SemaDeclCXX.cpp revision e384c18821df5e086d453463236b5b66454e7a28
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/TypeOrdering.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Parse/DeclSpec.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm> // for std::equal
25#include <map>
26
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30// CheckDefaultArgumentVisitor
31//===----------------------------------------------------------------------===//
32
33namespace {
34  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
35  /// the default argument of a parameter to determine whether it
36  /// contains any ill-formed subexpressions. For example, this will
37  /// diagnose the use of local variables or parameters within the
38  /// default argument expression.
39  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
40    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
41    Expr *DefaultArg;
42    Sema *S;
43
44  public:
45    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
46      : DefaultArg(defarg), S(s) {}
47
48    bool VisitExpr(Expr *Node);
49    bool VisitDeclRefExpr(DeclRefExpr *DRE);
50    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
51  };
52
53  /// VisitExpr - Visit all of the children of this expression.
54  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
55    bool IsInvalid = false;
56    for (Stmt::child_iterator I = Node->child_begin(),
57         E = Node->child_end(); I != E; ++I)
58      IsInvalid |= Visit(*I);
59    return IsInvalid;
60  }
61
62  /// VisitDeclRefExpr - Visit a reference to a declaration, to
63  /// determine whether this declaration can be used in the default
64  /// argument expression.
65  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
66    NamedDecl *Decl = DRE->getDecl();
67    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
68      // C++ [dcl.fct.default]p9
69      //   Default arguments are evaluated each time the function is
70      //   called. The order of evaluation of function arguments is
71      //   unspecified. Consequently, parameters of a function shall not
72      //   be used in default argument expressions, even if they are not
73      //   evaluated. Parameters of a function declared before a default
74      //   argument expression are in scope and can hide namespace and
75      //   class member names.
76      return S->Diag(DRE->getSourceRange().getBegin(),
77                     diag::err_param_default_argument_references_param)
78         << Param->getDeclName() << DefaultArg->getSourceRange();
79    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
80      // C++ [dcl.fct.default]p7
81      //   Local variables shall not be used in default argument
82      //   expressions.
83      if (VDecl->isBlockVarDecl())
84        return S->Diag(DRE->getSourceRange().getBegin(),
85                       diag::err_param_default_argument_references_local)
86          << VDecl->getDeclName() << DefaultArg->getSourceRange();
87    }
88
89    return false;
90  }
91
92  /// VisitCXXThisExpr - Visit a C++ "this" expression.
93  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
94    // C++ [dcl.fct.default]p8:
95    //   The keyword this shall not be used in a default argument of a
96    //   member function.
97    return S->Diag(ThisE->getSourceRange().getBegin(),
98                   diag::err_param_default_argument_references_this)
99               << ThisE->getSourceRange();
100  }
101}
102
103/// ActOnParamDefaultArgument - Check whether the default argument
104/// provided for a function parameter is well-formed. If so, attach it
105/// to the parameter declaration.
106void
107Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
108                                ExprTy *defarg) {
109  ParmVarDecl *Param = (ParmVarDecl *)param;
110  ExprOwningPtr<Expr> DefaultArg(this, (Expr *)defarg);
111  QualType ParamType = Param->getType();
112
113  // Default arguments are only permitted in C++
114  if (!getLangOptions().CPlusPlus) {
115    Diag(EqualLoc, diag::err_param_default_argument)
116      << DefaultArg->getSourceRange();
117    Param->setInvalidDecl();
118    return;
119  }
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  Expr *DefaultArgPtr = DefaultArg.get();
128  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
129                                                 EqualLoc,
130                                                 Param->getDeclName(),
131                                                 /*DirectInit=*/false);
132  if (DefaultArgPtr != DefaultArg.get()) {
133    DefaultArg.take();
134    DefaultArg.reset(DefaultArgPtr);
135  }
136  if (DefaultInitFailed) {
137    return;
138  }
139
140  // Check that the default argument is well-formed
141  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
142  if (DefaultArgChecker.Visit(DefaultArg.get())) {
143    Param->setInvalidDecl();
144    return;
145  }
146
147  // Okay: add the default argument to the parameter
148  Param->setDefaultArg(DefaultArg.take());
149}
150
151/// ActOnParamUnparsedDefaultArgument - We've seen a default
152/// argument for a function parameter, but we can't parse it yet
153/// because we're inside a class definition. Note that this default
154/// argument will be parsed later.
155void Sema::ActOnParamUnparsedDefaultArgument(DeclTy *param,
156                                             SourceLocation EqualLoc) {
157  ParmVarDecl *Param = (ParmVarDecl*)param;
158  if (Param)
159    Param->setUnparsedDefaultArg();
160}
161
162/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
163/// the default argument for the parameter param failed.
164void Sema::ActOnParamDefaultArgumentError(DeclTy *param) {
165  ((ParmVarDecl*)param)->setInvalidDecl();
166}
167
168/// CheckExtraCXXDefaultArguments - Check for any extra default
169/// arguments in the declarator, which is not a function declaration
170/// or definition and therefore is not permitted to have default
171/// arguments. This routine should be invoked for every declarator
172/// that is not a function declaration or definition.
173void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
174  // C++ [dcl.fct.default]p3
175  //   A default argument expression shall be specified only in the
176  //   parameter-declaration-clause of a function declaration or in a
177  //   template-parameter (14.1). It shall not be specified for a
178  //   parameter pack. If it is specified in a
179  //   parameter-declaration-clause, it shall not occur within a
180  //   declarator or abstract-declarator of a parameter-declaration.
181  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
182    DeclaratorChunk &chunk = D.getTypeObject(i);
183    if (chunk.Kind == DeclaratorChunk::Function) {
184      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
185        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
186        if (Param->hasUnparsedDefaultArg()) {
187          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
188          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
189            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
190          delete Toks;
191          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
192        } else if (Param->getDefaultArg()) {
193          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
194            << Param->getDefaultArg()->getSourceRange();
195          Param->setDefaultArg(0);
196        }
197      }
198    }
199  }
200}
201
202// MergeCXXFunctionDecl - Merge two declarations of the same C++
203// function, once we already know that they have the same
204// type. Subroutine of MergeFunctionDecl. Returns true if there was an
205// error, false otherwise.
206bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
207  bool Invalid = false;
208
209  // C++ [dcl.fct.default]p4:
210  //
211  //   For non-template functions, default arguments can be added in
212  //   later declarations of a function in the same
213  //   scope. Declarations in different scopes have completely
214  //   distinct sets of default arguments. That is, declarations in
215  //   inner scopes do not acquire default arguments from
216  //   declarations in outer scopes, and vice versa. In a given
217  //   function declaration, all parameters subsequent to a
218  //   parameter with a default argument shall have default
219  //   arguments supplied in this or previous declarations. A
220  //   default argument shall not be redefined by a later
221  //   declaration (not even to the same value).
222  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
223    ParmVarDecl *OldParam = Old->getParamDecl(p);
224    ParmVarDecl *NewParam = New->getParamDecl(p);
225
226    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
227      Diag(NewParam->getLocation(),
228           diag::err_param_default_argument_redefinition)
229        << NewParam->getDefaultArg()->getSourceRange();
230      Diag(OldParam->getLocation(), diag::note_previous_definition);
231      Invalid = true;
232    } else if (OldParam->getDefaultArg()) {
233      // Merge the old default argument into the new parameter
234      NewParam->setDefaultArg(OldParam->getDefaultArg());
235    }
236  }
237
238  return Invalid;
239}
240
241/// CheckCXXDefaultArguments - Verify that the default arguments for a
242/// function declaration are well-formed according to C++
243/// [dcl.fct.default].
244void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
245  unsigned NumParams = FD->getNumParams();
246  unsigned p;
247
248  // Find first parameter with a default argument
249  for (p = 0; p < NumParams; ++p) {
250    ParmVarDecl *Param = FD->getParamDecl(p);
251    if (Param->getDefaultArg())
252      break;
253  }
254
255  // C++ [dcl.fct.default]p4:
256  //   In a given function declaration, all parameters
257  //   subsequent to a parameter with a default argument shall
258  //   have default arguments supplied in this or previous
259  //   declarations. A default argument shall not be redefined
260  //   by a later declaration (not even to the same value).
261  unsigned LastMissingDefaultArg = 0;
262  for(; p < NumParams; ++p) {
263    ParmVarDecl *Param = FD->getParamDecl(p);
264    if (!Param->getDefaultArg()) {
265      if (Param->isInvalidDecl())
266        /* We already complained about this parameter. */;
267      else if (Param->getIdentifier())
268        Diag(Param->getLocation(),
269             diag::err_param_default_argument_missing_name)
270          << Param->getIdentifier();
271      else
272        Diag(Param->getLocation(),
273             diag::err_param_default_argument_missing);
274
275      LastMissingDefaultArg = p;
276    }
277  }
278
279  if (LastMissingDefaultArg > 0) {
280    // Some default arguments were missing. Clear out all of the
281    // default arguments up to (and including) the last missing
282    // default argument, so that we leave the function parameters
283    // in a semantically valid state.
284    for (p = 0; p <= LastMissingDefaultArg; ++p) {
285      ParmVarDecl *Param = FD->getParamDecl(p);
286      if (Param->getDefaultArg()) {
287        if (!Param->hasUnparsedDefaultArg())
288          Param->getDefaultArg()->Destroy(Context);
289        Param->setDefaultArg(0);
290      }
291    }
292  }
293}
294
295/// isCurrentClassName - Determine whether the identifier II is the
296/// name of the class type currently being defined. In the case of
297/// nested classes, this will only return true if II is the name of
298/// the innermost class.
299bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
300                              const CXXScopeSpec *SS) {
301  CXXRecordDecl *CurDecl;
302  if (SS) {
303    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
304    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
305  } else
306    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
307
308  if (CurDecl)
309    return &II == CurDecl->getIdentifier();
310  else
311    return false;
312}
313
314/// \brief Check the validity of a C++ base class specifier.
315///
316/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
317/// and returns NULL otherwise.
318CXXBaseSpecifier *
319Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
320                         SourceRange SpecifierRange,
321                         bool Virtual, AccessSpecifier Access,
322                         QualType BaseType,
323                         SourceLocation BaseLoc) {
324  // C++ [class.union]p1:
325  //   A union shall not have base classes.
