SemaDeclCXX.cpp revision e60e5d3eb3d09bde80882f60abc69e28ced874c6
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/TypeOrdering.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm> // for std::equal
25#include <map>
26
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30// CheckDefaultArgumentVisitor
31//===----------------------------------------------------------------------===//
32
33namespace {
34  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
35  /// the default argument of a parameter to determine whether it
36  /// contains any ill-formed subexpressions. For example, this will
37  /// diagnose the use of local variables or parameters within the
38  /// default argument expression.
39  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
40    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
41    Expr *DefaultArg;
42    Sema *S;
43
44  public:
45    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
46      : DefaultArg(defarg), S(s) {}
47
48    bool VisitExpr(Expr *Node);
49    bool VisitDeclRefExpr(DeclRefExpr *DRE);
50    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
51  };
52
53  /// VisitExpr - Visit all of the children of this expression.
54  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
55    bool IsInvalid = false;
56    for (Stmt::child_iterator I = Node->child_begin(),
57         E = Node->child_end(); I != E; ++I)
58      IsInvalid |= Visit(*I);
59    return IsInvalid;
60  }
61
62  /// VisitDeclRefExpr - Visit a reference to a declaration, to
63  /// determine whether this declaration can be used in the default
64  /// argument expression.
65  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
66    NamedDecl *Decl = DRE->getDecl();
67    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
68      // C++ [dcl.fct.default]p9
69      //   Default arguments are evaluated each time the function is
70      //   called. The order of evaluation of function arguments is
71      //   unspecified. Consequently, parameters of a function shall not
72      //   be used in default argument expressions, even if they are not
73      //   evaluated. Parameters of a function declared before a default
74      //   argument expression are in scope and can hide namespace and
75      //   class member names.
76      return S->Diag(DRE->getSourceRange().getBegin(),
77                     diag::err_param_default_argument_references_param,
78                     Param->getName(), DefaultArg->getSourceRange());
79    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
80      // C++ [dcl.fct.default]p7
81      //   Local variables shall not be used in default argument
82      //   expressions.
83      if (VDecl->isBlockVarDecl())
84        return S->Diag(DRE->getSourceRange().getBegin(),
85                       diag::err_param_default_argument_references_local,
86                       VDecl->getName(), DefaultArg->getSourceRange());
87    }
88
89    return false;
90  }
91
92  /// VisitCXXThisExpr - Visit a C++ "this" expression.
93  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
94    // C++ [dcl.fct.default]p8:
95    //   The keyword this shall not be used in a default argument of a
96    //   member function.
97    return S->Diag(ThisE->getSourceRange().getBegin(),
98                   diag::err_param_default_argument_references_this,
99                   ThisE->getSourceRange());
100  }
101}
102
103/// ActOnParamDefaultArgument - Check whether the default argument
104/// provided for a function parameter is well-formed. If so, attach it
105/// to the parameter declaration.
106void
107Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
108                                ExprTy *defarg) {
109  ParmVarDecl *Param = (ParmVarDecl *)param;
110  llvm::OwningPtr<Expr> DefaultArg((Expr *)defarg);
111  QualType ParamType = Param->getType();
112
113  // Default arguments are only permitted in C++
114  if (!getLangOptions().CPlusPlus) {
115    Diag(EqualLoc, diag::err_param_default_argument,
116         DefaultArg->getSourceRange());
117    return;
118  }
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  Expr *DefaultArgPtr = DefaultArg.get();
127  bool DefaultInitFailed = PerformCopyInitialization(DefaultArgPtr, ParamType,
128                                                     "in default argument");
129  if (DefaultArgPtr != DefaultArg.get()) {
130    DefaultArg.take();
131    DefaultArg.reset(DefaultArgPtr);
132  }
133  if (DefaultInitFailed) {
134    return;
135  }
136
137  // Check that the default argument is well-formed
138  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
139  if (DefaultArgChecker.Visit(DefaultArg.get()))
140    return;
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(DefaultArg.take());
144}
145
146/// CheckExtraCXXDefaultArguments - Check for any extra default
147/// arguments in the declarator, which is not a function declaration
148/// or definition and therefore is not permitted to have default
149/// arguments. This routine should be invoked for every declarator
150/// that is not a function declaration or definition.
151void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
152  // C++ [dcl.fct.default]p3
153  //   A default argument expression shall be specified only in the
154  //   parameter-declaration-clause of a function declaration or in a
155  //   template-parameter (14.1). It shall not be specified for a
156  //   parameter pack. If it is specified in a
157  //   parameter-declaration-clause, it shall not occur within a
158  //   declarator or abstract-declarator of a parameter-declaration.
159  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
160    DeclaratorChunk &chunk = D.getTypeObject(i);
161    if (chunk.Kind == DeclaratorChunk::Function) {
162      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
163        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
164        if (Param->getDefaultArg()) {
165          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc,
166               Param->getDefaultArg()->getSourceRange());
167          Param->setDefaultArg(0);
168        }
169      }
170    }
171  }
172}
173
174// MergeCXXFunctionDecl - Merge two declarations of the same C++
175// function, once we already know that they have the same
176// type. Subroutine of MergeFunctionDecl.
177FunctionDecl *
178Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
179  // C++ [dcl.fct.default]p4:
180  //
181  //   For non-template functions, default arguments can be added in
182  //   later declarations of a function in the same
183  //   scope. Declarations in different scopes have completely
184  //   distinct sets of default arguments. That is, declarations in
185  //   inner scopes do not acquire default arguments from
186  //   declarations in outer scopes, and vice versa. In a given
187  //   function declaration, all parameters subsequent to a
188  //   parameter with a default argument shall have default
189  //   arguments supplied in this or previous declarations. A
190  //   default argument shall not be redefined by a later
191  //   declaration (not even to the same value).
192  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
193    ParmVarDecl *OldParam = Old->getParamDecl(p);
194    ParmVarDecl *NewParam = New->getParamDecl(p);
195
196    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
197      Diag(NewParam->getLocation(),
198           diag::err_param_default_argument_redefinition,
199           NewParam->getDefaultArg()->getSourceRange());
200      Diag(OldParam->getLocation(), diag::err_previous_definition);
201    } else if (OldParam->getDefaultArg()) {
202      // Merge the old default argument into the new parameter
203      NewParam->setDefaultArg(OldParam->getDefaultArg());
204    }
205  }
206
207  return New;
208}
209
210/// CheckCXXDefaultArguments - Verify that the default arguments for a
211/// function declaration are well-formed according to C++
212/// [dcl.fct.default].
213void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
214  unsigned NumParams = FD->getNumParams();
215  unsigned p;
216
217  // Find first parameter with a default argument
218  for (p = 0; p < NumParams; ++p) {
219    ParmVarDecl *Param = FD->getParamDecl(p);
220    if (Param->getDefaultArg())
221      break;
222  }
223
224  // C++ [dcl.fct.default]p4:
225  //   In a given function declaration, all parameters
226  //   subsequent to a parameter with a default argument shall
227  //   have default arguments supplied in this or previous
228  //   declarations. A default argument shall not be redefined
229  //   by a later declaration (not even to the same value).
230  unsigned LastMissingDefaultArg = 0;
231  for(; p < NumParams; ++p) {
232    ParmVarDecl *Param = FD->getParamDecl(p);
233    if (!Param->getDefaultArg()) {
234      if (Param->getIdentifier())
235        Diag(Param->getLocation(),
236             diag::err_param_default_argument_missing_name,
237             Param->getIdentifier()->getName());
238      else
239        Diag(Param->getLocation(),
240             diag::err_param_default_argument_missing);
241
242      LastMissingDefaultArg = p;
243    }
244  }
245
246  if (LastMissingDefaultArg > 0) {
247    // Some default arguments were missing. Clear out all of the
248    // default arguments up to (and including) the last missing
249    // default argument, so that we leave the function parameters
250    // in a semantically valid state.
251    for (p = 0; p <= LastMissingDefaultArg; ++p) {
252      ParmVarDecl *Param = FD->getParamDecl(p);
253      if (Param->getDefaultArg()) {
254        delete Param->getDefaultArg();
255        Param->setDefaultArg(0);
256      }
257    }
258  }
259}
260
261/// isCurrentClassName - Determine whether the identifier II is the
262/// name of the class type currently being defined. In the case of
263/// nested classes, this will only return true if II is the name of
264/// the innermost class.
265bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *) {
266  if (CXXRecordDecl *CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext))
267    return &II == CurDecl->getIdentifier();
268  else
269    return false;
270}
271
272/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
273/// one entry in the base class list of a class specifier, for
274/// example:
275///    class foo : public bar, virtual private baz {
276/// 'public bar' and 'virtual private baz' are each base-specifiers.
