SemaDeclCXX.cpp revision e3f470a718ec00eb8b546e405fa59bc2df2d7c46
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/RecursiveASTVisitor.h"
30#include "clang/AST/StmtVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/TypeOrdering.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Lex/Preprocessor.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/ADT/STLExtras.h"
39#include <map>
40#include <set>
41
42using namespace clang;
43
44//===----------------------------------------------------------------------===//
45// CheckDefaultArgumentVisitor
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
50  /// the default argument of a parameter to determine whether it
51  /// contains any ill-formed subexpressions. For example, this will
52  /// diagnose the use of local variables or parameters within the
53  /// default argument expression.
54  class CheckDefaultArgumentVisitor
55    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
56    Expr *DefaultArg;
57    Sema *S;
58
59  public:
60    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
61      : DefaultArg(defarg), S(s) {}
62
63    bool VisitExpr(Expr *Node);
64    bool VisitDeclRefExpr(DeclRefExpr *DRE);
65    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
66    bool VisitLambdaExpr(LambdaExpr *Lambda);
67  };
68
69  /// VisitExpr - Visit all of the children of this expression.
70  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
71    bool IsInvalid = false;
72    for (Stmt::child_range I = Node->children(); I; ++I)
73      IsInvalid |= Visit(*I);
74    return IsInvalid;
75  }
76
77  /// VisitDeclRefExpr - Visit a reference to a declaration, to
78  /// determine whether this declaration can be used in the default
79  /// argument expression.
80  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
81    NamedDecl *Decl = DRE->getDecl();
82    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
83      // C++ [dcl.fct.default]p9
84      //   Default arguments are evaluated each time the function is
85      //   called. The order of evaluation of function arguments is
86      //   unspecified. Consequently, parameters of a function shall not
87      //   be used in default argument expressions, even if they are not
88      //   evaluated. Parameters of a function declared before a default
89      //   argument expression are in scope and can hide namespace and
90      //   class member names.
91      return S->Diag(DRE->getLocStart(),
92                     diag::err_param_default_argument_references_param)
93         << Param->getDeclName() << DefaultArg->getSourceRange();
94    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
95      // C++ [dcl.fct.default]p7
96      //   Local variables shall not be used in default argument
97      //   expressions.
98      if (VDecl->isLocalVarDecl())
99        return S->Diag(DRE->getLocStart(),
100                       diag::err_param_default_argument_references_local)
101          << VDecl->getDeclName() << DefaultArg->getSourceRange();
102    }
103
104    return false;
105  }
106
107  /// VisitCXXThisExpr - Visit a C++ "this" expression.
108  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
109    // C++ [dcl.fct.default]p8:
110    //   The keyword this shall not be used in a default argument of a
111    //   member function.
112    return S->Diag(ThisE->getLocStart(),
113                   diag::err_param_default_argument_references_this)
114               << ThisE->getSourceRange();
115  }
116
117  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
118    // C++11 [expr.lambda.prim]p13:
119    //   A lambda-expression appearing in a default argument shall not
120    //   implicitly or explicitly capture any entity.
121    if (Lambda->capture_begin() == Lambda->capture_end())
122      return false;
123
124    return S->Diag(Lambda->getLocStart(),
125                   diag::err_lambda_capture_default_arg);
126  }
127}
128
129void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
130                                                      CXXMethodDecl *Method) {
131  // If we have an MSAny or unknown spec already, don't bother.
132  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
133    return;
134
135  const FunctionProtoType *Proto
136    = Method->getType()->getAs<FunctionProtoType>();
137  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
138  if (!Proto)
139    return;
140
141  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
142
143  // If this function can throw any exceptions, make a note of that.
144  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
145    ClearExceptions();
146    ComputedEST = EST;
147    return;
148  }
149
150  // FIXME: If the call to this decl is using any of its default arguments, we
151  // need to search them for potentially-throwing calls.
152
153  // If this function has a basic noexcept, it doesn't affect the outcome.
154  if (EST == EST_BasicNoexcept)
155    return;
156
157  // If we have a throw-all spec at this point, ignore the function.
158  if (ComputedEST == EST_None)
159    return;
160
161  // If we're still at noexcept(true) and there's a nothrow() callee,
162  // change to that specification.
163  if (EST == EST_DynamicNone) {
164    if (ComputedEST == EST_BasicNoexcept)
165      ComputedEST = EST_DynamicNone;
166    return;
167  }
168
169  // Check out noexcept specs.
170  if (EST == EST_ComputedNoexcept) {
171    FunctionProtoType::NoexceptResult NR =
172        Proto->getNoexceptSpec(Self->Context);
173    assert(NR != FunctionProtoType::NR_NoNoexcept &&
174           "Must have noexcept result for EST_ComputedNoexcept.");
175    assert(NR != FunctionProtoType::NR_Dependent &&
176           "Should not generate implicit declarations for dependent cases, "
177           "and don't know how to handle them anyway.");
178
179    // noexcept(false) -> no spec on the new function
180    if (NR == FunctionProtoType::NR_Throw) {
181      ClearExceptions();
182      ComputedEST = EST_None;
183    }
184    // noexcept(true) won't change anything either.
185    return;
186  }
187
188  assert(EST == EST_Dynamic && "EST case not considered earlier.");
189  assert(ComputedEST != EST_None &&
190         "Shouldn't collect exceptions when throw-all is guaranteed.");
191  ComputedEST = EST_Dynamic;
192  // Record the exceptions in this function's exception specification.
193  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
194                                          EEnd = Proto->exception_end();
195       E != EEnd; ++E)
196    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
197      Exceptions.push_back(*E);
198}
199
200void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
201  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
202    return;
203
204  // FIXME:
205  //
206  // C++0x [except.spec]p14:
207  //   [An] implicit exception-specification specifies the type-id T if and
208  // only if T is allowed by the exception-specification of a function directly
209  // invoked by f's implicit definition; f shall allow all exceptions if any
210  // function it directly invokes allows all exceptions, and f shall allow no
211  // exceptions if every function it directly invokes allows no exceptions.
212  //
213  // Note in particular that if an implicit exception-specification is generated
214  // for a function containing a throw-expression, that specification can still
215  // be noexcept(true).
216  //
217  // Note also that 'directly invoked' is not defined in the standard, and there
218  // is no indication that we should only consider potentially-evaluated calls.
219  //
220  // Ultimately we should implement the intent of the standard: the exception
221  // specification should be the set of exceptions which can be thrown by the
222  // implicit definition. For now, we assume that any non-nothrow expression can
223  // throw any exception.
224
225  if (Self->canThrow(E))
226    ComputedEST = EST_None;
227}
228
229bool
230Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
231                              SourceLocation EqualLoc) {
232  if (RequireCompleteType(Param->getLocation(), Param->getType(),
233                          diag::err_typecheck_decl_incomplete_type)) {
234    Param->setInvalidDecl();
235    return true;
236  }
237
238  // C++ [dcl.fct.default]p5
239  //   A default argument expression is implicitly converted (clause
240  //   4) to the parameter type. The default argument expression has
241  //   the same semantic constraints as the initializer expression in
242  //   a declaration of a variable of the parameter type, using the
243  //   copy-initialization semantics (8.5).
244  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
245                                                                    Param);
246  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
247                                                           EqualLoc);
248  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
249  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
250                                      MultiExprArg(*this, &Arg, 1));
251  if (Result.isInvalid())
252    return true;
253  Arg = Result.takeAs<Expr>();
254
255  CheckImplicitConversions(Arg, EqualLoc);
256  Arg = MaybeCreateExprWithCleanups(Arg);
257
258  // Okay: add the default argument to the parameter
259  Param->setDefaultArg(Arg);
260
261  // We have already instantiated this parameter; provide each of the
262  // instantiations with the uninstantiated default argument.
263  UnparsedDefaultArgInstantiationsMap::iterator InstPos
264    = UnparsedDefaultArgInstantiations.find(Param);
265  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
266    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
267      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
268
269    // We're done tracking this parameter's instantiations.
270    UnparsedDefaultArgInstantiations.erase(InstPos);
271  }
272
273  return false;
274}
275
276/// ActOnParamDefaultArgument - Check whether the default argument
277/// provided for a function parameter is well-formed. If so, attach it
278/// to the parameter declaration.
279void
280Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
281                                Expr *DefaultArg) {
282  if (!param || !DefaultArg)
283    return;
284
285  ParmVarDecl *Param = cast<ParmVarDecl>(param);
286  UnparsedDefaultArgLocs.erase(Param);
287
288  // Default arguments are only permitted in C++
289  if (!getLangOpts().CPlusPlus) {
290    Diag(EqualLoc, diag::err_param_default_argument)
291      << DefaultArg->getSourceRange();
292    Param->setInvalidDecl();
293    return;
294  }
295
296  // Check for unexpanded parameter packs.
297  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
298    Param->setInvalidDecl();
299    return;
300  }
301
302  // Check that the default argument is well-formed
303  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
304  if (DefaultArgChecker.Visit(DefaultArg)) {
305    Param->setInvalidDecl();
306    return;
307  }
308
309  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
310}
311
312/// ActOnParamUnparsedDefaultArgument - We've seen a default
313/// argument for a function parameter, but we can't parse it yet
314/// because we're inside a class definition. Note that this default
315/// argument will be parsed later.
316void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
317                                             SourceLocation EqualLoc,
318                                             SourceLocation ArgLoc) {
319  if (!param)
320    return;
321
322  ParmVarDecl *Param = cast<ParmVarDecl>(param);
323  if (Param)
324    Param->setUnparsedDefaultArg();
325
326  UnparsedDefaultArgLocs[Param] = ArgLoc;
327}
328
329/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
330/// the default argument for the parameter param failed.
331void Sema::ActOnParamDefaultArgumentError(Decl *param) {
332  if (!param)
333    return;
334
335  ParmVarDecl *Param = cast<ParmVarDecl>(param);
336
337  Param->setInvalidDecl();
338
339  UnparsedDefaultArgLocs.erase(Param);
340}
341
342/// CheckExtraCXXDefaultArguments - Check for any extra default
343/// arguments in the declarator, which is not a function declaration
344/// or definition and therefore is not permitted to have default
345/// arguments. This routine should be invoked for every declarator
346/// that is not a function declaration or definition.
347void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
348  // C++ [dcl.fct.default]p3
349  //   A default argument expression shall be specified only in the
350  //   parameter-declaration-clause of a function declaration or in a
351  //   template-parameter (14.1). It shall not be specified for a
352  //   parameter pack. If it is specified in a
353  //   parameter-declaration-clause, it shall not occur within a
354  //   declarator or abstract-declarator of a parameter-declaration.
355  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
356    DeclaratorChunk &chunk = D.getTypeObject(i);
357    if (chunk.Kind == DeclaratorChunk::Function) {
358      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
359        ParmVarDecl *Param =
360          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
361        if (Param->hasUnparsedDefaultArg()) {
362          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
363          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
364            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
365          delete Toks;
366          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
367        } else if (Param->getDefaultArg()) {
368          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
369            << Param->getDefaultArg()->getSourceRange();
370          Param->setDefaultArg(0);
371        }
372      }
373    }
374  }
375}
376
377// MergeCXXFunctionDecl - Merge two declarations of the same C++
378// function, once we already know that they have the same
379// type. Subroutine of MergeFunctionDecl. Returns true if there was an
380// error, false otherwise.
381bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
382                                Scope *S) {
383  bool Invalid = false;
384
385  // C++ [dcl.fct.default]p4:
386  //   For non-template functions, default arguments can be added in
387  //   later declarations of a function in the same
388  //   scope. Declarations in different scopes have completely
389  //   distinct sets of default arguments. That is, declarations in
390  //   inner scopes do not acquire default arguments from
391  //   declarations in outer scopes, and vice versa. In a given
392  //   function declaration, all parameters subsequent to a
393  //   parameter with a default argument shall have default
394  //   arguments supplied in this or previous declarations. A
395  //   default argument shall not be redefined by a later
396  //   declaration (not even to the same value).
397  //
398  // C++ [dcl.fct.default]p6:
399  //   Except for member functions of class templates, the default arguments
400  //   in a member function definition that appears outside of the class
401  //   definition are added to the set of default arguments provided by the
402  //   member function declaration in the class definition.
403  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
404    ParmVarDecl *OldParam = Old->getParamDecl(p);
405    ParmVarDecl *NewParam = New->getParamDecl(p);
406
407    bool OldParamHasDfl = OldParam->hasDefaultArg();
408    bool NewParamHasDfl = NewParam->hasDefaultArg();
409
410    NamedDecl *ND = Old;
411    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
412      // Ignore default parameters of old decl if they are not in
413      // the same scope.
414      OldParamHasDfl = false;
415
416    if (OldParamHasDfl && NewParamHasDfl) {
417
418      unsigned DiagDefaultParamID =
419        diag::err_param_default_argument_redefinition;
420
421      // MSVC accepts that default parameters be redefined for member functions
422      // of template class. The new default parameter's value is ignored.
423      Invalid = true;
424      if (getLangOpts().MicrosoftExt) {
425        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
426        if (MD && MD->getParent()->getDescribedClassTemplate()) {
427          // Merge the old default argument into the new parameter.
428          NewParam->setHasInheritedDefaultArg();
429          if (OldParam->hasUninstantiatedDefaultArg())
430            NewParam->setUninstantiatedDefaultArg(
431                                      OldParam->getUninstantiatedDefaultArg());
432          else
433            NewParam->setDefaultArg(OldParam->getInit());
434          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
435          Invalid = false;
436        }
437      }
438
439      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
440      // hint here. Alternatively, we could walk the type-source information
441      // for NewParam to find the last source location in the type... but it
442      // isn't worth the effort right now. This is the kind of test case that
443      // is hard to get right:
444      //   int f(int);
445      //   void g(int (*fp)(int) = f);
446      //   void g(int (*fp)(int) = &f);
447      Diag(NewParam->getLocation(), DiagDefaultParamID)
448        << NewParam->getDefaultArgRange();
449
450      // Look for the function declaration where the default argument was
451      // actually written, which may be a declaration prior to Old.
452      for (FunctionDecl *Older = Old->getPreviousDecl();
453           Older; Older = Older->getPreviousDecl()) {
454        if (!Older->getParamDecl(p)->hasDefaultArg())
455          break;
456
457        OldParam = Older->getParamDecl(p);
458      }
459
460      Diag(OldParam->getLocation(), diag::note_previous_definition)
461        << OldParam->getDefaultArgRange();
462    } else if (OldParamHasDfl) {
463      // Merge the old default argument into the new parameter.
464      // It's important to use getInit() here;  getDefaultArg()
465      // strips off any top-level ExprWithCleanups.
466      NewParam->setHasInheritedDefaultArg();
467      if (OldParam->hasUninstantiatedDefaultArg())
468        NewParam->setUninstantiatedDefaultArg(
469                                      OldParam->getUninstantiatedDefaultArg());
470      else
471        NewParam->setDefaultArg(OldParam->getInit());
472    } else if (NewParamHasDfl) {
473      if (New->getDescribedFunctionTemplate()) {
474        // Paragraph 4, quoted above, only applies to non-template functions.
475        Diag(NewParam->getLocation(),
476             diag::err_param_default_argument_template_redecl)
477          << NewParam->getDefaultArgRange();
478        Diag(Old->getLocation(), diag::note_template_prev_declaration)
479          << false;
480      } else if (New->getTemplateSpecializationKind()
481                   != TSK_ImplicitInstantiation &&
482                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
483        // C++ [temp.expr.spec]p21:
484        //   Default function arguments shall not be specified in a declaration
485        //   or a definition for one of the following explicit specializations:
486        //     - the explicit specialization of a function template;
487        //     - the explicit specialization of a member function template;
488        //     - the explicit specialization of a member function of a class
489        //       template where the class template specialization to which the
490        //       member function specialization belongs is implicitly
491        //       instantiated.
492        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
493          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
494          << New->getDeclName()
495          << NewParam->getDefaultArgRange();
496      } else if (New->getDeclContext()->isDependentContext()) {
497        // C++ [dcl.fct.default]p6 (DR217):
498        //   Default arguments for a member function of a class template shall
499        //   be specified on the initial declaration of the member function
500        //   within the class template.
501        //
502        // Reading the tea leaves a bit in DR217 and its reference to DR205
503        // leads me to the conclusion that one cannot add default function
504        // arguments for an out-of-line definition of a member function of a
505        // dependent type.
506        int WhichKind = 2;
507        if (CXXRecordDecl *Record
508              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
509          if (Record->getDescribedClassTemplate())
510            WhichKind = 0;
511          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
512            WhichKind = 1;
513          else
514            WhichKind = 2;
515        }
516
517        Diag(NewParam->getLocation(),
518             diag::err_param_default_argument_member_template_redecl)
519          << WhichKind
520          << NewParam->getDefaultArgRange();
521      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
522        CXXSpecialMember NewSM = getSpecialMember(Ctor),
523                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
524        if (NewSM != OldSM) {
525          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
526            << NewParam->getDefaultArgRange() << NewSM;
527          Diag(Old->getLocation(), diag::note_previous_declaration_special)
528            << OldSM;
529        }
530      }
531    }
532  }
533
534  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
535  // template has a constexpr specifier then all its declarations shall
536  // contain the constexpr specifier.
537  if (New->isConstexpr() != Old->isConstexpr()) {
538    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
539      << New << New->isConstexpr();
540    Diag(Old->getLocation(), diag::note_previous_declaration);
541    Invalid = true;
542  }
543
544  if (CheckEquivalentExceptionSpec(Old, New))
545    Invalid = true;
546
547  return Invalid;
548}
549
550/// \brief Merge the exception specifications of two variable declarations.
551///
552/// This is called when there's a redeclaration of a VarDecl. The function
553/// checks if the redeclaration might have an exception specification and
554/// validates compatibility and merges the specs if necessary.
555void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
556  // Shortcut if exceptions are disabled.
557  if (!getLangOpts().CXXExceptions)
558    return;
559
560  assert(Context.hasSameType(New->getType(), Old->getType()) &&
561         "Should only be called if types are otherwise the same.");
562
563  QualType NewType = New->getType();
564  QualType OldType = Old->getType();
565
566  // We're only interested in pointers and references to functions, as well
567  // as pointers to member functions.
568  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
569    NewType = R->getPointeeType();
570    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
571  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
572    NewType = P->getPointeeType();
573    OldType = OldType->getAs<PointerType>()->getPointeeType();
574  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
575    NewType = M->getPointeeType();
576    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
577  }
578
579  if (!NewType->isFunctionProtoType())
580    return;
581
582  // There's lots of special cases for functions. For function pointers, system
583  // libraries are hopefully not as broken so that we don't need these
584  // workarounds.
585  if (CheckEquivalentExceptionSpec(
586        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
587        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
588    New->setInvalidDecl();
589  }
590}
591
592/// CheckCXXDefaultArguments - Verify that the default arguments for a
593/// function declaration are well-formed according to C++
594/// [dcl.fct.default].
595void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
596  unsigned NumParams = FD->getNumParams();
597  unsigned p;
598
599  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
600                  isa<CXXMethodDecl>(FD) &&
601                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
602
603  // Find first parameter with a default argument
604  for (p = 0; p < NumParams; ++p) {
605    ParmVarDecl *Param = FD->getParamDecl(p);
606    if (Param->hasDefaultArg()) {
607      // C++11 [expr.prim.lambda]p5:
608      //   [...] Default arguments (8.3.6) shall not be specified in the
609      //   parameter-declaration-clause of a lambda-declarator.
610      //
611      // FIXME: Core issue 974 strikes this sentence, we only provide an
612      // extension warning.
613      if (IsLambda)
614        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
615          << Param->getDefaultArgRange();
616      break;
617    }
618  }
619
620  // C++ [dcl.fct.default]p4:
621  //   In a given function declaration, all parameters
622  //   subsequent to a parameter with a default argument shall
623  //   have default arguments supplied in this or previous
624  //   declarations. A default argument shall not be redefined
625  //   by a later declaration (not even to the same value).
626  unsigned LastMissingDefaultArg = 0;
627  for (; p < NumParams; ++p) {
628    ParmVarDecl *Param = FD->getParamDecl(p);
629    if (!Param->hasDefaultArg()) {
630      if (Param->isInvalidDecl())
631        /* We already complained about this parameter. */;
632      else if (Param->getIdentifier())
633        Diag(Param->getLocation(),
634             diag::err_param_default_argument_missing_name)
635          << Param->getIdentifier();
636      else
637        Diag(Param->getLocation(),
638             diag::err_param_default_argument_missing);
639
640      LastMissingDefaultArg = p;
641    }
642  }
643
644  if (LastMissingDefaultArg > 0) {
645    // Some default arguments were missing. Clear out all of the
646    // default arguments up to (and including) the last missing
647    // default argument, so that we leave the function parameters
648    // in a semantically valid state.
649    for (p = 0; p <= LastMissingDefaultArg; ++p) {
650      ParmVarDecl *Param = FD->getParamDecl(p);
651      if (Param->hasDefaultArg()) {
652        Param->setDefaultArg(0);
653      }
654    }
655  }
656}
657
658// CheckConstexprParameterTypes - Check whether a function's parameter types
659// are all literal types. If so, return true. If not, produce a suitable
660// diagnostic and return false.
661static bool CheckConstexprParameterTypes(Sema &SemaRef,
662                                         const FunctionDecl *FD) {
663  unsigned ArgIndex = 0;
664  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
665  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
666       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
667    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
668    SourceLocation ParamLoc = PD->getLocation();
669    if (!(*i)->isDependentType() &&
670        SemaRef.RequireLiteralType(ParamLoc, *i,
671                                   diag::err_constexpr_non_literal_param,
672                                   ArgIndex+1, PD->getSourceRange(),
673                                   isa<CXXConstructorDecl>(FD)))
674      return false;
675  }
676  return true;
677}
678
679// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
680// the requirements of a constexpr function definition or a constexpr
681// constructor definition. If so, return true. If not, produce appropriate
682// diagnostics and return false.
683//
684// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
685bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
686  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
687  if (MD && MD->isInstance()) {
688    // C++11 [dcl.constexpr]p4:
689    //  The definition of a constexpr constructor shall satisfy the following
690    //  constraints:
691    //  - the class shall not have any virtual base classes;
692    const CXXRecordDecl *RD = MD->getParent();
693    if (RD->getNumVBases()) {
694      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
695        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
696        << RD->getNumVBases();
697      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
698             E = RD->vbases_end(); I != E; ++I)
699        Diag(I->getLocStart(),
700             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
701      return false;
702    }
703  }
704
705  if (!isa<CXXConstructorDecl>(NewFD)) {
706    // C++11 [dcl.constexpr]p3:
707    //  The definition of a constexpr function shall satisfy the following
708    //  constraints:
709    // - it shall not be virtual;
710    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
711    if (Method && Method->isVirtual()) {
712      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
713
714      // If it's not obvious why this function is virtual, find an overridden
715      // function which uses the 'virtual' keyword.
716      const CXXMethodDecl *WrittenVirtual = Method;
717      while (!WrittenVirtual->isVirtualAsWritten())
718        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
719      if (WrittenVirtual != Method)
720        Diag(WrittenVirtual->getLocation(),
721             diag::note_overridden_virtual_function);
722      return false;
723    }
724
725    // - its return type shall be a literal type;
726    QualType RT = NewFD->getResultType();
727    if (!RT->isDependentType() &&
728        RequireLiteralType(NewFD->getLocation(), RT,
729                           diag::err_constexpr_non_literal_return))
730      return false;
731  }
732
733  // - each of its parameter types shall be a literal type;
734  if (!CheckConstexprParameterTypes(*this, NewFD))
735    return false;
736
737  return true;
738}
739
740/// Check the given declaration statement is legal within a constexpr function
741/// body. C++0x [dcl.constexpr]p3,p4.
742///
743/// \return true if the body is OK, false if we have diagnosed a problem.
744static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
745                                   DeclStmt *DS) {
746  // C++0x [dcl.constexpr]p3 and p4:
747  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
748  //  contain only
749  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
750         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
751    switch ((*DclIt)->getKind()) {
752    case Decl::StaticAssert:
753    case Decl::Using:
754    case Decl::UsingShadow:
755    case Decl::UsingDirective:
756    case Decl::UnresolvedUsingTypename:
757      //   - static_assert-declarations
758      //   - using-declarations,
759      //   - using-directives,
760      continue;
761
762    case Decl::Typedef:
763    case Decl::TypeAlias: {
764      //   - typedef declarations and alias-declarations that do not define
765      //     classes or enumerations,
766      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
767      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
768        // Don't allow variably-modified types in constexpr functions.
769        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
770        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
771          << TL.getSourceRange() << TL.getType()
772          << isa<CXXConstructorDecl>(Dcl);
773        return false;
774      }
775      continue;
776    }
777
778    case Decl::Enum:
779    case Decl::CXXRecord:
780      // As an extension, we allow the declaration (but not the definition) of
781      // classes and enumerations in all declarations, not just in typedef and
782      // alias declarations.
783      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
784        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
785          << isa<CXXConstructorDecl>(Dcl);
786        return false;
787      }
788      continue;
789
790    case Decl::Var:
791      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
792        << isa<CXXConstructorDecl>(Dcl);
793      return false;
794
795    default:
796      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
797        << isa<CXXConstructorDecl>(Dcl);
798      return false;
799    }
800  }
801
802  return true;
803}
804
805/// Check that the given field is initialized within a constexpr constructor.
806///
807/// \param Dcl The constexpr constructor being checked.
808/// \param Field The field being checked. This may be a member of an anonymous
809///        struct or union nested within the class being checked.
810/// \param Inits All declarations, including anonymous struct/union members and
811///        indirect members, for which any initialization was provided.
812/// \param Diagnosed Set to true if an error is produced.
813static void CheckConstexprCtorInitializer(Sema &SemaRef,
814                                          const FunctionDecl *Dcl,
815                                          FieldDecl *Field,
816                                          llvm::SmallSet<Decl*, 16> &Inits,
817                                          bool &Diagnosed) {
818  if (Field->isUnnamedBitfield())
819    return;
820
821  if (Field->isAnonymousStructOrUnion() &&
822      Field->getType()->getAsCXXRecordDecl()->isEmpty())
823    return;
824
825  if (!Inits.count(Field)) {
826    if (!Diagnosed) {
827      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
828      Diagnosed = true;
829    }
830    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
831  } else if (Field->isAnonymousStructOrUnion()) {
832    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
833    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
834         I != E; ++I)
835      // If an anonymous union contains an anonymous struct of which any member
836      // is initialized, all members must be initialized.
837      if (!RD->isUnion() || Inits.count(*I))
838        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
839  }
840}
841
842/// Check the body for the given constexpr function declaration only contains
843/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
844///
845/// \return true if the body is OK, false if we have diagnosed a problem.
846bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
847  if (isa<CXXTryStmt>(Body)) {
848    // C++11 [dcl.constexpr]p3:
849    //  The definition of a constexpr function shall satisfy the following
850    //  constraints: [...]
851    // - its function-body shall be = delete, = default, or a
852    //   compound-statement
853    //
854    // C++11 [dcl.constexpr]p4:
855    //  In the definition of a constexpr constructor, [...]
856    // - its function-body shall not be a function-try-block;
857    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
858      << isa<CXXConstructorDecl>(Dcl);
859    return false;
860  }
861
862  // - its function-body shall be [...] a compound-statement that contains only
863  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
864
865  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
866  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
867         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
868    switch ((*BodyIt)->getStmtClass()) {
869    case Stmt::NullStmtClass:
870      //   - null statements,
871      continue;
872
873    case Stmt::DeclStmtClass:
874      //   - static_assert-declarations
875      //   - using-declarations,
876      //   - using-directives,
877      //   - typedef declarations and alias-declarations that do not define
878      //     classes or enumerations,
879      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
880        return false;
881      continue;
882
883    case Stmt::ReturnStmtClass:
884      //   - and exactly one return statement;
885      if (isa<CXXConstructorDecl>(Dcl))
886        break;
887
888      ReturnStmts.push_back((*BodyIt)->getLocStart());
889      continue;
890
891    default:
892      break;
893    }
894
895    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
896      << isa<CXXConstructorDecl>(Dcl);
897    return false;
898  }
899
900  if (const CXXConstructorDecl *Constructor
901        = dyn_cast<CXXConstructorDecl>(Dcl)) {
902    const CXXRecordDecl *RD = Constructor->getParent();
903    // DR1359:
904    // - every non-variant non-static data member and base class sub-object
905    //   shall be initialized;
906    // - if the class is a non-empty union, or for each non-empty anonymous
907    //   union member of a non-union class, exactly one non-static data member
908    //   shall be initialized;
909    if (RD->isUnion()) {
910      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
911        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
912        return false;
913      }
914    } else if (!Constructor->isDependentContext() &&
915               !Constructor->isDelegatingConstructor()) {
916      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
917
918      // Skip detailed checking if we have enough initializers, and we would
919      // allow at most one initializer per member.
920      bool AnyAnonStructUnionMembers = false;
921      unsigned Fields = 0;
922      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
923           E = RD->field_end(); I != E; ++I, ++Fields) {
924        if (I->isAnonymousStructOrUnion()) {
925          AnyAnonStructUnionMembers = true;
926          break;
927        }
928      }
929      if (AnyAnonStructUnionMembers ||
930          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
931        // Check initialization of non-static data members. Base classes are
932        // always initialized so do not need to be checked. Dependent bases
933        // might not have initializers in the member initializer list.
934        llvm::SmallSet<Decl*, 16> Inits;
935        for (CXXConstructorDecl::init_const_iterator
936               I = Constructor->init_begin(), E = Constructor->init_end();
937             I != E; ++I) {
938          if (FieldDecl *FD = (*I)->getMember())
939            Inits.insert(FD);
940          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
941            Inits.insert(ID->chain_begin(), ID->chain_end());
942        }
943
944        bool Diagnosed = false;
945        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
946             E = RD->field_end(); I != E; ++I)
947          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
948        if (Diagnosed)
949          return false;
950      }
951    }
952  } else {
953    if (ReturnStmts.empty()) {
954      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
955      return false;
956    }
957    if (ReturnStmts.size() > 1) {
958      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
959      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
960        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
961      return false;
962    }
963  }
964
965  // C++11 [dcl.constexpr]p5:
966  //   if no function argument values exist such that the function invocation
967  //   substitution would produce a constant expression, the program is
968  //   ill-formed; no diagnostic required.
969  // C++11 [dcl.constexpr]p3:
970  //   - every constructor call and implicit conversion used in initializing the
971  //     return value shall be one of those allowed in a constant expression.
972  // C++11 [dcl.constexpr]p4:
973  //   - every constructor involved in initializing non-static data members and
974  //     base class sub-objects shall be a constexpr constructor.
975  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
976  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
977    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
978      << isa<CXXConstructorDecl>(Dcl);
979    for (size_t I = 0, N = Diags.size(); I != N; ++I)
980      Diag(Diags[I].first, Diags[I].second);
981    return false;
982  }
983
984  return true;
985}
986
987/// isCurrentClassName - Determine whether the identifier II is the
988/// name of the class type currently being defined. In the case of
989/// nested classes, this will only return true if II is the name of
990/// the innermost class.
991bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
992                              const CXXScopeSpec *SS) {
993  assert(getLangOpts().CPlusPlus && "No class names in C!");
994
995  CXXRecordDecl *CurDecl;
996  if (SS && SS->isSet() && !SS->isInvalid()) {
997    DeclContext *DC = computeDeclContext(*SS, true);
998    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
999  } else
1000    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1001
1002  if (CurDecl && CurDecl->getIdentifier())
1003    return &II == CurDecl->getIdentifier();
1004  else
1005    return false;
1006}
1007
1008/// \brief Check the validity of a C++ base class specifier.
1009///
1010/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1011/// and returns NULL otherwise.
1012CXXBaseSpecifier *
1013Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1014                         SourceRange SpecifierRange,
1015                         bool Virtual, AccessSpecifier Access,
1016                         TypeSourceInfo *TInfo,
1017                         SourceLocation EllipsisLoc) {
1018  QualType BaseType = TInfo->getType();
1019
1020  // C++ [class.union]p1:
1021  //   A union shall not have base classes.
1022  if (Class->isUnion()) {
1023    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1024      << SpecifierRange;
1025    return 0;
1026  }
1027
1028  if (EllipsisLoc.isValid() &&
1029      !TInfo->getType()->containsUnexpandedParameterPack()) {
1030    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1031      << TInfo->getTypeLoc().getSourceRange();
1032    EllipsisLoc = SourceLocation();
1033  }
1034
1035  if (BaseType->isDependentType())
1036    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1037                                          Class->getTagKind() == TTK_Class,
1038                                          Access, TInfo, EllipsisLoc);
1039
1040  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1041
1042  // Base specifiers must be record types.
1043  if (!BaseType->isRecordType()) {
1044    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1045    return 0;
1046  }
1047
1048  // C++ [class.union]p1:
1049  //   A union shall not be used as a base class.
1050  if (BaseType->isUnionType()) {
1051    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1052    return 0;
1053  }
1054
1055  // C++ [class.derived]p2:
1056  //   The class-name in a base-specifier shall not be an incompletely
1057  //   defined class.
1058  if (RequireCompleteType(BaseLoc, BaseType,
1059                          diag::err_incomplete_base_class, SpecifierRange)) {
1060    Class->setInvalidDecl();
1061    return 0;
1062  }
1063
1064  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1065  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1066  assert(BaseDecl && "Record type has no declaration");
1067  BaseDecl = BaseDecl->getDefinition();
1068  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1069  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1070  assert(CXXBaseDecl && "Base type is not a C++ type");
1071
1072  // C++ [class]p3:
1073  //   If a class is marked final and it appears as a base-type-specifier in
1074  //   base-clause, the program is ill-formed.
1075  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1076    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1077      << CXXBaseDecl->getDeclName();
1078    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1079      << CXXBaseDecl->getDeclName();
1080    return 0;
1081  }
1082
1083  if (BaseDecl->isInvalidDecl())
1084    Class->setInvalidDecl();
1085
1086  // Create the base specifier.
1087  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1088                                        Class->getTagKind() == TTK_Class,
1089                                        Access, TInfo, EllipsisLoc);
1090}
1091
1092/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1093/// one entry in the base class list of a class specifier, for
1094/// example:
1095///    class foo : public bar, virtual private baz {
1096/// 'public bar' and 'virtual private baz' are each base-specifiers.
1097BaseResult
1098Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1099                         bool Virtual, AccessSpecifier Access,
1100                         ParsedType basetype, SourceLocation BaseLoc,
1101                         SourceLocation EllipsisLoc) {
1102  if (!classdecl)
1103    return true;
1104
1105  AdjustDeclIfTemplate(classdecl);
1106  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1107  if (!Class)
1108    return true;
1109
1110  TypeSourceInfo *TInfo = 0;
1111  GetTypeFromParser(basetype, &TInfo);
1112
1113  if (EllipsisLoc.isInvalid() &&
1114      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1115                                      UPPC_BaseType))
1116    return true;
1117
1118  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1119                                                      Virtual, Access, TInfo,
1120                                                      EllipsisLoc))
1121    return BaseSpec;
1122  else
1123    Class->setInvalidDecl();
1124
1125  return true;
1126}
1127
1128/// \brief Performs the actual work of attaching the given base class
1129/// specifiers to a C++ class.
1130bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1131                                unsigned NumBases) {
1132 if (NumBases == 0)
1133    return false;
1134
1135  // Used to keep track of which base types we have already seen, so
1136  // that we can properly diagnose redundant direct base types. Note
1137  // that the key is always the unqualified canonical type of the base
1138  // class.
1139  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1140
1141  // Copy non-redundant base specifiers into permanent storage.
1142  unsigned NumGoodBases = 0;
1143  bool Invalid = false;
1144  for (unsigned idx = 0; idx < NumBases; ++idx) {
1145    QualType NewBaseType
1146      = Context.getCanonicalType(Bases[idx]->getType());
1147    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1148
1149    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1150    if (KnownBase) {
1151      // C++ [class.mi]p3:
1152      //   A class shall not be specified as a direct base class of a
1153      //   derived class more than once.
1154      Diag(Bases[idx]->getLocStart(),
1155           diag::err_duplicate_base_class)
1156        << KnownBase->getType()
1157        << Bases[idx]->getSourceRange();
1158
1159      // Delete the duplicate base class specifier; we're going to
1160      // overwrite its pointer later.
1161      Context.Deallocate(Bases[idx]);
1162
1163      Invalid = true;
1164    } else {
1165      // Okay, add this new base class.
1166      KnownBase = Bases[idx];
1167      Bases[NumGoodBases++] = Bases[idx];
1168      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1169        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1170          if (RD->hasAttr<WeakAttr>())
1171            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1172    }
1173  }
1174
1175  // Attach the remaining base class specifiers to the derived class.
1176  Class->setBases(Bases, NumGoodBases);
1177
1178  // Delete the remaining (good) base class specifiers, since their
1179  // data has been copied into the CXXRecordDecl.
1180  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1181    Context.Deallocate(Bases[idx]);
1182
1183  return Invalid;
1184}
1185
1186/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1187/// class, after checking whether there are any duplicate base
1188/// classes.
1189void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1190                               unsigned NumBases) {
1191  if (!ClassDecl || !Bases || !NumBases)
1192    return;
1193
1194  AdjustDeclIfTemplate(ClassDecl);
1195  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1196                       (CXXBaseSpecifier**)(Bases), NumBases);
1197}
1198
1199static CXXRecordDecl *GetClassForType(QualType T) {
1200  if (const RecordType *RT = T->getAs<RecordType>())
1201    return cast<CXXRecordDecl>(RT->getDecl());
1202  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1203    return ICT->getDecl();
1204  else
1205    return 0;
1206}
1207
1208/// \brief Determine whether the type \p Derived is a C++ class that is
1209/// derived from the type \p Base.
1210bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1211  if (!getLangOpts().CPlusPlus)
1212    return false;
1213
1214  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1215  if (!DerivedRD)
1216    return false;
1217
1218  CXXRecordDecl *BaseRD = GetClassForType(Base);
1219  if (!BaseRD)
1220    return false;
1221
1222  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1223  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1224}
1225
1226/// \brief Determine whether the type \p Derived is a C++ class that is
1227/// derived from the type \p Base.
1228bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1229  if (!getLangOpts().CPlusPlus)
1230    return false;
1231
1232  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1233  if (!DerivedRD)
1234    return false;
1235
1236  CXXRecordDecl *BaseRD = GetClassForType(Base);
1237  if (!BaseRD)
1238    return false;
1239
1240  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1241}
1242
1243void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1244                              CXXCastPath &BasePathArray) {
1245  assert(BasePathArray.empty() && "Base path array must be empty!");
1246  assert(Paths.isRecordingPaths() && "Must record paths!");
1247
1248  const CXXBasePath &Path = Paths.front();
1249
1250  // We first go backward and check if we have a virtual base.
1251  // FIXME: It would be better if CXXBasePath had the base specifier for
1252  // the nearest virtual base.
1253  unsigned Start = 0;
1254  for (unsigned I = Path.size(); I != 0; --I) {
1255    if (Path[I - 1].Base->isVirtual()) {
1256      Start = I - 1;
1257      break;
1258    }
1259  }
1260
1261  // Now add all bases.
1262  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1263    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1264}
1265
1266/// \brief Determine whether the given base path includes a virtual
1267/// base class.
1268bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1269  for (CXXCastPath::const_iterator B = BasePath.begin(),
1270                                BEnd = BasePath.end();
1271       B != BEnd; ++B)
1272    if ((*B)->isVirtual())
1273      return true;
1274
1275  return false;
1276}
1277
1278/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1279/// conversion (where Derived and Base are class types) is
1280/// well-formed, meaning that the conversion is unambiguous (and
1281/// that all of the base classes are accessible). Returns true
1282/// and emits a diagnostic if the code is ill-formed, returns false
1283/// otherwise. Loc is the location where this routine should point to
1284/// if there is an error, and Range is the source range to highlight
1285/// if there is an error.
1286bool
1287Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1288                                   unsigned InaccessibleBaseID,
1289                                   unsigned AmbigiousBaseConvID,
1290                                   SourceLocation Loc, SourceRange Range,
1291                                   DeclarationName Name,
1292                                   CXXCastPath *BasePath) {
1293  // First, determine whether the path from Derived to Base is
1294  // ambiguous. This is slightly more expensive than checking whether
1295  // the Derived to Base conversion exists, because here we need to
1296  // explore multiple paths to determine if there is an ambiguity.
1297  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1298                     /*DetectVirtual=*/false);
1299  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1300  assert(DerivationOkay &&
1301         "Can only be used with a derived-to-base conversion");
1302  (void)DerivationOkay;
1303
1304  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1305    if (InaccessibleBaseID) {
1306      // Check that the base class can be accessed.
1307      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1308                                   InaccessibleBaseID)) {
1309        case AR_inaccessible:
1310          return true;
1311        case AR_accessible:
1312        case AR_dependent:
1313        case AR_delayed:
1314          break;
1315      }
1316    }
1317
1318    // Build a base path if necessary.
1319    if (BasePath)
1320      BuildBasePathArray(Paths, *BasePath);
1321    return false;
1322  }
1323
1324  // We know that the derived-to-base conversion is ambiguous, and
1325  // we're going to produce a diagnostic. Perform the derived-to-base
1326  // search just one more time to compute all of the possible paths so
1327  // that we can print them out. This is more expensive than any of
1328  // the previous derived-to-base checks we've done, but at this point
1329  // performance isn't as much of an issue.
1330  Paths.clear();
1331  Paths.setRecordingPaths(true);
1332  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1333  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1334  (void)StillOkay;
1335
1336  // Build up a textual representation of the ambiguous paths, e.g.,
1337  // D -> B -> A, that will be used to illustrate the ambiguous
1338  // conversions in the diagnostic. We only print one of the paths
1339  // to each base class subobject.
1340  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1341
1342  Diag(Loc, AmbigiousBaseConvID)
1343  << Derived << Base << PathDisplayStr << Range << Name;
1344  return true;
1345}
1346
1347bool
1348Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1349                                   SourceLocation Loc, SourceRange Range,
1350                                   CXXCastPath *BasePath,
1351                                   bool IgnoreAccess) {
1352  return CheckDerivedToBaseConversion(Derived, Base,
1353                                      IgnoreAccess ? 0
1354                                       : diag::err_upcast_to_inaccessible_base,
1355                                      diag::err_ambiguous_derived_to_base_conv,
1356                                      Loc, Range, DeclarationName(),
1357                                      BasePath);
1358}
1359
1360
1361/// @brief Builds a string representing ambiguous paths from a
1362/// specific derived class to different subobjects of the same base
1363/// class.
1364///
1365/// This function builds a string that can be used in error messages
1366/// to show the different paths that one can take through the
1367/// inheritance hierarchy to go from the derived class to different
1368/// subobjects of a base class. The result looks something like this:
1369/// @code
1370/// struct D -> struct B -> struct A
1371/// struct D -> struct C -> struct A
1372/// @endcode
1373std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1374  std::string PathDisplayStr;
1375  std::set<unsigned> DisplayedPaths;
1376  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1377       Path != Paths.end(); ++Path) {
1378    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1379      // We haven't displayed a path to this particular base
1380      // class subobject yet.
1381      PathDisplayStr += "\n    ";
1382      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1383      for (CXXBasePath::const_iterator Element = Path->begin();
1384           Element != Path->end(); ++Element)
1385        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1386    }
1387  }
1388
1389  return PathDisplayStr;
1390}
1391
1392//===----------------------------------------------------------------------===//
1393// C++ class member Handling
1394//===----------------------------------------------------------------------===//
1395
1396/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1397bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1398                                SourceLocation ASLoc,
1399                                SourceLocation ColonLoc,
1400                                AttributeList *Attrs) {
1401  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1402  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1403                                                  ASLoc, ColonLoc);
1404  CurContext->addHiddenDecl(ASDecl);
1405  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1406}
1407
1408/// CheckOverrideControl - Check C++0x override control semantics.
1409void Sema::CheckOverrideControl(const Decl *D) {
1410  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1411  if (!MD || !MD->isVirtual())
1412    return;
1413
1414  if (MD->isDependentContext())
1415    return;
1416
1417  // C++0x [class.virtual]p3:
1418  //   If a virtual function is marked with the virt-specifier override and does
1419  //   not override a member function of a base class,
1420  //   the program is ill-formed.