326  if (Class->isUnion()) {
327    Diag(Class->getLocation(), diag::err_base_clause_on_union)
328      << SpecifierRange;
329    return 0;
330  }
331
332  if (BaseType->isDependentType())
333    return new CXXBaseSpecifier(SpecifierRange, Virtual,
334                                Class->getTagKind() == RecordDecl::TK_class,
335                                Access, BaseType);
336
337  // Base specifiers must be record types.
338  if (!BaseType->isRecordType()) {
339    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
340    return 0;
341  }
342
343  // C++ [class.union]p1:
344  //   A union shall not be used as a base class.
345  if (BaseType->isUnionType()) {
346    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
347    return 0;
348  }
349
350  // C++ [class.derived]p2:
351  //   The class-name in a base-specifier shall not be an incompletely
352  //   defined class.
353  if (DiagnoseIncompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
354                             SpecifierRange))
355    return 0;
356
357  // If the base class is polymorphic, the new one is, too.
358  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
359  assert(BaseDecl && "Record type has no declaration");
360  BaseDecl = BaseDecl->getDefinition(Context);
361  assert(BaseDecl && "Base type is not incomplete, but has no definition");
362  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
363    Class->setPolymorphic(true);
364
365  // C++ [dcl.init.aggr]p1:
366  //   An aggregate is [...] a class with [...] no base classes [...].
367  Class->setAggregate(false);
368  Class->setPOD(false);
369
370  // Create the base specifier.
371  // FIXME: Allocate via ASTContext?
372  return new CXXBaseSpecifier(SpecifierRange, Virtual,
373                              Class->getTagKind() == RecordDecl::TK_class,
374                              Access, BaseType);
375}
376
377/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
378/// one entry in the base class list of a class specifier, for
379/// example:
380///    class foo : public bar, virtual private baz {
381/// 'public bar' and 'virtual private baz' are each base-specifiers.
382Sema::BaseResult
383Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
384                         bool Virtual, AccessSpecifier Access,
385                         TypeTy *basetype, SourceLocation BaseLoc) {
386  CXXRecordDecl *Class = (CXXRecordDecl*)classdecl;
387  QualType BaseType = QualType::getFromOpaquePtr(basetype);
388  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
389                                                      Virtual, Access,
390                                                      BaseType, BaseLoc))
391    return BaseSpec;
392
393  return true;
394}
395
396/// \brief Performs the actual work of attaching the given base class
397/// specifiers to a C++ class.
398bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
399                                unsigned NumBases) {
400 if (NumBases == 0)
401    return false;
402
403  // Used to keep track of which base types we have already seen, so
404  // that we can properly diagnose redundant direct base types. Note
405  // that the key is always the unqualified canonical type of the base
406  // class.
407  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
408
409  // Copy non-redundant base specifiers into permanent storage.
410  unsigned NumGoodBases = 0;
411  bool Invalid = false;
412  for (unsigned idx = 0; idx < NumBases; ++idx) {
413    QualType NewBaseType
414      = Context.getCanonicalType(Bases[idx]->getType());
415    NewBaseType = NewBaseType.getUnqualifiedType();
416
417    if (KnownBaseTypes[NewBaseType]) {
418      // C++ [class.mi]p3:
419      //   A class shall not be specified as a direct base class of a
420      //   derived class more than once.
421      Diag(Bases[idx]->getSourceRange().getBegin(),
422           diag::err_duplicate_base_class)
423        << KnownBaseTypes[NewBaseType]->getType()
424        << Bases[idx]->getSourceRange();
425
426      // Delete the duplicate base class specifier; we're going to
427      // overwrite its pointer later.
428      delete Bases[idx];
429
430      Invalid = true;
431    } else {
432      // Okay, add this new base class.
433      KnownBaseTypes[NewBaseType] = Bases[idx];
434      Bases[NumGoodBases++] = Bases[idx];
435    }
436  }
437
438  // Attach the remaining base class specifiers to the derived class.
439  Class->setBases(Bases, NumGoodBases);
440
441  // Delete the remaining (good) base class specifiers, since their
442  // data has been copied into the CXXRecordDecl.
443  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
444    delete Bases[idx];
445
446  return Invalid;
447}
448
449/// ActOnBaseSpecifiers - Attach the given base specifiers to the
450/// class, after checking whether there are any duplicate base
451/// classes.
452void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
453                               unsigned NumBases) {
454  if (!ClassDecl || !Bases || !NumBases)
455    return;
456
457  AdjustDeclIfTemplate(ClassDecl);
458  AttachBaseSpecifiers(cast<CXXRecordDecl>((Decl*)ClassDecl),
459                       (CXXBaseSpecifier**)(Bases), NumBases);
460}
461
462//===----------------------------------------------------------------------===//
463// C++ class member Handling
464//===----------------------------------------------------------------------===//
465
466/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
467/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
468/// bitfield width if there is one and 'InitExpr' specifies the initializer if
469/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
470/// declarators on it.
471Sema::DeclTy *
472Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
473                               ExprTy *BW, ExprTy *InitExpr,
474                               DeclTy *LastInGroup) {
475  const DeclSpec &DS = D.getDeclSpec();
476  DeclarationName Name = GetNameForDeclarator(D);
477  Expr *BitWidth = static_cast<Expr*>(BW);
478  Expr *Init = static_cast<Expr*>(InitExpr);
479  SourceLocation Loc = D.getIdentifierLoc();
480
481  bool isFunc = D.isFunctionDeclarator();
482
483  // C++ 9.2p6: A member shall not be declared to have automatic storage
484  // duration (auto, register) or with the extern storage-class-specifier.
485  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
486  // data members and cannot be applied to names declared const or static,
487  // and cannot be applied to reference members.
488  switch (DS.getStorageClassSpec()) {
489    case DeclSpec::SCS_unspecified:
490    case DeclSpec::SCS_typedef:
491    case DeclSpec::SCS_static:
492      // FALL THROUGH.
493      break;
494    case DeclSpec::SCS_mutable:
495      if (isFunc) {
496        if (DS.getStorageClassSpecLoc().isValid())
497          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
498        else
499          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
500
501        // FIXME: It would be nicer if the keyword was ignored only for this
502        // declarator. Otherwise we could get follow-up errors.
503        D.getMutableDeclSpec().ClearStorageClassSpecs();
504      } else {
505        QualType T = GetTypeForDeclarator(D, S);
506        diag::kind err = static_cast<diag::kind>(0);
507        if (T->isReferenceType())
508          err = diag::err_mutable_reference;
509        else if (T.isConstQualified())
510          err = diag::err_mutable_const;
511        if (err != 0) {
512          if (DS.getStorageClassSpecLoc().isValid())
513            Diag(DS.getStorageClassSpecLoc(), err);
514          else
515            Diag(DS.getThreadSpecLoc(), err);
516          // FIXME: It would be nicer if the keyword was ignored only for this
517          // declarator. Otherwise we could get follow-up errors.
518          D.getMutableDeclSpec().ClearStorageClassSpecs();
519        }
520      }
521      break;
522    default:
523      if (DS.getStorageClassSpecLoc().isValid())
524        Diag(DS.getStorageClassSpecLoc(),
525             diag::err_storageclass_invalid_for_member);
526      else
527        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
528      D.getMutableDeclSpec().ClearStorageClassSpecs();
529  }
530
531  if (!isFunc &&
532      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
533      D.getNumTypeObjects() == 0) {
534    // Check also for this case:
535    //
536    // typedef int f();
537    // f a;
538    //
539    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
540    isFunc = TDType->isFunctionType();
541  }
542
543  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
544                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
545                      !isFunc);
546
547  Decl *Member;
548  if (isInstField) {
549    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth);
550    assert(Member && "HandleField never returns null");
551  } else {
552    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
553    if (!Member) {
554      if (BitWidth) DeleteExpr(BitWidth);
555      return LastInGroup;
556    }
557
558    // Non-instance-fields can't have a bitfield.
559    if (BitWidth) {
560      if (Member->isInvalidDecl()) {
561        // don't emit another diagnostic.
562      } else if (isa<CXXClassVarDecl>(Member)) {
563        // C++ 9.6p3: A bit-field shall not be a static member.
564        // "static member 'A' cannot be a bit-field"
565        Diag(Loc, diag::err_static_not_bitfield)
566          << Name << BitWidth->getSourceRange();
567      } else if (isa<TypedefDecl>(Member)) {
568        // "typedef member 'x' cannot be a bit-field"
569        Diag(Loc, diag::err_typedef_not_bitfield)
570          << Name << BitWidth->getSourceRange();
571      } else {
572        // A function typedef ("typedef int f(); f a;").
573        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
574        Diag(Loc, diag::err_not_integral_type_bitfield)
575          << Name << BitWidth->getSourceRange();
576      }
577
578      DeleteExpr(BitWidth);
579      BitWidth = 0;
580      Member->setInvalidDecl();
581    }
582  }
583
584  assert((Name || isInstField) && "No identifier for non-field ?");
585
586  // set/getAccess is not part of Decl's interface to avoid bloating it with C++
587  // specific methods. Use a wrapper class that can be used with all C++ class
588  // member decls.
589  CXXClassMemberWrapper(Member).setAccess(AS);
590
591  // C++ [dcl.init.aggr]p1:
592  //   An aggregate is an array or a class (clause 9) with [...] no
593  //   private or protected non-static data members (clause 11).
594  // A POD must be an aggregate.
595  if (isInstField && (AS == AS_private || AS == AS_protected)) {
596    CXXRecordDecl *Record = cast<CXXRecordDecl>(CurContext);
597    Record->setAggregate(false);
598    Record->setPOD(false);
599  }
600
601  if (DS.isVirtualSpecified()) {
602    if (!isFunc || DS.getStorageClassSpec() == DeclSpec::SCS_static) {
603      Diag(DS.getVirtualSpecLoc(), diag::err_virtual_non_function);
604      Member->setInvalidDecl();
605    } else {
606      cast<CXXMethodDecl>(Member)->setVirtual();
607      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(CurContext);
608      CurClass->setAggregate(false);
609      CurClass->setPOD(false);
610      CurClass->setPolymorphic(true);
611    }
612  }
613
614  // FIXME: The above definition of virtual is not sufficient. A function is
615  // also virtual if it overrides an already virtual function. This is important
616  // to do here because it decides the validity of a pure specifier.