277Sema::BaseResult
278Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
279                         bool Virtual, AccessSpecifier Access,
280                         TypeTy *basetype, SourceLocation BaseLoc) {
281  RecordDecl *Decl = (RecordDecl*)classdecl;
282  QualType BaseType = Context.getTypeDeclType((TypeDecl*)basetype);
283
284  // Base specifiers must be record types.
285  if (!BaseType->isRecordType()) {
286    Diag(BaseLoc, diag::err_base_must_be_class, SpecifierRange);
287    return true;
288  }
289
290  // C++ [class.union]p1:
291  //   A union shall not be used as a base class.
292  if (BaseType->isUnionType()) {
293    Diag(BaseLoc, diag::err_union_as_base_class, SpecifierRange);
294    return true;
295  }
296
297  // C++ [class.union]p1:
298  //   A union shall not have base classes.
299  if (Decl->isUnion()) {
300    Diag(Decl->getLocation(), diag::err_base_clause_on_union,
301         SpecifierRange);
302    return true;
303  }
304
305  // C++ [class.derived]p2:
306  //   The class-name in a base-specifier shall not be an incompletely
307  //   defined class.
308  if (BaseType->isIncompleteType()) {
309    Diag(BaseLoc, diag::err_incomplete_base_class, SpecifierRange);
310    return true;
311  }
312
313  // If the base class is polymorphic, the new one is, too.
314  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
315  assert(BaseDecl && "Record type has no declaration");
316  BaseDecl = BaseDecl->getDefinition(Context);
317  assert(BaseDecl && "Base type is not incomplete, but has no definition");
318  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic()) {
319    cast<CXXRecordDecl>(Decl)->setPolymorphic(true);
320  }
321
322  // Create the base specifier.
323  return new CXXBaseSpecifier(SpecifierRange, Virtual,
324                              BaseType->isClassType(), Access, BaseType);
325}
326
327/// ActOnBaseSpecifiers - Attach the given base specifiers to the
328/// class, after checking whether there are any duplicate base
329/// classes.
330void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
331                               unsigned NumBases) {
332  if (NumBases == 0)
333    return;
334
335  // Used to keep track of which base types we have already seen, so
336  // that we can properly diagnose redundant direct base types. Note
337  // that the key is always the unqualified canonical type of the base
338  // class.
339  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
340
341  // Copy non-redundant base specifiers into permanent storage.
342  CXXBaseSpecifier **BaseSpecs = (CXXBaseSpecifier **)Bases;
343  unsigned NumGoodBases = 0;
344  for (unsigned idx = 0; idx < NumBases; ++idx) {
345    QualType NewBaseType
346      = Context.getCanonicalType(BaseSpecs[idx]->getType());
347    NewBaseType = NewBaseType.getUnqualifiedType();
348
349    if (KnownBaseTypes[NewBaseType]) {
350      // C++ [class.mi]p3:
351      //   A class shall not be specified as a direct base class of a
352      //   derived class more than once.
353      Diag(BaseSpecs[idx]->getSourceRange().getBegin(),
354           diag::err_duplicate_base_class,
355           KnownBaseTypes[NewBaseType]->getType().getAsString(),
356           BaseSpecs[idx]->getSourceRange());
357
358      // Delete the duplicate base class specifier; we're going to
359      // overwrite its pointer later.
360      delete BaseSpecs[idx];
361    } else {
362      // Okay, add this new base class.
363      KnownBaseTypes[NewBaseType] = BaseSpecs[idx];
364      BaseSpecs[NumGoodBases++] = BaseSpecs[idx];
365    }
366  }
367
368  // Attach the remaining base class specifiers to the derived class.
369  CXXRecordDecl *Decl = (CXXRecordDecl*)ClassDecl;
370  Decl->setBases(BaseSpecs, NumGoodBases);
371
372  // Delete the remaining (good) base class specifiers, since their
373  // data has been copied into the CXXRecordDecl.
374  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
375    delete BaseSpecs[idx];
376}
377
378//===----------------------------------------------------------------------===//
379// C++ class member Handling
380//===----------------------------------------------------------------------===//
381
382/// ActOnStartCXXClassDef - This is called at the start of a class/struct/union
383/// definition, when on C++.
384void Sema::ActOnStartCXXClassDef(Scope *S, DeclTy *D, SourceLocation LBrace) {
385  CXXRecordDecl *Dcl = cast<CXXRecordDecl>(static_cast<Decl *>(D));
386  PushDeclContext(Dcl);
387  FieldCollector->StartClass();
388
389  if (Dcl->getIdentifier()) {
390    // C++ [class]p2:
391    //   [...] The class-name is also inserted into the scope of the
392    //   class itself; this is known as the injected-class-name. For
393    //   purposes of access checking, the injected-class-name is treated
394    //   as if it were a public member name.
395    // FIXME: this should probably have its own kind of type node.
396    TypedefDecl *InjectedClassName
397      = TypedefDecl::Create(Context, Dcl, LBrace, Dcl->getIdentifier(),
398                            Context.getTypeDeclType(Dcl), /*PrevDecl=*/0);
399    PushOnScopeChains(InjectedClassName, S);
400  }
401}
402
403/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
404/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
405/// bitfield width if there is one and 'InitExpr' specifies the initializer if
406/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
407/// declarators on it.
408///
409/// NOTE: Because of CXXFieldDecl's inability to be chained like ScopedDecls, if
410/// an instance field is declared, a new CXXFieldDecl is created but the method
411/// does *not* return it; it returns LastInGroup instead. The other C++ members
412/// (which are all ScopedDecls) are returned after appending them to
413/// LastInGroup.
414Sema::DeclTy *
415Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
416                               ExprTy *BW, ExprTy *InitExpr,
417                               DeclTy *LastInGroup) {
418  const DeclSpec &DS = D.getDeclSpec();
419  IdentifierInfo *II = D.getIdentifier();
420  Expr *BitWidth = static_cast<Expr*>(BW);
421  Expr *Init = static_cast<Expr*>(InitExpr);
422  SourceLocation Loc = D.getIdentifierLoc();
423
424  // C++ 9.2p6: A member shall not be declared to have automatic storage
425  // duration (auto, register) or with the extern storage-class-specifier.
426  switch (DS.getStorageClassSpec()) {
427    case DeclSpec::SCS_unspecified:
428    case DeclSpec::SCS_typedef:
429    case DeclSpec::SCS_static:
430      // FALL THROUGH.
431      break;
432    default:
433      if (DS.getStorageClassSpecLoc().isValid())
434        Diag(DS.getStorageClassSpecLoc(),
435             diag::err_storageclass_invalid_for_member);
436      else
437        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
438      D.getMutableDeclSpec().ClearStorageClassSpecs();
439  }
440
441  bool isFunc = D.isFunctionDeclarator();
442  if (!isFunc &&
443      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typedef &&
444      D.getNumTypeObjects() == 0) {
445    // Check also for this case:
446    //
447    // typedef int f();
448    // f a;
449    //
450    Decl *TD = static_cast<Decl *>(DS.getTypeRep());
451    isFunc = Context.getTypeDeclType(cast<TypeDecl>(TD))->isFunctionType();
452  }
453
454  bool isInstField = (DS.getStorageClassSpec() == DeclSpec::SCS_unspecified &&
455                      !isFunc);
456
457  Decl *Member;
458  bool InvalidDecl = false;
459
460  if (isInstField)
461    Member = static_cast<Decl*>(ActOnField(S, Loc, D, BitWidth));
462  else
463    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
464
465  if (!Member) return LastInGroup;
466
467  assert((II || isInstField) && "No identifier for non-field ?");
468
469  // set/getAccess is not part of Decl's interface to avoid bloating it with C++
470  // specific methods. Use a wrapper class that can be used with all C++ class
471  // member decls.
472  CXXClassMemberWrapper(Member).setAccess(AS);
473
474  // C++ [dcl.init.aggr]p1:
475  //   An aggregate is an array or a class (clause 9) with [...] no
476  //   private or protected non-static data members (clause 11).
477  if (isInstField && (AS == AS_private || AS == AS_protected))
478    cast<CXXRecordDecl>(CurContext)->setAggregate(false);
479
480  if (DS.isVirtualSpecified()) {
481    if (!isFunc || DS.getStorageClassSpec() == DeclSpec::SCS_static) {
482      Diag(DS.getVirtualSpecLoc(), diag::err_virtual_non_function);
483      InvalidDecl = true;
484    } else {
485      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(CurContext);
486      CurClass->setAggregate(false);
487      CurClass->setPolymorphic(true);
488    }
489  }
490
491  if (BitWidth) {
492    // C++ 9.6p2: Only when declaring an unnamed bit-field may the
493    // constant-expression be a value equal to zero.
