SemaDeclCXX.cpp revision e48aab59782061a3377fdf31f95bc1713d064362
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm> // for std::equal
27#include <map>
28
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// CheckDefaultArgumentVisitor
33//===----------------------------------------------------------------------===//
34
35namespace {
36  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
37  /// the default argument of a parameter to determine whether it
38  /// contains any ill-formed subexpressions. For example, this will
39  /// diagnose the use of local variables or parameters within the
40  /// default argument expression.
41  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
42    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
43    Expr *DefaultArg;
44    Sema *S;
45
46  public:
47    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
48      : DefaultArg(defarg), S(s) {}
49
50    bool VisitExpr(Expr *Node);
51    bool VisitDeclRefExpr(DeclRefExpr *DRE);
52    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
53  };
54
55  /// VisitExpr - Visit all of the children of this expression.
56  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
57    bool IsInvalid = false;
58    for (Stmt::child_iterator I = Node->child_begin(),
59         E = Node->child_end(); I != E; ++I)
60      IsInvalid |= Visit(*I);
61    return IsInvalid;
62  }
63
64  /// VisitDeclRefExpr - Visit a reference to a declaration, to
65  /// determine whether this declaration can be used in the default
66  /// argument expression.
67  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
68    NamedDecl *Decl = DRE->getDecl();
69    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
70      // C++ [dcl.fct.default]p9
71      //   Default arguments are evaluated each time the function is
72      //   called. The order of evaluation of function arguments is
73      //   unspecified. Consequently, parameters of a function shall not
74      //   be used in default argument expressions, even if they are not
75      //   evaluated. Parameters of a function declared before a default
76      //   argument expression are in scope and can hide namespace and
77      //   class member names.
78      return S->Diag(DRE->getSourceRange().getBegin(),
79                     diag::err_param_default_argument_references_param)
80         << Param->getDeclName() << DefaultArg->getSourceRange();
81    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p7
83      //   Local variables shall not be used in default argument
84      //   expressions.
85      if (VDecl->isBlockVarDecl())
86        return S->Diag(DRE->getSourceRange().getBegin(),
87                       diag::err_param_default_argument_references_local)
88          << VDecl->getDeclName() << DefaultArg->getSourceRange();
89    }
90
91    return false;
92  }
93
94  /// VisitCXXThisExpr - Visit a C++ "this" expression.
95  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
96    // C++ [dcl.fct.default]p8:
97    //   The keyword this shall not be used in a default argument of a
98    //   member function.
99    return S->Diag(ThisE->getSourceRange().getBegin(),
100                   diag::err_param_default_argument_references_this)
101               << ThisE->getSourceRange();
102  }
103}
104
105bool
106Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
107                              SourceLocation EqualLoc) {
108  QualType ParamType = Param->getType();
109
110  if (RequireCompleteType(Param->getLocation(), Param->getType(),
111                          diag::err_typecheck_decl_incomplete_type)) {
112    Param->setInvalidDecl();
113    return true;
114  }
115
116  Expr *Arg = (Expr *)DefaultArg.get();
117
118  // C++ [dcl.fct.default]p5
119  //   A default argument expression is implicitly converted (clause
120  //   4) to the parameter type. The default argument expression has
121  //   the same semantic constraints as the initializer expression in
122  //   a declaration of a variable of the parameter type, using the
123  //   copy-initialization semantics (8.5).
124  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
125                            Param->getDeclName(), /*DirectInit=*/false))
126    return true;
127
128  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
129
130  // Okay: add the default argument to the parameter
131  Param->setDefaultArg(Arg);
132
133  DefaultArg.release();
134
135  return false;
136}
137
138/// ActOnParamDefaultArgument - Check whether the default argument
139/// provided for a function parameter is well-formed. If so, attach it
140/// to the parameter declaration.
141void
142Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
143                                ExprArg defarg) {
144  if (!param || !defarg.get())
145    return;
146
147  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
148  UnparsedDefaultArgLocs.erase(Param);
149
150  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
151  QualType ParamType = Param->getType();
152
153  // Default arguments are only permitted in C++
154  if (!getLangOptions().CPlusPlus) {
155    Diag(EqualLoc, diag::err_param_default_argument)
156      << DefaultArg->getSourceRange();
157    Param->setInvalidDecl();
158    return;
159  }
160
161  // Check that the default argument is well-formed
162  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
163  if (DefaultArgChecker.Visit(DefaultArg.get())) {
164    Param->setInvalidDecl();
165    return;
166  }
167
168  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
169}
170
171/// ActOnParamUnparsedDefaultArgument - We've seen a default
172/// argument for a function parameter, but we can't parse it yet
173/// because we're inside a class definition. Note that this default
174/// argument will be parsed later.
175void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
176                                             SourceLocation EqualLoc,
177                                             SourceLocation ArgLoc) {
178  if (!param)
179    return;
180
181  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
182  if (Param)
183    Param->setUnparsedDefaultArg();
184
185  UnparsedDefaultArgLocs[Param] = ArgLoc;
186}
187
188/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
189/// the default argument for the parameter param failed.
190void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
191  if (!param)
192    return;
193
194  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
195
196  Param->setInvalidDecl();
197
198  UnparsedDefaultArgLocs.erase(Param);
199}
200
201/// CheckExtraCXXDefaultArguments - Check for any extra default
202/// arguments in the declarator, which is not a function declaration
203/// or definition and therefore is not permitted to have default
204/// arguments. This routine should be invoked for every declarator
205/// that is not a function declaration or definition.
206void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
207  // C++ [dcl.fct.default]p3
208  //   A default argument expression shall be specified only in the
209  //   parameter-declaration-clause of a function declaration or in a
210  //   template-parameter (14.1). It shall not be specified for a
211  //   parameter pack. If it is specified in a
212  //   parameter-declaration-clause, it shall not occur within a
213  //   declarator or abstract-declarator of a parameter-declaration.
214  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
215    DeclaratorChunk &chunk = D.getTypeObject(i);
216    if (chunk.Kind == DeclaratorChunk::Function) {
217      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
218        ParmVarDecl *Param =
219          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
220        if (Param->hasUnparsedDefaultArg()) {
221          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
222          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
223            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
224          delete Toks;
225          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
226        } else if (Param->getDefaultArg()) {
227          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
228            << Param->getDefaultArg()->getSourceRange();
229          Param->setDefaultArg(0);
230        }
231      }
232    }
233  }
234}
235
236// MergeCXXFunctionDecl - Merge two declarations of the same C++
237// function, once we already know that they have the same
238// type. Subroutine of MergeFunctionDecl. Returns true if there was an
239// error, false otherwise.
240bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
241  bool Invalid = false;
242
243  // C++ [dcl.fct.default]p4:
244  //
245  //   For non-template functions, default arguments can be added in
246  //   later declarations of a function in the same
247  //   scope. Declarations in different scopes have completely
248  //   distinct sets of default arguments. That is, declarations in
249  //   inner scopes do not acquire default arguments from
250  //   declarations in outer scopes, and vice versa. In a given
251  //   function declaration, all parameters subsequent to a
252  //   parameter with a default argument shall have default
253  //   arguments supplied in this or previous declarations. A
254  //   default argument shall not be redefined by a later
255  //   declaration (not even to the same value).
256  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
257    ParmVarDecl *OldParam = Old->getParamDecl(p);
258    ParmVarDecl *NewParam = New->getParamDecl(p);
259
260    if (OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
261      Diag(NewParam->getLocation(),
262           diag::err_param_default_argument_redefinition)
263        << NewParam->getDefaultArg()->getSourceRange();
264      Diag(OldParam->getLocation(), diag::note_previous_definition);
265      Invalid = true;
266    } else if (OldParam->getDefaultArg()) {
267      // Merge the old default argument into the new parameter
268      NewParam->setDefaultArg(OldParam->getDefaultArg());
269    }
270  }
271
272  if (CheckEquivalentExceptionSpec(
273          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
274          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
275    Invalid = true;
276  }
277
278  return Invalid;
279}
280
281/// CheckCXXDefaultArguments - Verify that the default arguments for a
282/// function declaration are well-formed according to C++
283/// [dcl.fct.default].
284void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
285  unsigned NumParams = FD->getNumParams();
286  unsigned p;
287
288  // Find first parameter with a default argument
289  for (p = 0; p < NumParams; ++p) {
290    ParmVarDecl *Param = FD->getParamDecl(p);
291    if (Param->hasDefaultArg())
292      break;
293  }
294
295  // C++ [dcl.fct.default]p4:
296  //   In a given function declaration, all parameters
297  //   subsequent to a parameter with a default argument shall
298  //   have default arguments supplied in this or previous
299  //   declarations. A default argument shall not be redefined
300  //   by a later declaration (not even to the same value).
301  unsigned LastMissingDefaultArg = 0;
302  for (; p < NumParams; ++p) {
303    ParmVarDecl *Param = FD->getParamDecl(p);
304    if (!Param->hasDefaultArg()) {
305      if (Param->isInvalidDecl())
306        /* We already complained about this parameter. */;
307      else if (Param->getIdentifier())
308        Diag(Param->getLocation(),
309             diag::err_param_default_argument_missing_name)
310          << Param->getIdentifier();
311      else
312        Diag(Param->getLocation(),
313             diag::err_param_default_argument_missing);
314
315      LastMissingDefaultArg = p;
316    }
317  }
318
319  if (LastMissingDefaultArg > 0) {
320    // Some default arguments were missing. Clear out all of the
321    // default arguments up to (and including) the last missing
322    // default argument, so that we leave the function parameters
323    // in a semantically valid state.
324    for (p = 0; p <= LastMissingDefaultArg; ++p) {
325      ParmVarDecl *Param = FD->getParamDecl(p);
326      if (Param->hasDefaultArg()) {
327        if (!Param->hasUnparsedDefaultArg())
328          Param->getDefaultArg()->Destroy(Context);
329        Param->setDefaultArg(0);
330      }
331    }
332  }
333}
334
335/// isCurrentClassName - Determine whether the identifier II is the
336/// name of the class type currently being defined. In the case of
337/// nested classes, this will only return true if II is the name of
338/// the innermost class.
339bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
340                              const CXXScopeSpec *SS) {
341  CXXRecordDecl *CurDecl;
342  if (SS && SS->isSet() && !SS->isInvalid()) {
343    DeclContext *DC = computeDeclContext(*SS, true);
344    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
345  } else
346    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
347
348  if (CurDecl)
349    return &II == CurDecl->getIdentifier();
350  else
351    return false;
352}
353
354/// \brief Check the validity of a C++ base class specifier.
355///
356/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
357/// and returns NULL otherwise.
358CXXBaseSpecifier *
359Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
360                         SourceRange SpecifierRange,
361                         bool Virtual, AccessSpecifier Access,
362                         QualType BaseType,
363                         SourceLocation BaseLoc) {
364  // C++ [class.union]p1:
365  //   A union shall not have base classes.
366  if (Class->isUnion()) {
367    Diag(Class->getLocation(), diag::err_base_clause_on_union)
368      << SpecifierRange;
369    return 0;
370  }
371
372  if (BaseType->isDependentType())
373    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
374                                Class->getTagKind() == RecordDecl::TK_class,
375                                Access, BaseType);
376
377  // Base specifiers must be record types.
378  if (!BaseType->isRecordType()) {
379    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
380    return 0;
381  }
382
383  // C++ [class.union]p1:
384  //   A union shall not be used as a base class.
385  if (BaseType->isUnionType()) {
386    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
387    return 0;
388  }
389
390  // C++ [class.derived]p2:
391  //   The class-name in a base-specifier shall not be an incompletely
392  //   defined class.
393  if (RequireCompleteType(BaseLoc, BaseType,
394                          PDiag(diag::err_incomplete_base_class)
395                            << SpecifierRange))
396    return 0;
397
398  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
399  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
400  assert(BaseDecl && "Record type has no declaration");
401  BaseDecl = BaseDecl->getDefinition(Context);
402  assert(BaseDecl && "Base type is not incomplete, but has no definition");
403  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
404  assert(CXXBaseDecl && "Base type is not a C++ type");
405  if (!CXXBaseDecl->isEmpty())
406    Class->setEmpty(false);
407  if (CXXBaseDecl->isPolymorphic())
408    Class->setPolymorphic(true);
409
410  // C++ [dcl.init.aggr]p1:
411  //   An aggregate is [...] a class with [...] no base classes [...].
412  Class->setAggregate(false);
413  Class->setPOD(false);
414
415  if (Virtual) {
416    // C++ [class.ctor]p5:
417    //   A constructor is trivial if its class has no virtual base classes.
418    Class->setHasTrivialConstructor(false);
419
420    // C++ [class.copy]p6:
421    //   A copy constructor is trivial if its class has no virtual base classes.
422    Class->setHasTrivialCopyConstructor(false);
423
424    // C++ [class.copy]p11:
425    //   A copy assignment operator is trivial if its class has no virtual
426    //   base classes.
427    Class->setHasTrivialCopyAssignment(false);
428
429    // C++0x [meta.unary.prop] is_empty:
430    //    T is a class type, but not a union type, with ... no virtual base
431    //    classes
432    Class->setEmpty(false);
433  } else {
434    // C++ [class.ctor]p5:
435    //   A constructor is trivial if all the direct base classes of its
436    //   class have trivial constructors.
437    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
438      Class->setHasTrivialConstructor(false);
439
440    // C++ [class.copy]p6:
441    //   A copy constructor is trivial if all the direct base classes of its
442    //   class have trivial copy constructors.
443    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
444      Class->setHasTrivialCopyConstructor(false);
445
446    // C++ [class.copy]p11:
447    //   A copy assignment operator is trivial if all the direct base classes
448    //   of its class have trivial copy assignment operators.
449    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
450      Class->setHasTrivialCopyAssignment(false);
451  }
452
453  // C++ [class.ctor]p3:
454  //   A destructor is trivial if all the direct base classes of its class
455  //   have trivial destructors.
456  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
457    Class->setHasTrivialDestructor(false);
458
459  // Create the base specifier.
460  // FIXME: Allocate via ASTContext?
461  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
462                              Class->getTagKind() == RecordDecl::TK_class,
463                              Access, BaseType);
464}
465
466/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
467/// one entry in the base class list of a class specifier, for
468/// example:
469///    class foo : public bar, virtual private baz {
470/// 'public bar' and 'virtual private baz' are each base-specifiers.
471Sema::BaseResult
472Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
473                         bool Virtual, AccessSpecifier Access,
474                         TypeTy *basetype, SourceLocation BaseLoc) {
475  if (!classdecl)
476    return true;
477
478  AdjustDeclIfTemplate(classdecl);
479  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
480  QualType BaseType = GetTypeFromParser(basetype);
481  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
482                                                      Virtual, Access,
483                                                      BaseType, BaseLoc))
484    return BaseSpec;
485
486  return true;
487}
488
489/// \brief Performs the actual work of attaching the given base class
490/// specifiers to a C++ class.
491bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
492                                unsigned NumBases) {
493 if (NumBases == 0)
494    return false;
495
496  // Used to keep track of which base types we have already seen, so
497  // that we can properly diagnose redundant direct base types. Note
498  // that the key is always the unqualified canonical type of the base
499  // class.
500  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
501
502  // Copy non-redundant base specifiers into permanent storage.
503  unsigned NumGoodBases = 0;
504  bool Invalid = false;
505  for (unsigned idx = 0; idx < NumBases; ++idx) {
506    QualType NewBaseType
507      = Context.getCanonicalType(Bases[idx]->getType());
508    NewBaseType = NewBaseType.getUnqualifiedType();
509
510    if (KnownBaseTypes[NewBaseType]) {
511      // C++ [class.mi]p3:
512      //   A class shall not be specified as a direct base class of a
513      //   derived class more than once.
514      Diag(Bases[idx]->getSourceRange().getBegin(),
515           diag::err_duplicate_base_class)
516        << KnownBaseTypes[NewBaseType]->getType()
517        << Bases[idx]->getSourceRange();
518
519      // Delete the duplicate base class specifier; we're going to
520      // overwrite its pointer later.
521      Context.Deallocate(Bases[idx]);
522
523      Invalid = true;
524    } else {
525      // Okay, add this new base class.
526      KnownBaseTypes[NewBaseType] = Bases[idx];
527      Bases[NumGoodBases++] = Bases[idx];
528    }
529  }
530
531  // Attach the remaining base class specifiers to the derived class.
532  Class->setBases(Context, Bases, NumGoodBases);
533
534  // Delete the remaining (good) base class specifiers, since their
535  // data has been copied into the CXXRecordDecl.
536  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
537    Context.Deallocate(Bases[idx]);
538
539  return Invalid;
540}
541
542/// ActOnBaseSpecifiers - Attach the given base specifiers to the
543/// class, after checking whether there are any duplicate base
544/// classes.
545void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
546                               unsigned NumBases) {
547  if (!ClassDecl || !Bases || !NumBases)
548    return;
549
550  AdjustDeclIfTemplate(ClassDecl);
551  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
552                       (CXXBaseSpecifier**)(Bases), NumBases);
553}
554
555//===----------------------------------------------------------------------===//
556// C++ class member Handling
557//===----------------------------------------------------------------------===//
558
559/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
560/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
561/// bitfield width if there is one and 'InitExpr' specifies the initializer if
562/// any.
563Sema::DeclPtrTy
564Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
565                               MultiTemplateParamsArg TemplateParameterLists,
566                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
567  const DeclSpec &DS = D.getDeclSpec();
568  DeclarationName Name = GetNameForDeclarator(D);
569  Expr *BitWidth = static_cast<Expr*>(BW);
570  Expr *Init = static_cast<Expr*>(InitExpr);
571  SourceLocation Loc = D.getIdentifierLoc();
572
573  bool isFunc = D.isFunctionDeclarator();
574
575  assert(!DS.isFriendSpecified());
576
577  // C++ 9.2p6: A member shall not be declared to have automatic storage
578  // duration (auto, register) or with the extern storage-class-specifier.
579  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
580  // data members and cannot be applied to names declared const or static,
581  // and cannot be applied to reference members.
582  switch (DS.getStorageClassSpec()) {
583    case DeclSpec::SCS_unspecified:
584    case DeclSpec::SCS_typedef:
585    case DeclSpec::SCS_static:
586      // FALL THROUGH.
587      break;
588    case DeclSpec::SCS_mutable:
589      if (isFunc) {
590        if (DS.getStorageClassSpecLoc().isValid())
591          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
592        else
593          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
594
595        // FIXME: It would be nicer if the keyword was ignored only for this
596        // declarator. Otherwise we could get follow-up errors.