617
618  if (Init) {
619    // C++ 9.2p4: A member-declarator can contain a constant-initializer only
620    // if it declares a static member of const integral or const enumeration
621    // type.
622    if (CXXClassVarDecl *CVD = dyn_cast<CXXClassVarDecl>(Member)) {
623      // ...static member of...
624      CVD->setInit(Init);
625      // ...const integral or const enumeration type.
626      if (Context.getCanonicalType(CVD->getType()).isConstQualified() &&
627          CVD->getType()->isIntegralType()) {
628        // constant-initializer
629        if (CheckForConstantInitializer(Init, CVD->getType()))
630          Member->setInvalidDecl();
631
632      } else {
633        // not const integral.
634        Diag(Loc, diag::err_member_initialization)
635          << Name << Init->getSourceRange();
636        Member->setInvalidDecl();
637      }
638
639    } else {
640      // not static member. perhaps virtual function?
641      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member)) {
642        // With declarators parsed the way they are, the parser cannot
643        // distinguish between a normal initializer and a pure-specifier.
644        // Thus this grotesque test.
645        IntegerLiteral *IL;
646        if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
647            Context.getCanonicalType(IL->getType()) == Context.IntTy) {
648          if (MD->isVirtual())
649            MD->setPure();
650          else {
651            Diag(Loc, diag::err_non_virtual_pure)
652              << Name << Init->getSourceRange();
653            Member->setInvalidDecl();
654          }
655        } else {
656          Diag(Loc, diag::err_member_function_initialization)
657            << Name << Init->getSourceRange();
658          Member->setInvalidDecl();
659        }
660      } else {
661        Diag(Loc, diag::err_member_initialization)
662          << Name << Init->getSourceRange();
663        Member->setInvalidDecl();
664      }
665    }
666  }
667
668  if (isInstField) {
669    FieldCollector->Add(cast<FieldDecl>(Member));
670    return LastInGroup;
671  }
672  return Member;
673}
674
675/// ActOnMemInitializer - Handle a C++ member initializer.
676Sema::MemInitResult
677Sema::ActOnMemInitializer(DeclTy *ConstructorD,
678                          Scope *S,
679                          IdentifierInfo *MemberOrBase,
680                          SourceLocation IdLoc,
681                          SourceLocation LParenLoc,
682                          ExprTy **Args, unsigned NumArgs,
683                          SourceLocation *CommaLocs,
684                          SourceLocation RParenLoc) {
685  CXXConstructorDecl *Constructor
686    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
687  if (!Constructor) {
688    // The user wrote a constructor initializer on a function that is
689    // not a C++ constructor. Ignore the error for now, because we may
690    // have more member initializers coming; we'll diagnose it just
691    // once in ActOnMemInitializers.
692    return true;
693  }
694
695  CXXRecordDecl *ClassDecl = Constructor->getParent();
696
697  // C++ [class.base.init]p2:
698  //   Names in a mem-initializer-id are looked up in the scope of the
699  //   constructor’s class and, if not found in that scope, are looked
700  //   up in the scope containing the constructor’s
701  //   definition. [Note: if the constructor’s class contains a member
702  //   with the same name as a direct or virtual base class of the
703  //   class, a mem-initializer-id naming the member or base class and
704  //   composed of a single identifier refers to the class member. A
705  //   mem-initializer-id for the hidden base class may be specified
706  //   using a qualified name. ]
707  // Look for a member, first.
708  FieldDecl *Member = 0;
709  DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
710  if (Result.first != Result.second)
711    Member = dyn_cast<FieldDecl>(*Result.first);
712
713  // FIXME: Handle members of an anonymous union.
714
715  if (Member) {
716    // FIXME: Perform direct initialization of the member.
717    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
718  }
719
720  // It didn't name a member, so see if it names a class.
721  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
722  if (!BaseTy)
723    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
724      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
725
726  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
727  if (!BaseType->isRecordType())
728    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
729      << BaseType << SourceRange(IdLoc, RParenLoc);
730
731  // C++ [class.base.init]p2:
732  //   [...] Unless the mem-initializer-id names a nonstatic data
733  //   member of the constructor’s class or a direct or virtual base
734  //   of that class, the mem-initializer is ill-formed. A
735  //   mem-initializer-list can initialize a base class using any
736  //   name that denotes that base class type.
737
738  // First, check for a direct base class.
739  const CXXBaseSpecifier *DirectBaseSpec = 0;
740  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
741       Base != ClassDecl->bases_end(); ++Base) {
742    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
743        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
744      // We found a direct base of this type. That's what we're
745      // initializing.
746      DirectBaseSpec = &*Base;
747      break;
748    }
749  }
750
751  // Check for a virtual base class.
752  // FIXME: We might be able to short-circuit this if we know in
753  // advance that there are no virtual bases.
754  const CXXBaseSpecifier *VirtualBaseSpec = 0;
755  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
756    // We haven't found a base yet; search the class hierarchy for a
757    // virtual base class.
758    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
759                    /*DetectVirtual=*/false);
760    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
761      for (BasePaths::paths_iterator Path = Paths.begin();
762           Path != Paths.end(); ++Path) {
763        if (Path->back().Base->isVirtual()) {
764          VirtualBaseSpec = Path->back().Base;
765          break;
766        }
767      }
768    }
769  }
770
771  // C++ [base.class.init]p2:
772  //   If a mem-initializer-id is ambiguous because it designates both
773  //   a direct non-virtual base class and an inherited virtual base
774  //   class, the mem-initializer is ill-formed.
775  if (DirectBaseSpec && VirtualBaseSpec)
776    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
777      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
778
779  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
780}
781
782
783void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
784                                             DeclTy *TagDecl,
785                                             SourceLocation LBrac,
786                                             SourceLocation RBrac) {
787  TemplateDecl *Template = AdjustDeclIfTemplate(TagDecl);
788  ActOnFields(S, RLoc, TagDecl,
789              (DeclTy**)FieldCollector->getCurFields(),
790              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
791
792  if (!Template)
793    AddImplicitlyDeclaredMembersToClass(cast<CXXRecordDecl>((Decl*)TagDecl));
794}
795
796/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
797/// special functions, such as the default constructor, copy
798/// constructor, or destructor, to the given C++ class (C++
799/// [special]p1).  This routine can only be executed just before the
800/// definition of the class is complete.
801void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
802  QualType ClassType = Context.getTypeDeclType(ClassDecl);
803  ClassType = Context.getCanonicalType(ClassType);
804
805  if (!ClassDecl->hasUserDeclaredConstructor()) {
806    // C++ [class.ctor]p5:
807    //   A default constructor for a class X is a constructor of class X
808    //   that can be called without an argument. If there is no
809    //   user-declared constructor for class X, a default constructor is
810    //   implicitly declared. An implicitly-declared default constructor
811    //   is an inline public member of its class.
812    DeclarationName Name
813      = Context.DeclarationNames.getCXXConstructorName(ClassType);
814    CXXConstructorDecl *DefaultCon =
815      CXXConstructorDecl::Create(Context, ClassDecl,
816                                 ClassDecl->getLocation(), Name,
817                                 Context.getFunctionType(Context.VoidTy,
818                                                         0, 0, false, 0),
819                                 /*isExplicit=*/false,
820                                 /*isInline=*/true,
821                                 /*isImplicitlyDeclared=*/true);
822    DefaultCon->setAccess(AS_public);
823    DefaultCon->setImplicit();
824    ClassDecl->addDecl(DefaultCon);
825
826    // Notify the class that we've added a constructor.
827    ClassDecl->addedConstructor(Context, DefaultCon);
828  }
829
830  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
831    // C++ [class.copy]p4:
832    //   If the class definition does not explicitly declare a copy
833    //   constructor, one is declared implicitly.
834
835    // C++ [class.copy]p5:
836    //   The implicitly-declared copy constructor for a class X will
837    //   have the form
838    //
839    //       X::X(const X&)
840    //
841    //   if
842    bool HasConstCopyConstructor = true;
843
844    //     -- each direct or virtual base class B of X has a copy
845    //        constructor whose first parameter is of type const B& or
846    //        const volatile B&, and
847    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
848         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
849      const CXXRecordDecl *BaseClassDecl
850        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
851      HasConstCopyConstructor
852        = BaseClassDecl->hasConstCopyConstructor(Context);
853    }
854
855    //     -- for all the nonstatic data members of X that are of a
856    //        class type M (or array thereof), each such class type
857    //        has a copy constructor whose first parameter is of type
858    //        const M& or const volatile M&.
859    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
860         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
861      QualType FieldType = (*Field)->getType();
862      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
863        FieldType = Array->getElementType();
864      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
865        const CXXRecordDecl *FieldClassDecl
866          = cast<CXXRecordDecl>(FieldClassType->getDecl());
867        HasConstCopyConstructor
868          = FieldClassDecl->hasConstCopyConstructor(Context);
869      }
870    }
871
872    //   Otherwise, the implicitly declared copy constructor will have
873    //   the form
874    //
875    //       X::X(X&)
876    QualType ArgType = ClassType;
877    if (HasConstCopyConstructor)
878      ArgType = ArgType.withConst();
879    ArgType = Context.getReferenceType(ArgType);
880
881    //   An implicitly-declared copy constructor is an inline public
882    //   member of its class.
883    DeclarationName Name
884      = Context.DeclarationNames.getCXXConstructorName(ClassType);
885    CXXConstructorDecl *CopyConstructor
886      = CXXConstructorDecl::Create(Context, ClassDecl,
887                                   ClassDecl->getLocation(), Name,
888                                   Context.getFunctionType(Context.VoidTy,
889                                                           &ArgType, 1,
890                                                           false, 0),
891                                   /*isExplicit=*/false,
892                                   /*isInline=*/true,
893                                   /*isImplicitlyDeclared=*/true);
894    CopyConstructor->setAccess(AS_public);
895    CopyConstructor->setImplicit();
896
897    // Add the parameter to the constructor.