1421  bool HasOverriddenMethods =
1422    MD->begin_overridden_methods() != MD->end_overridden_methods();
1423  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1424    Diag(MD->getLocation(),
1425                 diag::err_function_marked_override_not_overriding)
1426      << MD->getDeclName();
1427    return;
1428  }
1429}
1430
1431/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1432/// function overrides a virtual member function marked 'final', according to
1433/// C++0x [class.virtual]p3.
1434bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1435                                                  const CXXMethodDecl *Old) {
1436  if (!Old->hasAttr<FinalAttr>())
1437    return false;
1438
1439  Diag(New->getLocation(), diag::err_final_function_overridden)
1440    << New->getDeclName();
1441  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1442  return true;
1443}
1444
1445static bool InitializationHasSideEffects(const FieldDecl &FD) {
1446  if (!FD.getType().isNull()) {
1447    if (const CXXRecordDecl *RD = FD.getType()->getAsCXXRecordDecl()) {
1448      return !RD->isCompleteDefinition() ||
1449             !RD->hasTrivialDefaultConstructor() ||
1450             !RD->hasTrivialDestructor();
1451    }
1452  }
1453  return false;
1454}
1455
1456/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1457/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1458/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1459/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1460/// present (but parsing it has been deferred).
1461Decl *
1462Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1463                               MultiTemplateParamsArg TemplateParameterLists,
1464                               Expr *BW, const VirtSpecifiers &VS,
1465                               InClassInitStyle InitStyle) {
1466  const DeclSpec &DS = D.getDeclSpec();
1467  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1468  DeclarationName Name = NameInfo.getName();
1469  SourceLocation Loc = NameInfo.getLoc();
1470
1471  // For anonymous bitfields, the location should point to the type.
1472  if (Loc.isInvalid())
1473    Loc = D.getLocStart();
1474
1475  Expr *BitWidth = static_cast<Expr*>(BW);
1476
1477  assert(isa<CXXRecordDecl>(CurContext));
1478  assert(!DS.isFriendSpecified());
1479
1480  bool isFunc = D.isDeclarationOfFunction();
1481
1482  // C++ 9.2p6: A member shall not be declared to have automatic storage
1483  // duration (auto, register) or with the extern storage-class-specifier.
1484  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1485  // data members and cannot be applied to names declared const or static,
1486  // and cannot be applied to reference members.
1487  switch (DS.getStorageClassSpec()) {
1488    case DeclSpec::SCS_unspecified:
1489    case DeclSpec::SCS_typedef:
1490    case DeclSpec::SCS_static:
1491      // FALL THROUGH.
1492      break;
1493    case DeclSpec::SCS_mutable:
1494      if (isFunc) {
1495        if (DS.getStorageClassSpecLoc().isValid())
1496          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1497        else
1498          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1499
1500        // FIXME: It would be nicer if the keyword was ignored only for this
1501        // declarator. Otherwise we could get follow-up errors.
1502        D.getMutableDeclSpec().ClearStorageClassSpecs();
1503      }
1504      break;
1505    default:
1506      if (DS.getStorageClassSpecLoc().isValid())
1507        Diag(DS.getStorageClassSpecLoc(),
1508             diag::err_storageclass_invalid_for_member);
1509      else
1510        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1511      D.getMutableDeclSpec().ClearStorageClassSpecs();
1512  }
1513
1514  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1515                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1516                      !isFunc);
1517
1518  Decl *Member;
1519  if (isInstField) {
1520    CXXScopeSpec &SS = D.getCXXScopeSpec();
1521
1522    // Data members must have identifiers for names.
1523    if (!Name.isIdentifier()) {
1524      Diag(Loc, diag::err_bad_variable_name)
1525        << Name;
1526      return 0;
1527    }
1528
1529    IdentifierInfo *II = Name.getAsIdentifierInfo();
1530
1531    // Member field could not be with "template" keyword.
1532    // So TemplateParameterLists should be empty in this case.
1533    if (TemplateParameterLists.size()) {
1534      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1535      if (TemplateParams->size()) {
1536        // There is no such thing as a member field template.
1537        Diag(D.getIdentifierLoc(), diag::err_template_member)
1538            << II
1539            << SourceRange(TemplateParams->getTemplateLoc(),
1540                TemplateParams->getRAngleLoc());
1541      } else {
1542        // There is an extraneous 'template<>' for this member.
1543        Diag(TemplateParams->getTemplateLoc(),
1544            diag::err_template_member_noparams)
1545            << II
1546            << SourceRange(TemplateParams->getTemplateLoc(),
1547                TemplateParams->getRAngleLoc());
1548      }
1549      return 0;
1550    }
1551
1552    if (SS.isSet() && !SS.isInvalid()) {
1553      // The user provided a superfluous scope specifier inside a class
1554      // definition:
1555      //
1556      // class X {
1557      //   int X::member;
1558      // };
1559      if (DeclContext *DC = computeDeclContext(SS, false))
1560        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1561      else
1562        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1563          << Name << SS.getRange();
1564
1565      SS.clear();
1566    }
1567
1568    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1569                         InitStyle, AS);
1570    assert(Member && "HandleField never returns null");
1571  } else {
1572    assert(InitStyle == ICIS_NoInit);
1573
1574    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1575    if (!Member) {
1576      return 0;
1577    }
1578
1579    // Non-instance-fields can't have a bitfield.
1580    if (BitWidth) {
1581      if (Member->isInvalidDecl()) {
1582        // don't emit another diagnostic.
1583      } else if (isa<VarDecl>(Member)) {
1584        // C++ 9.6p3: A bit-field shall not be a static member.
1585        // "static member 'A' cannot be a bit-field"
1586        Diag(Loc, diag::err_static_not_bitfield)
1587          << Name << BitWidth->getSourceRange();
1588      } else if (isa<TypedefDecl>(Member)) {
1589        // "typedef member 'x' cannot be a bit-field"
1590        Diag(Loc, diag::err_typedef_not_bitfield)
1591          << Name << BitWidth->getSourceRange();
1592      } else {
1593        // A function typedef ("typedef int f(); f a;").
1594        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1595        Diag(Loc, diag::err_not_integral_type_bitfield)
1596          << Name << cast<ValueDecl>(Member)->getType()
1597          << BitWidth->getSourceRange();
1598      }
1599
1600      BitWidth = 0;
1601      Member->setInvalidDecl();
1602    }
1603
1604    Member->setAccess(AS);
1605
1606    // If we have declared a member function template, set the access of the
1607    // templated declaration as well.
1608    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1609      FunTmpl->getTemplatedDecl()->setAccess(AS);
1610  }
1611
1612  if (VS.isOverrideSpecified()) {
1613    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1614    if (!MD || !MD->isVirtual()) {
1615      Diag(Member->getLocStart(),
1616           diag::override_keyword_only_allowed_on_virtual_member_functions)
1617        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1618    } else
1619      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1620  }
1621  if (VS.isFinalSpecified()) {
1622    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1623    if (!MD || !MD->isVirtual()) {
1624      Diag(Member->getLocStart(),
1625           diag::override_keyword_only_allowed_on_virtual_member_functions)
1626      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1627    } else
1628      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1629  }
1630
1631  if (VS.getLastLocation().isValid()) {
1632    // Update the end location of a method that has a virt-specifiers.
1633    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1634      MD->setRangeEnd(VS.getLastLocation());
1635  }
1636
1637  CheckOverrideControl(Member);
1638
1639  assert((Name || isInstField) && "No identifier for non-field ?");
1640
1641  if (isInstField) {
1642    FieldDecl *FD = cast<FieldDecl>(Member);
1643    FieldCollector->Add(FD);
1644
1645    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1646                                 FD->getLocation())
1647          != DiagnosticsEngine::Ignored) {
1648      // Remember all explicit private FieldDecls that have a name, no side
1649      // effects and are not part of a dependent type declaration.
1650      if (!FD->isImplicit() && FD->getDeclName() &&
1651          FD->getAccess() == AS_private &&
1652          !FD->hasAttr<UnusedAttr>() &&
1653          !FD->getParent()->getTypeForDecl()->isDependentType() &&
1654          !InitializationHasSideEffects(*FD))
1655        UnusedPrivateFields.insert(FD);
1656    }
1657  }
1658
1659  return Member;
1660}
1661
1662/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1663/// in-class initializer for a non-static C++ class member, and after
1664/// instantiating an in-class initializer in a class template. Such actions
1665/// are deferred until the class is complete.
1666void
1667Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1668                                       Expr *InitExpr) {
1669  FieldDecl *FD = cast<FieldDecl>(D);
1670  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1671         "must set init style when field is created");
1672
1673  if (!InitExpr) {
1674    FD->setInvalidDecl();
1675    FD->removeInClassInitializer();
1676    return;
1677  }
1678
1679  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1680    FD->setInvalidDecl();
1681    FD->removeInClassInitializer();
1682    return;
1683  }
1684
1685  ExprResult Init = InitExpr;
1686  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1687    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1688      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1689        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1690    }
1691    Expr **Inits = &InitExpr;
1692    unsigned NumInits = 1;
1693    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1694    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
1695        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1696        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
1697    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1698    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1699    if (Init.isInvalid()) {
1700      FD->setInvalidDecl();
1701      return;
1702    }
1703
1704    CheckImplicitConversions(Init.get(), InitLoc);
1705  }
1706
1707  // C++0x [class.base.init]p7:
1708  //   The initialization of each base and member constitutes a
1709  //   full-expression.
1710  Init = MaybeCreateExprWithCleanups(Init);
1711  if (Init.isInvalid()) {
1712    FD->setInvalidDecl();
1713    return;
1714  }
1715
1716  InitExpr = Init.release();
1717
1718  FD->setInClassInitializer(InitExpr);
1719}
1720
1721/// \brief Find the direct and/or virtual base specifiers that
1722/// correspond to the given base type, for use in base initialization
1723/// within a constructor.
1724static bool FindBaseInitializer(Sema &SemaRef,
1725                                CXXRecordDecl *ClassDecl,
1726                                QualType BaseType,
1727                                const CXXBaseSpecifier *&DirectBaseSpec,
1728                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1729  // First, check for a direct base class.
1730  DirectBaseSpec = 0;
1731  for (CXXRecordDecl::base_class_const_iterator Base
1732         = ClassDecl->bases_begin();
1733       Base != ClassDecl->bases_end(); ++Base) {
1734    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1735      // We found a direct base of this type. That's what we're
1736      // initializing.
1737      DirectBaseSpec = &*Base;
1738      break;
1739    }
1740  }
1741
1742  // Check for a virtual base class.
1743  // FIXME: We might be able to short-circuit this if we know in advance that
1744  // there are no virtual bases.
1745  VirtualBaseSpec = 0;
1746  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1747    // We haven't found a base yet; search the class hierarchy for a
1748    // virtual base class.
1749    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1750                       /*DetectVirtual=*/false);
1751    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1752                              BaseType, Paths)) {
1753      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1754           Path != Paths.end(); ++Path) {
1755        if (Path->back().Base->isVirtual()) {
1756          VirtualBaseSpec = Path->back().Base;
1757          break;
1758        }
1759      }
1760    }
1761  }
1762
1763  return DirectBaseSpec || VirtualBaseSpec;
1764}
1765
1766/// \brief Handle a C++ member initializer using braced-init-list syntax.
1767MemInitResult
1768Sema::ActOnMemInitializer(Decl *ConstructorD,
1769                          Scope *S,
1770                          CXXScopeSpec &SS,
1771                          IdentifierInfo *MemberOrBase,
1772                          ParsedType TemplateTypeTy,
1773                          const DeclSpec &DS,
1774                          SourceLocation IdLoc,
1775                          Expr *InitList,
1776                          SourceLocation EllipsisLoc) {
1777  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1778                             DS, IdLoc, InitList,
1779                             EllipsisLoc);
1780}
1781
1782/// \brief Handle a C++ member initializer using parentheses syntax.
1783MemInitResult
1784Sema::ActOnMemInitializer(Decl *ConstructorD,
1785                          Scope *S,
1786                          CXXScopeSpec &SS,
1787                          IdentifierInfo *MemberOrBase,
1788                          ParsedType TemplateTypeTy,
1789                          const DeclSpec &DS,
1790                          SourceLocation IdLoc,
1791                          SourceLocation LParenLoc,
1792                          Expr **Args, unsigned NumArgs,
1793                          SourceLocation RParenLoc,
1794                          SourceLocation EllipsisLoc) {
1795  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1796                                           RParenLoc);
1797  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1798                             DS, IdLoc, List, EllipsisLoc);
1799}
1800
1801namespace {
1802
1803// Callback to only accept typo corrections that can be a valid C++ member
1804// intializer: either a non-static field member or a base class.
1805class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1806 public:
1807  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1808      : ClassDecl(ClassDecl) {}
1809
1810  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1811    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1812      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1813        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1814      else
1815        return isa<TypeDecl>(ND);
1816    }
1817    return false;
1818  }
1819
1820 private:
1821  CXXRecordDecl *ClassDecl;
1822};
1823
1824}
1825
1826/// \brief Handle a C++ member initializer.
1827MemInitResult
1828Sema::BuildMemInitializer(Decl *ConstructorD,
1829                          Scope *S,
1830                          CXXScopeSpec &SS,
1831                          IdentifierInfo *MemberOrBase,
1832                          ParsedType TemplateTypeTy,
1833                          const DeclSpec &DS,
1834                          SourceLocation IdLoc,
1835                          Expr *Init,
1836                          SourceLocation EllipsisLoc) {
1837  if (!ConstructorD)
1838    return true;
1839
1840  AdjustDeclIfTemplate(ConstructorD);
1841
1842  CXXConstructorDecl *Constructor
1843    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1844  if (!Constructor) {
1845    // The user wrote a constructor initializer on a function that is
1846    // not a C++ constructor. Ignore the error for now, because we may
1847    // have more member initializers coming; we'll diagnose it just
1848    // once in ActOnMemInitializers.
1849    return true;
1850  }
1851
1852  CXXRecordDecl *ClassDecl = Constructor->getParent();
1853
1854  // C++ [class.base.init]p2:
1855  //   Names in a mem-initializer-id are looked up in the scope of the
1856  //   constructor's class and, if not found in that scope, are looked
1857  //   up in the scope containing the constructor's definition.
1858  //   [Note: if the constructor's class contains a member with the
1859  //   same name as a direct or virtual base class of the class, a
1860  //   mem-initializer-id naming the member or base class and composed
1861  //   of a single identifier refers to the class member. A
1862  //   mem-initializer-id for the hidden base class may be specified
1863  //   using a qualified name. ]
1864  if (!SS.getScopeRep() && !TemplateTypeTy) {
1865    // Look for a member, first.
1866    DeclContext::lookup_result Result
1867      = ClassDecl->lookup(MemberOrBase);
1868    if (Result.first != Result.second) {
1869      ValueDecl *Member;
1870      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1871          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1872        if (EllipsisLoc.isValid())
1873          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1874            << MemberOrBase
1875            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1876
1877        return BuildMemberInitializer(Member, Init, IdLoc);
1878      }
1879    }
1880  }
1881  // It didn't name a member, so see if it names a class.
1882  QualType BaseType;
1883  TypeSourceInfo *TInfo = 0;
1884
1885  if (TemplateTypeTy) {
1886    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1887  } else if (DS.getTypeSpecType() == TST_decltype) {
1888    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1889  } else {
1890    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1891    LookupParsedName(R, S, &SS);
1892
1893    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1894    if (!TyD) {
1895      if (R.isAmbiguous()) return true;
1896
1897      // We don't want access-control diagnostics here.
1898      R.suppressDiagnostics();
1899
1900      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1901        bool NotUnknownSpecialization = false;
1902        DeclContext *DC = computeDeclContext(SS, false);
1903        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1904          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1905
1906        if (!NotUnknownSpecialization) {
1907          // When the scope specifier can refer to a member of an unknown
1908          // specialization, we take it as a type name.
1909          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1910                                       SS.getWithLocInContext(Context),
1911                                       *MemberOrBase, IdLoc);
1912          if (BaseType.isNull())
1913            return true;
1914
1915          R.clear();
1916          R.setLookupName(MemberOrBase);
1917        }
1918      }
1919
1920      // If no results were found, try to correct typos.
1921      TypoCorrection Corr;
1922      MemInitializerValidatorCCC Validator(ClassDecl);
1923      if (R.empty() && BaseType.isNull() &&
1924          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1925                              Validator, ClassDecl))) {
1926        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
1927        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
1928        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1929          // We have found a non-static data member with a similar
1930          // name to what was typed; complain and initialize that
1931          // member.
1932          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1933            << MemberOrBase << true << CorrectedQuotedStr
1934            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1935          Diag(Member->getLocation(), diag::note_previous_decl)
1936            << CorrectedQuotedStr;
1937
1938          return BuildMemberInitializer(Member, Init, IdLoc);
1939        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1940          const CXXBaseSpecifier *DirectBaseSpec;
1941          const CXXBaseSpecifier *VirtualBaseSpec;
1942          if (FindBaseInitializer(*this, ClassDecl,
1943                                  Context.getTypeDeclType(Type),
1944                                  DirectBaseSpec, VirtualBaseSpec)) {
1945            // We have found a direct or virtual base class with a
1946            // similar name to what was typed; complain and initialize
1947            // that base class.
1948            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1949              << MemberOrBase << false << CorrectedQuotedStr
1950              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1951
1952            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1953                                                             : VirtualBaseSpec;
1954            Diag(BaseSpec->getLocStart(),
1955                 diag::note_base_class_specified_here)
1956              << BaseSpec->getType()
1957              << BaseSpec->getSourceRange();
1958
1959            TyD = Type;
1960          }
1961        }
1962      }
1963
1964      if (!TyD && BaseType.isNull()) {
1965        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1966          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1967        return true;
1968      }
1969    }
1970
1971    if (BaseType.isNull()) {
1972      BaseType = Context.getTypeDeclType(TyD);
1973      if (SS.isSet()) {
1974        NestedNameSpecifier *Qualifier =
1975          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1976
1977        // FIXME: preserve source range information
1978        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1979      }
1980    }
1981  }
1982
1983  if (!TInfo)
1984    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1985
1986  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1987}
1988
1989/// Checks a member initializer expression for cases where reference (or
1990/// pointer) members are bound to by-value parameters (or their addresses).
1991static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1992                                               Expr *Init,
1993                                               SourceLocation IdLoc) {
1994  QualType MemberTy = Member->getType();
1995
1996  // We only handle pointers and references currently.
1997  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1998  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1999    return;
2000
2001  const bool IsPointer = MemberTy->isPointerType();
2002  if (IsPointer) {
2003    if (const UnaryOperator *Op
2004          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2005      // The only case we're worried about with pointers requires taking the
2006      // address.
2007      if (Op->getOpcode() != UO_AddrOf)
2008        return;
2009
2010      Init = Op->getSubExpr();
2011    } else {
2012      // We only handle address-of expression initializers for pointers.
2013      return;
2014    }
2015  }
2016
2017  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2018    // Taking the address of a temporary will be diagnosed as a hard error.
2019    if (IsPointer)
2020      return;
2021
2022    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2023      << Member << Init->getSourceRange();
2024  } else if (const DeclRefExpr *DRE
2025               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2026    // We only warn when referring to a non-reference parameter declaration.
2027    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2028    if (!Parameter || Parameter->getType()->isReferenceType())
2029      return;
2030
2031    S.Diag(Init->getExprLoc(),
2032           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2033                     : diag::warn_bind_ref_member_to_parameter)
2034      << Member << Parameter << Init->getSourceRange();
2035  } else {
2036    // Other initializers are fine.
2037    return;
2038  }
2039
2040  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2041    << (unsigned)IsPointer;
2042}
2043
2044namespace {
2045  class UninitializedFieldVisitor
2046      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2047    Sema &S;
2048    ValueDecl *VD;
2049  public:
2050    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2051    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
2052                                                        S(S), VD(VD) {
2053    }
2054
2055    void HandleExpr(Expr *E) {
2056      if (!E) return;
2057
2058      // Expressions like x(x) sometimes lack the surrounding expressions
2059      // but need to be checked anyways.
2060      HandleValue(E);
2061      Visit(E);
2062    }
2063
2064    void HandleValue(Expr *E) {
2065      E = E->IgnoreParens();
2066
2067      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2068        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2069            return;
2070        Expr *Base = E;
2071        while (isa<MemberExpr>(Base)) {
2072          ME = dyn_cast<MemberExpr>(Base);
2073          if (VarDecl *VarD = dyn_cast<VarDecl>(ME->getMemberDecl()))
2074            if (VarD->hasGlobalStorage())
2075              return;
2076          Base = ME->getBase();
2077        }
2078
2079        if (VD == ME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
2080          S.Diag(ME->getExprLoc(), diag::warn_field_is_uninit);
2081          return;
2082        }
2083      }
2084
2085      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2086        HandleValue(CO->getTrueExpr());
2087        HandleValue(CO->getFalseExpr());
2088        return;
2089      }
2090
2091      if (BinaryConditionalOperator *BCO =
2092              dyn_cast<BinaryConditionalOperator>(E)) {
2093        HandleValue(BCO->getCommon());
2094        HandleValue(BCO->getFalseExpr());
2095        return;
2096      }
2097
2098      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2099        switch (BO->getOpcode()) {
2100        default:
2101          return;
2102        case(BO_PtrMemD):
2103        case(BO_PtrMemI):
2104          HandleValue(BO->getLHS());
2105          return;
2106        case(BO_Comma):
2107          HandleValue(BO->getRHS());
2108          return;
2109        }
2110      }
2111    }
2112
2113    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2114      if (E->getCastKind() == CK_LValueToRValue)
2115        HandleValue(E->getSubExpr());
2116
2117      Inherited::VisitImplicitCastExpr(E);
2118    }
2119
2120    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2121      Expr *Callee = E->getCallee();
2122      if (isa<MemberExpr>(Callee))
2123        HandleValue(Callee);
2124
2125      Inherited::VisitCXXMemberCallExpr(E);
2126    }
2127  };
2128  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
2129                                                       ValueDecl *VD) {
2130    UninitializedFieldVisitor(S, VD).HandleExpr(E);
2131  }
2132} // namespace
2133
2134MemInitResult
2135Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2136                             SourceLocation IdLoc) {
2137  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2138  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2139  assert((DirectMember || IndirectMember) &&
2140         "Member must be a FieldDecl or IndirectFieldDecl");
2141
2142  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2143    return true;
2144
2145  if (Member->isInvalidDecl())
2146    return true;
2147
2148  // Diagnose value-uses of fields to initialize themselves, e.g.
2149  //   foo(foo)
2150  // where foo is not also a parameter to the constructor.
2151  // TODO: implement -Wuninitialized and fold this into that framework.
2152  Expr **Args;
2153  unsigned NumArgs;
2154  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2155    Args = ParenList->getExprs();
2156    NumArgs = ParenList->getNumExprs();
2157  } else {
2158    InitListExpr *InitList = cast<InitListExpr>(Init);
2159    Args = InitList->getInits();
2160    NumArgs = InitList->getNumInits();
2161  }
2162
2163  // Mark FieldDecl as being used if it is a non-primitive type and the
2164  // initializer does not call the default constructor (which is trivial
2165  // for all entries in UnusedPrivateFields).
2166  // FIXME: Make this smarter once more side effect-free types can be
2167  // determined.
2168  if (NumArgs > 0) {
2169    if (Member->getType()->isRecordType()) {
2170      UnusedPrivateFields.remove(Member);
2171    } else {
2172      for (unsigned i = 0; i < NumArgs; ++i) {
2173        if (Args[i]->HasSideEffects(Context)) {
2174          UnusedPrivateFields.remove(Member);
2175          break;
2176        }
2177      }
2178    }
2179  }
2180
2181  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2182        != DiagnosticsEngine::Ignored)
2183    for (unsigned i = 0; i < NumArgs; ++i)
2184      // FIXME: Warn about the case when other fields are used before being
2185      // uninitialized. For example, let this field be the i'th field. When
2186      // initializing the i'th field, throw a warning if any of the >= i'th
2187      // fields are used, as they are not yet initialized.
2188      // Right now we are only handling the case where the i'th field uses
2189      // itself in its initializer.
2190      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2191
2192  SourceRange InitRange = Init->getSourceRange();
2193
2194  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2195    // Can't check initialization for a member of dependent type or when
2196    // any of the arguments are type-dependent expressions.
2197    DiscardCleanupsInEvaluationContext();
2198  } else {
2199    bool InitList = false;
2200    if (isa<InitListExpr>(Init)) {
2201      InitList = true;
2202      Args = &Init;
2203      NumArgs = 1;
2204
2205      if (isStdInitializerList(Member->getType(), 0)) {
2206        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2207            << /*at end of ctor*/1 << InitRange;
2208      }
2209    }
2210
2211    // Initialize the member.
2212    InitializedEntity MemberEntity =
2213      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2214                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2215    InitializationKind Kind =
2216      InitList ? InitializationKind::CreateDirectList(IdLoc)
2217               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2218                                                  InitRange.getEnd());
2219
2220    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2221    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2222                                            MultiExprArg(*this, Args, NumArgs),
2223                                            0);
2224    if (MemberInit.isInvalid())
2225      return true;
2226
2227    CheckImplicitConversions(MemberInit.get(),
2228                             InitRange.getBegin());
2229
2230    // C++0x [class.base.init]p7:
2231    //   The initialization of each base and member constitutes a
2232    //   full-expression.
2233    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2234    if (MemberInit.isInvalid())
2235      return true;
2236
2237    // If we are in a dependent context, template instantiation will
2238    // perform this type-checking again. Just save the arguments that we
2239    // received.
2240    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2241    // of the information that we have about the member
2242    // initializer. However, deconstructing the ASTs is a dicey process,
2243    // and this approach is far more likely to get the corner cases right.
2244    if (CurContext->isDependentContext()) {
2245      // The existing Init will do fine.
2246    } else {
2247      Init = MemberInit.get();
2248      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2249    }
2250  }
2251
2252  if (DirectMember) {
2253    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2254                                            InitRange.getBegin(), Init,
2255                                            InitRange.getEnd());
2256  } else {
2257    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2258                                            InitRange.getBegin(), Init,
2259                                            InitRange.getEnd());
2260  }
2261}
2262
2263MemInitResult
2264Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2265                                 CXXRecordDecl *ClassDecl) {
2266  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2267  if (!LangOpts.CPlusPlus0x)
2268    return Diag(NameLoc, diag::err_delegating_ctor)
2269      << TInfo->getTypeLoc().getLocalSourceRange();
2270  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2271
2272  bool InitList = true;
2273  Expr **Args = &Init;
2274  unsigned NumArgs = 1;
2275  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2276    InitList = false;
2277    Args = ParenList->getExprs();
2278    NumArgs = ParenList->getNumExprs();
2279  }
2280
2281  SourceRange InitRange = Init->getSourceRange();
2282  // Initialize the object.
2283  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2284                                     QualType(ClassDecl->getTypeForDecl(), 0));
2285  InitializationKind Kind =
2286    InitList ? InitializationKind::CreateDirectList(NameLoc)
2287             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2288                                                InitRange.getEnd());
2289  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2290  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2291                                              MultiExprArg(*this, Args,NumArgs),
2292                                              0);
2293  if (DelegationInit.isInvalid())
2294    return true;
2295
2296  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2297         "Delegating constructor with no target?");
2298
2299  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2300
2301  // C++0x [class.base.init]p7:
2302  //   The initialization of each base and member constitutes a
2303  //   full-expression.
2304  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2305  if (DelegationInit.isInvalid())
2306    return true;
2307
2308  // If we are in a dependent context, template instantiation will
2309  // perform this type-checking again. Just save the arguments that we
2310  // received in a ParenListExpr.
2311  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2312  // of the information that we have about the base
2313  // initializer. However, deconstructing the ASTs is a dicey process,
2314  // and this approach is far more likely to get the corner cases right.
2315  if (CurContext->isDependentContext())
2316    DelegationInit = Owned(Init);
2317
2318  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2319                                          DelegationInit.takeAs<Expr>(),
2320                                          InitRange.getEnd());
2321}
2322
2323MemInitResult
2324Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2325                           Expr *Init, CXXRecordDecl *ClassDecl,
2326                           SourceLocation EllipsisLoc) {
2327  SourceLocation BaseLoc
2328    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2329
2330  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2331    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2332             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2333
2334  // C++ [class.base.init]p2:
2335  //   [...] Unless the mem-initializer-id names a nonstatic data
2336  //   member of the constructor's class or a direct or virtual base
2337  //   of that class, the mem-initializer is ill-formed. A
2338  //   mem-initializer-list can initialize a base class using any
2339  //   name that denotes that base class type.
2340  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2341
2342  SourceRange InitRange = Init->getSourceRange();
2343  if (EllipsisLoc.isValid()) {
2344    // This is a pack expansion.
2345    if (!BaseType->containsUnexpandedParameterPack())  {
2346      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2347        << SourceRange(BaseLoc, InitRange.getEnd());
2348
2349      EllipsisLoc = SourceLocation();
2350    }
2351  } else {
2352    // Check for any unexpanded parameter packs.
2353    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2354      return true;
2355
2356    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2357      return true;
2358  }
2359
2360  // Check for direct and virtual base classes.
2361  const CXXBaseSpecifier *DirectBaseSpec = 0;
2362  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2363  if (!Dependent) {
2364    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2365                                       BaseType))
2366      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2367
2368    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2369                        VirtualBaseSpec);
2370
2371    // C++ [base.class.init]p2:
2372    // Unless the mem-initializer-id names a nonstatic data member of the
2373    // constructor's class or a direct or virtual base of that class, the
2374    // mem-initializer is ill-formed.
2375    if (!DirectBaseSpec && !VirtualBaseSpec) {
2376      // If the class has any dependent bases, then it's possible that
2377      // one of those types will resolve to the same type as
2378      // BaseType. Therefore, just treat this as a dependent base
2379      // class initialization.  FIXME: Should we try to check the
2380      // initialization anyway? It seems odd.
2381      if (ClassDecl->hasAnyDependentBases())
2382        Dependent = true;
2383      else
2384        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2385          << BaseType << Context.getTypeDeclType(ClassDecl)
2386          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2387    }
2388  }
2389
2390  if (Dependent) {
2391    DiscardCleanupsInEvaluationContext();
2392
2393    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2394                                            /*IsVirtual=*/false,
2395                                            InitRange.getBegin(), Init,
2396                                            InitRange.getEnd(), EllipsisLoc);
2397  }
2398
2399  // C++ [base.class.init]p2:
2400  //   If a mem-initializer-id is ambiguous because it designates both
2401  //   a direct non-virtual base class and an inherited virtual base
2402  //   class, the mem-initializer is ill-formed.
2403  if (DirectBaseSpec && VirtualBaseSpec)
2404    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2405      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2406
2407  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2408  if (!BaseSpec)
2409    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2410
2411  // Initialize the base.
2412  bool InitList = true;
2413  Expr **Args = &Init;
2414  unsigned NumArgs = 1;
2415  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2416    InitList = false;
2417    Args = ParenList->getExprs();
2418    NumArgs = ParenList->getNumExprs();
2419  }
2420
2421  InitializedEntity BaseEntity =
2422    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2423  InitializationKind Kind =
2424    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2425             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2426                                                InitRange.getEnd());
2427  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2428  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2429                                          MultiExprArg(*this, Args, NumArgs),
2430                                          0);
2431  if (BaseInit.isInvalid())
2432    return true;
2433
2434  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2435
2436  // C++0x [class.base.init]p7:
2437  //   The initialization of each base and member constitutes a
2438  //   full-expression.
2439  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2440  if (BaseInit.isInvalid())
2441    return true;
2442
2443  // If we are in a dependent context, template instantiation will
2444  // perform this type-checking again. Just save the arguments that we
2445  // received in a ParenListExpr.
2446  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2447  // of the information that we have about the base
2448  // initializer. However, deconstructing the ASTs is a dicey process,
2449  // and this approach is far more likely to get the corner cases right.
2450  if (CurContext->isDependentContext())
2451    BaseInit = Owned(Init);
2452
2453  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2454                                          BaseSpec->isVirtual(),
2455                                          InitRange.getBegin(),
2456                                          BaseInit.takeAs<Expr>(),
2457                                          InitRange.getEnd(), EllipsisLoc);
2458}
2459
2460// Create a static_cast\<T&&>(expr).
2461static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2462  QualType ExprType = E->getType();
2463  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2464  SourceLocation ExprLoc = E->getLocStart();
2465  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2466      TargetType, ExprLoc);
2467
2468  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2469                                   SourceRange(ExprLoc, ExprLoc),
2470                                   E->getSourceRange()).take();
2471}
2472
2473/// ImplicitInitializerKind - How an implicit base or member initializer should
2474/// initialize its base or member.
2475enum ImplicitInitializerKind {
2476  IIK_Default,
2477  IIK_Copy,
2478  IIK_Move
2479};
2480
2481static bool
2482BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2483                             ImplicitInitializerKind ImplicitInitKind,
2484                             CXXBaseSpecifier *BaseSpec,
2485                             bool IsInheritedVirtualBase,
2486                             CXXCtorInitializer *&CXXBaseInit) {
2487  InitializedEntity InitEntity
2488    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2489                                        IsInheritedVirtualBase);
2490
2491  ExprResult BaseInit;
2492
2493  switch (ImplicitInitKind) {
2494  case IIK_Default: {
2495    InitializationKind InitKind
2496      = InitializationKind::CreateDefault(Constructor->getLocation());
2497    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2498    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2499                               MultiExprArg(SemaRef, 0, 0));
2500    break;
2501  }
2502
2503  case IIK_Move:
2504  case IIK_Copy: {
2505    bool Moving = ImplicitInitKind == IIK_Move;
2506    ParmVarDecl *Param = Constructor->getParamDecl(0);
2507    QualType ParamType = Param->getType().getNonReferenceType();
2508
2509    Expr *CopyCtorArg =
2510      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2511                          SourceLocation(), Param, false,
2512                          Constructor->getLocation(), ParamType,
2513                          VK_LValue, 0);
2514
2515    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2516
2517    // Cast to the base class to avoid ambiguities.
2518    QualType ArgTy =
2519      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2520                                       ParamType.getQualifiers());
2521
2522    if (Moving) {
2523      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2524    }
2525
2526    CXXCastPath BasePath;
2527    BasePath.push_back(BaseSpec);
2528    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2529                                            CK_UncheckedDerivedToBase,
2530                                            Moving ? VK_XValue : VK_LValue,
2531                                            &BasePath).take();
2532
2533    InitializationKind InitKind
2534      = InitializationKind::CreateDirect(Constructor->getLocation(),
2535                                         SourceLocation(), SourceLocation());
2536    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2537                                   &CopyCtorArg, 1);
2538    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2539                               MultiExprArg(&CopyCtorArg, 1));
2540    break;
2541  }
2542  }
2543
2544  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2545  if (BaseInit.isInvalid())
2546    return true;
2547
2548  CXXBaseInit =
2549    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2550               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2551                                                        SourceLocation()),
2552                                             BaseSpec->isVirtual(),
2553                                             SourceLocation(),
2554                                             BaseInit.takeAs<Expr>(),
2555                                             SourceLocation(),
2556                                             SourceLocation());
2557
2558  return false;
2559}
2560
2561static bool RefersToRValueRef(Expr *MemRef) {
2562  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2563  return Referenced->getType()->isRValueReferenceType();
2564}
2565
2566static bool
2567BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2568                               ImplicitInitializerKind ImplicitInitKind,
2569                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2570                               CXXCtorInitializer *&CXXMemberInit) {
2571  if (Field->isInvalidDecl())
2572    return true;
2573
2574  SourceLocation Loc = Constructor->getLocation();
2575
2576  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2577    bool Moving = ImplicitInitKind == IIK_Move;
2578    ParmVarDecl *Param = Constructor->getParamDecl(0);
2579    QualType ParamType = Param->getType().getNonReferenceType();
2580
2581    // Suppress copying zero-width bitfields.
2582    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2583      return false;
2584
2585    Expr *MemberExprBase =
2586      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2587                          SourceLocation(), Param, false,
2588                          Loc, ParamType, VK_LValue, 0);
2589
2590    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2591
2592    if (Moving) {
2593      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2594    }
2595
2596    // Build a reference to this field within the parameter.
2597    CXXScopeSpec SS;
2598    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2599                              Sema::LookupMemberName);
2600    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2601                                  : cast<ValueDecl>(Field), AS_public);
2602    MemberLookup.resolveKind();
2603    ExprResult CtorArg
2604      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2605                                         ParamType, Loc,
2606                                         /*IsArrow=*/false,
2607                                         SS,
2608                                         /*TemplateKWLoc=*/SourceLocation(),
2609                                         /*FirstQualifierInScope=*/0,
2610                                         MemberLookup,
2611                                         /*TemplateArgs=*/0);
2612    if (CtorArg.isInvalid())
2613      return true;
2614
2615    // C++11 [class.copy]p15:
2616    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2617    //     with static_cast<T&&>(x.m);
2618    if (RefersToRValueRef(CtorArg.get())) {
2619      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2620    }
2621
2622    // When the field we are copying is an array, create index variables for
2623    // each dimension of the array. We use these index variables to subscript
2624    // the source array, and other clients (e.g., CodeGen) will perform the
2625    // necessary iteration with these index variables.
2626    SmallVector<VarDecl *, 4> IndexVariables;
2627    QualType BaseType = Field->getType();
2628    QualType SizeType = SemaRef.Context.getSizeType();
2629    bool InitializingArray = false;
2630    while (const ConstantArrayType *Array
2631                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2632      InitializingArray = true;
2633      // Create the iteration variable for this array index.
2634      IdentifierInfo *IterationVarName = 0;
2635      {
2636        SmallString<8> Str;
2637        llvm::raw_svector_ostream OS(Str);
2638        OS << "__i" << IndexVariables.size();
2639        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2640      }
2641      VarDecl *IterationVar
2642        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2643                          IterationVarName, SizeType,
2644                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2645                          SC_None, SC_None);
2646      IndexVariables.push_back(IterationVar);
2647
2648      // Create a reference to the iteration variable.
2649      ExprResult IterationVarRef
2650        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2651      assert(!IterationVarRef.isInvalid() &&
2652             "Reference to invented variable cannot fail!");
2653      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2654      assert(!IterationVarRef.isInvalid() &&
2655             "Conversion of invented variable cannot fail!");
2656
2657      // Subscript the array with this iteration variable.
2658      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2659                                                        IterationVarRef.take(),
2660                                                        Loc);
2661      if (CtorArg.isInvalid())
2662        return true;
2663
2664      BaseType = Array->getElementType();
2665    }
2666
2667    // The array subscript expression is an lvalue, which is wrong for moving.
2668    if (Moving && InitializingArray)
2669      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2670
2671    // Construct the entity that we will be initializing. For an array, this
2672    // will be first element in the array, which may require several levels
2673    // of array-subscript entities.
2674    SmallVector<InitializedEntity, 4> Entities;
2675    Entities.reserve(1 + IndexVariables.size());
2676    if (Indirect)
2677      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2678    else
2679      Entities.push_back(InitializedEntity::InitializeMember(Field));
2680    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2681      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2682                                                              0,
2683                                                              Entities.back()));
2684
2685    // Direct-initialize to use the copy constructor.
2686    InitializationKind InitKind =
2687      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2688
2689    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2690    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2691                                   &CtorArgE, 1);
2692
2693    ExprResult MemberInit
2694      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2695                        MultiExprArg(&CtorArgE, 1));
2696    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2697    if (MemberInit.isInvalid())
2698      return true;
2699
2700    if (Indirect) {
2701      assert(IndexVariables.size() == 0 &&
2702             "Indirect field improperly initialized");
2703      CXXMemberInit
2704        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2705                                                   Loc, Loc,
2706                                                   MemberInit.takeAs<Expr>(),
2707                                                   Loc);
2708    } else
2709      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2710                                                 Loc, MemberInit.takeAs<Expr>(),
2711                                                 Loc,
2712                                                 IndexVariables.data(),
2713                                                 IndexVariables.size());
2714    return false;
2715  }
2716
2717  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2718
2719  QualType FieldBaseElementType =
2720    SemaRef.Context.getBaseElementType(Field->getType());
2721
2722  if (FieldBaseElementType->isRecordType()) {
2723    InitializedEntity InitEntity
2724      = Indirect? InitializedEntity::InitializeMember(Indirect)
2725                : InitializedEntity::InitializeMember(Field);
2726    InitializationKind InitKind =
2727      InitializationKind::CreateDefault(Loc);
2728
2729    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2730    ExprResult MemberInit =
2731      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2732
2733    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2734    if (MemberInit.isInvalid())
2735      return true;
2736
2737    if (Indirect)
2738      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2739                                                               Indirect, Loc,
2740                                                               Loc,
2741                                                               MemberInit.get(),
2742                                                               Loc);
2743    else
2744      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2745                                                               Field, Loc, Loc,
2746                                                               MemberInit.get(),
2747                                                               Loc);
2748    return false;
2749  }
2750
2751  if (!Field->getParent()->isUnion()) {
2752    if (FieldBaseElementType->isReferenceType()) {
2753      SemaRef.Diag(Constructor->getLocation(),
2754                   diag::err_uninitialized_member_in_ctor)
2755      << (int)Constructor->isImplicit()
2756      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2757      << 0 << Field->getDeclName();
2758      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2759      return true;
2760    }
2761
2762    if (FieldBaseElementType.isConstQualified()) {
2763      SemaRef.Diag(Constructor->getLocation(),
2764                   diag::err_uninitialized_member_in_ctor)
2765      << (int)Constructor->isImplicit()
2766      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2767      << 1 << Field->getDeclName();
2768      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2769      return true;
2770    }
2771  }
2772
2773  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2774      FieldBaseElementType->isObjCRetainableType() &&
2775      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2776      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2777    // Instant objects:
2778    //   Default-initialize Objective-C pointers to NULL.
2779    CXXMemberInit
2780      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2781                                                 Loc, Loc,
2782                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2783                                                 Loc);
2784    return false;
2785  }
2786
2787  // Nothing to initialize.
2788  CXXMemberInit = 0;
2789  return false;
2790}
2791
2792namespace {
2793struct BaseAndFieldInfo {
2794  Sema &S;
2795  CXXConstructorDecl *Ctor;
2796  bool AnyErrorsInInits;
2797  ImplicitInitializerKind IIK;
2798  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2799  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2800
2801  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2802    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2803    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2804    if (Generated && Ctor->isCopyConstructor())
2805      IIK = IIK_Copy;
2806    else if (Generated && Ctor->isMoveConstructor())
2807      IIK = IIK_Move;
2808    else
2809      IIK = IIK_Default;
2810  }
2811
2812  bool isImplicitCopyOrMove() const {
2813    switch (IIK) {
2814    case IIK_Copy:
2815    case IIK_Move:
2816      return true;
2817
2818    case IIK_Default:
2819      return false;
2820    }
2821
2822    llvm_unreachable("Invalid ImplicitInitializerKind!");
2823  }
2824};
2825}
2826
2827/// \brief Determine whether the given indirect field declaration is somewhere
2828/// within an anonymous union.
2829static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2830  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2831                                      CEnd = F->chain_end();
2832       C != CEnd; ++C)
2833    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2834      if (Record->isUnion())
2835        return true;
2836
2837  return false;
2838}
2839
2840/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2841/// array type.
2842static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2843  if (T->isIncompleteArrayType())
2844    return true;
2845
2846  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2847    if (!ArrayT->getSize())
2848      return true;
2849
2850    T = ArrayT->getElementType();
2851  }
2852
2853  return false;
2854}
2855
2856static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2857                                    FieldDecl *Field,
2858                                    IndirectFieldDecl *Indirect = 0) {
2859
2860  // Overwhelmingly common case: we have a direct initializer for this field.
2861  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2862    Info.AllToInit.push_back(Init);
2863    return false;
2864  }
2865
2866  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2867  // has a brace-or-equal-initializer, the entity is initialized as specified
2868  // in [dcl.init].
2869  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2870    CXXCtorInitializer *Init;
2871    if (Indirect)
2872      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2873                                                      SourceLocation(),
2874                                                      SourceLocation(), 0,
2875                                                      SourceLocation());
2876    else
2877      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2878                                                      SourceLocation(),
2879                                                      SourceLocation(), 0,
2880                                                      SourceLocation());
2881    Info.AllToInit.push_back(Init);
2882
2883    // Check whether this initializer makes the field "used".
2884    Expr *InitExpr = Field->getInClassInitializer();
2885    if (Field->getType()->isRecordType() ||
2886        (InitExpr && InitExpr->HasSideEffects(SemaRef.Context)))
2887      SemaRef.UnusedPrivateFields.remove(Field);
2888
2889    return false;
2890  }
2891
2892  // Don't build an implicit initializer for union members if none was
2893  // explicitly specified.