597        D.getMutableDeclSpec().ClearStorageClassSpecs();
598      } else {
599        QualType T = GetTypeForDeclarator(D, S);
600        diag::kind err = static_cast<diag::kind>(0);
601        if (T->isReferenceType())
602          err = diag::err_mutable_reference;
603        else if (T.isConstQualified())
604          err = diag::err_mutable_const;
605        if (err != 0) {
606          if (DS.getStorageClassSpecLoc().isValid())
607            Diag(DS.getStorageClassSpecLoc(), err);
608          else
609            Diag(DS.getThreadSpecLoc(), err);
610          // FIXME: It would be nicer if the keyword was ignored only for this
611          // declarator. Otherwise we could get follow-up errors.
612          D.getMutableDeclSpec().ClearStorageClassSpecs();
613        }
614      }
615      break;
616    default:
617      if (DS.getStorageClassSpecLoc().isValid())
618        Diag(DS.getStorageClassSpecLoc(),
619             diag::err_storageclass_invalid_for_member);
620      else
621        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
622      D.getMutableDeclSpec().ClearStorageClassSpecs();
623  }
624
625  if (!isFunc &&
626      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
627      D.getNumTypeObjects() == 0) {
628    // Check also for this case:
629    //
630    // typedef int f();
631    // f a;
632    //
633    QualType TDType = GetTypeFromParser(DS.getTypeRep());
634    isFunc = TDType->isFunctionType();
635  }
636
637  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
638                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
639                      !isFunc);
640
641  Decl *Member;
642  if (isInstField) {
643    // FIXME: Check for template parameters!
644    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
645                         AS);
646    assert(Member && "HandleField never returns null");
647  } else {
648    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
649               .getAs<Decl>();
650    if (!Member) {
651      if (BitWidth) DeleteExpr(BitWidth);
652      return DeclPtrTy();
653    }
654
655    // Non-instance-fields can't have a bitfield.
656    if (BitWidth) {
657      if (Member->isInvalidDecl()) {
658        // don't emit another diagnostic.
659      } else if (isa<VarDecl>(Member)) {
660        // C++ 9.6p3: A bit-field shall not be a static member.
661        // "static member 'A' cannot be a bit-field"
662        Diag(Loc, diag::err_static_not_bitfield)
663          << Name << BitWidth->getSourceRange();
664      } else if (isa<TypedefDecl>(Member)) {
665        // "typedef member 'x' cannot be a bit-field"
666        Diag(Loc, diag::err_typedef_not_bitfield)
667          << Name << BitWidth->getSourceRange();
668      } else {
669        // A function typedef ("typedef int f(); f a;").
670        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
671        Diag(Loc, diag::err_not_integral_type_bitfield)
672          << Name << cast<ValueDecl>(Member)->getType()
673          << BitWidth->getSourceRange();
674      }
675
676      DeleteExpr(BitWidth);
677      BitWidth = 0;
678      Member->setInvalidDecl();
679    }
680
681    Member->setAccess(AS);
682
683    // If we have declared a member function template, set the access of the
684    // templated declaration as well.
685    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
686      FunTmpl->getTemplatedDecl()->setAccess(AS);
687  }
688
689  assert((Name || isInstField) && "No identifier for non-field ?");
690
691  if (Init)
692    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
693  if (Deleted) // FIXME: Source location is not very good.
694    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
695
696  if (isInstField) {
697    FieldCollector->Add(cast<FieldDecl>(Member));
698    return DeclPtrTy();
699  }
700  return DeclPtrTy::make(Member);
701}
702
703/// ActOnMemInitializer - Handle a C++ member initializer.
704Sema::MemInitResult
705Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
706                          Scope *S,
707                          const CXXScopeSpec &SS,
708                          IdentifierInfo *MemberOrBase,
709                          TypeTy *TemplateTypeTy,
710                          SourceLocation IdLoc,
711                          SourceLocation LParenLoc,
712                          ExprTy **Args, unsigned NumArgs,
713                          SourceLocation *CommaLocs,
714                          SourceLocation RParenLoc) {
715  if (!ConstructorD)
716    return true;
717
718  AdjustDeclIfTemplate(ConstructorD);
719
720  CXXConstructorDecl *Constructor
721    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
722  if (!Constructor) {
723    // The user wrote a constructor initializer on a function that is
724    // not a C++ constructor. Ignore the error for now, because we may
725    // have more member initializers coming; we'll diagnose it just
726    // once in ActOnMemInitializers.
727    return true;
728  }
729
730  CXXRecordDecl *ClassDecl = Constructor->getParent();
731
732  // C++ [class.base.init]p2:
733  //   Names in a mem-initializer-id are looked up in the scope of the
734  //   constructor’s class and, if not found in that scope, are looked
735  //   up in the scope containing the constructor’s
736  //   definition. [Note: if the constructor’s class contains a member
737  //   with the same name as a direct or virtual base class of the
738  //   class, a mem-initializer-id naming the member or base class and
739  //   composed of a single identifier refers to the class member. A
740  //   mem-initializer-id for the hidden base class may be specified
741  //   using a qualified name. ]
742  if (!SS.getScopeRep() && !TemplateTypeTy) {
743    // Look for a member, first.
744    FieldDecl *Member = 0;
745    DeclContext::lookup_result Result
746      = ClassDecl->lookup(MemberOrBase);
747    if (Result.first != Result.second)
748      Member = dyn_cast<FieldDecl>(*Result.first);
749
750    // FIXME: Handle members of an anonymous union.
751
752    if (Member)
753      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
754                                    RParenLoc);
755  }
756  // It didn't name a member, so see if it names a class.
757  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
758                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
759  if (!BaseTy)
760    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
761      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
762
763  QualType BaseType = GetTypeFromParser(BaseTy);
764
765  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
766                              RParenLoc, ClassDecl);
767}
768
769Sema::MemInitResult
770Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
771                             unsigned NumArgs, SourceLocation IdLoc,
772                             SourceLocation RParenLoc) {
773  bool HasDependentArg = false;
774  for (unsigned i = 0; i < NumArgs; i++)
775    HasDependentArg |= Args[i]->isTypeDependent();
776
777  CXXConstructorDecl *C = 0;
778  QualType FieldType = Member->getType();
779  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
780    FieldType = Array->getElementType();
781  if (FieldType->isDependentType()) {
782    // Can't check init for dependent type.
783  } else if (FieldType->getAs<RecordType>()) {
784    if (!HasDependentArg) {
785      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
786
787      C = PerformInitializationByConstructor(FieldType,
788                                             MultiExprArg(*this,
789                                                          (void**)Args,
790                                                          NumArgs),
791                                             IdLoc,
792                                             SourceRange(IdLoc, RParenLoc),
793                                             Member->getDeclName(), IK_Direct,
794                                             ConstructorArgs);
795
796      if (C) {
797        // Take over the constructor arguments as our own.
798        NumArgs = ConstructorArgs.size();
799        Args = (Expr **)ConstructorArgs.take();
800      }
801    }
802  } else if (NumArgs != 1 && NumArgs != 0) {
803    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
804                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
805  } else if (!HasDependentArg) {
806    Expr *NewExp;
807    if (NumArgs == 0) {
808      if (FieldType->isReferenceType()) {
809        Diag(IdLoc, diag::err_null_intialized_reference_member)
810              << Member->getDeclName();
811        return Diag(Member->getLocation(), diag::note_declared_at);
812      }
813      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
814      NumArgs = 1;
815    }
816    else
817      NewExp = (Expr*)Args[0];
818    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
819      return true;
820    Args[0] = NewExp;
821  }
822  // FIXME: Perform direct initialization of the member.
823  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
824                                                  NumArgs, C, IdLoc, RParenLoc);
825}
826
827Sema::MemInitResult
828Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
829                           unsigned NumArgs, SourceLocation IdLoc,
830                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
831  bool HasDependentArg = false;
832  for (unsigned i = 0; i < NumArgs; i++)
833    HasDependentArg |= Args[i]->isTypeDependent();
834
835  if (!BaseType->isDependentType()) {
836    if (!BaseType->isRecordType())
837      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
838        << BaseType << SourceRange(IdLoc, RParenLoc);
839
840    // C++ [class.base.init]p2:
841    //   [...] Unless the mem-initializer-id names a nonstatic data
842    //   member of the constructor’s class or a direct or virtual base
843    //   of that class, the mem-initializer is ill-formed. A
844    //   mem-initializer-list can initialize a base class using any
845    //   name that denotes that base class type.
846
847    // First, check for a direct base class.
848    const CXXBaseSpecifier *DirectBaseSpec = 0;
849    for (CXXRecordDecl::base_class_const_iterator Base =
850         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
851      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
852          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
853        // We found a direct base of this type. That's what we're
854        // initializing.
855        DirectBaseSpec = &*Base;
856        break;
857      }
858    }
859
860    // Check for a virtual base class.
861    // FIXME: We might be able to short-circuit this if we know in advance that
862    // there are no virtual bases.
863    const CXXBaseSpecifier *VirtualBaseSpec = 0;
864    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
865      // We haven't found a base yet; search the class hierarchy for a
866      // virtual base class.
867      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
868                      /*DetectVirtual=*/false);
869      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
870        for (BasePaths::paths_iterator Path = Paths.begin();
871             Path != Paths.end(); ++Path) {
872          if (Path->back().Base->isVirtual()) {
873            VirtualBaseSpec = Path->back().Base;
874            break;
875          }
876        }
877      }
878    }
879
880    // C++ [base.class.init]p2:
881    //   If a mem-initializer-id is ambiguous because it designates both
882    //   a direct non-virtual base class and an inherited virtual base
883    //   class, the mem-initializer is ill-formed.
884    if (DirectBaseSpec && VirtualBaseSpec)
885      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
886        << BaseType << SourceRange(IdLoc, RParenLoc);
887    // C++ [base.class.init]p2:
888    // Unless the mem-initializer-id names a nonstatic data membeer of the
889    // constructor's class ot a direst or virtual base of that class, the
890    // mem-initializer is ill-formed.
891    if (!DirectBaseSpec && !VirtualBaseSpec)
892      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
893      << BaseType << ClassDecl->getNameAsCString()
894      << SourceRange(IdLoc, RParenLoc);
895  }
896
897  CXXConstructorDecl *C = 0;
898  if (!BaseType->isDependentType() && !HasDependentArg) {
899    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
900                                            Context.getCanonicalType(BaseType));
901    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
902
903    C = PerformInitializationByConstructor(BaseType,
904                                           MultiExprArg(*this,
905                                                        (void**)Args, NumArgs),
906                                           IdLoc, SourceRange(IdLoc, RParenLoc),
907                                           Name, IK_Direct,
908                                           ConstructorArgs);
909    if (C) {
910      // Take over the constructor arguments as our own.
911      NumArgs = ConstructorArgs.size();
912      Args = (Expr **)ConstructorArgs.take();
913    }
914  }
915
916  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
917                                                  NumArgs, C, IdLoc, RParenLoc);
918}
919
920void
921Sema::setBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
922                              CXXBaseOrMemberInitializer **Initializers,
923                              unsigned NumInitializers,
924                              llvm::SmallVectorImpl<CXXBaseSpecifier *>& Bases,
925                              llvm::SmallVectorImpl<FieldDecl *>&Fields) {
926  // We need to build the initializer AST according to order of construction
927  // and not what user specified in the Initializers list.
928  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
929  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
930  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
931  bool HasDependentBaseInit = false;
932
933  for (unsigned i = 0; i < NumInitializers; i++) {
934    CXXBaseOrMemberInitializer *Member = Initializers[i];
935    if (Member->isBaseInitializer()) {
936      if (Member->getBaseClass()->isDependentType())
937        HasDependentBaseInit = true;
938      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
939    } else {
940      AllBaseFields[Member->getMember()] = Member;
941    }
942  }
943
944  if (HasDependentBaseInit) {
945    // FIXME. This does not preserve the ordering of the initializers.
946    // Try (with -Wreorder)
947    // template<class X> struct A {};
948    // template<class X> struct B : A<X> {
949    //   B() : x1(10), A<X>() {}
950    //   int x1;
951    // };
952    // B<int> x;
953    // On seeing one dependent type, we should essentially exit this routine
954    // while preserving user-declared initializer list. When this routine is
955    // called during instantiatiation process, this routine will rebuild the
956    // oderdered initializer list correctly.
957
958    // If we have a dependent base initialization, we can't determine the
959    // association between initializers and bases; just dump the known
960    // initializers into the list, and don't try to deal with other bases.
961    for (unsigned i = 0; i < NumInitializers; i++) {
962      CXXBaseOrMemberInitializer *Member = Initializers[i];
963      if (Member->isBaseInitializer())
964        AllToInit.push_back(Member);
965    }
966  } else {
967    // Push virtual bases before others.
968    for (CXXRecordDecl::base_class_iterator VBase =
969         ClassDecl->vbases_begin(),
970         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
971      if (VBase->getType()->isDependentType())
972        continue;
973      if (CXXBaseOrMemberInitializer *Value =
974          AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
975        CXXRecordDecl *BaseDecl =
976          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
977        assert(BaseDecl && "setBaseOrMemberInitializers - BaseDecl null");
978        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
979          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
980        AllToInit.push_back(Value);
981      }
982      else {
983        CXXRecordDecl *VBaseDecl =
984        cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
985        assert(VBaseDecl && "setBaseOrMemberInitializers - VBaseDecl null");
986        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
987        if (!Ctor)
988          Bases.push_back(VBase);
989        else
990          MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
991
992        CXXBaseOrMemberInitializer *Member =
993        new (Context) CXXBaseOrMemberInitializer(VBase->getType(), 0, 0,
994                                    Ctor,
995                                    SourceLocation(),
996                                    SourceLocation());
997        AllToInit.push_back(Member);
998      }
999    }
1000
1001    for (CXXRecordDecl::base_class_iterator Base =
1002         ClassDecl->bases_begin(),
1003         E = ClassDecl->bases_end(); Base != E; ++Base) {
1004      // Virtuals are in the virtual base list and already constructed.
1005      if (Base->isVirtual())
1006        continue;
1007      // Skip dependent types.
1008      if (Base->getType()->isDependentType())
1009        continue;
1010      if (CXXBaseOrMemberInitializer *Value =
1011          AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1012        CXXRecordDecl *BaseDecl =
1013          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1014        assert(BaseDecl && "setBaseOrMemberInitializers - BaseDecl null");
1015        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
1016          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1017        AllToInit.push_back(Value);
1018      }
1019      else {
1020        CXXRecordDecl *BaseDecl =
1021          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1022        assert(BaseDecl && "setBaseOrMemberInitializers - BaseDecl null");
1023         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1024        if (!Ctor)
1025          Bases.push_back(Base);
1026        else
1027          MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1028
1029        CXXBaseOrMemberInitializer *Member =
1030        new (Context) CXXBaseOrMemberInitializer(Base->getType(), 0, 0,
1031                                      BaseDecl->getDefaultConstructor(Context),
1032                                      SourceLocation(),
1033                                      SourceLocation());
1034        AllToInit.push_back(Member);
1035      }
1036    }
1037  }
1038
1039  // non-static data members.
1040  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1041       E = ClassDecl->field_end(); Field != E; ++Field) {
1042    if ((*Field)->isAnonymousStructOrUnion()) {
1043      if (const RecordType *FieldClassType =
1044          Field->getType()->getAs<RecordType>()) {
1045        CXXRecordDecl *FieldClassDecl
1046        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1047        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1048            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1049          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1050            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1051            // set to the anonymous union data member used in the initializer
1052            // list.
1053            Value->setMember(*Field);
1054            Value->setAnonUnionMember(*FA);
1055            AllToInit.push_back(Value);
1056            break;
1057          }
1058        }
1059      }
1060      continue;
1061    }
1062    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1063      QualType FT = (*Field)->getType();
1064      if (const RecordType* RT = FT->getAs<RecordType>()) {
1065        CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RT->getDecl());
1066        assert(FieldRecDecl && "setBaseOrMemberInitializers - BaseDecl null");
1067        if (CXXConstructorDecl *Ctor =
1068              FieldRecDecl->getDefaultConstructor(Context))
1069          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1070      }
1071      AllToInit.push_back(Value);
1072      continue;
1073    }
1074
1075    QualType FT = Context.getBaseElementType((*Field)->getType());
1076    if (const RecordType* RT = FT->getAs<RecordType>()) {
1077      CXXConstructorDecl *Ctor =
1078        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1079      if (!Ctor && !FT->isDependentType())
1080        Fields.push_back(*Field);
1081      CXXBaseOrMemberInitializer *Member =
1082      new (Context) CXXBaseOrMemberInitializer((*Field), 0, 0,
1083                                         Ctor,
1084                                         SourceLocation(),
1085                                         SourceLocation());
1086      AllToInit.push_back(Member);
1087      if (Ctor)
1088        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1089      if (FT.isConstQualified() && (!Ctor || Ctor->isTrivial())) {
1090        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1091          << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getDeclName();
1092        Diag((*Field)->getLocation(), diag::note_declared_at);
1093      }
1094    }
1095    else if (FT->isReferenceType()) {
1096      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1097        << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getDeclName();
1098      Diag((*Field)->getLocation(), diag::note_declared_at);
1099    }
1100    else if (FT.isConstQualified()) {
1101      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1102        << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getDeclName();
1103      Diag((*Field)->getLocation(), diag::note_declared_at);
1104    }
1105  }
1106
1107  NumInitializers = AllToInit.size();
1108  if (NumInitializers > 0) {
1109    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1110    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1111      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1112
1113    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1114    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1115      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1116  }
1117}
1118
1119void
1120Sema::BuildBaseOrMemberInitializers(ASTContext &C,
1121                                 CXXConstructorDecl *Constructor,
1122                                 CXXBaseOrMemberInitializer **Initializers,
1123                                 unsigned NumInitializers
1124                                 ) {
1125  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
1126  llvm::SmallVector<FieldDecl *, 4>Members;
1127
1128  setBaseOrMemberInitializers(Constructor,
1129                              Initializers, NumInitializers, Bases, Members);
1130  for (unsigned int i = 0; i < Bases.size(); i++)
1131    Diag(Bases[i]->getSourceRange().getBegin(),
1132         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
1133  for (unsigned int i = 0; i < Members.size(); i++)
1134    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
1135          << 1 << Members[i]->getType();
1136}
1137
1138static void *GetKeyForTopLevelField(FieldDecl *Field) {
1139  // For anonymous unions, use the class declaration as the key.