494    // FIXME: Check this.
495
496    if (D.isFunctionDeclarator()) {
497      // FIXME: Emit diagnostic about only constructors taking base initializers
498      // or something similar, when constructor support is in place.
499      Diag(Loc, diag::err_not_bitfield_type,
500           II->getName(), BitWidth->getSourceRange());
501      InvalidDecl = true;
502
503    } else if (isInstField) {
504      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
505      if (!cast<FieldDecl>(Member)->getType()->isIntegralType()) {
506        Diag(Loc, diag::err_not_integral_type_bitfield,
507             II->getName(), BitWidth->getSourceRange());
508        InvalidDecl = true;
509      }
510
511    } else if (isa<FunctionDecl>(Member)) {
512      // A function typedef ("typedef int f(); f a;").
513      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
514      Diag(Loc, diag::err_not_integral_type_bitfield,
515           II->getName(), BitWidth->getSourceRange());
516      InvalidDecl = true;
517
518    } else if (isa<TypedefDecl>(Member)) {
519      // "cannot declare 'A' to be a bit-field type"
520      Diag(Loc, diag::err_not_bitfield_type, II->getName(),
521           BitWidth->getSourceRange());
522      InvalidDecl = true;
523
524    } else {
525      assert(isa<CXXClassVarDecl>(Member) &&
526             "Didn't we cover all member kinds?");
527      // C++ 9.6p3: A bit-field shall not be a static member.
528      // "static member 'A' cannot be a bit-field"
529      Diag(Loc, diag::err_static_not_bitfield, II->getName(),
530           BitWidth->getSourceRange());
531      InvalidDecl = true;
532    }
533  }
534
535  if (Init) {
536    // C++ 9.2p4: A member-declarator can contain a constant-initializer only
537    // if it declares a static member of const integral or const enumeration
538    // type.
539    if (CXXClassVarDecl *CVD = dyn_cast<CXXClassVarDecl>(Member)) {
540      // ...static member of...
541      CVD->setInit(Init);
542      // ...const integral or const enumeration type.
543      if (Context.getCanonicalType(CVD->getType()).isConstQualified() &&
544          CVD->getType()->isIntegralType()) {
545        // constant-initializer
546        if (CheckForConstantInitializer(Init, CVD->getType()))
547          InvalidDecl = true;
548
549      } else {
550        // not const integral.
551        Diag(Loc, diag::err_member_initialization,
552             II->getName(), Init->getSourceRange());
553        InvalidDecl = true;
554      }
555
556    } else {
557      // not static member.
558      Diag(Loc, diag::err_member_initialization,
559           II->getName(), Init->getSourceRange());
560      InvalidDecl = true;
561    }
562  }
563
564  if (InvalidDecl)
565    Member->setInvalidDecl();
566
567  if (isInstField) {
568    FieldCollector->Add(cast<CXXFieldDecl>(Member));
569    return LastInGroup;
570  }
571  return Member;
572}
573
574/// ActOnMemInitializer - Handle a C++ member initializer.
575Sema::MemInitResult
576Sema::ActOnMemInitializer(DeclTy *ConstructorD,
577                          Scope *S,
578                          IdentifierInfo *MemberOrBase,
579                          SourceLocation IdLoc,
580                          SourceLocation LParenLoc,
581                          ExprTy **Args, unsigned NumArgs,
582                          SourceLocation *CommaLocs,
583                          SourceLocation RParenLoc) {
584  CXXConstructorDecl *Constructor
585    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
586  if (!Constructor) {
587    // The user wrote a constructor initializer on a function that is
588    // not a C++ constructor. Ignore the error for now, because we may
589    // have more member initializers coming; we'll diagnose it just
590    // once in ActOnMemInitializers.
591    return true;
592  }
593
594  CXXRecordDecl *ClassDecl = Constructor->getParent();
595
596  // C++ [class.base.init]p2:
597  //   Names in a mem-initializer-id are looked up in the scope of the
598  //   constructor’s class and, if not found in that scope, are looked
599  //   up in the scope containing the constructor’s
600  //   definition. [Note: if the constructor’s class contains a member
601  //   with the same name as a direct or virtual base class of the
602  //   class, a mem-initializer-id naming the member or base class and
603  //   composed of a single identifier refers to the class member. A
604  //   mem-initializer-id for the hidden base class may be specified
605  //   using a qualified name. ]
606  // Look for a member, first.
607  CXXFieldDecl *Member = ClassDecl->getMember(MemberOrBase);
608
609  // FIXME: Handle members of an anonymous union.
610
611  if (Member) {
612    // FIXME: Perform direct initialization of the member.
613    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
614  }
615
616  // It didn't name a member, so see if it names a class.
617  TypeTy *BaseTy = isTypeName(*MemberOrBase, S);
618  if (!BaseTy)
619    return Diag(IdLoc, diag::err_mem_init_not_member_or_class,
620                MemberOrBase->getName(), SourceRange(IdLoc, RParenLoc));
621
622  QualType BaseType = Context.getTypeDeclType((TypeDecl *)BaseTy);
623  if (!BaseType->isRecordType())
624    return Diag(IdLoc, diag::err_base_init_does_not_name_class,
625                BaseType.getAsString(), SourceRange(IdLoc, RParenLoc));
626
627  // C++ [class.base.init]p2:
628  //   [...] Unless the mem-initializer-id names a nonstatic data
629  //   member of the constructor’s class or a direct or virtual base
630  //   of that class, the mem-initializer is ill-formed. A
631  //   mem-initializer-list can initialize a base class using any
632  //   name that denotes that base class type.
633
634  // First, check for a direct base class.
635  const CXXBaseSpecifier *DirectBaseSpec = 0;
636  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
637       Base != ClassDecl->bases_end(); ++Base) {
638    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
639        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
640      // We found a direct base of this type. That's what we're
641      // initializing.
642      DirectBaseSpec = &*Base;
643      break;
644    }
645  }
646
647  // Check for a virtual base class.
648  // FIXME: We might be able to short-circuit this if we know in
649  // advance that there are no virtual bases.
650  const CXXBaseSpecifier *VirtualBaseSpec = 0;
651  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
652    // We haven't found a base yet; search the class hierarchy for a
653    // virtual base class.
654    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
655                    /*DetectVirtual=*/false);
656    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
657      for (BasePaths::paths_iterator Path = Paths.begin();
658           Path != Paths.end(); ++Path) {
659        if (Path->back().Base->isVirtual()) {
660          VirtualBaseSpec = Path->back().Base;
661          break;
662        }
663      }
664    }
665  }
666
667  // C++ [base.class.init]p2:
668  //   If a mem-initializer-id is ambiguous because it designates both
669  //   a direct non-virtual base class and an inherited virtual base
670  //   class, the mem-initializer is ill-formed.
671  if (DirectBaseSpec && VirtualBaseSpec)
672    return Diag(IdLoc, diag::err_base_init_direct_and_virtual,
673                MemberOrBase->getName(), SourceRange(IdLoc, RParenLoc));
674
675  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
676}
677
678
679void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
680                                             DeclTy *TagDecl,
681                                             SourceLocation LBrac,
682                                             SourceLocation RBrac) {
683  ActOnFields(S, RLoc, TagDecl,
684              (DeclTy**)FieldCollector->getCurFields(),
685              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
686}
687
688/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
689/// special functions, such as the default constructor, copy
690/// constructor, or destructor, to the given C++ class (C++
691/// [special]p1).  This routine can only be executed just before the
692/// definition of the class is complete.
693void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
694  if (!ClassDecl->hasUserDeclaredConstructor()) {
695    // C++ [class.ctor]p5:
696    //   A default constructor for a class X is a constructor of class X
697    //   that can be called without an argument. If there is no
698    //   user-declared constructor for class X, a default constructor is
699    //   implicitly declared. An implicitly-declared default constructor
700    //   is an inline public member of its class.
701    CXXConstructorDecl *DefaultCon =
702      CXXConstructorDecl::Create(Context, ClassDecl,
703                                 ClassDecl->getLocation(),
704                                 ClassDecl->getIdentifier(),
705                                 Context.getFunctionType(Context.VoidTy,
706                                                         0, 0, false, 0),
707                                 /*isExplicit=*/false,
708                                 /*isInline=*/true,
709                                 /*isImplicitlyDeclared=*/true);
710    DefaultCon->setAccess(AS_public);
711    ClassDecl->addConstructor(Context, DefaultCon);
712  }
713
714  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
715    // C++ [class.copy]p4:
716    //   If the class definition does not explicitly declare a copy
717    //   constructor, one is declared implicitly.