898    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
899                                                 ClassDecl->getLocation(),
900                                                 /*IdentifierInfo=*/0,
901                                                 ArgType, VarDecl::None, 0);
902    CopyConstructor->setParams(Context, &FromParam, 1);
903
904    ClassDecl->addedConstructor(Context, CopyConstructor);
905    ClassDecl->addDecl(CopyConstructor);
906  }
907
908  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
909    // Note: The following rules are largely analoguous to the copy
910    // constructor rules. Note that virtual bases are not taken into account
911    // for determining the argument type of the operator. Note also that
912    // operators taking an object instead of a reference are allowed.
913    //
914    // C++ [class.copy]p10:
915    //   If the class definition does not explicitly declare a copy
916    //   assignment operator, one is declared implicitly.
917    //   The implicitly-defined copy assignment operator for a class X
918    //   will have the form
919    //
920    //       X& X::operator=(const X&)
921    //
922    //   if
923    bool HasConstCopyAssignment = true;
924
925    //       -- each direct base class B of X has a copy assignment operator
926    //          whose parameter is of type const B&, const volatile B& or B,
927    //          and
928    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
929         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
930      const CXXRecordDecl *BaseClassDecl
931        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
932      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
933    }
934
935    //       -- for all the nonstatic data members of X that are of a class
936    //          type M (or array thereof), each such class type has a copy
937    //          assignment operator whose parameter is of type const M&,
938    //          const volatile M& or M.
939    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
940         HasConstCopyAssignment && Field != ClassDecl->field_end(); ++Field) {
941      QualType FieldType = (*Field)->getType();
942      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
943        FieldType = Array->getElementType();
944      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
945        const CXXRecordDecl *FieldClassDecl
946          = cast<CXXRecordDecl>(FieldClassType->getDecl());
947        HasConstCopyAssignment
948          = FieldClassDecl->hasConstCopyAssignment(Context);
949      }
950    }
951
952    //   Otherwise, the implicitly declared copy assignment operator will
953    //   have the form
954    //
955    //       X& X::operator=(X&)
956    QualType ArgType = ClassType;
957    QualType RetType = Context.getReferenceType(ArgType);
958    if (HasConstCopyAssignment)
959      ArgType = ArgType.withConst();
960    ArgType = Context.getReferenceType(ArgType);
961
962    //   An implicitly-declared copy assignment operator is an inline public
963    //   member of its class.
964    DeclarationName Name =
965      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
966    CXXMethodDecl *CopyAssignment =
967      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
968                            Context.getFunctionType(RetType, &ArgType, 1,
969                                                    false, 0),
970                            /*isStatic=*/false, /*isInline=*/true);
971    CopyAssignment->setAccess(AS_public);
972    CopyAssignment->setImplicit();
973
974    // Add the parameter to the operator.
975    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
976                                                 ClassDecl->getLocation(),
977                                                 /*IdentifierInfo=*/0,
978                                                 ArgType, VarDecl::None, 0);
979    CopyAssignment->setParams(Context, &FromParam, 1);
980
981    // Don't call addedAssignmentOperator. There is no way to distinguish an
982    // implicit from an explicit assignment operator.
983    ClassDecl->addDecl(CopyAssignment);
984  }
985
986  if (!ClassDecl->hasUserDeclaredDestructor()) {
987    // C++ [class.dtor]p2:
988    //   If a class has no user-declared destructor, a destructor is
989    //   declared implicitly. An implicitly-declared destructor is an
990    //   inline public member of its class.
991    DeclarationName Name
992      = Context.DeclarationNames.getCXXDestructorName(ClassType);
993    CXXDestructorDecl *Destructor
994      = CXXDestructorDecl::Create(Context, ClassDecl,
995                                  ClassDecl->getLocation(), Name,
996                                  Context.getFunctionType(Context.VoidTy,
997                                                          0, 0, false, 0),
998                                  /*isInline=*/true,
999                                  /*isImplicitlyDeclared=*/true);
1000    Destructor->setAccess(AS_public);
1001    Destructor->setImplicit();
1002    ClassDecl->addDecl(Destructor);
1003  }
1004}
1005
1006/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1007/// parsing a top-level (non-nested) C++ class, and we are now
1008/// parsing those parts of the given Method declaration that could
1009/// not be parsed earlier (C++ [class.mem]p2), such as default
1010/// arguments. This action should enter the scope of the given
1011/// Method declaration as if we had just parsed the qualified method
1012/// name. However, it should not bring the parameters into scope;
1013/// that will be performed by ActOnDelayedCXXMethodParameter.
1014void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclTy *Method) {
1015  CXXScopeSpec SS;
1016  SS.setScopeRep(((FunctionDecl*)Method)->getDeclContext());
1017  ActOnCXXEnterDeclaratorScope(S, SS);
1018}
1019
1020/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1021/// C++ method declaration. We're (re-)introducing the given
1022/// function parameter into scope for use in parsing later parts of
1023/// the method declaration. For example, we could see an
1024/// ActOnParamDefaultArgument event for this parameter.
1025void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclTy *ParamD) {
1026  ParmVarDecl *Param = (ParmVarDecl*)ParamD;
1027
1028  // If this parameter has an unparsed default argument, clear it out
1029  // to make way for the parsed default argument.
1030  if (Param->hasUnparsedDefaultArg())
1031    Param->setDefaultArg(0);
1032
1033  S->AddDecl(Param);
1034  if (Param->getDeclName())
1035    IdResolver.AddDecl(Param);
1036}
1037
1038/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1039/// processing the delayed method declaration for Method. The method
1040/// declaration is now considered finished. There may be a separate
1041/// ActOnStartOfFunctionDef action later (not necessarily
1042/// immediately!) for this method, if it was also defined inside the
1043/// class body.
1044void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclTy *MethodD) {
1045  FunctionDecl *Method = (FunctionDecl*)MethodD;
1046  CXXScopeSpec SS;
1047  SS.setScopeRep(Method->getDeclContext());
1048  ActOnCXXExitDeclaratorScope(S, SS);
1049
1050  // Now that we have our default arguments, check the constructor
1051  // again. It could produce additional diagnostics or affect whether
1052  // the class has implicitly-declared destructors, among other
1053  // things.
1054  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
1055    if (CheckConstructor(Constructor))
1056      Constructor->setInvalidDecl();
1057  }
1058
1059  // Check the default arguments, which we may have added.
1060  if (!Method->isInvalidDecl())
1061    CheckCXXDefaultArguments(Method);
1062}
1063
1064/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1065/// the well-formedness of the constructor declarator @p D with type @p
1066/// R. If there are any errors in the declarator, this routine will
1067/// emit diagnostics and return true. Otherwise, it will return
1068/// false. Either way, the type @p R will be updated to reflect a
1069/// well-formed type for the constructor.
1070bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
1071                                      FunctionDecl::StorageClass& SC) {
1072  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1073  bool isInvalid = false;
1074
1075  // C++ [class.ctor]p3:
1076  //   A constructor shall not be virtual (10.3) or static (9.4). A
1077  //   constructor can be invoked for a const, volatile or const
1078  //   volatile object. A constructor shall not be declared const,
1079  //   volatile, or const volatile (9.3.2).
1080  if (isVirtual) {
1081    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1082      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1083      << SourceRange(D.getIdentifierLoc());
1084    isInvalid = true;
1085  }
1086  if (SC == FunctionDecl::Static) {
1087    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1088      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1089      << SourceRange(D.getIdentifierLoc());
1090    isInvalid = true;
1091    SC = FunctionDecl::None;
1092  }
1093  if (D.getDeclSpec().hasTypeSpecifier()) {
1094    // Constructors don't have return types, but the parser will
1095    // happily parse something like:
1096    //
1097    //   class X {
1098    //     float X(float);
1099    //   };
1100    //
1101    // The return type will be eliminated later.
1102    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
1103      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1104      << SourceRange(D.getIdentifierLoc());
1105  }
1106  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1107    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1108    if (FTI.TypeQuals & QualType::Const)
1109      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1110        << "const" << SourceRange(D.getIdentifierLoc());
1111    if (FTI.TypeQuals & QualType::Volatile)
1112      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1113        << "volatile" << SourceRange(D.getIdentifierLoc());
1114    if (FTI.TypeQuals & QualType::Restrict)
1115      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1116        << "restrict" << SourceRange(D.getIdentifierLoc());
1117  }
1118
1119  // Rebuild the function type "R" without any type qualifiers (in
1120  // case any of the errors above fired) and with "void" as the
1121  // return type, since constructors don't have return types. We
1122  // *always* have to do this, because GetTypeForDeclarator will
1123  // put in a result type of "int" when none was specified.
1124  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1125  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1126                              Proto->getNumArgs(),
1127                              Proto->isVariadic(),
1128                              0);
1129
1130  return isInvalid;
1131}
1132
1133/// CheckConstructor - Checks a fully-formed constructor for
1134/// well-formedness, issuing any diagnostics required. Returns true if
1135/// the constructor declarator is invalid.
1136bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1137  if (Constructor->isInvalidDecl())
1138    return true;
1139
1140  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1141  bool Invalid = false;
1142
1143  // C++ [class.copy]p3:
1144  //   A declaration of a constructor for a class X is ill-formed if
1145  //   its first parameter is of type (optionally cv-qualified) X and
1146  //   either there are no other parameters or else all other
1147  //   parameters have default arguments.
1148  if ((Constructor->getNumParams() == 1) ||
1149      (Constructor->getNumParams() > 1 &&
1150       Constructor->getParamDecl(1)->getDefaultArg() != 0)) {
1151    QualType ParamType = Constructor->getParamDecl(0)->getType();
1152    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1153    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1154      Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg)
1155        << SourceRange(Constructor->getParamDecl(0)->getLocation());
1156      Invalid = true;
1157    }
1158  }
1159
1160  // Notify the class that we've added a constructor.
1161  ClassDecl->addedConstructor(Context, Constructor);
1162
1163  return Invalid;
1164}
1165
1166/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1167/// the well-formednes of the destructor declarator @p D with type @p
1168/// R. If there are any errors in the declarator, this routine will
1169/// emit diagnostics and return true. Otherwise, it will return
1170/// false. Either way, the type @p R will be updated to reflect a
1171/// well-formed type for the destructor.