1140  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1141    if (RT->getDecl()->isAnonymousStructOrUnion())
1142      return static_cast<void *>(RT->getDecl());
1143  }
1144  return static_cast<void *>(Field);
1145}
1146
1147static void *GetKeyForBase(QualType BaseType) {
1148  if (const RecordType *RT = BaseType->getAs<RecordType>())
1149    return (void *)RT;
1150
1151  assert(0 && "Unexpected base type!");
1152  return 0;
1153}
1154
1155static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1156                             bool MemberMaybeAnon = false) {
1157  // For fields injected into the class via declaration of an anonymous union,
1158  // use its anonymous union class declaration as the unique key.
1159  if (Member->isMemberInitializer()) {
1160    FieldDecl *Field = Member->getMember();
1161
1162    // After BuildBaseOrMemberInitializers call, Field is the anonymous union
1163    // data member of the class. Data member used in the initializer list is
1164    // in AnonUnionMember field.
1165    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1166      Field = Member->getAnonUnionMember();
1167    if (Field->getDeclContext()->isRecord()) {
1168      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1169      if (RD->isAnonymousStructOrUnion())
1170        return static_cast<void *>(RD);
1171    }
1172    return static_cast<void *>(Field);
1173  }
1174
1175  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1176}
1177
1178void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1179                                SourceLocation ColonLoc,
1180                                MemInitTy **MemInits, unsigned NumMemInits) {
1181  if (!ConstructorDecl)
1182    return;
1183
1184  AdjustDeclIfTemplate(ConstructorDecl);
1185
1186  CXXConstructorDecl *Constructor
1187    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1188
1189  if (!Constructor) {
1190    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1191    return;
1192  }
1193
1194  if (!Constructor->isDependentContext()) {
1195    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1196    bool err = false;
1197    for (unsigned i = 0; i < NumMemInits; i++) {
1198      CXXBaseOrMemberInitializer *Member =
1199        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1200      void *KeyToMember = GetKeyForMember(Member);
1201      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1202      if (!PrevMember) {
1203        PrevMember = Member;
1204        continue;
1205      }
1206      if (FieldDecl *Field = Member->getMember())
1207        Diag(Member->getSourceLocation(),
1208             diag::error_multiple_mem_initialization)
1209        << Field->getNameAsString();
1210      else {
1211        Type *BaseClass = Member->getBaseClass();
1212        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1213        Diag(Member->getSourceLocation(),
1214             diag::error_multiple_base_initialization)
1215          << BaseClass->getDesugaredType(true);
1216      }
1217      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1218        << 0;
1219      err = true;
1220    }
1221
1222    if (err)
1223      return;
1224  }
1225
1226  BuildBaseOrMemberInitializers(Context, Constructor,
1227                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1228                      NumMemInits);
1229
1230  if (Constructor->isDependentContext())
1231    return;
1232
1233  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1234      Diagnostic::Ignored &&
1235      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1236      Diagnostic::Ignored)
1237    return;
1238
1239  // Also issue warning if order of ctor-initializer list does not match order
1240  // of 1) base class declarations and 2) order of non-static data members.
1241  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1242
1243  CXXRecordDecl *ClassDecl
1244    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1245  // Push virtual bases before others.
1246  for (CXXRecordDecl::base_class_iterator VBase =
1247       ClassDecl->vbases_begin(),
1248       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1249    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1250
1251  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1252       E = ClassDecl->bases_end(); Base != E; ++Base) {
1253    // Virtuals are alread in the virtual base list and are constructed
1254    // first.
1255    if (Base->isVirtual())
1256      continue;
1257    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1258  }
1259
1260  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1261       E = ClassDecl->field_end(); Field != E; ++Field)
1262    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1263
1264  int Last = AllBaseOrMembers.size();
1265  int curIndex = 0;
1266  CXXBaseOrMemberInitializer *PrevMember = 0;
1267  for (unsigned i = 0; i < NumMemInits; i++) {
1268    CXXBaseOrMemberInitializer *Member =
1269      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1270    void *MemberInCtorList = GetKeyForMember(Member, true);
1271
1272    for (; curIndex < Last; curIndex++)
1273      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1274        break;
1275    if (curIndex == Last) {
1276      assert(PrevMember && "Member not in member list?!");
1277      // Initializer as specified in ctor-initializer list is out of order.
1278      // Issue a warning diagnostic.
1279      if (PrevMember->isBaseInitializer()) {
1280        // Diagnostics is for an initialized base class.
1281        Type *BaseClass = PrevMember->getBaseClass();
1282        Diag(PrevMember->getSourceLocation(),
1283             diag::warn_base_initialized)
1284              << BaseClass->getDesugaredType(true);
1285      } else {
1286        FieldDecl *Field = PrevMember->getMember();
1287        Diag(PrevMember->getSourceLocation(),
1288             diag::warn_field_initialized)
1289          << Field->getNameAsString();
1290      }
1291      // Also the note!
1292      if (FieldDecl *Field = Member->getMember())
1293        Diag(Member->getSourceLocation(),
1294             diag::note_fieldorbase_initialized_here) << 0
1295          << Field->getNameAsString();
1296      else {
1297        Type *BaseClass = Member->getBaseClass();
1298        Diag(Member->getSourceLocation(),
1299             diag::note_fieldorbase_initialized_here) << 1
1300          << BaseClass->getDesugaredType(true);
1301      }
1302      for (curIndex = 0; curIndex < Last; curIndex++)
1303        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1304          break;
1305    }
1306    PrevMember = Member;
1307  }
1308}
1309
1310void
1311Sema::computeBaseOrMembersToDestroy(CXXDestructorDecl *Destructor) {
1312  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Destructor->getDeclContext());
1313  llvm::SmallVector<uintptr_t, 32> AllToDestruct;
1314
1315  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1316       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1317    if (VBase->getType()->isDependentType())
1318      continue;
1319    // Skip over virtual bases which have trivial destructors.
1320    CXXRecordDecl *BaseClassDecl
1321      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1322    if (BaseClassDecl->hasTrivialDestructor())
1323      continue;
1324    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1325      MarkDeclarationReferenced(Destructor->getLocation(),
1326                                const_cast<CXXDestructorDecl*>(Dtor));
1327
1328    uintptr_t Member =
1329    reinterpret_cast<uintptr_t>(VBase->getType().getTypePtr())
1330      | CXXDestructorDecl::VBASE;
1331    AllToDestruct.push_back(Member);
1332  }
1333  for (CXXRecordDecl::base_class_iterator Base =
1334       ClassDecl->bases_begin(),
1335       E = ClassDecl->bases_end(); Base != E; ++Base) {
1336    if (Base->isVirtual())
1337      continue;
1338    if (Base->getType()->isDependentType())
1339      continue;
1340    // Skip over virtual bases which have trivial destructors.
1341    CXXRecordDecl *BaseClassDecl
1342    = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1343    if (BaseClassDecl->hasTrivialDestructor())
1344      continue;
1345    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1346      MarkDeclarationReferenced(Destructor->getLocation(),
1347                                const_cast<CXXDestructorDecl*>(Dtor));
1348    uintptr_t Member =
1349    reinterpret_cast<uintptr_t>(Base->getType().getTypePtr())
1350      | CXXDestructorDecl::DRCTNONVBASE;
1351    AllToDestruct.push_back(Member);
1352  }
1353
1354  // non-static data members.
1355  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1356       E = ClassDecl->field_end(); Field != E; ++Field) {
1357    QualType FieldType = Context.getBaseElementType((*Field)->getType());
1358
1359    if (const RecordType* RT = FieldType->getAs<RecordType>()) {
1360      // Skip over virtual bases which have trivial destructors.
1361      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1362      if (FieldClassDecl->hasTrivialDestructor())
1363        continue;
1364      if (const CXXDestructorDecl *Dtor =
1365            FieldClassDecl->getDestructor(Context))
1366        MarkDeclarationReferenced(Destructor->getLocation(),
1367                                  const_cast<CXXDestructorDecl*>(Dtor));
1368      uintptr_t Member = reinterpret_cast<uintptr_t>(*Field);
1369      AllToDestruct.push_back(Member);
1370    }
1371  }
1372
1373  unsigned NumDestructions = AllToDestruct.size();
1374  if (NumDestructions > 0) {
1375    Destructor->setNumBaseOrMemberDestructions(NumDestructions);
1376    uintptr_t *BaseOrMemberDestructions =
1377      new (Context) uintptr_t [NumDestructions];
1378    // Insert in reverse order.
1379    for (int Idx = NumDestructions-1, i=0 ; Idx >= 0; --Idx)
1380      BaseOrMemberDestructions[i++] = AllToDestruct[Idx];
1381    Destructor->setBaseOrMemberDestructions(BaseOrMemberDestructions);
1382  }
1383}
1384
1385void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1386  if (!CDtorDecl)
1387    return;
1388
1389  AdjustDeclIfTemplate(CDtorDecl);
1390
1391  if (CXXConstructorDecl *Constructor
1392      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1393    BuildBaseOrMemberInitializers(Context,
1394                                     Constructor,
1395                                     (CXXBaseOrMemberInitializer **)0, 0);
1396}
1397
1398namespace {
1399  /// PureVirtualMethodCollector - traverses a class and its superclasses
1400  /// and determines if it has any pure virtual methods.
1401  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1402    ASTContext &Context;
1403
1404  public:
1405    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1406
1407  private:
1408    MethodList Methods;
1409
1410    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1411
1412  public:
1413    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1414      : Context(Ctx) {
1415
1416      MethodList List;
1417      Collect(RD, List);
1418
1419      // Copy the temporary list to methods, and make sure to ignore any
1420      // null entries.
1421      for (size_t i = 0, e = List.size(); i != e; ++i) {
1422        if (List[i])
1423          Methods.push_back(List[i]);
1424      }
1425    }
1426
1427    bool empty() const { return Methods.empty(); }
1428
1429    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1430    MethodList::const_iterator methods_end() { return Methods.end(); }
1431  };
1432
1433  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1434                                           MethodList& Methods) {
1435    // First, collect the pure virtual methods for the base classes.
1436    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1437         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1438      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1439        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1440        if (BaseDecl && BaseDecl->isAbstract())
1441          Collect(BaseDecl, Methods);
1442      }
1443    }
1444
1445    // Next, zero out any pure virtual methods that this class overrides.
1446    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1447
1448    MethodSetTy OverriddenMethods;
1449    size_t MethodsSize = Methods.size();
1450
1451    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1452         i != e; ++i) {
1453      // Traverse the record, looking for methods.
1454      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1455        // If the method is pure virtual, add it to the methods vector.
1456        if (MD->isPure()) {
1457          Methods.push_back(MD);
1458          continue;
1459        }
1460
1461        // Otherwise, record all the overridden methods in our set.
1462        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1463             E = MD->end_overridden_methods(); I != E; ++I) {
1464          // Keep track of the overridden methods.
1465          OverriddenMethods.insert(*I);
1466        }
1467      }
1468    }
1469
1470    // Now go through the methods and zero out all the ones we know are
1471    // overridden.
1472    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1473      if (OverriddenMethods.count(Methods[i]))
1474        Methods[i] = 0;
1475    }
1476
1477  }
1478}
1479
1480
1481bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1482                                  unsigned DiagID, AbstractDiagSelID SelID,
1483                                  const CXXRecordDecl *CurrentRD) {
1484  if (SelID == -1)
1485    return RequireNonAbstractType(Loc, T,
1486                                  PDiag(DiagID), CurrentRD);
1487  else
1488    return RequireNonAbstractType(Loc, T,
1489                                  PDiag(DiagID) << SelID, CurrentRD);
1490}
1491
1492bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1493                                  const PartialDiagnostic &PD,
1494                                  const CXXRecordDecl *CurrentRD) {
1495  if (!getLangOptions().CPlusPlus)
1496    return false;
1497
1498  if (const ArrayType *AT = Context.getAsArrayType(T))
1499    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1500                                  CurrentRD);
1501
1502  if (const PointerType *PT = T->getAs<PointerType>()) {
1503    // Find the innermost pointer type.
1504    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1505      PT = T;
1506
1507    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1508      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1509  }
1510
1511  const RecordType *RT = T->getAs<RecordType>();
1512  if (!RT)
1513    return false;
1514
1515  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1516  if (!RD)
1517    return false;
1518
1519  if (CurrentRD && CurrentRD != RD)
1520    return false;
1521
1522  if (!RD->isAbstract())
1523    return false;
1524
1525  Diag(Loc, PD) << RD->getDeclName();
1526
1527  // Check if we've already emitted the list of pure virtual functions for this
1528  // class.
1529  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1530    return true;
1531
1532  PureVirtualMethodCollector Collector(Context, RD);
1533
1534  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1535       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1536    const CXXMethodDecl *MD = *I;
1537
1538    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1539      MD->getDeclName();
1540  }
1541
1542  if (!PureVirtualClassDiagSet)
1543    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1544  PureVirtualClassDiagSet->insert(RD);
1545
1546  return true;
1547}
1548
1549namespace {
1550  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1551    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1552    Sema &SemaRef;
1553    CXXRecordDecl *AbstractClass;
1554
1555    bool VisitDeclContext(const DeclContext *DC) {
1556      bool Invalid = false;
1557
1558      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1559           E = DC->decls_end(); I != E; ++I)
1560        Invalid |= Visit(*I);
1561
1562      return Invalid;
1563    }
1564
1565  public:
1566    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1567      : SemaRef(SemaRef), AbstractClass(ac) {
1568        Visit(SemaRef.Context.getTranslationUnitDecl());
1569    }
1570
1571    bool VisitFunctionDecl(const FunctionDecl *FD) {
1572      if (FD->isThisDeclarationADefinition()) {
1573        // No need to do the check if we're in a definition, because it requires
1574        // that the return/param types are complete.
1575        // because that requires
1576        return VisitDeclContext(FD);
1577      }
1578
1579      // Check the return type.
1580      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1581      bool Invalid =
1582        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1583                                       diag::err_abstract_type_in_decl,
1584                                       Sema::AbstractReturnType,
1585                                       AbstractClass);
1586
1587      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1588           E = FD->param_end(); I != E; ++I) {
1589        const ParmVarDecl *VD = *I;
1590        Invalid |=
1591          SemaRef.RequireNonAbstractType(VD->getLocation(),
1592                                         VD->getOriginalType(),
1593                                         diag::err_abstract_type_in_decl,
1594                                         Sema::AbstractParamType,
1595                                         AbstractClass);
1596      }
1597
1598      return Invalid;
1599    }
1600
1601    bool VisitDecl(const Decl* D) {
1602      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1603        return VisitDeclContext(DC);
1604
1605      return false;
1606    }
1607  };
1608}
1609
1610void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1611                                             DeclPtrTy TagDecl,
1612                                             SourceLocation LBrac,
1613                                             SourceLocation RBrac) {
1614  if (!TagDecl)
1615    return;
1616
1617  AdjustDeclIfTemplate(TagDecl);
1618  ActOnFields(S, RLoc, TagDecl,
1619              (DeclPtrTy*)FieldCollector->getCurFields(),
1620              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1621
1622  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1623  if (!RD->isAbstract()) {
1624    // Collect all the pure virtual methods and see if this is an abstract
1625    // class after all.
1626    PureVirtualMethodCollector Collector(Context, RD);
1627    if (!Collector.empty())
1628      RD->setAbstract(true);
1629  }
1630
1631  if (RD->isAbstract())
1632    AbstractClassUsageDiagnoser(*this, RD);
1633
1634  if (!RD->isDependentType())
1635    AddImplicitlyDeclaredMembersToClass(RD);
1636}
1637
1638/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1639/// special functions, such as the default constructor, copy
1640/// constructor, or destructor, to the given C++ class (C++
1641/// [special]p1).  This routine can only be executed just before the
1642/// definition of the class is complete.
1643void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1644  CanQualType ClassType
1645    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1646
1647  // FIXME: Implicit declarations have exception specifications, which are
1648  // the union of the specifications of the implicitly called functions.
1649
1650  if (!ClassDecl->hasUserDeclaredConstructor()) {
1651    // C++ [class.ctor]p5:
1652    //   A default constructor for a class X is a constructor of class X
1653    //   that can be called without an argument. If there is no
1654    //   user-declared constructor for class X, a default constructor is
1655    //   implicitly declared. An implicitly-declared default constructor
1656    //   is an inline public member of its class.
1657    DeclarationName Name
1658      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1659    CXXConstructorDecl *DefaultCon =
1660      CXXConstructorDecl::Create(Context, ClassDecl,
1661                                 ClassDecl->getLocation(), Name,
1662                                 Context.getFunctionType(Context.VoidTy,
1663                                                         0, 0, false, 0),
1664                                 /*DInfo=*/0,
1665                                 /*isExplicit=*/false,
1666                                 /*isInline=*/true,
1667                                 /*isImplicitlyDeclared=*/true);
1668    DefaultCon->setAccess(AS_public);
1669    DefaultCon->setImplicit();
1670    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1671    ClassDecl->addDecl(DefaultCon);
1672  }
1673
1674  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1675    // C++ [class.copy]p4:
1676    //   If the class definition does not explicitly declare a copy
1677    //   constructor, one is declared implicitly.
1678
1679    // C++ [class.copy]p5:
1680    //   The implicitly-declared copy constructor for a class X will
1681    //   have the form
1682    //
1683    //       X::X(const X&)
1684    //
1685    //   if
1686    bool HasConstCopyConstructor = true;
1687
1688    //     -- each direct or virtual base class B of X has a copy
1689    //        constructor whose first parameter is of type const B& or
1690    //        const volatile B&, and
1691    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1692         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1693      const CXXRecordDecl *BaseClassDecl
1694        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1695      HasConstCopyConstructor
1696        = BaseClassDecl->hasConstCopyConstructor(Context);
1697    }
1698
1699    //     -- for all the nonstatic data members of X that are of a
1700    //        class type M (or array thereof), each such class type
1701    //        has a copy constructor whose first parameter is of type
1702    //        const M& or const volatile M&.
1703    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1704         HasConstCopyConstructor && Field != ClassDecl->field_end();
1705         ++Field) {
1706      QualType FieldType = (*Field)->getType();
1707      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1708        FieldType = Array->getElementType();
1709      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1710        const CXXRecordDecl *FieldClassDecl
1711          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1712        HasConstCopyConstructor
1713          = FieldClassDecl->hasConstCopyConstructor(Context);
1714      }
1715    }
1716
1717    //   Otherwise, the implicitly declared copy constructor will have
1718    //   the form
1719    //
1720    //       X::X(X&)
1721    QualType ArgType = ClassType;
1722    if (HasConstCopyConstructor)
1723      ArgType = ArgType.withConst();
1724    ArgType = Context.getLValueReferenceType(ArgType);
1725
1726    //   An implicitly-declared copy constructor is an inline public
1727    //   member of its class.