718
719    // C++ [class.copy]p5:
720    //   The implicitly-declared copy constructor for a class X will
721    //   have the form
722    //
723    //       X::X(const X&)
724    //
725    //   if
726    bool HasConstCopyConstructor = true;
727
728    //     -- each direct or virtual base class B of X has a copy
729    //        constructor whose first parameter is of type const B& or
730    //        const volatile B&, and
731    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
732         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
733      const CXXRecordDecl *BaseClassDecl
734        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
735      HasConstCopyConstructor
736        = BaseClassDecl->hasConstCopyConstructor(Context);
737    }
738
739    //     -- for all the nonstatic data members of X that are of a
740    //        class type M (or array thereof), each such class type
741    //        has a copy constructor whose first parameter is of type
742    //        const M& or const volatile M&.
743    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
744         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
745      QualType FieldType = (*Field)->getType();
746      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
747        FieldType = Array->getElementType();
748      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
749        const CXXRecordDecl *FieldClassDecl
750          = cast<CXXRecordDecl>(FieldClassType->getDecl());
751        HasConstCopyConstructor
752          = FieldClassDecl->hasConstCopyConstructor(Context);
753      }
754    }
755
756    //  Otherwise, the implicitly declared copy constructor will have
757    //  the form
758    //
759    //       X::X(X&)
760    QualType ArgType = Context.getTypeDeclType(ClassDecl);
761    if (HasConstCopyConstructor)
762      ArgType = ArgType.withConst();
763    ArgType = Context.getReferenceType(ArgType);
764
765    //  An implicitly-declared copy constructor is an inline public
766    //  member of its class.
767    CXXConstructorDecl *CopyConstructor
768      = CXXConstructorDecl::Create(Context, ClassDecl,
769                                   ClassDecl->getLocation(),
770                                   ClassDecl->getIdentifier(),
771                                   Context.getFunctionType(Context.VoidTy,
772                                                           &ArgType, 1,
773                                                           false, 0),
774                                   /*isExplicit=*/false,
775                                   /*isInline=*/true,
776                                   /*isImplicitlyDeclared=*/true);
777    CopyConstructor->setAccess(AS_public);
778
779    // Add the parameter to the constructor.
780    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
781                                                 ClassDecl->getLocation(),
782                                                 /*IdentifierInfo=*/0,
783                                                 ArgType, VarDecl::None, 0, 0);
784    CopyConstructor->setParams(&FromParam, 1);
785
786    ClassDecl->addConstructor(Context, CopyConstructor);
787  }
788
789  if (!ClassDecl->getDestructor()) {
790    // C++ [class.dtor]p2:
791    //   If a class has no user-declared destructor, a destructor is
792    //   declared implicitly. An implicitly-declared destructor is an
793    //   inline public member of its class.
794    std::string DestructorName = "~";
795    DestructorName += ClassDecl->getName();
796    CXXDestructorDecl *Destructor
797      = CXXDestructorDecl::Create(Context, ClassDecl,
798                                  ClassDecl->getLocation(),
799                                  &PP.getIdentifierTable().get(DestructorName),
800                                  Context.getFunctionType(Context.VoidTy,
801                                                          0, 0, false, 0),
802                                  /*isInline=*/true,
803                                  /*isImplicitlyDeclared=*/true);
804    Destructor->setAccess(AS_public);
805    ClassDecl->setDestructor(Destructor);
806  }
807
808  // FIXME: Implicit copy assignment operator
809}
810
811void Sema::ActOnFinishCXXClassDef(DeclTy *D) {
812  CXXRecordDecl *Rec = cast<CXXRecordDecl>(static_cast<Decl *>(D));
813  FieldCollector->FinishClass();
814  AddImplicitlyDeclaredMembersToClass(Rec);
815  PopDeclContext();
816
817  // Everything, including inline method definitions, have been parsed.
818  // Let the consumer know of the new TagDecl definition.
819  Consumer.HandleTagDeclDefinition(Rec);
820}
821
822/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
823/// the well-formednes of the constructor declarator @p D with type @p
824/// R. If there are any errors in the declarator, this routine will
825/// emit diagnostics and return true. Otherwise, it will return
826/// false. Either way, the type @p R will be updated to reflect a
827/// well-formed type for the constructor.
828bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
829                                      FunctionDecl::StorageClass& SC) {
830  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
831  bool isInvalid = false;
832
833  // C++ [class.ctor]p3:
834  //   A constructor shall not be virtual (10.3) or static (9.4). A
835  //   constructor can be invoked for a const, volatile or const
836  //   volatile object. A constructor shall not be declared const,
837  //   volatile, or const volatile (9.3.2).
838  if (isVirtual) {
839    Diag(D.getIdentifierLoc(),
840         diag::err_constructor_cannot_be,
841         "virtual",
842         SourceRange(D.getDeclSpec().getVirtualSpecLoc()),
843         SourceRange(D.getIdentifierLoc()));
844    isInvalid = true;
845  }
846  if (SC == FunctionDecl::Static) {
847    Diag(D.getIdentifierLoc(),
848         diag::err_constructor_cannot_be,
849         "static",
850         SourceRange(D.getDeclSpec().getStorageClassSpecLoc()),
851         SourceRange(D.getIdentifierLoc()));
852    isInvalid = true;
853    SC = FunctionDecl::None;
854  }
855  if (D.getDeclSpec().hasTypeSpecifier()) {
856    // Constructors don't have return types, but the parser will
857    // happily parse something like:
858    //
859    //   class X {
860    //     float X(float);
861    //   };
862    //
863    // The return type will be eliminated later.
864    Diag(D.getIdentifierLoc(),
865         diag::err_constructor_return_type,
866         SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()),
867         SourceRange(D.getIdentifierLoc()));
868  }
869  if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
870    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
871    if (FTI.TypeQuals & QualType::Const)
872      Diag(D.getIdentifierLoc(),
873           diag::err_invalid_qualified_constructor,
874           "const",
875           SourceRange(D.getIdentifierLoc()));
876    if (FTI.TypeQuals & QualType::Volatile)
877      Diag(D.getIdentifierLoc(),
878           diag::err_invalid_qualified_constructor,
879           "volatile",
880           SourceRange(D.getIdentifierLoc()));
881    if (FTI.TypeQuals & QualType::Restrict)
882      Diag(D.getIdentifierLoc(),
883           diag::err_invalid_qualified_constructor,
884           "restrict",
885           SourceRange(D.getIdentifierLoc()));
886  }
887
888  // Rebuild the function type "R" without any type qualifiers (in
889  // case any of the errors above fired) and with "void" as the
890  // return type, since constructors don't have return types. We
891  // *always* have to do this, because GetTypeForDeclarator will
892  // put in a result type of "int" when none was specified.
893  const FunctionTypeProto *Proto = R->getAsFunctionTypeProto();
894  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
895                              Proto->getNumArgs(),
896                              Proto->isVariadic(),
897                              0);
898
899  return isInvalid;
900}
901
902/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
903/// the well-formednes of the destructor declarator @p D with type @p
904/// R. If there are any errors in the declarator, this routine will
905/// emit diagnostics and return true. Otherwise, it will return
906/// false. Either way, the type @p R will be updated to reflect a
907/// well-formed type for the destructor.
908bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
909                                     FunctionDecl::StorageClass& SC) {
910  bool isInvalid = false;
911
912  // C++ [class.dtor]p1:
913  //   [...] A typedef-name that names a class is a class-name
914  //   (7.1.3); however, a typedef-name that names a class shall not
915  //   be used as the identifier in the declarator for a destructor
916  //   declaration.
917  TypeDecl *DeclaratorTypeD = (TypeDecl *)D.getDeclaratorIdType();
918  if (const TypedefDecl *TypedefD = dyn_cast<TypedefDecl>(DeclaratorTypeD)) {
919    if (TypedefD->getIdentifier() !=
920          cast<CXXRecordDecl>(CurContext)->getIdentifier()) {
921      // FIXME: This would be easier if we could just look at whether
922      // we found the injected-class-name.