2894  if (Field->getParent()->isUnion() ||
2895      (Indirect && isWithinAnonymousUnion(Indirect)))
2896    return false;
2897
2898  // Don't initialize incomplete or zero-length arrays.
2899  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2900    return false;
2901
2902  // Don't try to build an implicit initializer if there were semantic
2903  // errors in any of the initializers (and therefore we might be
2904  // missing some that the user actually wrote).
2905  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2906    return false;
2907
2908  CXXCtorInitializer *Init = 0;
2909  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2910                                     Indirect, Init))
2911    return true;
2912
2913  if (Init)
2914    Info.AllToInit.push_back(Init);
2915
2916  return false;
2917}
2918
2919bool
2920Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2921                               CXXCtorInitializer *Initializer) {
2922  assert(Initializer->isDelegatingInitializer());
2923  Constructor->setNumCtorInitializers(1);
2924  CXXCtorInitializer **initializer =
2925    new (Context) CXXCtorInitializer*[1];
2926  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2927  Constructor->setCtorInitializers(initializer);
2928
2929  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2930    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2931    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2932  }
2933
2934  DelegatingCtorDecls.push_back(Constructor);
2935
2936  return false;
2937}
2938
2939bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2940                               CXXCtorInitializer **Initializers,
2941                               unsigned NumInitializers,
2942                               bool AnyErrors) {
2943  if (Constructor->isDependentContext()) {
2944    // Just store the initializers as written, they will be checked during
2945    // instantiation.
2946    if (NumInitializers > 0) {
2947      Constructor->setNumCtorInitializers(NumInitializers);
2948      CXXCtorInitializer **baseOrMemberInitializers =
2949        new (Context) CXXCtorInitializer*[NumInitializers];
2950      memcpy(baseOrMemberInitializers, Initializers,
2951             NumInitializers * sizeof(CXXCtorInitializer*));
2952      Constructor->setCtorInitializers(baseOrMemberInitializers);
2953    }
2954
2955    return false;
2956  }
2957
2958  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2959
2960  // We need to build the initializer AST according to order of construction
2961  // and not what user specified in the Initializers list.
2962  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2963  if (!ClassDecl)
2964    return true;
2965
2966  bool HadError = false;
2967
2968  for (unsigned i = 0; i < NumInitializers; i++) {
2969    CXXCtorInitializer *Member = Initializers[i];
2970
2971    if (Member->isBaseInitializer())
2972      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2973    else
2974      Info.AllBaseFields[Member->getAnyMember()] = Member;
2975  }
2976
2977  // Keep track of the direct virtual bases.
2978  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2979  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2980       E = ClassDecl->bases_end(); I != E; ++I) {
2981    if (I->isVirtual())
2982      DirectVBases.insert(I);
2983  }
2984
2985  // Push virtual bases before others.
2986  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2987       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2988
2989    if (CXXCtorInitializer *Value
2990        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2991      Info.AllToInit.push_back(Value);
2992    } else if (!AnyErrors) {
2993      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2994      CXXCtorInitializer *CXXBaseInit;
2995      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2996                                       VBase, IsInheritedVirtualBase,
2997                                       CXXBaseInit)) {
2998        HadError = true;
2999        continue;
3000      }
3001
3002      Info.AllToInit.push_back(CXXBaseInit);
3003    }
3004  }
3005
3006  // Non-virtual bases.
3007  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3008       E = ClassDecl->bases_end(); Base != E; ++Base) {
3009    // Virtuals are in the virtual base list and already constructed.
3010    if (Base->isVirtual())
3011      continue;
3012
3013    if (CXXCtorInitializer *Value
3014          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3015      Info.AllToInit.push_back(Value);
3016    } else if (!AnyErrors) {
3017      CXXCtorInitializer *CXXBaseInit;
3018      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3019                                       Base, /*IsInheritedVirtualBase=*/false,
3020                                       CXXBaseInit)) {
3021        HadError = true;
3022        continue;
3023      }
3024
3025      Info.AllToInit.push_back(CXXBaseInit);
3026    }
3027  }
3028
3029  // Fields.
3030  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3031                               MemEnd = ClassDecl->decls_end();
3032       Mem != MemEnd; ++Mem) {
3033    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3034      // C++ [class.bit]p2:
3035      //   A declaration for a bit-field that omits the identifier declares an
3036      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3037      //   initialized.
3038      if (F->isUnnamedBitfield())
3039        continue;
3040
3041      // If we're not generating the implicit copy/move constructor, then we'll
3042      // handle anonymous struct/union fields based on their individual
3043      // indirect fields.
3044      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
3045        continue;
3046
3047      if (CollectFieldInitializer(*this, Info, F))
3048        HadError = true;
3049      continue;
3050    }
3051
3052    // Beyond this point, we only consider default initialization.
3053    if (Info.IIK != IIK_Default)
3054      continue;
3055
3056    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3057      if (F->getType()->isIncompleteArrayType()) {
3058        assert(ClassDecl->hasFlexibleArrayMember() &&
3059               "Incomplete array type is not valid");
3060        continue;
3061      }
3062
3063      // Initialize each field of an anonymous struct individually.
3064      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3065        HadError = true;
3066
3067      continue;
3068    }
3069  }
3070
3071  NumInitializers = Info.AllToInit.size();
3072  if (NumInitializers > 0) {
3073    Constructor->setNumCtorInitializers(NumInitializers);
3074    CXXCtorInitializer **baseOrMemberInitializers =
3075      new (Context) CXXCtorInitializer*[NumInitializers];
3076    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3077           NumInitializers * sizeof(CXXCtorInitializer*));
3078    Constructor->setCtorInitializers(baseOrMemberInitializers);
3079
3080    // Constructors implicitly reference the base and member
3081    // destructors.
3082    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3083                                           Constructor->getParent());
3084  }
3085
3086  return HadError;
3087}
3088
3089static void *GetKeyForTopLevelField(FieldDecl *Field) {
3090  // For anonymous unions, use the class declaration as the key.
3091  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3092    if (RT->getDecl()->isAnonymousStructOrUnion())
3093      return static_cast<void *>(RT->getDecl());
3094  }
3095  return static_cast<void *>(Field);
3096}
3097
3098static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3099  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3100}
3101
3102static void *GetKeyForMember(ASTContext &Context,
3103                             CXXCtorInitializer *Member) {
3104  if (!Member->isAnyMemberInitializer())
3105    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3106
3107  // For fields injected into the class via declaration of an anonymous union,
3108  // use its anonymous union class declaration as the unique key.
3109  FieldDecl *Field = Member->getAnyMember();
3110
3111  // If the field is a member of an anonymous struct or union, our key
3112  // is the anonymous record decl that's a direct child of the class.
3113  RecordDecl *RD = Field->getParent();
3114  if (RD->isAnonymousStructOrUnion()) {
3115    while (true) {
3116      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3117      if (Parent->isAnonymousStructOrUnion())
3118        RD = Parent;
3119      else
3120        break;
3121    }
3122
3123    return static_cast<void *>(RD);
3124  }
3125
3126  return static_cast<void *>(Field);
3127}
3128
3129static void
3130DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3131                                  const CXXConstructorDecl *Constructor,
3132                                  CXXCtorInitializer **Inits,
3133                                  unsigned NumInits) {
3134  if (Constructor->getDeclContext()->isDependentContext())
3135    return;
3136
3137  // Don't check initializers order unless the warning is enabled at the
3138  // location of at least one initializer.
3139  bool ShouldCheckOrder = false;
3140  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3141    CXXCtorInitializer *Init = Inits[InitIndex];
3142    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3143                                         Init->getSourceLocation())
3144          != DiagnosticsEngine::Ignored) {
3145      ShouldCheckOrder = true;
3146      break;
3147    }
3148  }
3149  if (!ShouldCheckOrder)
3150    return;
3151
3152  // Build the list of bases and members in the order that they'll
3153  // actually be initialized.  The explicit initializers should be in
3154  // this same order but may be missing things.
3155  SmallVector<const void*, 32> IdealInitKeys;
3156
3157  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3158
3159  // 1. Virtual bases.
3160  for (CXXRecordDecl::base_class_const_iterator VBase =
3161       ClassDecl->vbases_begin(),
3162       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3163    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3164
3165  // 2. Non-virtual bases.
3166  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3167       E = ClassDecl->bases_end(); Base != E; ++Base) {
3168    if (Base->isVirtual())
3169      continue;
3170    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3171  }
3172
3173  // 3. Direct fields.
3174  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3175       E = ClassDecl->field_end(); Field != E; ++Field) {
3176    if (Field->isUnnamedBitfield())
3177      continue;
3178
3179    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3180  }
3181
3182  unsigned NumIdealInits = IdealInitKeys.size();
3183  unsigned IdealIndex = 0;
3184
3185  CXXCtorInitializer *PrevInit = 0;
3186  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3187    CXXCtorInitializer *Init = Inits[InitIndex];
3188    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3189
3190    // Scan forward to try to find this initializer in the idealized
3191    // initializers list.
3192    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3193      if (InitKey == IdealInitKeys[IdealIndex])
3194        break;
3195
3196    // If we didn't find this initializer, it must be because we
3197    // scanned past it on a previous iteration.  That can only
3198    // happen if we're out of order;  emit a warning.
3199    if (IdealIndex == NumIdealInits && PrevInit) {
3200      Sema::SemaDiagnosticBuilder D =
3201        SemaRef.Diag(PrevInit->getSourceLocation(),
3202                     diag::warn_initializer_out_of_order);
3203
3204      if (PrevInit->isAnyMemberInitializer())
3205        D << 0 << PrevInit->getAnyMember()->getDeclName();
3206      else
3207        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3208
3209      if (Init->isAnyMemberInitializer())
3210        D << 0 << Init->getAnyMember()->getDeclName();
3211      else
3212        D << 1 << Init->getTypeSourceInfo()->getType();
3213
3214      // Move back to the initializer's location in the ideal list.
3215      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3216        if (InitKey == IdealInitKeys[IdealIndex])
3217          break;
3218
3219      assert(IdealIndex != NumIdealInits &&
3220             "initializer not found in initializer list");
3221    }
3222
3223    PrevInit = Init;
3224  }
3225}
3226
3227namespace {
3228bool CheckRedundantInit(Sema &S,
3229                        CXXCtorInitializer *Init,
3230                        CXXCtorInitializer *&PrevInit) {
3231  if (!PrevInit) {
3232    PrevInit = Init;
3233    return false;
3234  }
3235
3236  if (FieldDecl *Field = Init->getMember())
3237    S.Diag(Init->getSourceLocation(),
3238           diag::err_multiple_mem_initialization)
3239      << Field->getDeclName()
3240      << Init->getSourceRange();
3241  else {
3242    const Type *BaseClass = Init->getBaseClass();
3243    assert(BaseClass && "neither field nor base");
3244    S.Diag(Init->getSourceLocation(),
3245           diag::err_multiple_base_initialization)
3246      << QualType(BaseClass, 0)
3247      << Init->getSourceRange();
3248  }
3249  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3250    << 0 << PrevInit->getSourceRange();
3251
3252  return true;
3253}
3254
3255typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3256typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3257
3258bool CheckRedundantUnionInit(Sema &S,
3259                             CXXCtorInitializer *Init,
3260                             RedundantUnionMap &Unions) {
3261  FieldDecl *Field = Init->getAnyMember();
3262  RecordDecl *Parent = Field->getParent();
3263  NamedDecl *Child = Field;
3264
3265  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3266    if (Parent->isUnion()) {
3267      UnionEntry &En = Unions[Parent];
3268      if (En.first && En.first != Child) {
3269        S.Diag(Init->getSourceLocation(),
3270               diag::err_multiple_mem_union_initialization)
3271          << Field->getDeclName()
3272          << Init->getSourceRange();
3273        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3274          << 0 << En.second->getSourceRange();
3275        return true;
3276      }
3277      if (!En.first) {
3278        En.first = Child;
3279        En.second = Init;
3280      }
3281      if (!Parent->isAnonymousStructOrUnion())
3282        return false;
3283    }
3284
3285    Child = Parent;
3286    Parent = cast<RecordDecl>(Parent->getDeclContext());
3287  }
3288
3289  return false;
3290}
3291}
3292
3293/// ActOnMemInitializers - Handle the member initializers for a constructor.
3294void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3295                                SourceLocation ColonLoc,
3296                                CXXCtorInitializer **meminits,
3297                                unsigned NumMemInits,
3298                                bool AnyErrors) {
3299  if (!ConstructorDecl)
3300    return;
3301
3302  AdjustDeclIfTemplate(ConstructorDecl);
3303
3304  CXXConstructorDecl *Constructor
3305    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3306
3307  if (!Constructor) {
3308    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3309    return;
3310  }
3311
3312  CXXCtorInitializer **MemInits =
3313    reinterpret_cast<CXXCtorInitializer **>(meminits);
3314
3315  // Mapping for the duplicate initializers check.
3316  // For member initializers, this is keyed with a FieldDecl*.
3317  // For base initializers, this is keyed with a Type*.
3318  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3319
3320  // Mapping for the inconsistent anonymous-union initializers check.
3321  RedundantUnionMap MemberUnions;
3322
3323  bool HadError = false;
3324  for (unsigned i = 0; i < NumMemInits; i++) {
3325    CXXCtorInitializer *Init = MemInits[i];
3326
3327    // Set the source order index.
3328    Init->setSourceOrder(i);
3329
3330    if (Init->isAnyMemberInitializer()) {
3331      FieldDecl *Field = Init->getAnyMember();
3332      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3333          CheckRedundantUnionInit(*this, Init, MemberUnions))
3334        HadError = true;
3335    } else if (Init->isBaseInitializer()) {
3336      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3337      if (CheckRedundantInit(*this, Init, Members[Key]))
3338        HadError = true;
3339    } else {
3340      assert(Init->isDelegatingInitializer());
3341      // This must be the only initializer
3342      if (i != 0 || NumMemInits > 1) {
3343        Diag(MemInits[0]->getSourceLocation(),
3344             diag::err_delegating_initializer_alone)
3345          << MemInits[0]->getSourceRange();
3346        HadError = true;
3347        // We will treat this as being the only initializer.
3348      }
3349      SetDelegatingInitializer(Constructor, MemInits[i]);
3350      // Return immediately as the initializer is set.
3351      return;
3352    }
3353  }
3354
3355  if (HadError)
3356    return;
3357
3358  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3359
3360  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3361}
3362
3363void
3364Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3365                                             CXXRecordDecl *ClassDecl) {
3366  // Ignore dependent contexts. Also ignore unions, since their members never
3367  // have destructors implicitly called.
3368  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3369    return;
3370
3371  // FIXME: all the access-control diagnostics are positioned on the
3372  // field/base declaration.  That's probably good; that said, the
3373  // user might reasonably want to know why the destructor is being
3374  // emitted, and we currently don't say.
3375
3376  // Non-static data members.
3377  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3378       E = ClassDecl->field_end(); I != E; ++I) {
3379    FieldDecl *Field = *I;
3380    if (Field->isInvalidDecl())
3381      continue;
3382
3383    // Don't destroy incomplete or zero-length arrays.
3384    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3385      continue;
3386
3387    QualType FieldType = Context.getBaseElementType(Field->getType());
3388
3389    const RecordType* RT = FieldType->getAs<RecordType>();
3390    if (!RT)
3391      continue;
3392
3393    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3394    if (FieldClassDecl->isInvalidDecl())
3395      continue;
3396    if (FieldClassDecl->hasIrrelevantDestructor())
3397      continue;
3398    // The destructor for an implicit anonymous union member is never invoked.
3399    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3400      continue;
3401
3402    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3403    assert(Dtor && "No dtor found for FieldClassDecl!");
3404    CheckDestructorAccess(Field->getLocation(), Dtor,
3405                          PDiag(diag::err_access_dtor_field)
3406                            << Field->getDeclName()
3407                            << FieldType);
3408
3409    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3410    DiagnoseUseOfDecl(Dtor, Location);
3411  }
3412
3413  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3414
3415  // Bases.
3416  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3417       E = ClassDecl->bases_end(); Base != E; ++Base) {
3418    // Bases are always records in a well-formed non-dependent class.
3419    const RecordType *RT = Base->getType()->getAs<RecordType>();
3420
3421    // Remember direct virtual bases.
3422    if (Base->isVirtual())
3423      DirectVirtualBases.insert(RT);
3424
3425    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3426    // If our base class is invalid, we probably can't get its dtor anyway.
3427    if (BaseClassDecl->isInvalidDecl())
3428      continue;
3429    if (BaseClassDecl->hasIrrelevantDestructor())
3430      continue;
3431
3432    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3433    assert(Dtor && "No dtor found for BaseClassDecl!");
3434
3435    // FIXME: caret should be on the start of the class name
3436    CheckDestructorAccess(Base->getLocStart(), Dtor,
3437                          PDiag(diag::err_access_dtor_base)
3438                            << Base->getType()
3439                            << Base->getSourceRange(),
3440                          Context.getTypeDeclType(ClassDecl));
3441
3442    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3443    DiagnoseUseOfDecl(Dtor, Location);
3444  }
3445
3446  // Virtual bases.
3447  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3448       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3449
3450    // Bases are always records in a well-formed non-dependent class.
3451    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3452
3453    // Ignore direct virtual bases.
3454    if (DirectVirtualBases.count(RT))
3455      continue;
3456
3457    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3458    // If our base class is invalid, we probably can't get its dtor anyway.
3459    if (BaseClassDecl->isInvalidDecl())
3460      continue;
3461    if (BaseClassDecl->hasIrrelevantDestructor())
3462      continue;
3463
3464    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3465    assert(Dtor && "No dtor found for BaseClassDecl!");
3466    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3467                          PDiag(diag::err_access_dtor_vbase)
3468                            << VBase->getType(),
3469                          Context.getTypeDeclType(ClassDecl));
3470
3471    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3472    DiagnoseUseOfDecl(Dtor, Location);
3473  }
3474}
3475
3476void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3477  if (!CDtorDecl)
3478    return;
3479
3480  if (CXXConstructorDecl *Constructor
3481      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3482    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3483}
3484
3485bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3486                                  unsigned DiagID, AbstractDiagSelID SelID) {
3487  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3488    unsigned DiagID;
3489    AbstractDiagSelID SelID;
3490
3491  public:
3492    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3493      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3494
3495    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3496      if (SelID == -1)
3497        S.Diag(Loc, DiagID) << T;
3498      else
3499        S.Diag(Loc, DiagID) << SelID << T;
3500    }
3501  } Diagnoser(DiagID, SelID);
3502
3503  return RequireNonAbstractType(Loc, T, Diagnoser);
3504}
3505
3506bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3507                                  TypeDiagnoser &Diagnoser) {
3508  if (!getLangOpts().CPlusPlus)
3509    return false;
3510
3511  if (const ArrayType *AT = Context.getAsArrayType(T))
3512    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3513
3514  if (const PointerType *PT = T->getAs<PointerType>()) {
3515    // Find the innermost pointer type.
3516    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3517      PT = T;
3518
3519    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3520      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3521  }
3522
3523  const RecordType *RT = T->getAs<RecordType>();
3524  if (!RT)
3525    return false;
3526
3527  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3528
3529  // We can't answer whether something is abstract until it has a
3530  // definition.  If it's currently being defined, we'll walk back
3531  // over all the declarations when we have a full definition.
3532  const CXXRecordDecl *Def = RD->getDefinition();
3533  if (!Def || Def->isBeingDefined())
3534    return false;
3535
3536  if (!RD->isAbstract())
3537    return false;
3538
3539  Diagnoser.diagnose(*this, Loc, T);
3540  DiagnoseAbstractType(RD);
3541
3542  return true;
3543}
3544
3545void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3546  // Check if we've already emitted the list of pure virtual functions
3547  // for this class.
3548  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3549    return;
3550
3551  CXXFinalOverriderMap FinalOverriders;
3552  RD->getFinalOverriders(FinalOverriders);
3553
3554  // Keep a set of seen pure methods so we won't diagnose the same method
3555  // more than once.
3556  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3557
3558  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3559                                   MEnd = FinalOverriders.end();
3560       M != MEnd;
3561       ++M) {
3562    for (OverridingMethods::iterator SO = M->second.begin(),
3563                                  SOEnd = M->second.end();
3564         SO != SOEnd; ++SO) {
3565      // C++ [class.abstract]p4:
3566      //   A class is abstract if it contains or inherits at least one
3567      //   pure virtual function for which the final overrider is pure
3568      //   virtual.
3569
3570      //
3571      if (SO->second.size() != 1)
3572        continue;
3573
3574      if (!SO->second.front().Method->isPure())
3575        continue;
3576
3577      if (!SeenPureMethods.insert(SO->second.front().Method))
3578        continue;
3579
3580      Diag(SO->second.front().Method->getLocation(),
3581           diag::note_pure_virtual_function)
3582        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3583    }
3584  }
3585
3586  if (!PureVirtualClassDiagSet)
3587    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3588  PureVirtualClassDiagSet->insert(RD);
3589}
3590
3591namespace {
3592struct AbstractUsageInfo {
3593  Sema &S;
3594  CXXRecordDecl *Record;
3595  CanQualType AbstractType;
3596  bool Invalid;
3597
3598  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3599    : S(S), Record(Record),
3600      AbstractType(S.Context.getCanonicalType(
3601                   S.Context.getTypeDeclType(Record))),
3602      Invalid(false) {}
3603
3604  void DiagnoseAbstractType() {
3605    if (Invalid) return;
3606    S.DiagnoseAbstractType(Record);
3607    Invalid = true;
3608  }
3609
3610  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3611};
3612
3613struct CheckAbstractUsage {
3614  AbstractUsageInfo &Info;
3615  const NamedDecl *Ctx;
3616
3617  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3618    : Info(Info), Ctx(Ctx) {}
3619
3620  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3621    switch (TL.getTypeLocClass()) {
3622#define ABSTRACT_TYPELOC(CLASS, PARENT)
3623#define TYPELOC(CLASS, PARENT) \
3624    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3625#include "clang/AST/TypeLocNodes.def"
3626    }
3627  }
3628
3629  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3630    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3631    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3632      if (!TL.getArg(I))
3633        continue;
3634
3635      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3636      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3637    }
3638  }
3639
3640  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3641    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3642  }
3643
3644  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3645    // Visit the type parameters from a permissive context.
3646    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3647      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3648      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3649        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3650          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3651      // TODO: other template argument types?
3652    }
3653  }
3654
3655  // Visit pointee types from a permissive context.
3656#define CheckPolymorphic(Type) \
3657  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3658    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3659  }
3660  CheckPolymorphic(PointerTypeLoc)
3661  CheckPolymorphic(ReferenceTypeLoc)
3662  CheckPolymorphic(MemberPointerTypeLoc)
3663  CheckPolymorphic(BlockPointerTypeLoc)
3664  CheckPolymorphic(AtomicTypeLoc)
3665
3666  /// Handle all the types we haven't given a more specific
3667  /// implementation for above.
3668  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3669    // Every other kind of type that we haven't called out already
3670    // that has an inner type is either (1) sugar or (2) contains that
3671    // inner type in some way as a subobject.
3672    if (TypeLoc Next = TL.getNextTypeLoc())
3673      return Visit(Next, Sel);
3674
3675    // If there's no inner type and we're in a permissive context,
3676    // don't diagnose.
3677    if (Sel == Sema::AbstractNone) return;
3678
3679    // Check whether the type matches the abstract type.
3680    QualType T = TL.getType();
3681    if (T->isArrayType()) {
3682      Sel = Sema::AbstractArrayType;
3683      T = Info.S.Context.getBaseElementType(T);
3684    }
3685    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3686    if (CT != Info.AbstractType) return;
3687
3688    // It matched; do some magic.
3689    if (Sel == Sema::AbstractArrayType) {
3690      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3691        << T << TL.getSourceRange();
3692    } else {
3693      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3694        << Sel << T << TL.getSourceRange();
3695    }
3696    Info.DiagnoseAbstractType();
3697  }
3698};
3699
3700void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3701                                  Sema::AbstractDiagSelID Sel) {
3702  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3703}
3704
3705}
3706
3707/// Check for invalid uses of an abstract type in a method declaration.
3708static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3709                                    CXXMethodDecl *MD) {
3710  // No need to do the check on definitions, which require that
3711  // the return/param types be complete.
3712  if (MD->doesThisDeclarationHaveABody())
3713    return;
3714
3715  // For safety's sake, just ignore it if we don't have type source
3716  // information.  This should never happen for non-implicit methods,
3717  // but...
3718  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3719    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3720}
3721
3722/// Check for invalid uses of an abstract type within a class definition.
3723static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3724                                    CXXRecordDecl *RD) {
3725  for (CXXRecordDecl::decl_iterator
3726         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3727    Decl *D = *I;
3728    if (D->isImplicit()) continue;
3729
3730    // Methods and method templates.
3731    if (isa<CXXMethodDecl>(D)) {
3732      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3733    } else if (isa<FunctionTemplateDecl>(D)) {
3734      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3735      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3736
3737    // Fields and static variables.
3738    } else if (isa<FieldDecl>(D)) {
3739      FieldDecl *FD = cast<FieldDecl>(D);
3740      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3741        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3742    } else if (isa<VarDecl>(D)) {
3743      VarDecl *VD = cast<VarDecl>(D);
3744      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3745        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3746
3747    // Nested classes and class templates.
3748    } else if (isa<CXXRecordDecl>(D)) {
3749      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3750    } else if (isa<ClassTemplateDecl>(D)) {
3751      CheckAbstractClassUsage(Info,
3752                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3753    }
3754  }
3755}
3756
3757/// \brief Perform semantic checks on a class definition that has been
3758/// completing, introducing implicitly-declared members, checking for
3759/// abstract types, etc.
3760void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3761  if (!Record)
3762    return;
3763
3764  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3765    AbstractUsageInfo Info(*this, Record);
3766    CheckAbstractClassUsage(Info, Record);
3767  }
3768
3769  // If this is not an aggregate type and has no user-declared constructor,
3770  // complain about any non-static data members of reference or const scalar
3771  // type, since they will never get initializers.
3772  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3773      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3774      !Record->isLambda()) {
3775    bool Complained = false;
3776    for (RecordDecl::field_iterator F = Record->field_begin(),
3777                                 FEnd = Record->field_end();
3778         F != FEnd; ++F) {
3779      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3780        continue;
3781
3782      if (F->getType()->isReferenceType() ||
3783          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3784        if (!Complained) {
3785          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3786            << Record->getTagKind() << Record;
3787          Complained = true;
3788        }
3789
3790        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3791          << F->getType()->isReferenceType()
3792          << F->getDeclName();
3793      }
3794    }
3795  }
3796
3797  if (Record->isDynamicClass() && !Record->isDependentType())
3798    DynamicClasses.push_back(Record);
3799
3800  if (Record->getIdentifier()) {
3801    // C++ [class.mem]p13:
3802    //   If T is the name of a class, then each of the following shall have a
3803    //   name different from T:
3804    //     - every member of every anonymous union that is a member of class T.
3805    //
3806    // C++ [class.mem]p14:
3807    //   In addition, if class T has a user-declared constructor (12.1), every
3808    //   non-static data member of class T shall have a name different from T.
3809    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3810         R.first != R.second; ++R.first) {
3811      NamedDecl *D = *R.first;
3812      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3813          isa<IndirectFieldDecl>(D)) {
3814        Diag(D->getLocation(), diag::err_member_name_of_class)
3815          << D->getDeclName();
3816        break;
3817      }
3818    }
3819  }
3820
3821  // Warn if the class has virtual methods but non-virtual public destructor.
3822  if (Record->isPolymorphic() && !Record->isDependentType()) {
3823    CXXDestructorDecl *dtor = Record->getDestructor();
3824    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3825      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3826           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3827  }
3828
3829  // See if a method overloads virtual methods in a base
3830  /// class without overriding any.
3831  if (!Record->isDependentType()) {
3832    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3833                                     MEnd = Record->method_end();
3834         M != MEnd; ++M) {
3835      if (!M->isStatic())
3836        DiagnoseHiddenVirtualMethods(Record, *M);
3837    }
3838  }
3839
3840  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3841  // function that is not a constructor declares that member function to be
3842  // const. [...] The class of which that function is a member shall be
3843  // a literal type.
3844  //
3845  // If the class has virtual bases, any constexpr members will already have
3846  // been diagnosed by the checks performed on the member declaration, so
3847  // suppress this (less useful) diagnostic.
3848  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3849      !Record->isLiteral() && !Record->getNumVBases()) {
3850    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3851                                     MEnd = Record->method_end();
3852         M != MEnd; ++M) {
3853      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3854        switch (Record->getTemplateSpecializationKind()) {
3855        case TSK_ImplicitInstantiation:
3856        case TSK_ExplicitInstantiationDeclaration:
3857        case TSK_ExplicitInstantiationDefinition:
3858          // If a template instantiates to a non-literal type, but its members
3859          // instantiate to constexpr functions, the template is technically
3860          // ill-formed, but we allow it for sanity.
3861          continue;
3862
3863        case TSK_Undeclared:
3864        case TSK_ExplicitSpecialization:
3865          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
3866                             diag::err_constexpr_method_non_literal);
3867          break;
3868        }
3869
3870        // Only produce one error per class.
3871        break;
3872      }
3873    }
3874  }
3875
3876  // Declare inherited constructors. We do this eagerly here because:
3877  // - The standard requires an eager diagnostic for conflicting inherited
3878  //   constructors from different classes.
3879  // - The lazy declaration of the other implicit constructors is so as to not
3880  //   waste space and performance on classes that are not meant to be
3881  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3882  //   have inherited constructors.
3883  DeclareInheritedConstructors(Record);
3884
3885  if (!Record->isDependentType())
3886    CheckExplicitlyDefaultedMethods(Record);
3887}
3888
3889void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3890  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3891                                      ME = Record->method_end();
3892       MI != ME; ++MI)
3893    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted())
3894      CheckExplicitlyDefaultedSpecialMember(*MI);
3895}
3896
3897/// Is the special member function which would be selected to perform the
3898/// specified operation on the specified class type a constexpr constructor?
3899static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
3900                                     Sema::CXXSpecialMember CSM,
3901                                     bool ConstArg) {
3902  Sema::SpecialMemberOverloadResult *SMOR =
3903      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
3904                            false, false, false, false);
3905  if (!SMOR || !SMOR->getMethod())
3906    // A constructor we wouldn't select can't be "involved in initializing"
3907    // anything.
3908    return true;
3909  return SMOR->getMethod()->isConstexpr();
3910}
3911
3912/// Determine whether the specified special member function would be constexpr
3913/// if it were implicitly defined.
3914static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
3915                                              Sema::CXXSpecialMember CSM,
3916                                              bool ConstArg) {
3917  if (!S.getLangOpts().CPlusPlus0x)
3918    return false;
3919
3920  // C++11 [dcl.constexpr]p4:
3921  // In the definition of a constexpr constructor [...]
3922  switch (CSM) {
3923  case Sema::CXXDefaultConstructor:
3924    // Since default constructor lookup is essentially trivial (and cannot
3925    // involve, for instance, template instantiation), we compute whether a
3926    // defaulted default constructor is constexpr directly within CXXRecordDecl.
3927    //
3928    // This is important for performance; we need to know whether the default
3929    // constructor is constexpr to determine whether the type is a literal type.
3930    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
3931
3932  case Sema::CXXCopyConstructor:
3933  case Sema::CXXMoveConstructor:
3934    // For copy or move constructors, we need to perform overload resolution.
3935    break;
3936
3937  case Sema::CXXCopyAssignment:
3938  case Sema::CXXMoveAssignment:
3939  case Sema::CXXDestructor:
3940  case Sema::CXXInvalid:
3941    return false;
3942  }
3943
3944  //   -- if the class is a non-empty union, or for each non-empty anonymous
3945  //      union member of a non-union class, exactly one non-static data member
3946  //      shall be initialized; [DR1359]
3947  //
3948  // If we squint, this is guaranteed, since exactly one non-static data member
3949  // will be initialized (if the constructor isn't deleted), we just don't know
3950  // which one.
3951  if (ClassDecl->isUnion())
3952    return true;
3953
3954  //   -- the class shall not have any virtual base classes;
3955  if (ClassDecl->getNumVBases())
3956    return false;
3957
3958  //   -- every constructor involved in initializing [...] base class
3959  //      sub-objects shall be a constexpr constructor;
3960  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
3961                                       BEnd = ClassDecl->bases_end();
3962       B != BEnd; ++B) {
3963    const RecordType *BaseType = B->getType()->getAs<RecordType>();
3964    if (!BaseType) continue;
3965
3966    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3967    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
3968      return false;
3969  }
3970
3971  //   -- every constructor involved in initializing non-static data members
3972  //      [...] shall be a constexpr constructor;
3973  //   -- every non-static data member and base class sub-object shall be
3974  //      initialized
3975  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
3976                               FEnd = ClassDecl->field_end();
3977       F != FEnd; ++F) {
3978    if (F->isInvalidDecl())
3979      continue;
3980    if (const RecordType *RecordTy =
3981            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
3982      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
3983      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
3984        return false;
3985    }
3986  }
3987
3988  // All OK, it's constexpr!
3989  return true;
3990}
3991
3992void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
3993  CXXRecordDecl *RD = MD->getParent();
3994  CXXSpecialMember CSM = getSpecialMember(MD);
3995
3996  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
3997         "not an explicitly-defaulted special member");
3998
3999  // Whether this was the first-declared instance of the constructor.
4000  // This affects whether we implicitly add an exception spec and constexpr.
4001  bool First = MD == MD->getCanonicalDecl();
4002
4003  bool HadError = false;
4004
4005  // C++11 [dcl.fct.def.default]p1:
4006  //   A function that is explicitly defaulted shall
4007  //     -- be a special member function (checked elsewhere),
4008  //     -- have the same type (except for ref-qualifiers, and except that a
4009  //        copy operation can take a non-const reference) as an implicit
4010  //        declaration, and
4011  //     -- not have default arguments.
4012  unsigned ExpectedParams = 1;
4013  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4014    ExpectedParams = 0;
4015  if (MD->getNumParams() != ExpectedParams) {
4016    // This also checks for default arguments: a copy or move constructor with a
4017    // default argument is classified as a default constructor, and assignment
4018    // operations and destructors can't have default arguments.
4019    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4020      << CSM << MD->getSourceRange();
4021    HadError = true;
4022  }
4023
4024  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4025
4026  // Compute implicit exception specification, argument constness, constexpr
4027  // and triviality.
4028  ImplicitExceptionSpecification Spec(*this);
4029  bool CanHaveConstParam = false;
4030  bool Trivial;
4031  switch (CSM) {
4032  case CXXDefaultConstructor:
4033    Spec = ComputeDefaultedDefaultCtorExceptionSpec(RD);
4034    if (Spec.isDelayed())
4035      // Exception specification depends on some deferred part of the class.
4036      // We'll try again when the class's definition has been fully processed.
4037      return;
4038    Trivial = RD->hasTrivialDefaultConstructor();
4039    break;
4040  case CXXCopyConstructor:
4041    llvm::tie(Spec, CanHaveConstParam) =
4042      ComputeDefaultedCopyCtorExceptionSpecAndConst(RD);
4043    Trivial = RD->hasTrivialCopyConstructor();
4044    break;
4045  case CXXCopyAssignment:
4046    llvm::tie(Spec, CanHaveConstParam) =
4047      ComputeDefaultedCopyAssignmentExceptionSpecAndConst(RD);
4048    Trivial = RD->hasTrivialCopyAssignment();
4049    break;
4050  case CXXMoveConstructor:
4051    Spec = ComputeDefaultedMoveCtorExceptionSpec(RD);
4052    Trivial = RD->hasTrivialMoveConstructor();
4053    break;
4054  case CXXMoveAssignment:
4055    Spec = ComputeDefaultedMoveAssignmentExceptionSpec(RD);
4056    Trivial = RD->hasTrivialMoveAssignment();
4057    break;
4058  case CXXDestructor:
4059    Spec = ComputeDefaultedDtorExceptionSpec(RD);
4060    Trivial = RD->hasTrivialDestructor();
4061    break;
4062  case CXXInvalid:
4063    llvm_unreachable("non-special member explicitly defaulted!");
4064  }
4065
4066  QualType ReturnType = Context.VoidTy;
4067  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4068    // Check for return type matching.
4069    ReturnType = Type->getResultType();
4070    QualType ExpectedReturnType =
4071        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4072    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4073      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4074        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4075      HadError = true;
4076    }
4077
4078    // A defaulted special member cannot have cv-qualifiers.
4079    if (Type->getTypeQuals()) {
4080      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4081        << (CSM == CXXMoveAssignment);
4082      HadError = true;
4083    }
4084  }
4085
4086  // Check for parameter type matching.
4087  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4088  bool HasConstParam = false;
4089  if (ExpectedParams && ArgType->isReferenceType()) {
4090    // Argument must be reference to possibly-const T.
4091    QualType ReferentType = ArgType->getPointeeType();
4092    HasConstParam = ReferentType.isConstQualified();
4093
4094    if (ReferentType.isVolatileQualified()) {
4095      Diag(MD->getLocation(),
4096           diag::err_defaulted_special_member_volatile_param) << CSM;
4097      HadError = true;
4098    }
4099
4100    if (HasConstParam && !CanHaveConstParam) {
4101      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4102        Diag(MD->getLocation(),
4103             diag::err_defaulted_special_member_copy_const_param)
4104          << (CSM == CXXCopyAssignment);
4105        // FIXME: Explain why this special member can't be const.
4106      } else {
4107        Diag(MD->getLocation(),
4108             diag::err_defaulted_special_member_move_const_param)
4109          << (CSM == CXXMoveAssignment);
4110      }
4111      HadError = true;
4112    }
4113
4114    // If a function is explicitly defaulted on its first declaration, it shall
4115    // have the same parameter type as if it had been implicitly declared.
4116    // (Presumably this is to prevent it from being trivial?)
4117    if (!HasConstParam && CanHaveConstParam && First)
4118      Diag(MD->getLocation(),
4119           diag::err_defaulted_special_member_copy_non_const_param)
4120        << (CSM == CXXCopyAssignment);
4121  } else if (ExpectedParams) {
4122    // A copy assignment operator can take its argument by value, but a
4123    // defaulted one cannot.
4124    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4125    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4126    HadError = true;
4127  }
4128
4129  // Rebuild the type with the implicit exception specification added.
4130  FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4131  Spec.getEPI(EPI);
4132  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4133    Context.getFunctionType(ReturnType, &ArgType, ExpectedParams, EPI));
4134
4135  // C++11 [dcl.fct.def.default]p2:
4136  //   An explicitly-defaulted function may be declared constexpr only if it
4137  //   would have been implicitly declared as constexpr,
4138  // Do not apply this rule to members of class templates, since core issue 1358
4139  // makes such functions always instantiate to constexpr functions. For
4140  // non-constructors, this is checked elsewhere.
4141  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4142                                                     HasConstParam);
4143  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4144      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4145    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4146    // FIXME: Explain why the constructor can't be constexpr.
4147    HadError = true;
4148  }
4149  //   and may have an explicit exception-specification only if it is compatible
4150  //   with the exception-specification on the implicit declaration.
4151  if (Type->hasExceptionSpec() &&
4152      CheckEquivalentExceptionSpec(
4153        PDiag(diag::err_incorrect_defaulted_exception_spec) << CSM,
4154        PDiag(), ImplicitType, SourceLocation(), Type, MD->getLocation()))
4155    HadError = true;
4156
4157  //   If a function is explicitly defaulted on its first declaration,
4158  if (First) {
4159    //  -- it is implicitly considered to be constexpr if the implicit
4160    //     definition would be,
4161    MD->setConstexpr(Constexpr);
4162
4163    //  -- it is implicitly considered to have the same exception-specification
4164    //     as if it had been implicitly declared,
4165    MD->setType(QualType(ImplicitType, 0));
4166
4167    // Such a function is also trivial if the implicitly-declared function
4168    // would have been.
4169    MD->setTrivial(Trivial);
4170  }
4171
4172  if (ShouldDeleteSpecialMember(MD, CSM)) {
4173    if (First) {
4174      MD->setDeletedAsWritten();
4175    } else {
4176      // C++11 [dcl.fct.def.default]p4:
4177      //   [For a] user-provided explicitly-defaulted function [...] if such a
4178      //   function is implicitly defined as deleted, the program is ill-formed.
4179      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4180      HadError = true;
4181    }
4182  }
4183
4184  if (HadError)
4185    MD->setInvalidDecl();
4186}
4187
4188namespace {
4189struct SpecialMemberDeletionInfo {
4190  Sema &S;
4191  CXXMethodDecl *MD;
4192  Sema::CXXSpecialMember CSM;
4193  bool Diagnose;
4194
4195  // Properties of the special member, computed for convenience.
4196  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4197  SourceLocation Loc;
4198
4199  bool AllFieldsAreConst;
4200
4201  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4202                            Sema::CXXSpecialMember CSM, bool Diagnose)
4203    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4204      IsConstructor(false), IsAssignment(false), IsMove(false),
4205      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4206      AllFieldsAreConst(true) {
4207    switch (CSM) {
4208      case Sema::CXXDefaultConstructor:
4209      case Sema::CXXCopyConstructor:
4210        IsConstructor = true;
4211        break;
4212      case Sema::CXXMoveConstructor:
4213        IsConstructor = true;
4214        IsMove = true;
4215        break;
4216      case Sema::CXXCopyAssignment:
4217        IsAssignment = true;
4218        break;
4219      case Sema::CXXMoveAssignment:
4220        IsAssignment = true;
4221        IsMove = true;
4222        break;
4223      case Sema::CXXDestructor:
4224        break;
4225      case Sema::CXXInvalid:
4226        llvm_unreachable("invalid special member kind");
4227    }
4228
4229    if (MD->getNumParams()) {
4230      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4231      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4232    }
4233  }
4234
4235  bool inUnion() const { return MD->getParent()->isUnion(); }
4236
4237  /// Look up the corresponding special member in the given class.
4238  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class) {
4239    unsigned TQ = MD->getTypeQualifiers();
4240    return S.LookupSpecialMember(Class, CSM, ConstArg, VolatileArg,
4241                                 MD->getRefQualifier() == RQ_RValue,
4242                                 TQ & Qualifiers::Const,
4243                                 TQ & Qualifiers::Volatile);
4244  }
4245
4246  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4247
4248  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4249  bool shouldDeleteForField(FieldDecl *FD);
4250  bool shouldDeleteForAllConstMembers();
4251
4252  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj);
4253  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4254                                    Sema::SpecialMemberOverloadResult *SMOR,
4255                                    bool IsDtorCallInCtor);
4256
4257  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4258};
4259}
4260
4261/// Is the given special member inaccessible when used on the given
4262/// sub-object.
4263bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4264                                             CXXMethodDecl *target) {
4265  /// If we're operating on a base class, the object type is the
4266  /// type of this special member.
4267  QualType objectTy;
4268  AccessSpecifier access = target->getAccess();;
4269  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4270    objectTy = S.Context.getTypeDeclType(MD->getParent());
4271    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4272
4273  // If we're operating on a field, the object type is the type of the field.
4274  } else {
4275    objectTy = S.Context.getTypeDeclType(target->getParent());
4276  }
4277
4278  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4279}
4280
4281/// Check whether we should delete a special member due to the implicit
4282/// definition containing a call to a special member of a subobject.
4283bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4284    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4285    bool IsDtorCallInCtor) {
4286  CXXMethodDecl *Decl = SMOR->getMethod();
4287  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4288
4289  int DiagKind = -1;
4290
4291  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4292    DiagKind = !Decl ? 0 : 1;
4293  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4294    DiagKind = 2;
4295  else if (!isAccessible(Subobj, Decl))
4296    DiagKind = 3;
4297  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4298           !Decl->isTrivial()) {
4299    // A member of a union must have a trivial corresponding special member.
4300    // As a weird special case, a destructor call from a union's constructor
4301    // must be accessible and non-deleted, but need not be trivial. Such a
4302    // destructor is never actually called, but is semantically checked as
4303    // if it were.