1728    DeclarationName Name
1729      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1730    CXXConstructorDecl *CopyConstructor
1731      = CXXConstructorDecl::Create(Context, ClassDecl,
1732                                   ClassDecl->getLocation(), Name,
1733                                   Context.getFunctionType(Context.VoidTy,
1734                                                           &ArgType, 1,
1735                                                           false, 0),
1736                                   /*DInfo=*/0,
1737                                   /*isExplicit=*/false,
1738                                   /*isInline=*/true,
1739                                   /*isImplicitlyDeclared=*/true);
1740    CopyConstructor->setAccess(AS_public);
1741    CopyConstructor->setImplicit();
1742    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1743
1744    // Add the parameter to the constructor.
1745    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1746                                                 ClassDecl->getLocation(),
1747                                                 /*IdentifierInfo=*/0,
1748                                                 ArgType, /*DInfo=*/0,
1749                                                 VarDecl::None, 0);
1750    CopyConstructor->setParams(Context, &FromParam, 1);
1751    ClassDecl->addDecl(CopyConstructor);
1752  }
1753
1754  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1755    // Note: The following rules are largely analoguous to the copy
1756    // constructor rules. Note that virtual bases are not taken into account
1757    // for determining the argument type of the operator. Note also that
1758    // operators taking an object instead of a reference are allowed.
1759    //
1760    // C++ [class.copy]p10:
1761    //   If the class definition does not explicitly declare a copy
1762    //   assignment operator, one is declared implicitly.
1763    //   The implicitly-defined copy assignment operator for a class X
1764    //   will have the form
1765    //
1766    //       X& X::operator=(const X&)
1767    //
1768    //   if
1769    bool HasConstCopyAssignment = true;
1770
1771    //       -- each direct base class B of X has a copy assignment operator
1772    //          whose parameter is of type const B&, const volatile B& or B,
1773    //          and
1774    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1775         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1776      const CXXRecordDecl *BaseClassDecl
1777        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1778      const CXXMethodDecl *MD = 0;
1779      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
1780                                                                     MD);
1781    }
1782
1783    //       -- for all the nonstatic data members of X that are of a class
1784    //          type M (or array thereof), each such class type has a copy
1785    //          assignment operator whose parameter is of type const M&,
1786    //          const volatile M& or M.
1787    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1788         HasConstCopyAssignment && Field != ClassDecl->field_end();
1789         ++Field) {
1790      QualType FieldType = (*Field)->getType();
1791      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1792        FieldType = Array->getElementType();
1793      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1794        const CXXRecordDecl *FieldClassDecl
1795          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1796        const CXXMethodDecl *MD = 0;
1797        HasConstCopyAssignment
1798          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
1799      }
1800    }
1801
1802    //   Otherwise, the implicitly declared copy assignment operator will
1803    //   have the form
1804    //
1805    //       X& X::operator=(X&)
1806    QualType ArgType = ClassType;
1807    QualType RetType = Context.getLValueReferenceType(ArgType);
1808    if (HasConstCopyAssignment)
1809      ArgType = ArgType.withConst();
1810    ArgType = Context.getLValueReferenceType(ArgType);
1811
1812    //   An implicitly-declared copy assignment operator is an inline public
1813    //   member of its class.
1814    DeclarationName Name =
1815      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1816    CXXMethodDecl *CopyAssignment =
1817      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1818                            Context.getFunctionType(RetType, &ArgType, 1,
1819                                                    false, 0),
1820                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
1821    CopyAssignment->setAccess(AS_public);
1822    CopyAssignment->setImplicit();
1823    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1824    CopyAssignment->setCopyAssignment(true);
1825
1826    // Add the parameter to the operator.
1827    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1828                                                 ClassDecl->getLocation(),
1829                                                 /*IdentifierInfo=*/0,
1830                                                 ArgType, /*DInfo=*/0,
1831                                                 VarDecl::None, 0);
1832    CopyAssignment->setParams(Context, &FromParam, 1);
1833
1834    // Don't call addedAssignmentOperator. There is no way to distinguish an
1835    // implicit from an explicit assignment operator.
1836    ClassDecl->addDecl(CopyAssignment);
1837  }
1838
1839  if (!ClassDecl->hasUserDeclaredDestructor()) {
1840    // C++ [class.dtor]p2:
1841    //   If a class has no user-declared destructor, a destructor is
1842    //   declared implicitly. An implicitly-declared destructor is an
1843    //   inline public member of its class.
1844    DeclarationName Name
1845      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1846    CXXDestructorDecl *Destructor
1847      = CXXDestructorDecl::Create(Context, ClassDecl,
1848                                  ClassDecl->getLocation(), Name,
1849                                  Context.getFunctionType(Context.VoidTy,
1850                                                          0, 0, false, 0),
1851                                  /*isInline=*/true,
1852                                  /*isImplicitlyDeclared=*/true);
1853    Destructor->setAccess(AS_public);
1854    Destructor->setImplicit();
1855    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1856    ClassDecl->addDecl(Destructor);
1857  }
1858}
1859
1860void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1861  Decl *D = TemplateD.getAs<Decl>();
1862  if (!D)
1863    return;
1864
1865  TemplateParameterList *Params = 0;
1866  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
1867    Params = Template->getTemplateParameters();
1868  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1869           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
1870    Params = PartialSpec->getTemplateParameters();
1871  else
1872    return;
1873
1874  for (TemplateParameterList::iterator Param = Params->begin(),
1875                                    ParamEnd = Params->end();
1876       Param != ParamEnd; ++Param) {
1877    NamedDecl *Named = cast<NamedDecl>(*Param);
1878    if (Named->getDeclName()) {
1879      S->AddDecl(DeclPtrTy::make(Named));
1880      IdResolver.AddDecl(Named);
1881    }
1882  }
1883}
1884
1885/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1886/// parsing a top-level (non-nested) C++ class, and we are now
1887/// parsing those parts of the given Method declaration that could
1888/// not be parsed earlier (C++ [class.mem]p2), such as default
1889/// arguments. This action should enter the scope of the given
1890/// Method declaration as if we had just parsed the qualified method
1891/// name. However, it should not bring the parameters into scope;
1892/// that will be performed by ActOnDelayedCXXMethodParameter.
1893void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1894  if (!MethodD)
1895    return;
1896
1897  AdjustDeclIfTemplate(MethodD);
1898
1899  CXXScopeSpec SS;
1900  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1901  QualType ClassTy
1902    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1903  SS.setScopeRep(
1904    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1905  ActOnCXXEnterDeclaratorScope(S, SS);
1906}
1907
1908/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1909/// C++ method declaration. We're (re-)introducing the given
1910/// function parameter into scope for use in parsing later parts of
1911/// the method declaration. For example, we could see an
1912/// ActOnParamDefaultArgument event for this parameter.
1913void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1914  if (!ParamD)
1915    return;
1916
1917  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1918
1919  // If this parameter has an unparsed default argument, clear it out
1920  // to make way for the parsed default argument.
1921  if (Param->hasUnparsedDefaultArg())
1922    Param->setDefaultArg(0);
1923
1924  S->AddDecl(DeclPtrTy::make(Param));
1925  if (Param->getDeclName())
1926    IdResolver.AddDecl(Param);
1927}
1928
1929/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1930/// processing the delayed method declaration for Method. The method
1931/// declaration is now considered finished. There may be a separate
1932/// ActOnStartOfFunctionDef action later (not necessarily
1933/// immediately!) for this method, if it was also defined inside the
1934/// class body.
1935void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1936  if (!MethodD)
1937    return;
1938
1939  AdjustDeclIfTemplate(MethodD);
1940
1941  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1942  CXXScopeSpec SS;
1943  QualType ClassTy
1944    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1945  SS.setScopeRep(
1946    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1947  ActOnCXXExitDeclaratorScope(S, SS);
1948
1949  // Now that we have our default arguments, check the constructor
1950  // again. It could produce additional diagnostics or affect whether
1951  // the class has implicitly-declared destructors, among other
1952  // things.
1953  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1954    CheckConstructor(Constructor);
1955
1956  // Check the default arguments, which we may have added.
1957  if (!Method->isInvalidDecl())
1958    CheckCXXDefaultArguments(Method);
1959}
1960
1961/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1962/// the well-formedness of the constructor declarator @p D with type @p
1963/// R. If there are any errors in the declarator, this routine will
1964/// emit diagnostics and set the invalid bit to true.  In any case, the type
1965/// will be updated to reflect a well-formed type for the constructor and
1966/// returned.
1967QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1968                                          FunctionDecl::StorageClass &SC) {
1969  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1970
1971  // C++ [class.ctor]p3:
1972  //   A constructor shall not be virtual (10.3) or static (9.4). A
1973  //   constructor can be invoked for a const, volatile or const
1974  //   volatile object. A constructor shall not be declared const,
1975  //   volatile, or const volatile (9.3.2).
1976  if (isVirtual) {
1977    if (!D.isInvalidType())
1978      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1979        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1980        << SourceRange(D.getIdentifierLoc());
1981    D.setInvalidType();
1982  }
1983  if (SC == FunctionDecl::Static) {
1984    if (!D.isInvalidType())
1985      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1986        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1987        << SourceRange(D.getIdentifierLoc());
1988    D.setInvalidType();
1989    SC = FunctionDecl::None;
1990  }
1991
1992  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1993  if (FTI.TypeQuals != 0) {
1994    if (FTI.TypeQuals & QualType::Const)
1995      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1996        << "const" << SourceRange(D.getIdentifierLoc());
1997    if (FTI.TypeQuals & QualType::Volatile)
1998      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1999        << "volatile" << SourceRange(D.getIdentifierLoc());
2000    if (FTI.TypeQuals & QualType::Restrict)
2001      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2002        << "restrict" << SourceRange(D.getIdentifierLoc());
2003  }
2004
2005  // Rebuild the function type "R" without any type qualifiers (in
2006  // case any of the errors above fired) and with "void" as the
2007  // return type, since constructors don't have return types. We
2008  // *always* have to do this, because GetTypeForDeclarator will
2009  // put in a result type of "int" when none was specified.
2010  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
2011  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2012                                 Proto->getNumArgs(),
2013                                 Proto->isVariadic(), 0);
2014}
2015
2016/// CheckConstructor - Checks a fully-formed constructor for
2017/// well-formedness, issuing any diagnostics required. Returns true if
2018/// the constructor declarator is invalid.
2019void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2020  CXXRecordDecl *ClassDecl
2021    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2022  if (!ClassDecl)
2023    return Constructor->setInvalidDecl();
2024
2025  // C++ [class.copy]p3:
2026  //   A declaration of a constructor for a class X is ill-formed if
2027  //   its first parameter is of type (optionally cv-qualified) X and
2028  //   either there are no other parameters or else all other
2029  //   parameters have default arguments.
2030  if (!Constructor->isInvalidDecl() &&
2031      ((Constructor->getNumParams() == 1) ||
2032       (Constructor->getNumParams() > 1 &&
2033        Constructor->getParamDecl(1)->hasDefaultArg()))) {
2034    QualType ParamType = Constructor->getParamDecl(0)->getType();
2035    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2036    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2037      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2038      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2039        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2040      Constructor->setInvalidDecl();
2041    }
2042  }
2043
2044  // Notify the class that we've added a constructor.
2045  ClassDecl->addedConstructor(Context, Constructor);
2046}
2047
2048static inline bool
2049FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2050  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2051          FTI.ArgInfo[0].Param &&
2052          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2053}
2054
2055/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2056/// the well-formednes of the destructor declarator @p D with type @p
2057/// R. If there are any errors in the declarator, this routine will
2058/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2059/// will be updated to reflect a well-formed type for the destructor and
2060/// returned.
2061QualType Sema::CheckDestructorDeclarator(Declarator &D,
2062                                         FunctionDecl::StorageClass& SC) {
2063  // C++ [class.dtor]p1:
2064  //   [...] A typedef-name that names a class is a class-name
2065  //   (7.1.3); however, a typedef-name that names a class shall not
2066  //   be used as the identifier in the declarator for a destructor
2067  //   declaration.
2068  QualType DeclaratorType = GetTypeFromParser(D.getDeclaratorIdType());
2069  if (isa<TypedefType>(DeclaratorType)) {
2070    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2071      << DeclaratorType;
2072    D.setInvalidType();
2073  }
2074
2075  // C++ [class.dtor]p2:
2076  //   A destructor is used to destroy objects of its class type. A
2077  //   destructor takes no parameters, and no return type can be
2078  //   specified for it (not even void). The address of a destructor
2079  //   shall not be taken. A destructor shall not be static. A
2080  //   destructor can be invoked for a const, volatile or const
2081  //   volatile object. A destructor shall not be declared const,
2082  //   volatile or const volatile (9.3.2).
2083  if (SC == FunctionDecl::Static) {
2084    if (!D.isInvalidType())
2085      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2086        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2087        << SourceRange(D.getIdentifierLoc());
2088    SC = FunctionDecl::None;
2089    D.setInvalidType();
2090  }
2091  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2092    // Destructors don't have return types, but the parser will
2093    // happily parse something like:
2094    //
2095    //   class X {
2096    //     float ~X();
2097    //   };
2098    //
2099    // The return type will be eliminated later.
2100    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2101      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2102      << SourceRange(D.getIdentifierLoc());
2103  }
2104
2105  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2106  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2107    if (FTI.TypeQuals & QualType::Const)
2108      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2109        << "const" << SourceRange(D.getIdentifierLoc());
2110    if (FTI.TypeQuals & QualType::Volatile)
2111      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2112        << "volatile" << SourceRange(D.getIdentifierLoc());
2113    if (FTI.TypeQuals & QualType::Restrict)
2114      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2115        << "restrict" << SourceRange(D.getIdentifierLoc());
2116    D.setInvalidType();
2117  }
2118
2119  // Make sure we don't have any parameters.
2120  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2121    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2122
2123    // Delete the parameters.
2124    FTI.freeArgs();
2125    D.setInvalidType();
2126  }
2127
2128  // Make sure the destructor isn't variadic.
2129  if (FTI.isVariadic) {
2130    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2131    D.setInvalidType();
2132  }
2133
2134  // Rebuild the function type "R" without any type qualifiers or
2135  // parameters (in case any of the errors above fired) and with
2136  // "void" as the return type, since destructors don't have return
2137  // types. We *always* have to do this, because GetTypeForDeclarator
2138  // will put in a result type of "int" when none was specified.
2139  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2140}
2141
2142/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2143/// well-formednes of the conversion function declarator @p D with
2144/// type @p R. If there are any errors in the declarator, this routine
2145/// will emit diagnostics and return true. Otherwise, it will return
2146/// false. Either way, the type @p R will be updated to reflect a
2147/// well-formed type for the conversion operator.
2148void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2149                                     FunctionDecl::StorageClass& SC) {
2150  // C++ [class.conv.fct]p1:
2151  //   Neither parameter types nor return type can be specified. The
2152  //   type of a conversion function (8.3.5) is "function taking no
2153  //   parameter returning conversion-type-id."
2154  if (SC == FunctionDecl::Static) {
2155    if (!D.isInvalidType())
2156      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2157        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2158        << SourceRange(D.getIdentifierLoc());
2159    D.setInvalidType();
2160    SC = FunctionDecl::None;
2161  }
2162  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2163    // Conversion functions don't have return types, but the parser will
2164    // happily parse something like:
2165    //
2166    //   class X {
2167    //     float operator bool();
2168    //   };
2169    //
2170    // The return type will be changed later anyway.
2171    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2172      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2173      << SourceRange(D.getIdentifierLoc());
2174  }
2175
2176  // Make sure we don't have any parameters.
2177  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
2178    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2179
2180    // Delete the parameters.
2181    D.getTypeObject(0).Fun.freeArgs();
2182    D.setInvalidType();
2183  }
2184
2185  // Make sure the conversion function isn't variadic.
2186  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
2187    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2188    D.setInvalidType();
2189  }
2190
2191  // C++ [class.conv.fct]p4:
2192  //   The conversion-type-id shall not represent a function type nor
2193  //   an array type.
2194  QualType ConvType = GetTypeFromParser(D.getDeclaratorIdType());
2195  if (ConvType->isArrayType()) {
2196    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2197    ConvType = Context.getPointerType(ConvType);
2198    D.setInvalidType();
2199  } else if (ConvType->isFunctionType()) {
2200    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2201    ConvType = Context.getPointerType(ConvType);
2202    D.setInvalidType();
2203  }
2204
2205  // Rebuild the function type "R" without any parameters (in case any
2206  // of the errors above fired) and with the conversion type as the
2207  // return type.
2208  R = Context.getFunctionType(ConvType, 0, 0, false,
2209                              R->getAsFunctionProtoType()->getTypeQuals());
2210
2211  // C++0x explicit conversion operators.
2212  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2213    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2214         diag::warn_explicit_conversion_functions)
2215      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2216}
2217
2218/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2219/// the declaration of the given C++ conversion function. This routine
2220/// is responsible for recording the conversion function in the C++
2221/// class, if possible.
2222Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2223  assert(Conversion && "Expected to receive a conversion function declaration");
2224
2225  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2226
2227  // Make sure we aren't redeclaring the conversion function.
2228  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2229
2230  // C++ [class.conv.fct]p1:
2231  //   [...] A conversion function is never used to convert a
2232  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2233  //   same object type (or a reference to it), to a (possibly
2234  //   cv-qualified) base class of that type (or a reference to it),
2235  //   or to (possibly cv-qualified) void.
2236  // FIXME: Suppress this warning if the conversion function ends up being a
2237  // virtual function that overrides a virtual function in a base class.
2238  QualType ClassType
2239    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2240  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2241    ConvType = ConvTypeRef->getPointeeType();
2242  if (ConvType->isRecordType()) {
2243    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2244    if (ConvType == ClassType)
2245      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2246        << ClassType;
2247    else if (IsDerivedFrom(ClassType, ConvType))
2248      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2249        <<  ClassType << ConvType;
2250  } else if (ConvType->isVoidType()) {
2251    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2252      << ClassType << ConvType;
2253  }
2254
2255  if (Conversion->getPreviousDeclaration()) {
2256    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2257    if (FunctionTemplateDecl *ConversionTemplate
2258          = Conversion->getDescribedFunctionTemplate())
2259      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2260    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
2261    for (OverloadedFunctionDecl::function_iterator
2262           Conv = Conversions->function_begin(),
2263           ConvEnd = Conversions->function_end();
2264         Conv != ConvEnd; ++Conv) {
2265      if (*Conv == ExpectedPrevDecl) {
2266        *Conv = Conversion;
2267        return DeclPtrTy::make(Conversion);
2268      }
2269    }
2270    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2271  } else if (FunctionTemplateDecl *ConversionTemplate
2272               = Conversion->getDescribedFunctionTemplate())
2273    ClassDecl->addConversionFunction(Context, ConversionTemplate);
2274  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2275    ClassDecl->addConversionFunction(Context, Conversion);
2276
2277  return DeclPtrTy::make(Conversion);
2278}
2279
2280//===----------------------------------------------------------------------===//
2281// Namespace Handling
2282//===----------------------------------------------------------------------===//
2283
2284/// ActOnStartNamespaceDef - This is called at the start of a namespace
2285/// definition.