923      Diag(D.getIdentifierLoc(),
924           diag::err_destructor_typedef_name,
925           TypedefD->getName());
926      isInvalid = true;
927    }
928  }
929
930  // C++ [class.dtor]p2:
931  //   A destructor is used to destroy objects of its class type. A
932  //   destructor takes no parameters, and no return type can be
933  //   specified for it (not even void). The address of a destructor
934  //   shall not be taken. A destructor shall not be static. A
935  //   destructor can be invoked for a const, volatile or const
936  //   volatile object. A destructor shall not be declared const,
937  //   volatile or const volatile (9.3.2).
938  if (SC == FunctionDecl::Static) {
939    Diag(D.getIdentifierLoc(),
940         diag::err_destructor_cannot_be,
941         "static",
942         SourceRange(D.getDeclSpec().getStorageClassSpecLoc()),
943         SourceRange(D.getIdentifierLoc()));
944    isInvalid = true;
945    SC = FunctionDecl::None;
946  }
947  if (D.getDeclSpec().hasTypeSpecifier()) {
948    // Destructors don't have return types, but the parser will
949    // happily parse something like:
950    //
951    //   class X {
952    //     float ~X();
953    //   };
954    //
955    // The return type will be eliminated later.
956    Diag(D.getIdentifierLoc(),
957         diag::err_destructor_return_type,
958         SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()),
959         SourceRange(D.getIdentifierLoc()));
960  }
961  if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
962    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
963    if (FTI.TypeQuals & QualType::Const)
964      Diag(D.getIdentifierLoc(),
965           diag::err_invalid_qualified_destructor,
966           "const",
967           SourceRange(D.getIdentifierLoc()));
968    if (FTI.TypeQuals & QualType::Volatile)
969      Diag(D.getIdentifierLoc(),
970           diag::err_invalid_qualified_destructor,
971           "volatile",
972           SourceRange(D.getIdentifierLoc()));
973    if (FTI.TypeQuals & QualType::Restrict)
974      Diag(D.getIdentifierLoc(),
975           diag::err_invalid_qualified_destructor,
976           "restrict",
977           SourceRange(D.getIdentifierLoc()));
978  }
979
980  // Make sure we don't have any parameters.
981  if (R->getAsFunctionTypeProto()->getNumArgs() > 0) {
982    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
983
984    // Delete the parameters.
985    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
986    if (FTI.NumArgs) {
987      delete [] FTI.ArgInfo;
988      FTI.NumArgs = 0;
989      FTI.ArgInfo = 0;
990    }
991  }
992
993  // Make sure the destructor isn't variadic.
994  if (R->getAsFunctionTypeProto()->isVariadic())
995    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
996
997  // Rebuild the function type "R" without any type qualifiers or
998  // parameters (in case any of the errors above fired) and with
999  // "void" as the return type, since destructors don't have return
1000  // types. We *always* have to do this, because GetTypeForDeclarator
1001  // will put in a result type of "int" when none was specified.
1002  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1003
1004  return isInvalid;
1005}
1006
1007/// ActOnConstructorDeclarator - Called by ActOnDeclarator to complete
1008/// the declaration of the given C++ constructor ConDecl that was
1009/// built from declarator D. This routine is responsible for checking
1010/// that the newly-created constructor declaration is well-formed and
1011/// for recording it in the C++ class. Example:
1012///
1013/// @code
1014/// class X {
1015///   X(); // X::X() will be the ConDecl.
1016/// };
1017/// @endcode
1018Sema::DeclTy *Sema::ActOnConstructorDeclarator(CXXConstructorDecl *ConDecl) {
1019  assert(ConDecl && "Expected to receive a constructor declaration");
1020
1021  // Check default arguments on the constructor
1022  CheckCXXDefaultArguments(ConDecl);
1023
1024  CXXRecordDecl *ClassDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1025  if (!ClassDecl) {
1026    ConDecl->setInvalidDecl();
1027    return ConDecl;
1028  }
1029
1030  // Make sure this constructor is an overload of the existing
1031  // constructors.
1032  OverloadedFunctionDecl::function_iterator MatchedDecl;
1033  if (!IsOverload(ConDecl, ClassDecl->getConstructors(), MatchedDecl)) {
1034    Diag(ConDecl->getLocation(),
1035         diag::err_constructor_redeclared,
1036         SourceRange(ConDecl->getLocation()));
1037    Diag((*MatchedDecl)->getLocation(),
1038         diag::err_previous_declaration,
1039         SourceRange((*MatchedDecl)->getLocation()));
1040    ConDecl->setInvalidDecl();
1041    return ConDecl;
1042  }
1043
1044
1045  // C++ [class.copy]p3:
1046  //   A declaration of a constructor for a class X is ill-formed if
1047  //   its first parameter is of type (optionally cv-qualified) X and
1048  //   either there are no other parameters or else all other
1049  //   parameters have default arguments.
1050  if ((ConDecl->getNumParams() == 1) ||
1051      (ConDecl->getNumParams() > 1 &&
1052       ConDecl->getParamDecl(1)->getDefaultArg() != 0)) {
1053    QualType ParamType = ConDecl->getParamDecl(0)->getType();
1054    QualType ClassTy = Context.getTagDeclType(
1055                         const_cast<CXXRecordDecl*>(ConDecl->getParent()));
1056    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1057      Diag(ConDecl->getLocation(),
1058           diag::err_constructor_byvalue_arg,
1059           SourceRange(ConDecl->getParamDecl(0)->getLocation()));
1060      ConDecl->setInvalidDecl();
1061      return ConDecl;
1062    }
1063  }
1064
1065  // Add this constructor to the set of constructors of the current
1066  // class.
1067  ClassDecl->addConstructor(Context, ConDecl);
1068  return (DeclTy *)ConDecl;
1069}
1070
1071/// ActOnDestructorDeclarator - Called by ActOnDeclarator to complete
1072/// the declaration of the given C++ @p Destructor. This routine is
1073/// responsible for recording the destructor in the C++ class, if
1074/// possible.
1075Sema::DeclTy *Sema::ActOnDestructorDeclarator(CXXDestructorDecl *Destructor) {
1076  assert(Destructor && "Expected to receive a destructor declaration");
1077
1078  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CurContext);
1079
1080  // Make sure we aren't redeclaring the destructor.
1081  if (CXXDestructorDecl *PrevDestructor = ClassDecl->getDestructor()) {
1082    Diag(Destructor->getLocation(), diag::err_destructor_redeclared);
1083    Diag(PrevDestructor->getLocation(),
1084         PrevDestructor->isThisDeclarationADefinition()?
1085             diag::err_previous_definition
1086           : diag::err_previous_declaration);
1087    Destructor->setInvalidDecl();
1088    return Destructor;
1089  }
1090
1091  ClassDecl->setDestructor(Destructor);
1092  return (DeclTy *)Destructor;
1093}
1094
1095//===----------------------------------------------------------------------===//
1096// Namespace Handling
1097//===----------------------------------------------------------------------===//
1098
1099/// ActOnStartNamespaceDef - This is called at the start of a namespace
1100/// definition.
1101Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1102                                           SourceLocation IdentLoc,
1103                                           IdentifierInfo *II,
1104                                           SourceLocation LBrace) {
1105  NamespaceDecl *Namespc =
1106      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1107  Namespc->setLBracLoc(LBrace);
1108
1109  Scope *DeclRegionScope = NamespcScope->getParent();
1110
1111  if (II) {
1112    // C++ [namespace.def]p2:
1113    // The identifier in an original-namespace-definition shall not have been
1114    // previously defined in the declarative region in which the
1115    // original-namespace-definition appears. The identifier in an
1116    // original-namespace-definition is the name of the namespace. Subsequently
1117    // in that declarative region, it is treated as an original-namespace-name.
1118
1119    Decl *PrevDecl =
1120        LookupDecl(II, Decl::IDNS_Tag | Decl::IDNS_Ordinary, DeclRegionScope,
1121                   /*enableLazyBuiltinCreation=*/false);
1122
1123    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, DeclRegionScope)) {
1124      if (NamespaceDecl *OrigNS = dyn_cast<NamespaceDecl>(PrevDecl)) {
1125        // This is an extended namespace definition.
1126        // Attach this namespace decl to the chain of extended namespace
1127        // definitions.
1128        NamespaceDecl *NextNS = OrigNS;
1129        while (NextNS->getNextNamespace())
1130          NextNS = NextNS->getNextNamespace();
1131
1132        NextNS->setNextNamespace(Namespc);
1133        Namespc->setOriginalNamespace(OrigNS);
1134
1135        // We won't add this decl to the current scope. We want the namespace
1136        // name to return the original namespace decl during a name lookup.
1137      } else {
1138        // This is an invalid name redefinition.
