FnDecl->getDeclName() << ExpectedResultType;
7252
7253  // A function template must have at least 2 parameters.
7254  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
7255    return SemaRef.Diag(FnDecl->getLocation(),
7256                      diag::err_operator_new_delete_template_too_few_parameters)
7257        << FnDecl->getDeclName();
7258
7259  // The function decl must have at least 1 parameter.
7260  if (FnDecl->getNumParams() == 0)
7261    return SemaRef.Diag(FnDecl->getLocation(),
7262                        diag::err_operator_new_delete_too_few_parameters)
7263      << FnDecl->getDeclName();
7264
7265  // Check the the first parameter type is not dependent.
7266  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
7267  if (FirstParamType->isDependentType())
7268    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
7269      << FnDecl->getDeclName() << ExpectedFirstParamType;
7270
7271  // Check that the first parameter type is what we expect.
7272  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
7273      ExpectedFirstParamType)
7274    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
7275    << FnDecl->getDeclName() << ExpectedFirstParamType;
7276
7277  return false;
7278}
7279
7280static bool
7281CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7282  // C++ [basic.stc.dynamic.allocation]p1:
7283  //   A program is ill-formed if an allocation function is declared in a
7284  //   namespace scope other than global scope or declared static in global
7285  //   scope.
7286  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7287    return true;
7288
7289  CanQualType SizeTy =
7290    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
7291
7292  // C++ [basic.stc.dynamic.allocation]p1:
7293  //  The return type shall be void*. The first parameter shall have type
7294  //  std::size_t.
7295  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
7296                                  SizeTy,
7297                                  diag::err_operator_new_dependent_param_type,
7298                                  diag::err_operator_new_param_type))
7299    return true;
7300
7301  // C++ [basic.stc.dynamic.allocation]p1:
7302  //  The first parameter shall not have an associated default argument.
7303  if (FnDecl->getParamDecl(0)->hasDefaultArg())
7304    return SemaRef.Diag(FnDecl->getLocation(),
7305                        diag::err_operator_new_default_arg)
7306      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
7307
7308  return false;
7309}
7310
7311static bool
7312CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7313  // C++ [basic.stc.dynamic.deallocation]p1:
7314  //   A program is ill-formed if deallocation functions are declared in a
7315  //   namespace scope other than global scope or declared static in global
7316  //   scope.
7317  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7318    return true;
7319
7320  // C++ [basic.stc.dynamic.deallocation]p2:
7321  //   Each deallocation function shall return void and its first parameter
7322  //   shall be void*.
7323  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
7324                                  SemaRef.Context.VoidPtrTy,
7325                                 diag::err_operator_delete_dependent_param_type,
7326                                 diag::err_operator_delete_param_type))
7327    return true;
7328
7329  return false;
7330}
7331
7332/// CheckOverloadedOperatorDeclaration - Check whether the declaration
7333/// of this overloaded operator is well-formed. If so, returns false;
7334/// otherwise, emits appropriate diagnostics and returns true.
7335bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
7336  assert(FnDecl && FnDecl->isOverloadedOperator() &&
7337         "Expected an overloaded operator declaration");
7338
7339  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
7340
7341  // C++ [over.oper]p5:
7342  //   The allocation and deallocation functions, operator new,
7343  //   operator new[], operator delete and operator delete[], are
7344  //   described completely in 3.7.3. The attributes and restrictions
7345  //   found in the rest of this subclause do not apply to them unless
7346  //   explicitly stated in 3.7.3.
7347  if (Op == OO_Delete || Op == OO_Array_Delete)
7348    return CheckOperatorDeleteDeclaration(*this, FnDecl);
7349
7350  if (Op == OO_New || Op == OO_Array_New)
7351    return CheckOperatorNewDeclaration(*this, FnDecl);
7352
7353  // C++ [over.oper]p6:
7354  //   An operator function shall either be a non-static member
7355  //   function or be a non-member function and have at least one
7356  //   parameter whose type is a class, a reference to a class, an
7357  //   enumeration, or a reference to an enumeration.
7358  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
7359    if (MethodDecl->isStatic())
7360      return Diag(FnDecl->getLocation(),
7361                  diag::err_operator_overload_static) << FnDecl->getDeclName();
7362  } else {
7363    bool ClassOrEnumParam = false;
7364    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
7365                                   ParamEnd = FnDecl->param_end();
7366         Param != ParamEnd; ++Param) {
7367      QualType ParamType = (*Param)->getType().getNonReferenceType();
7368      if (ParamType->isDependentType() || ParamType->isRecordType() ||
7369          ParamType->isEnumeralType()) {
7370        ClassOrEnumParam = true;
7371        break;
7372      }
7373    }
7374
7375    if (!ClassOrEnumParam)
7376      return Diag(FnDecl->getLocation(),
7377                  diag::err_operator_overload_needs_class_or_enum)
7378        << FnDecl->getDeclName();
7379  }
7380
7381  // C++ [over.oper]p8:
7382  //   An operator function cannot have default arguments (8.3.6),
7383  //   except where explicitly stated below.
7384  //
7385  // Only the function-call operator allows default arguments
7386  // (C++ [over.call]p1).
7387  if (Op != OO_Call) {
7388    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
7389         Param != FnDecl->param_end(); ++Param) {
7390      if ((*Param)->hasDefaultArg())
7391        return Diag((*Param)->getLocation(),
7392                    diag::err_operator_overload_default_arg)
7393          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
7394    }
7395  }
7396
7397  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
7398    { false, false, false }
7399#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
7400    , { Unary, Binary, MemberOnly }
7401#include "clang/Basic/OperatorKinds.def"
7402  };
7403
7404  bool CanBeUnaryOperator = OperatorUses[Op][0];
7405  bool CanBeBinaryOperator = OperatorUses[Op][1];
7406  bool MustBeMemberOperator = OperatorUses[Op][2];
7407
7408  // C++ [over.oper]p8:
7409  //   [...] Operator functions cannot have more or fewer parameters
7410  //   than the number required for the corresponding operator, as
7411  //   described in the rest of this subclause.
7412  unsigned NumParams = FnDecl->getNumParams()
7413                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
7414  if (Op != OO_Call &&
7415      ((NumParams == 1 && !CanBeUnaryOperator) ||
7416       (NumParams == 2 && !CanBeBinaryOperator) ||
7417       (NumParams < 1) || (NumParams > 2))) {
7418    // We have the wrong number of parameters.
7419    unsigned ErrorKind;
7420    if (CanBeUnaryOperator && CanBeBinaryOperator) {
7421      ErrorKind = 2;  // 2 -> unary or binary.
7422    } else if (CanBeUnaryOperator) {
7423      ErrorKind = 0;  // 0 -> unary
7424    } else {
7425      assert(CanBeBinaryOperator &&
7426             "All non-call overloaded operators are unary or binary!");
7427      ErrorKind = 1;  // 1 -> binary
7428    }
7429
7430    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
7431      << FnDecl->getDeclName() << NumParams << ErrorKind;
7432  }
7433
7434  // Overloaded operators other than operator() cannot be variadic.