4304    DiagKind = 4;
4305  }
4306
4307  if (DiagKind == -1)
4308    return false;
4309
4310  if (Diagnose) {
4311    if (Field) {
4312      S.Diag(Field->getLocation(),
4313             diag::note_deleted_special_member_class_subobject)
4314        << CSM << MD->getParent() << /*IsField*/true
4315        << Field << DiagKind << IsDtorCallInCtor;
4316    } else {
4317      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4318      S.Diag(Base->getLocStart(),
4319             diag::note_deleted_special_member_class_subobject)
4320        << CSM << MD->getParent() << /*IsField*/false
4321        << Base->getType() << DiagKind << IsDtorCallInCtor;
4322    }
4323
4324    if (DiagKind == 1)
4325      S.NoteDeletedFunction(Decl);
4326    // FIXME: Explain inaccessibility if DiagKind == 3.
4327  }
4328
4329  return true;
4330}
4331
4332/// Check whether we should delete a special member function due to having a
4333/// direct or virtual base class or static data member of class type M.
4334bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4335    CXXRecordDecl *Class, Subobject Subobj) {
4336  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4337
4338  // C++11 [class.ctor]p5:
4339  // -- any direct or virtual base class, or non-static data member with no
4340  //    brace-or-equal-initializer, has class type M (or array thereof) and
4341  //    either M has no default constructor or overload resolution as applied
4342  //    to M's default constructor results in an ambiguity or in a function
4343  //    that is deleted or inaccessible
4344  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4345  // -- a direct or virtual base class B that cannot be copied/moved because
4346  //    overload resolution, as applied to B's corresponding special member,
4347  //    results in an ambiguity or a function that is deleted or inaccessible
4348  //    from the defaulted special member
4349  // C++11 [class.dtor]p5:
4350  // -- any direct or virtual base class [...] has a type with a destructor
4351  //    that is deleted or inaccessible
4352  if (!(CSM == Sema::CXXDefaultConstructor &&
4353        Field && Field->hasInClassInitializer()) &&
4354      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class), false))
4355    return true;
4356
4357  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4358  // -- any direct or virtual base class or non-static data member has a
4359  //    type with a destructor that is deleted or inaccessible
4360  if (IsConstructor) {
4361    Sema::SpecialMemberOverloadResult *SMOR =
4362        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4363                              false, false, false, false, false);
4364    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4365      return true;
4366  }
4367
4368  return false;
4369}
4370
4371/// Check whether we should delete a special member function due to the class
4372/// having a particular direct or virtual base class.
4373bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4374  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4375  return shouldDeleteForClassSubobject(BaseClass, Base);
4376}
4377
4378/// Check whether we should delete a special member function due to the class
4379/// having a particular non-static data member.
4380bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4381  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4382  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4383
4384  if (CSM == Sema::CXXDefaultConstructor) {
4385    // For a default constructor, all references must be initialized in-class
4386    // and, if a union, it must have a non-const member.
4387    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4388      if (Diagnose)
4389        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4390          << MD->getParent() << FD << FieldType << /*Reference*/0;
4391      return true;
4392    }
4393    // C++11 [class.ctor]p5: any non-variant non-static data member of
4394    // const-qualified type (or array thereof) with no
4395    // brace-or-equal-initializer does not have a user-provided default
4396    // constructor.
4397    if (!inUnion() && FieldType.isConstQualified() &&
4398        !FD->hasInClassInitializer() &&
4399        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4400      if (Diagnose)
4401        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4402          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4403      return true;
4404    }
4405
4406    if (inUnion() && !FieldType.isConstQualified())
4407      AllFieldsAreConst = false;
4408  } else if (CSM == Sema::CXXCopyConstructor) {
4409    // For a copy constructor, data members must not be of rvalue reference
4410    // type.
4411    if (FieldType->isRValueReferenceType()) {
4412      if (Diagnose)
4413        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4414          << MD->getParent() << FD << FieldType;
4415      return true;
4416    }
4417  } else if (IsAssignment) {
4418    // For an assignment operator, data members must not be of reference type.
4419    if (FieldType->isReferenceType()) {
4420      if (Diagnose)
4421        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4422          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4423      return true;
4424    }
4425    if (!FieldRecord && FieldType.isConstQualified()) {
4426      // C++11 [class.copy]p23:
4427      // -- a non-static data member of const non-class type (or array thereof)
4428      if (Diagnose)
4429        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4430          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4431      return true;
4432    }
4433  }
4434
4435  if (FieldRecord) {
4436    // Some additional restrictions exist on the variant members.
4437    if (!inUnion() && FieldRecord->isUnion() &&
4438        FieldRecord->isAnonymousStructOrUnion()) {
4439      bool AllVariantFieldsAreConst = true;
4440
4441      // FIXME: Handle anonymous unions declared within anonymous unions.
4442      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4443                                         UE = FieldRecord->field_end();
4444           UI != UE; ++UI) {
4445        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4446
4447        if (!UnionFieldType.isConstQualified())
4448          AllVariantFieldsAreConst = false;
4449
4450        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4451        if (UnionFieldRecord &&
4452            shouldDeleteForClassSubobject(UnionFieldRecord, *UI))
4453          return true;
4454      }
4455
4456      // At least one member in each anonymous union must be non-const
4457      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4458          FieldRecord->field_begin() != FieldRecord->field_end()) {
4459        if (Diagnose)
4460          S.Diag(FieldRecord->getLocation(),
4461                 diag::note_deleted_default_ctor_all_const)
4462            << MD->getParent() << /*anonymous union*/1;
4463        return true;
4464      }
4465
4466      // Don't check the implicit member of the anonymous union type.
4467      // This is technically non-conformant, but sanity demands it.
4468      return false;
4469    }
4470
4471    if (shouldDeleteForClassSubobject(FieldRecord, FD))
4472      return true;
4473  }
4474
4475  return false;
4476}
4477
4478/// C++11 [class.ctor] p5:
4479///   A defaulted default constructor for a class X is defined as deleted if
4480/// X is a union and all of its variant members are of const-qualified type.
4481bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4482  // This is a silly definition, because it gives an empty union a deleted
4483  // default constructor. Don't do that.
4484  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4485      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4486    if (Diagnose)
4487      S.Diag(MD->getParent()->getLocation(),
4488             diag::note_deleted_default_ctor_all_const)
4489        << MD->getParent() << /*not anonymous union*/0;
4490    return true;
4491  }
4492  return false;
4493}
4494
4495/// Determine whether a defaulted special member function should be defined as
4496/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4497/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4498bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4499                                     bool Diagnose) {
4500  assert(!MD->isInvalidDecl());
4501  CXXRecordDecl *RD = MD->getParent();
4502  assert(!RD->isDependentType() && "do deletion after instantiation");
4503  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4504    return false;
4505
4506  // C++11 [expr.lambda.prim]p19:
4507  //   The closure type associated with a lambda-expression has a
4508  //   deleted (8.4.3) default constructor and a deleted copy
4509  //   assignment operator.
4510  if (RD->isLambda() &&
4511      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4512    if (Diagnose)
4513      Diag(RD->getLocation(), diag::note_lambda_decl);
4514    return true;
4515  }
4516
4517  // For an anonymous struct or union, the copy and assignment special members
4518  // will never be used, so skip the check. For an anonymous union declared at
4519  // namespace scope, the constructor and destructor are used.
4520  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4521      RD->isAnonymousStructOrUnion())
4522    return false;
4523
4524  // C++11 [class.copy]p7, p18:
4525  //   If the class definition declares a move constructor or move assignment
4526  //   operator, an implicitly declared copy constructor or copy assignment
4527  //   operator is defined as deleted.
4528  if (MD->isImplicit() &&
4529      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4530    CXXMethodDecl *UserDeclaredMove = 0;
4531
4532    // In Microsoft mode, a user-declared move only causes the deletion of the
4533    // corresponding copy operation, not both copy operations.
4534    if (RD->hasUserDeclaredMoveConstructor() &&
4535        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4536      if (!Diagnose) return true;
4537      UserDeclaredMove = RD->getMoveConstructor();
4538      assert(UserDeclaredMove);
4539    } else if (RD->hasUserDeclaredMoveAssignment() &&
4540               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4541      if (!Diagnose) return true;
4542      UserDeclaredMove = RD->getMoveAssignmentOperator();
4543      assert(UserDeclaredMove);
4544    }
4545
4546    if (UserDeclaredMove) {
4547      Diag(UserDeclaredMove->getLocation(),
4548           diag::note_deleted_copy_user_declared_move)
4549        << (CSM == CXXCopyAssignment) << RD
4550        << UserDeclaredMove->isMoveAssignmentOperator();
4551      return true;
4552    }
4553  }
4554
4555  // Do access control from the special member function
4556  ContextRAII MethodContext(*this, MD);
4557
4558  // C++11 [class.dtor]p5:
4559  // -- for a virtual destructor, lookup of the non-array deallocation function
4560  //    results in an ambiguity or in a function that is deleted or inaccessible
4561  if (CSM == CXXDestructor && MD->isVirtual()) {
4562    FunctionDecl *OperatorDelete = 0;
4563    DeclarationName Name =
4564      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4565    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4566                                 OperatorDelete, false)) {
4567      if (Diagnose)
4568        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4569      return true;
4570    }
4571  }
4572
4573  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4574
4575  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4576                                          BE = RD->bases_end(); BI != BE; ++BI)
4577    if (!BI->isVirtual() &&
4578        SMI.shouldDeleteForBase(BI))
4579      return true;
4580
4581  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4582                                          BE = RD->vbases_end(); BI != BE; ++BI)
4583    if (SMI.shouldDeleteForBase(BI))
4584      return true;
4585
4586  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4587                                     FE = RD->field_end(); FI != FE; ++FI)
4588    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4589        SMI.shouldDeleteForField(*FI))
4590      return true;
4591
4592  if (SMI.shouldDeleteForAllConstMembers())
4593    return true;
4594
4595  return false;
4596}
4597
4598/// \brief Data used with FindHiddenVirtualMethod
4599namespace {
4600  struct FindHiddenVirtualMethodData {
4601    Sema *S;
4602    CXXMethodDecl *Method;
4603    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4604    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4605  };
4606}
4607
4608/// \brief Member lookup function that determines whether a given C++
4609/// method overloads virtual methods in a base class without overriding any,
4610/// to be used with CXXRecordDecl::lookupInBases().
4611static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4612                                    CXXBasePath &Path,
4613                                    void *UserData) {
4614  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4615
4616  FindHiddenVirtualMethodData &Data
4617    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4618
4619  DeclarationName Name = Data.Method->getDeclName();
4620  assert(Name.getNameKind() == DeclarationName::Identifier);
4621
4622  bool foundSameNameMethod = false;
4623  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4624  for (Path.Decls = BaseRecord->lookup(Name);
4625       Path.Decls.first != Path.Decls.second;
4626       ++Path.Decls.first) {
4627    NamedDecl *D = *Path.Decls.first;
4628    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4629      MD = MD->getCanonicalDecl();
4630      foundSameNameMethod = true;
4631      // Interested only in hidden virtual methods.
4632      if (!MD->isVirtual())
4633        continue;
4634      // If the method we are checking overrides a method from its base
4635      // don't warn about the other overloaded methods.
4636      if (!Data.S->IsOverload(Data.Method, MD, false))
4637        return true;
4638      // Collect the overload only if its hidden.
4639      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4640        overloadedMethods.push_back(MD);
4641    }
4642  }
4643
4644  if (foundSameNameMethod)
4645    Data.OverloadedMethods.append(overloadedMethods.begin(),
4646                                   overloadedMethods.end());
4647  return foundSameNameMethod;
4648}
4649
4650/// \brief See if a method overloads virtual methods in a base class without
4651/// overriding any.
4652void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4653  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4654                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4655    return;
4656  if (!MD->getDeclName().isIdentifier())
4657    return;
4658
4659  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4660                     /*bool RecordPaths=*/false,
4661                     /*bool DetectVirtual=*/false);
4662  FindHiddenVirtualMethodData Data;
4663  Data.Method = MD;
4664  Data.S = this;
4665
4666  // Keep the base methods that were overriden or introduced in the subclass
4667  // by 'using' in a set. A base method not in this set is hidden.
4668  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4669       res.first != res.second; ++res.first) {
4670    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4671      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4672                                          E = MD->end_overridden_methods();
4673           I != E; ++I)
4674        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4675    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4676      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4677        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4678  }
4679
4680  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4681      !Data.OverloadedMethods.empty()) {
4682    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4683      << MD << (Data.OverloadedMethods.size() > 1);
4684
4685    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4686      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4687      Diag(overloadedMD->getLocation(),
4688           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4689    }
4690  }
4691}
4692
4693void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4694                                             Decl *TagDecl,
4695                                             SourceLocation LBrac,
4696                                             SourceLocation RBrac,
4697                                             AttributeList *AttrList) {
4698  if (!TagDecl)
4699    return;
4700
4701  AdjustDeclIfTemplate(TagDecl);
4702
4703  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4704              // strict aliasing violation!
4705              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4706              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4707
4708  CheckCompletedCXXClass(
4709                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4710}
4711
4712/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4713/// special functions, such as the default constructor, copy
4714/// constructor, or destructor, to the given C++ class (C++
4715/// [special]p1).  This routine can only be executed just before the
4716/// definition of the class is complete.
4717void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4718  if (!ClassDecl->hasUserDeclaredConstructor())
4719    ++ASTContext::NumImplicitDefaultConstructors;
4720
4721  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4722    ++ASTContext::NumImplicitCopyConstructors;
4723
4724  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4725    ++ASTContext::NumImplicitMoveConstructors;
4726
4727  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4728    ++ASTContext::NumImplicitCopyAssignmentOperators;
4729
4730    // If we have a dynamic class, then the copy assignment operator may be
4731    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4732    // it shows up in the right place in the vtable and that we diagnose
4733    // problems with the implicit exception specification.
4734    if (ClassDecl->isDynamicClass())
4735      DeclareImplicitCopyAssignment(ClassDecl);
4736  }
4737
4738  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()) {
4739    ++ASTContext::NumImplicitMoveAssignmentOperators;
4740
4741    // Likewise for the move assignment operator.
4742    if (ClassDecl->isDynamicClass())
4743      DeclareImplicitMoveAssignment(ClassDecl);
4744  }
4745
4746  if (!ClassDecl->hasUserDeclaredDestructor()) {
4747    ++ASTContext::NumImplicitDestructors;
4748
4749    // If we have a dynamic class, then the destructor may be virtual, so we
4750    // have to declare the destructor immediately. This ensures that, e.g., it
4751    // shows up in the right place in the vtable and that we diagnose problems
4752    // with the implicit exception specification.
4753    if (ClassDecl->isDynamicClass())
4754      DeclareImplicitDestructor(ClassDecl);
4755  }
4756}
4757
4758void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4759  if (!D)
4760    return;
4761
4762  int NumParamList = D->getNumTemplateParameterLists();
4763  for (int i = 0; i < NumParamList; i++) {
4764    TemplateParameterList* Params = D->getTemplateParameterList(i);
4765    for (TemplateParameterList::iterator Param = Params->begin(),
4766                                      ParamEnd = Params->end();
4767          Param != ParamEnd; ++Param) {
4768      NamedDecl *Named = cast<NamedDecl>(*Param);
4769      if (Named->getDeclName()) {
4770        S->AddDecl(Named);
4771        IdResolver.AddDecl(Named);
4772      }
4773    }
4774  }
4775}
4776
4777void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4778  if (!D)
4779    return;
4780
4781  TemplateParameterList *Params = 0;
4782  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4783    Params = Template->getTemplateParameters();
4784  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4785           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4786    Params = PartialSpec->getTemplateParameters();
4787  else
4788    return;
4789
4790  for (TemplateParameterList::iterator Param = Params->begin(),
4791                                    ParamEnd = Params->end();
4792       Param != ParamEnd; ++Param) {
4793    NamedDecl *Named = cast<NamedDecl>(*Param);
4794    if (Named->getDeclName()) {
4795      S->AddDecl(Named);
4796      IdResolver.AddDecl(Named);
4797    }
4798  }
4799}
4800
4801void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4802  if (!RecordD) return;
4803  AdjustDeclIfTemplate(RecordD);
4804  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4805  PushDeclContext(S, Record);
4806}
4807
4808void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4809  if (!RecordD) return;
4810  PopDeclContext();
4811}
4812
4813/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4814/// parsing a top-level (non-nested) C++ class, and we are now
4815/// parsing those parts of the given Method declaration that could
4816/// not be parsed earlier (C++ [class.mem]p2), such as default
4817/// arguments. This action should enter the scope of the given
4818/// Method declaration as if we had just parsed the qualified method
4819/// name. However, it should not bring the parameters into scope;
4820/// that will be performed by ActOnDelayedCXXMethodParameter.
4821void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4822}
4823
4824/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4825/// C++ method declaration. We're (re-)introducing the given
4826/// function parameter into scope for use in parsing later parts of
4827/// the method declaration. For example, we could see an
4828/// ActOnParamDefaultArgument event for this parameter.
4829void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4830  if (!ParamD)
4831    return;
4832
4833  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4834
4835  // If this parameter has an unparsed default argument, clear it out
4836  // to make way for the parsed default argument.
4837  if (Param->hasUnparsedDefaultArg())
4838    Param->setDefaultArg(0);
4839
4840  S->AddDecl(Param);
4841  if (Param->getDeclName())
4842    IdResolver.AddDecl(Param);
4843}
4844
4845/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4846/// processing the delayed method declaration for Method. The method
4847/// declaration is now considered finished. There may be a separate
4848/// ActOnStartOfFunctionDef action later (not necessarily
4849/// immediately!) for this method, if it was also defined inside the
4850/// class body.
4851void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4852  if (!MethodD)
4853    return;
4854
4855  AdjustDeclIfTemplate(MethodD);
4856
4857  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4858
4859  // Now that we have our default arguments, check the constructor
4860  // again. It could produce additional diagnostics or affect whether
4861  // the class has implicitly-declared destructors, among other
4862  // things.
4863  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4864    CheckConstructor(Constructor);
4865
4866  // Check the default arguments, which we may have added.
4867  if (!Method->isInvalidDecl())
4868    CheckCXXDefaultArguments(Method);
4869}
4870
4871/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4872/// the well-formedness of the constructor declarator @p D with type @p
4873/// R. If there are any errors in the declarator, this routine will
4874/// emit diagnostics and set the invalid bit to true.  In any case, the type
4875/// will be updated to reflect a well-formed type for the constructor and
4876/// returned.
4877QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4878                                          StorageClass &SC) {
4879  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4880
4881  // C++ [class.ctor]p3:
4882  //   A constructor shall not be virtual (10.3) or static (9.4). A
4883  //   constructor can be invoked for a const, volatile or const
4884  //   volatile object. A constructor shall not be declared const,
4885  //   volatile, or const volatile (9.3.2).
4886  if (isVirtual) {
4887    if (!D.isInvalidType())
4888      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4889        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4890        << SourceRange(D.getIdentifierLoc());
4891    D.setInvalidType();
4892  }
4893  if (SC == SC_Static) {
4894    if (!D.isInvalidType())
4895      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4896        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4897        << SourceRange(D.getIdentifierLoc());
4898    D.setInvalidType();
4899    SC = SC_None;
4900  }
4901
4902  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4903  if (FTI.TypeQuals != 0) {
4904    if (FTI.TypeQuals & Qualifiers::Const)
4905      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4906        << "const" << SourceRange(D.getIdentifierLoc());
4907    if (FTI.TypeQuals & Qualifiers::Volatile)
4908      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4909        << "volatile" << SourceRange(D.getIdentifierLoc());
4910    if (FTI.TypeQuals & Qualifiers::Restrict)
4911      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4912        << "restrict" << SourceRange(D.getIdentifierLoc());
4913    D.setInvalidType();
4914  }
4915
4916  // C++0x [class.ctor]p4:
4917  //   A constructor shall not be declared with a ref-qualifier.
4918  if (FTI.hasRefQualifier()) {
4919    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4920      << FTI.RefQualifierIsLValueRef
4921      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4922    D.setInvalidType();
4923  }
4924
4925  // Rebuild the function type "R" without any type qualifiers (in
4926  // case any of the errors above fired) and with "void" as the
4927  // return type, since constructors don't have return types.
4928  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4929  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4930    return R;
4931
4932  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4933  EPI.TypeQuals = 0;
4934  EPI.RefQualifier = RQ_None;
4935
4936  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4937                                 Proto->getNumArgs(), EPI);
4938}
4939
4940/// CheckConstructor - Checks a fully-formed constructor for
4941/// well-formedness, issuing any diagnostics required. Returns true if
4942/// the constructor declarator is invalid.
4943void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4944  CXXRecordDecl *ClassDecl
4945    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4946  if (!ClassDecl)
4947    return Constructor->setInvalidDecl();
4948
4949  // C++ [class.copy]p3:
4950  //   A declaration of a constructor for a class X is ill-formed if
4951  //   its first parameter is of type (optionally cv-qualified) X and
4952  //   either there are no other parameters or else all other
4953  //   parameters have default arguments.
4954  if (!Constructor->isInvalidDecl() &&
4955      ((Constructor->getNumParams() == 1) ||
4956       (Constructor->getNumParams() > 1 &&
4957        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4958      Constructor->getTemplateSpecializationKind()
4959                                              != TSK_ImplicitInstantiation) {
4960    QualType ParamType = Constructor->getParamDecl(0)->getType();
4961    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4962    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4963      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4964      const char *ConstRef
4965        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4966                                                        : " const &";
4967      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4968        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4969
4970      // FIXME: Rather that making the constructor invalid, we should endeavor
4971      // to fix the type.
4972      Constructor->setInvalidDecl();
4973    }
4974  }
4975}
4976
4977/// CheckDestructor - Checks a fully-formed destructor definition for
4978/// well-formedness, issuing any diagnostics required.  Returns true
4979/// on error.
4980bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4981  CXXRecordDecl *RD = Destructor->getParent();
4982
4983  if (Destructor->isVirtual()) {
4984    SourceLocation Loc;
4985
4986    if (!Destructor->isImplicit())
4987      Loc = Destructor->getLocation();
4988    else
4989      Loc = RD->getLocation();
4990
4991    // If we have a virtual destructor, look up the deallocation function
4992    FunctionDecl *OperatorDelete = 0;
4993    DeclarationName Name =
4994    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4995    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4996      return true;
4997
4998    MarkFunctionReferenced(Loc, OperatorDelete);
4999
5000    Destructor->setOperatorDelete(OperatorDelete);
5001  }
5002
5003  return false;
5004}
5005
5006static inline bool
5007FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5008  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5009          FTI.ArgInfo[0].Param &&
5010          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5011}
5012
5013/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5014/// the well-formednes of the destructor declarator @p D with type @p
5015/// R. If there are any errors in the declarator, this routine will
5016/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5017/// will be updated to reflect a well-formed type for the destructor and
5018/// returned.
5019QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5020                                         StorageClass& SC) {
5021  // C++ [class.dtor]p1:
5022  //   [...] A typedef-name that names a class is a class-name
5023  //   (7.1.3); however, a typedef-name that names a class shall not
5024  //   be used as the identifier in the declarator for a destructor
5025  //   declaration.
5026  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5027  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5028    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5029      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5030  else if (const TemplateSpecializationType *TST =
5031             DeclaratorType->getAs<TemplateSpecializationType>())
5032    if (TST->isTypeAlias())
5033      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5034        << DeclaratorType << 1;
5035
5036  // C++ [class.dtor]p2:
5037  //   A destructor is used to destroy objects of its class type. A
5038  //   destructor takes no parameters, and no return type can be
5039  //   specified for it (not even void). The address of a destructor
5040  //   shall not be taken. A destructor shall not be static. A
5041  //   destructor can be invoked for a const, volatile or const
5042  //   volatile object. A destructor shall not be declared const,
5043  //   volatile or const volatile (9.3.2).
5044  if (SC == SC_Static) {
5045    if (!D.isInvalidType())
5046      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5047        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5048        << SourceRange(D.getIdentifierLoc())
5049        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5050
5051    SC = SC_None;
5052  }
5053  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5054    // Destructors don't have return types, but the parser will
5055    // happily parse something like:
5056    //
5057    //   class X {
5058    //     float ~X();
5059    //   };
5060    //
5061    // The return type will be eliminated later.
5062    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5063      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5064      << SourceRange(D.getIdentifierLoc());
5065  }
5066
5067  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5068  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5069    if (FTI.TypeQuals & Qualifiers::Const)
5070      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5071        << "const" << SourceRange(D.getIdentifierLoc());
5072    if (FTI.TypeQuals & Qualifiers::Volatile)
5073      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5074        << "volatile" << SourceRange(D.getIdentifierLoc());
5075    if (FTI.TypeQuals & Qualifiers::Restrict)
5076      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5077        << "restrict" << SourceRange(D.getIdentifierLoc());
5078    D.setInvalidType();
5079  }
5080
5081  // C++0x [class.dtor]p2:
5082  //   A destructor shall not be declared with a ref-qualifier.
5083  if (FTI.hasRefQualifier()) {
5084    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5085      << FTI.RefQualifierIsLValueRef
5086      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5087    D.setInvalidType();
5088  }
5089
5090  // Make sure we don't have any parameters.
5091  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5092    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5093
5094    // Delete the parameters.
5095    FTI.freeArgs();
5096    D.setInvalidType();
5097  }
5098
5099  // Make sure the destructor isn't variadic.
5100  if (FTI.isVariadic) {
5101    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5102    D.setInvalidType();
5103  }
5104
5105  // Rebuild the function type "R" without any type qualifiers or
5106  // parameters (in case any of the errors above fired) and with
5107  // "void" as the return type, since destructors don't have return
5108  // types.
5109  if (!D.isInvalidType())
5110    return R;
5111
5112  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5113  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5114  EPI.Variadic = false;
5115  EPI.TypeQuals = 0;
5116  EPI.RefQualifier = RQ_None;
5117  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5118}
5119
5120/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5121/// well-formednes of the conversion function declarator @p D with
5122/// type @p R. If there are any errors in the declarator, this routine
5123/// will emit diagnostics and return true. Otherwise, it will return
5124/// false. Either way, the type @p R will be updated to reflect a
5125/// well-formed type for the conversion operator.
5126void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5127                                     StorageClass& SC) {
5128  // C++ [class.conv.fct]p1:
5129  //   Neither parameter types nor return type can be specified. The
5130  //   type of a conversion function (8.3.5) is "function taking no
5131  //   parameter returning conversion-type-id."
5132  if (SC == SC_Static) {
5133    if (!D.isInvalidType())
5134      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5135        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5136        << SourceRange(D.getIdentifierLoc());
5137    D.setInvalidType();
5138    SC = SC_None;
5139  }
5140
5141  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5142
5143  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5144    // Conversion functions don't have return types, but the parser will
5145    // happily parse something like:
5146    //
5147    //   class X {
5148    //     float operator bool();
5149    //   };
5150    //
5151    // The return type will be changed later anyway.
5152    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5153      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5154      << SourceRange(D.getIdentifierLoc());
5155    D.setInvalidType();
5156  }
5157
5158  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5159
5160  // Make sure we don't have any parameters.
5161  if (Proto->getNumArgs() > 0) {
5162    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5163
5164    // Delete the parameters.
5165    D.getFunctionTypeInfo().freeArgs();
5166    D.setInvalidType();
5167  } else if (Proto->isVariadic()) {
5168    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5169    D.setInvalidType();
5170  }
5171
5172  // Diagnose "&operator bool()" and other such nonsense.  This
5173  // is actually a gcc extension which we don't support.
5174  if (Proto->getResultType() != ConvType) {
5175    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5176      << Proto->getResultType();
5177    D.setInvalidType();
5178    ConvType = Proto->getResultType();
5179  }
5180
5181  // C++ [class.conv.fct]p4:
5182  //   The conversion-type-id shall not represent a function type nor
5183  //   an array type.
5184  if (ConvType->isArrayType()) {
5185    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5186    ConvType = Context.getPointerType(ConvType);
5187    D.setInvalidType();
5188  } else if (ConvType->isFunctionType()) {
5189    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5190    ConvType = Context.getPointerType(ConvType);
5191    D.setInvalidType();
5192  }
5193
5194  // Rebuild the function type "R" without any parameters (in case any
5195  // of the errors above fired) and with the conversion type as the
5196  // return type.
5197  if (D.isInvalidType())
5198    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5199
5200  // C++0x explicit conversion operators.
5201  if (D.getDeclSpec().isExplicitSpecified())
5202    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5203         getLangOpts().CPlusPlus0x ?
5204           diag::warn_cxx98_compat_explicit_conversion_functions :
5205           diag::ext_explicit_conversion_functions)
5206      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5207}
5208
5209/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5210/// the declaration of the given C++ conversion function. This routine
5211/// is responsible for recording the conversion function in the C++
5212/// class, if possible.
5213Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5214  assert(Conversion && "Expected to receive a conversion function declaration");
5215
5216  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5217
5218  // Make sure we aren't redeclaring the conversion function.
5219  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5220
5221  // C++ [class.conv.fct]p1:
5222  //   [...] A conversion function is never used to convert a
5223  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5224  //   same object type (or a reference to it), to a (possibly
5225  //   cv-qualified) base class of that type (or a reference to it),
5226  //   or to (possibly cv-qualified) void.
5227  // FIXME: Suppress this warning if the conversion function ends up being a
5228  // virtual function that overrides a virtual function in a base class.
5229  QualType ClassType
5230    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5231  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5232    ConvType = ConvTypeRef->getPointeeType();
5233  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5234      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5235    /* Suppress diagnostics for instantiations. */;
5236  else if (ConvType->isRecordType()) {
5237    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5238    if (ConvType == ClassType)
5239      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5240        << ClassType;
5241    else if (IsDerivedFrom(ClassType, ConvType))
5242      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5243        <<  ClassType << ConvType;
5244  } else if (ConvType->isVoidType()) {
5245    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5246      << ClassType << ConvType;
5247  }
5248
5249  if (FunctionTemplateDecl *ConversionTemplate
5250                                = Conversion->getDescribedFunctionTemplate())
5251    return ConversionTemplate;
5252
5253  return Conversion;
5254}
5255
5256//===----------------------------------------------------------------------===//
5257// Namespace Handling
5258//===----------------------------------------------------------------------===//
5259
5260
5261
5262/// ActOnStartNamespaceDef - This is called at the start of a namespace
5263/// definition.
5264Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5265                                   SourceLocation InlineLoc,
5266                                   SourceLocation NamespaceLoc,
5267                                   SourceLocation IdentLoc,
5268                                   IdentifierInfo *II,
5269                                   SourceLocation LBrace,
5270                                   AttributeList *AttrList) {
5271  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5272  // For anonymous namespace, take the location of the left brace.
5273  SourceLocation Loc = II ? IdentLoc : LBrace;
5274  bool IsInline = InlineLoc.isValid();
5275  bool IsInvalid = false;
5276  bool IsStd = false;
5277  bool AddToKnown = false;
5278  Scope *DeclRegionScope = NamespcScope->getParent();
5279
5280  NamespaceDecl *PrevNS = 0;
5281  if (II) {
5282    // C++ [namespace.def]p2:
5283    //   The identifier in an original-namespace-definition shall not
5284    //   have been previously defined in the declarative region in
5285    //   which the original-namespace-definition appears. The
5286    //   identifier in an original-namespace-definition is the name of
5287    //   the namespace. Subsequently in that declarative region, it is
5288    //   treated as an original-namespace-name.
5289    //
5290    // Since namespace names are unique in their scope, and we don't
5291    // look through using directives, just look for any ordinary names.
5292
5293    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5294    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5295    Decl::IDNS_Namespace;
5296    NamedDecl *PrevDecl = 0;
5297    for (DeclContext::lookup_result R
5298         = CurContext->getRedeclContext()->lookup(II);
5299         R.first != R.second; ++R.first) {
5300      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5301        PrevDecl = *R.first;
5302        break;
5303      }
5304    }
5305
5306    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5307
5308    if (PrevNS) {
5309      // This is an extended namespace definition.
5310      if (IsInline != PrevNS->isInline()) {
5311        // inline-ness must match
5312        if (PrevNS->isInline()) {
5313          // The user probably just forgot the 'inline', so suggest that it
5314          // be added back.
5315          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5316            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5317        } else {
5318          Diag(Loc, diag::err_inline_namespace_mismatch)
5319            << IsInline;
5320        }
5321        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5322
5323        IsInline = PrevNS->isInline();
5324      }
5325    } else if (PrevDecl) {
5326      // This is an invalid name redefinition.
5327      Diag(Loc, diag::err_redefinition_different_kind)
5328        << II;
5329      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5330      IsInvalid = true;
5331      // Continue on to push Namespc as current DeclContext and return it.
5332    } else if (II->isStr("std") &&
5333               CurContext->getRedeclContext()->isTranslationUnit()) {
5334      // This is the first "real" definition of the namespace "std", so update
5335      // our cache of the "std" namespace to point at this definition.
5336      PrevNS = getStdNamespace();
5337      IsStd = true;
5338      AddToKnown = !IsInline;
5339    } else {
5340      // We've seen this namespace for the first time.
5341      AddToKnown = !IsInline;
5342    }
5343  } else {
5344    // Anonymous namespaces.
5345
5346    // Determine whether the parent already has an anonymous namespace.
5347    DeclContext *Parent = CurContext->getRedeclContext();
5348    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5349      PrevNS = TU->getAnonymousNamespace();
5350    } else {
5351      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5352      PrevNS = ND->getAnonymousNamespace();
5353    }
5354
5355    if (PrevNS && IsInline != PrevNS->isInline()) {
5356      // inline-ness must match
5357      Diag(Loc, diag::err_inline_namespace_mismatch)
5358        << IsInline;
5359      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5360
5361      // Recover by ignoring the new namespace's inline status.
5362      IsInline = PrevNS->isInline();
5363    }
5364  }
5365
5366  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5367                                                 StartLoc, Loc, II, PrevNS);
5368  if (IsInvalid)
5369    Namespc->setInvalidDecl();
5370
5371  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5372
5373  // FIXME: Should we be merging attributes?
5374  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5375    PushNamespaceVisibilityAttr(Attr, Loc);
5376
5377  if (IsStd)
5378    StdNamespace = Namespc;
5379  if (AddToKnown)
5380    KnownNamespaces[Namespc] = false;
5381
5382  if (II) {
5383    PushOnScopeChains(Namespc, DeclRegionScope);
5384  } else {
5385    // Link the anonymous namespace into its parent.
5386    DeclContext *Parent = CurContext->getRedeclContext();
5387    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5388      TU->setAnonymousNamespace(Namespc);
5389    } else {
5390      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5391    }
5392
5393    CurContext->addDecl(Namespc);
5394
5395    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5396    //   behaves as if it were replaced by
5397    //     namespace unique { /* empty body */ }
5398    //     using namespace unique;
5399    //     namespace unique { namespace-body }
5400    //   where all occurrences of 'unique' in a translation unit are
5401    //   replaced by the same identifier and this identifier differs
5402    //   from all other identifiers in the entire program.
5403
5404    // We just create the namespace with an empty name and then add an
5405    // implicit using declaration, just like the standard suggests.
5406    //
5407    // CodeGen enforces the "universally unique" aspect by giving all
5408    // declarations semantically contained within an anonymous
5409    // namespace internal linkage.
5410
5411    if (!PrevNS) {
5412      UsingDirectiveDecl* UD
5413        = UsingDirectiveDecl::Create(Context, CurContext,
5414                                     /* 'using' */ LBrace,
5415                                     /* 'namespace' */ SourceLocation(),
5416                                     /* qualifier */ NestedNameSpecifierLoc(),
5417                                     /* identifier */ SourceLocation(),
5418                                     Namespc,
5419                                     /* Ancestor */ CurContext);
5420      UD->setImplicit();
5421      CurContext->addDecl(UD);
5422    }
5423  }
5424
5425  ActOnDocumentableDecl(Namespc);
5426
5427  // Although we could have an invalid decl (i.e. the namespace name is a
5428  // redefinition), push it as current DeclContext and try to continue parsing.
5429  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5430  // for the namespace has the declarations that showed up in that particular
5431  // namespace definition.
5432  PushDeclContext(NamespcScope, Namespc);
5433  return Namespc;
5434}
5435
5436/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5437/// is a namespace alias, returns the namespace it points to.
5438static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5439  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5440    return AD->getNamespace();
5441  return dyn_cast_or_null<NamespaceDecl>(D);
5442}
5443
5444/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5445/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5446void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5447  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5448  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5449  Namespc->setRBraceLoc(RBrace);
5450  PopDeclContext();
5451  if (Namespc->hasAttr<VisibilityAttr>())
5452    PopPragmaVisibility(true, RBrace);
5453}
5454
5455CXXRecordDecl *Sema::getStdBadAlloc() const {
5456  return cast_or_null<CXXRecordDecl>(
5457                                  StdBadAlloc.get(Context.getExternalSource()));
5458}
5459
5460NamespaceDecl *Sema::getStdNamespace() const {
5461  return cast_or_null<NamespaceDecl>(
5462                                 StdNamespace.get(Context.getExternalSource()));
5463}
5464
5465/// \brief Retrieve the special "std" namespace, which may require us to
5466/// implicitly define the namespace.
5467NamespaceDecl *Sema::getOrCreateStdNamespace() {
5468  if (!StdNamespace) {
5469    // The "std" namespace has not yet been defined, so build one implicitly.
5470    StdNamespace = NamespaceDecl::Create(Context,
5471                                         Context.getTranslationUnitDecl(),
5472                                         /*Inline=*/false,
5473                                         SourceLocation(), SourceLocation(),
5474                                         &PP.getIdentifierTable().get("std"),
5475                                         /*PrevDecl=*/0);
5476    getStdNamespace()->setImplicit(true);
5477  }
5478
5479  return getStdNamespace();
5480}
5481
5482bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5483  assert(getLangOpts().CPlusPlus &&
5484         "Looking for std::initializer_list outside of C++.");
5485
5486  // We're looking for implicit instantiations of
5487  // template <typename E> class std::initializer_list.
5488
5489  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5490    return false;
5491
5492  ClassTemplateDecl *Template = 0;
5493  const TemplateArgument *Arguments = 0;
5494
5495  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5496
5497    ClassTemplateSpecializationDecl *Specialization =
5498        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5499    if (!Specialization)
5500      return false;
5501
5502    Template = Specialization->getSpecializedTemplate();
5503    Arguments = Specialization->getTemplateArgs().data();
5504  } else if (const TemplateSpecializationType *TST =
5505                 Ty->getAs<TemplateSpecializationType>()) {
5506    Template = dyn_cast_or_null<ClassTemplateDecl>(
5507        TST->getTemplateName().getAsTemplateDecl());
5508    Arguments = TST->getArgs();
5509  }
5510  if (!Template)
5511    return false;
5512
5513  if (!StdInitializerList) {
5514    // Haven't recognized std::initializer_list yet, maybe this is it.
5515    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5516    if (TemplateClass->getIdentifier() !=
5517            &PP.getIdentifierTable().get("initializer_list") ||
5518        !getStdNamespace()->InEnclosingNamespaceSetOf(
5519            TemplateClass->getDeclContext()))
5520      return false;
5521    // This is a template called std::initializer_list, but is it the right
5522    // template?
5523    TemplateParameterList *Params = Template->getTemplateParameters();
5524    if (Params->getMinRequiredArguments() != 1)
5525      return false;
5526    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5527      return false;
5528
5529    // It's the right template.
5530    StdInitializerList = Template;
5531  }
5532
5533  if (Template != StdInitializerList)
5534    return false;
5535
5536  // This is an instance of std::initializer_list. Find the argument type.
5537  if (Element)
5538    *Element = Arguments[0].getAsType();
5539  return true;
5540}
5541
5542static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5543  NamespaceDecl *Std = S.getStdNamespace();
5544  if (!Std) {
5545    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5546    return 0;
5547  }
5548
5549  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5550                      Loc, Sema::LookupOrdinaryName);
5551  if (!S.LookupQualifiedName(Result, Std)) {
5552    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5553    return 0;
5554  }
5555  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5556  if (!Template) {
5557    Result.suppressDiagnostics();
5558    // We found something weird. Complain about the first thing we found.
5559    NamedDecl *Found = *Result.begin();
5560    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5561    return 0;
5562  }
5563
5564  // We found some template called std::initializer_list. Now verify that it's
5565  // correct.
5566  TemplateParameterList *Params = Template->getTemplateParameters();
5567  if (Params->getMinRequiredArguments() != 1 ||
5568      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5569    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5570    return 0;
5571  }
5572
5573  return Template;
5574}
5575
5576QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5577  if (!StdInitializerList) {
5578    StdInitializerList = LookupStdInitializerList(*this, Loc);
5579    if (!StdInitializerList)
5580      return QualType();
5581  }
5582
5583  TemplateArgumentListInfo Args(Loc, Loc);
5584  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5585                                       Context.getTrivialTypeSourceInfo(Element,
5586                                                                        Loc)));
5587  return Context.getCanonicalType(
5588      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5589}
5590
5591bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5592  // C++ [dcl.init.list]p2:
5593  //   A constructor is an initializer-list constructor if its first parameter
5594  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5595  //   std::initializer_list<E> for some type E, and either there are no other
5596  //   parameters or else all other parameters have default arguments.
5597  if (Ctor->getNumParams() < 1 ||
5598      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5599    return false;
5600
5601  QualType ArgType = Ctor->getParamDecl(0)->getType();
5602  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5603    ArgType = RT->getPointeeType().getUnqualifiedType();
5604
5605  return isStdInitializerList(ArgType, 0);
5606}
5607
5608/// \brief Determine whether a using statement is in a context where it will be
5609/// apply in all contexts.
5610static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5611  switch (CurContext->getDeclKind()) {
5612    case Decl::TranslationUnit:
5613      return true;
5614    case Decl::LinkageSpec:
5615      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5616    default:
5617      return false;
5618  }
5619}
5620
5621namespace {
5622
5623// Callback to only accept typo corrections that are namespaces.
5624class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5625 public:
5626  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5627    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5628      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5629    }
5630    return false;
5631  }
5632};
5633
5634}
5635
5636static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5637                                       CXXScopeSpec &SS,
5638                                       SourceLocation IdentLoc,
5639                                       IdentifierInfo *Ident) {
5640  NamespaceValidatorCCC Validator;
5641  R.clear();
5642  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5643                                               R.getLookupKind(), Sc, &SS,
5644                                               Validator)) {
5645    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
5646    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
5647    if (DeclContext *DC = S.computeDeclContext(SS, false))
5648      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5649        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5650        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5651    else
5652      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5653        << Ident << CorrectedQuotedStr
5654        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5655
5656    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5657         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5658
5659    R.addDecl(Corrected.getCorrectionDecl());
5660    return true;
5661  }
5662  return false;
5663}
5664
5665Decl *Sema::ActOnUsingDirective(Scope *S,
5666                                          SourceLocation UsingLoc,
5667                                          SourceLocation NamespcLoc,
5668                                          CXXScopeSpec &SS,
5669                                          SourceLocation IdentLoc,
5670                                          IdentifierInfo *NamespcName,
5671                                          AttributeList *AttrList) {
5672  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5673  assert(NamespcName && "Invalid NamespcName.");
5674  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5675
5676  // This can only happen along a recovery path.
5677  while (S->getFlags() & Scope::TemplateParamScope)
5678    S = S->getParent();
5679  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5680
5681  UsingDirectiveDecl *UDir = 0;
5682  NestedNameSpecifier *Qualifier = 0;
5683  if (SS.isSet())
5684    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5685
5686  // Lookup namespace name.
5687  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5688  LookupParsedName(R, S, &SS);
5689  if (R.isAmbiguous())
5690    return 0;
5691
5692  if (R.empty()) {
5693    R.clear();
5694    // Allow "using namespace std;" or "using namespace ::std;" even if
5695    // "std" hasn't been defined yet, for GCC compatibility.
5696    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5697        NamespcName->isStr("std")) {
5698      Diag(IdentLoc, diag::ext_using_undefined_std);
5699      R.addDecl(getOrCreateStdNamespace());
5700      R.resolveKind();
5701    }
5702    // Otherwise, attempt typo correction.
5703    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5704  }
5705
5706  if (!R.empty()) {
5707    NamedDecl *Named = R.getFoundDecl();
5708    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5709        && "expected namespace decl");
5710    // C++ [namespace.udir]p1:
5711    //   A using-directive specifies that the names in the nominated
5712    //   namespace can be used in the scope in which the
5713    //   using-directive appears after the using-directive. During
5714    //   unqualified name lookup (3.4.1), the names appear as if they
5715    //   were declared in the nearest enclosing namespace which
5716    //   contains both the using-directive and the nominated
5717    //   namespace. [Note: in this context, "contains" means "contains
5718    //   directly or indirectly". ]
5719
5720    // Find enclosing context containing both using-directive and
5721    // nominated namespace.