1172bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1173                                     FunctionDecl::StorageClass& SC) {
1174  bool isInvalid = false;
1175
1176  // C++ [class.dtor]p1:
1177  //   [...] A typedef-name that names a class is a class-name
1178  //   (7.1.3); however, a typedef-name that names a class shall not
1179  //   be used as the identifier in the declarator for a destructor
1180  //   declaration.
1181  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1182  if (DeclaratorType->getAsTypedefType()) {
1183    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1184      << DeclaratorType;
1185    isInvalid = true;
1186  }
1187
1188  // C++ [class.dtor]p2:
1189  //   A destructor is used to destroy objects of its class type. A
1190  //   destructor takes no parameters, and no return type can be
1191  //   specified for it (not even void). The address of a destructor
1192  //   shall not be taken. A destructor shall not be static. A
1193  //   destructor can be invoked for a const, volatile or const
1194  //   volatile object. A destructor shall not be declared const,
1195  //   volatile or const volatile (9.3.2).
1196  if (SC == FunctionDecl::Static) {
1197    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1198      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1199      << SourceRange(D.getIdentifierLoc());
1200    isInvalid = true;
1201    SC = FunctionDecl::None;
1202  }
1203  if (D.getDeclSpec().hasTypeSpecifier()) {
1204    // Destructors don't have return types, but the parser will
1205    // happily parse something like:
1206    //
1207    //   class X {
1208    //     float ~X();
1209    //   };
1210    //
1211    // The return type will be eliminated later.
1212    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1213      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1214      << SourceRange(D.getIdentifierLoc());
1215  }
1216  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1217    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1218    if (FTI.TypeQuals & QualType::Const)
1219      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1220        << "const" << SourceRange(D.getIdentifierLoc());
1221    if (FTI.TypeQuals & QualType::Volatile)
1222      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1223        << "volatile" << SourceRange(D.getIdentifierLoc());
1224    if (FTI.TypeQuals & QualType::Restrict)
1225      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1226        << "restrict" << SourceRange(D.getIdentifierLoc());
1227  }
1228
1229  // Make sure we don't have any parameters.
1230  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1231    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1232
1233    // Delete the parameters.
1234    D.getTypeObject(0).Fun.freeArgs();
1235  }
1236
1237  // Make sure the destructor isn't variadic.
1238  if (R->getAsFunctionProtoType()->isVariadic())
1239    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1240
1241  // Rebuild the function type "R" without any type qualifiers or
1242  // parameters (in case any of the errors above fired) and with
1243  // "void" as the return type, since destructors don't have return
1244  // types. We *always* have to do this, because GetTypeForDeclarator
1245  // will put in a result type of "int" when none was specified.
1246  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1247
1248  return isInvalid;
1249}
1250
1251/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1252/// well-formednes of the conversion function declarator @p D with
1253/// type @p R. If there are any errors in the declarator, this routine
1254/// will emit diagnostics and return true. Otherwise, it will return
1255/// false. Either way, the type @p R will be updated to reflect a
1256/// well-formed type for the conversion operator.
1257bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1258                                     FunctionDecl::StorageClass& SC) {
1259  bool isInvalid = false;
1260
1261  // C++ [class.conv.fct]p1:
1262  //   Neither parameter types nor return type can be specified. The
1263  //   type of a conversion function (8.3.5) is “function taking no
1264  //   parameter returning conversion-type-id.”
1265  if (SC == FunctionDecl::Static) {
1266    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1267      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1268      << SourceRange(D.getIdentifierLoc());
1269    isInvalid = true;
1270    SC = FunctionDecl::None;
1271  }
1272  if (D.getDeclSpec().hasTypeSpecifier()) {
1273    // Conversion functions don't have return types, but the parser will
1274    // happily parse something like:
1275    //
1276    //   class X {
1277    //     float operator bool();
1278    //   };
1279    //
1280    // The return type will be changed later anyway.
1281    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1282      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1283      << SourceRange(D.getIdentifierLoc());
1284  }
1285
1286  // Make sure we don't have any parameters.
1287  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1288    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1289
1290    // Delete the parameters.
1291    D.getTypeObject(0).Fun.freeArgs();
1292  }
1293
1294  // Make sure the conversion function isn't variadic.
1295  if (R->getAsFunctionProtoType()->isVariadic())
1296    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1297
1298  // C++ [class.conv.fct]p4:
1299  //   The conversion-type-id shall not represent a function type nor
1300  //   an array type.
1301  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1302  if (ConvType->isArrayType()) {
1303    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1304    ConvType = Context.getPointerType(ConvType);
1305  } else if (ConvType->isFunctionType()) {
1306    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1307    ConvType = Context.getPointerType(ConvType);
1308  }
1309
1310  // Rebuild the function type "R" without any parameters (in case any
1311  // of the errors above fired) and with the conversion type as the
1312  // return type.
1313  R = Context.getFunctionType(ConvType, 0, 0, false,
1314                              R->getAsFunctionProtoType()->getTypeQuals());
1315
1316  // C++0x explicit conversion operators.
1317  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1318    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1319         diag::warn_explicit_conversion_functions)
1320      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1321
1322  return isInvalid;
1323}
1324
1325/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1326/// the declaration of the given C++ conversion function. This routine
1327/// is responsible for recording the conversion function in the C++
1328/// class, if possible.
1329Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1330  assert(Conversion && "Expected to receive a conversion function declaration");
1331
1332  // Set the lexical context of this conversion function
1333  Conversion->setLexicalDeclContext(CurContext);
1334
1335  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1336
1337  // Make sure we aren't redeclaring the conversion function.
1338  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1339
1340  // C++ [class.conv.fct]p1:
1341  //   [...] A conversion function is never used to convert a
1342  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1343  //   same object type (or a reference to it), to a (possibly
1344  //   cv-qualified) base class of that type (or a reference to it),
1345  //   or to (possibly cv-qualified) void.
1346  // FIXME: Suppress this warning if the conversion function ends up
1347  // being a virtual function that overrides a virtual function in a
1348  // base class.
1349  QualType ClassType
1350    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1351  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1352    ConvType = ConvTypeRef->getPointeeType();
1353  if (ConvType->isRecordType()) {
1354    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1355    if (ConvType == ClassType)
1356      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1357        << ClassType;
1358    else if (IsDerivedFrom(ClassType, ConvType))
1359      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1360        <<  ClassType << ConvType;
1361  } else if (ConvType->isVoidType()) {
1362    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1363      << ClassType << ConvType;
1364  }
1365
1366  if (Conversion->getPreviousDeclaration()) {
1367    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1368    for (OverloadedFunctionDecl::function_iterator
1369           Conv = Conversions->function_begin(),
1370           ConvEnd = Conversions->function_end();
1371         Conv != ConvEnd; ++Conv) {
1372      if (*Conv == Conversion->getPreviousDeclaration()) {
1373        *Conv = Conversion;
1374        return (DeclTy *)Conversion;
1375      }
1376    }
1377    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1378  } else
1379    ClassDecl->addConversionFunction(Context, Conversion);
1380
1381  return (DeclTy *)Conversion;
1382}
1383
1384//===----------------------------------------------------------------------===//
1385// Namespace Handling
1386//===----------------------------------------------------------------------===//
1387
1388/// ActOnStartNamespaceDef - This is called at the start of a namespace
1389/// definition.
1390Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1391                                           SourceLocation IdentLoc,
1392                                           IdentifierInfo *II,
1393                                           SourceLocation LBrace) {
1394  NamespaceDecl *Namespc =
1395      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1396  Namespc->setLBracLoc(LBrace);
1397
1398  Scope *DeclRegionScope = NamespcScope->getParent();
1399
1400  if (II) {
1401    // C++ [namespace.def]p2:
1402    // The identifier in an original-namespace-definition shall not have been
1403    // previously defined in the declarative region in which the
1404    // original-namespace-definition appears. The identifier in an
1405    // original-namespace-definition is the name of the namespace. Subsequently
1406    // in that declarative region, it is treated as an original-namespace-name.
1407
1408    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1409                                     true);
1410
1411    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1412      // This is an extended namespace definition.
1413      // Attach this namespace decl to the chain of extended namespace
1414      // definitions.
1415      OrigNS->setNextNamespace(Namespc);
1416      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1417
1418      // Remove the previous declaration from the scope.
1419      if (DeclRegionScope->isDeclScope(OrigNS)) {
1420        IdResolver.RemoveDecl(OrigNS);
1421        DeclRegionScope->RemoveDecl(OrigNS);
1422      }
1423    } else if (PrevDecl) {
1424      // This is an invalid name redefinition.
1425      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1426       << Namespc->getDeclName();
1427      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1428      Namespc->setInvalidDecl();
1429      // Continue on to push Namespc as current DeclContext and return it.
1430    }
1431
1432    PushOnScopeChains(Namespc, DeclRegionScope);
1433  } else {
1434    // FIXME: Handle anonymous namespaces
1435  }
1436
1437  // Although we could have an invalid decl (i.e. the namespace name is a
1438  // redefinition), push it as current DeclContext and try to continue parsing.
1439  // FIXME: We should be able to push Namespc here, so that the
1440  // each DeclContext for the namespace has the declarations
1441  // that showed up in that particular namespace definition.
1442  PushDeclContext(NamespcScope, Namespc);
1443  return Namespc;
1444}
1445
1446/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1447/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1448void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
1449  Decl *Dcl = static_cast<Decl *>(D);
1450  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1451  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1452  Namespc->setRBracLoc(RBrace);
1453  PopDeclContext();
1454}
1455
1456Sema::DeclTy *Sema::ActOnUsingDirective(Scope *S,
1457                                        SourceLocation UsingLoc,
1458                                        SourceLocation NamespcLoc,
1459                                        const CXXScopeSpec &SS,
1460                                        SourceLocation IdentLoc,
1461                                        IdentifierInfo *NamespcName,
1462                                        AttributeList *AttrList) {
1463  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1464  assert(NamespcName && "Invalid NamespcName.");
1465  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1466  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1467
1468  UsingDirectiveDecl *UDir = 0;
1469
1470  // Lookup namespace name.