1139        Diag(Namespc->getLocation(), diag::err_redefinition_different_kind,
1140          Namespc->getName());
1141        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1142        Namespc->setInvalidDecl();
1143        // Continue on to push Namespc as current DeclContext and return it.
1144      }
1145    } else {
1146      // This namespace name is declared for the first time.
1147      PushOnScopeChains(Namespc, DeclRegionScope);
1148    }
1149  }
1150  else {
1151    // FIXME: Handle anonymous namespaces
1152  }
1153
1154  // Although we could have an invalid decl (i.e. the namespace name is a
1155  // redefinition), push it as current DeclContext and try to continue parsing.
1156  PushDeclContext(Namespc->getOriginalNamespace());
1157  return Namespc;
1158}
1159
1160/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1161/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1162void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
1163  Decl *Dcl = static_cast<Decl *>(D);
1164  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1165  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1166  Namespc->setRBracLoc(RBrace);
1167  PopDeclContext();
1168}
1169
1170
1171/// AddCXXDirectInitializerToDecl - This action is called immediately after
1172/// ActOnDeclarator, when a C++ direct initializer is present.
1173/// e.g: "int x(1);"
1174void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
1175                                         ExprTy **ExprTys, unsigned NumExprs,
1176                                         SourceLocation *CommaLocs,
1177                                         SourceLocation RParenLoc) {
1178  assert(NumExprs != 0 && ExprTys && "missing expressions");
1179  Decl *RealDecl = static_cast<Decl *>(Dcl);
1180
1181  // If there is no declaration, there was an error parsing it.  Just ignore
1182  // the initializer.
1183  if (RealDecl == 0) {
1184    for (unsigned i = 0; i != NumExprs; ++i)
1185      delete static_cast<Expr *>(ExprTys[i]);
1186    return;
1187  }
1188
1189  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1190  if (!VDecl) {
1191    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1192    RealDecl->setInvalidDecl();
1193    return;
1194  }
1195
1196  // We will treat direct-initialization as a copy-initialization:
1197  //    int x(1);  -as-> int x = 1;
1198  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1199  //
1200  // Clients that want to distinguish between the two forms, can check for
1201  // direct initializer using VarDecl::hasCXXDirectInitializer().
1202  // A major benefit is that clients that don't particularly care about which
1203  // exactly form was it (like the CodeGen) can handle both cases without
1204  // special case code.
1205
1206  // C++ 8.5p11:
1207  // The form of initialization (using parentheses or '=') is generally
1208  // insignificant, but does matter when the entity being initialized has a
1209  // class type.
1210  QualType DeclInitType = VDecl->getType();
1211  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1212    DeclInitType = Array->getElementType();
1213
1214  if (VDecl->getType()->isRecordType()) {
1215    CXXConstructorDecl *Constructor
1216      = PerformInitializationByConstructor(DeclInitType,
1217                                           (Expr **)ExprTys, NumExprs,
1218                                           VDecl->getLocation(),
1219                                           SourceRange(VDecl->getLocation(),
1220                                                       RParenLoc),
1221                                           VDecl->getName(),
1222                                           IK_Direct);
1223    if (!Constructor) {
1224      RealDecl->setInvalidDecl();
1225    }
1226
1227    // Let clients know that initialization was done with a direct
1228    // initializer.
1229    VDecl->setCXXDirectInitializer(true);
1230
1231    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1232    // the initializer.
1233    return;
1234  }
1235
1236  if (NumExprs > 1) {
1237    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg,
1238         SourceRange(VDecl->getLocation(), RParenLoc));
1239    RealDecl->setInvalidDecl();
1240    return;
1241  }
1242
1243  // Let clients know that initialization was done with a direct initializer.
1244  VDecl->setCXXDirectInitializer(true);
1245
1246  assert(NumExprs == 1 && "Expected 1 expression");
1247  // Set the init expression, handles conversions.
1248  AddInitializerToDecl(Dcl, ExprTys[0]);
1249}
1250
1251/// PerformInitializationByConstructor - Perform initialization by
1252/// constructor (C++ [dcl.init]p14), which may occur as part of
1253/// direct-initialization or copy-initialization. We are initializing
1254/// an object of type @p ClassType with the given arguments @p
1255/// Args. @p Loc is the location in the source code where the
1256/// initializer occurs (e.g., a declaration, member initializer,
1257/// functional cast, etc.) while @p Range covers the whole
1258/// initialization. @p InitEntity is the entity being initialized,
1259/// which may by the name of a declaration or a type. @p Kind is the
1260/// kind of initialization we're performing, which affects whether
1261/// explicit constructors will be considered. When successful, returns
1262/// the constructor that will be used to perform the initialization;
1263/// when the initialization fails, emits a diagnostic and returns
1264/// null.
1265CXXConstructorDecl *
1266Sema::PerformInitializationByConstructor(QualType ClassType,
1267                                         Expr **Args, unsigned NumArgs,
1268                                         SourceLocation Loc, SourceRange Range,
1269                                         std::string InitEntity,
1270                                         InitializationKind Kind) {
1271  const RecordType *ClassRec = ClassType->getAsRecordType();
1272  assert(ClassRec && "Can only initialize a class type here");
1273
1274  // C++ [dcl.init]p14:
1275  //
1276  //   If the initialization is direct-initialization, or if it is
1277  //   copy-initialization where the cv-unqualified version of the
1278  //   source type is the same class as, or a derived class of, the
1279  //   class of the destination, constructors are considered. The
1280  //   applicable constructors are enumerated (13.3.1.3), and the
1281  //   best one is chosen through overload resolution (13.3). The
1282  //   constructor so selected is called to initialize the object,
1283  //   with the initializer expression(s) as its argument(s). If no
1284  //   constructor applies, or the overload resolution is ambiguous,
1285  //   the initialization is ill-formed.
1286  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1287  OverloadCandidateSet CandidateSet;
1288
1289  // Add constructors to the overload set.
1290  OverloadedFunctionDecl *Constructors
1291    = const_cast<OverloadedFunctionDecl *>(ClassDecl->getConstructors());
1292  for (OverloadedFunctionDecl::function_iterator Con
1293         = Constructors->function_begin();
1294       Con != Constructors->function_end(); ++Con) {
1295    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1296    if ((Kind == IK_Direct) ||
1297        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1298        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1299      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1300  }
1301
1302  OverloadCandidateSet::iterator Best;
1303  switch (BestViableFunction(CandidateSet, Best)) {
1304  case OR_Success:
1305    // We found a constructor. Return it.
1306    return cast<CXXConstructorDecl>(Best->Function);
1307
1308  case OR_No_Viable_Function:
1309    if (CandidateSet.empty())
1310      Diag(Loc, diag::err_ovl_no_viable_function_in_init,
1311           InitEntity, Range);
1312    else {
1313      Diag(Loc, diag::err_ovl_no_viable_function_in_init_with_cands,
1314           InitEntity, Range);
1315      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1316    }
1317    return 0;
1318
1319  case OR_Ambiguous:
1320    Diag(Loc, diag::err_ovl_ambiguous_init,
1321         InitEntity, Range);
1322    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1323    return 0;
1324  }
1325
1326  return 0;
1327}
1328
1329/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1330/// determine whether they are reference-related,
1331/// reference-compatible, reference-compatible with added
1332/// qualification, or incompatible, for use in C++ initialization by
1333/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1334/// type, and the first type (T1) is the pointee type of the reference
1335/// type being initialized.
1336Sema::ReferenceCompareResult
1337Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1338                                   bool& DerivedToBase) {
1339  assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
1340  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1341
1342  T1 = Context.getCanonicalType(T1);
1343  T2 = Context.getCanonicalType(T2);
1344  QualType UnqualT1 = T1.getUnqualifiedType();
1345  QualType UnqualT2 = T2.getUnqualifiedType();
1346
1347  // C++ [dcl.init.ref]p4:
1348  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1349  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1350  //   T1 is a base class of T2.
1351  if (UnqualT1 == UnqualT2)
1352    DerivedToBase = false;
1353  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1354    DerivedToBase = true;
1355  else
1356    return Ref_Incompatible;
1357
1358  // At this point, we know that T1 and T2 are reference-related (at
1359  // least).
1360
1361  // C++ [dcl.init.ref]p4:
1362  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1363  //   reference-related to T2 and cv1 is the same cv-qualification
1364  //   as, or greater cv-qualification than, cv2. For purposes of
1365  //   overload resolution, cases for which cv1 is greater
1366  //   cv-qualification than cv2 are identified as
1367  //   reference-compatible with added qualification (see 13.3.3.2).