7435  if (Op != OO_Call &&
7436      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
7437    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
7438      << FnDecl->getDeclName();
7439  }
7440
7441  // Some operators must be non-static member functions.
7442  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
7443    return Diag(FnDecl->getLocation(),
7444                diag::err_operator_overload_must_be_member)
7445      << FnDecl->getDeclName();
7446  }
7447
7448  // C++ [over.inc]p1:
7449  //   The user-defined function called operator++ implements the
7450  //   prefix and postfix ++ operator. If this function is a member
7451  //   function with no parameters, or a non-member function with one
7452  //   parameter of class or enumeration type, it defines the prefix
7453  //   increment operator ++ for objects of that type. If the function
7454  //   is a member function with one parameter (which shall be of type
7455  //   int) or a non-member function with two parameters (the second
7456  //   of which shall be of type int), it defines the postfix
7457  //   increment operator ++ for objects of that type.
7458  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
7459    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
7460    bool ParamIsInt = false;
7461    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
7462      ParamIsInt = BT->getKind() == BuiltinType::Int;
7463
7464    if (!ParamIsInt)
7465      return Diag(LastParam->getLocation(),
7466                  diag::err_operator_overload_post_incdec_must_be_int)
7467        << LastParam->getType() << (Op == OO_MinusMinus);
7468  }
7469
7470  return false;
7471}
7472
7473/// CheckLiteralOperatorDeclaration - Check whether the declaration
7474/// of this literal operator function is well-formed. If so, returns
7475/// false; otherwise, emits appropriate diagnostics and returns true.
7476bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
7477  DeclContext *DC = FnDecl->getDeclContext();
7478  Decl::Kind Kind = DC->getDeclKind();
7479  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
7480      Kind != Decl::LinkageSpec) {
7481    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
7482      << FnDecl->getDeclName();
7483    return true;
7484  }
7485
7486  bool Valid = false;
7487
7488  // template <char...> type operator "" name() is the only valid template
7489  // signature, and the only valid signature with no parameters.
7490  if (FnDecl->param_size() == 0) {
7491    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
7492      // Must have only one template parameter
7493      TemplateParameterList *Params = TpDecl->getTemplateParameters();
7494      if (Params->size() == 1) {
7495        NonTypeTemplateParmDecl *PmDecl =
7496          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
7497
7498        // The template parameter must be a char parameter pack.
7499        if (PmDecl && PmDecl->isTemplateParameterPack() &&
7500            Context.hasSameType(PmDecl->getType(), Context.CharTy))
7501          Valid = true;
7502      }
7503    }
7504  } else {
7505    // Check the first parameter
7506    FunctionDecl::param_iterator Param = FnDecl->param_begin();
7507
7508    QualType T = (*Param)->getType();
7509
7510    // unsigned long long int, long double, and any character type are allowed
7511    // as the only parameters.
7512    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
7513        Context.hasSameType(T, Context.LongDoubleTy) ||
7514        Context.hasSameType(T, Context.CharTy) ||
7515        Context.hasSameType(T, Context.WCharTy) ||
7516        Context.hasSameType(T, Context.Char16Ty) ||
7517        Context.hasSameType(T, Context.Char32Ty)) {
7518      if (++Param == FnDecl->param_end())
7519        Valid = true;
7520      goto FinishedParams;
7521    }
7522
7523    // Otherwise it must be a pointer to const; let's strip those qualifiers.
7524    const PointerType *PT = T->getAs<PointerType>();
7525    if (!PT)
7526      goto FinishedParams;
7527    T = PT->getPointeeType();
7528    if (!T.isConstQualified())
7529      goto FinishedParams;
7530    T = T.getUnqualifiedType();
7531
7532    // Move on to the second parameter;
7533    ++Param;
7534
7535    // If there is no second parameter, the first must be a const char *
7536    if (Param == FnDecl->param_end()) {
7537      if (Context.hasSameType(T, Context.CharTy))
7538        Valid = true;
7539      goto FinishedParams;
7540    }
7541
7542    // const char *, const wchar_t*, const char16_t*, and const char32_t*
7543    // are allowed as the first parameter to a two-parameter function
7544    if (!(Context.hasSameType(T, Context.CharTy) ||
7545          Context.hasSameType(T, Context.WCharTy) ||
7546          Context.hasSameType(T, Context.Char16Ty) ||
7547          Context.hasSameType(T, Context.Char32Ty)))
7548      goto FinishedParams;
7549
7550    // The second and final parameter must be an std::size_t
7551    T = (*Param)->getType().getUnqualifiedType();
7552    if (Context.hasSameType(T, Context.getSizeType()) &&
7553        ++Param == FnDecl->param_end())
7554      Valid = true;
7555  }
7556
7557  // FIXME: This diagnostic is absolutely terrible.
7558FinishedParams:
7559  if (!Valid) {
7560    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
7561      << FnDecl->getDeclName();
7562    return true;
7563  }
7564
7565  return false;
7566}
7567
7568/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
7569/// linkage specification, including the language and (if present)
7570/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
7571/// the location of the language string literal, which is provided
7572/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
7573/// the '{' brace. Otherwise, this linkage specification does not
7574/// have any braces.
7575Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
7576                                           SourceLocation LangLoc,
7577                                           llvm::StringRef Lang,
7578                                           SourceLocation LBraceLoc) {
7579  LinkageSpecDecl::LanguageIDs Language;
7580  if (Lang == "\"C\"")
7581    Language = LinkageSpecDecl::lang_c;
7582  else if (Lang == "\"C++\"")
7583    Language = LinkageSpecDecl::lang_cxx;
7584  else {
7585    Diag(LangLoc, diag::err_bad_language);
7586    return 0;
7587  }
7588
7589  // FIXME: Add all the various semantics of linkage specifications
7590
7591  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
7592                                               ExternLoc, LangLoc, Language);
7593  CurContext->addDecl(D);
7594  PushDeclContext(S, D);
7595  return D;
7596}
7597
7598/// ActOnFinishLinkageSpecification - Complete the definition of
7599/// the C++ linkage specification LinkageSpec. If RBraceLoc is
7600/// valid, it's the position of the closing '}' brace in a linkage
7601/// specification that uses braces.
7602Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
7603                                            Decl *LinkageSpec,
7604                                            SourceLocation RBraceLoc) {
7605  if (LinkageSpec) {
7606    if (RBraceLoc.isValid()) {
7607      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
7608      LSDecl->setRBraceLoc(RBraceLoc);
7609    }
7610    PopDeclContext();
7611  }
7612  return LinkageSpec;
7613}
7614
7615/// \brief Perform semantic analysis for the variable declaration that
7616/// occurs within a C++ catch clause, returning the newly-created
7617/// variable.