1471  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1472                                    LookupNamespaceName, false);
1473  if (R.isAmbiguous()) {
1474    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1475    return 0;
1476  }
1477  if (NamedDecl *NS = R) {
1478    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1479    // C++ [namespace.udir]p1:
1480    //   A using-directive specifies that the names in the nominated
1481    //   namespace can be used in the scope in which the
1482    //   using-directive appears after the using-directive. During
1483    //   unqualified name lookup (3.4.1), the names appear as if they
1484    //   were declared in the nearest enclosing namespace which
1485    //   contains both the using-directive and the nominated
1486    //   namespace. [Note: in this context, “contains” means “contains
1487    //   directly or indirectly”. ]
1488
1489    // Find enclosing context containing both using-directive and
1490    // nominated namespace.
1491    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1492    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1493      CommonAncestor = CommonAncestor->getParent();
1494
1495    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc,
1496                                      NamespcLoc, IdentLoc,
1497                                      cast<NamespaceDecl>(NS),
1498                                      CommonAncestor);
1499    PushUsingDirective(S, UDir);
1500  } else {
1501    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1502  }
1503
1504  // FIXME: We ignore attributes for now.
1505  delete AttrList;
1506  return UDir;
1507}
1508
1509void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1510  // If scope has associated entity, then using directive is at namespace
1511  // or translation unit scope. We add UsingDirectiveDecls, into
1512  // it's lookup structure.
1513  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1514    Ctx->addDecl(UDir);
1515  else
1516    // Otherwise it is block-sope. using-directives will affect lookup
1517    // only to the end of scope.
1518    S->PushUsingDirective(UDir);
1519}
1520
1521/// AddCXXDirectInitializerToDecl - This action is called immediately after
1522/// ActOnDeclarator, when a C++ direct initializer is present.
1523/// e.g: "int x(1);"
1524void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
1525                                         ExprTy **ExprTys, unsigned NumExprs,
1526                                         SourceLocation *CommaLocs,
1527                                         SourceLocation RParenLoc) {
1528  assert(NumExprs != 0 && ExprTys && "missing expressions");
1529  Decl *RealDecl = static_cast<Decl *>(Dcl);
1530
1531  // If there is no declaration, there was an error parsing it.  Just ignore
1532  // the initializer.
1533  if (RealDecl == 0) {
1534    for (unsigned i = 0; i != NumExprs; ++i)
1535      static_cast<Expr *>(ExprTys[i])->Destroy(Context);
1536    return;
1537  }
1538
1539  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1540  if (!VDecl) {
1541    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1542    RealDecl->setInvalidDecl();
1543    return;
1544  }
1545
1546  // We will treat direct-initialization as a copy-initialization:
1547  //    int x(1);  -as-> int x = 1;
1548  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1549  //
1550  // Clients that want to distinguish between the two forms, can check for
1551  // direct initializer using VarDecl::hasCXXDirectInitializer().
1552  // A major benefit is that clients that don't particularly care about which
1553  // exactly form was it (like the CodeGen) can handle both cases without
1554  // special case code.
1555
1556  // C++ 8.5p11:
1557  // The form of initialization (using parentheses or '=') is generally
1558  // insignificant, but does matter when the entity being initialized has a
1559  // class type.
1560  QualType DeclInitType = VDecl->getType();
1561  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1562    DeclInitType = Array->getElementType();
1563
1564  if (VDecl->getType()->isRecordType()) {
1565    CXXConstructorDecl *Constructor
1566      = PerformInitializationByConstructor(DeclInitType,
1567                                           (Expr **)ExprTys, NumExprs,
1568                                           VDecl->getLocation(),
1569                                           SourceRange(VDecl->getLocation(),
1570                                                       RParenLoc),
1571                                           VDecl->getDeclName(),
1572                                           IK_Direct);
1573    if (!Constructor) {
1574      RealDecl->setInvalidDecl();
1575    }
1576
1577    // Let clients know that initialization was done with a direct
1578    // initializer.
1579    VDecl->setCXXDirectInitializer(true);
1580
1581    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1582    // the initializer.
1583    return;
1584  }
1585
1586  if (NumExprs > 1) {
1587    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1588      << SourceRange(VDecl->getLocation(), RParenLoc);
1589    RealDecl->setInvalidDecl();
1590    return;
1591  }
1592
1593  // Let clients know that initialization was done with a direct initializer.
1594  VDecl->setCXXDirectInitializer(true);
1595
1596  assert(NumExprs == 1 && "Expected 1 expression");
1597  // Set the init expression, handles conversions.
1598  AddInitializerToDecl(Dcl, ExprArg(*this, ExprTys[0]), /*DirectInit=*/true);
1599}
1600
1601/// PerformInitializationByConstructor - Perform initialization by
1602/// constructor (C++ [dcl.init]p14), which may occur as part of
1603/// direct-initialization or copy-initialization. We are initializing
1604/// an object of type @p ClassType with the given arguments @p
1605/// Args. @p Loc is the location in the source code where the
1606/// initializer occurs (e.g., a declaration, member initializer,
1607/// functional cast, etc.) while @p Range covers the whole
1608/// initialization. @p InitEntity is the entity being initialized,
1609/// which may by the name of a declaration or a type. @p Kind is the
1610/// kind of initialization we're performing, which affects whether
1611/// explicit constructors will be considered. When successful, returns
1612/// the constructor that will be used to perform the initialization;
1613/// when the initialization fails, emits a diagnostic and returns
1614/// null.
1615CXXConstructorDecl *
1616Sema::PerformInitializationByConstructor(QualType ClassType,
1617                                         Expr **Args, unsigned NumArgs,
1618                                         SourceLocation Loc, SourceRange Range,
1619                                         DeclarationName InitEntity,
1620                                         InitializationKind Kind) {
1621  const RecordType *ClassRec = ClassType->getAsRecordType();
1622  assert(ClassRec && "Can only initialize a class type here");
1623
1624  // C++ [dcl.init]p14:
1625  //
1626  //   If the initialization is direct-initialization, or if it is
1627  //   copy-initialization where the cv-unqualified version of the
1628  //   source type is the same class as, or a derived class of, the
1629  //   class of the destination, constructors are considered. The
1630  //   applicable constructors are enumerated (13.3.1.3), and the
1631  //   best one is chosen through overload resolution (13.3). The
1632  //   constructor so selected is called to initialize the object,
1633  //   with the initializer expression(s) as its argument(s). If no
1634  //   constructor applies, or the overload resolution is ambiguous,
1635  //   the initialization is ill-formed.
1636  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1637  OverloadCandidateSet CandidateSet;
1638
1639  // Add constructors to the overload set.
1640  DeclarationName ConstructorName
1641    = Context.DeclarationNames.getCXXConstructorName(
1642                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1643  DeclContext::lookup_const_iterator Con, ConEnd;
1644  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
1645       Con != ConEnd; ++Con) {
1646    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1647    if ((Kind == IK_Direct) ||
1648        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1649        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1650      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1651  }
1652
1653  // FIXME: When we decide not to synthesize the implicitly-declared
1654  // constructors, we'll need to make them appear here.
1655
1656  OverloadCandidateSet::iterator Best;
1657  switch (BestViableFunction(CandidateSet, Best)) {
1658  case OR_Success:
1659    // We found a constructor. Return it.
1660    return cast<CXXConstructorDecl>(Best->Function);
1661
1662  case OR_No_Viable_Function:
1663    if (InitEntity)
1664      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1665        << InitEntity << Range;
1666    else
1667      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1668        << ClassType << Range;
1669    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1670    return 0;
1671
1672  case OR_Ambiguous:
1673    if (InitEntity)
1674      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1675    else
1676      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1677    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1678    return 0;
1679
1680  case OR_Deleted:
1681    if (InitEntity)
1682      Diag(Loc, diag::err_ovl_deleted_init)
1683        << Best->Function->isDeleted()
1684        << InitEntity << Range;
1685    else
1686      Diag(Loc, diag::err_ovl_deleted_init)
1687        << Best->Function->isDeleted()
1688        << InitEntity << Range;
1689    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1690    return 0;
1691  }
1692
1693  return 0;
1694}
1695
1696/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1697/// determine whether they are reference-related,
1698/// reference-compatible, reference-compatible with added
1699/// qualification, or incompatible, for use in C++ initialization by
1700/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1701/// type, and the first type (T1) is the pointee type of the reference
1702/// type being initialized.
1703Sema::ReferenceCompareResult
1704Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1705                                   bool& DerivedToBase) {
1706  assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
1707  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1708
1709  T1 = Context.getCanonicalType(T1);
1710  T2 = Context.getCanonicalType(T2);
1711  QualType UnqualT1 = T1.getUnqualifiedType();
1712  QualType UnqualT2 = T2.getUnqualifiedType();
1713
1714  // C++ [dcl.init.ref]p4:
1715  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1716  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1717  //   T1 is a base class of T2.
1718  if (UnqualT1 == UnqualT2)
1719    DerivedToBase = false;
1720  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1721    DerivedToBase = true;
1722  else
1723    return Ref_Incompatible;
1724
1725  // At this point, we know that T1 and T2 are reference-related (at
1726  // least).
1727
1728  // C++ [dcl.init.ref]p4:
1729  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1730  //   reference-related to T2 and cv1 is the same cv-qualification
1731  //   as, or greater cv-qualification than, cv2. For purposes of
1732  //   overload resolution, cases for which cv1 is greater
1733  //   cv-qualification than cv2 are identified as
1734  //   reference-compatible with added qualification (see 13.3.3.2).
1735  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1736    return Ref_Compatible;
1737  else if (T1.isMoreQualifiedThan(T2))
1738    return Ref_Compatible_With_Added_Qualification;
1739  else
1740    return Ref_Related;
1741}
1742
1743/// CheckReferenceInit - Check the initialization of a reference
1744/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1745/// the initializer (either a simple initializer or an initializer
1746/// list), and DeclType is the type of the declaration. When ICS is
1747/// non-null, this routine will compute the implicit conversion
1748/// sequence according to C++ [over.ics.ref] and will not produce any
1749/// diagnostics; when ICS is null, it will emit diagnostics when any
1750/// errors are found. Either way, a return value of true indicates
1751/// that there was a failure, a return value of false indicates that
1752/// the reference initialization succeeded.
1753///
1754/// When @p SuppressUserConversions, user-defined conversions are
1755/// suppressed.