1368  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1369    return Ref_Compatible;
1370  else if (T1.isMoreQualifiedThan(T2))
1371    return Ref_Compatible_With_Added_Qualification;
1372  else
1373    return Ref_Related;
1374}
1375
1376/// CheckReferenceInit - Check the initialization of a reference
1377/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1378/// the initializer (either a simple initializer or an initializer
1379/// list), and DeclType is the type of the declaration. When ICS is
1380/// non-null, this routine will compute the implicit conversion
1381/// sequence according to C++ [over.ics.ref] and will not produce any
1382/// diagnostics; when ICS is null, it will emit diagnostics when any
1383/// errors are found. Either way, a return value of true indicates
1384/// that there was a failure, a return value of false indicates that
1385/// the reference initialization succeeded.
1386///
1387/// When @p SuppressUserConversions, user-defined conversions are
1388/// suppressed.
1389bool
1390Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1391                         ImplicitConversionSequence *ICS,
1392                         bool SuppressUserConversions) {
1393  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1394
1395  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1396  QualType T2 = Init->getType();
1397
1398  // Compute some basic properties of the types and the initializer.
1399  bool DerivedToBase = false;
1400  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1401  ReferenceCompareResult RefRelationship
1402    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1403
1404  // Most paths end in a failed conversion.
1405  if (ICS)
1406    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1407
1408  // C++ [dcl.init.ref]p5:
1409  //   A reference to type “cv1 T1” is initialized by an expression
1410  //   of type “cv2 T2” as follows:
1411
1412  //     -- If the initializer expression
1413
1414  bool BindsDirectly = false;
1415  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1416  //          reference-compatible with “cv2 T2,” or
1417  //
1418  // Note that the bit-field check is skipped if we are just computing
1419  // the implicit conversion sequence (C++ [over.best.ics]p2).
1420  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1421      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1422    BindsDirectly = true;
1423
1424    if (ICS) {
1425      // C++ [over.ics.ref]p1:
1426      //   When a parameter of reference type binds directly (8.5.3)
1427      //   to an argument expression, the implicit conversion sequence
1428      //   is the identity conversion, unless the argument expression
1429      //   has a type that is a derived class of the parameter type,
1430      //   in which case the implicit conversion sequence is a
1431      //   derived-to-base Conversion (13.3.3.1).
1432      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1433      ICS->Standard.First = ICK_Identity;
1434      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1435      ICS->Standard.Third = ICK_Identity;
1436      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1437      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1438      ICS->Standard.ReferenceBinding = true;
1439      ICS->Standard.DirectBinding = true;
1440
1441      // Nothing more to do: the inaccessibility/ambiguity check for
1442      // derived-to-base conversions is suppressed when we're
1443      // computing the implicit conversion sequence (C++
1444      // [over.best.ics]p2).
1445      return false;
1446    } else {
1447      // Perform the conversion.
1448      // FIXME: Binding to a subobject of the lvalue is going to require
1449      // more AST annotation than this.
1450      ImpCastExprToType(Init, T1);
1451    }
1452  }
1453
1454  //       -- has a class type (i.e., T2 is a class type) and can be
1455  //          implicitly converted to an lvalue of type “cv3 T3,”
1456  //          where “cv1 T1” is reference-compatible with “cv3 T3”
1457  //          92) (this conversion is selected by enumerating the
1458  //          applicable conversion functions (13.3.1.6) and choosing
1459  //          the best one through overload resolution (13.3)),
1460  // FIXME: Implement this second bullet, once we have conversion
1461  //        functions. Also remember C++ [over.ics.ref]p1, second part.
1462
1463  if (BindsDirectly) {
1464    // C++ [dcl.init.ref]p4:
1465    //   [...] In all cases where the reference-related or
1466    //   reference-compatible relationship of two types is used to
1467    //   establish the validity of a reference binding, and T1 is a
1468    //   base class of T2, a program that necessitates such a binding
1469    //   is ill-formed if T1 is an inaccessible (clause 11) or
1470    //   ambiguous (10.2) base class of T2.
1471    //
1472    // Note that we only check this condition when we're allowed to
1473    // complain about errors, because we should not be checking for
1474    // ambiguity (or inaccessibility) unless the reference binding
1475    // actually happens.
1476    if (DerivedToBase)
1477      return CheckDerivedToBaseConversion(T2, T1,
1478                                          Init->getSourceRange().getBegin(),
1479                                          Init->getSourceRange());
1480    else
1481      return false;
1482  }
1483
1484  //     -- Otherwise, the reference shall be to a non-volatile const
1485  //        type (i.e., cv1 shall be const).
1486  if (T1.getCVRQualifiers() != QualType::Const) {
1487    if (!ICS)
1488      Diag(Init->getSourceRange().getBegin(),
1489           diag::err_not_reference_to_const_init,
1490           T1.getAsString(),
1491           InitLvalue != Expr::LV_Valid? "temporary" : "value",
1492           T2.getAsString(), Init->getSourceRange());
1493    return true;
1494  }
1495
1496  //       -- If the initializer expression is an rvalue, with T2 a
1497  //          class type, and “cv1 T1” is reference-compatible with
1498  //          “cv2 T2,” the reference is bound in one of the
1499  //          following ways (the choice is implementation-defined):
1500  //
1501  //          -- The reference is bound to the object represented by
1502  //             the rvalue (see 3.10) or to a sub-object within that
1503  //             object.
1504  //
1505  //          -- A temporary of type “cv1 T2” [sic] is created, and
1506  //             a constructor is called to copy the entire rvalue
1507  //             object into the temporary. The reference is bound to
1508  //             the temporary or to a sub-object within the
1509  //             temporary.
1510  //
1511  //
1512  //          The constructor that would be used to make the copy
1513  //          shall be callable whether or not the copy is actually
1514  //          done.
1515  //
1516  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
1517  // freedom, so we will always take the first option and never build
1518  // a temporary in this case. FIXME: We will, however, have to check
1519  // for the presence of a copy constructor in C++98/03 mode.
1520  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
1521      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1522    if (ICS) {
1523      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1524      ICS->Standard.First = ICK_Identity;
1525      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1526      ICS->Standard.Third = ICK_Identity;
1527      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1528      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1529      ICS->Standard.ReferenceBinding = true;
1530      ICS->Standard.DirectBinding = false;
1531    } else {
1532      // FIXME: Binding to a subobject of the rvalue is going to require
1533      // more AST annotation than this.
1534      ImpCastExprToType(Init, T1);
1535    }
1536    return false;
1537  }
1538
1539  //       -- Otherwise, a temporary of type “cv1 T1” is created and
1540  //          initialized from the initializer expression using the
1541  //          rules for a non-reference copy initialization (8.5). The
1542  //          reference is then bound to the temporary. If T1 is
1543  //          reference-related to T2, cv1 must be the same
1544  //          cv-qualification as, or greater cv-qualification than,
1545  //          cv2; otherwise, the program is ill-formed.
1546  if (RefRelationship == Ref_Related) {
1547    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
1548    // we would be reference-compatible or reference-compatible with
1549    // added qualification. But that wasn't the case, so the reference
1550    // initialization fails.
1551    if (!ICS)
1552      Diag(Init->getSourceRange().getBegin(),
1553           diag::err_reference_init_drops_quals,
1554           T1.getAsString(),
1555           InitLvalue != Expr::LV_Valid? "temporary" : "value",
1556           T2.getAsString(), Init->getSourceRange());
1557    return true;
1558  }
1559
1560  // Actually try to convert the initializer to T1.
1561  if (ICS) {
1562    /// C++ [over.ics.ref]p2:
1563    ///
1564    ///   When a parameter of reference type is not bound directly to
1565    ///   an argument expression, the conversion sequence is the one
1566    ///   required to convert the argument expression to the
1567    ///   underlying type of the reference according to
1568    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
1569    ///   to copy-initializing a temporary of the underlying type with
1570    ///   the argument expression. Any difference in top-level
1571    ///   cv-qualification is subsumed by the initialization itself
1572    ///   and does not constitute a conversion.
1573    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
1574    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
1575  } else {
1576    return PerformImplicitConversion(Init, T1);
1577  }
1578}
1579
1580/// CheckOverloadedOperatorDeclaration - Check whether the declaration
1581/// of this overloaded operator is well-formed. If so, returns false;
1582/// otherwise, emits appropriate diagnostics and returns true.