5722    NamespaceDecl *NS = getNamespaceDecl(Named);
5723    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5724    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5725      CommonAncestor = CommonAncestor->getParent();
5726
5727    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5728                                      SS.getWithLocInContext(Context),
5729                                      IdentLoc, Named, CommonAncestor);
5730
5731    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5732        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5733      Diag(IdentLoc, diag::warn_using_directive_in_header);
5734    }
5735
5736    PushUsingDirective(S, UDir);
5737  } else {
5738    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5739  }
5740
5741  // FIXME: We ignore attributes for now.
5742  return UDir;
5743}
5744
5745void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5746  // If the scope has an associated entity and the using directive is at
5747  // namespace or translation unit scope, add the UsingDirectiveDecl into
5748  // its lookup structure so qualified name lookup can find it.
5749  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
5750  if (Ctx && !Ctx->isFunctionOrMethod())
5751    Ctx->addDecl(UDir);
5752  else
5753    // Otherwise, it is at block sope. The using-directives will affect lookup
5754    // only to the end of the scope.
5755    S->PushUsingDirective(UDir);
5756}
5757
5758
5759Decl *Sema::ActOnUsingDeclaration(Scope *S,
5760                                  AccessSpecifier AS,
5761                                  bool HasUsingKeyword,
5762                                  SourceLocation UsingLoc,
5763                                  CXXScopeSpec &SS,
5764                                  UnqualifiedId &Name,
5765                                  AttributeList *AttrList,
5766                                  bool IsTypeName,
5767                                  SourceLocation TypenameLoc) {
5768  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5769
5770  switch (Name.getKind()) {
5771  case UnqualifiedId::IK_ImplicitSelfParam:
5772  case UnqualifiedId::IK_Identifier:
5773  case UnqualifiedId::IK_OperatorFunctionId:
5774  case UnqualifiedId::IK_LiteralOperatorId:
5775  case UnqualifiedId::IK_ConversionFunctionId:
5776    break;
5777
5778  case UnqualifiedId::IK_ConstructorName:
5779  case UnqualifiedId::IK_ConstructorTemplateId:
5780    // C++11 inheriting constructors.
5781    Diag(Name.getLocStart(),
5782         getLangOpts().CPlusPlus0x ?
5783           // FIXME: Produce warn_cxx98_compat_using_decl_constructor
5784           //        instead once inheriting constructors work.
5785           diag::err_using_decl_constructor_unsupported :
5786           diag::err_using_decl_constructor)
5787      << SS.getRange();
5788
5789    if (getLangOpts().CPlusPlus0x) break;
5790
5791    return 0;
5792
5793  case UnqualifiedId::IK_DestructorName:
5794    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
5795      << SS.getRange();
5796    return 0;
5797
5798  case UnqualifiedId::IK_TemplateId:
5799    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
5800      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5801    return 0;
5802  }
5803
5804  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5805  DeclarationName TargetName = TargetNameInfo.getName();
5806  if (!TargetName)
5807    return 0;
5808
5809  // Warn about using declarations.
5810  // TODO: store that the declaration was written without 'using' and
5811  // talk about access decls instead of using decls in the
5812  // diagnostics.
5813  if (!HasUsingKeyword) {
5814    UsingLoc = Name.getLocStart();
5815
5816    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5817      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5818  }
5819
5820  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5821      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5822    return 0;
5823
5824  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5825                                        TargetNameInfo, AttrList,
5826                                        /* IsInstantiation */ false,
5827                                        IsTypeName, TypenameLoc);
5828  if (UD)
5829    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5830
5831  return UD;
5832}
5833
5834/// \brief Determine whether a using declaration considers the given
5835/// declarations as "equivalent", e.g., if they are redeclarations of
5836/// the same entity or are both typedefs of the same type.
5837static bool
5838IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5839                         bool &SuppressRedeclaration) {
5840  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5841    SuppressRedeclaration = false;
5842    return true;
5843  }
5844
5845  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5846    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5847      SuppressRedeclaration = true;
5848      return Context.hasSameType(TD1->getUnderlyingType(),
5849                                 TD2->getUnderlyingType());
5850    }
5851
5852  return false;
5853}
5854
5855
5856/// Determines whether to create a using shadow decl for a particular
5857/// decl, given the set of decls existing prior to this using lookup.
5858bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5859                                const LookupResult &Previous) {
5860  // Diagnose finding a decl which is not from a base class of the
5861  // current class.  We do this now because there are cases where this
5862  // function will silently decide not to build a shadow decl, which
5863  // will pre-empt further diagnostics.
5864  //
5865  // We don't need to do this in C++0x because we do the check once on
5866  // the qualifier.
5867  //
5868  // FIXME: diagnose the following if we care enough:
5869  //   struct A { int foo; };
5870  //   struct B : A { using A::foo; };
5871  //   template <class T> struct C : A {};
5872  //   template <class T> struct D : C<T> { using B::foo; } // <---
5873  // This is invalid (during instantiation) in C++03 because B::foo
5874  // resolves to the using decl in B, which is not a base class of D<T>.
5875  // We can't diagnose it immediately because C<T> is an unknown
5876  // specialization.  The UsingShadowDecl in D<T> then points directly
5877  // to A::foo, which will look well-formed when we instantiate.
5878  // The right solution is to not collapse the shadow-decl chain.
5879  if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
5880    DeclContext *OrigDC = Orig->getDeclContext();
5881
5882    // Handle enums and anonymous structs.
5883    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5884    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5885    while (OrigRec->isAnonymousStructOrUnion())
5886      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5887
5888    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5889      if (OrigDC == CurContext) {
5890        Diag(Using->getLocation(),
5891             diag::err_using_decl_nested_name_specifier_is_current_class)
5892          << Using->getQualifierLoc().getSourceRange();
5893        Diag(Orig->getLocation(), diag::note_using_decl_target);
5894        return true;
5895      }
5896
5897      Diag(Using->getQualifierLoc().getBeginLoc(),
5898           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5899        << Using->getQualifier()
5900        << cast<CXXRecordDecl>(CurContext)
5901        << Using->getQualifierLoc().getSourceRange();
5902      Diag(Orig->getLocation(), diag::note_using_decl_target);
5903      return true;
5904    }
5905  }
5906
5907  if (Previous.empty()) return false;
5908
5909  NamedDecl *Target = Orig;
5910  if (isa<UsingShadowDecl>(Target))
5911    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5912
5913  // If the target happens to be one of the previous declarations, we
5914  // don't have a conflict.
5915  //
5916  // FIXME: but we might be increasing its access, in which case we
5917  // should redeclare it.
5918  NamedDecl *NonTag = 0, *Tag = 0;
5919  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5920         I != E; ++I) {
5921    NamedDecl *D = (*I)->getUnderlyingDecl();
5922    bool Result;
5923    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5924      return Result;
5925
5926    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5927  }
5928
5929  if (Target->isFunctionOrFunctionTemplate()) {
5930    FunctionDecl *FD;
5931    if (isa<FunctionTemplateDecl>(Target))
5932      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5933    else
5934      FD = cast<FunctionDecl>(Target);
5935
5936    NamedDecl *OldDecl = 0;
5937    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5938    case Ovl_Overload:
5939      return false;
5940
5941    case Ovl_NonFunction:
5942      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5943      break;
5944
5945    // We found a decl with the exact signature.
5946    case Ovl_Match:
5947      // If we're in a record, we want to hide the target, so we
5948      // return true (without a diagnostic) to tell the caller not to
5949      // build a shadow decl.
5950      if (CurContext->isRecord())
5951        return true;
5952
5953      // If we're not in a record, this is an error.
5954      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5955      break;
5956    }
5957
5958    Diag(Target->getLocation(), diag::note_using_decl_target);
5959    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5960    return true;
5961  }
5962
5963  // Target is not a function.
5964
5965  if (isa<TagDecl>(Target)) {
5966    // No conflict between a tag and a non-tag.
5967    if (!Tag) return false;
5968
5969    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5970    Diag(Target->getLocation(), diag::note_using_decl_target);
5971    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5972    return true;
5973  }
5974
5975  // No conflict between a tag and a non-tag.
5976  if (!NonTag) return false;
5977
5978  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5979  Diag(Target->getLocation(), diag::note_using_decl_target);
5980  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5981  return true;
5982}
5983
5984/// Builds a shadow declaration corresponding to a 'using' declaration.
5985UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5986                                            UsingDecl *UD,
5987                                            NamedDecl *Orig) {
5988
5989  // If we resolved to another shadow declaration, just coalesce them.
5990  NamedDecl *Target = Orig;
5991  if (isa<UsingShadowDecl>(Target)) {
5992    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5993    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5994  }
5995
5996  UsingShadowDecl *Shadow
5997    = UsingShadowDecl::Create(Context, CurContext,
5998                              UD->getLocation(), UD, Target);
5999  UD->addShadowDecl(Shadow);
6000
6001  Shadow->setAccess(UD->getAccess());
6002  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6003    Shadow->setInvalidDecl();
6004
6005  if (S)
6006    PushOnScopeChains(Shadow, S);
6007  else
6008    CurContext->addDecl(Shadow);
6009
6010
6011  return Shadow;
6012}
6013
6014/// Hides a using shadow declaration.  This is required by the current
6015/// using-decl implementation when a resolvable using declaration in a
6016/// class is followed by a declaration which would hide or override
6017/// one or more of the using decl's targets; for example:
6018///
6019///   struct Base { void foo(int); };
6020///   struct Derived : Base {
6021///     using Base::foo;
6022///     void foo(int);
6023///   };
6024///
6025/// The governing language is C++03 [namespace.udecl]p12:
6026///
6027///   When a using-declaration brings names from a base class into a
6028///   derived class scope, member functions in the derived class
6029///   override and/or hide member functions with the same name and
6030///   parameter types in a base class (rather than conflicting).
6031///
6032/// There are two ways to implement this:
6033///   (1) optimistically create shadow decls when they're not hidden
6034///       by existing declarations, or
6035///   (2) don't create any shadow decls (or at least don't make them
6036///       visible) until we've fully parsed/instantiated the class.
6037/// The problem with (1) is that we might have to retroactively remove
6038/// a shadow decl, which requires several O(n) operations because the
6039/// decl structures are (very reasonably) not designed for removal.
6040/// (2) avoids this but is very fiddly and phase-dependent.
6041void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6042  if (Shadow->getDeclName().getNameKind() ==
6043        DeclarationName::CXXConversionFunctionName)
6044    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6045
6046  // Remove it from the DeclContext...
6047  Shadow->getDeclContext()->removeDecl(Shadow);
6048
6049  // ...and the scope, if applicable...
6050  if (S) {
6051    S->RemoveDecl(Shadow);
6052    IdResolver.RemoveDecl(Shadow);
6053  }
6054
6055  // ...and the using decl.
6056  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6057
6058  // TODO: complain somehow if Shadow was used.  It shouldn't
6059  // be possible for this to happen, because...?
6060}
6061
6062/// Builds a using declaration.
6063///
6064/// \param IsInstantiation - Whether this call arises from an
6065///   instantiation of an unresolved using declaration.  We treat
6066///   the lookup differently for these declarations.
6067NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6068                                       SourceLocation UsingLoc,
6069                                       CXXScopeSpec &SS,
6070                                       const DeclarationNameInfo &NameInfo,
6071                                       AttributeList *AttrList,
6072                                       bool IsInstantiation,
6073                                       bool IsTypeName,
6074                                       SourceLocation TypenameLoc) {
6075  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6076  SourceLocation IdentLoc = NameInfo.getLoc();
6077  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6078
6079  // FIXME: We ignore attributes for now.
6080
6081  if (SS.isEmpty()) {
6082    Diag(IdentLoc, diag::err_using_requires_qualname);
6083    return 0;
6084  }
6085
6086  // Do the redeclaration lookup in the current scope.
6087  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6088                        ForRedeclaration);
6089  Previous.setHideTags(false);
6090  if (S) {
6091    LookupName(Previous, S);
6092
6093    // It is really dumb that we have to do this.
6094    LookupResult::Filter F = Previous.makeFilter();
6095    while (F.hasNext()) {
6096      NamedDecl *D = F.next();
6097      if (!isDeclInScope(D, CurContext, S))
6098        F.erase();
6099    }
6100    F.done();
6101  } else {
6102    assert(IsInstantiation && "no scope in non-instantiation");
6103    assert(CurContext->isRecord() && "scope not record in instantiation");
6104    LookupQualifiedName(Previous, CurContext);
6105  }
6106
6107  // Check for invalid redeclarations.
6108  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6109    return 0;
6110
6111  // Check for bad qualifiers.
6112  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6113    return 0;
6114
6115  DeclContext *LookupContext = computeDeclContext(SS);
6116  NamedDecl *D;
6117  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6118  if (!LookupContext) {
6119    if (IsTypeName) {
6120      // FIXME: not all declaration name kinds are legal here
6121      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6122                                              UsingLoc, TypenameLoc,
6123                                              QualifierLoc,
6124                                              IdentLoc, NameInfo.getName());
6125    } else {
6126      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6127                                           QualifierLoc, NameInfo);
6128    }
6129  } else {
6130    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6131                          NameInfo, IsTypeName);
6132  }
6133  D->setAccess(AS);
6134  CurContext->addDecl(D);
6135
6136  if (!LookupContext) return D;
6137  UsingDecl *UD = cast<UsingDecl>(D);
6138
6139  if (RequireCompleteDeclContext(SS, LookupContext)) {
6140    UD->setInvalidDecl();
6141    return UD;
6142  }
6143
6144  // The normal rules do not apply to inheriting constructor declarations.
6145  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6146    if (CheckInheritingConstructorUsingDecl(UD))
6147      UD->setInvalidDecl();
6148    return UD;
6149  }
6150
6151  // Otherwise, look up the target name.
6152
6153  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6154
6155  // Unlike most lookups, we don't always want to hide tag
6156  // declarations: tag names are visible through the using declaration
6157  // even if hidden by ordinary names, *except* in a dependent context
6158  // where it's important for the sanity of two-phase lookup.
6159  if (!IsInstantiation)
6160    R.setHideTags(false);
6161
6162  // For the purposes of this lookup, we have a base object type
6163  // equal to that of the current context.
6164  if (CurContext->isRecord()) {
6165    R.setBaseObjectType(
6166                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6167  }
6168
6169  LookupQualifiedName(R, LookupContext);
6170
6171  if (R.empty()) {
6172    Diag(IdentLoc, diag::err_no_member)
6173      << NameInfo.getName() << LookupContext << SS.getRange();
6174    UD->setInvalidDecl();
6175    return UD;
6176  }
6177
6178  if (R.isAmbiguous()) {
6179    UD->setInvalidDecl();
6180    return UD;
6181  }
6182
6183  if (IsTypeName) {
6184    // If we asked for a typename and got a non-type decl, error out.
6185    if (!R.getAsSingle<TypeDecl>()) {
6186      Diag(IdentLoc, diag::err_using_typename_non_type);
6187      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6188        Diag((*I)->getUnderlyingDecl()->getLocation(),
6189             diag::note_using_decl_target);
6190      UD->setInvalidDecl();
6191      return UD;
6192    }
6193  } else {
6194    // If we asked for a non-typename and we got a type, error out,
6195    // but only if this is an instantiation of an unresolved using
6196    // decl.  Otherwise just silently find the type name.
6197    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6198      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6199      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6200      UD->setInvalidDecl();
6201      return UD;
6202    }
6203  }
6204
6205  // C++0x N2914 [namespace.udecl]p6:
6206  // A using-declaration shall not name a namespace.
6207  if (R.getAsSingle<NamespaceDecl>()) {
6208    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6209      << SS.getRange();
6210    UD->setInvalidDecl();
6211    return UD;
6212  }
6213
6214  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6215    if (!CheckUsingShadowDecl(UD, *I, Previous))
6216      BuildUsingShadowDecl(S, UD, *I);
6217  }
6218
6219  return UD;
6220}
6221
6222/// Additional checks for a using declaration referring to a constructor name.
6223bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6224  assert(!UD->isTypeName() && "expecting a constructor name");
6225
6226  const Type *SourceType = UD->getQualifier()->getAsType();
6227  assert(SourceType &&
6228         "Using decl naming constructor doesn't have type in scope spec.");
6229  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6230
6231  // Check whether the named type is a direct base class.
6232  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6233  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6234  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6235       BaseIt != BaseE; ++BaseIt) {
6236    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6237    if (CanonicalSourceType == BaseType)
6238      break;
6239    if (BaseIt->getType()->isDependentType())
6240      break;
6241  }
6242
6243  if (BaseIt == BaseE) {
6244    // Did not find SourceType in the bases.
6245    Diag(UD->getUsingLocation(),
6246         diag::err_using_decl_constructor_not_in_direct_base)
6247      << UD->getNameInfo().getSourceRange()
6248      << QualType(SourceType, 0) << TargetClass;
6249    return true;
6250  }
6251
6252  if (!CurContext->isDependentContext())
6253    BaseIt->setInheritConstructors();
6254
6255  return false;
6256}
6257
6258/// Checks that the given using declaration is not an invalid
6259/// redeclaration.  Note that this is checking only for the using decl
6260/// itself, not for any ill-formedness among the UsingShadowDecls.
6261bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6262                                       bool isTypeName,
6263                                       const CXXScopeSpec &SS,
6264                                       SourceLocation NameLoc,
6265                                       const LookupResult &Prev) {
6266  // C++03 [namespace.udecl]p8:
6267  // C++0x [namespace.udecl]p10:
6268  //   A using-declaration is a declaration and can therefore be used
6269  //   repeatedly where (and only where) multiple declarations are
6270  //   allowed.
6271  //
6272  // That's in non-member contexts.
6273  if (!CurContext->getRedeclContext()->isRecord())
6274    return false;
6275
6276  NestedNameSpecifier *Qual
6277    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6278
6279  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6280    NamedDecl *D = *I;
6281
6282    bool DTypename;
6283    NestedNameSpecifier *DQual;
6284    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6285      DTypename = UD->isTypeName();
6286      DQual = UD->getQualifier();
6287    } else if (UnresolvedUsingValueDecl *UD
6288                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6289      DTypename = false;
6290      DQual = UD->getQualifier();
6291    } else if (UnresolvedUsingTypenameDecl *UD
6292                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6293      DTypename = true;
6294      DQual = UD->getQualifier();
6295    } else continue;
6296
6297    // using decls differ if one says 'typename' and the other doesn't.
6298    // FIXME: non-dependent using decls?
6299    if (isTypeName != DTypename) continue;
6300
6301    // using decls differ if they name different scopes (but note that
6302    // template instantiation can cause this check to trigger when it
6303    // didn't before instantiation).
6304    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6305        Context.getCanonicalNestedNameSpecifier(DQual))
6306      continue;
6307
6308    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6309    Diag(D->getLocation(), diag::note_using_decl) << 1;
6310    return true;
6311  }
6312
6313  return false;
6314}
6315
6316
6317/// Checks that the given nested-name qualifier used in a using decl
6318/// in the current context is appropriately related to the current
6319/// scope.  If an error is found, diagnoses it and returns true.
6320bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6321                                   const CXXScopeSpec &SS,
6322                                   SourceLocation NameLoc) {
6323  DeclContext *NamedContext = computeDeclContext(SS);
6324
6325  if (!CurContext->isRecord()) {
6326    // C++03 [namespace.udecl]p3:
6327    // C++0x [namespace.udecl]p8:
6328    //   A using-declaration for a class member shall be a member-declaration.
6329
6330    // If we weren't able to compute a valid scope, it must be a
6331    // dependent class scope.
6332    if (!NamedContext || NamedContext->isRecord()) {
6333      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6334        << SS.getRange();
6335      return true;
6336    }
6337
6338    // Otherwise, everything is known to be fine.
6339    return false;
6340  }
6341
6342  // The current scope is a record.
6343
6344  // If the named context is dependent, we can't decide much.
6345  if (!NamedContext) {
6346    // FIXME: in C++0x, we can diagnose if we can prove that the
6347    // nested-name-specifier does not refer to a base class, which is
6348    // still possible in some cases.
6349
6350    // Otherwise we have to conservatively report that things might be
6351    // okay.
6352    return false;
6353  }
6354
6355  if (!NamedContext->isRecord()) {
6356    // Ideally this would point at the last name in the specifier,
6357    // but we don't have that level of source info.
6358    Diag(SS.getRange().getBegin(),
6359         diag::err_using_decl_nested_name_specifier_is_not_class)
6360      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6361    return true;
6362  }
6363
6364  if (!NamedContext->isDependentContext() &&
6365      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6366    return true;
6367
6368  if (getLangOpts().CPlusPlus0x) {
6369    // C++0x [namespace.udecl]p3:
6370    //   In a using-declaration used as a member-declaration, the
6371    //   nested-name-specifier shall name a base class of the class
6372    //   being defined.
6373
6374    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6375                                 cast<CXXRecordDecl>(NamedContext))) {
6376      if (CurContext == NamedContext) {
6377        Diag(NameLoc,
6378             diag::err_using_decl_nested_name_specifier_is_current_class)
6379          << SS.getRange();
6380        return true;
6381      }
6382
6383      Diag(SS.getRange().getBegin(),
6384           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6385        << (NestedNameSpecifier*) SS.getScopeRep()
6386        << cast<CXXRecordDecl>(CurContext)
6387        << SS.getRange();
6388      return true;
6389    }
6390
6391    return false;
6392  }
6393
6394  // C++03 [namespace.udecl]p4:
6395  //   A using-declaration used as a member-declaration shall refer
6396  //   to a member of a base class of the class being defined [etc.].
6397
6398  // Salient point: SS doesn't have to name a base class as long as
6399  // lookup only finds members from base classes.  Therefore we can
6400  // diagnose here only if we can prove that that can't happen,
6401  // i.e. if the class hierarchies provably don't intersect.
6402
6403  // TODO: it would be nice if "definitely valid" results were cached
6404  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6405  // need to be repeated.
6406
6407  struct UserData {
6408    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6409
6410    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6411      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6412      Data->Bases.insert(Base);
6413      return true;
6414    }
6415
6416    bool hasDependentBases(const CXXRecordDecl *Class) {
6417      return !Class->forallBases(collect, this);
6418    }
6419
6420    /// Returns true if the base is dependent or is one of the
6421    /// accumulated base classes.
6422    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6423      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6424      return !Data->Bases.count(Base);
6425    }
6426
6427    bool mightShareBases(const CXXRecordDecl *Class) {
6428      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6429    }
6430  };
6431
6432  UserData Data;
6433
6434  // Returns false if we find a dependent base.
6435  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6436    return false;
6437
6438  // Returns false if the class has a dependent base or if it or one
6439  // of its bases is present in the base set of the current context.
6440  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6441    return false;
6442
6443  Diag(SS.getRange().getBegin(),
6444       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6445    << (NestedNameSpecifier*) SS.getScopeRep()
6446    << cast<CXXRecordDecl>(CurContext)
6447    << SS.getRange();
6448
6449  return true;
6450}
6451
6452Decl *Sema::ActOnAliasDeclaration(Scope *S,
6453                                  AccessSpecifier AS,
6454                                  MultiTemplateParamsArg TemplateParamLists,
6455                                  SourceLocation UsingLoc,
6456                                  UnqualifiedId &Name,
6457                                  TypeResult Type) {
6458  // Skip up to the relevant declaration scope.
6459  while (S->getFlags() & Scope::TemplateParamScope)
6460    S = S->getParent();
6461  assert((S->getFlags() & Scope::DeclScope) &&
6462         "got alias-declaration outside of declaration scope");
6463
6464  if (Type.isInvalid())
6465    return 0;
6466
6467  bool Invalid = false;
6468  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6469  TypeSourceInfo *TInfo = 0;
6470  GetTypeFromParser(Type.get(), &TInfo);
6471
6472  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6473    return 0;
6474
6475  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6476                                      UPPC_DeclarationType)) {
6477    Invalid = true;
6478    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6479                                             TInfo->getTypeLoc().getBeginLoc());
6480  }
6481
6482  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6483  LookupName(Previous, S);
6484
6485  // Warn about shadowing the name of a template parameter.
6486  if (Previous.isSingleResult() &&
6487      Previous.getFoundDecl()->isTemplateParameter()) {
6488    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6489    Previous.clear();
6490  }
6491
6492  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6493         "name in alias declaration must be an identifier");
6494  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6495                                               Name.StartLocation,
6496                                               Name.Identifier, TInfo);
6497
6498  NewTD->setAccess(AS);
6499
6500  if (Invalid)
6501    NewTD->setInvalidDecl();
6502
6503  CheckTypedefForVariablyModifiedType(S, NewTD);
6504  Invalid |= NewTD->isInvalidDecl();
6505
6506  bool Redeclaration = false;
6507
6508  NamedDecl *NewND;
6509  if (TemplateParamLists.size()) {
6510    TypeAliasTemplateDecl *OldDecl = 0;
6511    TemplateParameterList *OldTemplateParams = 0;
6512
6513    if (TemplateParamLists.size() != 1) {
6514      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6515        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6516         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6517    }
6518    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6519
6520    // Only consider previous declarations in the same scope.
6521    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6522                         /*ExplicitInstantiationOrSpecialization*/false);
6523    if (!Previous.empty()) {
6524      Redeclaration = true;
6525
6526      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6527      if (!OldDecl && !Invalid) {
6528        Diag(UsingLoc, diag::err_redefinition_different_kind)
6529          << Name.Identifier;
6530
6531        NamedDecl *OldD = Previous.getRepresentativeDecl();
6532        if (OldD->getLocation().isValid())
6533          Diag(OldD->getLocation(), diag::note_previous_definition);
6534
6535        Invalid = true;
6536      }
6537
6538      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6539        if (TemplateParameterListsAreEqual(TemplateParams,
6540                                           OldDecl->getTemplateParameters(),
6541                                           /*Complain=*/true,
6542                                           TPL_TemplateMatch))
6543          OldTemplateParams = OldDecl->getTemplateParameters();
6544        else
6545          Invalid = true;
6546
6547        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6548        if (!Invalid &&
6549            !Context.hasSameType(OldTD->getUnderlyingType(),
6550                                 NewTD->getUnderlyingType())) {
6551          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6552          // but we can't reasonably accept it.
6553          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6554            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6555          if (OldTD->getLocation().isValid())
6556            Diag(OldTD->getLocation(), diag::note_previous_definition);
6557          Invalid = true;
6558        }
6559      }
6560    }
6561
6562    // Merge any previous default template arguments into our parameters,
6563    // and check the parameter list.
6564    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6565                                   TPC_TypeAliasTemplate))
6566      return 0;
6567
6568    TypeAliasTemplateDecl *NewDecl =
6569      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6570                                    Name.Identifier, TemplateParams,
6571                                    NewTD);
6572
6573    NewDecl->setAccess(AS);
6574
6575    if (Invalid)
6576      NewDecl->setInvalidDecl();
6577    else if (OldDecl)
6578      NewDecl->setPreviousDeclaration(OldDecl);
6579
6580    NewND = NewDecl;
6581  } else {
6582    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6583    NewND = NewTD;
6584  }
6585
6586  if (!Redeclaration)
6587    PushOnScopeChains(NewND, S);
6588
6589  return NewND;
6590}
6591
6592Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6593                                             SourceLocation NamespaceLoc,
6594                                             SourceLocation AliasLoc,
6595                                             IdentifierInfo *Alias,
6596                                             CXXScopeSpec &SS,
6597                                             SourceLocation IdentLoc,
6598                                             IdentifierInfo *Ident) {
6599
6600  // Lookup the namespace name.
6601  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6602  LookupParsedName(R, S, &SS);
6603
6604  // Check if we have a previous declaration with the same name.
6605  NamedDecl *PrevDecl
6606    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6607                       ForRedeclaration);
6608  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6609    PrevDecl = 0;
6610
6611  if (PrevDecl) {
6612    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6613      // We already have an alias with the same name that points to the same
6614      // namespace, so don't create a new one.
6615      // FIXME: At some point, we'll want to create the (redundant)
6616      // declaration to maintain better source information.
6617      if (!R.isAmbiguous() && !R.empty() &&
6618          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6619        return 0;
6620    }
6621
6622    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6623      diag::err_redefinition_different_kind;
6624    Diag(AliasLoc, DiagID) << Alias;
6625    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6626    return 0;
6627  }
6628
6629  if (R.isAmbiguous())
6630    return 0;
6631
6632  if (R.empty()) {
6633    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6634      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6635      return 0;
6636    }
6637  }
6638
6639  NamespaceAliasDecl *AliasDecl =
6640    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6641                               Alias, SS.getWithLocInContext(Context),
6642                               IdentLoc, R.getFoundDecl());
6643
6644  PushOnScopeChains(AliasDecl, S);
6645  return AliasDecl;
6646}
6647
6648namespace {
6649  /// \brief Scoped object used to handle the state changes required in Sema
6650  /// to implicitly define the body of a C++ member function;
6651  class ImplicitlyDefinedFunctionScope {
6652    Sema &S;
6653    Sema::ContextRAII SavedContext;
6654
6655  public:
6656    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6657      : S(S), SavedContext(S, Method)
6658    {
6659      S.PushFunctionScope();
6660      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6661    }
6662
6663    ~ImplicitlyDefinedFunctionScope() {
6664      S.PopExpressionEvaluationContext();
6665      S.PopFunctionScopeInfo();
6666    }
6667  };
6668}
6669
6670Sema::ImplicitExceptionSpecification
6671Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6672  // C++ [except.spec]p14:
6673  //   An implicitly declared special member function (Clause 12) shall have an
6674  //   exception-specification. [...]
6675  ImplicitExceptionSpecification ExceptSpec(*this);
6676  if (ClassDecl->isInvalidDecl())
6677    return ExceptSpec;
6678
6679  // Direct base-class constructors.
6680  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6681                                       BEnd = ClassDecl->bases_end();
6682       B != BEnd; ++B) {
6683    if (B->isVirtual()) // Handled below.
6684      continue;
6685
6686    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6687      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6688      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6689      // If this is a deleted function, add it anyway. This might be conformant
6690      // with the standard. This might not. I'm not sure. It might not matter.
6691      if (Constructor)
6692        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6693    }
6694  }
6695
6696  // Virtual base-class constructors.
6697  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6698                                       BEnd = ClassDecl->vbases_end();
6699       B != BEnd; ++B) {
6700    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6701      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6702      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6703      // If this is a deleted function, add it anyway. This might be conformant
6704      // with the standard. This might not. I'm not sure. It might not matter.
6705      if (Constructor)
6706        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6707    }
6708  }
6709
6710  // Field constructors.
6711  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6712                               FEnd = ClassDecl->field_end();
6713       F != FEnd; ++F) {
6714    if (F->hasInClassInitializer()) {
6715      if (Expr *E = F->getInClassInitializer())
6716        ExceptSpec.CalledExpr(E);
6717      else if (!F->isInvalidDecl())
6718        ExceptSpec.SetDelayed();
6719    } else if (const RecordType *RecordTy
6720              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6721      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6722      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6723      // If this is a deleted function, add it anyway. This might be conformant
6724      // with the standard. This might not. I'm not sure. It might not matter.
6725      // In particular, the problem is that this function never gets called. It
6726      // might just be ill-formed because this function attempts to refer to
6727      // a deleted function here.
6728      if (Constructor)
6729        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
6730    }
6731  }
6732
6733  return ExceptSpec;
6734}
6735
6736CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6737                                                     CXXRecordDecl *ClassDecl) {
6738  // C++ [class.ctor]p5:
6739  //   A default constructor for a class X is a constructor of class X
6740  //   that can be called without an argument. If there is no
6741  //   user-declared constructor for class X, a default constructor is
6742  //   implicitly declared. An implicitly-declared default constructor
6743  //   is an inline public member of its class.
6744  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6745         "Should not build implicit default constructor!");
6746
6747  ImplicitExceptionSpecification Spec =
6748    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6749  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6750
6751  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
6752                                                     CXXDefaultConstructor,
6753                                                     false);
6754
6755  // Create the actual constructor declaration.
6756  CanQualType ClassType
6757    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6758  SourceLocation ClassLoc = ClassDecl->getLocation();
6759  DeclarationName Name
6760    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6761  DeclarationNameInfo NameInfo(Name, ClassLoc);
6762  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6763      Context, ClassDecl, ClassLoc, NameInfo,
6764      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6765      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6766      Constexpr);
6767  DefaultCon->setAccess(AS_public);
6768  DefaultCon->setDefaulted();
6769  DefaultCon->setImplicit();
6770  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6771
6772  // Note that we have declared this constructor.
6773  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6774
6775  if (Scope *S = getScopeForContext(ClassDecl))
6776    PushOnScopeChains(DefaultCon, S, false);
6777  ClassDecl->addDecl(DefaultCon);
6778
6779  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6780    DefaultCon->setDeletedAsWritten();
6781
6782  return DefaultCon;
6783}
6784
6785void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6786                                            CXXConstructorDecl *Constructor) {
6787  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6788          !Constructor->doesThisDeclarationHaveABody() &&
6789          !Constructor->isDeleted()) &&
6790    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6791
6792  CXXRecordDecl *ClassDecl = Constructor->getParent();
6793  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6794
6795  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6796  DiagnosticErrorTrap Trap(Diags);
6797  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6798      Trap.hasErrorOccurred()) {
6799    Diag(CurrentLocation, diag::note_member_synthesized_at)
6800      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6801    Constructor->setInvalidDecl();
6802    return;
6803  }
6804
6805  SourceLocation Loc = Constructor->getLocation();
6806  Constructor->setBody(new (Context) CompoundStmt(Loc));
6807
6808  Constructor->setUsed();
6809  MarkVTableUsed(CurrentLocation, ClassDecl);
6810
6811  if (ASTMutationListener *L = getASTMutationListener()) {
6812    L->CompletedImplicitDefinition(Constructor);
6813  }
6814}
6815
6816/// Get any existing defaulted default constructor for the given class. Do not
6817/// implicitly define one if it does not exist.
6818static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6819                                                             CXXRecordDecl *D) {
6820  ASTContext &Context = Self.Context;
6821  QualType ClassType = Context.getTypeDeclType(D);
6822  DeclarationName ConstructorName
6823    = Context.DeclarationNames.getCXXConstructorName(
6824                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6825
6826  DeclContext::lookup_const_iterator Con, ConEnd;
6827  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6828       Con != ConEnd; ++Con) {
6829    // A function template cannot be defaulted.
6830    if (isa<FunctionTemplateDecl>(*Con))
6831      continue;
6832
6833    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6834    if (Constructor->isDefaultConstructor())
6835      return Constructor->isDefaulted() ? Constructor : 0;
6836  }
6837  return 0;
6838}
6839
6840void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6841  if (!D) return;
6842  AdjustDeclIfTemplate(D);
6843
6844  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6845  CXXConstructorDecl *CtorDecl
6846    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6847
6848  if (!CtorDecl) return;
6849
6850  // Compute the exception specification for the default constructor.
6851  const FunctionProtoType *CtorTy =
6852    CtorDecl->getType()->castAs<FunctionProtoType>();
6853  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6854    // FIXME: Don't do this unless the exception spec is needed.
6855    ImplicitExceptionSpecification Spec =
6856      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6857    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6858    assert(EPI.ExceptionSpecType != EST_Delayed);
6859
6860    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6861  }
6862
6863  // If the default constructor is explicitly defaulted, checking the exception
6864  // specification is deferred until now.
6865  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6866      !ClassDecl->isDependentType())
6867    CheckExplicitlyDefaultedSpecialMember(CtorDecl);
6868}
6869
6870void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6871  // We start with an initial pass over the base classes to collect those that
6872  // inherit constructors from. If there are none, we can forgo all further
6873  // processing.
6874  typedef SmallVector<const RecordType *, 4> BasesVector;
6875  BasesVector BasesToInheritFrom;
6876  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6877                                          BaseE = ClassDecl->bases_end();
6878         BaseIt != BaseE; ++BaseIt) {
6879    if (BaseIt->getInheritConstructors()) {
6880      QualType Base = BaseIt->getType();
6881      if (Base->isDependentType()) {
6882        // If we inherit constructors from anything that is dependent, just
6883        // abort processing altogether. We'll get another chance for the
6884        // instantiations.
6885        return;
6886      }
6887      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6888    }
6889  }
6890  if (BasesToInheritFrom.empty())
6891    return;
6892
6893  // Now collect the constructors that we already have in the current class.
6894  // Those take precedence over inherited constructors.
6895  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6896  //   unless there is a user-declared constructor with the same signature in
6897  //   the class where the using-declaration appears.
6898  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6899  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6900                                    CtorE = ClassDecl->ctor_end();
6901       CtorIt != CtorE; ++CtorIt) {
6902    ExistingConstructors.insert(
6903        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6904  }
6905
6906  DeclarationName CreatedCtorName =
6907      Context.DeclarationNames.getCXXConstructorName(
6908          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6909
6910  // Now comes the true work.
6911  // First, we keep a map from constructor types to the base that introduced
6912  // them. Needed for finding conflicting constructors. We also keep the
6913  // actually inserted declarations in there, for pretty diagnostics.
6914  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6915  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6916  ConstructorToSourceMap InheritedConstructors;
6917  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6918                             BaseE = BasesToInheritFrom.end();
6919       BaseIt != BaseE; ++BaseIt) {
6920    const RecordType *Base = *BaseIt;
6921    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6922    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6923    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6924                                      CtorE = BaseDecl->ctor_end();
6925         CtorIt != CtorE; ++CtorIt) {
6926      // Find the using declaration for inheriting this base's constructors.
6927      // FIXME: Don't perform name lookup just to obtain a source location!
6928      DeclarationName Name =
6929          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6930      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
6931      LookupQualifiedName(Result, CurContext);
6932      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
6933      SourceLocation UsingLoc = UD ? UD->getLocation() :
6934                                     ClassDecl->getLocation();
6935
6936      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6937      //   from the class X named in the using-declaration consists of actual
6938      //   constructors and notional constructors that result from the
6939      //   transformation of defaulted parameters as follows:
6940      //   - all non-template default constructors of X, and
6941      //   - for each non-template constructor of X that has at least one
6942      //     parameter with a default argument, the set of constructors that
6943      //     results from omitting any ellipsis parameter specification and
6944      //     successively omitting parameters with a default argument from the
6945      //     end of the parameter-type-list.
6946      CXXConstructorDecl *BaseCtor = *CtorIt;
6947      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6948      const FunctionProtoType *BaseCtorType =
6949          BaseCtor->getType()->getAs<FunctionProtoType>();
6950
6951      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6952                    maxParams = BaseCtor->getNumParams();
6953           params <= maxParams; ++params) {
6954        // Skip default constructors. They're never inherited.
6955        if (params == 0)
6956          continue;
6957        // Skip copy and move constructors for the same reason.
6958        if (CanBeCopyOrMove && params == 1)
6959          continue;
6960
6961        // Build up a function type for this particular constructor.
6962        // FIXME: The working paper does not consider that the exception spec
6963        // for the inheriting constructor might be larger than that of the
6964        // source. This code doesn't yet, either. When it does, this code will
6965        // need to be delayed until after exception specifications and in-class
6966        // member initializers are attached.
6967        const Type *NewCtorType;
6968        if (params == maxParams)
6969          NewCtorType = BaseCtorType;
6970        else {
6971          SmallVector<QualType, 16> Args;
6972          for (unsigned i = 0; i < params; ++i) {
6973            Args.push_back(BaseCtorType->getArgType(i));
6974          }
6975          FunctionProtoType::ExtProtoInfo ExtInfo =
6976              BaseCtorType->getExtProtoInfo();
6977          ExtInfo.Variadic = false;
6978          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6979                                                Args.data(), params, ExtInfo)
6980                       .getTypePtr();
6981        }
6982        const Type *CanonicalNewCtorType =
6983            Context.getCanonicalType(NewCtorType);
6984
6985        // Now that we have the type, first check if the class already has a
6986        // constructor with this signature.
6987        if (ExistingConstructors.count(CanonicalNewCtorType))
6988          continue;
6989
6990        // Then we check if we have already declared an inherited constructor
6991        // with this signature.
6992        std::pair<ConstructorToSourceMap::iterator, bool> result =
6993            InheritedConstructors.insert(std::make_pair(
6994                CanonicalNewCtorType,
6995                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6996        if (!result.second) {
6997          // Already in the map. If it came from a different class, that's an
6998          // error. Not if it's from the same.
6999          CanQualType PreviousBase = result.first->second.first;
7000          if (CanonicalBase != PreviousBase) {
7001            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7002            const CXXConstructorDecl *PrevBaseCtor =
7003                PrevCtor->getInheritedConstructor();
7004            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7005
7006            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7007            Diag(BaseCtor->getLocation(),
7008                 diag::note_using_decl_constructor_conflict_current_ctor);
7009            Diag(PrevBaseCtor->getLocation(),
7010                 diag::note_using_decl_constructor_conflict_previous_ctor);
7011            Diag(PrevCtor->getLocation(),
7012                 diag::note_using_decl_constructor_conflict_previous_using);
7013          }
7014          continue;
7015        }
7016
7017        // OK, we're there, now add the constructor.
7018        // C++0x [class.inhctor]p8: [...] that would be performed by a
7019        //   user-written inline constructor [...]
7020        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7021        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7022            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7023            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7024            /*ImplicitlyDeclared=*/true,
7025            // FIXME: Due to a defect in the standard, we treat inherited
7026            // constructors as constexpr even if that makes them ill-formed.
7027            /*Constexpr=*/BaseCtor->isConstexpr());
7028        NewCtor->setAccess(BaseCtor->getAccess());
7029
7030        // Build up the parameter decls and add them.
7031        SmallVector<ParmVarDecl *, 16> ParamDecls;
7032        for (unsigned i = 0; i < params; ++i) {
7033          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7034                                                   UsingLoc, UsingLoc,
7035                                                   /*IdentifierInfo=*/0,
7036                                                   BaseCtorType->getArgType(i),
7037                                                   /*TInfo=*/0, SC_None,
7038                                                   SC_None, /*DefaultArg=*/0));
7039        }
7040        NewCtor->setParams(ParamDecls);
7041        NewCtor->setInheritedConstructor(BaseCtor);
7042
7043        ClassDecl->addDecl(NewCtor);
7044        result.first->second.second = NewCtor;
7045      }
7046    }
7047  }
7048}
7049
7050Sema::ImplicitExceptionSpecification
7051Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7052  // C++ [except.spec]p14:
7053  //   An implicitly declared special member function (Clause 12) shall have
7054  //   an exception-specification.
7055  ImplicitExceptionSpecification ExceptSpec(*this);
7056  if (ClassDecl->isInvalidDecl())
7057    return ExceptSpec;
7058
7059  // Direct base-class destructors.
7060  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7061                                       BEnd = ClassDecl->bases_end();
7062       B != BEnd; ++B) {
7063    if (B->isVirtual()) // Handled below.
7064      continue;
7065
7066    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7067      ExceptSpec.CalledDecl(B->getLocStart(),
7068                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7069  }
7070
7071  // Virtual base-class destructors.
7072  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7073                                       BEnd = ClassDecl->vbases_end();
7074       B != BEnd; ++B) {
7075    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7076      ExceptSpec.CalledDecl(B->getLocStart(),
7077                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7078  }
7079
7080  // Field destructors.
7081  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7082                               FEnd = ClassDecl->field_end();
7083       F != FEnd; ++F) {
7084    if (const RecordType *RecordTy
7085        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7086      ExceptSpec.CalledDecl(F->getLocation(),
7087                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7088  }
7089
7090  return ExceptSpec;
7091}
7092
7093CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7094  // C++ [class.dtor]p2:
7095  //   If a class has no user-declared destructor, a destructor is
7096  //   declared implicitly. An implicitly-declared destructor is an
7097  //   inline public member of its class.
7098
7099  ImplicitExceptionSpecification Spec =
7100      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7101  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7102
7103  // Create the actual destructor declaration.
7104  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7105
7106  CanQualType ClassType
7107    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7108  SourceLocation ClassLoc = ClassDecl->getLocation();
7109  DeclarationName Name
7110    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7111  DeclarationNameInfo NameInfo(Name, ClassLoc);
7112  CXXDestructorDecl *Destructor
7113      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7114                                  /*isInline=*/true,
7115                                  /*isImplicitlyDeclared=*/true);
7116  Destructor->setAccess(AS_public);
7117  Destructor->setDefaulted();
7118  Destructor->setImplicit();
7119  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7120
7121  // Note that we have declared this destructor.