2286Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2287                                             SourceLocation IdentLoc,
2288                                             IdentifierInfo *II,
2289                                             SourceLocation LBrace) {
2290  NamespaceDecl *Namespc =
2291      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2292  Namespc->setLBracLoc(LBrace);
2293
2294  Scope *DeclRegionScope = NamespcScope->getParent();
2295
2296  if (II) {
2297    // C++ [namespace.def]p2:
2298    // The identifier in an original-namespace-definition shall not have been
2299    // previously defined in the declarative region in which the
2300    // original-namespace-definition appears. The identifier in an
2301    // original-namespace-definition is the name of the namespace. Subsequently
2302    // in that declarative region, it is treated as an original-namespace-name.
2303
2304    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
2305                                     true);
2306
2307    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2308      // This is an extended namespace definition.
2309      // Attach this namespace decl to the chain of extended namespace
2310      // definitions.
2311      OrigNS->setNextNamespace(Namespc);
2312      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2313
2314      // Remove the previous declaration from the scope.
2315      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2316        IdResolver.RemoveDecl(OrigNS);
2317        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2318      }
2319    } else if (PrevDecl) {
2320      // This is an invalid name redefinition.
2321      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2322       << Namespc->getDeclName();
2323      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2324      Namespc->setInvalidDecl();
2325      // Continue on to push Namespc as current DeclContext and return it.
2326    }
2327
2328    PushOnScopeChains(Namespc, DeclRegionScope);
2329  } else {
2330    // FIXME: Handle anonymous namespaces
2331  }
2332
2333  // Although we could have an invalid decl (i.e. the namespace name is a
2334  // redefinition), push it as current DeclContext and try to continue parsing.
2335  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2336  // for the namespace has the declarations that showed up in that particular
2337  // namespace definition.
2338  PushDeclContext(NamespcScope, Namespc);
2339  return DeclPtrTy::make(Namespc);
2340}
2341
2342/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2343/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2344void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2345  Decl *Dcl = D.getAs<Decl>();
2346  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2347  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2348  Namespc->setRBracLoc(RBrace);
2349  PopDeclContext();
2350}
2351
2352Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2353                                          SourceLocation UsingLoc,
2354                                          SourceLocation NamespcLoc,
2355                                          const CXXScopeSpec &SS,
2356                                          SourceLocation IdentLoc,
2357                                          IdentifierInfo *NamespcName,
2358                                          AttributeList *AttrList) {
2359  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2360  assert(NamespcName && "Invalid NamespcName.");
2361  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2362  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2363
2364  UsingDirectiveDecl *UDir = 0;
2365
2366  // Lookup namespace name.
2367  LookupResult R = LookupParsedName(S, &SS, NamespcName,
2368                                    LookupNamespaceName, false);
2369  if (R.isAmbiguous()) {
2370    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
2371    return DeclPtrTy();
2372  }
2373  if (NamedDecl *NS = R) {
2374    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2375    // C++ [namespace.udir]p1:
2376    //   A using-directive specifies that the names in the nominated
2377    //   namespace can be used in the scope in which the
2378    //   using-directive appears after the using-directive. During
2379    //   unqualified name lookup (3.4.1), the names appear as if they
2380    //   were declared in the nearest enclosing namespace which
2381    //   contains both the using-directive and the nominated
2382    //   namespace. [Note: in this context, "contains" means "contains
2383    //   directly or indirectly". ]
2384
2385    // Find enclosing context containing both using-directive and
2386    // nominated namespace.
2387    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2388    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2389      CommonAncestor = CommonAncestor->getParent();
2390
2391    UDir = UsingDirectiveDecl::Create(Context,
2392                                      CurContext, UsingLoc,
2393                                      NamespcLoc,
2394                                      SS.getRange(),
2395                                      (NestedNameSpecifier *)SS.getScopeRep(),
2396                                      IdentLoc,
2397                                      cast<NamespaceDecl>(NS),
2398                                      CommonAncestor);
2399    PushUsingDirective(S, UDir);
2400  } else {
2401    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2402  }
2403
2404  // FIXME: We ignore attributes for now.
2405  delete AttrList;
2406  return DeclPtrTy::make(UDir);
2407}
2408
2409void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2410  // If scope has associated entity, then using directive is at namespace
2411  // or translation unit scope. We add UsingDirectiveDecls, into
2412  // it's lookup structure.
2413  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2414    Ctx->addDecl(UDir);
2415  else
2416    // Otherwise it is block-sope. using-directives will affect lookup
2417    // only to the end of scope.
2418    S->PushUsingDirective(DeclPtrTy::make(UDir));
2419}
2420
2421
2422Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2423                                            AccessSpecifier AS,
2424                                            SourceLocation UsingLoc,
2425                                            const CXXScopeSpec &SS,
2426                                            SourceLocation IdentLoc,
2427                                            IdentifierInfo *TargetName,
2428                                            OverloadedOperatorKind Op,
2429                                            AttributeList *AttrList,
2430                                            bool IsTypeName) {
2431  assert((TargetName || Op) && "Invalid TargetName.");
2432  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2433
2434  DeclarationName Name;
2435  if (TargetName)
2436    Name = TargetName;
2437  else
2438    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2439
2440  NamedDecl *UD = BuildUsingDeclaration(UsingLoc, SS, IdentLoc,
2441                                        Name, AttrList, IsTypeName);
2442  if (UD) {
2443    PushOnScopeChains(UD, S);
2444    UD->setAccess(AS);
2445  }
2446
2447  return DeclPtrTy::make(UD);
2448}
2449
2450NamedDecl *Sema::BuildUsingDeclaration(SourceLocation UsingLoc,
2451                                       const CXXScopeSpec &SS,
2452                                       SourceLocation IdentLoc,
2453                                       DeclarationName Name,
2454                                       AttributeList *AttrList,
2455                                       bool IsTypeName) {
2456  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2457  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2458
2459  // FIXME: We ignore attributes for now.
2460  delete AttrList;
2461
2462  if (SS.isEmpty()) {
2463    Diag(IdentLoc, diag::err_using_requires_qualname);
2464    return 0;
2465  }
2466
2467  NestedNameSpecifier *NNS =
2468    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2469
2470  if (isUnknownSpecialization(SS)) {
2471    return UnresolvedUsingDecl::Create(Context, CurContext, UsingLoc,
2472                                       SS.getRange(), NNS,
2473                                       IdentLoc, Name, IsTypeName);
2474  }
2475
2476  DeclContext *LookupContext = 0;
2477
2478  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2479    // C++0x N2914 [namespace.udecl]p3:
2480    // A using-declaration used as a member-declaration shall refer to a member
2481    // of a base class of the class being defined, shall refer to a member of an
2482    // anonymous union that is a member of a base class of the class being
2483    // defined, or shall refer to an enumerator for an enumeration type that is
2484    // a member of a base class of the class being defined.
2485    const Type *Ty = NNS->getAsType();
2486    if (!Ty || !IsDerivedFrom(Context.getTagDeclType(RD), QualType(Ty, 0))) {
2487      Diag(SS.getRange().getBegin(),
2488           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2489        << NNS << RD->getDeclName();
2490      return 0;
2491    }
2492
2493    QualType BaseTy = Context.getCanonicalType(QualType(Ty, 0));
2494    LookupContext = BaseTy->getAs<RecordType>()->getDecl();
2495  } else {
2496    // C++0x N2914 [namespace.udecl]p8:
2497    // A using-declaration for a class member shall be a member-declaration.
2498    if (NNS->getKind() == NestedNameSpecifier::TypeSpec) {
2499      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2500        << SS.getRange();
2501      return 0;
2502    }
2503
2504    // C++0x N2914 [namespace.udecl]p9:
2505    // In a using-declaration, a prefix :: refers to the global namespace.
2506    if (NNS->getKind() == NestedNameSpecifier::Global)
2507      LookupContext = Context.getTranslationUnitDecl();
2508    else
2509      LookupContext = NNS->getAsNamespace();
2510  }
2511
2512
2513  // Lookup target name.
2514  LookupResult R = LookupQualifiedName(LookupContext,
2515                                       Name, LookupOrdinaryName);
2516
2517  if (!R) {
2518    DiagnoseMissingMember(IdentLoc, Name, NNS, SS.getRange());
2519    return 0;
2520  }
2521
2522  NamedDecl *ND = R.getAsDecl();
2523
2524  if (IsTypeName && !isa<TypeDecl>(ND)) {
2525    Diag(IdentLoc, diag::err_using_typename_non_type);
2526    return 0;
2527  }
2528
2529  // C++0x N2914 [namespace.udecl]p6:
2530  // A using-declaration shall not name a namespace.
2531  if (isa<NamespaceDecl>(ND)) {
2532    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
2533      << SS.getRange();
2534    return 0;
2535  }
2536
2537  return UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2538                           ND->getLocation(), UsingLoc, ND, NNS, IsTypeName);
2539}
2540
2541/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2542/// is a namespace alias, returns the namespace it points to.
2543static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2544  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2545    return AD->getNamespace();
2546  return dyn_cast_or_null<NamespaceDecl>(D);
2547}
2548
2549Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2550                                             SourceLocation NamespaceLoc,
2551                                             SourceLocation AliasLoc,
2552                                             IdentifierInfo *Alias,
2553                                             const CXXScopeSpec &SS,
2554                                             SourceLocation IdentLoc,
2555                                             IdentifierInfo *Ident) {
2556
2557  // Lookup the namespace name.
2558  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2559
2560  // Check if we have a previous declaration with the same name.
2561  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2562    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2563      // We already have an alias with the same name that points to the same
2564      // namespace, so don't create a new one.
2565      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2566        return DeclPtrTy();
2567    }
2568
2569    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2570      diag::err_redefinition_different_kind;
2571    Diag(AliasLoc, DiagID) << Alias;
2572    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2573    return DeclPtrTy();
2574  }
2575
2576  if (R.isAmbiguous()) {
2577    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2578    return DeclPtrTy();
2579  }
2580
2581  if (!R) {
2582    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2583    return DeclPtrTy();
2584  }
2585
2586  NamespaceAliasDecl *AliasDecl =
2587    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2588                               Alias, SS.getRange(),
2589                               (NestedNameSpecifier *)SS.getScopeRep(),
2590                               IdentLoc, R);
2591
2592  CurContext->addDecl(AliasDecl);
2593  return DeclPtrTy::make(AliasDecl);
2594}
2595
2596void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2597                                            CXXConstructorDecl *Constructor) {
2598  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2599          !Constructor->isUsed()) &&
2600    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2601
2602  CXXRecordDecl *ClassDecl
2603    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2604  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2605  // Before the implicitly-declared default constructor for a class is
2606  // implicitly defined, all the implicitly-declared default constructors
2607  // for its base class and its non-static data members shall have been
2608  // implicitly defined.
2609  bool err = false;
2610  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2611       E = ClassDecl->bases_end(); Base != E; ++Base) {
2612    CXXRecordDecl *BaseClassDecl
2613      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2614    if (!BaseClassDecl->hasTrivialConstructor()) {
2615      if (CXXConstructorDecl *BaseCtor =
2616            BaseClassDecl->getDefaultConstructor(Context))
2617        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2618      else {
2619        Diag(CurrentLocation, diag::err_defining_default_ctor)
2620          << Context.getTagDeclType(ClassDecl) << 1
2621          << Context.getTagDeclType(BaseClassDecl);
2622        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2623              << Context.getTagDeclType(BaseClassDecl);
2624        err = true;
2625      }
2626    }
2627  }
2628  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2629       E = ClassDecl->field_end(); Field != E; ++Field) {
2630    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2631    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2632      FieldType = Array->getElementType();
2633    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2634      CXXRecordDecl *FieldClassDecl
2635        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2636      if (!FieldClassDecl->hasTrivialConstructor()) {
2637        if (CXXConstructorDecl *FieldCtor =
2638            FieldClassDecl->getDefaultConstructor(Context))
2639          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2640        else {
2641          Diag(CurrentLocation, diag::err_defining_default_ctor)
2642          << Context.getTagDeclType(ClassDecl) << 0 <<
2643              Context.getTagDeclType(FieldClassDecl);
2644          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2645          << Context.getTagDeclType(FieldClassDecl);
2646          err = true;
2647        }
2648      }
2649    } else if (FieldType->isReferenceType()) {
2650      Diag(CurrentLocation, diag::err_unintialized_member)
2651        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2652      Diag((*Field)->getLocation(), diag::note_declared_at);
2653      err = true;
2654    } else if (FieldType.isConstQualified()) {
2655      Diag(CurrentLocation, diag::err_unintialized_member)
2656        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2657       Diag((*Field)->getLocation(), diag::note_declared_at);
2658      err = true;
2659    }
2660  }
2661  if (!err)
2662    Constructor->setUsed();
2663  else
2664    Constructor->setInvalidDecl();
2665}
2666
2667void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2668                                    CXXDestructorDecl *Destructor) {
2669  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2670         "DefineImplicitDestructor - call it for implicit default dtor");
2671
2672  CXXRecordDecl *ClassDecl
2673  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2674  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2675  // C++ [class.dtor] p5
2676  // Before the implicitly-declared default destructor for a class is
2677  // implicitly defined, all the implicitly-declared default destructors
2678  // for its base class and its non-static data members shall have been
2679  // implicitly defined.
2680  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2681       E = ClassDecl->bases_end(); Base != E; ++Base) {
2682    CXXRecordDecl *BaseClassDecl
2683      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2684    if (!BaseClassDecl->hasTrivialDestructor()) {
2685      if (CXXDestructorDecl *BaseDtor =
2686          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2687        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2688      else
2689        assert(false &&
2690               "DefineImplicitDestructor - missing dtor in a base class");
2691    }
2692  }
2693
2694  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2695       E = ClassDecl->field_end(); Field != E; ++Field) {
2696    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2697    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2698      FieldType = Array->getElementType();
2699    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2700      CXXRecordDecl *FieldClassDecl
2701        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2702      if (!FieldClassDecl->hasTrivialDestructor()) {
2703        if (CXXDestructorDecl *FieldDtor =
2704            const_cast<CXXDestructorDecl*>(
2705                                        FieldClassDecl->getDestructor(Context)))
2706          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2707        else
2708          assert(false &&
2709          "DefineImplicitDestructor - missing dtor in class of a data member");
2710      }
2711    }
2712  }
2713  Destructor->setUsed();
2714}
2715
2716void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2717                                          CXXMethodDecl *MethodDecl) {
2718  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2719          MethodDecl->getOverloadedOperator() == OO_Equal &&
2720          !MethodDecl->isUsed()) &&
2721         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2722
2723  CXXRecordDecl *ClassDecl
2724    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2725
2726  // C++[class.copy] p12
2727  // Before the implicitly-declared copy assignment operator for a class is
2728  // implicitly defined, all implicitly-declared copy assignment operators
2729  // for its direct base classes and its nonstatic data members shall have
2730  // been implicitly defined.
2731  bool err = false;
2732  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2733       E = ClassDecl->bases_end(); Base != E; ++Base) {
2734    CXXRecordDecl *BaseClassDecl
2735      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2736    if (CXXMethodDecl *BaseAssignOpMethod =
2737          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2738      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2739  }
2740  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2741       E = ClassDecl->field_end(); Field != E; ++Field) {
2742    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2743    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2744      FieldType = Array->getElementType();
2745    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2746      CXXRecordDecl *FieldClassDecl
2747        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2748      if (CXXMethodDecl *FieldAssignOpMethod =
2749          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2750        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2751    } else if (FieldType->isReferenceType()) {
2752      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2753      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2754      Diag(Field->getLocation(), diag::note_declared_at);
2755      Diag(CurrentLocation, diag::note_first_required_here);
2756      err = true;
2757    } else if (FieldType.isConstQualified()) {
2758      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2759      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2760      Diag(Field->getLocation(), diag::note_declared_at);
2761      Diag(CurrentLocation, diag::note_first_required_here);
2762      err = true;
2763    }
2764  }
2765  if (!err)
2766    MethodDecl->setUsed();
2767}
2768
2769CXXMethodDecl *
2770Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2771                              CXXRecordDecl *ClassDecl) {
2772  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2773  QualType RHSType(LHSType);
2774  // If class's assignment operator argument is const/volatile qualified,
2775  // look for operator = (const/volatile B&). Otherwise, look for
2776  // operator = (B&).
2777  if (ParmDecl->getType().isConstQualified())
2778    RHSType.addConst();
2779  if (ParmDecl->getType().isVolatileQualified())
2780    RHSType.addVolatile();
2781  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2782                                                          LHSType,
2783                                                          SourceLocation()));
2784  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2785                                                          RHSType,
2786                                                          SourceLocation()));
2787  Expr *Args[2] = { &*LHS, &*RHS };
2788  OverloadCandidateSet CandidateSet;
2789  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2790                              CandidateSet);
2791  OverloadCandidateSet::iterator Best;
2792  if (BestViableFunction(CandidateSet,
2793                         ClassDecl->getLocation(), Best) == OR_Success)
2794    return cast<CXXMethodDecl>(Best->Function);
2795  assert(false &&
2796         "getAssignOperatorMethod - copy assignment operator method not found");
2797  return 0;
2798}
2799
2800void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2801                                   CXXConstructorDecl *CopyConstructor,
2802                                   unsigned TypeQuals) {
2803  assert((CopyConstructor->isImplicit() &&
2804          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2805          !CopyConstructor->isUsed()) &&
2806         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2807
2808  CXXRecordDecl *ClassDecl
2809    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2810  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2811  // C++ [class.copy] p209
2812  // Before the implicitly-declared copy constructor for a class is
2813  // implicitly defined, all the implicitly-declared copy constructors
2814  // for its base class and its non-static data members shall have been
2815  // implicitly defined.