7618VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
7619                                         TypeSourceInfo *TInfo,
7620                                         SourceLocation StartLoc,
7621                                         SourceLocation Loc,
7622                                         IdentifierInfo *Name) {
7623  bool Invalid = false;
7624  QualType ExDeclType = TInfo->getType();
7625
7626  // Arrays and functions decay.
7627  if (ExDeclType->isArrayType())
7628    ExDeclType = Context.getArrayDecayedType(ExDeclType);
7629  else if (ExDeclType->isFunctionType())
7630    ExDeclType = Context.getPointerType(ExDeclType);
7631
7632  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
7633  // The exception-declaration shall not denote a pointer or reference to an
7634  // incomplete type, other than [cv] void*.
7635  // N2844 forbids rvalue references.
7636  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
7637    Diag(Loc, diag::err_catch_rvalue_ref);
7638    Invalid = true;
7639  }
7640
7641  // GCC allows catching pointers and references to incomplete types
7642  // as an extension; so do we, but we warn by default.
7643
7644  QualType BaseType = ExDeclType;
7645  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
7646  unsigned DK = diag::err_catch_incomplete;
7647  bool IncompleteCatchIsInvalid = true;
7648  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
7649    BaseType = Ptr->getPointeeType();
7650    Mode = 1;
7651    DK = diag::ext_catch_incomplete_ptr;
7652    IncompleteCatchIsInvalid = false;
7653  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
7654    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
7655    BaseType = Ref->getPointeeType();
7656    Mode = 2;
7657    DK = diag::ext_catch_incomplete_ref;
7658    IncompleteCatchIsInvalid = false;
7659  }
7660  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
7661      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
7662      IncompleteCatchIsInvalid)
7663    Invalid = true;
7664
7665  if (!Invalid && !ExDeclType->isDependentType() &&
7666      RequireNonAbstractType(Loc, ExDeclType,
7667                             diag::err_abstract_type_in_decl,
7668                             AbstractVariableType))
7669    Invalid = true;
7670
7671  // Only the non-fragile NeXT runtime currently supports C++ catches
7672  // of ObjC types, and no runtime supports catching ObjC types by value.
7673  if (!Invalid && getLangOptions().ObjC1) {
7674    QualType T = ExDeclType;
7675    if (const ReferenceType *RT = T->getAs<ReferenceType>())
7676      T = RT->getPointeeType();
7677
7678    if (T->isObjCObjectType()) {
7679      Diag(Loc, diag::err_objc_object_catch);
7680      Invalid = true;
7681    } else if (T->isObjCObjectPointerType()) {
7682      if (!getLangOptions().ObjCNonFragileABI) {
7683        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
7684        Invalid = true;
7685      }
7686    }
7687  }
7688
7689  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
7690                                    ExDeclType, TInfo, SC_None, SC_None);
7691  ExDecl->setExceptionVariable(true);
7692
7693  if (!Invalid) {
7694    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
7695      // C++ [except.handle]p16:
7696      //   The object declared in an exception-declaration or, if the
7697      //   exception-declaration does not specify a name, a temporary (12.2) is
7698      //   copy-initialized (8.5) from the exception object. [...]
7699      //   The object is destroyed when the handler exits, after the destruction
7700      //   of any automatic objects initialized within the handler.
7701      //
7702      // We just pretend to initialize the object with itself, then make sure
7703      // it can be destroyed later.
7704      QualType initType = ExDeclType;
7705
7706      InitializedEntity entity =
7707        InitializedEntity::InitializeVariable(ExDecl);
7708      InitializationKind initKind =
7709        InitializationKind::CreateCopy(Loc, SourceLocation());
7710
7711      Expr *opaqueValue =
7712        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
7713      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
7714      ExprResult result = sequence.Perform(*this, entity, initKind,
7715                                           MultiExprArg(&opaqueValue, 1));
7716      if (result.isInvalid())
7717        Invalid = true;
7718      else {
7719        // If the constructor used was non-trivial, set this as the
7720        // "initializer".
7721        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
7722        if (!construct->getConstructor()->isTrivial()) {
7723          Expr *init = MaybeCreateExprWithCleanups(construct);
7724          ExDecl->setInit(init);
7725        }
7726
7727        // And make sure it's destructable.
7728        FinalizeVarWithDestructor(ExDecl, recordType);
7729      }
7730    }
7731  }
7732
7733  if (Invalid)
7734    ExDecl->setInvalidDecl();
7735
7736  return ExDecl;
7737}
7738
7739/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
7740/// handler.
7741Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
7742  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7743  bool Invalid = D.isInvalidType();
7744
7745  // Check for unexpanded parameter packs.
7746  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7747                                               UPPC_ExceptionType)) {
7748    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7749                                             D.getIdentifierLoc());
7750    Invalid = true;
7751  }
7752
7753  IdentifierInfo *II = D.getIdentifier();
7754  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
7755                                             LookupOrdinaryName,
7756                                             ForRedeclaration)) {
7757    // The scope should be freshly made just for us. There is just no way
7758    // it contains any previous declaration.
7759    assert(!S->isDeclScope(PrevDecl));
7760    if (PrevDecl->isTemplateParameter()) {
7761      // Maybe we will complain about the shadowed template parameter.
7762      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7763    }
7764  }
7765
7766  if (D.getCXXScopeSpec().isSet() && !Invalid) {
7767    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
7768      << D.getCXXScopeSpec().getRange();
7769    Invalid = true;
7770  }
7771
7772  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
7773                                              D.getSourceRange().getBegin(),
7774                                              D.getIdentifierLoc(),
7775                                              D.getIdentifier());
7776  if (Invalid)
7777    ExDecl->setInvalidDecl();
7778
7779  // Add the exception declaration into this scope.
7780  if (II)
7781    PushOnScopeChains(ExDecl, S);
7782  else
7783    CurContext->addDecl(ExDecl);
7784
7785  ProcessDeclAttributes(S, ExDecl, D);
7786  return ExDecl;
7787}
7788
7789Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
7790                                         Expr *AssertExpr,
7791                                         Expr *AssertMessageExpr_,
7792                                         SourceLocation RParenLoc) {
7793  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
7794
7795  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
7796    llvm::APSInt Value(32);
7797    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
7798      Diag(StaticAssertLoc,
7799           diag::err_static_assert_expression_is_not_constant) <<
7800        AssertExpr->getSourceRange();
7801      return 0;
7802    }
7803
7804    if (Value == 0) {
7805      Diag(StaticAssertLoc, diag::err_static_assert_failed)
7806        << AssertMessage->getString() << AssertExpr->getSourceRange();
7807    }
7808  }
7809
7810  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
7811    return 0;
7812
7813  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
7814                                        AssertExpr, AssertMessage, RParenLoc);
7815
7816  CurContext->addDecl(Decl);
7817  return Decl;
7818}
7819
7820/// \brief Perform semantic analysis of the given friend type declaration.