7122  ++ASTContext::NumImplicitDestructorsDeclared;
7123
7124  // Introduce this destructor into its scope.
7125  if (Scope *S = getScopeForContext(ClassDecl))
7126    PushOnScopeChains(Destructor, S, false);
7127  ClassDecl->addDecl(Destructor);
7128
7129  // This could be uniqued if it ever proves significant.
7130  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7131
7132  AddOverriddenMethods(ClassDecl, Destructor);
7133
7134  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7135    Destructor->setDeletedAsWritten();
7136
7137  return Destructor;
7138}
7139
7140void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7141                                    CXXDestructorDecl *Destructor) {
7142  assert((Destructor->isDefaulted() &&
7143          !Destructor->doesThisDeclarationHaveABody() &&
7144          !Destructor->isDeleted()) &&
7145         "DefineImplicitDestructor - call it for implicit default dtor");
7146  CXXRecordDecl *ClassDecl = Destructor->getParent();
7147  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7148
7149  if (Destructor->isInvalidDecl())
7150    return;
7151
7152  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7153
7154  DiagnosticErrorTrap Trap(Diags);
7155  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7156                                         Destructor->getParent());
7157
7158  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7159    Diag(CurrentLocation, diag::note_member_synthesized_at)
7160      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7161
7162    Destructor->setInvalidDecl();
7163    return;
7164  }
7165
7166  SourceLocation Loc = Destructor->getLocation();
7167  Destructor->setBody(new (Context) CompoundStmt(Loc));
7168  Destructor->setImplicitlyDefined(true);
7169  Destructor->setUsed();
7170  MarkVTableUsed(CurrentLocation, ClassDecl);
7171
7172  if (ASTMutationListener *L = getASTMutationListener()) {
7173    L->CompletedImplicitDefinition(Destructor);
7174  }
7175}
7176
7177/// \brief Perform any semantic analysis which needs to be delayed until all
7178/// pending class member declarations have been parsed.
7179void Sema::ActOnFinishCXXMemberDecls() {
7180  // Now we have parsed all exception specifications, determine the implicit
7181  // exception specifications for destructors.
7182  for (unsigned i = 0, e = DelayedDestructorExceptionSpecs.size();
7183       i != e; ++i) {
7184    CXXDestructorDecl *Dtor = DelayedDestructorExceptionSpecs[i];
7185    AdjustDestructorExceptionSpec(Dtor->getParent(), Dtor, true);
7186  }
7187  DelayedDestructorExceptionSpecs.clear();
7188
7189  // Perform any deferred checking of exception specifications for virtual
7190  // destructors.
7191  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
7192       i != e; ++i) {
7193    const CXXDestructorDecl *Dtor =
7194        DelayedDestructorExceptionSpecChecks[i].first;
7195    assert(!Dtor->getParent()->isDependentType() &&
7196           "Should not ever add destructors of templates into the list.");
7197    CheckOverridingFunctionExceptionSpec(Dtor,
7198        DelayedDestructorExceptionSpecChecks[i].second);
7199  }
7200  DelayedDestructorExceptionSpecChecks.clear();
7201}
7202
7203void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7204                                         CXXDestructorDecl *destructor,
7205                                         bool WasDelayed) {
7206  // C++11 [class.dtor]p3:
7207  //   A declaration of a destructor that does not have an exception-
7208  //   specification is implicitly considered to have the same exception-
7209  //   specification as an implicit declaration.
7210  const FunctionProtoType *dtorType = destructor->getType()->
7211                                        getAs<FunctionProtoType>();
7212  if (!WasDelayed && dtorType->hasExceptionSpec())
7213    return;
7214
7215  ImplicitExceptionSpecification exceptSpec =
7216      ComputeDefaultedDtorExceptionSpec(classDecl);
7217
7218  // Replace the destructor's type, building off the existing one. Fortunately,
7219  // the only thing of interest in the destructor type is its extended info.
7220  // The return and arguments are fixed.
7221  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7222  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7223  epi.NumExceptions = exceptSpec.size();
7224  epi.Exceptions = exceptSpec.data();
7225  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7226
7227  destructor->setType(ty);
7228
7229  // If we can't compute the exception specification for this destructor yet
7230  // (because it depends on an exception specification which we have not parsed
7231  // yet), make a note that we need to try again when the class is complete.
7232  if (epi.ExceptionSpecType == EST_Delayed) {
7233    assert(!WasDelayed && "couldn't compute destructor exception spec");
7234    DelayedDestructorExceptionSpecs.push_back(destructor);
7235  }
7236
7237  // FIXME: If the destructor has a body that could throw, and the newly created
7238  // spec doesn't allow exceptions, we should emit a warning, because this
7239  // change in behavior can break conforming C++03 programs at runtime.
7240  // However, we don't have a body yet, so it needs to be done somewhere else.
7241}
7242
7243/// \brief Builds a statement that copies/moves the given entity from \p From to
7244/// \c To.
7245///
7246/// This routine is used to copy/move the members of a class with an
7247/// implicitly-declared copy/move assignment operator. When the entities being
7248/// copied are arrays, this routine builds for loops to copy them.
7249///
7250/// \param S The Sema object used for type-checking.
7251///
7252/// \param Loc The location where the implicit copy/move is being generated.
7253///
7254/// \param T The type of the expressions being copied/moved. Both expressions
7255/// must have this type.
7256///
7257/// \param To The expression we are copying/moving to.
7258///
7259/// \param From The expression we are copying/moving from.
7260///
7261/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7262/// Otherwise, it's a non-static member subobject.
7263///
7264/// \param Copying Whether we're copying or moving.
7265///
7266/// \param Depth Internal parameter recording the depth of the recursion.
7267///
7268/// \returns A statement or a loop that copies the expressions.
7269static StmtResult
7270BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7271                      Expr *To, Expr *From,
7272                      bool CopyingBaseSubobject, bool Copying,
7273                      unsigned Depth = 0) {
7274  // C++0x [class.copy]p28:
7275  //   Each subobject is assigned in the manner appropriate to its type:
7276  //
7277  //     - if the subobject is of class type, as if by a call to operator= with
7278  //       the subobject as the object expression and the corresponding
7279  //       subobject of x as a single function argument (as if by explicit
7280  //       qualification; that is, ignoring any possible virtual overriding
7281  //       functions in more derived classes);
7282  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7283    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7284
7285    // Look for operator=.
7286    DeclarationName Name
7287      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7288    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7289    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7290
7291    // Filter out any result that isn't a copy/move-assignment operator.
7292    LookupResult::Filter F = OpLookup.makeFilter();
7293    while (F.hasNext()) {
7294      NamedDecl *D = F.next();
7295      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7296        if (Method->isCopyAssignmentOperator() ||
7297            (!Copying && Method->isMoveAssignmentOperator()))
7298          continue;
7299
7300      F.erase();
7301    }
7302    F.done();
7303
7304    // Suppress the protected check (C++ [class.protected]) for each of the
7305    // assignment operators we found. This strange dance is required when
7306    // we're assigning via a base classes's copy-assignment operator. To
7307    // ensure that we're getting the right base class subobject (without
7308    // ambiguities), we need to cast "this" to that subobject type; to
7309    // ensure that we don't go through the virtual call mechanism, we need
7310    // to qualify the operator= name with the base class (see below). However,
7311    // this means that if the base class has a protected copy assignment
7312    // operator, the protected member access check will fail. So, we
7313    // rewrite "protected" access to "public" access in this case, since we
7314    // know by construction that we're calling from a derived class.
7315    if (CopyingBaseSubobject) {
7316      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7317           L != LEnd; ++L) {
7318        if (L.getAccess() == AS_protected)
7319          L.setAccess(AS_public);
7320      }
7321    }
7322
7323    // Create the nested-name-specifier that will be used to qualify the
7324    // reference to operator=; this is required to suppress the virtual
7325    // call mechanism.
7326    CXXScopeSpec SS;
7327    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7328    SS.MakeTrivial(S.Context,
7329                   NestedNameSpecifier::Create(S.Context, 0, false,
7330                                               CanonicalT),
7331                   Loc);
7332
7333    // Create the reference to operator=.
7334    ExprResult OpEqualRef
7335      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7336                                   /*TemplateKWLoc=*/SourceLocation(),
7337                                   /*FirstQualifierInScope=*/0,
7338                                   OpLookup,
7339                                   /*TemplateArgs=*/0,
7340                                   /*SuppressQualifierCheck=*/true);
7341    if (OpEqualRef.isInvalid())
7342      return StmtError();
7343
7344    // Build the call to the assignment operator.
7345
7346    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7347                                                  OpEqualRef.takeAs<Expr>(),
7348                                                  Loc, &From, 1, Loc);
7349    if (Call.isInvalid())
7350      return StmtError();
7351
7352    return S.Owned(Call.takeAs<Stmt>());
7353  }
7354
7355  //     - if the subobject is of scalar type, the built-in assignment
7356  //       operator is used.
7357  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7358  if (!ArrayTy) {
7359    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7360    if (Assignment.isInvalid())
7361      return StmtError();
7362
7363    return S.Owned(Assignment.takeAs<Stmt>());
7364  }
7365
7366  //     - if the subobject is an array, each element is assigned, in the
7367  //       manner appropriate to the element type;
7368
7369  // Construct a loop over the array bounds, e.g.,
7370  //
7371  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7372  //
7373  // that will copy each of the array elements.
7374  QualType SizeType = S.Context.getSizeType();
7375
7376  // Create the iteration variable.
7377  IdentifierInfo *IterationVarName = 0;
7378  {
7379    SmallString<8> Str;
7380    llvm::raw_svector_ostream OS(Str);
7381    OS << "__i" << Depth;
7382    IterationVarName = &S.Context.Idents.get(OS.str());
7383  }
7384  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7385                                          IterationVarName, SizeType,
7386                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7387                                          SC_None, SC_None);
7388
7389  // Initialize the iteration variable to zero.
7390  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7391  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7392
7393  // Create a reference to the iteration variable; we'll use this several
7394  // times throughout.
7395  Expr *IterationVarRef
7396    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7397  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7398  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7399  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7400
7401  // Create the DeclStmt that holds the iteration variable.
7402  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7403
7404  // Create the comparison against the array bound.
7405  llvm::APInt Upper
7406    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7407  Expr *Comparison
7408    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7409                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7410                                     BO_NE, S.Context.BoolTy,
7411                                     VK_RValue, OK_Ordinary, Loc);
7412
7413  // Create the pre-increment of the iteration variable.
7414  Expr *Increment
7415    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7416                                    VK_LValue, OK_Ordinary, Loc);
7417
7418  // Subscript the "from" and "to" expressions with the iteration variable.
7419  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7420                                                         IterationVarRefRVal,
7421                                                         Loc));
7422  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7423                                                       IterationVarRefRVal,
7424                                                       Loc));
7425  if (!Copying) // Cast to rvalue
7426    From = CastForMoving(S, From);
7427
7428  // Build the copy/move for an individual element of the array.
7429  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7430                                          To, From, CopyingBaseSubobject,
7431                                          Copying, Depth + 1);
7432  if (Copy.isInvalid())
7433    return StmtError();
7434
7435  // Construct the loop that copies all elements of this array.
7436  return S.ActOnForStmt(Loc, Loc, InitStmt,
7437                        S.MakeFullExpr(Comparison),
7438                        0, S.MakeFullExpr(Increment),
7439                        Loc, Copy.take());
7440}
7441
7442std::pair<Sema::ImplicitExceptionSpecification, bool>
7443Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7444                                                   CXXRecordDecl *ClassDecl) {
7445  if (ClassDecl->isInvalidDecl())
7446    return std::make_pair(ImplicitExceptionSpecification(*this), true);
7447
7448  // C++ [class.copy]p10:
7449  //   If the class definition does not explicitly declare a copy
7450  //   assignment operator, one is declared implicitly.
7451  //   The implicitly-defined copy assignment operator for a class X
7452  //   will have the form
7453  //
7454  //       X& X::operator=(const X&)
7455  //
7456  //   if
7457  bool HasConstCopyAssignment = true;
7458
7459  //       -- each direct base class B of X has a copy assignment operator
7460  //          whose parameter is of type const B&, const volatile B& or B,
7461  //          and
7462  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7463                                       BaseEnd = ClassDecl->bases_end();
7464       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7465    // We'll handle this below
7466    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7467      continue;
7468
7469    assert(!Base->getType()->isDependentType() &&
7470           "Cannot generate implicit members for class with dependent bases.");
7471    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7472    HasConstCopyAssignment &=
7473      (bool)LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7474                                    false, 0);
7475  }
7476
7477  // In C++11, the above citation has "or virtual" added
7478  if (LangOpts.CPlusPlus0x) {
7479    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7480                                         BaseEnd = ClassDecl->vbases_end();
7481         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7482      assert(!Base->getType()->isDependentType() &&
7483             "Cannot generate implicit members for class with dependent bases.");
7484      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7485      HasConstCopyAssignment &=
7486        (bool)LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7487                                      false, 0);
7488    }
7489  }
7490
7491  //       -- for all the nonstatic data members of X that are of a class
7492  //          type M (or array thereof), each such class type has a copy
7493  //          assignment operator whose parameter is of type const M&,
7494  //          const volatile M& or M.
7495  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7496                                  FieldEnd = ClassDecl->field_end();
7497       HasConstCopyAssignment && Field != FieldEnd;
7498       ++Field) {
7499    QualType FieldType = Context.getBaseElementType(Field->getType());
7500    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7501      HasConstCopyAssignment &=
7502        (bool)LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const,
7503                                      false, 0);
7504    }
7505  }
7506
7507  //   Otherwise, the implicitly declared copy assignment operator will
7508  //   have the form
7509  //
7510  //       X& X::operator=(X&)
7511
7512  // C++ [except.spec]p14:
7513  //   An implicitly declared special member function (Clause 12) shall have an
7514  //   exception-specification. [...]
7515
7516  // It is unspecified whether or not an implicit copy assignment operator
7517  // attempts to deduplicate calls to assignment operators of virtual bases are
7518  // made. As such, this exception specification is effectively unspecified.
7519  // Based on a similar decision made for constness in C++0x, we're erring on
7520  // the side of assuming such calls to be made regardless of whether they
7521  // actually happen.
7522  ImplicitExceptionSpecification ExceptSpec(*this);
7523  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7524  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7525                                       BaseEnd = ClassDecl->bases_end();
7526       Base != BaseEnd; ++Base) {
7527    if (Base->isVirtual())
7528      continue;
7529
7530    CXXRecordDecl *BaseClassDecl
7531      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7532    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7533                                                            ArgQuals, false, 0))
7534      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7535  }
7536
7537  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7538                                       BaseEnd = ClassDecl->vbases_end();
7539       Base != BaseEnd; ++Base) {
7540    CXXRecordDecl *BaseClassDecl
7541      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7542    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7543                                                            ArgQuals, false, 0))
7544      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7545  }
7546
7547  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7548                                  FieldEnd = ClassDecl->field_end();
7549       Field != FieldEnd;
7550       ++Field) {
7551    QualType FieldType = Context.getBaseElementType(Field->getType());
7552    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7553      if (CXXMethodDecl *CopyAssign =
7554          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7555        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
7556    }
7557  }
7558
7559  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7560}
7561
7562CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7563  // Note: The following rules are largely analoguous to the copy
7564  // constructor rules. Note that virtual bases are not taken into account
7565  // for determining the argument type of the operator. Note also that
7566  // operators taking an object instead of a reference are allowed.
7567
7568  ImplicitExceptionSpecification Spec(*this);
7569  bool Const;
7570  llvm::tie(Spec, Const) =
7571    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7572
7573  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7574  QualType RetType = Context.getLValueReferenceType(ArgType);
7575  if (Const)
7576    ArgType = ArgType.withConst();
7577  ArgType = Context.getLValueReferenceType(ArgType);
7578
7579  //   An implicitly-declared copy assignment operator is an inline public
7580  //   member of its class.
7581  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7582  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7583  SourceLocation ClassLoc = ClassDecl->getLocation();
7584  DeclarationNameInfo NameInfo(Name, ClassLoc);
7585  CXXMethodDecl *CopyAssignment
7586    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7587                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7588                            /*TInfo=*/0, /*isStatic=*/false,
7589                            /*StorageClassAsWritten=*/SC_None,
7590                            /*isInline=*/true, /*isConstexpr=*/false,
7591                            SourceLocation());
7592  CopyAssignment->setAccess(AS_public);
7593  CopyAssignment->setDefaulted();
7594  CopyAssignment->setImplicit();
7595  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7596
7597  // Add the parameter to the operator.
7598  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7599                                               ClassLoc, ClassLoc, /*Id=*/0,
7600                                               ArgType, /*TInfo=*/0,
7601                                               SC_None,
7602                                               SC_None, 0);
7603  CopyAssignment->setParams(FromParam);
7604
7605  // Note that we have added this copy-assignment operator.
7606  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7607
7608  if (Scope *S = getScopeForContext(ClassDecl))
7609    PushOnScopeChains(CopyAssignment, S, false);
7610  ClassDecl->addDecl(CopyAssignment);
7611
7612  // C++0x [class.copy]p19:
7613  //   ....  If the class definition does not explicitly declare a copy
7614  //   assignment operator, there is no user-declared move constructor, and
7615  //   there is no user-declared move assignment operator, a copy assignment
7616  //   operator is implicitly declared as defaulted.
7617  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7618    CopyAssignment->setDeletedAsWritten();
7619
7620  AddOverriddenMethods(ClassDecl, CopyAssignment);
7621  return CopyAssignment;
7622}
7623
7624void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7625                                        CXXMethodDecl *CopyAssignOperator) {
7626  assert((CopyAssignOperator->isDefaulted() &&
7627          CopyAssignOperator->isOverloadedOperator() &&
7628          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7629          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7630          !CopyAssignOperator->isDeleted()) &&
7631         "DefineImplicitCopyAssignment called for wrong function");
7632
7633  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7634
7635  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7636    CopyAssignOperator->setInvalidDecl();
7637    return;
7638  }
7639
7640  CopyAssignOperator->setUsed();
7641
7642  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7643  DiagnosticErrorTrap Trap(Diags);
7644
7645  // C++0x [class.copy]p30:
7646  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7647  //   for a non-union class X performs memberwise copy assignment of its
7648  //   subobjects. The direct base classes of X are assigned first, in the
7649  //   order of their declaration in the base-specifier-list, and then the
7650  //   immediate non-static data members of X are assigned, in the order in
7651  //   which they were declared in the class definition.
7652
7653  // The statements that form the synthesized function body.
7654  ASTOwningVector<Stmt*> Statements(*this);
7655
7656  // The parameter for the "other" object, which we are copying from.
7657  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7658  Qualifiers OtherQuals = Other->getType().getQualifiers();
7659  QualType OtherRefType = Other->getType();
7660  if (const LValueReferenceType *OtherRef
7661                                = OtherRefType->getAs<LValueReferenceType>()) {
7662    OtherRefType = OtherRef->getPointeeType();
7663    OtherQuals = OtherRefType.getQualifiers();
7664  }
7665
7666  // Our location for everything implicitly-generated.
7667  SourceLocation Loc = CopyAssignOperator->getLocation();
7668
7669  // Construct a reference to the "other" object. We'll be using this
7670  // throughout the generated ASTs.
7671  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7672  assert(OtherRef && "Reference to parameter cannot fail!");
7673
7674  // Construct the "this" pointer. We'll be using this throughout the generated
7675  // ASTs.
7676  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7677  assert(This && "Reference to this cannot fail!");
7678
7679  // Assign base classes.
7680  bool Invalid = false;
7681  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7682       E = ClassDecl->bases_end(); Base != E; ++Base) {
7683    // Form the assignment:
7684    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7685    QualType BaseType = Base->getType().getUnqualifiedType();
7686    if (!BaseType->isRecordType()) {
7687      Invalid = true;
7688      continue;
7689    }
7690
7691    CXXCastPath BasePath;
7692    BasePath.push_back(Base);
7693
7694    // Construct the "from" expression, which is an implicit cast to the
7695    // appropriately-qualified base type.
7696    Expr *From = OtherRef;
7697    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7698                             CK_UncheckedDerivedToBase,
7699                             VK_LValue, &BasePath).take();
7700
7701    // Dereference "this".
7702    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7703
7704    // Implicitly cast "this" to the appropriately-qualified base type.
7705    To = ImpCastExprToType(To.take(),
7706                           Context.getCVRQualifiedType(BaseType,
7707                                     CopyAssignOperator->getTypeQualifiers()),
7708                           CK_UncheckedDerivedToBase,
7709                           VK_LValue, &BasePath);
7710
7711    // Build the copy.
7712    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7713                                            To.get(), From,
7714                                            /*CopyingBaseSubobject=*/true,
7715                                            /*Copying=*/true);
7716    if (Copy.isInvalid()) {
7717      Diag(CurrentLocation, diag::note_member_synthesized_at)
7718        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7719      CopyAssignOperator->setInvalidDecl();
7720      return;
7721    }
7722
7723    // Success! Record the copy.
7724    Statements.push_back(Copy.takeAs<Expr>());
7725  }
7726
7727  // \brief Reference to the __builtin_memcpy function.
7728  Expr *BuiltinMemCpyRef = 0;
7729  // \brief Reference to the __builtin_objc_memmove_collectable function.
7730  Expr *CollectableMemCpyRef = 0;
7731
7732  // Assign non-static members.
7733  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7734                                  FieldEnd = ClassDecl->field_end();
7735       Field != FieldEnd; ++Field) {
7736    if (Field->isUnnamedBitfield())
7737      continue;
7738
7739    // Check for members of reference type; we can't copy those.
7740    if (Field->getType()->isReferenceType()) {
7741      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7742        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7743      Diag(Field->getLocation(), diag::note_declared_at);
7744      Diag(CurrentLocation, diag::note_member_synthesized_at)
7745        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7746      Invalid = true;
7747      continue;
7748    }
7749
7750    // Check for members of const-qualified, non-class type.
7751    QualType BaseType = Context.getBaseElementType(Field->getType());
7752    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7753      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7754        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7755      Diag(Field->getLocation(), diag::note_declared_at);
7756      Diag(CurrentLocation, diag::note_member_synthesized_at)
7757        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7758      Invalid = true;
7759      continue;
7760    }
7761
7762    // Suppress assigning zero-width bitfields.
7763    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7764      continue;
7765
7766    QualType FieldType = Field->getType().getNonReferenceType();
7767    if (FieldType->isIncompleteArrayType()) {
7768      assert(ClassDecl->hasFlexibleArrayMember() &&
7769             "Incomplete array type is not valid");
7770      continue;
7771    }
7772
7773    // Build references to the field in the object we're copying from and to.
7774    CXXScopeSpec SS; // Intentionally empty
7775    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7776                              LookupMemberName);
7777    MemberLookup.addDecl(*Field);
7778    MemberLookup.resolveKind();
7779    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7780                                               Loc, /*IsArrow=*/false,
7781                                               SS, SourceLocation(), 0,
7782                                               MemberLookup, 0);
7783    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7784                                             Loc, /*IsArrow=*/true,
7785                                             SS, SourceLocation(), 0,
7786                                             MemberLookup, 0);
7787    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7788    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7789
7790    // If the field should be copied with __builtin_memcpy rather than via
7791    // explicit assignments, do so. This optimization only applies for arrays
7792    // of scalars and arrays of class type with trivial copy-assignment
7793    // operators.
7794    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7795        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7796      // Compute the size of the memory buffer to be copied.
7797      QualType SizeType = Context.getSizeType();
7798      llvm::APInt Size(Context.getTypeSize(SizeType),
7799                       Context.getTypeSizeInChars(BaseType).getQuantity());
7800      for (const ConstantArrayType *Array
7801              = Context.getAsConstantArrayType(FieldType);
7802           Array;
7803           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7804        llvm::APInt ArraySize
7805          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7806        Size *= ArraySize;
7807      }
7808
7809      // Take the address of the field references for "from" and "to".
7810      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7811      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7812
7813      bool NeedsCollectableMemCpy =
7814          (BaseType->isRecordType() &&
7815           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7816
7817      if (NeedsCollectableMemCpy) {
7818        if (!CollectableMemCpyRef) {
7819          // Create a reference to the __builtin_objc_memmove_collectable function.
7820          LookupResult R(*this,
7821                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7822                         Loc, LookupOrdinaryName);
7823          LookupName(R, TUScope, true);
7824
7825          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7826          if (!CollectableMemCpy) {
7827            // Something went horribly wrong earlier, and we will have
7828            // complained about it.
7829            Invalid = true;
7830            continue;
7831          }
7832
7833          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7834                                                  CollectableMemCpy->getType(),
7835                                                  VK_LValue, Loc, 0).take();
7836          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7837        }
7838      }
7839      // Create a reference to the __builtin_memcpy builtin function.
7840      else if (!BuiltinMemCpyRef) {
7841        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7842                       LookupOrdinaryName);
7843        LookupName(R, TUScope, true);
7844
7845        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7846        if (!BuiltinMemCpy) {
7847          // Something went horribly wrong earlier, and we will have complained
7848          // about it.
7849          Invalid = true;
7850          continue;
7851        }
7852
7853        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7854                                            BuiltinMemCpy->getType(),
7855                                            VK_LValue, Loc, 0).take();
7856        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7857      }
7858
7859      ASTOwningVector<Expr*> CallArgs(*this);
7860      CallArgs.push_back(To.takeAs<Expr>());
7861      CallArgs.push_back(From.takeAs<Expr>());
7862      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7863      ExprResult Call = ExprError();
7864      if (NeedsCollectableMemCpy)
7865        Call = ActOnCallExpr(/*Scope=*/0,
7866                             CollectableMemCpyRef,
7867                             Loc, move_arg(CallArgs),
7868                             Loc);
7869      else
7870        Call = ActOnCallExpr(/*Scope=*/0,
7871                             BuiltinMemCpyRef,
7872                             Loc, move_arg(CallArgs),
7873                             Loc);
7874
7875      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7876      Statements.push_back(Call.takeAs<Expr>());
7877      continue;
7878    }
7879
7880    // Build the copy of this field.
7881    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7882                                            To.get(), From.get(),
7883                                            /*CopyingBaseSubobject=*/false,
7884                                            /*Copying=*/true);
7885    if (Copy.isInvalid()) {
7886      Diag(CurrentLocation, diag::note_member_synthesized_at)
7887        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7888      CopyAssignOperator->setInvalidDecl();
7889      return;
7890    }
7891
7892    // Success! Record the copy.
7893    Statements.push_back(Copy.takeAs<Stmt>());
7894  }
7895
7896  if (!Invalid) {
7897    // Add a "return *this;"
7898    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7899
7900    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7901    if (Return.isInvalid())
7902      Invalid = true;
7903    else {
7904      Statements.push_back(Return.takeAs<Stmt>());
7905
7906      if (Trap.hasErrorOccurred()) {
7907        Diag(CurrentLocation, diag::note_member_synthesized_at)
7908          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7909        Invalid = true;
7910      }
7911    }
7912  }
7913
7914  if (Invalid) {
7915    CopyAssignOperator->setInvalidDecl();
7916    return;
7917  }
7918
7919  StmtResult Body;
7920  {
7921    CompoundScopeRAII CompoundScope(*this);
7922    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7923                             /*isStmtExpr=*/false);
7924    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7925  }
7926  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7927
7928  if (ASTMutationListener *L = getASTMutationListener()) {
7929    L->CompletedImplicitDefinition(CopyAssignOperator);
7930  }
7931}
7932
7933Sema::ImplicitExceptionSpecification
7934Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7935  ImplicitExceptionSpecification ExceptSpec(*this);
7936
7937  if (ClassDecl->isInvalidDecl())
7938    return ExceptSpec;
7939
7940  // C++0x [except.spec]p14:
7941  //   An implicitly declared special member function (Clause 12) shall have an
7942  //   exception-specification. [...]
7943
7944  // It is unspecified whether or not an implicit move assignment operator
7945  // attempts to deduplicate calls to assignment operators of virtual bases are
7946  // made. As such, this exception specification is effectively unspecified.
7947  // Based on a similar decision made for constness in C++0x, we're erring on
7948  // the side of assuming such calls to be made regardless of whether they
7949  // actually happen.
7950  // Note that a move constructor is not implicitly declared when there are
7951  // virtual bases, but it can still be user-declared and explicitly defaulted.
7952  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7953                                       BaseEnd = ClassDecl->bases_end();
7954       Base != BaseEnd; ++Base) {
7955    if (Base->isVirtual())
7956      continue;
7957
7958    CXXRecordDecl *BaseClassDecl
7959      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7960    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7961                                                           false, 0))
7962      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
7963  }
7964
7965  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7966                                       BaseEnd = ClassDecl->vbases_end();
7967       Base != BaseEnd; ++Base) {
7968    CXXRecordDecl *BaseClassDecl
7969      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7970    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7971                                                           false, 0))
7972      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
7973  }
7974
7975  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7976                                  FieldEnd = ClassDecl->field_end();
7977       Field != FieldEnd;
7978       ++Field) {
7979    QualType FieldType = Context.getBaseElementType(Field->getType());
7980    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7981      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
7982                                                             false, 0))
7983        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
7984    }
7985  }
7986
7987  return ExceptSpec;
7988}
7989
7990/// Determine whether the class type has any direct or indirect virtual base
7991/// classes which have a non-trivial move assignment operator.
7992static bool
7993hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
7994  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7995                                          BaseEnd = ClassDecl->vbases_end();
7996       Base != BaseEnd; ++Base) {
7997    CXXRecordDecl *BaseClass =
7998        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7999
8000    // Try to declare the move assignment. If it would be deleted, then the
8001    // class does not have a non-trivial move assignment.
8002    if (BaseClass->needsImplicitMoveAssignment())
8003      S.DeclareImplicitMoveAssignment(BaseClass);
8004
8005    // If the class has both a trivial move assignment and a non-trivial move
8006    // assignment, hasTrivialMoveAssignment() is false.
8007    if (BaseClass->hasDeclaredMoveAssignment() &&
8008        !BaseClass->hasTrivialMoveAssignment())
8009      return true;
8010  }
8011
8012  return false;
8013}
8014
8015/// Determine whether the given type either has a move constructor or is
8016/// trivially copyable.
8017static bool
8018hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8019  Type = S.Context.getBaseElementType(Type);
8020
8021  // FIXME: Technically, non-trivially-copyable non-class types, such as
8022  // reference types, are supposed to return false here, but that appears
8023  // to be a standard defect.
8024  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8025  if (!ClassDecl || !ClassDecl->getDefinition())
8026    return true;
8027
8028  if (Type.isTriviallyCopyableType(S.Context))
8029    return true;
8030
8031  if (IsConstructor) {
8032    if (ClassDecl->needsImplicitMoveConstructor())
8033      S.DeclareImplicitMoveConstructor(ClassDecl);
8034    return ClassDecl->hasDeclaredMoveConstructor();
8035  }
8036
8037  if (ClassDecl->needsImplicitMoveAssignment())
8038    S.DeclareImplicitMoveAssignment(ClassDecl);
8039  return ClassDecl->hasDeclaredMoveAssignment();
8040}
8041
8042/// Determine whether all non-static data members and direct or virtual bases
8043/// of class \p ClassDecl have either a move operation, or are trivially
8044/// copyable.
8045static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8046                                            bool IsConstructor) {
8047  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8048                                          BaseEnd = ClassDecl->bases_end();
8049       Base != BaseEnd; ++Base) {
8050    if (Base->isVirtual())
8051      continue;
8052
8053    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8054      return false;
8055  }
8056
8057  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8058                                          BaseEnd = ClassDecl->vbases_end();
8059       Base != BaseEnd; ++Base) {
8060    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8061      return false;
8062  }
8063
8064  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8065                                     FieldEnd = ClassDecl->field_end();
8066       Field != FieldEnd; ++Field) {
8067    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8068      return false;
8069  }
8070
8071  return true;
8072}
8073
8074CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8075  // C++11 [class.copy]p20:
8076  //   If the definition of a class X does not explicitly declare a move
8077  //   assignment operator, one will be implicitly declared as defaulted
8078  //   if and only if:
8079  //
8080  //   - [first 4 bullets]
8081  assert(ClassDecl->needsImplicitMoveAssignment());
8082
8083  // [Checked after we build the declaration]
8084  //   - the move assignment operator would not be implicitly defined as
8085  //     deleted,
8086
8087  // [DR1402]:
8088  //   - X has no direct or indirect virtual base class with a non-trivial
8089  //     move assignment operator, and
8090  //   - each of X's non-static data members and direct or virtual base classes
8091  //     has a type that either has a move assignment operator or is trivially
8092  //     copyable.
8093  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8094      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8095    ClassDecl->setFailedImplicitMoveAssignment();
8096    return 0;
8097  }
8098
8099  // Note: The following rules are largely analoguous to the move
8100  // constructor rules.
8101
8102  ImplicitExceptionSpecification Spec(
8103      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8104
8105  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8106  QualType RetType = Context.getLValueReferenceType(ArgType);
8107  ArgType = Context.getRValueReferenceType(ArgType);
8108
8109  //   An implicitly-declared move assignment operator is an inline public
8110  //   member of its class.
8111  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8112  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8113  SourceLocation ClassLoc = ClassDecl->getLocation();
8114  DeclarationNameInfo NameInfo(Name, ClassLoc);
8115  CXXMethodDecl *MoveAssignment
8116    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8117                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8118                            /*TInfo=*/0, /*isStatic=*/false,
8119                            /*StorageClassAsWritten=*/SC_None,
8120                            /*isInline=*/true,
8121                            /*isConstexpr=*/false,
8122                            SourceLocation());
8123  MoveAssignment->setAccess(AS_public);
8124  MoveAssignment->setDefaulted();
8125  MoveAssignment->setImplicit();
8126  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8127
8128  // Add the parameter to the operator.
8129  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8130                                               ClassLoc, ClassLoc, /*Id=*/0,
8131                                               ArgType, /*TInfo=*/0,
8132                                               SC_None,
8133                                               SC_None, 0);
8134  MoveAssignment->setParams(FromParam);
8135
8136  // Note that we have added this copy-assignment operator.
8137  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8138
8139  // C++0x [class.copy]p9:
8140  //   If the definition of a class X does not explicitly declare a move
8141  //   assignment operator, one will be implicitly declared as defaulted if and
8142  //   only if:
8143  //   [...]
8144  //   - the move assignment operator would not be implicitly defined as
8145  //     deleted.
8146  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8147    // Cache this result so that we don't try to generate this over and over
8148    // on every lookup, leaking memory and wasting time.
8149    ClassDecl->setFailedImplicitMoveAssignment();
8150    return 0;
8151  }
8152
8153  if (Scope *S = getScopeForContext(ClassDecl))
8154    PushOnScopeChains(MoveAssignment, S, false);
8155  ClassDecl->addDecl(MoveAssignment);
8156
8157  AddOverriddenMethods(ClassDecl, MoveAssignment);
8158  return MoveAssignment;
8159}
8160
8161void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8162                                        CXXMethodDecl *MoveAssignOperator) {
8163  assert((MoveAssignOperator->isDefaulted() &&
8164          MoveAssignOperator->isOverloadedOperator() &&
8165          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8166          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8167          !MoveAssignOperator->isDeleted()) &&
8168         "DefineImplicitMoveAssignment called for wrong function");
8169
8170  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8171
8172  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8173    MoveAssignOperator->setInvalidDecl();
8174    return;
8175  }
8176
8177  MoveAssignOperator->setUsed();
8178
8179  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8180  DiagnosticErrorTrap Trap(Diags);
8181
8182  // C++0x [class.copy]p28:
8183  //   The implicitly-defined or move assignment operator for a non-union class
8184  //   X performs memberwise move assignment of its subobjects. The direct base
8185  //   classes of X are assigned first, in the order of their declaration in the
8186  //   base-specifier-list, and then the immediate non-static data members of X
8187  //   are assigned, in the order in which they were declared in the class
8188  //   definition.
8189
8190  // The statements that form the synthesized function body.
8191  ASTOwningVector<Stmt*> Statements(*this);
8192
8193  // The parameter for the "other" object, which we are move from.
8194  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8195  QualType OtherRefType = Other->getType()->
8196      getAs<RValueReferenceType>()->getPointeeType();
8197  assert(OtherRefType.getQualifiers() == 0 &&
8198         "Bad argument type of defaulted move assignment");
8199
8200  // Our location for everything implicitly-generated.
8201  SourceLocation Loc = MoveAssignOperator->getLocation();
8202
8203  // Construct a reference to the "other" object. We'll be using this
8204  // throughout the generated ASTs.
8205  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8206  assert(OtherRef && "Reference to parameter cannot fail!");
8207  // Cast to rvalue.
8208  OtherRef = CastForMoving(*this, OtherRef);
8209
8210  // Construct the "this" pointer. We'll be using this throughout the generated
8211  // ASTs.
8212  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8213  assert(This && "Reference to this cannot fail!");
8214
8215  // Assign base classes.
8216  bool Invalid = false;
8217  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8218       E = ClassDecl->bases_end(); Base != E; ++Base) {
8219    // Form the assignment:
8220    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8221    QualType BaseType = Base->getType().getUnqualifiedType();
8222    if (!BaseType->isRecordType()) {
8223      Invalid = true;
8224      continue;
8225    }
8226
8227    CXXCastPath BasePath;
8228    BasePath.push_back(Base);
8229
8230    // Construct the "from" expression, which is an implicit cast to the
8231    // appropriately-qualified base type.
8232    Expr *From = OtherRef;
8233    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8234                             VK_XValue, &BasePath).take();
8235
8236    // Dereference "this".
8237    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8238
8239    // Implicitly cast "this" to the appropriately-qualified base type.
8240    To = ImpCastExprToType(To.take(),
8241                           Context.getCVRQualifiedType(BaseType,
8242                                     MoveAssignOperator->getTypeQualifiers()),
8243                           CK_UncheckedDerivedToBase,
8244                           VK_LValue, &BasePath);
8245
8246    // Build the move.
8247    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8248                                            To.get(), From,
8249                                            /*CopyingBaseSubobject=*/true,
8250                                            /*Copying=*/false);
8251    if (Move.isInvalid()) {
8252      Diag(CurrentLocation, diag::note_member_synthesized_at)
8253        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8254      MoveAssignOperator->setInvalidDecl();
8255      return;
8256    }
8257
8258    // Success! Record the move.
8259    Statements.push_back(Move.takeAs<Expr>());
8260  }
8261
8262  // \brief Reference to the __builtin_memcpy function.
8263  Expr *BuiltinMemCpyRef = 0;
8264  // \brief Reference to the __builtin_objc_memmove_collectable function.
8265  Expr *CollectableMemCpyRef = 0;
8266
8267  // Assign non-static members.
8268  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8269                                  FieldEnd = ClassDecl->field_end();
8270       Field != FieldEnd; ++Field) {
8271    if (Field->isUnnamedBitfield())
8272      continue;
8273
8274    // Check for members of reference type; we can't move those.
8275    if (Field->getType()->isReferenceType()) {
8276      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8277        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8278      Diag(Field->getLocation(), diag::note_declared_at);
8279      Diag(CurrentLocation, diag::note_member_synthesized_at)
8280        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8281      Invalid = true;
8282      continue;
8283    }
8284
8285    // Check for members of const-qualified, non-class type.
8286    QualType BaseType = Context.getBaseElementType(Field->getType());
8287    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8288      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8289        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8290      Diag(Field->getLocation(), diag::note_declared_at);
8291      Diag(CurrentLocation, diag::note_member_synthesized_at)
8292        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8293      Invalid = true;
8294      continue;
8295    }
8296
8297    // Suppress assigning zero-width bitfields.
8298    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8299      continue;
8300
8301    QualType FieldType = Field->getType().getNonReferenceType();
8302    if (FieldType->isIncompleteArrayType()) {
8303      assert(ClassDecl->hasFlexibleArrayMember() &&
8304             "Incomplete array type is not valid");
8305      continue;
8306    }
8307
8308    // Build references to the field in the object we're copying from and to.
8309    CXXScopeSpec SS; // Intentionally empty
8310    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8311                              LookupMemberName);
8312    MemberLookup.addDecl(*Field);
8313    MemberLookup.resolveKind();
8314    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8315                                               Loc, /*IsArrow=*/false,
8316                                               SS, SourceLocation(), 0,
8317                                               MemberLookup, 0);
8318    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8319                                             Loc, /*IsArrow=*/true,
8320                                             SS, SourceLocation(), 0,
8321                                             MemberLookup, 0);
8322    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8323    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8324
8325    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8326        "Member reference with rvalue base must be rvalue except for reference "
8327        "members, which aren't allowed for move assignment.");
8328
8329    // If the field should be copied with __builtin_memcpy rather than via
8330    // explicit assignments, do so. This optimization only applies for arrays
8331    // of scalars and arrays of class type with trivial move-assignment
8332    // operators.
8333    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8334        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8335      // Compute the size of the memory buffer to be copied.
8336      QualType SizeType = Context.getSizeType();
8337      llvm::APInt Size(Context.getTypeSize(SizeType),
8338                       Context.getTypeSizeInChars(BaseType).getQuantity());
8339      for (const ConstantArrayType *Array
8340              = Context.getAsConstantArrayType(FieldType);
8341           Array;
8342           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8343        llvm::APInt ArraySize
8344          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8345        Size *= ArraySize;
8346      }
8347
8348      // Take the address of the field references for "from" and "to". We
8349      // directly construct UnaryOperators here because semantic analysis
8350      // does not permit us to take the address of an xvalue.
8351      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8352                             Context.getPointerType(From.get()->getType()),
8353                             VK_RValue, OK_Ordinary, Loc);
8354      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8355                           Context.getPointerType(To.get()->getType()),
8356                           VK_RValue, OK_Ordinary, Loc);
8357
8358      bool NeedsCollectableMemCpy =
8359          (BaseType->isRecordType() &&
8360           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8361
8362      if (NeedsCollectableMemCpy) {
8363        if (!CollectableMemCpyRef) {
8364          // Create a reference to the __builtin_objc_memmove_collectable function.
8365          LookupResult R(*this,
8366                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8367                         Loc, LookupOrdinaryName);
8368          LookupName(R, TUScope, true);
8369
8370          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8371          if (!CollectableMemCpy) {
8372            // Something went horribly wrong earlier, and we will have
8373            // complained about it.
8374            Invalid = true;
8375            continue;
8376          }
8377
8378          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8379                                                  CollectableMemCpy->getType(),
8380                                                  VK_LValue, Loc, 0).take();
8381          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8382        }
8383      }
8384      // Create a reference to the __builtin_memcpy builtin function.
8385      else if (!BuiltinMemCpyRef) {
8386        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8387                       LookupOrdinaryName);
8388        LookupName(R, TUScope, true);
8389
8390        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8391        if (!BuiltinMemCpy) {
8392          // Something went horribly wrong earlier, and we will have complained
8393          // about it.
8394          Invalid = true;
8395          continue;
8396        }
8397
8398        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8399                                            BuiltinMemCpy->getType(),
8400                                            VK_LValue, Loc, 0).take();
8401        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8402      }
8403
8404      ASTOwningVector<Expr*> CallArgs(*this);
8405      CallArgs.push_back(To.takeAs<Expr>());
8406      CallArgs.push_back(From.takeAs<Expr>());
8407      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8408      ExprResult Call = ExprError();
8409      if (NeedsCollectableMemCpy)
8410        Call = ActOnCallExpr(/*Scope=*/0,
8411                             CollectableMemCpyRef,
8412                             Loc, move_arg(CallArgs),
8413                             Loc);
8414      else
8415        Call = ActOnCallExpr(/*Scope=*/0,
8416                             BuiltinMemCpyRef,
8417                             Loc, move_arg(CallArgs),
8418                             Loc);
8419
8420      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8421      Statements.push_back(Call.takeAs<Expr>());
8422      continue;
8423    }
8424
8425    // Build the move of this field.
8426    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8427                                            To.get(), From.get(),
8428                                            /*CopyingBaseSubobject=*/false,
8429                                            /*Copying=*/false);
8430    if (Move.isInvalid()) {
8431      Diag(CurrentLocation, diag::note_member_synthesized_at)
8432        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8433      MoveAssignOperator->setInvalidDecl();
8434      return;
8435    }
8436
8437    // Success! Record the copy.