1756/// When @p AllowExplicit, we also permit explicit user-defined
1757/// conversion functions.
1758bool
1759Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1760                         ImplicitConversionSequence *ICS,
1761                         bool SuppressUserConversions,
1762                         bool AllowExplicit) {
1763  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1764
1765  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1766  QualType T2 = Init->getType();
1767
1768  // If the initializer is the address of an overloaded function, try
1769  // to resolve the overloaded function. If all goes well, T2 is the
1770  // type of the resulting function.
1771  if (T2->isOverloadType()) {
1772    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
1773                                                          ICS != 0);
1774    if (Fn) {
1775      // Since we're performing this reference-initialization for
1776      // real, update the initializer with the resulting function.
1777      if (!ICS) {
1778        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
1779          return true;
1780
1781        FixOverloadedFunctionReference(Init, Fn);
1782      }
1783
1784      T2 = Fn->getType();
1785    }
1786  }
1787
1788  // Compute some basic properties of the types and the initializer.
1789  bool DerivedToBase = false;
1790  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1791  ReferenceCompareResult RefRelationship
1792    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1793
1794  // Most paths end in a failed conversion.
1795  if (ICS)
1796    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1797
1798  // C++ [dcl.init.ref]p5:
1799  //   A reference to type “cv1 T1” is initialized by an expression
1800  //   of type “cv2 T2” as follows:
1801
1802  //     -- If the initializer expression
1803
1804  bool BindsDirectly = false;
1805  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1806  //          reference-compatible with “cv2 T2,” or
1807  //
1808  // Note that the bit-field check is skipped if we are just computing
1809  // the implicit conversion sequence (C++ [over.best.ics]p2).
1810  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1811      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1812    BindsDirectly = true;
1813
1814    if (ICS) {
1815      // C++ [over.ics.ref]p1:
1816      //   When a parameter of reference type binds directly (8.5.3)
1817      //   to an argument expression, the implicit conversion sequence
1818      //   is the identity conversion, unless the argument expression
1819      //   has a type that is a derived class of the parameter type,
1820      //   in which case the implicit conversion sequence is a
1821      //   derived-to-base Conversion (13.3.3.1).
1822      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1823      ICS->Standard.First = ICK_Identity;
1824      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1825      ICS->Standard.Third = ICK_Identity;
1826      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1827      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1828      ICS->Standard.ReferenceBinding = true;
1829      ICS->Standard.DirectBinding = true;
1830
1831      // Nothing more to do: the inaccessibility/ambiguity check for
1832      // derived-to-base conversions is suppressed when we're
1833      // computing the implicit conversion sequence (C++
1834      // [over.best.ics]p2).
1835      return false;
1836    } else {
1837      // Perform the conversion.
1838      // FIXME: Binding to a subobject of the lvalue is going to require
1839      // more AST annotation than this.
1840      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1841    }
1842  }
1843
1844  //       -- has a class type (i.e., T2 is a class type) and can be
1845  //          implicitly converted to an lvalue of type “cv3 T3,”
1846  //          where “cv1 T1” is reference-compatible with “cv3 T3”
1847  //          92) (this conversion is selected by enumerating the
1848  //          applicable conversion functions (13.3.1.6) and choosing
1849  //          the best one through overload resolution (13.3)),
1850  if (!SuppressUserConversions && T2->isRecordType()) {
1851    // FIXME: Look for conversions in base classes!
1852    CXXRecordDecl *T2RecordDecl
1853      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
1854
1855    OverloadCandidateSet CandidateSet;
1856    OverloadedFunctionDecl *Conversions
1857      = T2RecordDecl->getConversionFunctions();
1858    for (OverloadedFunctionDecl::function_iterator Func
1859           = Conversions->function_begin();
1860         Func != Conversions->function_end(); ++Func) {
1861      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1862
1863      // If the conversion function doesn't return a reference type,
1864      // it can't be considered for this conversion.
1865      // FIXME: This will change when we support rvalue references.
1866      if (Conv->getConversionType()->isReferenceType() &&
1867          (AllowExplicit || !Conv->isExplicit()))
1868        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
1869    }
1870
1871    OverloadCandidateSet::iterator Best;
1872    switch (BestViableFunction(CandidateSet, Best)) {
1873    case OR_Success:
1874      // This is a direct binding.
1875      BindsDirectly = true;
1876
1877      if (ICS) {
1878        // C++ [over.ics.ref]p1:
1879        //
1880        //   [...] If the parameter binds directly to the result of
1881        //   applying a conversion function to the argument
1882        //   expression, the implicit conversion sequence is a
1883        //   user-defined conversion sequence (13.3.3.1.2), with the
1884        //   second standard conversion sequence either an identity
1885        //   conversion or, if the conversion function returns an
1886        //   entity of a type that is a derived class of the parameter
1887        //   type, a derived-to-base Conversion.
1888        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
1889        ICS->UserDefined.Before = Best->Conversions[0].Standard;
1890        ICS->UserDefined.After = Best->FinalConversion;
1891        ICS->UserDefined.ConversionFunction = Best->Function;
1892        assert(ICS->UserDefined.After.ReferenceBinding &&
1893               ICS->UserDefined.After.DirectBinding &&
1894               "Expected a direct reference binding!");
1895        return false;
1896      } else {
1897        // Perform the conversion.
1898        // FIXME: Binding to a subobject of the lvalue is going to require
1899        // more AST annotation than this.
1900        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1901      }
1902      break;
1903
1904    case OR_Ambiguous:
1905      assert(false && "Ambiguous reference binding conversions not implemented.");
1906      return true;
1907
1908    case OR_No_Viable_Function:
1909    case OR_Deleted:
1910      // There was no suitable conversion, or we found a deleted
1911      // conversion; continue with other checks.
1912      break;
1913    }
1914  }
1915
1916  if (BindsDirectly) {
1917    // C++ [dcl.init.ref]p4:
1918    //   [...] In all cases where the reference-related or
1919    //   reference-compatible relationship of two types is used to
1920    //   establish the validity of a reference binding, and T1 is a
1921    //   base class of T2, a program that necessitates such a binding
1922    //   is ill-formed if T1 is an inaccessible (clause 11) or
1923    //   ambiguous (10.2) base class of T2.
1924    //
1925    // Note that we only check this condition when we're allowed to
1926    // complain about errors, because we should not be checking for
1927    // ambiguity (or inaccessibility) unless the reference binding
1928    // actually happens.
1929    if (DerivedToBase)
1930      return CheckDerivedToBaseConversion(T2, T1,
1931                                          Init->getSourceRange().getBegin(),
1932                                          Init->getSourceRange());
1933    else
1934      return false;
1935  }
1936
1937  //     -- Otherwise, the reference shall be to a non-volatile const
1938  //        type (i.e., cv1 shall be const).
1939  if (T1.getCVRQualifiers() != QualType::Const) {
1940    if (!ICS)
1941      Diag(Init->getSourceRange().getBegin(),
1942           diag::err_not_reference_to_const_init)
1943        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1944        << T2 << Init->getSourceRange();
1945    return true;
1946  }
1947
1948  //       -- If the initializer expression is an rvalue, with T2 a
1949  //          class type, and “cv1 T1” is reference-compatible with
1950  //          “cv2 T2,” the reference is bound in one of the
1951  //          following ways (the choice is implementation-defined):
1952  //
1953  //          -- The reference is bound to the object represented by
1954  //             the rvalue (see 3.10) or to a sub-object within that
1955  //             object.
1956  //
1957  //          -- A temporary of type “cv1 T2” [sic] is created, and
1958  //             a constructor is called to copy the entire rvalue
1959  //             object into the temporary. The reference is bound to
1960  //             the temporary or to a sub-object within the
1961  //             temporary.
1962  //
1963  //          The constructor that would be used to make the copy
1964  //          shall be callable whether or not the copy is actually
1965  //          done.
1966  //
1967  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
1968  // freedom, so we will always take the first option and never build
1969  // a temporary in this case. FIXME: We will, however, have to check
1970  // for the presence of a copy constructor in C++98/03 mode.
1971  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
1972      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1973    if (ICS) {
1974      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1975      ICS->Standard.First = ICK_Identity;
1976      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1977      ICS->Standard.Third = ICK_Identity;
1978      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1979      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1980      ICS->Standard.ReferenceBinding = true;
1981      ICS->Standard.DirectBinding = false;
1982    } else {
1983      // FIXME: Binding to a subobject of the rvalue is going to require
1984      // more AST annotation than this.
1985      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1986    }
1987    return false;
1988  }
1989
1990  //       -- Otherwise, a temporary of type “cv1 T1” is created and
1991  //          initialized from the initializer expression using the
1992  //          rules for a non-reference copy initialization (8.5). The
1993  //          reference is then bound to the temporary. If T1 is
1994  //          reference-related to T2, cv1 must be the same
1995  //          cv-qualification as, or greater cv-qualification than,
1996  //          cv2; otherwise, the program is ill-formed.
1997  if (RefRelationship == Ref_Related) {
1998    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
1999    // we would be reference-compatible or reference-compatible with
2000    // added qualification. But that wasn't the case, so the reference
2001    // initialization fails.
2002    if (!ICS)
2003      Diag(Init->getSourceRange().getBegin(),
2004           diag::err_reference_init_drops_quals)
2005        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2006        << T2 << Init->getSourceRange();
2007    return true;
2008  }
2009
2010  // If at least one of the types is a class type, the types are not
2011  // related, and we aren't allowed any user conversions, the
2012  // reference binding fails. This case is important for breaking
2013  // recursion, since TryImplicitConversion below will attempt to
2014  // create a temporary through the use of a copy constructor.
2015  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2016      (T1->isRecordType() || T2->isRecordType())) {
2017    if (!ICS)
2018      Diag(Init->getSourceRange().getBegin(),
2019           diag::err_typecheck_convert_incompatible)
2020        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2021    return true;
2022  }
2023
2024  // Actually try to convert the initializer to T1.