7821///
7822/// \returns A friend declaration that.
7823FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
7824                                      TypeSourceInfo *TSInfo) {
7825  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
7826
7827  QualType T = TSInfo->getType();
7828  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
7829
7830  if (!getLangOptions().CPlusPlus0x) {
7831    // C++03 [class.friend]p2:
7832    //   An elaborated-type-specifier shall be used in a friend declaration
7833    //   for a class.*
7834    //
7835    //   * The class-key of the elaborated-type-specifier is required.
7836    if (!ActiveTemplateInstantiations.empty()) {
7837      // Do not complain about the form of friend template types during
7838      // template instantiation; we will already have complained when the
7839      // template was declared.
7840    } else if (!T->isElaboratedTypeSpecifier()) {
7841      // If we evaluated the type to a record type, suggest putting
7842      // a tag in front.
7843      if (const RecordType *RT = T->getAs<RecordType>()) {
7844        RecordDecl *RD = RT->getDecl();
7845
7846        std::string InsertionText = std::string(" ") + RD->getKindName();
7847
7848        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
7849          << (unsigned) RD->getTagKind()
7850          << T
7851          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
7852                                        InsertionText);
7853      } else {
7854        Diag(FriendLoc, diag::ext_nonclass_type_friend)
7855          << T
7856          << SourceRange(FriendLoc, TypeRange.getEnd());
7857      }
7858    } else if (T->getAs<EnumType>()) {
7859      Diag(FriendLoc, diag::ext_enum_friend)
7860        << T
7861        << SourceRange(FriendLoc, TypeRange.getEnd());
7862    }
7863  }
7864
7865  // C++0x [class.friend]p3:
7866  //   If the type specifier in a friend declaration designates a (possibly
7867  //   cv-qualified) class type, that class is declared as a friend; otherwise,
7868  //   the friend declaration is ignored.
7869
7870  // FIXME: C++0x has some syntactic restrictions on friend type declarations
7871  // in [class.friend]p3 that we do not implement.
7872
7873  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
7874}
7875
7876/// Handle a friend tag declaration where the scope specifier was
7877/// templated.
7878Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
7879                                    unsigned TagSpec, SourceLocation TagLoc,
7880                                    CXXScopeSpec &SS,
7881                                    IdentifierInfo *Name, SourceLocation NameLoc,
7882                                    AttributeList *Attr,
7883                                    MultiTemplateParamsArg TempParamLists) {
7884  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7885
7886  bool isExplicitSpecialization = false;
7887  bool Invalid = false;
7888
7889  if (TemplateParameterList *TemplateParams
7890        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
7891                                                  TempParamLists.get(),
7892                                                  TempParamLists.size(),
7893                                                  /*friend*/ true,
7894                                                  isExplicitSpecialization,
7895                                                  Invalid)) {
7896    if (TemplateParams->size() > 0) {
7897      // This is a declaration of a class template.
7898      if (Invalid)
7899        return 0;
7900
7901      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
7902                                SS, Name, NameLoc, Attr,
7903                                TemplateParams, AS_public,
7904                                TempParamLists.size() - 1,
7905                   (TemplateParameterList**) TempParamLists.release()).take();
7906    } else {
7907      // The "template<>" header is extraneous.
7908      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7909        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7910      isExplicitSpecialization = true;
7911    }
7912  }
7913
7914  if (Invalid) return 0;
7915
7916  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
7917
7918  bool isAllExplicitSpecializations = true;
7919  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
7920    if (TempParamLists.get()[I]->size()) {
7921      isAllExplicitSpecializations = false;
7922      break;
7923    }
7924  }
7925
7926  // FIXME: don't ignore attributes.
7927
7928  // If it's explicit specializations all the way down, just forget
7929  // about the template header and build an appropriate non-templated
7930  // friend.  TODO: for source fidelity, remember the headers.
7931  if (isAllExplicitSpecializations) {
7932    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7933    ElaboratedTypeKeyword Keyword
7934      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7935    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
7936                                   *Name, NameLoc);
7937    if (T.isNull())
7938      return 0;
7939
7940    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7941    if (isa<DependentNameType>(T)) {
7942      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
7943      TL.setKeywordLoc(TagLoc);
7944      TL.setQualifierLoc(QualifierLoc);
7945      TL.setNameLoc(NameLoc);
7946    } else {
7947      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
7948      TL.setKeywordLoc(TagLoc);
7949      TL.setQualifierLoc(QualifierLoc);
7950      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
7951    }
7952
7953    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
7954                                            TSI, FriendLoc);
7955    Friend->setAccess(AS_public);
7956    CurContext->addDecl(Friend);
7957    return Friend;
7958  }
7959
7960  // Handle the case of a templated-scope friend class.  e.g.
7961  //   template <class T> class A<T>::B;
7962  // FIXME: we don't support these right now.
7963  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7964  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
7965  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7966  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
7967  TL.setKeywordLoc(TagLoc);
7968  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7969  TL.setNameLoc(NameLoc);
7970
7971  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
7972                                          TSI, FriendLoc);
7973  Friend->setAccess(AS_public);
7974  Friend->setUnsupportedFriend(true);
7975  CurContext->addDecl(Friend);
7976  return Friend;
7977}
7978
7979
7980/// Handle a friend type declaration.  This works in tandem with
7981/// ActOnTag.
7982///
7983/// Notes on friend class templates:
7984///
7985/// We generally treat friend class declarations as if they were
7986/// declaring a class.  So, for example, the elaborated type specifier
7987/// in a friend declaration is required to obey the restrictions of a
7988/// class-head (i.e. no typedefs in the scope chain), template
7989/// parameters are required to match up with simple template-ids, &c.
7990/// However, unlike when declaring a template specialization, it's
7991/// okay to refer to a template specialization without an empty
7992/// template parameter declaration, e.g.
7993///   friend class A<T>::B<unsigned>;
7994/// We permit this as a special case; if there are any template
7995/// parameters present at all, require proper matching, i.e.
7996///   template <> template <class T> friend class A<int>::B;
7997Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
7998                                MultiTemplateParamsArg TempParams) {
7999  SourceLocation Loc = DS.getSourceRange().getBegin();
8000
8001  assert(DS.isFriendSpecified());
8002  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8003
8004  // Try to convert the decl specifier to a type.  This works for
8005  // friend templates because ActOnTag never produces a ClassTemplateDecl
8006  // for a TUK_Friend.
8007  Declarator TheDeclarator(DS, Declarator::MemberContext);
8008  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
8009  QualType T = TSI->getType();
8010  if (TheDeclarator.isInvalidType())
8011    return 0;
8012
8013  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
8014    return 0;
8015
8016  // This is definitely an error in C++98.  It's probably meant to
8017  // be forbidden in C++0x, too, but the specification is just
8018  // poorly written.