8438    Statements.push_back(Move.takeAs<Stmt>());
8439  }
8440
8441  if (!Invalid) {
8442    // Add a "return *this;"
8443    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8444
8445    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8446    if (Return.isInvalid())
8447      Invalid = true;
8448    else {
8449      Statements.push_back(Return.takeAs<Stmt>());
8450
8451      if (Trap.hasErrorOccurred()) {
8452        Diag(CurrentLocation, diag::note_member_synthesized_at)
8453          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8454        Invalid = true;
8455      }
8456    }
8457  }
8458
8459  if (Invalid) {
8460    MoveAssignOperator->setInvalidDecl();
8461    return;
8462  }
8463
8464  StmtResult Body;
8465  {
8466    CompoundScopeRAII CompoundScope(*this);
8467    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8468                             /*isStmtExpr=*/false);
8469    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8470  }
8471  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8472
8473  if (ASTMutationListener *L = getASTMutationListener()) {
8474    L->CompletedImplicitDefinition(MoveAssignOperator);
8475  }
8476}
8477
8478std::pair<Sema::ImplicitExceptionSpecification, bool>
8479Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8480  if (ClassDecl->isInvalidDecl())
8481    return std::make_pair(ImplicitExceptionSpecification(*this), true);
8482
8483  // C++ [class.copy]p5:
8484  //   The implicitly-declared copy constructor for a class X will
8485  //   have the form
8486  //
8487  //       X::X(const X&)
8488  //
8489  //   if
8490  // FIXME: It ought to be possible to store this on the record.
8491  bool HasConstCopyConstructor = true;
8492
8493  //     -- each direct or virtual base class B of X has a copy
8494  //        constructor whose first parameter is of type const B& or
8495  //        const volatile B&, and
8496  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8497                                       BaseEnd = ClassDecl->bases_end();
8498       HasConstCopyConstructor && Base != BaseEnd;
8499       ++Base) {
8500    // Virtual bases are handled below.
8501    if (Base->isVirtual())
8502      continue;
8503
8504    CXXRecordDecl *BaseClassDecl
8505      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8506    HasConstCopyConstructor &=
8507      (bool)LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const);
8508  }
8509
8510  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8511                                       BaseEnd = ClassDecl->vbases_end();
8512       HasConstCopyConstructor && Base != BaseEnd;
8513       ++Base) {
8514    CXXRecordDecl *BaseClassDecl
8515      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8516    HasConstCopyConstructor &=
8517      (bool)LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const);
8518  }
8519
8520  //     -- for all the nonstatic data members of X that are of a
8521  //        class type M (or array thereof), each such class type
8522  //        has a copy constructor whose first parameter is of type
8523  //        const M& or const volatile M&.
8524  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8525                                  FieldEnd = ClassDecl->field_end();
8526       HasConstCopyConstructor && Field != FieldEnd;
8527       ++Field) {
8528    QualType FieldType = Context.getBaseElementType(Field->getType());
8529    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8530      HasConstCopyConstructor &=
8531        (bool)LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const);
8532    }
8533  }
8534  //   Otherwise, the implicitly declared copy constructor will have
8535  //   the form
8536  //
8537  //       X::X(X&)
8538
8539  // C++ [except.spec]p14:
8540  //   An implicitly declared special member function (Clause 12) shall have an
8541  //   exception-specification. [...]
8542  ImplicitExceptionSpecification ExceptSpec(*this);
8543  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8544  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8545                                       BaseEnd = ClassDecl->bases_end();
8546       Base != BaseEnd;
8547       ++Base) {
8548    // Virtual bases are handled below.
8549    if (Base->isVirtual())
8550      continue;
8551
8552    CXXRecordDecl *BaseClassDecl
8553      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8554    if (CXXConstructorDecl *CopyConstructor =
8555          LookupCopyingConstructor(BaseClassDecl, Quals))
8556      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8557  }
8558  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8559                                       BaseEnd = ClassDecl->vbases_end();
8560       Base != BaseEnd;
8561       ++Base) {
8562    CXXRecordDecl *BaseClassDecl
8563      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8564    if (CXXConstructorDecl *CopyConstructor =
8565          LookupCopyingConstructor(BaseClassDecl, Quals))
8566      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8567  }
8568  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8569                                  FieldEnd = ClassDecl->field_end();
8570       Field != FieldEnd;
8571       ++Field) {
8572    QualType FieldType = Context.getBaseElementType(Field->getType());
8573    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8574      if (CXXConstructorDecl *CopyConstructor =
8575        LookupCopyingConstructor(FieldClassDecl, Quals))
8576      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
8577    }
8578  }
8579
8580  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8581}
8582
8583CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8584                                                    CXXRecordDecl *ClassDecl) {
8585  // C++ [class.copy]p4:
8586  //   If the class definition does not explicitly declare a copy
8587  //   constructor, one is declared implicitly.
8588
8589  ImplicitExceptionSpecification Spec(*this);
8590  bool Const;
8591  llvm::tie(Spec, Const) =
8592    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8593
8594  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8595  QualType ArgType = ClassType;
8596  if (Const)
8597    ArgType = ArgType.withConst();
8598  ArgType = Context.getLValueReferenceType(ArgType);
8599
8600  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8601
8602  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8603                                                     CXXCopyConstructor,
8604                                                     Const);
8605
8606  DeclarationName Name
8607    = Context.DeclarationNames.getCXXConstructorName(
8608                                           Context.getCanonicalType(ClassType));
8609  SourceLocation ClassLoc = ClassDecl->getLocation();
8610  DeclarationNameInfo NameInfo(Name, ClassLoc);
8611
8612  //   An implicitly-declared copy constructor is an inline public
8613  //   member of its class.
8614  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8615      Context, ClassDecl, ClassLoc, NameInfo,
8616      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8617      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8618      Constexpr);
8619  CopyConstructor->setAccess(AS_public);
8620  CopyConstructor->setDefaulted();
8621  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8622
8623  // Note that we have declared this constructor.
8624  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8625
8626  // Add the parameter to the constructor.
8627  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8628                                               ClassLoc, ClassLoc,
8629                                               /*IdentifierInfo=*/0,
8630                                               ArgType, /*TInfo=*/0,
8631                                               SC_None,
8632                                               SC_None, 0);
8633  CopyConstructor->setParams(FromParam);
8634
8635  if (Scope *S = getScopeForContext(ClassDecl))
8636    PushOnScopeChains(CopyConstructor, S, false);
8637  ClassDecl->addDecl(CopyConstructor);
8638
8639  // C++11 [class.copy]p8:
8640  //   ... If the class definition does not explicitly declare a copy
8641  //   constructor, there is no user-declared move constructor, and there is no
8642  //   user-declared move assignment operator, a copy constructor is implicitly
8643  //   declared as defaulted.
8644  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8645    CopyConstructor->setDeletedAsWritten();
8646
8647  return CopyConstructor;
8648}
8649
8650void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8651                                   CXXConstructorDecl *CopyConstructor) {
8652  assert((CopyConstructor->isDefaulted() &&
8653          CopyConstructor->isCopyConstructor() &&
8654          !CopyConstructor->doesThisDeclarationHaveABody() &&
8655          !CopyConstructor->isDeleted()) &&
8656         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8657
8658  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8659  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8660
8661  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8662  DiagnosticErrorTrap Trap(Diags);
8663
8664  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8665      Trap.hasErrorOccurred()) {
8666    Diag(CurrentLocation, diag::note_member_synthesized_at)
8667      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8668    CopyConstructor->setInvalidDecl();
8669  }  else {
8670    Sema::CompoundScopeRAII CompoundScope(*this);
8671    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8672                                               CopyConstructor->getLocation(),
8673                                               MultiStmtArg(*this, 0, 0),
8674                                               /*isStmtExpr=*/false)
8675                                                              .takeAs<Stmt>());
8676    CopyConstructor->setImplicitlyDefined(true);
8677  }
8678
8679  CopyConstructor->setUsed();
8680  if (ASTMutationListener *L = getASTMutationListener()) {
8681    L->CompletedImplicitDefinition(CopyConstructor);
8682  }
8683}
8684
8685Sema::ImplicitExceptionSpecification
8686Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8687  // C++ [except.spec]p14:
8688  //   An implicitly declared special member function (Clause 12) shall have an
8689  //   exception-specification. [...]
8690  ImplicitExceptionSpecification ExceptSpec(*this);
8691  if (ClassDecl->isInvalidDecl())
8692    return ExceptSpec;
8693
8694  // Direct base-class constructors.
8695  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8696                                       BEnd = ClassDecl->bases_end();
8697       B != BEnd; ++B) {
8698    if (B->isVirtual()) // Handled below.
8699      continue;
8700
8701    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8702      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8703      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8704      // If this is a deleted function, add it anyway. This might be conformant
8705      // with the standard. This might not. I'm not sure. It might not matter.
8706      if (Constructor)
8707        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8708    }
8709  }
8710
8711  // Virtual base-class constructors.
8712  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8713                                       BEnd = ClassDecl->vbases_end();
8714       B != BEnd; ++B) {
8715    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8716      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8717      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8718      // If this is a deleted function, add it anyway. This might be conformant
8719      // with the standard. This might not. I'm not sure. It might not matter.
8720      if (Constructor)
8721        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8722    }
8723  }
8724
8725  // Field constructors.
8726  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8727                               FEnd = ClassDecl->field_end();
8728       F != FEnd; ++F) {
8729    if (const RecordType *RecordTy
8730              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8731      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8732      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8733      // If this is a deleted function, add it anyway. This might be conformant
8734      // with the standard. This might not. I'm not sure. It might not matter.
8735      // In particular, the problem is that this function never gets called. It
8736      // might just be ill-formed because this function attempts to refer to
8737      // a deleted function here.
8738      if (Constructor)
8739        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8740    }
8741  }
8742
8743  return ExceptSpec;
8744}
8745
8746CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8747                                                    CXXRecordDecl *ClassDecl) {
8748  // C++11 [class.copy]p9:
8749  //   If the definition of a class X does not explicitly declare a move
8750  //   constructor, one will be implicitly declared as defaulted if and only if:
8751  //
8752  //   - [first 4 bullets]
8753  assert(ClassDecl->needsImplicitMoveConstructor());
8754
8755  // [Checked after we build the declaration]
8756  //   - the move assignment operator would not be implicitly defined as
8757  //     deleted,
8758
8759  // [DR1402]:
8760  //   - each of X's non-static data members and direct or virtual base classes
8761  //     has a type that either has a move constructor or is trivially copyable.
8762  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
8763    ClassDecl->setFailedImplicitMoveConstructor();
8764    return 0;
8765  }
8766
8767  ImplicitExceptionSpecification Spec(
8768      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8769
8770  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8771  QualType ArgType = Context.getRValueReferenceType(ClassType);
8772
8773  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8774
8775  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8776                                                     CXXMoveConstructor,
8777                                                     false);
8778
8779  DeclarationName Name
8780    = Context.DeclarationNames.getCXXConstructorName(
8781                                           Context.getCanonicalType(ClassType));
8782  SourceLocation ClassLoc = ClassDecl->getLocation();
8783  DeclarationNameInfo NameInfo(Name, ClassLoc);
8784
8785  // C++0x [class.copy]p11:
8786  //   An implicitly-declared copy/move constructor is an inline public
8787  //   member of its class.
8788  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8789      Context, ClassDecl, ClassLoc, NameInfo,
8790      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8791      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8792      Constexpr);
8793  MoveConstructor->setAccess(AS_public);
8794  MoveConstructor->setDefaulted();
8795  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8796
8797  // Add the parameter to the constructor.
8798  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8799                                               ClassLoc, ClassLoc,
8800                                               /*IdentifierInfo=*/0,
8801                                               ArgType, /*TInfo=*/0,
8802                                               SC_None,
8803                                               SC_None, 0);
8804  MoveConstructor->setParams(FromParam);
8805
8806  // C++0x [class.copy]p9:
8807  //   If the definition of a class X does not explicitly declare a move
8808  //   constructor, one will be implicitly declared as defaulted if and only if:
8809  //   [...]
8810  //   - the move constructor would not be implicitly defined as deleted.
8811  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8812    // Cache this result so that we don't try to generate this over and over
8813    // on every lookup, leaking memory and wasting time.
8814    ClassDecl->setFailedImplicitMoveConstructor();
8815    return 0;
8816  }
8817
8818  // Note that we have declared this constructor.
8819  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8820
8821  if (Scope *S = getScopeForContext(ClassDecl))
8822    PushOnScopeChains(MoveConstructor, S, false);
8823  ClassDecl->addDecl(MoveConstructor);
8824
8825  return MoveConstructor;
8826}
8827
8828void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8829                                   CXXConstructorDecl *MoveConstructor) {
8830  assert((MoveConstructor->isDefaulted() &&
8831          MoveConstructor->isMoveConstructor() &&
8832          !MoveConstructor->doesThisDeclarationHaveABody() &&
8833          !MoveConstructor->isDeleted()) &&
8834         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8835
8836  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8837  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8838
8839  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8840  DiagnosticErrorTrap Trap(Diags);
8841
8842  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8843      Trap.hasErrorOccurred()) {
8844    Diag(CurrentLocation, diag::note_member_synthesized_at)
8845      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8846    MoveConstructor->setInvalidDecl();
8847  }  else {
8848    Sema::CompoundScopeRAII CompoundScope(*this);
8849    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8850                                               MoveConstructor->getLocation(),
8851                                               MultiStmtArg(*this, 0, 0),
8852                                               /*isStmtExpr=*/false)
8853                                                              .takeAs<Stmt>());
8854    MoveConstructor->setImplicitlyDefined(true);
8855  }
8856
8857  MoveConstructor->setUsed();
8858
8859  if (ASTMutationListener *L = getASTMutationListener()) {
8860    L->CompletedImplicitDefinition(MoveConstructor);
8861  }
8862}
8863
8864bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8865  return FD->isDeleted() &&
8866         (FD->isDefaulted() || FD->isImplicit()) &&
8867         isa<CXXMethodDecl>(FD);
8868}
8869
8870/// \brief Mark the call operator of the given lambda closure type as "used".
8871static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8872  CXXMethodDecl *CallOperator
8873    = cast<CXXMethodDecl>(
8874        *Lambda->lookup(
8875          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8876  CallOperator->setReferenced();
8877  CallOperator->setUsed();
8878}
8879
8880void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8881       SourceLocation CurrentLocation,
8882       CXXConversionDecl *Conv)
8883{
8884  CXXRecordDecl *Lambda = Conv->getParent();
8885
8886  // Make sure that the lambda call operator is marked used.
8887  markLambdaCallOperatorUsed(*this, Lambda);
8888
8889  Conv->setUsed();
8890
8891  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8892  DiagnosticErrorTrap Trap(Diags);
8893
8894  // Return the address of the __invoke function.
8895  DeclarationName InvokeName = &Context.Idents.get("__invoke");
8896  CXXMethodDecl *Invoke
8897    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
8898  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
8899                                       VK_LValue, Conv->getLocation()).take();
8900  assert(FunctionRef && "Can't refer to __invoke function?");
8901  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
8902  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
8903                                           Conv->getLocation(),
8904                                           Conv->getLocation()));
8905
8906  // Fill in the __invoke function with a dummy implementation. IR generation
8907  // will fill in the actual details.
8908  Invoke->setUsed();
8909  Invoke->setReferenced();
8910  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
8911
8912  if (ASTMutationListener *L = getASTMutationListener()) {
8913    L->CompletedImplicitDefinition(Conv);
8914    L->CompletedImplicitDefinition(Invoke);
8915  }
8916}
8917
8918void Sema::DefineImplicitLambdaToBlockPointerConversion(
8919       SourceLocation CurrentLocation,
8920       CXXConversionDecl *Conv)
8921{
8922  Conv->setUsed();
8923
8924  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8925  DiagnosticErrorTrap Trap(Diags);
8926
8927  // Copy-initialize the lambda object as needed to capture it.
8928  Expr *This = ActOnCXXThis(CurrentLocation).take();
8929  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
8930
8931  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
8932                                                        Conv->getLocation(),
8933                                                        Conv, DerefThis);
8934
8935  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
8936  // behavior.  Note that only the general conversion function does this
8937  // (since it's unusable otherwise); in the case where we inline the
8938  // block literal, it has block literal lifetime semantics.
8939  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
8940    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
8941                                          CK_CopyAndAutoreleaseBlockObject,
8942                                          BuildBlock.get(), 0, VK_RValue);
8943
8944  if (BuildBlock.isInvalid()) {
8945    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8946    Conv->setInvalidDecl();
8947    return;
8948  }
8949
8950  // Create the return statement that returns the block from the conversion
8951  // function.
8952  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
8953  if (Return.isInvalid()) {
8954    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8955    Conv->setInvalidDecl();
8956    return;
8957  }
8958
8959  // Set the body of the conversion function.
8960  Stmt *ReturnS = Return.take();
8961  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
8962                                           Conv->getLocation(),
8963                                           Conv->getLocation()));
8964
8965  // We're done; notify the mutation listener, if any.
8966  if (ASTMutationListener *L = getASTMutationListener()) {
8967    L->CompletedImplicitDefinition(Conv);
8968  }
8969}
8970
8971/// \brief Determine whether the given list arguments contains exactly one
8972/// "real" (non-default) argument.
8973static bool hasOneRealArgument(MultiExprArg Args) {
8974  switch (Args.size()) {
8975  case 0:
8976    return false;
8977
8978  default:
8979    if (!Args.get()[1]->isDefaultArgument())
8980      return false;
8981
8982    // fall through
8983  case 1:
8984    return !Args.get()[0]->isDefaultArgument();
8985  }
8986
8987  return false;
8988}
8989
8990ExprResult
8991Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8992                            CXXConstructorDecl *Constructor,
8993                            MultiExprArg ExprArgs,
8994                            bool HadMultipleCandidates,
8995                            bool RequiresZeroInit,
8996                            unsigned ConstructKind,
8997                            SourceRange ParenRange) {
8998  bool Elidable = false;
8999
9000  // C++0x [class.copy]p34:
9001  //   When certain criteria are met, an implementation is allowed to
9002  //   omit the copy/move construction of a class object, even if the
9003  //   copy/move constructor and/or destructor for the object have
9004  //   side effects. [...]
9005  //     - when a temporary class object that has not been bound to a
9006  //       reference (12.2) would be copied/moved to a class object
9007  //       with the same cv-unqualified type, the copy/move operation
9008  //       can be omitted by constructing the temporary object
9009  //       directly into the target of the omitted copy/move
9010  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9011      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9012    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9013    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9014  }
9015
9016  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9017                               Elidable, move(ExprArgs), HadMultipleCandidates,
9018                               RequiresZeroInit, ConstructKind, ParenRange);
9019}
9020
9021/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9022/// including handling of its default argument expressions.
9023ExprResult
9024Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9025                            CXXConstructorDecl *Constructor, bool Elidable,
9026                            MultiExprArg ExprArgs,
9027                            bool HadMultipleCandidates,
9028                            bool RequiresZeroInit,
9029                            unsigned ConstructKind,
9030                            SourceRange ParenRange) {
9031  unsigned NumExprs = ExprArgs.size();
9032  Expr **Exprs = (Expr **)ExprArgs.release();
9033
9034  MarkFunctionReferenced(ConstructLoc, Constructor);
9035  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9036                                        Constructor, Elidable, Exprs, NumExprs,
9037                                        HadMultipleCandidates, /*FIXME*/false,
9038                                        RequiresZeroInit,
9039              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9040                                        ParenRange));
9041}
9042
9043bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9044                                        CXXConstructorDecl *Constructor,
9045                                        MultiExprArg Exprs,
9046                                        bool HadMultipleCandidates) {
9047  // FIXME: Provide the correct paren SourceRange when available.
9048  ExprResult TempResult =
9049    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9050                          move(Exprs), HadMultipleCandidates, false,
9051                          CXXConstructExpr::CK_Complete, SourceRange());
9052  if (TempResult.isInvalid())
9053    return true;
9054
9055  Expr *Temp = TempResult.takeAs<Expr>();
9056  CheckImplicitConversions(Temp, VD->getLocation());
9057  MarkFunctionReferenced(VD->getLocation(), Constructor);
9058  Temp = MaybeCreateExprWithCleanups(Temp);
9059  VD->setInit(Temp);
9060
9061  return false;
9062}
9063
9064void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9065  if (VD->isInvalidDecl()) return;
9066
9067  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9068  if (ClassDecl->isInvalidDecl()) return;
9069  if (ClassDecl->hasIrrelevantDestructor()) return;
9070  if (ClassDecl->isDependentContext()) return;
9071
9072  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9073  MarkFunctionReferenced(VD->getLocation(), Destructor);
9074  CheckDestructorAccess(VD->getLocation(), Destructor,
9075                        PDiag(diag::err_access_dtor_var)
9076                        << VD->getDeclName()
9077                        << VD->getType());
9078  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9079
9080  if (!VD->hasGlobalStorage()) return;
9081
9082  // Emit warning for non-trivial dtor in global scope (a real global,
9083  // class-static, function-static).
9084  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9085
9086  // TODO: this should be re-enabled for static locals by !CXAAtExit
9087  if (!VD->isStaticLocal())
9088    Diag(VD->getLocation(), diag::warn_global_destructor);
9089}
9090
9091/// \brief Given a constructor and the set of arguments provided for the
9092/// constructor, convert the arguments and add any required default arguments
9093/// to form a proper call to this constructor.
9094///
9095/// \returns true if an error occurred, false otherwise.
9096bool
9097Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9098                              MultiExprArg ArgsPtr,
9099                              SourceLocation Loc,
9100                              ASTOwningVector<Expr*> &ConvertedArgs,
9101                              bool AllowExplicit) {
9102  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9103  unsigned NumArgs = ArgsPtr.size();
9104  Expr **Args = (Expr **)ArgsPtr.get();
9105
9106  const FunctionProtoType *Proto
9107    = Constructor->getType()->getAs<FunctionProtoType>();
9108  assert(Proto && "Constructor without a prototype?");
9109  unsigned NumArgsInProto = Proto->getNumArgs();
9110
9111  // If too few arguments are available, we'll fill in the rest with defaults.
9112  if (NumArgs < NumArgsInProto)
9113    ConvertedArgs.reserve(NumArgsInProto);
9114  else
9115    ConvertedArgs.reserve(NumArgs);
9116
9117  VariadicCallType CallType =
9118    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9119  SmallVector<Expr *, 8> AllArgs;
9120  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9121                                        Proto, 0, Args, NumArgs, AllArgs,
9122                                        CallType, AllowExplicit);
9123  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9124
9125  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9126
9127  CheckConstructorCall(Constructor, AllArgs.data(), AllArgs.size(),
9128                       Proto, Loc);
9129
9130  return Invalid;
9131}
9132
9133static inline bool
9134CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9135                                       const FunctionDecl *FnDecl) {
9136  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9137  if (isa<NamespaceDecl>(DC)) {
9138    return SemaRef.Diag(FnDecl->getLocation(),
9139                        diag::err_operator_new_delete_declared_in_namespace)
9140      << FnDecl->getDeclName();
9141  }
9142
9143  if (isa<TranslationUnitDecl>(DC) &&
9144      FnDecl->getStorageClass() == SC_Static) {
9145    return SemaRef.Diag(FnDecl->getLocation(),
9146                        diag::err_operator_new_delete_declared_static)
9147      << FnDecl->getDeclName();
9148  }
9149
9150  return false;
9151}
9152
9153static inline bool
9154CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9155                            CanQualType ExpectedResultType,
9156                            CanQualType ExpectedFirstParamType,
9157                            unsigned DependentParamTypeDiag,
9158                            unsigned InvalidParamTypeDiag) {
9159  QualType ResultType =
9160    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9161
9162  // Check that the result type is not dependent.
9163  if (ResultType->isDependentType())
9164    return SemaRef.Diag(FnDecl->getLocation(),
9165                        diag::err_operator_new_delete_dependent_result_type)
9166    << FnDecl->getDeclName() << ExpectedResultType;
9167
9168  // Check that the result type is what we expect.
9169  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9170    return SemaRef.Diag(FnDecl->getLocation(),
9171                        diag::err_operator_new_delete_invalid_result_type)
9172    << FnDecl->getDeclName() << ExpectedResultType;
9173
9174  // A function template must have at least 2 parameters.
9175  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9176    return SemaRef.Diag(FnDecl->getLocation(),
9177                      diag::err_operator_new_delete_template_too_few_parameters)
9178        << FnDecl->getDeclName();
9179
9180  // The function decl must have at least 1 parameter.
9181  if (FnDecl->getNumParams() == 0)
9182    return SemaRef.Diag(FnDecl->getLocation(),
9183                        diag::err_operator_new_delete_too_few_parameters)
9184      << FnDecl->getDeclName();
9185
9186  // Check the the first parameter type is not dependent.
9187  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9188  if (FirstParamType->isDependentType())
9189    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9190      << FnDecl->getDeclName() << ExpectedFirstParamType;
9191
9192  // Check that the first parameter type is what we expect.
9193  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9194      ExpectedFirstParamType)
9195    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9196    << FnDecl->getDeclName() << ExpectedFirstParamType;
9197
9198  return false;
9199}
9200
9201static bool
9202CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9203  // C++ [basic.stc.dynamic.allocation]p1:
9204  //   A program is ill-formed if an allocation function is declared in a
9205  //   namespace scope other than global scope or declared static in global
9206  //   scope.
9207  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9208    return true;
9209
9210  CanQualType SizeTy =
9211    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9212
9213  // C++ [basic.stc.dynamic.allocation]p1:
9214  //  The return type shall be void*. The first parameter shall have type
9215  //  std::size_t.
9216  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9217                                  SizeTy,
9218                                  diag::err_operator_new_dependent_param_type,
9219                                  diag::err_operator_new_param_type))
9220    return true;
9221
9222  // C++ [basic.stc.dynamic.allocation]p1:
9223  //  The first parameter shall not have an associated default argument.
9224  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9225    return SemaRef.Diag(FnDecl->getLocation(),
9226                        diag::err_operator_new_default_arg)
9227      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9228
9229  return false;
9230}
9231
9232static bool
9233CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9234  // C++ [basic.stc.dynamic.deallocation]p1:
9235  //   A program is ill-formed if deallocation functions are declared in a
9236  //   namespace scope other than global scope or declared static in global
9237  //   scope.
9238  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9239    return true;
9240
9241  // C++ [basic.stc.dynamic.deallocation]p2:
9242  //   Each deallocation function shall return void and its first parameter
9243  //   shall be void*.
9244  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9245                                  SemaRef.Context.VoidPtrTy,
9246                                 diag::err_operator_delete_dependent_param_type,
9247                                 diag::err_operator_delete_param_type))
9248    return true;
9249
9250  return false;
9251}
9252
9253/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9254/// of this overloaded operator is well-formed. If so, returns false;
9255/// otherwise, emits appropriate diagnostics and returns true.
9256bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9257  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9258         "Expected an overloaded operator declaration");
9259
9260  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9261
9262  // C++ [over.oper]p5:
9263  //   The allocation and deallocation functions, operator new,
9264  //   operator new[], operator delete and operator delete[], are
9265  //   described completely in 3.7.3. The attributes and restrictions
9266  //   found in the rest of this subclause do not apply to them unless
9267  //   explicitly stated in 3.7.3.
9268  if (Op == OO_Delete || Op == OO_Array_Delete)
9269    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9270
9271  if (Op == OO_New || Op == OO_Array_New)
9272    return CheckOperatorNewDeclaration(*this, FnDecl);
9273
9274  // C++ [over.oper]p6:
9275  //   An operator function shall either be a non-static member
9276  //   function or be a non-member function and have at least one
9277  //   parameter whose type is a class, a reference to a class, an
9278  //   enumeration, or a reference to an enumeration.
9279  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9280    if (MethodDecl->isStatic())
9281      return Diag(FnDecl->getLocation(),
9282                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9283  } else {
9284    bool ClassOrEnumParam = false;
9285    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9286                                   ParamEnd = FnDecl->param_end();
9287         Param != ParamEnd; ++Param) {
9288      QualType ParamType = (*Param)->getType().getNonReferenceType();
9289      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9290          ParamType->isEnumeralType()) {
9291        ClassOrEnumParam = true;
9292        break;
9293      }
9294    }
9295
9296    if (!ClassOrEnumParam)
9297      return Diag(FnDecl->getLocation(),
9298                  diag::err_operator_overload_needs_class_or_enum)
9299        << FnDecl->getDeclName();
9300  }
9301
9302  // C++ [over.oper]p8:
9303  //   An operator function cannot have default arguments (8.3.6),
9304  //   except where explicitly stated below.
9305  //
9306  // Only the function-call operator allows default arguments
9307  // (C++ [over.call]p1).
9308  if (Op != OO_Call) {
9309    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9310         Param != FnDecl->param_end(); ++Param) {
9311      if ((*Param)->hasDefaultArg())
9312        return Diag((*Param)->getLocation(),
9313                    diag::err_operator_overload_default_arg)
9314          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9315    }
9316  }
9317
9318  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9319    { false, false, false }
9320#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9321    , { Unary, Binary, MemberOnly }
9322#include "clang/Basic/OperatorKinds.def"
9323  };
9324
9325  bool CanBeUnaryOperator = OperatorUses[Op][0];
9326  bool CanBeBinaryOperator = OperatorUses[Op][1];
9327  bool MustBeMemberOperator = OperatorUses[Op][2];
9328
9329  // C++ [over.oper]p8:
9330  //   [...] Operator functions cannot have more or fewer parameters
9331  //   than the number required for the corresponding operator, as
9332  //   described in the rest of this subclause.
9333  unsigned NumParams = FnDecl->getNumParams()
9334                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9335  if (Op != OO_Call &&
9336      ((NumParams == 1 && !CanBeUnaryOperator) ||
9337       (NumParams == 2 && !CanBeBinaryOperator) ||
9338       (NumParams < 1) || (NumParams > 2))) {
9339    // We have the wrong number of parameters.
9340    unsigned ErrorKind;
9341    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9342      ErrorKind = 2;  // 2 -> unary or binary.
9343    } else if (CanBeUnaryOperator) {
9344      ErrorKind = 0;  // 0 -> unary
9345    } else {
9346      assert(CanBeBinaryOperator &&
9347             "All non-call overloaded operators are unary or binary!");
9348      ErrorKind = 1;  // 1 -> binary
9349    }
9350
9351    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9352      << FnDecl->getDeclName() << NumParams << ErrorKind;
9353  }
9354
9355  // Overloaded operators other than operator() cannot be variadic.
9356  if (Op != OO_Call &&
9357      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9358    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9359      << FnDecl->getDeclName();
9360  }
9361
9362  // Some operators must be non-static member functions.
9363  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9364    return Diag(FnDecl->getLocation(),
9365                diag::err_operator_overload_must_be_member)
9366      << FnDecl->getDeclName();
9367  }
9368
9369  // C++ [over.inc]p1:
9370  //   The user-defined function called operator++ implements the
9371  //   prefix and postfix ++ operator. If this function is a member
9372  //   function with no parameters, or a non-member function with one
9373  //   parameter of class or enumeration type, it defines the prefix
9374  //   increment operator ++ for objects of that type. If the function
9375  //   is a member function with one parameter (which shall be of type
9376  //   int) or a non-member function with two parameters (the second
9377  //   of which shall be of type int), it defines the postfix
9378  //   increment operator ++ for objects of that type.
9379  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9380    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9381    bool ParamIsInt = false;
9382    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9383      ParamIsInt = BT->getKind() == BuiltinType::Int;
9384
9385    if (!ParamIsInt)
9386      return Diag(LastParam->getLocation(),
9387                  diag::err_operator_overload_post_incdec_must_be_int)
9388        << LastParam->getType() << (Op == OO_MinusMinus);
9389  }
9390
9391  return false;
9392}
9393
9394/// CheckLiteralOperatorDeclaration - Check whether the declaration
9395/// of this literal operator function is well-formed. If so, returns
9396/// false; otherwise, emits appropriate diagnostics and returns true.
9397bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9398  if (isa<CXXMethodDecl>(FnDecl)) {
9399    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9400      << FnDecl->getDeclName();
9401    return true;
9402  }
9403
9404  if (FnDecl->isExternC()) {
9405    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9406    return true;
9407  }
9408
9409  bool Valid = false;
9410
9411  // This might be the definition of a literal operator template.
9412  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9413  // This might be a specialization of a literal operator template.
9414  if (!TpDecl)
9415    TpDecl = FnDecl->getPrimaryTemplate();
9416
9417  // template <char...> type operator "" name() is the only valid template
9418  // signature, and the only valid signature with no parameters.
9419  if (TpDecl) {
9420    if (FnDecl->param_size() == 0) {
9421      // Must have only one template parameter
9422      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9423      if (Params->size() == 1) {
9424        NonTypeTemplateParmDecl *PmDecl =
9425          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9426
9427        // The template parameter must be a char parameter pack.
9428        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9429            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9430          Valid = true;
9431      }
9432    }
9433  } else if (FnDecl->param_size()) {
9434    // Check the first parameter
9435    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9436
9437    QualType T = (*Param)->getType().getUnqualifiedType();
9438
9439    // unsigned long long int, long double, and any character type are allowed
9440    // as the only parameters.
9441    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9442        Context.hasSameType(T, Context.LongDoubleTy) ||
9443        Context.hasSameType(T, Context.CharTy) ||
9444        Context.hasSameType(T, Context.WCharTy) ||
9445        Context.hasSameType(T, Context.Char16Ty) ||
9446        Context.hasSameType(T, Context.Char32Ty)) {
9447      if (++Param == FnDecl->param_end())
9448        Valid = true;
9449      goto FinishedParams;
9450    }
9451
9452    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9453    const PointerType *PT = T->getAs<PointerType>();
9454    if (!PT)
9455      goto FinishedParams;
9456    T = PT->getPointeeType();
9457    if (!T.isConstQualified() || T.isVolatileQualified())
9458      goto FinishedParams;
9459    T = T.getUnqualifiedType();
9460
9461    // Move on to the second parameter;
9462    ++Param;
9463
9464    // If there is no second parameter, the first must be a const char *
9465    if (Param == FnDecl->param_end()) {
9466      if (Context.hasSameType(T, Context.CharTy))
9467        Valid = true;
9468      goto FinishedParams;
9469    }
9470
9471    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9472    // are allowed as the first parameter to a two-parameter function
9473    if (!(Context.hasSameType(T, Context.CharTy) ||
9474          Context.hasSameType(T, Context.WCharTy) ||
9475          Context.hasSameType(T, Context.Char16Ty) ||
9476          Context.hasSameType(T, Context.Char32Ty)))
9477      goto FinishedParams;
9478
9479    // The second and final parameter must be an std::size_t
9480    T = (*Param)->getType().getUnqualifiedType();
9481    if (Context.hasSameType(T, Context.getSizeType()) &&
9482        ++Param == FnDecl->param_end())
9483      Valid = true;
9484  }
9485
9486  // FIXME: This diagnostic is absolutely terrible.
9487FinishedParams:
9488  if (!Valid) {
9489    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9490      << FnDecl->getDeclName();
9491    return true;
9492  }
9493
9494  // A parameter-declaration-clause containing a default argument is not
9495  // equivalent to any of the permitted forms.
9496  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9497                                    ParamEnd = FnDecl->param_end();
9498       Param != ParamEnd; ++Param) {
9499    if ((*Param)->hasDefaultArg()) {
9500      Diag((*Param)->getDefaultArgRange().getBegin(),
9501           diag::err_literal_operator_default_argument)
9502        << (*Param)->getDefaultArgRange();
9503      break;
9504    }
9505  }
9506
9507  StringRef LiteralName
9508    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9509  if (LiteralName[0] != '_') {
9510    // C++11 [usrlit.suffix]p1:
9511    //   Literal suffix identifiers that do not start with an underscore
9512    //   are reserved for future standardization.
9513    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9514  }
9515
9516  return false;
9517}
9518
9519/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9520/// linkage specification, including the language and (if present)
9521/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9522/// the location of the language string literal, which is provided
9523/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9524/// the '{' brace. Otherwise, this linkage specification does not
9525/// have any braces.
9526Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9527                                           SourceLocation LangLoc,
9528                                           StringRef Lang,
9529                                           SourceLocation LBraceLoc) {
9530  LinkageSpecDecl::LanguageIDs Language;
9531  if (Lang == "\"C\"")
9532    Language = LinkageSpecDecl::lang_c;
9533  else if (Lang == "\"C++\"")
9534    Language = LinkageSpecDecl::lang_cxx;
9535  else {
9536    Diag(LangLoc, diag::err_bad_language);
9537    return 0;
9538  }
9539
9540  // FIXME: Add all the various semantics of linkage specifications
9541
9542  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9543                                               ExternLoc, LangLoc, Language);
9544  CurContext->addDecl(D);
9545  PushDeclContext(S, D);
9546  return D;
9547}
9548
9549/// ActOnFinishLinkageSpecification - Complete the definition of
9550/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9551/// valid, it's the position of the closing '}' brace in a linkage
9552/// specification that uses braces.
9553Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9554                                            Decl *LinkageSpec,
9555                                            SourceLocation RBraceLoc) {
9556  if (LinkageSpec) {
9557    if (RBraceLoc.isValid()) {
9558      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9559      LSDecl->setRBraceLoc(RBraceLoc);
9560    }
9561    PopDeclContext();
9562  }
9563  return LinkageSpec;
9564}
9565
9566/// \brief Perform semantic analysis for the variable declaration that
9567/// occurs within a C++ catch clause, returning the newly-created
9568/// variable.
9569VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9570                                         TypeSourceInfo *TInfo,
9571                                         SourceLocation StartLoc,
9572                                         SourceLocation Loc,
9573                                         IdentifierInfo *Name) {
9574  bool Invalid = false;
9575  QualType ExDeclType = TInfo->getType();
9576
9577  // Arrays and functions decay.
9578  if (ExDeclType->isArrayType())
9579    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9580  else if (ExDeclType->isFunctionType())
9581    ExDeclType = Context.getPointerType(ExDeclType);
9582
9583  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9584  // The exception-declaration shall not denote a pointer or reference to an
9585  // incomplete type, other than [cv] void*.
9586  // N2844 forbids rvalue references.
9587  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9588    Diag(Loc, diag::err_catch_rvalue_ref);
9589    Invalid = true;
9590  }
9591
9592  QualType BaseType = ExDeclType;
9593  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9594  unsigned DK = diag::err_catch_incomplete;
9595  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9596    BaseType = Ptr->getPointeeType();
9597    Mode = 1;
9598    DK = diag::err_catch_incomplete_ptr;
9599  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9600    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9601    BaseType = Ref->getPointeeType();
9602    Mode = 2;
9603    DK = diag::err_catch_incomplete_ref;
9604  }
9605  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9606      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9607    Invalid = true;
9608
9609  if (!Invalid && !ExDeclType->isDependentType() &&
9610      RequireNonAbstractType(Loc, ExDeclType,
9611                             diag::err_abstract_type_in_decl,
9612                             AbstractVariableType))
9613    Invalid = true;
9614
9615  // Only the non-fragile NeXT runtime currently supports C++ catches
9616  // of ObjC types, and no runtime supports catching ObjC types by value.
9617  if (!Invalid && getLangOpts().ObjC1) {
9618    QualType T = ExDeclType;
9619    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9620      T = RT->getPointeeType();
9621
9622    if (T->isObjCObjectType()) {
9623      Diag(Loc, diag::err_objc_object_catch);
9624      Invalid = true;
9625    } else if (T->isObjCObjectPointerType()) {
9626      // FIXME: should this be a test for macosx-fragile specifically?
9627      if (getLangOpts().ObjCRuntime.isFragile())
9628        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9629    }
9630  }
9631
9632  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9633                                    ExDeclType, TInfo, SC_None, SC_None);
9634  ExDecl->setExceptionVariable(true);
9635
9636  // In ARC, infer 'retaining' for variables of retainable type.
9637  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9638    Invalid = true;
9639
9640  if (!Invalid && !ExDeclType->isDependentType()) {
9641    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9642      // C++ [except.handle]p16:
9643      //   The object declared in an exception-declaration or, if the
9644      //   exception-declaration does not specify a name, a temporary (12.2) is
9645      //   copy-initialized (8.5) from the exception object. [...]
9646      //   The object is destroyed when the handler exits, after the destruction
9647      //   of any automatic objects initialized within the handler.
9648      //
9649      // We just pretend to initialize the object with itself, then make sure
9650      // it can be destroyed later.
9651      QualType initType = ExDeclType;
9652
9653      InitializedEntity entity =
9654        InitializedEntity::InitializeVariable(ExDecl);
9655      InitializationKind initKind =
9656        InitializationKind::CreateCopy(Loc, SourceLocation());
9657
9658      Expr *opaqueValue =
9659        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9660      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9661      ExprResult result = sequence.Perform(*this, entity, initKind,
9662                                           MultiExprArg(&opaqueValue, 1));
9663      if (result.isInvalid())
9664        Invalid = true;
9665      else {
9666        // If the constructor used was non-trivial, set this as the
9667        // "initializer".
9668        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9669        if (!construct->getConstructor()->isTrivial()) {
9670          Expr *init = MaybeCreateExprWithCleanups(construct);
9671          ExDecl->setInit(init);
9672        }
9673
9674        // And make sure it's destructable.
9675        FinalizeVarWithDestructor(ExDecl, recordType);
9676      }
9677    }
9678  }
9679
9680  if (Invalid)
9681    ExDecl->setInvalidDecl();
9682
9683  return ExDecl;
9684}
9685
9686/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9687/// handler.
9688Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9689  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9690  bool Invalid = D.isInvalidType();
9691
9692  // Check for unexpanded parameter packs.
9693  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9694                                               UPPC_ExceptionType)) {
9695    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9696                                             D.getIdentifierLoc());
9697    Invalid = true;
9698  }
9699
9700  IdentifierInfo *II = D.getIdentifier();
9701  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9702                                             LookupOrdinaryName,
9703                                             ForRedeclaration)) {
9704    // The scope should be freshly made just for us. There is just no way
9705    // it contains any previous declaration.
9706    assert(!S->isDeclScope(PrevDecl));
9707    if (PrevDecl->isTemplateParameter()) {
9708      // Maybe we will complain about the shadowed template parameter.
9709      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9710      PrevDecl = 0;
9711    }
9712  }
9713
9714  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9715    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9716      << D.getCXXScopeSpec().getRange();
9717    Invalid = true;
9718  }
9719
9720  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9721                                              D.getLocStart(),
9722                                              D.getIdentifierLoc(),
9723                                              D.getIdentifier());
9724  if (Invalid)
9725    ExDecl->setInvalidDecl();
9726
9727  // Add the exception declaration into this scope.
9728  if (II)
9729    PushOnScopeChains(ExDecl, S);
9730  else
9731    CurContext->addDecl(ExDecl);
9732
9733  ProcessDeclAttributes(S, ExDecl, D);
9734  return ExDecl;
9735}
9736
9737Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9738                                         Expr *AssertExpr,
9739                                         Expr *AssertMessageExpr,
9740                                         SourceLocation RParenLoc) {
9741  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
9742
9743  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9744    return 0;
9745
9746  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
9747                                      AssertMessage, RParenLoc, false);
9748}
9749
9750Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9751                                         Expr *AssertExpr,
9752                                         StringLiteral *AssertMessage,
9753                                         SourceLocation RParenLoc,
9754                                         bool Failed) {
9755  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
9756      !Failed) {
9757    // In a static_assert-declaration, the constant-expression shall be a
9758    // constant expression that can be contextually converted to bool.
9759    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9760    if (Converted.isInvalid())
9761      Failed = true;
9762
9763    llvm::APSInt Cond;
9764    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
9765          diag::err_static_assert_expression_is_not_constant,
9766          /*AllowFold=*/false).isInvalid())
9767      Failed = true;
9768
9769    if (!Failed && !Cond) {
9770      llvm::SmallString<256> MsgBuffer;
9771      llvm::raw_svector_ostream Msg(MsgBuffer);
9772      AssertMessage->printPretty(Msg, Context, 0, getPrintingPolicy());
9773      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9774        << Msg.str() << AssertExpr->getSourceRange();
9775      Failed = true;
9776    }
9777  }
9778
9779  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9780                                        AssertExpr, AssertMessage, RParenLoc,
9781                                        Failed);
9782
9783  CurContext->addDecl(Decl);
9784  return Decl;
9785}
9786
9787/// \brief Perform semantic analysis of the given friend type declaration.
9788///
9789/// \returns A friend declaration that.
9790FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9791                                      SourceLocation FriendLoc,
9792                                      TypeSourceInfo *TSInfo) {
9793  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9794
9795  QualType T = TSInfo->getType();
9796  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9797
9798  // C++03 [class.friend]p2:
9799  //   An elaborated-type-specifier shall be used in a friend declaration
9800  //   for a class.*
9801  //
9802  //   * The class-key of the elaborated-type-specifier is required.