2025  if (ICS) {
2026    /// C++ [over.ics.ref]p2:
2027    ///
2028    ///   When a parameter of reference type is not bound directly to
2029    ///   an argument expression, the conversion sequence is the one
2030    ///   required to convert the argument expression to the
2031    ///   underlying type of the reference according to
2032    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
2033    ///   to copy-initializing a temporary of the underlying type with
2034    ///   the argument expression. Any difference in top-level
2035    ///   cv-qualification is subsumed by the initialization itself
2036    ///   and does not constitute a conversion.
2037    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2038    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2039  } else {
2040    return PerformImplicitConversion(Init, T1, "initializing");
2041  }
2042}
2043
2044/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2045/// of this overloaded operator is well-formed. If so, returns false;
2046/// otherwise, emits appropriate diagnostics and returns true.
2047bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2048  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2049         "Expected an overloaded operator declaration");
2050
2051  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2052
2053  // C++ [over.oper]p5:
2054  //   The allocation and deallocation functions, operator new,
2055  //   operator new[], operator delete and operator delete[], are
2056  //   described completely in 3.7.3. The attributes and restrictions
2057  //   found in the rest of this subclause do not apply to them unless
2058  //   explicitly stated in 3.7.3.
2059  // FIXME: Write a separate routine for checking this. For now, just
2060  // allow it.
2061  if (Op == OO_New || Op == OO_Array_New ||
2062      Op == OO_Delete || Op == OO_Array_Delete)
2063    return false;
2064
2065  // C++ [over.oper]p6:
2066  //   An operator function shall either be a non-static member
2067  //   function or be a non-member function and have at least one
2068  //   parameter whose type is a class, a reference to a class, an
2069  //   enumeration, or a reference to an enumeration.
2070  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2071    if (MethodDecl->isStatic())
2072      return Diag(FnDecl->getLocation(),
2073                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2074  } else {
2075    bool ClassOrEnumParam = false;
2076    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2077                                   ParamEnd = FnDecl->param_end();
2078         Param != ParamEnd; ++Param) {
2079      QualType ParamType = (*Param)->getType().getNonReferenceType();
2080      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2081        ClassOrEnumParam = true;
2082        break;
2083      }
2084    }
2085
2086    if (!ClassOrEnumParam)
2087      return Diag(FnDecl->getLocation(),
2088                  diag::err_operator_overload_needs_class_or_enum)
2089        << FnDecl->getDeclName();
2090  }
2091
2092  // C++ [over.oper]p8:
2093  //   An operator function cannot have default arguments (8.3.6),
2094  //   except where explicitly stated below.
2095  //
2096  // Only the function-call operator allows default arguments
2097  // (C++ [over.call]p1).
2098  if (Op != OO_Call) {
2099    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2100         Param != FnDecl->param_end(); ++Param) {
2101      if ((*Param)->hasUnparsedDefaultArg())
2102        return Diag((*Param)->getLocation(),
2103                    diag::err_operator_overload_default_arg)
2104          << FnDecl->getDeclName();
2105      else if (Expr *DefArg = (*Param)->getDefaultArg())
2106        return Diag((*Param)->getLocation(),
2107                    diag::err_operator_overload_default_arg)
2108          << FnDecl->getDeclName() << DefArg->getSourceRange();
2109    }
2110  }
2111
2112  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2113    { false, false, false }
2114#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2115    , { Unary, Binary, MemberOnly }
2116#include "clang/Basic/OperatorKinds.def"
2117  };
2118
2119  bool CanBeUnaryOperator = OperatorUses[Op][0];
2120  bool CanBeBinaryOperator = OperatorUses[Op][1];
2121  bool MustBeMemberOperator = OperatorUses[Op][2];
2122
2123  // C++ [over.oper]p8:
2124  //   [...] Operator functions cannot have more or fewer parameters
2125  //   than the number required for the corresponding operator, as
2126  //   described in the rest of this subclause.
2127  unsigned NumParams = FnDecl->getNumParams()
2128                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2129  if (Op != OO_Call &&
2130      ((NumParams == 1 && !CanBeUnaryOperator) ||
2131       (NumParams == 2 && !CanBeBinaryOperator) ||
2132       (NumParams < 1) || (NumParams > 2))) {
2133    // We have the wrong number of parameters.
2134    unsigned ErrorKind;
2135    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2136      ErrorKind = 2;  // 2 -> unary or binary.
2137    } else if (CanBeUnaryOperator) {
2138      ErrorKind = 0;  // 0 -> unary
2139    } else {
2140      assert(CanBeBinaryOperator &&
2141             "All non-call overloaded operators are unary or binary!");
2142      ErrorKind = 1;  // 1 -> binary
2143    }
2144
2145    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2146      << FnDecl->getDeclName() << NumParams << ErrorKind;
2147  }
2148
2149  // Overloaded operators other than operator() cannot be variadic.
2150  if (Op != OO_Call &&
2151      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2152    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2153      << FnDecl->getDeclName();
2154  }
2155
2156  // Some operators must be non-static member functions.
2157  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2158    return Diag(FnDecl->getLocation(),
2159                diag::err_operator_overload_must_be_member)
2160      << FnDecl->getDeclName();
2161  }
2162
2163  // C++ [over.inc]p1:
2164  //   The user-defined function called operator++ implements the
2165  //   prefix and postfix ++ operator. If this function is a member
2166  //   function with no parameters, or a non-member function with one
2167  //   parameter of class or enumeration type, it defines the prefix
2168  //   increment operator ++ for objects of that type. If the function
2169  //   is a member function with one parameter (which shall be of type
2170  //   int) or a non-member function with two parameters (the second
2171  //   of which shall be of type int), it defines the postfix
2172  //   increment operator ++ for objects of that type.
2173  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2174    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2175    bool ParamIsInt = false;
2176    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2177      ParamIsInt = BT->getKind() == BuiltinType::Int;
2178
2179    if (!ParamIsInt)
2180      return Diag(LastParam->getLocation(),
2181                  diag::err_operator_overload_post_incdec_must_be_int)
2182        << LastParam->getType() << (Op == OO_MinusMinus);
2183  }
2184
2185  // Notify the class if it got an assignment operator.
2186  if (Op == OO_Equal) {
2187    // Would have returned earlier otherwise.
2188    assert(isa<CXXMethodDecl>(FnDecl) &&
2189      "Overloaded = not member, but not filtered.");
2190    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2191    Method->getParent()->addedAssignmentOperator(Context, Method);
2192  }
2193
2194  return false;
2195}
2196
2197/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2198/// linkage specification, including the language and (if present)
2199/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2200/// the location of the language string literal, which is provided
2201/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2202/// the '{' brace. Otherwise, this linkage specification does not
2203/// have any braces.
2204Sema::DeclTy *Sema::ActOnStartLinkageSpecification(Scope *S,
2205                                                   SourceLocation ExternLoc,
2206                                                   SourceLocation LangLoc,
2207                                                   const char *Lang,
2208                                                   unsigned StrSize,
2209                                                   SourceLocation LBraceLoc) {
2210  LinkageSpecDecl::LanguageIDs Language;
2211  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2212    Language = LinkageSpecDecl::lang_c;
2213  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2214    Language = LinkageSpecDecl::lang_cxx;
2215  else {
2216    Diag(LangLoc, diag::err_bad_language);
2217    return 0;
2218  }
2219
2220  // FIXME: Add all the various semantics of linkage specifications
2221
2222  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2223                                               LangLoc, Language,
2224                                               LBraceLoc.isValid());
2225  CurContext->addDecl(D);
2226  PushDeclContext(S, D);
2227  return D;
2228}
2229
2230/// ActOnFinishLinkageSpecification - Completely the definition of
2231/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2232/// valid, it's the position of the closing '}' brace in a linkage
2233/// specification that uses braces.
2234Sema::DeclTy *Sema::ActOnFinishLinkageSpecification(Scope *S,
2235                                                    DeclTy *LinkageSpec,
2236                                                    SourceLocation RBraceLoc) {
2237  if (LinkageSpec)
2238    PopDeclContext();
2239  return LinkageSpec;
2240}
2241
2242/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2243/// handler.
2244Sema::DeclTy *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D)
2245{
2246  QualType ExDeclType = GetTypeForDeclarator(D, S);
2247  SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin();
2248
2249  bool Invalid = false;
2250
2251  // Arrays and functions decay.
2252  if (ExDeclType->isArrayType())
2253    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2254  else if (ExDeclType->isFunctionType())
2255    ExDeclType = Context.getPointerType(ExDeclType);
2256
2257  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2258  // The exception-declaration shall not denote a pointer or reference to an
2259  // incomplete type, other than [cv] void*.
2260  QualType BaseType = ExDeclType;
2261  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2262  unsigned DK = diag::err_catch_incomplete;
2263  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2264    BaseType = Ptr->getPointeeType();
2265    Mode = 1;
2266    DK = diag::err_catch_incomplete_ptr;
2267  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2268    BaseType = Ref->getPointeeType();
2269    Mode = 2;
2270    DK = diag::err_catch_incomplete_ref;
2271  }
2272  if ((Mode == 0 || !BaseType->isVoidType()) &&
2273      DiagnoseIncompleteType(Begin, BaseType, DK))
2274    Invalid = true;
2275
2276  // FIXME: Need to test for ability to copy-construct and destroy the
2277  // exception variable.
2278  // FIXME: Need to check for abstract classes.
2279
2280  IdentifierInfo *II = D.getIdentifier();
2281  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2282    // The scope should be freshly made just for us. There is just no way
2283    // it contains any previous declaration.
2284    assert(!S->isDeclScope(PrevDecl));
2285    if (PrevDecl->isTemplateParameter()) {
2286      // Maybe we will complain about the shadowed template parameter.
2287      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2288
2289    }
2290  }
2291
2292  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
2293                                    II, ExDeclType, VarDecl::None, Begin);
2294  if (D.getInvalidType() || Invalid)
2295    ExDecl->setInvalidDecl();
2296
2297  if (D.getCXXScopeSpec().isSet()) {
2298    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2299      << D.getCXXScopeSpec().getRange();
2300    ExDecl->setInvalidDecl();
2301  }
2302
2303  // Add the exception declaration into this scope.
2304  S->AddDecl(ExDecl);
2305  if (II)
2306    IdResolver.AddDecl(ExDecl);
2307
2308  ProcessDeclAttributes(ExDecl, D);
2309  return ExDecl;
2310}
2311