8019  //
8020  // The problem is with declarations like the following:
8021  //   template <T> friend A<T>::foo;
8022  // where deciding whether a class C is a friend or not now hinges
8023  // on whether there exists an instantiation of A that causes
8024  // 'foo' to equal C.  There are restrictions on class-heads
8025  // (which we declare (by fiat) elaborated friend declarations to
8026  // be) that makes this tractable.
8027  //
8028  // FIXME: handle "template <> friend class A<T>;", which
8029  // is possibly well-formed?  Who even knows?
8030  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
8031    Diag(Loc, diag::err_tagless_friend_type_template)
8032      << DS.getSourceRange();
8033    return 0;
8034  }
8035
8036  // C++98 [class.friend]p1: A friend of a class is a function
8037  //   or class that is not a member of the class . . .
8038  // This is fixed in DR77, which just barely didn't make the C++03
8039  // deadline.  It's also a very silly restriction that seriously
8040  // affects inner classes and which nobody else seems to implement;
8041  // thus we never diagnose it, not even in -pedantic.
8042  //
8043  // But note that we could warn about it: it's always useless to
8044  // friend one of your own members (it's not, however, worthless to
8045  // friend a member of an arbitrary specialization of your template).
8046
8047  Decl *D;
8048  if (unsigned NumTempParamLists = TempParams.size())
8049    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
8050                                   NumTempParamLists,
8051                                   TempParams.release(),
8052                                   TSI,
8053                                   DS.getFriendSpecLoc());
8054  else
8055    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
8056
8057  if (!D)
8058    return 0;
8059
8060  D->setAccess(AS_public);
8061  CurContext->addDecl(D);
8062
8063  return D;
8064}
8065
8066Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
8067                                    MultiTemplateParamsArg TemplateParams) {
8068  const DeclSpec &DS = D.getDeclSpec();
8069
8070  assert(DS.isFriendSpecified());
8071  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8072
8073  SourceLocation Loc = D.getIdentifierLoc();
8074  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8075  QualType T = TInfo->getType();
8076
8077  // C++ [class.friend]p1
8078  //   A friend of a class is a function or class....
8079  // Note that this sees through typedefs, which is intended.
8080  // It *doesn't* see through dependent types, which is correct
8081  // according to [temp.arg.type]p3:
8082  //   If a declaration acquires a function type through a
8083  //   type dependent on a template-parameter and this causes
8084  //   a declaration that does not use the syntactic form of a
8085  //   function declarator to have a function type, the program
8086  //   is ill-formed.
8087  if (!T->isFunctionType()) {
8088    Diag(Loc, diag::err_unexpected_friend);
8089
8090    // It might be worthwhile to try to recover by creating an
8091    // appropriate declaration.
8092    return 0;
8093  }
8094
8095  // C++ [namespace.memdef]p3
8096  //  - If a friend declaration in a non-local class first declares a
8097  //    class or function, the friend class or function is a member
8098  //    of the innermost enclosing namespace.
8099  //  - The name of the friend is not found by simple name lookup
8100  //    until a matching declaration is provided in that namespace
8101  //    scope (either before or after the class declaration granting
8102  //    friendship).
8103  //  - If a friend function is called, its name may be found by the
8104  //    name lookup that considers functions from namespaces and
8105  //    classes associated with the types of the function arguments.
8106  //  - When looking for a prior declaration of a class or a function
8107  //    declared as a friend, scopes outside the innermost enclosing
8108  //    namespace scope are not considered.
8109
8110  CXXScopeSpec &SS = D.getCXXScopeSpec();
8111  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8112  DeclarationName Name = NameInfo.getName();
8113  assert(Name);
8114
8115  // Check for unexpanded parameter packs.
8116  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
8117      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
8118      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
8119    return 0;
8120
8121  // The context we found the declaration in, or in which we should
8122  // create the declaration.
8123  DeclContext *DC;
8124  Scope *DCScope = S;
8125  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8126                        ForRedeclaration);
8127
8128  // FIXME: there are different rules in local classes
8129
8130  // There are four cases here.
8131  //   - There's no scope specifier, in which case we just go to the
8132  //     appropriate scope and look for a function or function template
8133  //     there as appropriate.
8134  // Recover from invalid scope qualifiers as if they just weren't there.
8135  if (SS.isInvalid() || !SS.isSet()) {
8136    // C++0x [namespace.memdef]p3:
8137    //   If the name in a friend declaration is neither qualified nor
8138    //   a template-id and the declaration is a function or an
8139    //   elaborated-type-specifier, the lookup to determine whether
8140    //   the entity has been previously declared shall not consider
8141    //   any scopes outside the innermost enclosing namespace.
8142    // C++0x [class.friend]p11:
8143    //   If a friend declaration appears in a local class and the name
8144    //   specified is an unqualified name, a prior declaration is
8145    //   looked up without considering scopes that are outside the
8146    //   innermost enclosing non-class scope. For a friend function
8147    //   declaration, if there is no prior declaration, the program is
8148    //   ill-formed.
8149    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
8150    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
8151
8152    // Find the appropriate context according to the above.
8153    DC = CurContext;
8154    while (true) {
8155      // Skip class contexts.  If someone can cite chapter and verse
8156      // for this behavior, that would be nice --- it's what GCC and
8157      // EDG do, and it seems like a reasonable intent, but the spec
8158      // really only says that checks for unqualified existing
8159      // declarations should stop at the nearest enclosing namespace,
8160      // not that they should only consider the nearest enclosing
8161      // namespace.
8162      while (DC->isRecord())
8163        DC = DC->getParent();
8164
8165      LookupQualifiedName(Previous, DC);
8166
8167      // TODO: decide what we think about using declarations.
8168      if (isLocal || !Previous.empty())
8169        break;
8170
8171      if (isTemplateId) {
8172        if (isa<TranslationUnitDecl>(DC)) break;
8173      } else {
8174        if (DC->isFileContext()) break;
8175      }
8176      DC = DC->getParent();
8177    }
8178
8179    // C++ [class.friend]p1: A friend of a class is a function or
8180    //   class that is not a member of the class . . .
8181    // C++0x changes this for both friend types and functions.
8182    // Most C++ 98 compilers do seem to give an error here, so
8183    // we do, too.
8184    if (!Previous.empty() && DC->Equals(CurContext)
8185        && !getLangOptions().CPlusPlus0x)
8186      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8187
8188    DCScope = getScopeForDeclContext(S, DC);
8189
8190  //   - There's a non-dependent scope specifier, in which case we
8191  //     compute it and do a previous lookup there for a function
8192  //     or function template.