2816  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2817       Base != ClassDecl->bases_end(); ++Base) {
2818    CXXRecordDecl *BaseClassDecl
2819      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2820    if (CXXConstructorDecl *BaseCopyCtor =
2821        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2822      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2823  }
2824  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2825                                  FieldEnd = ClassDecl->field_end();
2826       Field != FieldEnd; ++Field) {
2827    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2828    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2829      FieldType = Array->getElementType();
2830    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2831      CXXRecordDecl *FieldClassDecl
2832        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2833      if (CXXConstructorDecl *FieldCopyCtor =
2834          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2835        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2836    }
2837  }
2838  CopyConstructor->setUsed();
2839}
2840
2841Sema::OwningExprResult
2842Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
2843                            CXXConstructorDecl *Constructor,
2844                            MultiExprArg ExprArgs) {
2845  bool Elidable = false;
2846
2847  // C++ [class.copy]p15:
2848  //   Whenever a temporary class object is copied using a copy constructor, and
2849  //   this object and the copy have the same cv-unqualified type, an
2850  //   implementation is permitted to treat the original and the copy as two
2851  //   different ways of referring to the same object and not perform a copy at
2852  //   all, even if the class copy constructor or destructor have side effects.
2853
2854  // FIXME: Is this enough?
2855  if (Constructor->isCopyConstructor(Context)) {
2856    Expr *E = ((Expr **)ExprArgs.get())[0];
2857    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2858      E = BE->getSubExpr();
2859    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2860      if (ICE->getCastKind() == CastExpr::CK_NoOp)
2861        E = ICE->getSubExpr();
2862
2863    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
2864      Elidable = true;
2865  }
2866
2867  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
2868                               Elidable, move(ExprArgs));
2869}
2870
2871/// BuildCXXConstructExpr - Creates a complete call to a constructor,
2872/// including handling of its default argument expressions.
2873Sema::OwningExprResult
2874Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
2875                            CXXConstructorDecl *Constructor, bool Elidable,
2876                            MultiExprArg ExprArgs) {
2877  unsigned NumExprs = ExprArgs.size();
2878  Expr **Exprs = (Expr **)ExprArgs.release();
2879
2880  return Owned(CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2881                                        Elidable, Exprs, NumExprs));
2882}
2883
2884Sema::OwningExprResult
2885Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
2886                                  QualType Ty,
2887                                  SourceLocation TyBeginLoc,
2888                                  MultiExprArg Args,
2889                                  SourceLocation RParenLoc) {
2890  unsigned NumExprs = Args.size();
2891  Expr **Exprs = (Expr **)Args.release();
2892
2893  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
2894                                                    TyBeginLoc, Exprs,
2895                                                    NumExprs, RParenLoc));
2896}
2897
2898
2899bool Sema::InitializeVarWithConstructor(VarDecl *VD,
2900                                        CXXConstructorDecl *Constructor,
2901                                        QualType DeclInitType,
2902                                        MultiExprArg Exprs) {
2903  OwningExprResult TempResult =
2904    BuildCXXConstructExpr(VD->getLocation(), DeclInitType, Constructor,
2905                          move(Exprs));
2906  if (TempResult.isInvalid())
2907    return true;
2908
2909  Expr *Temp = TempResult.takeAs<Expr>();
2910  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2911  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
2912  VD->setInit(Context, Temp);
2913
2914  return false;
2915}
2916
2917void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
2918  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2919                                  DeclInitType->getAs<RecordType>()->getDecl());
2920  if (!ClassDecl->hasTrivialDestructor())
2921    if (CXXDestructorDecl *Destructor =
2922        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2923      MarkDeclarationReferenced(VD->getLocation(), Destructor);
2924}
2925
2926/// AddCXXDirectInitializerToDecl - This action is called immediately after
2927/// ActOnDeclarator, when a C++ direct initializer is present.
2928/// e.g: "int x(1);"
2929void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2930                                         SourceLocation LParenLoc,
2931                                         MultiExprArg Exprs,
2932                                         SourceLocation *CommaLocs,
2933                                         SourceLocation RParenLoc) {
2934  unsigned NumExprs = Exprs.size();
2935  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2936  Decl *RealDecl = Dcl.getAs<Decl>();
2937
2938  // If there is no declaration, there was an error parsing it.  Just ignore
2939  // the initializer.
2940  if (RealDecl == 0)
2941    return;
2942
2943  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2944  if (!VDecl) {
2945    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2946    RealDecl->setInvalidDecl();
2947    return;
2948  }
2949
2950  // We will represent direct-initialization similarly to copy-initialization:
2951  //    int x(1);  -as-> int x = 1;
2952  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2953  //
2954  // Clients that want to distinguish between the two forms, can check for
2955  // direct initializer using VarDecl::hasCXXDirectInitializer().
2956  // A major benefit is that clients that don't particularly care about which
2957  // exactly form was it (like the CodeGen) can handle both cases without
2958  // special case code.
2959
2960  // If either the declaration has a dependent type or if any of the expressions
2961  // is type-dependent, we represent the initialization via a ParenListExpr for
2962  // later use during template instantiation.
2963  if (VDecl->getType()->isDependentType() ||
2964      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
2965    // Let clients know that initialization was done with a direct initializer.
2966    VDecl->setCXXDirectInitializer(true);
2967
2968    // Store the initialization expressions as a ParenListExpr.
2969    unsigned NumExprs = Exprs.size();
2970    VDecl->setInit(Context,
2971                   new (Context) ParenListExpr(Context, LParenLoc,
2972                                               (Expr **)Exprs.release(),
2973                                               NumExprs, RParenLoc));
2974    return;
2975  }
2976
2977
2978  // C++ 8.5p11:
2979  // The form of initialization (using parentheses or '=') is generally
2980  // insignificant, but does matter when the entity being initialized has a
2981  // class type.
2982  QualType DeclInitType = VDecl->getType();
2983  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2984    DeclInitType = Array->getElementType();
2985
2986  // FIXME: This isn't the right place to complete the type.
2987  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2988                          diag::err_typecheck_decl_incomplete_type)) {
2989    VDecl->setInvalidDecl();
2990    return;
2991  }
2992
2993  if (VDecl->getType()->isRecordType()) {
2994    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
2995
2996    CXXConstructorDecl *Constructor
2997      = PerformInitializationByConstructor(DeclInitType,
2998                                           move(Exprs),
2999                                           VDecl->getLocation(),
3000                                           SourceRange(VDecl->getLocation(),
3001                                                       RParenLoc),
3002                                           VDecl->getDeclName(),
3003                                           IK_Direct,
3004                                           ConstructorArgs);
3005    if (!Constructor)
3006      RealDecl->setInvalidDecl();
3007    else {
3008      VDecl->setCXXDirectInitializer(true);
3009      if (InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
3010                                       move_arg(ConstructorArgs)))
3011        RealDecl->setInvalidDecl();
3012      FinalizeVarWithDestructor(VDecl, DeclInitType);
3013    }
3014    return;
3015  }
3016
3017  if (NumExprs > 1) {
3018    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
3019      << SourceRange(VDecl->getLocation(), RParenLoc);
3020    RealDecl->setInvalidDecl();
3021    return;
3022  }
3023
3024  // Let clients know that initialization was done with a direct initializer.
3025  VDecl->setCXXDirectInitializer(true);
3026
3027  assert(NumExprs == 1 && "Expected 1 expression");
3028  // Set the init expression, handles conversions.
3029  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
3030                       /*DirectInit=*/true);
3031}
3032
3033/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
3034/// may occur as part of direct-initialization or copy-initialization.
3035///
3036/// \param ClassType the type of the object being initialized, which must have
3037/// class type.
3038///
3039/// \param ArgsPtr the arguments provided to initialize the object
3040///
3041/// \param Loc the source location where the initialization occurs
3042///
3043/// \param Range the source range that covers the entire initialization
3044///
3045/// \param InitEntity the name of the entity being initialized, if known
3046///
3047/// \param Kind the type of initialization being performed
3048///
3049/// \param ConvertedArgs a vector that will be filled in with the
3050/// appropriately-converted arguments to the constructor (if initialization
3051/// succeeded).
3052///
3053/// \returns the constructor used to initialize the object, if successful.
3054/// Otherwise, emits a diagnostic and returns NULL.
3055CXXConstructorDecl *
3056Sema::PerformInitializationByConstructor(QualType ClassType,
3057                                         MultiExprArg ArgsPtr,
3058                                         SourceLocation Loc, SourceRange Range,
3059                                         DeclarationName InitEntity,
3060                                         InitializationKind Kind,
3061                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3062  const RecordType *ClassRec = ClassType->getAs<RecordType>();
3063  assert(ClassRec && "Can only initialize a class type here");
3064  Expr **Args = (Expr **)ArgsPtr.get();
3065  unsigned NumArgs = ArgsPtr.size();
3066
3067  // C++ [dcl.init]p14:
3068  //   If the initialization is direct-initialization, or if it is
3069  //   copy-initialization where the cv-unqualified version of the
3070  //   source type is the same class as, or a derived class of, the
3071  //   class of the destination, constructors are considered. The
3072  //   applicable constructors are enumerated (13.3.1.3), and the
3073  //   best one is chosen through overload resolution (13.3). The
3074  //   constructor so selected is called to initialize the object,
3075  //   with the initializer expression(s) as its argument(s). If no
3076  //   constructor applies, or the overload resolution is ambiguous,
3077  //   the initialization is ill-formed.
3078  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
3079  OverloadCandidateSet CandidateSet;
3080
3081  // Add constructors to the overload set.
3082  DeclarationName ConstructorName
3083    = Context.DeclarationNames.getCXXConstructorName(
3084                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
3085  DeclContext::lookup_const_iterator Con, ConEnd;
3086  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
3087       Con != ConEnd; ++Con) {
3088    // Find the constructor (which may be a template).
3089    CXXConstructorDecl *Constructor = 0;
3090    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
3091    if (ConstructorTmpl)
3092      Constructor
3093        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3094    else
3095      Constructor = cast<CXXConstructorDecl>(*Con);
3096
3097    if ((Kind == IK_Direct) ||
3098        (Kind == IK_Copy &&
3099         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
3100        (Kind == IK_Default && Constructor->isDefaultConstructor())) {
3101      if (ConstructorTmpl)
3102        AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0,
3103                                     Args, NumArgs, CandidateSet);
3104      else
3105        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
3106    }
3107  }
3108
3109  // FIXME: When we decide not to synthesize the implicitly-declared
3110  // constructors, we'll need to make them appear here.
3111
3112  OverloadCandidateSet::iterator Best;
3113  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3114  case OR_Success:
3115    // We found a constructor. Break out so that we can convert the arguments
3116    // appropriately.
3117    break;
3118
3119  case OR_No_Viable_Function:
3120    if (InitEntity)
3121      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3122        << InitEntity << Range;
3123    else
3124      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3125        << ClassType << Range;
3126    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3127    return 0;
3128
3129  case OR_Ambiguous:
3130    if (InitEntity)
3131      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
3132    else
3133      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
3134    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3135    return 0;
3136
3137  case OR_Deleted:
3138    if (InitEntity)
3139      Diag(Loc, diag::err_ovl_deleted_init)
3140        << Best->Function->isDeleted()
3141        << InitEntity << Range;
3142    else
3143      Diag(Loc, diag::err_ovl_deleted_init)
3144        << Best->Function->isDeleted()
3145        << InitEntity << Range;
3146    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3147    return 0;
3148  }
3149
3150  // Convert the arguments, fill in default arguments, etc.
3151  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3152  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
3153    return 0;
3154
3155  return Constructor;
3156}
3157
3158/// \brief Given a constructor and the set of arguments provided for the
3159/// constructor, convert the arguments and add any required default arguments
3160/// to form a proper call to this constructor.
3161///
3162/// \returns true if an error occurred, false otherwise.
3163bool
3164Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
3165                              MultiExprArg ArgsPtr,
3166                              SourceLocation Loc,
3167                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3168  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
3169  unsigned NumArgs = ArgsPtr.size();
3170  Expr **Args = (Expr **)ArgsPtr.get();
3171
3172  const FunctionProtoType *Proto
3173    = Constructor->getType()->getAs<FunctionProtoType>();
3174  assert(Proto && "Constructor without a prototype?");
3175  unsigned NumArgsInProto = Proto->getNumArgs();
3176  unsigned NumArgsToCheck = NumArgs;
3177
3178  // If too few arguments are available, we'll fill in the rest with defaults.
3179  if (NumArgs < NumArgsInProto) {
3180    NumArgsToCheck = NumArgsInProto;
3181    ConvertedArgs.reserve(NumArgsInProto);
3182  } else {
3183    ConvertedArgs.reserve(NumArgs);
3184    if (NumArgs > NumArgsInProto)
3185      NumArgsToCheck = NumArgsInProto;
3186  }
3187
3188  // Convert arguments
3189  for (unsigned i = 0; i != NumArgsToCheck; i++) {
3190    QualType ProtoArgType = Proto->getArgType(i);
3191
3192    Expr *Arg;
3193    if (i < NumArgs) {
3194      Arg = Args[i];
3195
3196      // Pass the argument.
3197      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3198        return true;
3199
3200      Args[i] = 0;
3201    } else {
3202      ParmVarDecl *Param = Constructor->getParamDecl(i);
3203
3204      OwningExprResult DefArg = BuildCXXDefaultArgExpr(Loc, Constructor, Param);
3205      if (DefArg.isInvalid())
3206        return true;
3207
3208      Arg = DefArg.takeAs<Expr>();
3209    }
3210
3211    ConvertedArgs.push_back(Arg);
3212  }
3213
3214  // If this is a variadic call, handle args passed through "...".
3215  if (Proto->isVariadic()) {
3216    // Promote the arguments (C99 6.5.2.2p7).
3217    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3218      Expr *Arg = Args[i];
3219      if (DefaultVariadicArgumentPromotion(Arg, VariadicConstructor))
3220        return true;
3221
3222      ConvertedArgs.push_back(Arg);
3223      Args[i] = 0;
3224    }
3225  }
3226
3227  return false;
3228}
3229
3230/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3231/// determine whether they are reference-related,
3232/// reference-compatible, reference-compatible with added
3233/// qualification, or incompatible, for use in C++ initialization by
3234/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3235/// type, and the first type (T1) is the pointee type of the reference
3236/// type being initialized.
3237Sema::ReferenceCompareResult
3238Sema::CompareReferenceRelationship(QualType T1, QualType T2,
3239                                   bool& DerivedToBase) {
3240  assert(!T1->isReferenceType() &&
3241    "T1 must be the pointee type of the reference type");
3242  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
3243
3244  T1 = Context.getCanonicalType(T1);
3245  T2 = Context.getCanonicalType(T2);
3246  QualType UnqualT1 = T1.getUnqualifiedType();
3247  QualType UnqualT2 = T2.getUnqualifiedType();
3248
3249  // C++ [dcl.init.ref]p4:
3250  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3251  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3252  //   T1 is a base class of T2.
3253  if (UnqualT1 == UnqualT2)
3254    DerivedToBase = false;
3255  else if (IsDerivedFrom(UnqualT2, UnqualT1))
3256    DerivedToBase = true;
3257  else
3258    return Ref_Incompatible;
3259
3260  // At this point, we know that T1 and T2 are reference-related (at
3261  // least).
3262
3263  // C++ [dcl.init.ref]p4:
3264  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3265  //   reference-related to T2 and cv1 is the same cv-qualification
3266  //   as, or greater cv-qualification than, cv2. For purposes of
3267  //   overload resolution, cases for which cv1 is greater
3268  //   cv-qualification than cv2 are identified as
3269  //   reference-compatible with added qualification (see 13.3.3.2).
3270  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3271    return Ref_Compatible;
3272  else if (T1.isMoreQualifiedThan(T2))
3273    return Ref_Compatible_With_Added_Qualification;
3274  else
3275    return Ref_Related;
3276}
3277
3278/// CheckReferenceInit - Check the initialization of a reference
3279/// variable with the given initializer (C++ [dcl.init.ref]). Init is
3280/// the initializer (either a simple initializer or an initializer
3281/// list), and DeclType is the type of the declaration. When ICS is
3282/// non-null, this routine will compute the implicit conversion
3283/// sequence according to C++ [over.ics.ref] and will not produce any
3284/// diagnostics; when ICS is null, it will emit diagnostics when any
3285/// errors are found. Either way, a return value of true indicates
3286/// that there was a failure, a return value of false indicates that
3287/// the reference initialization succeeded.
3288///
3289/// When @p SuppressUserConversions, user-defined conversions are
3290/// suppressed.
3291/// When @p AllowExplicit, we also permit explicit user-defined
3292/// conversion functions.
3293/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
3294bool
3295Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
3296                         bool SuppressUserConversions,
3297                         bool AllowExplicit, bool ForceRValue,
3298                         ImplicitConversionSequence *ICS) {
3299  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3300
3301  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3302  QualType T2 = Init->getType();
3303
3304  // If the initializer is the address of an overloaded function, try
3305  // to resolve the overloaded function. If all goes well, T2 is the
3306  // type of the resulting function.
3307  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
3308    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
3309                                                          ICS != 0);
3310    if (Fn) {
3311      // Since we're performing this reference-initialization for
3312      // real, update the initializer with the resulting function.
3313      if (!ICS) {
3314        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
3315          return true;
3316
3317        FixOverloadedFunctionReference(Init, Fn);
3318      }
3319
3320      T2 = Fn->getType();
3321    }
3322  }
3323
3324  // Compute some basic properties of the types and the initializer.
3325  bool isRValRef = DeclType->isRValueReferenceType();
3326  bool DerivedToBase = false;
3327  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
3328                                                  Init->isLvalue(Context);
3329  ReferenceCompareResult RefRelationship
3330    = CompareReferenceRelationship(T1, T2, DerivedToBase);
3331
3332  // Most paths end in a failed conversion.
3333  if (ICS)
3334    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
3335
3336  // C++ [dcl.init.ref]p5:
3337  //   A reference to type "cv1 T1" is initialized by an expression
3338  //   of type "cv2 T2" as follows:
3339
3340  //     -- If the initializer expression
3341
3342  // Rvalue references cannot bind to lvalues (N2812).
3343  // There is absolutely no situation where they can. In particular, note that
3344  // this is ill-formed, even if B has a user-defined conversion to A&&:
3345  //   B b;
3346  //   A&& r = b;
3347  if (isRValRef && InitLvalue == Expr::LV_Valid) {
3348    if (!ICS)
3349      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
3350        << Init->getSourceRange();
3351    return true;
3352  }
3353
3354  bool BindsDirectly = false;
3355  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3356  //          reference-compatible with "cv2 T2," or
3357  //
3358  // Note that the bit-field check is skipped if we are just computing
3359  // the implicit conversion sequence (C++ [over.best.ics]p2).