9803  if (!ActiveTemplateInstantiations.empty()) {
9804    // Do not complain about the form of friend template types during
9805    // template instantiation; we will already have complained when the
9806    // template was declared.
9807  } else if (!T->isElaboratedTypeSpecifier()) {
9808    // If we evaluated the type to a record type, suggest putting
9809    // a tag in front.
9810    if (const RecordType *RT = T->getAs<RecordType>()) {
9811      RecordDecl *RD = RT->getDecl();
9812
9813      std::string InsertionText = std::string(" ") + RD->getKindName();
9814
9815      Diag(TypeRange.getBegin(),
9816           getLangOpts().CPlusPlus0x ?
9817             diag::warn_cxx98_compat_unelaborated_friend_type :
9818             diag::ext_unelaborated_friend_type)
9819        << (unsigned) RD->getTagKind()
9820        << T
9821        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9822                                      InsertionText);
9823    } else {
9824      Diag(FriendLoc,
9825           getLangOpts().CPlusPlus0x ?
9826             diag::warn_cxx98_compat_nonclass_type_friend :
9827             diag::ext_nonclass_type_friend)
9828        << T
9829        << SourceRange(FriendLoc, TypeRange.getEnd());
9830    }
9831  } else if (T->getAs<EnumType>()) {
9832    Diag(FriendLoc,
9833         getLangOpts().CPlusPlus0x ?
9834           diag::warn_cxx98_compat_enum_friend :
9835           diag::ext_enum_friend)
9836      << T
9837      << SourceRange(FriendLoc, TypeRange.getEnd());
9838  }
9839
9840  // C++0x [class.friend]p3:
9841  //   If the type specifier in a friend declaration designates a (possibly
9842  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9843  //   the friend declaration is ignored.
9844
9845  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9846  // in [class.friend]p3 that we do not implement.
9847
9848  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9849}
9850
9851/// Handle a friend tag declaration where the scope specifier was
9852/// templated.
9853Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9854                                    unsigned TagSpec, SourceLocation TagLoc,
9855                                    CXXScopeSpec &SS,
9856                                    IdentifierInfo *Name, SourceLocation NameLoc,
9857                                    AttributeList *Attr,
9858                                    MultiTemplateParamsArg TempParamLists) {
9859  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9860
9861  bool isExplicitSpecialization = false;
9862  bool Invalid = false;
9863
9864  if (TemplateParameterList *TemplateParams
9865        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9866                                                  TempParamLists.get(),
9867                                                  TempParamLists.size(),
9868                                                  /*friend*/ true,
9869                                                  isExplicitSpecialization,
9870                                                  Invalid)) {
9871    if (TemplateParams->size() > 0) {
9872      // This is a declaration of a class template.
9873      if (Invalid)
9874        return 0;
9875
9876      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9877                                SS, Name, NameLoc, Attr,
9878                                TemplateParams, AS_public,
9879                                /*ModulePrivateLoc=*/SourceLocation(),
9880                                TempParamLists.size() - 1,
9881                   (TemplateParameterList**) TempParamLists.release()).take();
9882    } else {
9883      // The "template<>" header is extraneous.
9884      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9885        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9886      isExplicitSpecialization = true;
9887    }
9888  }
9889
9890  if (Invalid) return 0;
9891
9892  bool isAllExplicitSpecializations = true;
9893  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9894    if (TempParamLists.get()[I]->size()) {
9895      isAllExplicitSpecializations = false;
9896      break;
9897    }
9898  }
9899
9900  // FIXME: don't ignore attributes.
9901
9902  // If it's explicit specializations all the way down, just forget
9903  // about the template header and build an appropriate non-templated
9904  // friend.  TODO: for source fidelity, remember the headers.
9905  if (isAllExplicitSpecializations) {
9906    if (SS.isEmpty()) {
9907      bool Owned = false;
9908      bool IsDependent = false;
9909      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9910                      Attr, AS_public,
9911                      /*ModulePrivateLoc=*/SourceLocation(),
9912                      MultiTemplateParamsArg(), Owned, IsDependent,
9913                      /*ScopedEnumKWLoc=*/SourceLocation(),
9914                      /*ScopedEnumUsesClassTag=*/false,
9915                      /*UnderlyingType=*/TypeResult());
9916    }
9917
9918    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9919    ElaboratedTypeKeyword Keyword
9920      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9921    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9922                                   *Name, NameLoc);
9923    if (T.isNull())
9924      return 0;
9925
9926    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9927    if (isa<DependentNameType>(T)) {
9928      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9929      TL.setElaboratedKeywordLoc(TagLoc);
9930      TL.setQualifierLoc(QualifierLoc);
9931      TL.setNameLoc(NameLoc);
9932    } else {
9933      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9934      TL.setElaboratedKeywordLoc(TagLoc);
9935      TL.setQualifierLoc(QualifierLoc);
9936      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9937    }
9938
9939    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9940                                            TSI, FriendLoc);
9941    Friend->setAccess(AS_public);
9942    CurContext->addDecl(Friend);
9943    return Friend;
9944  }
9945
9946  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9947
9948
9949
9950  // Handle the case of a templated-scope friend class.  e.g.
9951  //   template <class T> class A<T>::B;
9952  // FIXME: we don't support these right now.
9953  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9954  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9955  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9956  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9957  TL.setElaboratedKeywordLoc(TagLoc);
9958  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9959  TL.setNameLoc(NameLoc);
9960
9961  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9962                                          TSI, FriendLoc);
9963  Friend->setAccess(AS_public);
9964  Friend->setUnsupportedFriend(true);
9965  CurContext->addDecl(Friend);
9966  return Friend;
9967}
9968
9969
9970/// Handle a friend type declaration.  This works in tandem with
9971/// ActOnTag.
9972///
9973/// Notes on friend class templates:
9974///
9975/// We generally treat friend class declarations as if they were
9976/// declaring a class.  So, for example, the elaborated type specifier
9977/// in a friend declaration is required to obey the restrictions of a
9978/// class-head (i.e. no typedefs in the scope chain), template
9979/// parameters are required to match up with simple template-ids, &c.
9980/// However, unlike when declaring a template specialization, it's
9981/// okay to refer to a template specialization without an empty
9982/// template parameter declaration, e.g.
9983///   friend class A<T>::B<unsigned>;
9984/// We permit this as a special case; if there are any template
9985/// parameters present at all, require proper matching, i.e.
9986///   template <> template \<class T> friend class A<int>::B;
9987Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9988                                MultiTemplateParamsArg TempParams) {
9989  SourceLocation Loc = DS.getLocStart();
9990
9991  assert(DS.isFriendSpecified());
9992  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9993
9994  // Try to convert the decl specifier to a type.  This works for
9995  // friend templates because ActOnTag never produces a ClassTemplateDecl
9996  // for a TUK_Friend.
9997  Declarator TheDeclarator(DS, Declarator::MemberContext);
9998  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9999  QualType T = TSI->getType();
10000  if (TheDeclarator.isInvalidType())
10001    return 0;
10002
10003  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10004    return 0;
10005
10006  // This is definitely an error in C++98.  It's probably meant to
10007  // be forbidden in C++0x, too, but the specification is just
10008  // poorly written.
10009  //
10010  // The problem is with declarations like the following:
10011  //   template <T> friend A<T>::foo;
10012  // where deciding whether a class C is a friend or not now hinges
10013  // on whether there exists an instantiation of A that causes
10014  // 'foo' to equal C.  There are restrictions on class-heads
10015  // (which we declare (by fiat) elaborated friend declarations to
10016  // be) that makes this tractable.
10017  //
10018  // FIXME: handle "template <> friend class A<T>;", which
10019  // is possibly well-formed?  Who even knows?
10020  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10021    Diag(Loc, diag::err_tagless_friend_type_template)
10022      << DS.getSourceRange();
10023    return 0;
10024  }
10025
10026  // C++98 [class.friend]p1: A friend of a class is a function
10027  //   or class that is not a member of the class . . .
10028  // This is fixed in DR77, which just barely didn't make the C++03
10029  // deadline.  It's also a very silly restriction that seriously
10030  // affects inner classes and which nobody else seems to implement;
10031  // thus we never diagnose it, not even in -pedantic.
10032  //
10033  // But note that we could warn about it: it's always useless to
10034  // friend one of your own members (it's not, however, worthless to
10035  // friend a member of an arbitrary specialization of your template).
10036
10037  Decl *D;
10038  if (unsigned NumTempParamLists = TempParams.size())
10039    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10040                                   NumTempParamLists,
10041                                   TempParams.release(),
10042                                   TSI,
10043                                   DS.getFriendSpecLoc());
10044  else
10045    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10046
10047  if (!D)
10048    return 0;
10049
10050  D->setAccess(AS_public);
10051  CurContext->addDecl(D);
10052
10053  return D;
10054}
10055
10056Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10057                                    MultiTemplateParamsArg TemplateParams) {
10058  const DeclSpec &DS = D.getDeclSpec();
10059
10060  assert(DS.isFriendSpecified());
10061  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10062
10063  SourceLocation Loc = D.getIdentifierLoc();
10064  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10065
10066  // C++ [class.friend]p1
10067  //   A friend of a class is a function or class....
10068  // Note that this sees through typedefs, which is intended.
10069  // It *doesn't* see through dependent types, which is correct
10070  // according to [temp.arg.type]p3:
10071  //   If a declaration acquires a function type through a
10072  //   type dependent on a template-parameter and this causes
10073  //   a declaration that does not use the syntactic form of a
10074  //   function declarator to have a function type, the program
10075  //   is ill-formed.
10076  if (!TInfo->getType()->isFunctionType()) {
10077    Diag(Loc, diag::err_unexpected_friend);
10078
10079    // It might be worthwhile to try to recover by creating an
10080    // appropriate declaration.
10081    return 0;
10082  }
10083
10084  // C++ [namespace.memdef]p3
10085  //  - If a friend declaration in a non-local class first declares a
10086  //    class or function, the friend class or function is a member
10087  //    of the innermost enclosing namespace.
10088  //  - The name of the friend is not found by simple name lookup
10089  //    until a matching declaration is provided in that namespace
10090  //    scope (either before or after the class declaration granting
10091  //    friendship).
10092  //  - If a friend function is called, its name may be found by the
10093  //    name lookup that considers functions from namespaces and
10094  //    classes associated with the types of the function arguments.
10095  //  - When looking for a prior declaration of a class or a function
10096  //    declared as a friend, scopes outside the innermost enclosing
10097  //    namespace scope are not considered.
10098
10099  CXXScopeSpec &SS = D.getCXXScopeSpec();
10100  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10101  DeclarationName Name = NameInfo.getName();
10102  assert(Name);
10103
10104  // Check for unexpanded parameter packs.
10105  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10106      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10107      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10108    return 0;
10109
10110  // The context we found the declaration in, or in which we should
10111  // create the declaration.
10112  DeclContext *DC;
10113  Scope *DCScope = S;
10114  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10115                        ForRedeclaration);
10116
10117  // FIXME: there are different rules in local classes
10118
10119  // There are four cases here.
10120  //   - There's no scope specifier, in which case we just go to the
10121  //     appropriate scope and look for a function or function template
10122  //     there as appropriate.
10123  // Recover from invalid scope qualifiers as if they just weren't there.
10124  if (SS.isInvalid() || !SS.isSet()) {
10125    // C++0x [namespace.memdef]p3:
10126    //   If the name in a friend declaration is neither qualified nor
10127    //   a template-id and the declaration is a function or an
10128    //   elaborated-type-specifier, the lookup to determine whether
10129    //   the entity has been previously declared shall not consider
10130    //   any scopes outside the innermost enclosing namespace.
10131    // C++0x [class.friend]p11:
10132    //   If a friend declaration appears in a local class and the name
10133    //   specified is an unqualified name, a prior declaration is
10134    //   looked up without considering scopes that are outside the
10135    //   innermost enclosing non-class scope. For a friend function
10136    //   declaration, if there is no prior declaration, the program is
10137    //   ill-formed.
10138    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10139    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10140
10141    // Find the appropriate context according to the above.
10142    DC = CurContext;
10143    while (true) {
10144      // Skip class contexts.  If someone can cite chapter and verse
10145      // for this behavior, that would be nice --- it's what GCC and
10146      // EDG do, and it seems like a reasonable intent, but the spec
10147      // really only says that checks for unqualified existing
10148      // declarations should stop at the nearest enclosing namespace,
10149      // not that they should only consider the nearest enclosing
10150      // namespace.
10151      while (DC->isRecord() || DC->isTransparentContext())
10152        DC = DC->getParent();
10153
10154      LookupQualifiedName(Previous, DC);
10155
10156      // TODO: decide what we think about using declarations.
10157      if (isLocal || !Previous.empty())
10158        break;
10159
10160      if (isTemplateId) {
10161        if (isa<TranslationUnitDecl>(DC)) break;
10162      } else {
10163        if (DC->isFileContext()) break;
10164      }
10165      DC = DC->getParent();
10166    }
10167
10168    // C++ [class.friend]p1: A friend of a class is a function or
10169    //   class that is not a member of the class . . .
10170    // C++11 changes this for both friend types and functions.
10171    // Most C++ 98 compilers do seem to give an error here, so
10172    // we do, too.
10173    if (!Previous.empty() && DC->Equals(CurContext))
10174      Diag(DS.getFriendSpecLoc(),
10175           getLangOpts().CPlusPlus0x ?
10176             diag::warn_cxx98_compat_friend_is_member :
10177             diag::err_friend_is_member);
10178
10179    DCScope = getScopeForDeclContext(S, DC);
10180
10181    // C++ [class.friend]p6:
10182    //   A function can be defined in a friend declaration of a class if and
10183    //   only if the class is a non-local class (9.8), the function name is
10184    //   unqualified, and the function has namespace scope.
10185    if (isLocal && D.isFunctionDefinition()) {
10186      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10187    }
10188
10189  //   - There's a non-dependent scope specifier, in which case we
10190  //     compute it and do a previous lookup there for a function
10191  //     or function template.
10192  } else if (!SS.getScopeRep()->isDependent()) {
10193    DC = computeDeclContext(SS);
10194    if (!DC) return 0;
10195
10196    if (RequireCompleteDeclContext(SS, DC)) return 0;
10197
10198    LookupQualifiedName(Previous, DC);
10199
10200    // Ignore things found implicitly in the wrong scope.
10201    // TODO: better diagnostics for this case.  Suggesting the right
10202    // qualified scope would be nice...
10203    LookupResult::Filter F = Previous.makeFilter();
10204    while (F.hasNext()) {
10205      NamedDecl *D = F.next();
10206      if (!DC->InEnclosingNamespaceSetOf(
10207              D->getDeclContext()->getRedeclContext()))
10208        F.erase();
10209    }
10210    F.done();
10211
10212    if (Previous.empty()) {
10213      D.setInvalidType();
10214      Diag(Loc, diag::err_qualified_friend_not_found)
10215          << Name << TInfo->getType();
10216      return 0;
10217    }
10218
10219    // C++ [class.friend]p1: A friend of a class is a function or
10220    //   class that is not a member of the class . . .
10221    if (DC->Equals(CurContext))
10222      Diag(DS.getFriendSpecLoc(),
10223           getLangOpts().CPlusPlus0x ?
10224             diag::warn_cxx98_compat_friend_is_member :
10225             diag::err_friend_is_member);
10226
10227    if (D.isFunctionDefinition()) {
10228      // C++ [class.friend]p6:
10229      //   A function can be defined in a friend declaration of a class if and
10230      //   only if the class is a non-local class (9.8), the function name is
10231      //   unqualified, and the function has namespace scope.
10232      SemaDiagnosticBuilder DB
10233        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10234
10235      DB << SS.getScopeRep();
10236      if (DC->isFileContext())
10237        DB << FixItHint::CreateRemoval(SS.getRange());
10238      SS.clear();
10239    }
10240
10241  //   - There's a scope specifier that does not match any template
10242  //     parameter lists, in which case we use some arbitrary context,
10243  //     create a method or method template, and wait for instantiation.
10244  //   - There's a scope specifier that does match some template
10245  //     parameter lists, which we don't handle right now.
10246  } else {
10247    if (D.isFunctionDefinition()) {
10248      // C++ [class.friend]p6:
10249      //   A function can be defined in a friend declaration of a class if and
10250      //   only if the class is a non-local class (9.8), the function name is
10251      //   unqualified, and the function has namespace scope.
10252      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10253        << SS.getScopeRep();
10254    }
10255
10256    DC = CurContext;
10257    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10258  }
10259
10260  if (!DC->isRecord()) {
10261    // This implies that it has to be an operator or function.
10262    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10263        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10264        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10265      Diag(Loc, diag::err_introducing_special_friend) <<
10266        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10267         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10268      return 0;
10269    }
10270  }
10271
10272  // FIXME: This is an egregious hack to cope with cases where the scope stack
10273  // does not contain the declaration context, i.e., in an out-of-line
10274  // definition of a class.
10275  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10276  if (!DCScope) {
10277    FakeDCScope.setEntity(DC);
10278    DCScope = &FakeDCScope;
10279  }
10280
10281  bool AddToScope = true;
10282  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10283                                          move(TemplateParams), AddToScope);
10284  if (!ND) return 0;
10285
10286  assert(ND->getDeclContext() == DC);
10287  assert(ND->getLexicalDeclContext() == CurContext);
10288
10289  // Add the function declaration to the appropriate lookup tables,
10290  // adjusting the redeclarations list as necessary.  We don't
10291  // want to do this yet if the friending class is dependent.
10292  //
10293  // Also update the scope-based lookup if the target context's
10294  // lookup context is in lexical scope.
10295  if (!CurContext->isDependentContext()) {
10296    DC = DC->getRedeclContext();
10297    DC->makeDeclVisibleInContext(ND);
10298    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10299      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10300  }
10301
10302  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10303                                       D.getIdentifierLoc(), ND,
10304                                       DS.getFriendSpecLoc());
10305  FrD->setAccess(AS_public);
10306  CurContext->addDecl(FrD);
10307
10308  if (ND->isInvalidDecl())
10309    FrD->setInvalidDecl();
10310  else {
10311    FunctionDecl *FD;
10312    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10313      FD = FTD->getTemplatedDecl();
10314    else
10315      FD = cast<FunctionDecl>(ND);
10316
10317    // Mark templated-scope function declarations as unsupported.
10318    if (FD->getNumTemplateParameterLists())
10319      FrD->setUnsupportedFriend(true);
10320  }
10321
10322  return ND;
10323}
10324
10325void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10326  AdjustDeclIfTemplate(Dcl);
10327
10328  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10329  if (!Fn) {
10330    Diag(DelLoc, diag::err_deleted_non_function);
10331    return;
10332  }
10333  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10334    // Don't consider the implicit declaration we generate for explicit
10335    // specializations. FIXME: Do not generate these implicit declarations.
10336    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
10337        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
10338      Diag(DelLoc, diag::err_deleted_decl_not_first);
10339      Diag(Prev->getLocation(), diag::note_previous_declaration);
10340    }
10341    // If the declaration wasn't the first, we delete the function anyway for
10342    // recovery.
10343  }
10344  Fn->setDeletedAsWritten();
10345
10346  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10347  if (!MD)
10348    return;
10349
10350  // A deleted special member function is trivial if the corresponding
10351  // implicitly-declared function would have been.
10352  switch (getSpecialMember(MD)) {
10353  case CXXInvalid:
10354    break;
10355  case CXXDefaultConstructor:
10356    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10357    break;
10358  case CXXCopyConstructor:
10359    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10360    break;
10361  case CXXMoveConstructor:
10362    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10363    break;
10364  case CXXCopyAssignment:
10365    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10366    break;
10367  case CXXMoveAssignment:
10368    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10369    break;
10370  case CXXDestructor:
10371    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10372    break;
10373  }
10374}
10375
10376void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10377  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10378
10379  if (MD) {
10380    if (MD->getParent()->isDependentType()) {
10381      MD->setDefaulted();
10382      MD->setExplicitlyDefaulted();
10383      return;
10384    }
10385
10386    CXXSpecialMember Member = getSpecialMember(MD);
10387    if (Member == CXXInvalid) {
10388      Diag(DefaultLoc, diag::err_default_special_members);
10389      return;
10390    }
10391
10392    MD->setDefaulted();
10393    MD->setExplicitlyDefaulted();
10394
10395    // If this definition appears within the record, do the checking when
10396    // the record is complete.
10397    const FunctionDecl *Primary = MD;
10398    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10399      // Find the uninstantiated declaration that actually had the '= default'
10400      // on it.
10401      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10402
10403    if (Primary == Primary->getCanonicalDecl())
10404      return;
10405
10406    switch (Member) {
10407    case CXXDefaultConstructor: {
10408      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10409      CheckExplicitlyDefaultedSpecialMember(CD);
10410      if (!CD->isInvalidDecl())
10411        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10412      break;
10413    }
10414
10415    case CXXCopyConstructor: {
10416      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10417      CheckExplicitlyDefaultedSpecialMember(CD);
10418      if (!CD->isInvalidDecl())
10419        DefineImplicitCopyConstructor(DefaultLoc, CD);
10420      break;
10421    }
10422
10423    case CXXCopyAssignment: {
10424      CheckExplicitlyDefaultedSpecialMember(MD);
10425      if (!MD->isInvalidDecl())
10426        DefineImplicitCopyAssignment(DefaultLoc, MD);
10427      break;
10428    }
10429
10430    case CXXDestructor: {
10431      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10432      CheckExplicitlyDefaultedSpecialMember(DD);
10433      if (!DD->isInvalidDecl())
10434        DefineImplicitDestructor(DefaultLoc, DD);
10435      break;
10436    }
10437
10438    case CXXMoveConstructor: {
10439      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10440      CheckExplicitlyDefaultedSpecialMember(CD);
10441      if (!CD->isInvalidDecl())
10442        DefineImplicitMoveConstructor(DefaultLoc, CD);
10443      break;
10444    }
10445
10446    case CXXMoveAssignment: {
10447      CheckExplicitlyDefaultedSpecialMember(MD);
10448      if (!MD->isInvalidDecl())
10449        DefineImplicitMoveAssignment(DefaultLoc, MD);
10450      break;
10451    }
10452
10453    case CXXInvalid:
10454      llvm_unreachable("Invalid special member.");
10455    }
10456  } else {
10457    Diag(DefaultLoc, diag::err_default_special_members);
10458  }
10459}
10460
10461static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10462  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10463    Stmt *SubStmt = *CI;
10464    if (!SubStmt)
10465      continue;
10466    if (isa<ReturnStmt>(SubStmt))
10467      Self.Diag(SubStmt->getLocStart(),
10468           diag::err_return_in_constructor_handler);
10469    if (!isa<Expr>(SubStmt))
10470      SearchForReturnInStmt(Self, SubStmt);
10471  }
10472}
10473
10474void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10475  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10476    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10477    SearchForReturnInStmt(*this, Handler);
10478  }
10479}
10480
10481bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10482                                             const CXXMethodDecl *Old) {
10483  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10484  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10485
10486  if (Context.hasSameType(NewTy, OldTy) ||
10487      NewTy->isDependentType() || OldTy->isDependentType())
10488    return false;
10489
10490  // Check if the return types are covariant
10491  QualType NewClassTy, OldClassTy;
10492
10493  /// Both types must be pointers or references to classes.
10494  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10495    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10496      NewClassTy = NewPT->getPointeeType();
10497      OldClassTy = OldPT->getPointeeType();
10498    }
10499  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10500    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10501      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10502        NewClassTy = NewRT->getPointeeType();
10503        OldClassTy = OldRT->getPointeeType();
10504      }
10505    }
10506  }
10507
10508  // The return types aren't either both pointers or references to a class type.
10509  if (NewClassTy.isNull()) {
10510    Diag(New->getLocation(),
10511         diag::err_different_return_type_for_overriding_virtual_function)
10512      << New->getDeclName() << NewTy << OldTy;
10513    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10514
10515    return true;
10516  }
10517
10518  // C++ [class.virtual]p6:
10519  //   If the return type of D::f differs from the return type of B::f, the
10520  //   class type in the return type of D::f shall be complete at the point of
10521  //   declaration of D::f or shall be the class type D.
10522  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10523    if (!RT->isBeingDefined() &&
10524        RequireCompleteType(New->getLocation(), NewClassTy,
10525                            diag::err_covariant_return_incomplete,
10526                            New->getDeclName()))
10527    return true;
10528  }
10529
10530  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10531    // Check if the new class derives from the old class.
10532    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10533      Diag(New->getLocation(),
10534           diag::err_covariant_return_not_derived)
10535      << New->getDeclName() << NewTy << OldTy;
10536      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10537      return true;
10538    }
10539
10540    // Check if we the conversion from derived to base is valid.
10541    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10542                    diag::err_covariant_return_inaccessible_base,
10543                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10544                    // FIXME: Should this point to the return type?
10545                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10546      // FIXME: this note won't trigger for delayed access control
10547      // diagnostics, and it's impossible to get an undelayed error
10548      // here from access control during the original parse because
10549      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10550      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10551      return true;
10552    }
10553  }
10554
10555  // The qualifiers of the return types must be the same.
10556  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10557    Diag(New->getLocation(),
10558         diag::err_covariant_return_type_different_qualifications)
10559    << New->getDeclName() << NewTy << OldTy;
10560    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10561    return true;
10562  };
10563
10564
10565  // The new class type must have the same or less qualifiers as the old type.
10566  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10567    Diag(New->getLocation(),
10568         diag::err_covariant_return_type_class_type_more_qualified)
10569    << New->getDeclName() << NewTy << OldTy;
10570    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10571    return true;
10572  };
10573
10574  return false;
10575}
10576
10577/// \brief Mark the given method pure.
10578///
10579/// \param Method the method to be marked pure.
10580///
10581/// \param InitRange the source range that covers the "0" initializer.
10582bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10583  SourceLocation EndLoc = InitRange.getEnd();
10584  if (EndLoc.isValid())
10585    Method->setRangeEnd(EndLoc);
10586
10587  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10588    Method->setPure();
10589    return false;
10590  }
10591
10592  if (!Method->isInvalidDecl())
10593    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10594      << Method->getDeclName() << InitRange;
10595  return true;
10596}
10597
10598/// \brief Determine whether the given declaration is a static data member.
10599static bool isStaticDataMember(Decl *D) {
10600  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10601  if (!Var)
10602    return false;
10603
10604  return Var->isStaticDataMember();
10605}
10606/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10607/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10608/// is a fresh scope pushed for just this purpose.
10609///
10610/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10611/// static data member of class X, names should be looked up in the scope of
10612/// class X.
10613void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10614  // If there is no declaration, there was an error parsing it.
10615  if (D == 0 || D->isInvalidDecl()) return;
10616
10617  // We should only get called for declarations with scope specifiers, like:
10618  //   int foo::bar;
10619  assert(D->isOutOfLine());
10620  EnterDeclaratorContext(S, D->getDeclContext());
10621
10622  // If we are parsing the initializer for a static data member, push a
10623  // new expression evaluation context that is associated with this static
10624  // data member.
10625  if (isStaticDataMember(D))
10626    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10627}
10628
10629/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10630/// initializer for the out-of-line declaration 'D'.
10631void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10632  // If there is no declaration, there was an error parsing it.
10633  if (D == 0 || D->isInvalidDecl()) return;
10634
10635  if (isStaticDataMember(D))
10636    PopExpressionEvaluationContext();
10637
10638  assert(D->isOutOfLine());
10639  ExitDeclaratorContext(S);
10640}
10641
10642/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10643/// C++ if/switch/while/for statement.
10644/// e.g: "if (int x = f()) {...}"
10645DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10646  // C++ 6.4p2:
10647  // The declarator shall not specify a function or an array.
10648  // The type-specifier-seq shall not contain typedef and shall not declare a
10649  // new class or enumeration.
10650  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10651         "Parser allowed 'typedef' as storage class of condition decl.");
10652
10653  Decl *Dcl = ActOnDeclarator(S, D);
10654  if (!Dcl)
10655    return true;
10656
10657  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10658    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10659      << D.getSourceRange();
10660    return true;
10661  }
10662
10663  return Dcl;
10664}
10665
10666void Sema::LoadExternalVTableUses() {
10667  if (!ExternalSource)
10668    return;
10669
10670  SmallVector<ExternalVTableUse, 4> VTables;
10671  ExternalSource->ReadUsedVTables(VTables);
10672  SmallVector<VTableUse, 4> NewUses;
10673  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10674    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10675      = VTablesUsed.find(VTables[I].Record);
10676    // Even if a definition wasn't required before, it may be required now.
10677    if (Pos != VTablesUsed.end()) {
10678      if (!Pos->second && VTables[I].DefinitionRequired)
10679        Pos->second = true;
10680      continue;
10681    }
10682
10683    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10684    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10685  }
10686
10687  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10688}
10689
10690void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10691                          bool DefinitionRequired) {
10692  // Ignore any vtable uses in unevaluated operands or for classes that do
10693  // not have a vtable.
10694  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10695      CurContext->isDependentContext() ||
10696      ExprEvalContexts.back().Context == Unevaluated)
10697    return;
10698
10699  // Try to insert this class into the map.
10700  LoadExternalVTableUses();
10701  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10702  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10703    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10704  if (!Pos.second) {
10705    // If we already had an entry, check to see if we are promoting this vtable
10706    // to required a definition. If so, we need to reappend to the VTableUses
10707    // list, since we may have already processed the first entry.
10708    if (DefinitionRequired && !Pos.first->second) {
10709      Pos.first->second = true;
10710    } else {
10711      // Otherwise, we can early exit.
10712      return;
10713    }
10714  }
10715
10716  // Local classes need to have their virtual members marked
10717  // immediately. For all other classes, we mark their virtual members
10718  // at the end of the translation unit.
10719  if (Class->isLocalClass())
10720    MarkVirtualMembersReferenced(Loc, Class);
10721  else
10722    VTableUses.push_back(std::make_pair(Class, Loc));
10723}
10724
10725bool Sema::DefineUsedVTables() {
10726  LoadExternalVTableUses();
10727  if (VTableUses.empty())
10728    return false;
10729
10730  // Note: The VTableUses vector could grow as a result of marking
10731  // the members of a class as "used", so we check the size each
10732  // time through the loop and prefer indices (with are stable) to
10733  // iterators (which are not).
10734  bool DefinedAnything = false;
10735  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10736    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10737    if (!Class)
10738      continue;
10739
10740    SourceLocation Loc = VTableUses[I].second;
10741
10742    // If this class has a key function, but that key function is
10743    // defined in another translation unit, we don't need to emit the
10744    // vtable even though we're using it.
10745    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10746    if (KeyFunction && !KeyFunction->hasBody()) {
10747      switch (KeyFunction->getTemplateSpecializationKind()) {
10748      case TSK_Undeclared:
10749      case TSK_ExplicitSpecialization:
10750      case TSK_ExplicitInstantiationDeclaration:
10751        // The key function is in another translation unit.
10752        continue;
10753
10754      case TSK_ExplicitInstantiationDefinition:
10755      case TSK_ImplicitInstantiation:
10756        // We will be instantiating the key function.
10757        break;
10758      }
10759    } else if (!KeyFunction) {
10760      // If we have a class with no key function that is the subject
10761      // of an explicit instantiation declaration, suppress the
10762      // vtable; it will live with the explicit instantiation
10763      // definition.
10764      bool IsExplicitInstantiationDeclaration
10765        = Class->getTemplateSpecializationKind()
10766                                      == TSK_ExplicitInstantiationDeclaration;
10767      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10768                                 REnd = Class->redecls_end();
10769           R != REnd; ++R) {
10770        TemplateSpecializationKind TSK
10771          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10772        if (TSK == TSK_ExplicitInstantiationDeclaration)
10773          IsExplicitInstantiationDeclaration = true;
10774        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10775          IsExplicitInstantiationDeclaration = false;
10776          break;
10777        }
10778      }
10779
10780      if (IsExplicitInstantiationDeclaration)
10781        continue;
10782    }
10783
10784    // Mark all of the virtual members of this class as referenced, so
10785    // that we can build a vtable. Then, tell the AST consumer that a
10786    // vtable for this class is required.
10787    DefinedAnything = true;
10788    MarkVirtualMembersReferenced(Loc, Class);
10789    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10790    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10791
10792    // Optionally warn if we're emitting a weak vtable.
10793    if (Class->getLinkage() == ExternalLinkage &&
10794        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10795      const FunctionDecl *KeyFunctionDef = 0;
10796      if (!KeyFunction ||
10797          (KeyFunction->hasBody(KeyFunctionDef) &&
10798           KeyFunctionDef->isInlined()))
10799        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10800             TSK_ExplicitInstantiationDefinition
10801             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10802          << Class;
10803    }
10804  }
10805  VTableUses.clear();
10806
10807  return DefinedAnything;
10808}
10809
10810void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10811                                        const CXXRecordDecl *RD) {
10812  // Mark all functions which will appear in RD's vtable as used.
10813  CXXFinalOverriderMap FinalOverriders;
10814  RD->getFinalOverriders(FinalOverriders);
10815  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
10816                                            E = FinalOverriders.end();
10817       I != E; ++I) {
10818    for (OverridingMethods::const_iterator OI = I->second.begin(),
10819                                           OE = I->second.end();
10820         OI != OE; ++OI) {
10821      assert(OI->second.size() > 0 && "no final overrider");
10822      CXXMethodDecl *Overrider = OI->second.front().Method;
10823
10824      // C++ [basic.def.odr]p2:
10825      //   [...] A virtual member function is used if it is not pure. [...]
10826      if (!Overrider->isPure())
10827        MarkFunctionReferenced(Loc, Overrider);
10828    }
10829  }
10830
10831  // Only classes that have virtual bases need a VTT.
10832  if (RD->getNumVBases() == 0)
10833    return;
10834
10835  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10836           e = RD->bases_end(); i != e; ++i) {
10837    const CXXRecordDecl *Base =
10838        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10839    if (Base->getNumVBases() == 0)
10840      continue;
10841    MarkVirtualMembersReferenced(Loc, Base);
10842  }
10843}
10844
10845/// SetIvarInitializers - This routine builds initialization ASTs for the
10846/// Objective-C implementation whose ivars need be initialized.
10847void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10848  if (!getLangOpts().CPlusPlus)
10849    return;
10850  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10851    SmallVector<ObjCIvarDecl*, 8> ivars;
10852    CollectIvarsToConstructOrDestruct(OID, ivars);
10853    if (ivars.empty())
10854      return;
10855    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10856    for (unsigned i = 0; i < ivars.size(); i++) {
10857      FieldDecl *Field = ivars[i];
10858      if (Field->isInvalidDecl())
10859        continue;
10860
10861      CXXCtorInitializer *Member;
10862      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10863      InitializationKind InitKind =
10864        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10865
10866      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10867      ExprResult MemberInit =
10868        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10869      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10870      // Note, MemberInit could actually come back empty if no initialization
10871      // is required (e.g., because it would call a trivial default constructor)
10872      if (!MemberInit.get() || MemberInit.isInvalid())
10873        continue;
10874
10875      Member =
10876        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10877                                         SourceLocation(),
10878                                         MemberInit.takeAs<Expr>(),
10879                                         SourceLocation());
10880      AllToInit.push_back(Member);
10881
10882      // Be sure that the destructor is accessible and is marked as referenced.
10883      if (const RecordType *RecordTy
10884                  = Context.getBaseElementType(Field->getType())
10885                                                        ->getAs<RecordType>()) {
10886                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10887        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10888          MarkFunctionReferenced(Field->getLocation(), Destructor);
10889          CheckDestructorAccess(Field->getLocation(), Destructor,
10890                            PDiag(diag::err_access_dtor_ivar)
10891                              << Context.getBaseElementType(Field->getType()));
10892        }
10893      }
10894    }
10895    ObjCImplementation->setIvarInitializers(Context,
10896                                            AllToInit.data(), AllToInit.size());
10897  }
10898}
10899
10900static
10901void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10902                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10903                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10904                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10905                           Sema &S) {
10906  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10907                                                   CE = Current.end();
10908  if (Ctor->isInvalidDecl())
10909    return;
10910
10911  const FunctionDecl *FNTarget = 0;
10912  CXXConstructorDecl *Target;
10913
10914  // We ignore the result here since if we don't have a body, Target will be
10915  // null below.
10916  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10917  Target
10918= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10919
10920  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10921                     // Avoid dereferencing a null pointer here.
10922                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10923
10924  if (!Current.insert(Canonical))
10925    return;
10926
10927  // We know that beyond here, we aren't chaining into a cycle.
10928  if (!Target || !Target->isDelegatingConstructor() ||
10929      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10930    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10931      Valid.insert(*CI);
10932    Current.clear();
10933  // We've hit a cycle.
10934  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10935             Current.count(TCanonical)) {
10936    // If we haven't diagnosed this cycle yet, do so now.
10937    if (!Invalid.count(TCanonical)) {
10938      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10939             diag::warn_delegating_ctor_cycle)
10940        << Ctor;
10941
10942      // Don't add a note for a function delegating directo to itself.
10943      if (TCanonical != Canonical)
10944        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10945
10946      CXXConstructorDecl *C = Target;
10947      while (C->getCanonicalDecl() != Canonical) {
10948        (void)C->getTargetConstructor()->hasBody(FNTarget);
10949        assert(FNTarget && "Ctor cycle through bodiless function");
10950
10951        C
10952       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10953        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10954      }
10955    }
10956
10957    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10958      Invalid.insert(*CI);
10959    Current.clear();
10960  } else {
10961    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10962  }
10963}
10964
10965
10966void Sema::CheckDelegatingCtorCycles() {
10967  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10968
10969  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10970                                                   CE = Current.end();
10971
10972  for (DelegatingCtorDeclsType::iterator
10973         I = DelegatingCtorDecls.begin(ExternalSource),
10974         E = DelegatingCtorDecls.end();
10975       I != E; ++I) {
10976   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10977  }
10978
10979  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10980    (*CI)->setInvalidDecl();
10981}
10982
10983namespace {
10984  /// \brief AST visitor that finds references to the 'this' expression.
10985  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
10986    Sema &S;
10987
10988  public:
10989    explicit FindCXXThisExpr(Sema &S) : S(S) { }
10990
10991    bool VisitCXXThisExpr(CXXThisExpr *E) {
10992      S.Diag(E->getLocation(), diag::err_this_static_member_func)
10993        << E->isImplicit();
10994      return false;
10995    }
10996  };
10997}
10998
10999bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11000  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11001  if (!TSInfo)
11002    return false;
11003
11004  TypeLoc TL = TSInfo->getTypeLoc();
11005  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11006  if (!ProtoTL)
11007    return false;
11008
11009  // C++11 [expr.prim.general]p3:
11010  //   [The expression this] shall not appear before the optional
11011  //   cv-qualifier-seq and it shall not appear within the declaration of a
11012  //   static member function (although its type and value category are defined
11013  //   within a static member function as they are within a non-static member
11014  //   function). [ Note: this is because declaration matching does not occur
11015  //  until the complete declarator is known. - end note ]
11016  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11017  FindCXXThisExpr Finder(*this);
11018
11019  // If the return type came after the cv-qualifier-seq, check it now.
11020  if (Proto->hasTrailingReturn() &&
11021      !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
11022    return true;
11023
11024  // Check the exception specification.
11025  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11026    return true;
11027
11028  return checkThisInStaticMemberFunctionAttributes(Method);
11029}
11030
11031bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11032  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11033  if (!TSInfo)
11034    return false;
11035
11036  TypeLoc TL = TSInfo->getTypeLoc();
11037  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11038  if (!ProtoTL)
11039    return false;
11040
11041  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11042  FindCXXThisExpr Finder(*this);
11043
11044  switch (Proto->getExceptionSpecType()) {
11045  case EST_Uninstantiated:
11046  case EST_BasicNoexcept:
11047  case EST_Delayed:
11048  case EST_DynamicNone:
11049  case EST_MSAny:
11050  case EST_None:
11051    break;
11052
11053  case EST_ComputedNoexcept:
11054    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11055      return true;
11056
11057  case EST_Dynamic:
11058    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11059         EEnd = Proto->exception_end();
11060         E != EEnd; ++E) {
11061      if (!Finder.TraverseType(*E))
11062        return true;
11063    }
11064    break;
11065  }
11066
11067  return false;
11068}
11069
11070bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11071  FindCXXThisExpr Finder(*this);
11072
11073  // Check attributes.
11074  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11075       A != AEnd; ++A) {
11076    // FIXME: This should be emitted by tblgen.
11077    Expr *Arg = 0;
11078    ArrayRef<Expr *> Args;
11079    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11080      Arg = G->getArg();
11081    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11082      Arg = G->getArg();
11083    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11084      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11085    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11086      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11087    else if (ExclusiveLockFunctionAttr *ELF
11088               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11089      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11090    else if (SharedLockFunctionAttr *SLF
11091               = dyn_cast<SharedLockFunctionAttr>(*A))
11092      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11093    else if (ExclusiveTrylockFunctionAttr *ETLF
11094               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11095      Arg = ETLF->getSuccessValue();
11096      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11097    } else if (SharedTrylockFunctionAttr *STLF
11098                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11099      Arg = STLF->getSuccessValue();
11100      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11101    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11102      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11103    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11104      Arg = LR->getArg();
11105    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11106      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11107    else if (ExclusiveLocksRequiredAttr *ELR
11108               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11109      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11110    else if (SharedLocksRequiredAttr *SLR
11111               = dyn_cast<SharedLocksRequiredAttr>(*A))
11112      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11113
11114    if (Arg && !Finder.TraverseStmt(Arg))
11115      return true;
11116
11117    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11118      if (!Finder.TraverseStmt(Args[I]))
11119        return true;
11120    }
11121  }
11122
11123  return false;
11124}
11125
11126void
11127Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11128                                  ArrayRef<ParsedType> DynamicExceptions,
11129                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11130                                  Expr *NoexceptExpr,
11131                                  llvm::SmallVectorImpl<QualType> &Exceptions,
11132                                  FunctionProtoType::ExtProtoInfo &EPI) {
11133  Exceptions.clear();
11134  EPI.ExceptionSpecType = EST;
11135  if (EST == EST_Dynamic) {
11136    Exceptions.reserve(DynamicExceptions.size());
11137    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11138      // FIXME: Preserve type source info.
11139      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11140
11141      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11142      collectUnexpandedParameterPacks(ET, Unexpanded);
11143      if (!Unexpanded.empty()) {
11144        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11145                                         UPPC_ExceptionType,
11146                                         Unexpanded);
11147        continue;
11148      }
11149
11150      // Check that the type is valid for an exception spec, and
11151      // drop it if not.
11152      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11153        Exceptions.push_back(ET);
11154    }
11155    EPI.NumExceptions = Exceptions.size();
11156    EPI.Exceptions = Exceptions.data();
11157    return;
11158  }
11159
11160  if (EST == EST_ComputedNoexcept) {
11161    // If an error occurred, there's no expression here.
11162    if (NoexceptExpr) {
11163      assert((NoexceptExpr->isTypeDependent() ||
11164              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11165              Context.BoolTy) &&
11166             "Parser should have made sure that the expression is boolean");
11167      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11168        EPI.ExceptionSpecType = EST_BasicNoexcept;
11169        return;
11170      }
11171
11172      if (!NoexceptExpr->isValueDependent())
11173        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11174                         diag::err_noexcept_needs_constant_expression,
11175                         /*AllowFold*/ false).take();
11176      EPI.NoexceptExpr = NoexceptExpr;
11177    }
11178    return;
11179  }
11180}
11181
11182/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11183Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11184  // Implicitly declared functions (e.g. copy constructors) are
11185  // __host__ __device__
11186  if (D->isImplicit())
11187    return CFT_HostDevice;
11188
11189  if (D->hasAttr<CUDAGlobalAttr>())
11190    return CFT_Global;
11191
11192  if (D->hasAttr<CUDADeviceAttr>()) {
11193    if (D->hasAttr<CUDAHostAttr>())
11194      return CFT_HostDevice;
11195    else
11196      return CFT_Device;
11197  }
11198
11199  return CFT_Host;
11200}
11201
11202bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11203                           CUDAFunctionTarget CalleeTarget) {
11204  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11205  // Callable from the device only."
11206  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11207    return true;
11208
11209  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11210  // Callable from the host only."
11211  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11212  // Callable from the host only."
11213  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11214      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11215    return true;
11216
11217  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11218    return true;
11219
11220  return false;
11221}
11222