8193  } else if (!SS.getScopeRep()->isDependent()) {
8194    DC = computeDeclContext(SS);
8195    if (!DC) return 0;
8196
8197    if (RequireCompleteDeclContext(SS, DC)) return 0;
8198
8199    LookupQualifiedName(Previous, DC);
8200
8201    // Ignore things found implicitly in the wrong scope.
8202    // TODO: better diagnostics for this case.  Suggesting the right
8203    // qualified scope would be nice...
8204    LookupResult::Filter F = Previous.makeFilter();
8205    while (F.hasNext()) {
8206      NamedDecl *D = F.next();
8207      if (!DC->InEnclosingNamespaceSetOf(
8208              D->getDeclContext()->getRedeclContext()))
8209        F.erase();
8210    }
8211    F.done();
8212
8213    if (Previous.empty()) {
8214      D.setInvalidType();
8215      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
8216      return 0;
8217    }
8218
8219    // C++ [class.friend]p1: A friend of a class is a function or
8220    //   class that is not a member of the class . . .
8221    if (DC->Equals(CurContext))
8222      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8223
8224  //   - There's a scope specifier that does not match any template
8225  //     parameter lists, in which case we use some arbitrary context,
8226  //     create a method or method template, and wait for instantiation.
8227  //   - There's a scope specifier that does match some template
8228  //     parameter lists, which we don't handle right now.
8229  } else {
8230    DC = CurContext;
8231    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
8232  }
8233
8234  if (!DC->isRecord()) {
8235    // This implies that it has to be an operator or function.
8236    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
8237        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
8238        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
8239      Diag(Loc, diag::err_introducing_special_friend) <<
8240        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
8241         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
8242      return 0;
8243    }
8244  }
8245
8246  bool Redeclaration = false;
8247  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
8248                                          move(TemplateParams),
8249                                          IsDefinition,
8250                                          Redeclaration);
8251  if (!ND) return 0;
8252
8253  assert(ND->getDeclContext() == DC);
8254  assert(ND->getLexicalDeclContext() == CurContext);
8255
8256  // Add the function declaration to the appropriate lookup tables,
8257  // adjusting the redeclarations list as necessary.  We don't
8258  // want to do this yet if the friending class is dependent.
8259  //
8260  // Also update the scope-based lookup if the target context's
8261  // lookup context is in lexical scope.
8262  if (!CurContext->isDependentContext()) {
8263    DC = DC->getRedeclContext();
8264    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
8265    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8266      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
8267  }
8268
8269  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
8270                                       D.getIdentifierLoc(), ND,
8271                                       DS.getFriendSpecLoc());
8272  FrD->setAccess(AS_public);
8273  CurContext->addDecl(FrD);
8274
8275  if (ND->isInvalidDecl())
8276    FrD->setInvalidDecl();
8277  else {
8278    FunctionDecl *FD;
8279    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
8280      FD = FTD->getTemplatedDecl();
8281    else
8282      FD = cast<FunctionDecl>(ND);
8283
8284    // Mark templated-scope function declarations as unsupported.
8285    if (FD->getNumTemplateParameterLists())
8286      FrD->setUnsupportedFriend(true);
8287  }
8288
8289  return ND;
8290}
8291
8292void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
8293  AdjustDeclIfTemplate(Dcl);
8294
8295  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
8296  if (!Fn) {
8297    Diag(DelLoc, diag::err_deleted_non_function);
8298    return;
8299  }
8300  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
8301    Diag(DelLoc, diag::err_deleted_decl_not_first);
8302    Diag(Prev->getLocation(), diag::note_previous_declaration);
8303    // If the declaration wasn't the first, we delete the function anyway for
8304    // recovery.
8305  }
8306  Fn->setDeletedAsWritten();
8307}
8308
8309void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
8310  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
8311
8312  if (MD) {
8313    CXXSpecialMember Member = getSpecialMember(MD);
8314    if (Member == CXXInvalid) {
8315      Diag(DefaultLoc, diag::err_default_special_members);
8316      return;
8317    }
8318
8319    MD->setDefaulted();
8320    MD->setExplicitlyDefaulted();
8321
8322    // We'll check it when the record is done
8323    if (MD == MD->getCanonicalDecl())
8324      return;
8325
8326    switch (Member) {
8327    case CXXDefaultConstructor: {
8328      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8329      CheckExplicitlyDefaultedDefaultConstructor(CD);
8330      if (!CD->isInvalidDecl())
8331        DefineImplicitDefaultConstructor(DefaultLoc, CD);
8332      break;
8333    }
8334
8335    case CXXCopyConstructor: {
8336      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8337      CheckExplicitlyDefaultedCopyConstructor(CD);
8338      if (!CD->isInvalidDecl())
8339        DefineImplicitCopyConstructor(DefaultLoc, CD);
8340      break;
8341    }
8342
8343    case CXXDestructor: {
8344      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
8345      CheckExplicitlyDefaultedDestructor(DD);
8346      if (!DD->isInvalidDecl())
8347        DefineImplicitDestructor(DefaultLoc, DD);
8348      break;
8349    }
8350
8351    default:
8352      // FIXME: Do the rest once we have functions
8353      break;
8354    }
8355  } else {
8356    Diag(DefaultLoc, diag::err_default_special_members);
8357  }
8358}
8359
8360static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
8361  for (Stmt::child_range CI = S->children(); CI; ++CI) {
8362    Stmt *SubStmt = *CI;
8363    if (!SubStmt)
8364      continue;
8365    if (isa<ReturnStmt>(SubStmt))
8366      Self.Diag(SubStmt->getSourceRange().getBegin(),
8367           diag::err_return_in_constructor_handler);
8368    if (!isa<Expr>(SubStmt))
8369      SearchForReturnInStmt(Self, SubStmt);
8370  }
8371}
8372
8373void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
8374  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
8375    CXXCatchStmt *Handler = TryBlock->getHandler(I);
8376    SearchForReturnInStmt(*this, Handler);
8377  }
8378}
8379
8380bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
8381                                             const CXXMethodDecl *Old) {
8382  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
8383  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
8384
8385  if (Context.hasSameType(NewTy, OldTy) ||
8386      NewTy->isDependentType() || OldTy->isDependentType())
8387    return false;
8388
8389  // Check if the return types are covariant
8390  QualType NewClassTy, OldClassTy;
8391
8392  /// Both types must be pointers or references to classes.
8393  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
8394    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
8395      NewClassTy = NewPT->getPointeeType();
8396      OldClassTy = OldPT->getPointeeType();
8397    }
8398  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
8399    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
8400      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
8401        NewClassTy = NewRT->getPointeeType();
8402        OldClassTy = OldRT->getPointeeType();
8403      }
8404    }
8405  }
8406
8407  // The return types aren't either both pointers or references to a class type.