3360  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
3361      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3362    BindsDirectly = true;
3363
3364    if (ICS) {
3365      // C++ [over.ics.ref]p1:
3366      //   When a parameter of reference type binds directly (8.5.3)
3367      //   to an argument expression, the implicit conversion sequence
3368      //   is the identity conversion, unless the argument expression
3369      //   has a type that is a derived class of the parameter type,
3370      //   in which case the implicit conversion sequence is a
3371      //   derived-to-base Conversion (13.3.3.1).
3372      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3373      ICS->Standard.First = ICK_Identity;
3374      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3375      ICS->Standard.Third = ICK_Identity;
3376      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3377      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3378      ICS->Standard.ReferenceBinding = true;
3379      ICS->Standard.DirectBinding = true;
3380      ICS->Standard.RRefBinding = false;
3381      ICS->Standard.CopyConstructor = 0;
3382
3383      // Nothing more to do: the inaccessibility/ambiguity check for
3384      // derived-to-base conversions is suppressed when we're
3385      // computing the implicit conversion sequence (C++
3386      // [over.best.ics]p2).
3387      return false;
3388    } else {
3389      // Perform the conversion.
3390      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3391      if (DerivedToBase)
3392        CK = CastExpr::CK_DerivedToBase;
3393      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
3394    }
3395  }
3396
3397  //       -- has a class type (i.e., T2 is a class type) and can be
3398  //          implicitly converted to an lvalue of type "cv3 T3,"
3399  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3400  //          92) (this conversion is selected by enumerating the
3401  //          applicable conversion functions (13.3.1.6) and choosing
3402  //          the best one through overload resolution (13.3)),
3403  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3404      !RequireCompleteType(SourceLocation(), T2, 0)) {
3405    // FIXME: Look for conversions in base classes!
3406    CXXRecordDecl *T2RecordDecl
3407      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3408
3409    OverloadCandidateSet CandidateSet;
3410    OverloadedFunctionDecl *Conversions
3411      = T2RecordDecl->getConversionFunctions();
3412    for (OverloadedFunctionDecl::function_iterator Func
3413           = Conversions->function_begin();
3414         Func != Conversions->function_end(); ++Func) {
3415      FunctionTemplateDecl *ConvTemplate
3416        = dyn_cast<FunctionTemplateDecl>(*Func);
3417      CXXConversionDecl *Conv;
3418      if (ConvTemplate)
3419        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3420      else
3421        Conv = cast<CXXConversionDecl>(*Func);
3422
3423      // If the conversion function doesn't return a reference type,
3424      // it can't be considered for this conversion.
3425      if (Conv->getConversionType()->isLValueReferenceType() &&
3426          (AllowExplicit || !Conv->isExplicit())) {
3427        if (ConvTemplate)
3428          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3429                                         CandidateSet);
3430        else
3431          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3432      }
3433    }
3434
3435    OverloadCandidateSet::iterator Best;
3436    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
3437    case OR_Success:
3438      // This is a direct binding.
3439      BindsDirectly = true;
3440
3441      if (ICS) {
3442        // C++ [over.ics.ref]p1:
3443        //
3444        //   [...] If the parameter binds directly to the result of
3445        //   applying a conversion function to the argument
3446        //   expression, the implicit conversion sequence is a
3447        //   user-defined conversion sequence (13.3.3.1.2), with the
3448        //   second standard conversion sequence either an identity
3449        //   conversion or, if the conversion function returns an
3450        //   entity of a type that is a derived class of the parameter
3451        //   type, a derived-to-base Conversion.
3452        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3453        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3454        ICS->UserDefined.After = Best->FinalConversion;
3455        ICS->UserDefined.ConversionFunction = Best->Function;
3456        assert(ICS->UserDefined.After.ReferenceBinding &&
3457               ICS->UserDefined.After.DirectBinding &&
3458               "Expected a direct reference binding!");
3459        return false;
3460      } else {
3461        // Perform the conversion.
3462        // FIXME: Binding to a subobject of the lvalue is going to require more
3463        // AST annotation than this.
3464        ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
3465      }
3466      break;
3467
3468    case OR_Ambiguous:
3469      assert(false && "Ambiguous reference binding conversions not implemented.");
3470      return true;
3471
3472    case OR_No_Viable_Function:
3473    case OR_Deleted:
3474      // There was no suitable conversion, or we found a deleted
3475      // conversion; continue with other checks.
3476      break;
3477    }
3478  }
3479
3480  if (BindsDirectly) {
3481    // C++ [dcl.init.ref]p4:
3482    //   [...] In all cases where the reference-related or
3483    //   reference-compatible relationship of two types is used to
3484    //   establish the validity of a reference binding, and T1 is a
3485    //   base class of T2, a program that necessitates such a binding
3486    //   is ill-formed if T1 is an inaccessible (clause 11) or
3487    //   ambiguous (10.2) base class of T2.
3488    //
3489    // Note that we only check this condition when we're allowed to
3490    // complain about errors, because we should not be checking for
3491    // ambiguity (or inaccessibility) unless the reference binding
3492    // actually happens.
3493    if (DerivedToBase)
3494      return CheckDerivedToBaseConversion(T2, T1,
3495                                          Init->getSourceRange().getBegin(),
3496                                          Init->getSourceRange());
3497    else
3498      return false;
3499  }
3500
3501  //     -- Otherwise, the reference shall be to a non-volatile const
3502  //        type (i.e., cv1 shall be const), or the reference shall be an
3503  //        rvalue reference and the initializer expression shall be an rvalue.
3504  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
3505    if (!ICS)
3506      Diag(Init->getSourceRange().getBegin(),
3507           diag::err_not_reference_to_const_init)
3508        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3509        << T2 << Init->getSourceRange();
3510    return true;
3511  }
3512
3513  //       -- If the initializer expression is an rvalue, with T2 a
3514  //          class type, and "cv1 T1" is reference-compatible with
3515  //          "cv2 T2," the reference is bound in one of the
3516  //          following ways (the choice is implementation-defined):
3517  //
3518  //          -- The reference is bound to the object represented by
3519  //             the rvalue (see 3.10) or to a sub-object within that
3520  //             object.
3521  //
3522  //          -- A temporary of type "cv1 T2" [sic] is created, and
3523  //             a constructor is called to copy the entire rvalue
3524  //             object into the temporary. The reference is bound to
3525  //             the temporary or to a sub-object within the
3526  //             temporary.
3527  //
3528  //          The constructor that would be used to make the copy
3529  //          shall be callable whether or not the copy is actually
3530  //          done.
3531  //
3532  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
3533  // freedom, so we will always take the first option and never build
3534  // a temporary in this case. FIXME: We will, however, have to check
3535  // for the presence of a copy constructor in C++98/03 mode.
3536  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
3537      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3538    if (ICS) {
3539      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3540      ICS->Standard.First = ICK_Identity;
3541      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3542      ICS->Standard.Third = ICK_Identity;
3543      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3544      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3545      ICS->Standard.ReferenceBinding = true;
3546      ICS->Standard.DirectBinding = false;
3547      ICS->Standard.RRefBinding = isRValRef;
3548      ICS->Standard.CopyConstructor = 0;
3549    } else {
3550      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3551      if (DerivedToBase)
3552        CK = CastExpr::CK_DerivedToBase;
3553      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
3554    }
3555    return false;
3556  }
3557
3558  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3559  //          initialized from the initializer expression using the
3560  //          rules for a non-reference copy initialization (8.5). The
3561  //          reference is then bound to the temporary. If T1 is
3562  //          reference-related to T2, cv1 must be the same
3563  //          cv-qualification as, or greater cv-qualification than,
3564  //          cv2; otherwise, the program is ill-formed.
3565  if (RefRelationship == Ref_Related) {
3566    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3567    // we would be reference-compatible or reference-compatible with
3568    // added qualification. But that wasn't the case, so the reference
3569    // initialization fails.
3570    if (!ICS)
3571      Diag(Init->getSourceRange().getBegin(),
3572           diag::err_reference_init_drops_quals)
3573        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3574        << T2 << Init->getSourceRange();
3575    return true;
3576  }
3577
3578  // If at least one of the types is a class type, the types are not
3579  // related, and we aren't allowed any user conversions, the
3580  // reference binding fails. This case is important for breaking
3581  // recursion, since TryImplicitConversion below will attempt to
3582  // create a temporary through the use of a copy constructor.
3583  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
3584      (T1->isRecordType() || T2->isRecordType())) {
3585    if (!ICS)
3586      Diag(Init->getSourceRange().getBegin(),
3587           diag::err_typecheck_convert_incompatible)
3588        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
3589    return true;
3590  }
3591
3592  // Actually try to convert the initializer to T1.
3593  if (ICS) {
3594    // C++ [over.ics.ref]p2:
3595    //
3596    //   When a parameter of reference type is not bound directly to
3597    //   an argument expression, the conversion sequence is the one
3598    //   required to convert the argument expression to the
3599    //   underlying type of the reference according to
3600    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3601    //   to copy-initializing a temporary of the underlying type with
3602    //   the argument expression. Any difference in top-level
3603    //   cv-qualification is subsumed by the initialization itself
3604    //   and does not constitute a conversion.
3605    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
3606                                 /*AllowExplicit=*/false,
3607                                 /*ForceRValue=*/false,
3608                                 /*InOverloadResolution=*/false);
3609
3610    // Of course, that's still a reference binding.
3611    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3612      ICS->Standard.ReferenceBinding = true;
3613      ICS->Standard.RRefBinding = isRValRef;
3614    } else if (ICS->ConversionKind ==
3615              ImplicitConversionSequence::UserDefinedConversion) {
3616      ICS->UserDefined.After.ReferenceBinding = true;
3617      ICS->UserDefined.After.RRefBinding = isRValRef;
3618    }
3619    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3620  } else {
3621    return PerformImplicitConversion(Init, T1, "initializing");
3622  }
3623}
3624
3625/// CheckOverloadedOperatorDeclaration - Check whether the declaration
3626/// of this overloaded operator is well-formed. If so, returns false;
3627/// otherwise, emits appropriate diagnostics and returns true.
3628bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
3629  assert(FnDecl && FnDecl->isOverloadedOperator() &&
3630         "Expected an overloaded operator declaration");
3631
3632  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
3633
3634  // C++ [over.oper]p5:
3635  //   The allocation and deallocation functions, operator new,
3636  //   operator new[], operator delete and operator delete[], are
3637  //   described completely in 3.7.3. The attributes and restrictions
3638  //   found in the rest of this subclause do not apply to them unless
3639  //   explicitly stated in 3.7.3.
3640  // FIXME: Write a separate routine for checking this. For now, just allow it.
3641  if (Op == OO_New || Op == OO_Array_New ||
3642      Op == OO_Delete || Op == OO_Array_Delete)
3643    return false;
3644
3645  // C++ [over.oper]p6:
3646  //   An operator function shall either be a non-static member
3647  //   function or be a non-member function and have at least one
3648  //   parameter whose type is a class, a reference to a class, an
3649  //   enumeration, or a reference to an enumeration.
3650  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
3651    if (MethodDecl->isStatic())
3652      return Diag(FnDecl->getLocation(),
3653                  diag::err_operator_overload_static) << FnDecl->getDeclName();
3654  } else {
3655    bool ClassOrEnumParam = false;
3656    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
3657                                   ParamEnd = FnDecl->param_end();
3658         Param != ParamEnd; ++Param) {
3659      QualType ParamType = (*Param)->getType().getNonReferenceType();
3660      if (ParamType->isDependentType() || ParamType->isRecordType() ||
3661          ParamType->isEnumeralType()) {
3662        ClassOrEnumParam = true;
3663        break;
3664      }
3665    }
3666
3667    if (!ClassOrEnumParam)
3668      return Diag(FnDecl->getLocation(),
3669                  diag::err_operator_overload_needs_class_or_enum)
3670        << FnDecl->getDeclName();
3671  }
3672
3673  // C++ [over.oper]p8:
3674  //   An operator function cannot have default arguments (8.3.6),
3675  //   except where explicitly stated below.
3676  //
3677  // Only the function-call operator allows default arguments
3678  // (C++ [over.call]p1).
3679  if (Op != OO_Call) {
3680    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
3681         Param != FnDecl->param_end(); ++Param) {
3682      if ((*Param)->hasUnparsedDefaultArg())
3683        return Diag((*Param)->getLocation(),
3684                    diag::err_operator_overload_default_arg)
3685          << FnDecl->getDeclName();
3686      else if (Expr *DefArg = (*Param)->getDefaultArg())
3687        return Diag((*Param)->getLocation(),
3688                    diag::err_operator_overload_default_arg)
3689          << FnDecl->getDeclName() << DefArg->getSourceRange();
3690    }
3691  }
3692
3693  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3694    { false, false, false }
3695#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3696    , { Unary, Binary, MemberOnly }
3697#include "clang/Basic/OperatorKinds.def"
3698  };
3699
3700  bool CanBeUnaryOperator = OperatorUses[Op][0];
3701  bool CanBeBinaryOperator = OperatorUses[Op][1];
3702  bool MustBeMemberOperator = OperatorUses[Op][2];
3703
3704  // C++ [over.oper]p8:
3705  //   [...] Operator functions cannot have more or fewer parameters
3706  //   than the number required for the corresponding operator, as
3707  //   described in the rest of this subclause.
3708  unsigned NumParams = FnDecl->getNumParams()
3709                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3710  if (Op != OO_Call &&
3711      ((NumParams == 1 && !CanBeUnaryOperator) ||
3712       (NumParams == 2 && !CanBeBinaryOperator) ||
3713       (NumParams < 1) || (NumParams > 2))) {
3714    // We have the wrong number of parameters.
3715    unsigned ErrorKind;
3716    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3717      ErrorKind = 2;  // 2 -> unary or binary.
3718    } else if (CanBeUnaryOperator) {
3719      ErrorKind = 0;  // 0 -> unary
3720    } else {
3721      assert(CanBeBinaryOperator &&
3722             "All non-call overloaded operators are unary or binary!");
3723      ErrorKind = 1;  // 1 -> binary
3724    }
3725
3726    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3727      << FnDecl->getDeclName() << NumParams << ErrorKind;
3728  }
3729
3730  // Overloaded operators other than operator() cannot be variadic.
3731  if (Op != OO_Call &&
3732      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3733    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3734      << FnDecl->getDeclName();
3735  }
3736
3737  // Some operators must be non-static member functions.
3738  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3739    return Diag(FnDecl->getLocation(),
3740                diag::err_operator_overload_must_be_member)
3741      << FnDecl->getDeclName();
3742  }
3743
3744  // C++ [over.inc]p1:
3745  //   The user-defined function called operator++ implements the
3746  //   prefix and postfix ++ operator. If this function is a member
3747  //   function with no parameters, or a non-member function with one
3748  //   parameter of class or enumeration type, it defines the prefix
3749  //   increment operator ++ for objects of that type. If the function
3750  //   is a member function with one parameter (which shall be of type
3751  //   int) or a non-member function with two parameters (the second
3752  //   of which shall be of type int), it defines the postfix
3753  //   increment operator ++ for objects of that type.
3754  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3755    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3756    bool ParamIsInt = false;
3757    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3758      ParamIsInt = BT->getKind() == BuiltinType::Int;
3759
3760    if (!ParamIsInt)
3761      return Diag(LastParam->getLocation(),
3762                  diag::err_operator_overload_post_incdec_must_be_int)
3763        << LastParam->getType() << (Op == OO_MinusMinus);
3764  }
3765
3766  // Notify the class if it got an assignment operator.
3767  if (Op == OO_Equal) {
3768    // Would have returned earlier otherwise.
3769    assert(isa<CXXMethodDecl>(FnDecl) &&
3770      "Overloaded = not member, but not filtered.");
3771    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3772    Method->setCopyAssignment(true);
3773    Method->getParent()->addedAssignmentOperator(Context, Method);
3774  }
3775
3776  return false;
3777}
3778
3779/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3780/// linkage specification, including the language and (if present)
3781/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3782/// the location of the language string literal, which is provided
3783/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3784/// the '{' brace. Otherwise, this linkage specification does not
3785/// have any braces.
3786Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3787                                                     SourceLocation ExternLoc,
3788                                                     SourceLocation LangLoc,
3789                                                     const char *Lang,
3790                                                     unsigned StrSize,
3791                                                     SourceLocation LBraceLoc) {
3792  LinkageSpecDecl::LanguageIDs Language;
3793  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3794    Language = LinkageSpecDecl::lang_c;
3795  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3796    Language = LinkageSpecDecl::lang_cxx;
3797  else {
3798    Diag(LangLoc, diag::err_bad_language);
3799    return DeclPtrTy();
3800  }
3801
3802  // FIXME: Add all the various semantics of linkage specifications
3803
3804  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3805                                               LangLoc, Language,
3806                                               LBraceLoc.isValid());
3807  CurContext->addDecl(D);
3808  PushDeclContext(S, D);
3809  return DeclPtrTy::make(D);
3810}
3811
3812/// ActOnFinishLinkageSpecification - Completely the definition of
3813/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3814/// valid, it's the position of the closing '}' brace in a linkage
3815/// specification that uses braces.
3816Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3817                                                      DeclPtrTy LinkageSpec,
3818                                                      SourceLocation RBraceLoc) {
3819  if (LinkageSpec)
3820    PopDeclContext();
3821  return LinkageSpec;
3822}
3823
3824/// \brief Perform semantic analysis for the variable declaration that
3825/// occurs within a C++ catch clause, returning the newly-created
3826/// variable.
3827VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3828                                         DeclaratorInfo *DInfo,
3829                                         IdentifierInfo *Name,
3830                                         SourceLocation Loc,
3831                                         SourceRange Range) {
3832  bool Invalid = false;
3833
3834  // Arrays and functions decay.
3835  if (ExDeclType->isArrayType())
3836    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3837  else if (ExDeclType->isFunctionType())
3838    ExDeclType = Context.getPointerType(ExDeclType);
3839
3840  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3841  // The exception-declaration shall not denote a pointer or reference to an
3842  // incomplete type, other than [cv] void*.
3843  // N2844 forbids rvalue references.
3844  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3845    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3846    Invalid = true;
3847  }
3848
3849  QualType BaseType = ExDeclType;
3850  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3851  unsigned DK = diag::err_catch_incomplete;
3852  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3853    BaseType = Ptr->getPointeeType();
3854    Mode = 1;
3855    DK = diag::err_catch_incomplete_ptr;
3856  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
3857    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3858    BaseType = Ref->getPointeeType();
3859    Mode = 2;
3860    DK = diag::err_catch_incomplete_ref;
3861  }
3862  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3863      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3864    Invalid = true;
3865
3866  if (!Invalid && !ExDeclType->isDependentType() &&
3867      RequireNonAbstractType(Loc, ExDeclType,
3868                             diag::err_abstract_type_in_decl,
3869                             AbstractVariableType))
3870    Invalid = true;
3871
3872  // FIXME: Need to test for ability to copy-construct and destroy the
3873  // exception variable.