1583bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
1584  assert(FnDecl && FnDecl->getOverloadedOperator() != OO_None &&
1585         "Expected an overloaded operator declaration");
1586
1587  bool IsInvalid = false;
1588
1589  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
1590
1591  // C++ [over.oper]p5:
1592  //   The allocation and deallocation functions, operator new,
1593  //   operator new[], operator delete and operator delete[], are
1594  //   described completely in 3.7.3. The attributes and restrictions
1595  //   found in the rest of this subclause do not apply to them unless
1596  //   explicitly stated in 3.7.3.
1597  // FIXME: Write a separate routine for checking this. For now, just
1598  // allow it.
1599  if (Op == OO_New || Op == OO_Array_New ||
1600      Op == OO_Delete || Op == OO_Array_Delete)
1601    return false;
1602
1603  // C++ [over.oper]p6:
1604  //   An operator function shall either be a non-static member
1605  //   function or be a non-member function and have at least one
1606  //   parameter whose type is a class, a reference to a class, an
1607  //   enumeration, or a reference to an enumeration.
1608  CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl);
1609  if (MethodDecl) {
1610    if (MethodDecl->isStatic()) {
1611      Diag(FnDecl->getLocation(),
1612           diag::err_operator_overload_static,
1613           FnDecl->getName(),
1614           SourceRange(FnDecl->getLocation()));
1615      IsInvalid = true;
1616
1617      // Pretend this isn't a member function; it'll supress
1618      // additional, unnecessary error messages.
1619      MethodDecl = 0;
1620    }
1621  } else {
1622    bool ClassOrEnumParam = false;
1623    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
1624         Param != FnDecl->param_end(); ++Param) {
1625      QualType ParamType = (*Param)->getType();
1626      if (const ReferenceType *RefType = ParamType->getAsReferenceType())
1627        ParamType = RefType->getPointeeType();
1628      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
1629        ClassOrEnumParam = true;
1630        break;
1631      }
1632    }
1633
1634    if (!ClassOrEnumParam) {
1635      Diag(FnDecl->getLocation(),
1636           diag::err_operator_overload_needs_class_or_enum,
1637           FnDecl->getName(),
1638           SourceRange(FnDecl->getLocation()));
1639      IsInvalid = true;
1640    }
1641  }
1642
1643  // C++ [over.oper]p8:
1644  //   An operator function cannot have default arguments (8.3.6),
1645  //   except where explicitly stated below.
1646  //
1647  // Only the function-call operator allows default arguments
1648  // (C++ [over.call]p1).
1649  if (Op != OO_Call) {
1650    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
1651         Param != FnDecl->param_end(); ++Param) {
1652      if (Expr *DefArg = (*Param)->getDefaultArg()) {
1653        Diag((*Param)->getLocation(),
1654             diag::err_operator_overload_default_arg,
1655             DefArg->getSourceRange());
1656        IsInvalid = true;
1657      }
1658    }
1659  }
1660
1661  bool CanBeUnaryOperator = false;
1662  bool CanBeBinaryOperator = false;
1663  bool MustBeMemberOperator = false;
1664
1665  switch (Op) {
1666  case OO_New:
1667  case OO_Delete:
1668  case OO_Array_New:
1669  case OO_Array_Delete:
1670    assert(false && "Operators new, new[], delete, and delete[] handled above");
1671    return true;
1672
1673  // Unary-only operators
1674  case OO_Arrow:
1675    MustBeMemberOperator = true;
1676    // Fall through
1677
1678  case OO_Tilde:
1679  case OO_Exclaim:
1680    CanBeUnaryOperator = true;
1681    break;
1682
1683  // Binary-only operators
1684  case OO_Equal:
1685  case OO_Subscript:
1686    MustBeMemberOperator = true;
1687    // Fall through
1688
1689  case OO_Slash:
1690  case OO_Percent:
1691  case OO_Caret:
1692  case OO_Pipe:
1693  case OO_Less:
1694  case OO_Greater:
1695  case OO_PlusEqual:
1696  case OO_MinusEqual:
1697  case OO_StarEqual:
1698  case OO_SlashEqual:
1699  case OO_PercentEqual:
1700  case OO_CaretEqual:
1701  case OO_AmpEqual:
1702  case OO_PipeEqual:
1703  case OO_LessLess:
1704  case OO_GreaterGreater:
1705  case OO_LessLessEqual:
1706  case OO_GreaterGreaterEqual:
1707  case OO_EqualEqual:
1708  case OO_ExclaimEqual:
1709  case OO_LessEqual:
1710  case OO_GreaterEqual:
1711  case OO_AmpAmp:
1712  case OO_PipePipe:
1713  case OO_Comma:
1714    CanBeBinaryOperator = true;
1715    break;
1716
1717  // Unary or binary operators
1718  case OO_Amp:
1719  case OO_Plus:
1720  case OO_Minus:
1721  case OO_Star:
1722  case OO_PlusPlus:
1723  case OO_MinusMinus:
1724  case OO_ArrowStar:
1725    CanBeUnaryOperator = true;
1726    CanBeBinaryOperator = true;
1727    break;
1728
1729  case OO_Call:
1730    MustBeMemberOperator = true;
1731    break;
1732
1733  case OO_None:
1734  case NUM_OVERLOADED_OPERATORS:
1735    assert(false && "Not an overloaded operator!");
1736    return true;
1737  }
1738
1739  // C++ [over.oper]p8:
1740  //   [...] Operator functions cannot have more or fewer parameters
1741  //   than the number required for the corresponding operator, as
1742  //   described in the rest of this subclause.
1743  unsigned NumParams = FnDecl->getNumParams() + (MethodDecl? 1 : 0);
1744  if (Op != OO_Call &&
1745      ((NumParams == 1 && !CanBeUnaryOperator) ||
1746       (NumParams == 2 && !CanBeBinaryOperator) ||
1747       (NumParams < 1) || (NumParams > 2))) {
1748    // We have the wrong number of parameters.
1749    std::string NumParamsStr = (llvm::APSInt(32) = NumParams).toString(10);
1750    std::string NumParamsPlural;
1751    if (NumParams != 1)
1752      NumParamsPlural = "s";
1753
1754    diag::kind DK;
1755
1756    if (CanBeUnaryOperator && CanBeBinaryOperator)
1757      DK = diag::err_operator_overload_must_be_unary_or_binary;
1758    else if (CanBeUnaryOperator)
1759      DK = diag::err_operator_overload_must_be_unary;
1760    else if (CanBeBinaryOperator)
1761      DK = diag::err_operator_overload_must_be_binary;
1762    else
1763      assert(false && "All non-call overloaded operators are unary or binary!");
1764
1765    Diag(FnDecl->getLocation(), DK,
1766         FnDecl->getName(), NumParamsStr, NumParamsPlural,
1767         SourceRange(FnDecl->getLocation()));
1768    IsInvalid = true;
1769  }
1770
1771  // Overloaded operators cannot be variadic.
1772  if (FnDecl->getType()->getAsFunctionTypeProto()->isVariadic()) {
1773    Diag(FnDecl->getLocation(),
1774         diag::err_operator_overload_variadic,
1775         SourceRange(FnDecl->getLocation()));
1776    IsInvalid = true;
1777  }
1778
1779  // Some operators must be non-static member functions.
1780  if (MustBeMemberOperator && !MethodDecl) {
1781    Diag(FnDecl->getLocation(),
1782         diag::err_operator_overload_must_be_member,
1783         FnDecl->getName(),
1784         SourceRange(FnDecl->getLocation()));
1785    IsInvalid = true;
1786  }
1787
1788  // C++ [over.inc]p1:
1789  //   The user-defined function called operator++ implements the
1790  //   prefix and postfix ++ operator. If this function is a member
1791  //   function with no parameters, or a non-member function with one
1792  //   parameter of class or enumeration type, it defines the prefix
1793  //   increment operator ++ for objects of that type. If the function
1794  //   is a member function with one parameter (which shall be of type
1795  //   int) or a non-member function with two parameters (the second
1796  //   of which shall be of type int), it defines the postfix
1797  //   increment operator ++ for objects of that type.
1798  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
1799    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
1800    bool ParamIsInt = false;
1801    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
1802      ParamIsInt = BT->getKind() == BuiltinType::Int;
1803
1804    if (!ParamIsInt) {
1805      Diag(LastParam->getLocation(),
1806           diag::err_operator_overload_post_incdec_must_be_int,
1807           MethodDecl? std::string() : std::string("second "),
1808           (Op == OO_PlusPlus)? std::string("increment")
1809                              : std::string("decrement"),
1810           Context.getCanonicalType(LastParam->getType()).getAsString(),
1811           SourceRange(FnDecl->getLocation()));
1812      IsInvalid = true;
1813    }
1814  }
1815
1816  return IsInvalid;
1817}
1818