8408  if (NewClassTy.isNull()) {
8409    Diag(New->getLocation(),
8410         diag::err_different_return_type_for_overriding_virtual_function)
8411      << New->getDeclName() << NewTy << OldTy;
8412    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8413
8414    return true;
8415  }
8416
8417  // C++ [class.virtual]p6:
8418  //   If the return type of D::f differs from the return type of B::f, the
8419  //   class type in the return type of D::f shall be complete at the point of
8420  //   declaration of D::f or shall be the class type D.
8421  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
8422    if (!RT->isBeingDefined() &&
8423        RequireCompleteType(New->getLocation(), NewClassTy,
8424                            PDiag(diag::err_covariant_return_incomplete)
8425                              << New->getDeclName()))
8426    return true;
8427  }
8428
8429  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
8430    // Check if the new class derives from the old class.
8431    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
8432      Diag(New->getLocation(),
8433           diag::err_covariant_return_not_derived)
8434      << New->getDeclName() << NewTy << OldTy;
8435      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8436      return true;
8437    }
8438
8439    // Check if we the conversion from derived to base is valid.
8440    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
8441                    diag::err_covariant_return_inaccessible_base,
8442                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
8443                    // FIXME: Should this point to the return type?
8444                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
8445      // FIXME: this note won't trigger for delayed access control
8446      // diagnostics, and it's impossible to get an undelayed error
8447      // here from access control during the original parse because
8448      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
8449      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8450      return true;
8451    }
8452  }
8453
8454  // The qualifiers of the return types must be the same.
8455  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
8456    Diag(New->getLocation(),
8457         diag::err_covariant_return_type_different_qualifications)
8458    << New->getDeclName() << NewTy << OldTy;
8459    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8460    return true;
8461  };
8462
8463
8464  // The new class type must have the same or less qualifiers as the old type.
8465  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
8466    Diag(New->getLocation(),
8467         diag::err_covariant_return_type_class_type_more_qualified)
8468    << New->getDeclName() << NewTy << OldTy;
8469    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8470    return true;
8471  };
8472
8473  return false;
8474}
8475
8476/// \brief Mark the given method pure.
8477///
8478/// \param Method the method to be marked pure.
8479///
8480/// \param InitRange the source range that covers the "0" initializer.
8481bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
8482  SourceLocation EndLoc = InitRange.getEnd();
8483  if (EndLoc.isValid())
8484    Method->setRangeEnd(EndLoc);
8485
8486  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
8487    Method->setPure();
8488    return false;
8489  }
8490
8491  if (!Method->isInvalidDecl())
8492    Diag(Method->getLocation(), diag::err_non_virtual_pure)
8493      << Method->getDeclName() << InitRange;
8494  return true;
8495}
8496
8497/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
8498/// an initializer for the out-of-line declaration 'Dcl'.  The scope
8499/// is a fresh scope pushed for just this purpose.
8500///
8501/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
8502/// static data member of class X, names should be looked up in the scope of
8503/// class X.
8504void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
8505  // If there is no declaration, there was an error parsing it.
8506  if (D == 0 || D->isInvalidDecl()) return;
8507
8508  // We should only get called for declarations with scope specifiers, like:
8509  //   int foo::bar;
8510  assert(D->isOutOfLine());
8511  EnterDeclaratorContext(S, D->getDeclContext());
8512}
8513
8514/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
8515/// initializer for the out-of-line declaration 'D'.
8516void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
8517  // If there is no declaration, there was an error parsing it.
8518  if (D == 0 || D->isInvalidDecl()) return;
8519
8520  assert(D->isOutOfLine());
8521  ExitDeclaratorContext(S);
8522}
8523
8524/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
8525/// C++ if/switch/while/for statement.
8526/// e.g: "if (int x = f()) {...}"
8527DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
8528  // C++ 6.4p2:
8529  // The declarator shall not specify a function or an array.
8530  // The type-specifier-seq shall not contain typedef and shall not declare a
8531  // new class or enumeration.
8532  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
8533         "Parser allowed 'typedef' as storage class of condition decl.");
8534
8535  TagDecl *OwnedTag = 0;
8536  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
8537  QualType Ty = TInfo->getType();
8538
8539  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
8540                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
8541                              // would be created and CXXConditionDeclExpr wants a VarDecl.
8542    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
8543      << D.getSourceRange();
8544    return DeclResult();
8545  } else if (OwnedTag && OwnedTag->isDefinition()) {
8546    // The type-specifier-seq shall not declare a new class or enumeration.
8547    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
8548  }
8549
8550  Decl *Dcl = ActOnDeclarator(S, D);
8551  if (!Dcl)
8552    return DeclResult();
8553
8554  return Dcl;
8555}
8556
8557void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
8558                          bool DefinitionRequired) {
8559  // Ignore any vtable uses in unevaluated operands or for classes that do
8560  // not have a vtable.
8561  if (!Class->isDynamicClass() || Class->isDependentContext() ||
8562      CurContext->isDependentContext() ||
8563      ExprEvalContexts.back().Context == Unevaluated)
8564    return;
8565
8566  // Try to insert this class into the map.
8567  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
8568  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
8569    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
8570  if (!Pos.second) {
8571    // If we already had an entry, check to see if we are promoting this vtable
8572    // to required a definition. If so, we need to reappend to the VTableUses
8573    // list, since we may have already processed the first entry.
8574    if (DefinitionRequired && !Pos.first->second) {
8575      Pos.first->second = true;
8576    } else {
8577      // Otherwise, we can early exit.
8578      return;
8579    }
8580  }
8581
8582  // Local classes need to have their virtual members marked
8583  // immediately. For all other classes, we mark their virtual members
8584  // at the end of the translation unit.
8585  if (Class->isLocalClass())
8586    MarkVirtualMembersReferenced(Loc, Class);
8587  else
8588    VTableUses.push_back(std::make_pair(Class, Loc));
8589}
8590
8591bool Sema::DefineUsedVTables() {
8592  if (VTableUses.empty())
8593    return false;
8594
8595  // Note: The VTableUses vector could grow as a result of marking
8596  // the members of a class as "used", so we check the size each
8597  // time through the loop and prefer indices (with are stable) to
8598  // iterators (which are not).
8599  bool DefinedAnything = false;
8600  for (unsigned I = 0; I != VTableUses.size(); ++I) {
8601    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
8602    if (!Class)
8603      continue;
8604
8605    SourceLocation Loc = VTableUses[I].second;
8606
8607    // If this class has a key function, but that key function is
8608    // defined in another translation unit, we don't need to emit the
8609    // vtable even though we're using it.
8610    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
8611    if (KeyFunction && !KeyFunction->hasBody()) {
8612      switch (KeyFunction->getTemplateSpecializationKind()) {
8613      case TSK_Undeclared:
8614      case TSK_ExplicitSpecialization:
8615      case TSK_ExplicitInstantiationDeclaration:
8616        // The key function is in another translation unit.