3874
3875  // FIXME: Need to check for abstract classes.
3876
3877  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3878                                    Name, ExDeclType, DInfo, VarDecl::None);
3879
3880  if (Invalid)
3881    ExDecl->setInvalidDecl();
3882
3883  return ExDecl;
3884}
3885
3886/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3887/// handler.
3888Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3889  DeclaratorInfo *DInfo = 0;
3890  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
3891
3892  bool Invalid = D.isInvalidType();
3893  IdentifierInfo *II = D.getIdentifier();
3894  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3895    // The scope should be freshly made just for us. There is just no way
3896    // it contains any previous declaration.
3897    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3898    if (PrevDecl->isTemplateParameter()) {
3899      // Maybe we will complain about the shadowed template parameter.
3900      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3901    }
3902  }
3903
3904  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3905    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3906      << D.getCXXScopeSpec().getRange();
3907    Invalid = true;
3908  }
3909
3910  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
3911                                              D.getIdentifier(),
3912                                              D.getIdentifierLoc(),
3913                                            D.getDeclSpec().getSourceRange());
3914
3915  if (Invalid)
3916    ExDecl->setInvalidDecl();
3917
3918  // Add the exception declaration into this scope.
3919  if (II)
3920    PushOnScopeChains(ExDecl, S);
3921  else
3922    CurContext->addDecl(ExDecl);
3923
3924  ProcessDeclAttributes(S, ExDecl, D);
3925  return DeclPtrTy::make(ExDecl);
3926}
3927
3928Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3929                                                   ExprArg assertexpr,
3930                                                   ExprArg assertmessageexpr) {
3931  Expr *AssertExpr = (Expr *)assertexpr.get();
3932  StringLiteral *AssertMessage =
3933    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3934
3935  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3936    llvm::APSInt Value(32);
3937    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3938      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3939        AssertExpr->getSourceRange();
3940      return DeclPtrTy();
3941    }
3942
3943    if (Value == 0) {
3944      std::string str(AssertMessage->getStrData(),
3945                      AssertMessage->getByteLength());
3946      Diag(AssertLoc, diag::err_static_assert_failed)
3947        << str << AssertExpr->getSourceRange();
3948    }
3949  }
3950
3951  assertexpr.release();
3952  assertmessageexpr.release();
3953  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3954                                        AssertExpr, AssertMessage);
3955
3956  CurContext->addDecl(Decl);
3957  return DeclPtrTy::make(Decl);
3958}
3959
3960Sema::DeclPtrTy Sema::ActOnFriendDecl(Scope *S,
3961                       llvm::PointerUnion<const DeclSpec*,Declarator*> DU,
3962                                      bool IsDefinition) {
3963  if (DU.is<Declarator*>())
3964    return ActOnFriendFunctionDecl(S, *DU.get<Declarator*>(), IsDefinition);
3965  else
3966    return ActOnFriendTypeDecl(S, *DU.get<const DeclSpec*>(), IsDefinition);
3967}
3968
3969Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S,
3970                                          const DeclSpec &DS,
3971                                          bool IsDefinition) {
3972  SourceLocation Loc = DS.getSourceRange().getBegin();
3973
3974  assert(DS.isFriendSpecified());
3975  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3976
3977  // Try to convert the decl specifier to a type.
3978  bool invalid = false;
3979  QualType T = ConvertDeclSpecToType(DS, Loc, invalid);
3980  if (invalid) return DeclPtrTy();
3981
3982  // C++ [class.friend]p2:
3983  //   An elaborated-type-specifier shall be used in a friend declaration
3984  //   for a class.*
3985  //   * The class-key of the elaborated-type-specifier is required.
3986  // This is one of the rare places in Clang where it's legitimate to
3987  // ask about the "spelling" of the type.
3988  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
3989    // If we evaluated the type to a record type, suggest putting
3990    // a tag in front.
3991    if (const RecordType *RT = T->getAs<RecordType>()) {
3992      RecordDecl *RD = RT->getDecl();
3993
3994      std::string InsertionText = std::string(" ") + RD->getKindName();
3995
3996      Diag(DS.getFriendSpecLoc(), diag::err_unelaborated_friend_type)
3997        << (RD->isUnion())
3998        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
3999                                                 InsertionText);
4000      return DeclPtrTy();
4001    }else {
4002      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
4003          << DS.getSourceRange();
4004      return DeclPtrTy();
4005    }
4006  }
4007
4008  FriendDecl::FriendUnion FU = T.getTypePtr();
4009
4010  // The parser doesn't quite handle
4011  //   friend class A { ... }
4012  // optimally, because it might have been the (valid) prefix of
4013  //   friend class A { ... } foo();
4014  // So in a very particular set of circumstances, we need to adjust
4015  // IsDefinition.
4016  //
4017  // Also, if we made a RecordDecl in ActOnTag, we want that to be the
4018  // object of our friend declaration.
4019  switch (DS.getTypeSpecType()) {
4020  default: break;
4021  case DeclSpec::TST_class:
4022  case DeclSpec::TST_struct:
4023  case DeclSpec::TST_union:
4024    CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>((Decl*) DS.getTypeRep());
4025    if (RD) {
4026      IsDefinition |= RD->isDefinition();
4027      FU = RD;
4028    }
4029    break;
4030  }
4031
4032  // C++ [class.friend]p2: A class shall not be defined inside
4033  //   a friend declaration.
4034  if (IsDefinition) {
4035    Diag(DS.getFriendSpecLoc(), diag::err_friend_decl_defines_class)
4036      << DS.getSourceRange();
4037    return DeclPtrTy();
4038  }
4039
4040  // C++98 [class.friend]p1: A friend of a class is a function
4041  //   or class that is not a member of the class . . .
4042  // But that's a silly restriction which nobody implements for
4043  // inner classes, and C++0x removes it anyway, so we only report
4044  // this (as a warning) if we're being pedantic.
4045  if (!getLangOptions().CPlusPlus0x)
4046    if (const RecordType *RT = T->getAs<RecordType>())
4047      if (RT->getDecl()->getDeclContext() == CurContext)
4048        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
4049
4050  FriendDecl *FD = FriendDecl::Create(Context, CurContext, Loc, FU,
4051                                      DS.getFriendSpecLoc());
4052  FD->setAccess(AS_public);
4053  CurContext->addDecl(FD);
4054
4055  return DeclPtrTy::make(FD);
4056}
4057
4058Sema::DeclPtrTy Sema::ActOnFriendFunctionDecl(Scope *S,
4059                                              Declarator &D,
4060                                              bool IsDefinition) {
4061  const DeclSpec &DS = D.getDeclSpec();
4062
4063  assert(DS.isFriendSpecified());
4064  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4065
4066  SourceLocation Loc = D.getIdentifierLoc();
4067  DeclaratorInfo *DInfo = 0;
4068  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4069
4070  // C++ [class.friend]p1
4071  //   A friend of a class is a function or class....
4072  // Note that this sees through typedefs, which is intended.
4073  // It *doesn't* see through dependent types, which is correct
4074  // according to [temp.arg.type]p3:
4075  //   If a declaration acquires a function type through a
4076  //   type dependent on a template-parameter and this causes
4077  //   a declaration that does not use the syntactic form of a
4078  //   function declarator to have a function type, the program
4079  //   is ill-formed.
4080  if (!T->isFunctionType()) {
4081    Diag(Loc, diag::err_unexpected_friend);
4082
4083    // It might be worthwhile to try to recover by creating an
4084    // appropriate declaration.
4085    return DeclPtrTy();
4086  }
4087
4088  // C++ [namespace.memdef]p3
4089  //  - If a friend declaration in a non-local class first declares a
4090  //    class or function, the friend class or function is a member
4091  //    of the innermost enclosing namespace.
4092  //  - The name of the friend is not found by simple name lookup
4093  //    until a matching declaration is provided in that namespace
4094  //    scope (either before or after the class declaration granting
4095  //    friendship).
4096  //  - If a friend function is called, its name may be found by the
4097  //    name lookup that considers functions from namespaces and
4098  //    classes associated with the types of the function arguments.
4099  //  - When looking for a prior declaration of a class or a function
4100  //    declared as a friend, scopes outside the innermost enclosing
4101  //    namespace scope are not considered.
4102
4103  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
4104  DeclarationName Name = GetNameForDeclarator(D);
4105  assert(Name);
4106
4107  // The existing declaration we found.
4108  FunctionDecl *FD = NULL;
4109
4110  // The context we found the declaration in, or in which we should
4111  // create the declaration.
4112  DeclContext *DC;
4113
4114  // FIXME: handle local classes
4115
4116  // Recover from invalid scope qualifiers as if they just weren't there.
4117  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
4118    DC = computeDeclContext(ScopeQual);
4119
4120    // FIXME: handle dependent contexts
4121    if (!DC) return DeclPtrTy();
4122
4123    Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
4124
4125    // If searching in that context implicitly found a declaration in
4126    // a different context, treat it like it wasn't found at all.
4127    // TODO: better diagnostics for this case.  Suggesting the right
4128    // qualified scope would be nice...
4129    if (!Dec || Dec->getDeclContext() != DC) {
4130      D.setInvalidType();
4131      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
4132      return DeclPtrTy();
4133    }
4134
4135    // C++ [class.friend]p1: A friend of a class is a function or
4136    //   class that is not a member of the class . . .
4137    if (DC == CurContext)
4138      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4139
4140    FD = cast<FunctionDecl>(Dec);
4141
4142  // Otherwise walk out to the nearest namespace scope looking for matches.
4143  } else {
4144    // TODO: handle local class contexts.
4145
4146    DC = CurContext;
4147    while (true) {
4148      // Skip class contexts.  If someone can cite chapter and verse
4149      // for this behavior, that would be nice --- it's what GCC and
4150      // EDG do, and it seems like a reasonable intent, but the spec
4151      // really only says that checks for unqualified existing
4152      // declarations should stop at the nearest enclosing namespace,
4153      // not that they should only consider the nearest enclosing
4154      // namespace.
4155      while (DC->isRecord()) DC = DC->getParent();
4156
4157      Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
4158
4159      // TODO: decide what we think about using declarations.
4160      if (Dec) {
4161        FD = cast<FunctionDecl>(Dec);
4162        break;
4163      }
4164      if (DC->isFileContext()) break;
4165      DC = DC->getParent();
4166    }
4167
4168    // C++ [class.friend]p1: A friend of a class is a function or
4169    //   class that is not a member of the class . . .
4170    // C++0x changes this for both friend types and functions.
4171    // Most C++ 98 compilers do seem to give an error here, so
4172    // we do, too.
4173    if (FD && DC == CurContext && !getLangOptions().CPlusPlus0x)
4174      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4175  }
4176
4177  bool Redeclaration = (FD != 0);
4178
4179  // If we found a match, create a friend function declaration with
4180  // that function as the previous declaration.
4181  if (Redeclaration) {
4182    // Create it in the semantic context of the original declaration.
4183    DC = FD->getDeclContext();
4184
4185  // If we didn't find something matching the type exactly, create
4186  // a declaration.  This declaration should only be findable via
4187  // argument-dependent lookup.
4188  } else {
4189    assert(DC->isFileContext());
4190
4191    // This implies that it has to be an operator or function.
4192    if (D.getKind() == Declarator::DK_Constructor ||
4193        D.getKind() == Declarator::DK_Destructor ||
4194        D.getKind() == Declarator::DK_Conversion) {
4195      Diag(Loc, diag::err_introducing_special_friend) <<
4196        (D.getKind() == Declarator::DK_Constructor ? 0 :
4197         D.getKind() == Declarator::DK_Destructor ? 1 : 2);
4198      return DeclPtrTy();
4199    }
4200  }
4201
4202  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo,
4203                                          /* PrevDecl = */ FD,
4204                                          MultiTemplateParamsArg(*this),
4205                                          IsDefinition,
4206                                          Redeclaration);
4207  if (!ND) return DeclPtrTy();
4208
4209  assert(cast<FunctionDecl>(ND)->getPreviousDeclaration() == FD &&
4210         "lost reference to previous declaration");
4211
4212  FD = cast<FunctionDecl>(ND);
4213
4214  assert(FD->getDeclContext() == DC);
4215  assert(FD->getLexicalDeclContext() == CurContext);
4216
4217  // Add the function declaration to the appropriate lookup tables,
4218  // adjusting the redeclarations list as necessary.  We don't
4219  // want to do this yet if the friending class is dependent.
4220  //
4221  // Also update the scope-based lookup if the target context's
4222  // lookup context is in lexical scope.
4223  if (!CurContext->isDependentContext()) {
4224    DC = DC->getLookupContext();
4225    DC->makeDeclVisibleInContext(FD, /* Recoverable=*/ false);
4226    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4227      PushOnScopeChains(FD, EnclosingScope, /*AddToContext=*/ false);
4228  }
4229
4230  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
4231                                       D.getIdentifierLoc(), FD,
4232                                       DS.getFriendSpecLoc());
4233  FrD->setAccess(AS_public);
4234  CurContext->addDecl(FrD);
4235
4236  return DeclPtrTy::make(FD);
4237}
4238
4239void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
4240  AdjustDeclIfTemplate(dcl);
4241
4242  Decl *Dcl = dcl.getAs<Decl>();
4243  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
4244  if (!Fn) {
4245    Diag(DelLoc, diag::err_deleted_non_function);
4246    return;
4247  }
4248  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
4249    Diag(DelLoc, diag::err_deleted_decl_not_first);
4250    Diag(Prev->getLocation(), diag::note_previous_declaration);
4251    // If the declaration wasn't the first, we delete the function anyway for
4252    // recovery.
4253  }
4254  Fn->setDeleted();
4255}
4256
4257static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
4258  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
4259       ++CI) {
4260    Stmt *SubStmt = *CI;
4261    if (!SubStmt)
4262      continue;
4263    if (isa<ReturnStmt>(SubStmt))
4264      Self.Diag(SubStmt->getSourceRange().getBegin(),
4265           diag::err_return_in_constructor_handler);
4266    if (!isa<Expr>(SubStmt))
4267      SearchForReturnInStmt(Self, SubStmt);
4268  }
4269}
4270
4271void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
4272  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
4273    CXXCatchStmt *Handler = TryBlock->getHandler(I);
4274    SearchForReturnInStmt(*this, Handler);
4275  }
4276}
4277
4278bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
4279                                             const CXXMethodDecl *Old) {
4280  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
4281  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
4282
4283  QualType CNewTy = Context.getCanonicalType(NewTy);
4284  QualType COldTy = Context.getCanonicalType(OldTy);
4285
4286  if (CNewTy == COldTy &&
4287      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
4288    return false;
4289
4290  // Check if the return types are covariant
4291  QualType NewClassTy, OldClassTy;
4292
4293  /// Both types must be pointers or references to classes.
4294  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
4295    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
4296      NewClassTy = NewPT->getPointeeType();
4297      OldClassTy = OldPT->getPointeeType();
4298    }
4299  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
4300    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
4301      NewClassTy = NewRT->getPointeeType();
4302      OldClassTy = OldRT->getPointeeType();
4303    }
4304  }
4305
4306  // The return types aren't either both pointers or references to a class type.
4307  if (NewClassTy.isNull()) {
4308    Diag(New->getLocation(),
4309         diag::err_different_return_type_for_overriding_virtual_function)
4310      << New->getDeclName() << NewTy << OldTy;
4311    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4312
4313    return true;
4314  }
4315
4316  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
4317    // Check if the new class derives from the old class.
4318    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
4319      Diag(New->getLocation(),
4320           diag::err_covariant_return_not_derived)
4321      << New->getDeclName() << NewTy << OldTy;
4322      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4323      return true;
4324    }
4325
4326    // Check if we the conversion from derived to base is valid.
4327    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
4328                      diag::err_covariant_return_inaccessible_base,
4329                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
4330                      // FIXME: Should this point to the return type?
4331                      New->getLocation(), SourceRange(), New->getDeclName())) {
4332      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4333      return true;
4334    }
4335  }
4336
4337  // The qualifiers of the return types must be the same.
4338  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
4339    Diag(New->getLocation(),
4340         diag::err_covariant_return_type_different_qualifications)
4341    << New->getDeclName() << NewTy << OldTy;
4342    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4343    return true;
4344  };
4345
4346
4347  // The new class type must have the same or less qualifiers as the old type.
4348  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
4349    Diag(New->getLocation(),
4350         diag::err_covariant_return_type_class_type_more_qualified)
4351    << New->getDeclName() << NewTy << OldTy;
4352    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4353    return true;
4354  };
4355
4356  return false;
4357}
4358
4359bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
4360                                                const CXXMethodDecl *Old) {
4361  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
4362                                  diag::note_overridden_virtual_function,
4363                                  Old->getType()->getAsFunctionProtoType(),
4364                                  Old->getLocation(),
4365                                  New->getType()->getAsFunctionProtoType(),
4366                                  New->getLocation());
4367}
4368
4369/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
4370/// initializer for the declaration 'Dcl'.
4371/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
4372/// static data member of class X, names should be looked up in the scope of
4373/// class X.
4374void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4375  AdjustDeclIfTemplate(Dcl);
4376
4377  Decl *D = Dcl.getAs<Decl>();
4378  // If there is no declaration, there was an error parsing it.
4379  if (D == 0)
4380    return;
4381
4382  // Check whether it is a declaration with a nested name specifier like
4383  // int foo::bar;
4384  if (!D->isOutOfLine())
4385    return;
4386
4387  // C++ [basic.lookup.unqual]p13
4388  //
4389  // A name used in the definition of a static data member of class X
4390  // (after the qualified-id of the static member) is looked up as if the name
4391  // was used in a member function of X.
4392
4393  // Change current context into the context of the initializing declaration.
4394  EnterDeclaratorContext(S, D->getDeclContext());
4395}
4396
4397/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4398/// initializer for the declaration 'Dcl'.
4399void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4400  AdjustDeclIfTemplate(Dcl);
4401
4402  Decl *D = Dcl.getAs<Decl>();
4403  // If there is no declaration, there was an error parsing it.
4404  if (D == 0)
4405    return;
4406
4407  // Check whether it is a declaration with a nested name specifier like
4408  // int foo::bar;
4409  if (!D->isOutOfLine())
4410    return;
4411
4412  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4413  ExitDeclaratorContext(S);
4414}
4415