8617        continue;
8618
8619      case TSK_ExplicitInstantiationDefinition:
8620      case TSK_ImplicitInstantiation:
8621        // We will be instantiating the key function.
8622        break;
8623      }
8624    } else if (!KeyFunction) {
8625      // If we have a class with no key function that is the subject
8626      // of an explicit instantiation declaration, suppress the
8627      // vtable; it will live with the explicit instantiation
8628      // definition.
8629      bool IsExplicitInstantiationDeclaration
8630        = Class->getTemplateSpecializationKind()
8631                                      == TSK_ExplicitInstantiationDeclaration;
8632      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
8633                                 REnd = Class->redecls_end();
8634           R != REnd; ++R) {
8635        TemplateSpecializationKind TSK
8636          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
8637        if (TSK == TSK_ExplicitInstantiationDeclaration)
8638          IsExplicitInstantiationDeclaration = true;
8639        else if (TSK == TSK_ExplicitInstantiationDefinition) {
8640          IsExplicitInstantiationDeclaration = false;
8641          break;
8642        }
8643      }
8644
8645      if (IsExplicitInstantiationDeclaration)
8646        continue;
8647    }
8648
8649    // Mark all of the virtual members of this class as referenced, so
8650    // that we can build a vtable. Then, tell the AST consumer that a
8651    // vtable for this class is required.
8652    DefinedAnything = true;
8653    MarkVirtualMembersReferenced(Loc, Class);
8654    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
8655    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
8656
8657    // Optionally warn if we're emitting a weak vtable.
8658    if (Class->getLinkage() == ExternalLinkage &&
8659        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
8660      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
8661        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
8662    }
8663  }
8664  VTableUses.clear();
8665
8666  return DefinedAnything;
8667}
8668
8669void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
8670                                        const CXXRecordDecl *RD) {
8671  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
8672       e = RD->method_end(); i != e; ++i) {
8673    CXXMethodDecl *MD = *i;
8674
8675    // C++ [basic.def.odr]p2:
8676    //   [...] A virtual member function is used if it is not pure. [...]
8677    if (MD->isVirtual() && !MD->isPure())
8678      MarkDeclarationReferenced(Loc, MD);
8679  }
8680
8681  // Only classes that have virtual bases need a VTT.
8682  if (RD->getNumVBases() == 0)
8683    return;
8684
8685  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
8686           e = RD->bases_end(); i != e; ++i) {
8687    const CXXRecordDecl *Base =
8688        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
8689    if (Base->getNumVBases() == 0)
8690      continue;
8691    MarkVirtualMembersReferenced(Loc, Base);
8692  }
8693}
8694
8695/// SetIvarInitializers - This routine builds initialization ASTs for the
8696/// Objective-C implementation whose ivars need be initialized.
8697void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
8698  if (!getLangOptions().CPlusPlus)
8699    return;
8700  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
8701    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
8702    CollectIvarsToConstructOrDestruct(OID, ivars);
8703    if (ivars.empty())
8704      return;
8705    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
8706    for (unsigned i = 0; i < ivars.size(); i++) {
8707      FieldDecl *Field = ivars[i];
8708      if (Field->isInvalidDecl())
8709        continue;
8710
8711      CXXCtorInitializer *Member;
8712      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
8713      InitializationKind InitKind =
8714        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
8715
8716      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
8717      ExprResult MemberInit =
8718        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
8719      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
8720      // Note, MemberInit could actually come back empty if no initialization
8721      // is required (e.g., because it would call a trivial default constructor)
8722      if (!MemberInit.get() || MemberInit.isInvalid())
8723        continue;
8724
8725      Member =
8726        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
8727                                         SourceLocation(),
8728                                         MemberInit.takeAs<Expr>(),
8729                                         SourceLocation());
8730      AllToInit.push_back(Member);
8731
8732      // Be sure that the destructor is accessible and is marked as referenced.
8733      if (const RecordType *RecordTy
8734                  = Context.getBaseElementType(Field->getType())
8735                                                        ->getAs<RecordType>()) {
8736                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
8737        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
8738          MarkDeclarationReferenced(Field->getLocation(), Destructor);
8739          CheckDestructorAccess(Field->getLocation(), Destructor,
8740                            PDiag(diag::err_access_dtor_ivar)
8741                              << Context.getBaseElementType(Field->getType()));
8742        }
8743      }
8744    }
8745    ObjCImplementation->setIvarInitializers(Context,
8746                                            AllToInit.data(), AllToInit.size());
8747  }
8748}
8749
8750static
8751void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
8752                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
8753                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
8754                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
8755                           Sema &S) {
8756  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
8757                                                   CE = Current.end();
8758  if (Ctor->isInvalidDecl())
8759    return;
8760
8761  const FunctionDecl *FNTarget = 0;
8762  CXXConstructorDecl *Target;
8763
8764  // We ignore the result here since if we don't have a body, Target will be
8765  // null below.
8766  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
8767  Target
8768= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
8769
8770  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
8771                     // Avoid dereferencing a null pointer here.
8772                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
8773
8774  if (!Current.insert(Canonical))
8775    return;
8776
8777  // We know that beyond here, we aren't chaining into a cycle.
8778  if (!Target || !Target->isDelegatingConstructor() ||
8779      Target->isInvalidDecl() || Valid.count(TCanonical)) {
8780    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
8781      Valid.insert(*CI);
8782    Current.clear();
8783  // We've hit a cycle.
8784  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
8785             Current.count(TCanonical)) {
8786    // If we haven't diagnosed this cycle yet, do so now.
8787    if (!Invalid.count(TCanonical)) {
8788      S.Diag((*Ctor->init_begin())->getSourceLocation(),
8789             diag::warn_delegating_ctor_cycle)
8790        << Ctor;
8791
8792      // Don't add a note for a function delegating directo to itself.
8793      if (TCanonical != Canonical)
8794        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
8795
8796      CXXConstructorDecl *C = Target;
8797      while (C->getCanonicalDecl() != Canonical) {
8798        (void)C->getTargetConstructor()->hasBody(FNTarget);
8799        assert(FNTarget && "Ctor cycle through bodiless function");
8800
8801        C
8802       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
8803        S.Diag(C->getLocation(), diag::note_which_delegates_to);
8804      }
8805    }
8806
8807    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
8808      Invalid.insert(*CI);
8809    Current.clear();
8810  } else {
8811    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
8812  }
8813}
8814
8815
8816void Sema::CheckDelegatingCtorCycles() {
8817  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
8818
8819  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
8820                                                   CE = Current.end();
8821
8822  for (llvm::SmallVector<CXXConstructorDecl*, 4>::iterator
8823         I = DelegatingCtorDecls.begin(),
8824         E = DelegatingCtorDecls.end();
8825       I != E; ++I) {
8826   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
8827  }
8828
8829  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
8830    (*CI)->setInvalidDecl();
8831}
8832